TECHNICAL MANUAL
MODEL 35
KEYBOARD SEND-RECEIVE (KSR) AND
RECEIVE-ONLY (RO)
TELETYPEWRITER SETS
INTRODUCTION

Bulletin 281B is a technical manual that provides descriptive, installing and maintenance information for the Model 35 Keyboard Send-Receive (KSR) and Receive-Only (RO) Teletypewriter Sets and their components.

The bulletin consists of two volumes. Volume 1 contains description, operation, installation, lubrication, and disassembly and reassembly. Volume 2 contains adjustments.

Each volume is made up of a group of appropriate independent sections. They are separately identified by title and section number, and the pages of each section are numbered consecutively, independent of other sections. Individual copies of these sections can be obtained upon request.

The identifying number of a section, a 9-digit number, appears at the top of each page of the section, in the left corner of the left-hand pages and the right corner of the right-hand pages. The sections are placed in the manual in ascending numerical order.

To locate specific information refer to the table of contents on the following page. Find the name of the involved component in column one and the title of the section in column two. The correct 9-digit section number will then be found in column three. Turn to page one of the section indicated, where the contents of that section will be found (except where a section is small and does not require a listing of contents).
TABLE OF CONTENTS

FILING INSTRUCTIONS

1. The following filing instructions apply to changes sent to the field.

2. Asterisks (*) in the table of contents indicate changes.

3. When the issue of a section changes, replace the old issue with the attached new one.

4. In the case of addendums, turn to the affected section and follow the instructions on the first page of the attached addendum.

5. Replace the old table of contents with this new one.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Title</th>
<th>Section</th>
<th>Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typing Unit (LP)</td>
<td>Adjustments</td>
<td>574-220-700TC</td>
<td>9*</td>
</tr>
<tr>
<td>Keyboard and Base (LK, LB)</td>
<td>Adjustments</td>
<td>574-221-700TC</td>
<td>7*</td>
</tr>
<tr>
<td>Cabinet (LAC)</td>
<td>Adjustments</td>
<td>574-229-700TC</td>
<td>4</td>
</tr>
<tr>
<td>Answer-Back Unit</td>
<td>Adjustments</td>
<td>574-235-700TC</td>
<td>6</td>
</tr>
</tbody>
</table>
35 Typing Unit (LP) Adjustments

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>4</td>
</tr>
<tr>
<td>2. Basic Units</td>
<td>8</td>
</tr>
<tr>
<td>2.1 Codebar Mechanism</td>
<td></td>
</tr>
<tr>
<td>Codebar detent</td>
<td>78</td>
</tr>
<tr>
<td>Codebar detent spring</td>
<td>78</td>
</tr>
<tr>
<td>Codebar shift lever</td>
<td>23</td>
</tr>
<tr>
<td>Codebar shift lever drive arm</td>
<td>20</td>
</tr>
<tr>
<td>Codebar yield spring</td>
<td>78</td>
</tr>
<tr>
<td>Common transfer lever spring</td>
<td>21</td>
</tr>
<tr>
<td>Intermediate arm backstop bracket</td>
<td>22</td>
</tr>
<tr>
<td>Intermediate latch eccentric</td>
<td>24</td>
</tr>
<tr>
<td>Intermediate reset ball eccentric</td>
<td>25</td>
</tr>
<tr>
<td>Intermediate reset ball spring</td>
<td>25</td>
</tr>
<tr>
<td>Intermediate reset lever spring</td>
<td>25</td>
</tr>
<tr>
<td>Transfer lever eccentric</td>
<td>21</td>
</tr>
<tr>
<td>Transfer lever spring</td>
<td>21</td>
</tr>
<tr>
<td>2.2 Function Mechanism</td>
<td></td>
</tr>
<tr>
<td>Function bar spring</td>
<td>71</td>
</tr>
<tr>
<td>Function contact spring</td>
<td>72</td>
</tr>
<tr>
<td>Function lever spring</td>
<td>71</td>
</tr>
<tr>
<td>Function pawl spring</td>
<td>71</td>
</tr>
<tr>
<td>Function pawl timing contact</td>
<td>72</td>
</tr>
<tr>
<td>Function reset ball blade</td>
<td>43</td>
</tr>
<tr>
<td>Function reset ball spring</td>
<td>43</td>
</tr>
<tr>
<td>Stripper blade drive cam position</td>
<td>70</td>
</tr>
<tr>
<td>Stripper slide arm</td>
<td>87</td>
</tr>
<tr>
<td>Stripper slide bail torsion spring</td>
<td>68</td>
</tr>
<tr>
<td>Stripper slide spring</td>
<td>88</td>
</tr>
<tr>
<td>2.3 Line Feed and Platen Mechanism</td>
<td></td>
</tr>
<tr>
<td>Left margin (sprocket feed)</td>
<td>83</td>
</tr>
<tr>
<td>Line feed bar bellcrank spring (friction feed)</td>
<td>68</td>
</tr>
<tr>
<td>Line feed bar bellcrank spring (sprocket feed)</td>
<td>86</td>
</tr>
<tr>
<td>Line feed bar bumper (six stop clutch only)</td>
<td>69</td>
</tr>
<tr>
<td>Line feed bar release lever spring</td>
<td>68</td>
</tr>
<tr>
<td>Line feed clutch gear phasing</td>
<td>37</td>
</tr>
<tr>
<td>Line feed spur gear detent eccentric</td>
<td>68</td>
</tr>
<tr>
<td>Paper finger (friction feed)</td>
<td>77</td>
</tr>
<tr>
<td>Paper finger (sprocket feed)</td>
<td>85</td>
</tr>
<tr>
<td>2.4 Contents Page</td>
<td></td>
</tr>
<tr>
<td>Paper finger latch spring (sprocket feed)</td>
<td>82</td>
</tr>
<tr>
<td>Paper finger shaft spring (sprocket feed)</td>
<td>82</td>
</tr>
<tr>
<td>Paper finger spring (friction feed)</td>
<td>77</td>
</tr>
<tr>
<td>Paper guide (sprocket feed)</td>
<td>86</td>
</tr>
<tr>
<td>Paper pressure bail spring (friction feed)</td>
<td>77</td>
</tr>
<tr>
<td>Paper straightener collar (friction feed)</td>
<td>76</td>
</tr>
<tr>
<td>Paper straightener lever spring (friction feed)</td>
<td>76</td>
</tr>
<tr>
<td>Platen detent ball spring</td>
<td>68</td>
</tr>
<tr>
<td>Platen endplay (sprocket feed)</td>
<td>84</td>
</tr>
<tr>
<td>Pressure roller lever spring (friction feed)</td>
<td>77</td>
</tr>
<tr>
<td>Printed line (sprocket feed)</td>
<td>84</td>
</tr>
<tr>
<td>Right margin with automatic carriage return-line feed ring</td>
<td>75</td>
</tr>
<tr>
<td>Single-double line feed stripper bail assembly springs</td>
<td>74</td>
</tr>
<tr>
<td>Sprocket pin separation (sprocket feed)</td>
<td>84</td>
</tr>
<tr>
<td>Sprocket pin spring (sprocket feed)</td>
<td>86</td>
</tr>
<tr>
<td>2.5 Main Shaft and Trip Shaft Mechanisms</td>
<td></td>
</tr>
<tr>
<td>Antideflection plate</td>
<td>28</td>
</tr>
<tr>
<td>Clutch drum position (except selector)</td>
<td>35</td>
</tr>
<tr>
<td>Clutch latch lever spring (except selector)</td>
<td>26</td>
</tr>
<tr>
<td>Clutch shoe lever</td>
<td>34</td>
</tr>
<tr>
<td>Clutch shoe lever spring</td>
<td>35</td>
</tr>
<tr>
<td>Clutch shoe spring</td>
<td>35</td>
</tr>
<tr>
<td>Clutch trip lever spring</td>
<td>30</td>
</tr>
<tr>
<td>Clutch trip shaft set collars</td>
<td>23</td>
</tr>
<tr>
<td>Codebar clutch cam follower spring</td>
<td>27</td>
</tr>
<tr>
<td>Codebar clutch trip lever</td>
<td>26</td>
</tr>
<tr>
<td>Function clutch trip lever</td>
<td>27</td>
</tr>
<tr>
<td>Function clutch trip lever trip arm</td>
<td>28</td>
</tr>
<tr>
<td>Intermediate lever spring</td>
<td>30</td>
</tr>
<tr>
<td>Line feed clutch trip lever adjusting screw</td>
<td>32</td>
</tr>
<tr>
<td>Line feed clutch trip lever eccentric post</td>
<td>32</td>
</tr>
</tbody>
</table>
SECTION 574-220-700TC

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacing clutch trip cam</td>
<td>31</td>
</tr>
<tr>
<td>follower spring</td>
<td>31</td>
</tr>
<tr>
<td>Spacing clutch trip lever</td>
<td>30</td>
</tr>
<tr>
<td>Trip shaft lever spring</td>
<td>26</td>
</tr>
<tr>
<td>Typebox clutch trip lever</td>
<td>33</td>
</tr>
<tr>
<td>eccentric post</td>
<td>33</td>
</tr>
<tr>
<td>Typebox clutch trip lever arm</td>
<td>33</td>
</tr>
<tr>
<td>Positioning Mechanism</td>
<td></td>
</tr>
<tr>
<td>Ball arm assembly spring</td>
<td>49</td>
</tr>
<tr>
<td>Decelerating slide spring</td>
<td>47</td>
</tr>
<tr>
<td>Horizontal positioning drive linkage</td>
<td>45</td>
</tr>
<tr>
<td>Horizontal positioning drive spring</td>
<td>45</td>
</tr>
<tr>
<td>Horizontal positioning locklever</td>
<td>38</td>
</tr>
<tr>
<td>Horizontal shift link shock spring</td>
<td>47</td>
</tr>
<tr>
<td>Horizontal stop slide spring</td>
<td>76</td>
</tr>
<tr>
<td>Left vertical positioning lever</td>
<td>40</td>
</tr>
<tr>
<td>eccentric stud</td>
<td></td>
</tr>
<tr>
<td>Reversing slide adjusting stud</td>
<td>44</td>
</tr>
<tr>
<td>Reversing slide brackets</td>
<td>44</td>
</tr>
<tr>
<td>Reversing slide detent spring</td>
<td>44</td>
</tr>
<tr>
<td>Right vertical positioning lever</td>
<td>39</td>
</tr>
<tr>
<td>eccentric stud</td>
<td></td>
</tr>
<tr>
<td>Rocker shaft bracket eccentric stud</td>
<td>38</td>
</tr>
<tr>
<td>Rocker shaft left bracket</td>
<td>37</td>
</tr>
<tr>
<td>Shift drive pawl guide bracket</td>
<td>49</td>
</tr>
<tr>
<td>Shift drive pawl operating ball</td>
<td>48</td>
</tr>
<tr>
<td>Shift linkage (final)</td>
<td>59</td>
</tr>
<tr>
<td>Shift linkage (preliminary)</td>
<td>46</td>
</tr>
<tr>
<td>Shift linkage spring</td>
<td>59</td>
</tr>
<tr>
<td>Shift pawl selector link yield spring</td>
<td>50</td>
</tr>
<tr>
<td>Shift rocker ball spring</td>
<td>48</td>
</tr>
<tr>
<td>Shift rocker bar bearing bracket</td>
<td>46</td>
</tr>
<tr>
<td>Shift rocker lever</td>
<td>48</td>
</tr>
<tr>
<td>Shift selector arm bellcrank</td>
<td>50</td>
</tr>
<tr>
<td>Vertical positioning lever spring</td>
<td>39</td>
</tr>
<tr>
<td>Vertical positioning locklever</td>
<td>41</td>
</tr>
<tr>
<td>Vertical positioning locklever spring</td>
<td>40</td>
</tr>
<tr>
<td>Printing Mechanism</td>
<td></td>
</tr>
<tr>
<td>Printing arm</td>
<td>61</td>
</tr>
<tr>
<td>Printing carriage lower roller</td>
<td>54</td>
</tr>
<tr>
<td>Printing carriage position</td>
<td>58</td>
</tr>
<tr>
<td>Printing hammer bearing stud</td>
<td>58</td>
</tr>
<tr>
<td>Printing hammer operating ball latch spring</td>
<td>60</td>
</tr>
<tr>
<td>Printing hammer operating ball latch spring</td>
<td>60</td>
</tr>
<tr>
<td>Printing hammer operating ball spring</td>
<td>60</td>
</tr>
<tr>
<td>Printing hammer operating ball spring (not as illustrated)</td>
<td>60</td>
</tr>
<tr>
<td>Printing hammer plunger spring</td>
<td>60</td>
</tr>
<tr>
<td>Printing hammer stop bracket</td>
<td>61</td>
</tr>
</tbody>
</table>

CONTENTS PAGE

<p>| Printing hammer yield spring | 60 |
| Printing track | 60 |
| Print suppression blocking bail spring | 81 |
| Print suppression blocking levers | 80 |
| Print suppression blocking levers | 80 |
| Print suppression mechanism | 80 |
| Ribbon feed lever bracket | 66 |
| Ribbon feed lever spring | 66 |
| Ribbon lever spring | 67 |
| Ribbon ratchet wheel friction spring | 66 |
| Ribbon reverse detent | 65 |
| Ribbon reverse detent lever spring | 65 |
| Ribbon reverse spur gear | 65 |
| Ribbon tension spring | 67 |
| Stabilizing spring | 54 |
| Typebox alignment | 64 |
| Typebox carriage roller arm spring | 54 |
| Typebox clutch suppression arm | 81 |
| Type pallet spring | 61 |
| Selector Mechanism | |
| Marking locklever spring | 17 |
| Pushlever reset bail spring | 18 |
| Rangefinder knob | 8 |
| Selector armature | 9 |
| Selector armature downstop (final) | 15 |
| Selector armature downstop (preliminary) | 10 |
| Selector armature (double button) (final) | 12 |
| Selector armature (double button) (preliminary) | 12 |
| Selector armature (single button) | 11 |
| Selector cam lubricator | 22 |
| Selector clutch drum | 16 |
| Selector clutch latchlever spring | 18 |
| Selector clutch stop arm | 8 |
| Selector lever spring | 16 |
| Selector magnet bracket | 13 |
| Selector magnet bracket (vertical adjustment) | 14 |
| Selector pushlever spring | 16 |
| Selector receiving margin | 17 |
| Spacing locklever spring | 18 |
| Start lever spring | 19 |
| Spacing Mechanism | |
| Automatic CR-LF bellcrank spring | 62 |
| Carriage draw-wire rope | 52 |
| Carriage return latch bail | 55 |
| Carriage return latch bail spring | 55 |</p>
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carriage return lever</td>
<td>56</td>
</tr>
<tr>
<td>Carriage return spring</td>
<td>53</td>
</tr>
<tr>
<td>Dashpot vent screw</td>
<td>57</td>
</tr>
<tr>
<td>Left margin</td>
<td>62</td>
</tr>
<tr>
<td>Lower draw-wire rope pulley bail spring</td>
<td>52</td>
</tr>
<tr>
<td>Margin indicator lamp</td>
<td>79</td>
</tr>
<tr>
<td>Oscillating rail slide position</td>
<td>51</td>
</tr>
<tr>
<td>Right margin</td>
<td>63</td>
</tr>
<tr>
<td>Spacing cutout transfer bail spring</td>
<td>63</td>
</tr>
<tr>
<td>Space suppression bypass spring</td>
<td>63</td>
</tr>
<tr>
<td>Spacing feed pawl release link spring</td>
<td>53</td>
</tr>
<tr>
<td>Spacing feed pawl spring</td>
<td>51</td>
</tr>
<tr>
<td>Spacing gear clearance</td>
<td>36</td>
</tr>
<tr>
<td>Spacing gear phasing</td>
<td>36</td>
</tr>
<tr>
<td>Spacing suppression bail spring</td>
<td>73</td>
</tr>
<tr>
<td>Spacing trip lever bail cam plate</td>
<td>42</td>
</tr>
<tr>
<td>Spacing trip lever bail spring</td>
<td>42</td>
</tr>
<tr>
<td>Spacing trip lever spring</td>
<td>42</td>
</tr>
<tr>
<td>Transfer slide spring</td>
<td>57</td>
</tr>
</tbody>
</table>

3. VARIABLE FEATURES

Form-Out Mechanism

Form feed-out nonrepeat slide spring | 96 |
Form-out lever backstop | 96 |
Nonrepeat slide | 97 |
Solenoid lever | 96 |

Horizontal Tabulator Mechanism

Cam plate stripper bail | 104 |
Columnar tabulator stops | 109 |
Horizontal tab blocking lever | 107 |
Horizontal tab intermediate ball spring | 102 |
Horizontal tab operating lever cam plate spring | 104 |
Horizontal tab operating lever cam plate | 103 |
Horizontal tab operating lever extension link spring | 101 |
Horizontal tab operating lever link | 101 |
Horizontal tab pawl spring | 107 |
Horizontal tab slide arm spring | 104 |
Horizontal tab spacing trip lever | 103 |
Right margin adjustment | 105 |
Right margin tabulator stop (with wide shelf) | 109 |
Space suppression bypass spring | 105 |
Spacing cutout transfer bail set collar | 105 |
Tabulator pawl horizontal adjustment | 108 |
Tabulator pawl (preliminary) | 106 |

CONTENTS | PAGE |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabulator pawl vertical adjustment (final)</td>
<td>107</td>
</tr>
<tr>
<td>Tabulator stops settings</td>
<td>109</td>
</tr>
<tr>
<td>Keyboard Lock Mechanism</td>
<td></td>
</tr>
<tr>
<td>Keyboard locklever spring</td>
<td>113</td>
</tr>
<tr>
<td>Local Backspace Mechanism</td>
<td></td>
</tr>
<tr>
<td>Camming bail spring</td>
<td>114</td>
</tr>
<tr>
<td>Camming bail stop arm</td>
<td>114</td>
</tr>
<tr>
<td>Lower Solenoid (for Applicable Units)</td>
<td></td>
</tr>
<tr>
<td>Lower solenoid</td>
<td>120</td>
</tr>
<tr>
<td>Solenoid spring</td>
<td>120</td>
</tr>
<tr>
<td>Low Paper and Paper Out Alarm Mechanisms</td>
<td></td>
</tr>
<tr>
<td>Low paper and paper out alarm (sprocket feed)</td>
<td>98</td>
</tr>
<tr>
<td>Paper out alarm assembly</td>
<td>100</td>
</tr>
<tr>
<td>Paper out alarm bellcrank follower spring (friction feed)</td>
<td>100</td>
</tr>
<tr>
<td>Paper out alarm sensing lever spring (sprocket feed)</td>
<td>98</td>
</tr>
<tr>
<td>Paper Jam Alarm (Sprocket Feed)</td>
<td></td>
</tr>
<tr>
<td>Bail spring</td>
<td>134</td>
</tr>
<tr>
<td>Switch position</td>
<td>133</td>
</tr>
<tr>
<td>Wire bail</td>
<td>132</td>
</tr>
<tr>
<td>Paper Out Alarm Mechanism (Friction Type) (Later Design)</td>
<td></td>
</tr>
<tr>
<td>Lever</td>
<td>99</td>
</tr>
<tr>
<td>Lever spring</td>
<td>99</td>
</tr>
<tr>
<td>Switch</td>
<td>99</td>
</tr>
<tr>
<td>Print-Nonprint Solenoid Mechanism</td>
<td></td>
</tr>
<tr>
<td>Contact button and solenoid pin alignment</td>
<td>125</td>
</tr>
<tr>
<td>Solenoid contact</td>
<td>121</td>
</tr>
<tr>
<td>Solenoid plunger</td>
<td>121</td>
</tr>
<tr>
<td>Solenoid energized</td>
<td>123</td>
</tr>
<tr>
<td>Solenoid de-energized</td>
<td>124</td>
</tr>
<tr>
<td>Suppression bar return spring (for units employing the print suppress solenoid mechanism)</td>
<td>122</td>
</tr>
<tr>
<td>Timing Contact Mechanism (Operated by Selector)</td>
<td></td>
</tr>
<tr>
<td>Alignment of operating lever with cam</td>
<td>127</td>
</tr>
<tr>
<td>"B" contact springs</td>
<td>126</td>
</tr>
<tr>
<td>Contact assembly position</td>
<td>127</td>
</tr>
<tr>
<td>Correction of timing</td>
<td>129</td>
</tr>
<tr>
<td>"M" contact springs</td>
<td>126</td>
</tr>
</tbody>
</table>

Page 3
1. GENERAL

1.01 This section contains the specific requirements and adjustments for the 35 typing unit.

1.02 This section is reissued to include paper jam alarm, to add recent engineering changes and to delete the adjustment for typebox position (sprocket feed). Arrows in the margins indicate changes and additions.

CAUTION: REMOVE POWER FROM SET OR UNIT BEFORE MAKING ADJUSTMENTS.
The adjustments in this section are arranged in a sequence that should be followed if a complete readjustment of the unit is undertaken. A complete adjusting procedure should be read before attempting to make the adjustment. After an adjustment is completed, be sure to tighten any nuts or screws that may have been loosened, unless otherwise instructed.

The adjusting illustrations indicate tolerances, positions of moving parts, spring tensions, and the angle at which scales should be applied. The tools required to make adjustments and check spring tensions are not supplied with the equipment, but are listed in Section 570-005-800TC. Springs which do not meet the requirements, and for which there are no adjusting procedures, should be discarded and replaced by new springs.

References made to left, right, up, down, front, rear, etc, apply to the unit in its normal operating position as viewed from the front.

When a requirement calls for a clutch to be disengaged, the clutch shoe lever must be fully latched between its trip lever and latch-lever so that the clutch shoes release their tension on the clutch drum. When engaged, the clutch shoe lever is unlatched and the clutch shoes are wedged firmly against the clutch drum.

Note: When the main shaft is rotated by hand, the clutch does not fully disengage upon reaching its stop position. In order to relieve drag and permit the main shaft to rotate freely, apply pressure on the lug of the clutch disc with a screwdriver to cause it to engage its latch lever and fully disengage the clutch.

To manually operate the typing unit proceed as follows.

(a) Attach the TP312709 armature clip to the selector magnet armature by carefully placing the spring loop over the magnet terminal insulator. Press down to engage the hook of the clip on the underside of the armature and release. The spring tension of the armature clip will hold the selector armature in the marking (attracted) position.

(b) While holding the selector magnet armature operated by means of the armature clip, use the handwheel, included with the special tools for servicing 28 teletypewriter apparatus, to manually rotate the main shaft in a counterclockwise direction until all the clutches are brought to their disengaged position.

(c) Fully disengage all clutches in accordance with 1.06, Note.

(d) Release the selector magnet armature momentarily to permit the selector clutch to engage.

(e) Rotate the main shaft slowly until all the pushlevers have fallen to the left of their selecting levers.

(f) Strip the pushlevers from their selector levers, which are spacing in the code combination of the character function that is being selected, and allow the pushlevers to move to the right.

(g) The pushlevers and the selector levers move in succession starting with the no. 1 to the no. 7; the no. 8 is always marking and is not equipped with a selector lever.

(h) Continue to rotate the main shaft until all operations initiated by the selector action clear through the unit.

Where adjustment instructions call for removal of components, assemblies, subassemblies or parts, all adjustments which the removal of these parts might facilitate should be made before the parts are replaced or as the equipment is reassembled. When a part mounted on shims is removed, the number of shims and their location should be noted so that the identical pile-up can be made when the part is replaced.

All electrical contact points should meet squarely. Contacts with the same diameter should not be out of alignment more than 25 percent of the contact diameter. Check contacts for pitting and corrosion and clean or burnish them before making specified adjustment or tolerance measurements. Avoid sharp kinks or bends in the contact springs.

CAUTION: KEEP ALL ELECTRICAL CONTACTS FREE OF OIL AND GREASE.

When making a complete adjustment of the unit, the following conditioning operations should be performed to prevent damage.

(a) Loosen the shift lever drive arm clamp screw (2.13).
(b) Move the right and left vertical positioning lever eccentric studs (2.32 and 2.33) in rocker shaft brackets to their lowest position.

(c) Loosen the two bearing stud mounting screws and the two connecting strip clamp screws in the horizontal positioning drive linkage (2.38).

(d) Loosen the clamp screws and move the reversing slide brackets to their uppermost position (2.37).

(e) Loosen the function reset bail blade mounting screws (2.36).

(f) Loosen the carriage return lever clamp screw (2.49).

(g) Loosen the clamp screws in the oscillating rail slide (2.44).

(h) Loosen the reversing slide adjusting stud (2.37).

(i) Loosen clamp and pivot screws on shift arm bearing bracket and move to extreme downward position (2.39).

(j) Loosen the clamp screw on the shift drive pawl operating bail (2.41).

(k) Check the following adjustments during each lubricating period.

(1) Printing carriage position (2.51).

(2) Printing hammer bearing stud (2.51).

(3) Printing hammer stop bracket. Also see Note in 2.54.

(4) Lower draw wire rope (2.45).

(5) Dashpot vent screw adjustment and check transfer slide for binds (2.50).
Figure 1 - 35 Typing Unit (Friction Feed)

Figure 2 - 35 Typing Unit (Sprocket Feed)
2. BASIC UNITS

2.01 Selector Mechanism

(A) RANGEFINDER KNOB

Requirement
With rangefinder knob turned to either end of rack, and inner teeth of knob and teeth of sector assembly engaged, mark on scale should be within ±3 divisions of scribed line on rangefinder plate.

To Adjust
Loosen knob mounting nut and engage teeth of sector in position that most closely aligns the mark on the plate with the mark on the knob.

(B) SELECTOR CLUTCH STOP ARM

Requirement
Range scale set at 60. Selector clutch disengaged. Armature in marking position. Clutch stop arm should engage clutch shoe lever by approximately full thickness of clutch stop arm.

To Adjust
Position stop arm on trip lever bail with clamp screw loosened.
2.02 Selector Mechanism (continued)

Note: To facilitate making the following adjustments, remove the rangefinder and selector magnet assemblies. To insure better operation, pull a piece of bond paper between the armature and the pole pieces to remove any oil or foreign matter that may be present. Make certain that no lint or pieces of paper remain between the pole pieces and armature.

![Diagram of Selector Mechanism](image)

- **Adjusting Nut**
- **Pivot Edge**
- **Selector Armature**

Note: This requirement need not be made nor checked if the selector magnet bracket and receiving margin requirements are met.

1. **Requirement (Armature Clamp Strip)**
 - Clearance between armature clamp strip and casting
 - Min 0.010 inch
 - **To Adjust**
 - Position armature spring adjusting nut to hold armature firmly against pivot edge of casting.

2. **Requirement (Armature Alignment)**
 - Outer edge of armature should be flush within Max 0.015 inch with outer edge of pole pieces.
 - **To Adjust**
 - Position armature and backstop with mounting screws loosened.
2.03 Selector Mechanism (continued)

Note: Replace rangefinder and selector magnet assembly.

SELECTOR ARMATURE DOWNSTOP (PRELIMINARY)

Requirement
Magnet de-energized. Locklevers on high part of cam. With armature resting against downstop
Min 0.030 inch—Max 0.035 inch
clearance between end of armature and left edge of left pole piece.

To Adjust
Position downstop with downstop bracket mounting screw friction tight.
2.04 Selector Mechanism (continued)

SELECTOR ARMATURE SPRING
(For Units Employing Selector Armature With Single Antifreeze Button Only)

Requirement (Preliminary)
With locklevers and start lever on high part of their cams, scale applied as nearly vertical as possible under end of armature extension. It should require the following tensions to move armature to marking position:

\[
\begin{align*}
0.060 \text{ ampere} & \quad \text{Min 2-1/2 oz} \quad \text{Max 3 oz} \\
0.030 \text{ ampere} & \quad \text{Min 1-1/2 oz} \quad \text{Max 2 oz} \\
0.500 \text{ ampere} & \quad \text{Min 4-1/2 oz} \quad \text{Max 5-1/2 oz}
\end{align*}
\]

Note: This spring can be adjusted for maximum selector performance only when printer is connected to the specific circuit over which it is to operate under service conditions. Since there are several operating speeds and since circuits vary widely, it is impossible to adjust spring for maximum performance at the factory. The foregoing spring tension requirement is given to permit operation prior to measurement of receiving margins. Readjustment made to obtain satisfactory receiving margin should not be disturbed in order to meet requirements of this adjustment.

To Adjust
Position adjusting nut.

Requirement (Final)
See SELECTOR RECEIVING MARGIN adjustment (2.10).
SECTION 574-220-700TC

2.05 Selector Mechanism (continued)

SELECTOR ARMATURE SPRING (PRELIMINARY)
(For Units Employing Selector Armature With Two Antifreeze Buttons Only)

Requirement
With locklevers and start lever on high part of their cams, gram scale applied under end of armature extension, it should require approximately the following tensions to move the rear antifreeze button against the magnet core:

- 0.020 ampere — 14 grams
- 0.030 ampere — 18 grams
- 0.060 ampere — 21 grams
- 0.500 ampere — 28 grams

To Adjust Position adjusting nut.

SELECTOR ARMATURE SPRING (FINAL)

Requirement
When a Distortion Test Set is available, the selector armature spring tension should be refined, if necessary, to obtain satisfactory receiving margins. The front antifreeze button must contact the magnet core when the magnet coils are energized.

(See SELECTOR RECEIVING MARGIN adjustment, 2.10.)
2.06 Selector Mechanism (continued)

SELECTOR MAGNET BRACKET

(1) Requirement (For Units Employing Either One or Two Antifreeze Buttons)
Spacing locklever on each peak of cam. Armature in contact with front pole piece (magnet energized). Clearance between end of armature extension and shoulder on spacing locklever.
Min 0.020 inch—Max 0.035 inch

To Adjust
Loosen two magnet bracket mounting screws and adjusting link clamp screw. Position magnet bracket by means of adjusting link and tighten link clamp screw only.

(2) Requirement
Armature in contact with front pole piece (magnet energized). Clearance between upper surface of armature extension and lower surface of spacing locklever when locklever is held downward.
Min some—Max 0.003 inch

To Adjust
Position upper end of magnet bracket. Tighten two magnet bracket mounting screws. Recheck Requirement (1).
2.07 Selector Mechanism (continued)

SELECTOR MAGNET BRACKET (VERTICAL ADJUSTMENT)

Requirement (For Units Employing Either One or Two Antifreeze Buttons)

Marking locklever on low of cam. Armature in contact with left pole piece (magnet energized). There should be some clearance between lower surface of armature extension and upper surface of marking locklever. Gauge by eye.

To Adjust With mounting screw loosened position upper end of magnet bracket by means of pry point. Recheck Requirements (1) and (2) of **SELECTOR MAGNET BRACKET (2.06)**.
2.08 Selector Mechanism (continued)

SELECTOR ARMATURE DOWNSTOP (FINAL)

Requirement
Magnet de-energized. Locklevers on low part of their cams
Min 0.005 inch—Max 0.015 inch clearance between top of armature extension and bottom of spacing locklever.

To Adjust
Refine SELECTOR ARMATURE DOWNSTOP (PRELIMINARY) [2.03].

(Right Side View)

- LOW PART OF CAM
- SPACING LOCKLEVER
- MARKING LOCKLEVER
- POLE PIECE
- DOWNSTOP BRACKET MOUNTING SCREW

ISS 9, SECTION 574-220-700TC
2.09 Selector Mechanism (continued)

SELECTOR PUSLEVER SPRING

Requirement
- Pushlever in spacing position
 - Min 3/4 oz---Max 1-1/2 oz
to move pushlevers from selector levers on all except first pushlever in sequence of selection. It should require
 - Min 2 oz---Max 3 oz
to move this pushlever from its selector lever. This spring is copper color.

SELECTOR LEVER SPRING

Requirement
- Typing unit upside down.
 - Reset bail on peak of its cam.
 - Min 1-1/2 oz---Max 3 oz
to start each lever moving.
If necessary, unhook start lever spring to check selector lever springs near the start lever spring.

SELECTOR CLUTCH DRUM

Requirement
- Clutch latched in stop position. Cam-clutch assembly should have some endplay
 - Max 0.010 inch

To Adjust
- Position the clutch drum on main shaft with mounting screw loosened. Tighten screw.

MOUNTING SCREW

MAIN SHAFT

CAM ARRANGEMENT

(Front View)
2.10 · Selector Mechanism (continued)

MARKING LOCKLEVER SPRING

Requirement
Rubout combination selected, main shaft rotated until selector clutch is disengaged. Push scale applied to lower extension of locklever.

Min 2 oz - Max 4 oz to start lever moving.

MARKING LOCKLEVER

(Right Side View)

SELECTOR RECEIVING MARGIN

(1) Requirement (For Units Employing Armature With One Antifreeze Button)
When a signal Distortion Test Set is used for determining the receiving margins of the selector, and where the condition of the components is equivalent to that of new equipment, the range and distortion tolerances below should be met.

(2) Requirement (For Units Employing Armature With Two Antifreeze Buttons)
When a Distortion Test Set is available, the selector armature spring tension should be refined, if necessary, to obtain satisfactory receiving margins. The front antifreeze button must contact the magnet core when the magnet coils are energized.

To Adjust
Refine the SELECTOR ARMATURE SPRING adjustments (2.04, 2.05).

<table>
<thead>
<tr>
<th>Current</th>
<th>Speed in WPM</th>
<th>Points Range With Zero Distortion</th>
<th>Percentage of Marking and Spacing Bias</th>
<th>End Distortion Tolerated With Scale at Bias Optimum Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.500 Amp (Windings Parallel)</td>
<td>100</td>
<td>72</td>
<td>38</td>
<td>35</td>
</tr>
<tr>
<td>0.060 Amp (Windings Parallel) (For LP821 Only)</td>
<td>100</td>
<td>72</td>
<td>35</td>
<td>33</td>
</tr>
</tbody>
</table>

Page 17
2.11 Selector Mechanism (continued)

PUSHLEVER RESET BAIL SPRING

Requirement
- Pushlever reset bail on low part of cam.
- 32 oz scale applied to reset bail.
- Min 4 oz --- Max 8 oz
to move bail from cam.

SPACING LOCKLEVER SPRING

Requirement
- Selector armature released. Spacing locklever on low part of its cam. Spring scale applied to lower end of spacing locklever.
- Min 3 oz --- Max 6 oz
to move spacing locklever from its pivot shaft.
2.12 Selector Mechanism (continued)

START LEVER SPRING

Requirement
Latchlever spring unhooked. Stop arm bail in indent of its cam.
Range scale set at 60.
Min 2-1/2 oz—Max 4-1/2 oz—to start stop arm moving.

(Right Side View)
2.13 Codebar Mechanism

Requirement
Codebar shift lever link in the uppermost position. Clearance between the top of the rollers and the top of the cam slots in the codebar shift levers
Min some --- Max 0.025 inch on the closest lever.

Note: Clearance on units containing the intermediate storage mechanism should be
Min 0.005 inch --- Max 0.020 inch

To Adjust
Loosen the clamp screw. Position the codebar shift lever drive arm on its shaft. Provide some endplay, not more than 0.006 inch.
COMMON TRANSFER LEVER SPRING

Requirement
Transfer lever in spacing position. Scale applied near upper end of common transfer lever.
- Min 1/2 oz---Max 1-1/4 oz to start lever moving.

TRANSFER LEVER ECCENTRIC

Requirement
Pushlevers positioned for rubout. Selector clutch disengaged. Codebar shift lever link in uppermost position, clearance between rear codebar shift lever and rear edge of shift bar farthest from rear codebar shift lever
- Min 0.010 inch---Max 0.025 inch

Note 1: On units having the intermediate storage mechanism, the clearance between the rear shift lever and the rear edge of the shift bar should be
- Min 0.010 inch---Max 0.025 inch when play of shift bar is taken up for maximum clearance.

To Adjust
Rotate eccentric bushing with clamp screw loosened. High part of eccentric should be above horizontal center line.

Note 2: One or more codebar shift bars can touch codebar shift levers.

TRANSFER LEVER SPRING

Requirement
Transfer lever held in spacing position
- Min 1-1/2 oz---Max 2-1/2 oz to start intermediate arm moving.
2.15 Codebar and Selector Mechanisms (continued)

(A) INTERMEDIATE ARM BACKSTOP BRACKET

Requirement
Pushlevers not selected. All codebar shift bars to the right. Selector clutch disengaged. Codebar shift lever link in lowermost position. Clearance between front codebar shift lever and the front edge of the inner step of the codebar shift bar farthest from front codebar shift lever
- Min 0.010 inch -- Max 0.025 inch
when play in parts is taken up for maximum clearance.

To Adjust
Position backstop bracket with its two clamp screws loosened.

Note: Number 7 codebar shift bar does not have to meet the maximum requirement until the SHIFT SELECTOR ARM BELLCRANK (2.43) adjustment has been made.

(B) SELECTOR CAM LUBRICATOR

Requirement
The lubricator tube should clear the high part of the locklever cam
- Min 0.020 inch
The high part of the selector lever cams should touch the lubricator wick, but should not raise it more than 1/32 inch.

Note: There should be some clearance between the marking locklever spring and the reservoir.

To Adjust
Position the lubricator bracket with its mounting screws loosened.
2.16 Codebar Mechanism (continued)

CODEBAR SHIFT LEVER

Requirement
Motion of front and rear codebar shift levers should be equalized with respect to codebar travel.

(1) To Check (Front)
Select blank combination and rotate main shaft until codebar shift lever link reaches highest travel. Take up play for maximum clearance. Clearance between front codebar shift lever and shoulder on nearest codebar shift bar
Min 0.002 inch---Max 0.025 inch

(2) To Check (Rear)
Select rubout combination. Check clearance between rear codebar shift lever and shoulder on nearest codebar shift bar in same way.
Min 0.002 inch---Max 0.025 inch

Note: The clearance on units containing the intermediate storage mechanism should be
Min 0.002 inch---Max 0.012 inch

To Adjust
Position adjusting plates (front and rear) with clamp screws loosened.

Page 23
2.17 Codebar Mechanism (continued)

INTERMEDIATE LATCH ECCENTRIC

Note: This adjustment applies to units containing the intermediate storage mechanism.

Requirement
- Pushlevers positioned for rubout. Selector clutch disengaged.
- Clearance between the top of latch surface on the latch and the bottom of the intermediate arm having the least clearance.
 - Min 0.002 inch --- Max 0.006 inch
- Check all latches.

To Adjust
- Rotate the latch eccentric post to meet the requirement keeping the high part of the eccentric to the front.
2.18 Codebar Mechanism (continued)

(A) INTERMEDIATE RESET LEVER SPRING

Note: This adjustment applies to units containing the intermediate storage mechanism.

Requirement
With the intermediate reset lever in its unoperated position and the spring removed from the lever
Min 1 oz --- Max 2 oz
To stretch the spring to its installed length. Replace the spring.

(B) INTERMEDIATE RESET BAIL SPRING

Note: This adjustment applies to units containing the intermediate storage mechanism.

Requirement
With all pushlevers in the marking condition and the latches in a latched position, push against the reset bail at the spring hole
Min 5 oz --- Max 7 oz
To move the latches out of engagement of the intermediate arms.

(C) INTERMEDIATE RESET BAIL ECCENTRIC

Note 1: This adjustment applies to units containing the intermediate storage mechanism (for applicable unit).

Requirement
With the intermediate reset lever on the high part of its cam. Clearance between the latch and the intermediate arm should be
Min 0.010 inch
With the high part of the eccentric to the rear.

To Adjust
Rotate eccentric to meet requirement.

Note 2: The codebar positioning mechanism is assembled at the factory and at this time the guide bracket is biased to the rear by means of the play in the body holes. If this assembly is removed from the printer, it will be necessary to bias the guide bracket to the rear during reassembly.
2.19 Main Shaft and Trip Shaft Mechanisms

Requirement
Clutch latchlever on high surface of clutch disc
- Min 5 oz --- Max 7-1/4 oz
to move latchlever from lug.
This requirement applies to codebar clutch, function clutch, spacing clutch, line feed clutch, and typebox clutch.

To Adjust
Position trip lever on its shaft with clamp screw loosened.

Requirement
Trip shaft lever on low part of cam. Codebar clutch engaged.
Rotate 1/4 turn.
- Min 1 oz --- Max 2 oz
to start lever moving.
2.20 Main Shaft and Trip Shaft Mechanisms (continued)

FUNCTION CLUTCH TRIP LEVER
(On Units Equipped With One Piece Trip Lever)

Requirement
Codebar clutch and function clutch disengaged. Function clutch trip lever should engage clutch shoe lever by full thickness of shoe lever. (Check at lug with least bite on two stop clutches.)

To Adjust
Position trip lever on its shaft with clamp screw loosened, letting shaft have endplay
Min some—Max 0.006 inch

CODEBAR CLUTCH CAM FOLLOWER SPRING

Requirement
Cam follower roller on low part of cam. The spring unhooks from spring bracket.
Min 20 oz—Max 24 oz to pull spring to installed length.
2.21 Main Shaft and Trip Shaft Mechanisms (continued)

(A) FUNCTION CLUTCH TRIP LEVER TRIP ARM
(On Units Equipped With Adjustable Backstop)

Requirement
Codebar clutch and function clutch disengaged. Clearance between edge of bail of function clutch trip lever and projection on trip lever trip arm.
- Min 0.040 inch
- Max 0.050 inch
When making this adjustment, position the trip lever trip arm so that the trip shaft has some endplay
- Min some
- Max 0.006 inch

To Adjust
Position trip arm on trip shaft with its clamp screw loosened.

(B) ANTIDEFLECTION PLATE

Requirement
With typing unit upside down and function, spacing, line feed, and type-box clutches disengaged and latched
- Min 1 lb
- Max 5 lb
to pull trip shaft away from antideflection plate.

To Adjust
Position plate with mounting screws loosened.
2.22 Main Shaft and Trip Shaft Mechanisms (continued)

(A) CLUTCH TRIP SHAFT SET COLLARS

(1) Requirement
Spacing cutout lever should have side play
Min some---Max 0.008 inch

To Adjust
Position spacing cutout lever set collar.

(2) Requirement
Approximate alignment of right end of stop extensions on trip lever and shoe lever.

To Adjust
Position line feed clutch trip lever set collar.

(3) Requirement
Line feed clutch latch lever should have side play
Min some---Max 0.008 inch

To Adjust
Position line feed clutch latch lever set collar.
SECTION 574-220-700TC

2.23 Main Shaft and Trip Shaft Mechanisms (continued)

SPACING CLUTCH TRIP LEVER

Requirement
Clearance between trip lever and clutch drum should be 0.018 to 0.035 inch less than clearance between shoe lever and drum at stop showing greatest clearance. There should be some overbite on all stop-lugs. Gauge by eye.

To Check
Disengage the clutch. Trip clutch trip lever and slowly rotate main shaft until trip lever is over the shoe lever. Take up play of shoe lever inward by snapping the trip lever over the shoe lever. Check clearance between shoe lever and drum at each stop position. With the trip lever at the stop position which yields greatest clearance, rotate main shaft slowly until the trip lever just falls off the stop-lug. Check clearance between trip lever and drum.

To Adjust
Position the trip lever by means of its clamp screw.

CLUTCH TRIP LEVER SPRING

Requirement
Clutch engaged and rotated until trip lever rests on stop-lug

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clutch Function</td>
<td>1-1/2 oz</td>
<td>4 oz</td>
</tr>
<tr>
<td>Clutch Spacing</td>
<td>11 oz</td>
<td>16 oz</td>
</tr>
<tr>
<td>Line Feed</td>
<td>10 oz</td>
<td>13 oz</td>
</tr>
<tr>
<td>Typebox</td>
<td>5 oz</td>
<td>7-1/4 oz</td>
</tr>
</tbody>
</table>

to move lever away from stop-lug.

INTERMEDIATE LEVER SPRING (On Units Equipped With Three Piece Spacing Clutch Trip Lever Bail)

Requirement
Trip spacing clutch and turn the main shaft so that the spacing clutch stop lever arm is in its unoperated position. Unhook the spring from the intermediate lever bail and pull spring to installed length.

Min 1-1/2 oz---Max 3-1/2 oz
SPACING CLUTCH TRIP CAM FOLLOWER SPRING (If Used)

Requirement

With the function clutch in the stop position, unhook the spring from the spring ear. Hook a scale to the spring loop.

Min 2-1/2 oz---Max 3-1/2 oz

--- to pull the spring to its position length.

(Right Side View)
2.25 Main Shaft and Trip Shaft Mechanisms (continued)

LINE FEED CLUTCH TRIP LEVER ECCENTRIC POST

Requirement
Clearance between trip lever and clutch drum should be:
- For 3-stop clutch — 0.018 inch to 0.035 inch
- For 6-stop clutch — 0.012 inch to 0.025 inch
less than clearance between shoe lever and drum at stop which shows least clearance.

To Check
Disengage clutch. Trip clutch trip lever and slowly rotate main shaft until trip lever is over shoe lever. Take up play of shoe lever inward by snapping trip lever over shoe lever. Check clearance between shoe lever and drum at each stop position. With trip lever at stop position which yields least clearance, rotate main shaft slowly until trip lever just falls off stop-lug. Check clearance between trip lever and drum.

To Adjust
Back off trip lever adjusting screw and position trip lever eccentric stop post.

LINE FEED FUNCTION SLIDE ARM

TRIP ARM

ADJUSTING SCREW

CLUTCH SHOE LEVER

LINE FEED CLUTCH

LINE FEED CLUTCH TRIP LEVER

(1) Requirement
Clearance between end of trip lever adjusting screw and trip arm
Min some --- Max 0.006 inch

To Check
Line feed function slide arm in rear position. Clutch trip lever against its eccentric post. Trip arm held against its function slide arm.

To Adjust
Position adjusting screw.

(2) Requirement
Clearance between line feed trip lever and all line feed clutch shoe levers should be
Min 0.004 inch when form-out and vertical tab is selected.

To Adjust
Check and refine if necessary: Requirement (1), FUNCTION RESET BAIL BLADE (2.36), LINE FEED CLUTCH TRIP LEVER ECCENTRIC POST (2.25), MOUNTING BRACKET (3.01).

Page 32
2.26 Main Shaft and Trip Shaft Mechanisms (continued)

TYPEBOX CLUTCH TRIP LEVER ECCENTRIC POST

Requirement
Typebox clutch disengaged. Trip lever should engage the clutch shoe lever by the full thickness of the shoe lever.

To Adjust
Position the trip lever eccentric post.

(Right Side View)

TYPEBOX CLUTCH TRIP LEVER TRIP ARM

1. **Requirement**
Clutch trip shaft cam follower roller (see 2.20) on lowest surface of cam (located on codebar clutch). Clearance between inner face of typebox clutch trip lever and the clutch disc stop-lug.

- **Min** 0.025 inch
- **Max** 0.045 inch

To Adjust
Loosen clamp screw and position stop.

2. **Requirement**
When positioning the trip arm determine that the latchlever has some side play

- **Max** 0.008 inch

To Adjust
Position the clutch trip arm on its shaft with the clamp screw loosened.

(Left Side View)
CLUTCH SHOE LEVER

Requirement
Gap between clutch shoe lever and its stop-lug should be 0.055 inch to 0.085 inch greater when clutch is engaged than when the clutch is disengaged.

To Check
Disengage the clutch and measure the gap. Trip the clutch and rotate it until the clutch shoe lever is toward the bottom of the unit. Again measure the gap with the clutch thus engaged.

Note: On multiple stop clutches check the clearance at the stop-lug that is adjacent to the form in the clutch adjusting disc.

To Adjust
Loosen the two clamp screws on the clutch disc. Engage a wrench or screwdriver on the lug of the adjusting disc and rotate the disc.

(Bottom View)
2.28 Main Shaft and Trip Shaft Mechanisms (continued)

CLUTCH SHOE LEVER SPRING

- **Requirement**
 - Clutch engaged. Hold cam disc to prevent turning.
 - Spring scale pulled at tangent to clutch.
 - One-Stop Clutches:
 - Min 15 oz — Max 20 oz
 - Multiple-Stop Clutches:
 - Min 16 oz — Max 22 oz
 - to move the shoe lever in contact with the stop-lug.

CLUTCH DRUM POSITION (EXCEPT SELECTOR)

- **Requirement**
 - Clutch shoe lever held disengaged. Clutch should have some endplay
 - Max 0.015 inch

- **To Adjust**
 - Position each drum and spacing clutch set collar with mounting screws loosened.

CLUTCH SHOE SPRING

- **Note:** In order to check this spring, it is necessary to remove the clutch from the main shaft. Therefore, it should not be checked unless there is good reason to believe that it does not meet its requirement.

- **Requirement**
 - Clutch drum removed.
 - Spring scale applied to primary shoe at a tangent to the friction surface.
 - Min 3 oz — Max 5 oz
 - to start the primary shoe moving away from secondary shoe at point of contact.
2.29 Spacing Mechanism

(B) SPACING GEAR PHASING

Requirement
Spacing clutch disengaged. Index line on the spacing pawl should be as near as possible to the center of the two lines on the pawl retaining washer.

To Adjust
Remove the mounting screw from the spacing shaft gear. Hold the pawls in alignment and engage the spacing shaft gear with the clutch gear at a point where the spacing shaft gear mounting screw hole is in line with the tapped hole in the spacing shaft and insert the mounting screw.

(A) SPACING GEAR CLEARANCE

Requirement
Carriage fully returned. Minimum backlash of spacing gears without bind.

To Adjust
Insert shims between the spacing shaft bearing and front plate at upper mounting screw to increase clearance and at lower mounting mounting screw to decrease clearance.
2.30 Line Feed, Platen Mechanism, and Positioning Mechanism

LINE FEED CLUTCH GEAR PHASING

Requirement
Line feed clutch disengaged. Both line feed bars should engage teeth of line feed spur gear.

To Adjust
Loosen assembly bearing post. Re-mesh line feed eccentric spur gear with clutch gear.

LINE FEED BARS ENGAGED

BEARING POST
(Right Side View)

LINE FEED SPUR GEAR

INNER BEARING RACE

MOUNTING SCREWS

ROCKER SHAFT LEFT BRACKET

** Requirement**
Rocker shaft left bracket firmly seated against inner bearing race.

To Adjust
Hold rocker shaft in extreme left position and position the bracket against the inner bearing race with mounting screws loosened.
2.31 Positioning Mechanism

ROCKER SHAFT BRACKET ECCENTRIC STUD

(1) Requirement
Typebox clutch disengaged. Play in locking arm taken up towards front. Gap between lower side of locklever roller and top edge of shoulder on horizontal positioning locklever
Min 0.055 inch --- Max 0.090 inch

To Adjust
Position eccentric stud in lower end of rocker shaft left bracket. Keep high part of eccentric (marked with dot) below center line of drive link.

(2) Requirement
Rocker shaft drive link bearing stud should be free to move, parallel to the main shaft, in its typebox clutch bearing when the clutch is in stop position and 180 degree position.

To Adjust
Refine the above to adjust.

Note: Any change in this adjustment after making related adjustments will require a rechecking of the following adjustments: HORIZONTAL POSITIONING DRIVE LINKAGE (2.38), RIGHT VERTICAL POSITIONING LEVER ECCENTRIC STUD (2.32), LEFT VERTICAL POSITIONING LEVER ECCENTRIC STUD (2.33), VERTICAL POSITIONING LOCKLEVER (2.34), RIBBON FEED LEVER BRACKET (2.59), SPACING TRIP LEVER BAIL CAM PLATE (2.35), PRINTING TRACK (2.53), PRINTING ARM (2.54), REVERSING SLIDE BRACKETS (2.37), and RIBBON REVERSE SPUR GEAR (2.58).
2.32 Positioning Mechanism (continued)

RIGHT VERTICAL POSITIONING LEVER ECCENTRIC STUD

Requirement
Typebox clutch disengaged, common codebar in spacing position. Play taken up by pressing downward on common codebar at guide block.

Min 0.030 inch---Max 0.050 inch clearance between the toe of vertical positioning lever and the bottom of the common codebar when play is taken up to make clearance a minimum.

To Adjust
Position the eccentric stud in the right rocker shaft bracket. Position high part of eccentric (marked with dot) toward the rear. (The high part of the eccentric can also be identified by the exposed portion of the flat surface of the vertical positioning link.)

S = SUPPRESSION CODEBAR
C = COMMON CODEBAR

RIGHT VERTICAL POSITIONING LEVER SPRING

Requirement
Vertical positioning lever toes (right and left) in contact with the suppression codebar, levers not buckled.

Min 4 oz---Max 12 oz to move the link extension away from the vertical positioning lever. Check both right and left springs.
2.33 Positioning Mechanism (continued)

VERTICAL POSITIONING LOCKLEVER SPRING

Requirement
- Typebox clutch disengaged
- Min 5 oz -- Max 8 oz to start locklever moving.
- Check right and left springs.

COMMON CODEBAR

VERTICAL POSITIONING LEVER TOE

LEFT VERTICAL POSITIONING LEVER ECCENTRIC STUD

Requirement
- Right and left vertical positioning levers should buckle equally within 0.006 inch.

To Check
- Common codebar in spacing position. Trip typebox clutch. Rotate main shaft until right vertical positioning lever toe touches common codebar, buckling its lower link approximately 0.008 inch. Left vertical positioning lever toe should touch common codebar, buckling its lower link equally within 0.006 inch.

To Adjust
- Position eccentric stud on rocker shaft left bracket inner arm. Position high part of cam (marked with dot) toward rear.

Note: On units containing intermediate storage mechanism, position the eccentric stud in the right rocker shaft bracket. (The high part of the eccentric can also be identified by the exposed portion of the flat surface of the vertical positioning link.)
2.34 Positioning Mechanism (continued)

VERTICAL POSITIONING LOCKLEVER

(1) **Requirement**
Rubout combination set up on codebars. Main side operating levers at upper end of travel. Upper notch of vertical positioning locklever fully engaged (manually if necessary) with vertical slide projection. Upper surface of follower arm rear extension should be Min in contact with--Max 0.004 inch away from inner extension of main side lever.

(2) **Requirement**
With play taken up by pulling upward with 8 oz tension on typebox carriage track, vertical surfaces Min in contact with--Max 0.012 inch away from each other.

To Adjust Position right and left vertical positioning locklevers with clamp screws loosened.

(Left Side View)
2.35 Spacing Mechanism (continued)

(A) SPACING TRIP LEVER BAIL CAM PLATE

Requirement
Spacing trip lever arm in upward position. Typebox clutch rotated through approximately one-half of its cycle. All function pawls disengaged from function bars. Clearance between top surface of trip lever arm extension and spacing trip lever shoulder

Min 0.010 inch - Max 0.040 inch

To Adjust
Position cam plate on rocker shaft with mounting screws loosened. Position forward edge of cam plate parallel to shaft.

(B) SPACING TRIP LEVER SPRING

Requirement
Typebox clutch disengaged.
Min 2-1/2 oz - Max 5 oz to start lever moving.

(C) SPACING TRIP LEVER BAIL SPRING

Requirement
Spacing trip lever ball against stop. Spacing trip lever ball spring unhooked.
Min 8 oz - Max 12 oz to pull spring to installed length.
2.36 Function Mechanism

(B) FUNCTION RESET BAIL SPRING

Requirement

With typing unit upside down, hold no. 1 codebar in its marking position so that no function bar is selected. Rotate the main shaft until the function reset bail springs are in their minimum length position. Place pull rod of 32 ounce scale between clutch trip shaft and space suppression bail, hook scale on front edge of reset bail (at middle of bail) and pull toward rear.

Min 10 oz --- Max 22 oz
to start bail moving.

(A) FUNCTION RESET BAIL BLADE

(1) Requirement

Function and typebox clutches disengaged. Function pawls unlatched. Function bar held in maximum rearward position. Clearance between function bar and reset bail blade

Min 0.018 inch --- Max 0.035 inch

To Check

Measure clearance at bars located in stunt box slots 1, 4, 11, 18, 23, 33, 38, and 41. If there is no bar in a designated slot, use nearest bar. If there is a bar on each side of a designated vacant slot, use bar in highest numbered slot. (Note: Facing rear of unit, slots are numbered from left to right.)

To Adjust

Position blade on reset bail with its mounting screws friction tight.

(2) Requirement

Function pawl should overtravel function bar by

Min 0.002 inch

To Check

If carriage return lever adjustment has not been made, its clamp screw should be loosened. Position function clutch so that lug on clutch disc is toward bottom of unit. Strip off any selected function pawls. Hold function lever in maximum rearward position (do not put over 2 lb of tension on lever) and hold function pawl to rear with a tension of 32 oz. (As load on reset bail affects overtravel, do not latch more than one pawl at a time.) Measure clearance. Repeat for each function pawl on stunt box.

To Adjust

If necessary, refine Requirement (1) within the following limits

Min 0.018 inch --- Max 0.035 inch
2.37 Positioning Mechanism (continued)

(A) **REVERSING SLIDE DETENT SPRING**

Requirement
Slide in left hand position. Scale hooked in upper right hand detent notch.
Min 2 oz---Max 4-1/2 oz to start detent moving.

(B) **REVERSING SLIDE ADJUSTING STUD**

Requirement
Typebox clutch disengaged. With no. 3 codebar in spacing position (right), the reversing slide detent rollers should be fully seated in the right-hand notches of the detent lever. With no. 3 codebar in marking position (left), the reversing slide detent rollers should be fully seated in the left-hand notches of the detent lever.

To Adjust
Position the reversing slide stud in its elongated hole with its mounting nut loosened.

(C) **REVERSING SLIDE BRACKETS**

Requirement
Typebox clutch, codebar clutch, and function clutch disengaged. Reversing slide moved to right and left through its full travel. Right motion should buckle left horizontal positioning drive linkage and left motion should buckle right horizontal positioning drive linkage. The amount of buckling in each case should be
Min 0.035 inch---Max 0.050 inch measured at point of maximum clearance.

To Adjust
Position each reversing slide bracket with its clamp screw loosened.
2.38 Positioning Mechanism (continued)

HORIZONTAL POSITIONING DRIVE LINKAGE

(1) Requirement
Typebox clutch disengaged. Codebars in spacing position. Clearance between longest horizontal stop and positioning linkage slides

Min 0.090 inch---Max 0.110 inch

Clearance at two sides should be equal within 0.008 inch, with positioning linkage in straight position. Move reversing slide to right and left to check both sides.

To Adjust

Loosen two screws in drive linkage bearing posts and two screws in bearing posts tie bar. With reversing slide in right hand position, locate right hand bearing post so clearance between longest horizontal stop and right hand positioning lever slide

Min 0.095 inch---Max 0.105 inch

Tighten two screws in bearing posts tie bar. Do not tighten bearing posts mounting screws. Move reversing slide to left hand position, check clearance between longest horizontal stop and left hand positioning lever slide. Equalize clearance at right and left positioning slides within 0.008 inch by moving two bearing posts as a unit.

(2) Requirement
Horizonal positioning mechanism should be free of jams or binds.

To Check
Typebox clutch disc should have some movement in the normal direction of rotation in the stop position.

Note: Each positioning linkage should return freely to its straight position after buckling. Recheck REVERSING SLIDE BRACKETS (2.37).

REVERSING SLIDE

DRIVE LINKAGE HUB

BEARING STUD

HORIZONTAL POSITIONING DRIVE LINKAGE VERTICAL LINK

HORIZONTAL STOP SLIDES

DECELERATING SLIDE

CONNECTING STRIP

CLAMP SCREWS

CONNECTING STRIP

BEARING STUD MOUNTING SCREWS

HORIZONTAL POSITIONING DRIVE LINKAGE SPRING

Requirement
With linkage in unbuckled position, scale applied near end of upper extension

Min 9 oz---Max 14 oz
to start link buckling. Measure both links.
2.39 Positioning Mechanism (continued)

SHIFT LINKAGE (PRELIMINARY)

Requirement

With codebar and typebox clutches disengaged
- Min 0.030 inch --- Max 0.050 inch

between shift breaker slide and pad on shift link, with link buckled and shift breaker slide pushed upwards against stop. Clearance at two sides equal within 0.010 inch.

To Adjust

Position shift link mounting brackets up or down by means of play in mounting holes.

SHIFT ROCKERS BAR BEARING BRACKET

Requirement

Note: Verify SHIFT ROCKERS LEVER (2.41) before proceeding with this adjustment.

- Codebar and typebox clutches disengaged.
- Clearance between shift rocker bar and lower end of right shift breaker slide
 - Min 0.050 inch --- Max 0.070 inch

Check left side in similar manner.

To Check

Raise left end of shift rocker bar to uppermost position, holding left shift breaker slide against stop. Make sure right shift link is straight, and hold right shift breaker slide against shift link pad.

To Adjust

Position shift rocker bar bearing bracket with clamp screw friction tight.
2.40 Positioning Mechanism (continued)

HORIZONTAL SHIFT LINK SHOCK ABSORBER SPRING

Requirement
Typebox carriage at left side of typing unit. Right hand shift link in straight or unbuckled position.
Min 10 lb—Max 12 lb
to start shock absorber slide moving.

(Front View)

DECELERATING SLIDE SPRING

Requirement
Printing bail in downward position. Printing carriage and decelerating slide assembly in right hand position.
Min 1/2 oz—Max 1-1/2 oz
to start the slide moving. With the printing carriage and decelerating slide in their left hand position, check the left hand decelerating slide spring.

(Front View)
2.41 Positioning Mechanism (continued)

SHIFT ROCKER LEVER

Requirement

With the codebar bail arm assembly roller on the high part of the cam, make a left and right shift selection. On each shift selection measure the clearance between the raised end of the shift rocker bar and the lower end of the associated shift breaker slide. On the shift selection which yields the smaller clearance, take up the play in an upward direction at the lower end of the shift rocker lever with a force of 2 ounces. The resulting clearance should be equal within 0.010 inch to the clearance between the raised end of the shift rocker bar and the lower end of the associated shift breaker slide when the opposite shift selection is made.

To Adjust
Loosen shift rocker lever clamp screw friction tight and position shift rocker lever. Tighten clamp screw.

SHIFT DRIVE PAWL OPERATING BAIL

Requirement

With shift drive pawl operating bail cam follower on high dwell of cam, clearance between shift rocker bar and lower end of raised shift breaker slide

- Min 0.005 inch -- Max 0.025 inch
- When slide is held against stop. To be held within
 - Min 0.005 inch -- Max 0.035 inch
- When the 0.010 inch parallel requirement is held in the **SHIFT ROCKER LEVER** adjustment.

To Adjust
Position operating bail cam follower arm by means of its clamp screw. Recheck **SHIFT ROCKER LEVER** adjustment.

SHIFT ROCKER BAIL SPRING (For Applicable Units)

Requirement

Position the shift rocker bail alternately in the letters or figures position. While spring is extended it should require

- Min 2 oz -- Max 6 oz
to pull spring to its installed length.
2.42 Positioning Mechanism (continued)

SHIFT DRIVE PAWL GUIDE BRACKET

Requirement
Codebar clutch disengaged. Bail arm assembly spring removed. Movement of its bail arm assembly should cause shift drive pawl to move freely in its guide bracket throughout its entire travel. Clearance between shift drive pawl and bottom of slot in guide bracket
Min Some---Max 0.010 inch

To Adjust
Position shift drive pawl guide bracket with clamp screw and clamp nut loosened friction tight. Recheck requirement after guide bracket is tightened.

(Bottom View)

BAIL ARM ASSEMBLY SPRING

Requirement
Drive pawl bail arm assembly on low part of cam. Unhook spring.
Min 6 oz---Max 12 oz
to pull spring to installed length.
2.43 Positioning Mechanism (continued)

SHIFT SELECTOR ARM BELLCRANK

Requirement
Shift pushlever in marking position (toward front), selector clutch and codebar clutch disengaged. Shift pawl should clear end of shift drive pawl bearing post.

Min some—Max 0.025 inch

Note: On units containing storage mechanism, shift pushlever in spacing position (toward rear), shift intermediate storage lever marking, selector clutch and codebar clutch disengaged. Shift pawl should clear end of shift drive pawl bearing post.

Min some—Max 0.025 inch

Recheck INTERMEDIATE ARM BACKSTOP BRACKET (2.15). Refine requirement above.

To Adjust
Loosen shift selector arm bellcrank clamp screw friction tight. Position to meet requirement.

SHIFT PAWL SELECTOR LINK YIELD SPRING

Requirement
Shift pushlever in marking position, selector clutch and codebar clutch disengaged

Min 5 oz—Max 7 oz
to pull spring to installed length.
2.44 Spacing Mechanism (continued)

Note: Check related adjustments, (See 2.48, 2.55, and 2.56) if the following adjustments are remade.

OSCILLATING RAIL SLIDE POSITION

Requirement
Right end of oscillating rail slide should clear edge of pulley
Min 0.025 inch---Max 0.050 inch

To Check
Locate spacing cut-out arm and automatic carriage return-line feed arm (if used) in maximum counterclockwise position on spacing drum. Spacing clutch disengaged. Feed pawl which is farthest advanced engaging tooth immediately above cutaway section of ratchet.

To Adjust
Position slide on wire rope with clamp screws loosened.

OSCILLATING RAIL SLIDE

CLAMP SCREW

PULLEY WIRE ROPE

RATCHET

MOUNTING SCREWS

CARRIAGE RETURN RING

FEED PAWL

SPACING DRUM

AUTOMATIC CARRIAGE RETURN-LINE FEED RING
(AND SPACE SUPPRESSION RING)

SPACING FEED PAWL SPRING

Requirement
Each spacing pawl in least advanced position resting against ratchet wheel. Each spring unhooked from bracket
Min 2-1/2 oz---Max 6 oz
to pull springs to installed length.

Note: On units equipped for 5 or 6 spaces per inch the tension to pull each spring to installed length should be Min 7-1/2 oz---Max 11 oz.
2.45 Spacing Mechanism (continued)

LOWER DRAW-WIRE ROPE PULLEY BAIL SPRING

Requirement
Spring unhooked from pulley bail, bail extension resting on opening in front plate.
- Min 26 oz -- Max 30 oz

to pull spring to position length.

CARRIAGE DRAW-WIRE ROPE

Requirement
Clearance between lower draw-wire rope and carriage return latch bail post should be
- Min 0.006 inch

With the horizontal positioning mechanism in its lowest position, clearance between the lower draw-wire rope and the left horizontal positioning drive linkage should be
- Min 0.030 inch

To Adjust
Advance printing carriage to extreme left hand position. Rotate typebox clutch 1/2 revolution. Loosen rope clamp screw one turn only. Position pulley bearing studs, with their mounting screws loosened, to meet requirement. Check that cable has moved around its equalizing clamp so that cables have equal tension (gauge by feel). Tighten clamp screw.
2.46 Spacing Mechanism (continued)

CARRIAGE RETURN SPRING

Requirement
Pull required to start drum moving
Min 3-1/2 lb---Max 4-1/4 lb

To Check
Spacing drum in returned position.
Printing track in lowest position.
Remove lower cable roller and
print hammer carriage stabilizer
springs. Hold spacing pawls, buffer
slide, and carriage return latch to
prevent interference with spacing
drum.

To Adjust
Spring drum nut loosened. Rotate
spring drum ratchet wheel to in­
crease tension. Operate escapement
lever to decrease tension.

Note: Keep spring tension at min­
imum for operation at altitudes
higher than 2000 feet above sea
level.

SPACING FEED PAWL RELEASE
LINK SPRING

Requirement
Min 1/2 oz---Max 2-1/2 oz
to start link moving.
2.47 Printing Mechanism

STABILIZING SPRING

Requirement
- Typebox clutch disengaged
- Min 5 oz --- Max 8 oz to pull spring to installed length.

PRINTING CARRIAGE LOWER ROLLER

Requirement
- Carriage vertical play on track minimum without binding.

To Adjust
- Position eccentric of lower roller with screw nut loosened. Keep high part of eccentric (chamfered corner) toward right.

TYPEBOX CARRIAGE ROLLER ARM SPRING

Requirement
- Min 28 oz --- Max 36 oz to start upper roller, nearest typebox latch, moving away from carriage track.
2.48 Spacing Mechanism (continued)

CARRIAGE RETURN LATCH BAIL

Requirement

Carriage fully returned. Play in carriage return bail taken up to right by holding right side of bail against its retainer. Clearance between carriage return latch bail and carriage return lever

Min 0.004 inch—Max 0.040 inch

To Adjust

Position latch bail plate with clamp screw loosened.

SPACING DRUM

SPACING FEED PAWL

CARRIAGE RETURN LEVER

CARRIAGE RETURN LATCH BAIL

LATCH BAIL PLATE

CLAMP SCREW

CARRIAGE RETURN LATCH BAIL SPRING

Requirement

Spacing drum fully returned

Min 3 oz—Max 4-1/2 oz to start latch bail moving.
2.49 Spacing Mechanism (continued)

CARRIAGE RETURN LEVER

Requirement (Units Equipped with One-Stop Function Clutch)
Carriage return function set up on selector. Main shaft rotated until function clutch stop-lug is toward bottom of unit. Carriage return function pawl hooked over its function bar. Spacing drum held so that carriage return latch bail is latched. Clearance between latch bail and carriage return lever
Min 0.006 inch---Max 0.035 inch

To Adjust
Position carriage return lever on carriage return bail with clamp screw loosened.

Page 56
2.50 Spacing Mechanism (continued)

DASHPOT VENT SCREW

Requirement

Typebox carriage should return from any length of line without bouncing.

To Check

Printer operated at any speed from automatic transmission with one CR and one LF signal between lines. First character of each line should be printed in same location as if unit was manually operated slowly.

To Adjust

Turn down vent screw until slight pneumatic bounce is perceptible. Back off screw until effect disappears, then back screw off 1/4 turn. Tighten nut.

Note: It may also be necessary to reduce tension shown in CARRIAGE RETURN SPRING (2.46) adjustment to minimum for operation at altitudes higher than 2000 feet above sea level.

TRANSFER SLIDE SPRING

Requirement

Transfer slide in extreme left position. Spring unhooked. Min 3-1/2 oz -- Max 4-1/2 oz to pull spring to installed length.
2.51 Printing Mechanism (continued)

Note: Check related adjustments (2.44, 2.46, and 2.56), if the following adjustments are remade.

![Diagram of printing mechanism]

要求

Type Box Printing Position

- **Top View**
- **Combination** set up to print an apostrophe.
- **Printing carriage at approximate midpoint of track.** Rotate printer shaft so type box is in printing position. Proper type pallet should be approximately in center of printing hammer.

To Adjust
- Position printing carriage on wire rope with clamp screw loosened.

Note: Take up play in type box carriage alternately in each direction. Secure carriage at point where print hammer is approximately center of play.

Print Hammer Bearing Stud

- **Top View**
- **Print hammer in contact with type pallet in top row, eighth from right.** The hammer face should be fully on the end of the type pallet.

To Adjust
- Add or remove shims between shoulder on bearing post and stop bracket. When checking, take up play in hammer operating bail downward on post.
2.52 Positioning Mechanism (continued)

(A) SHIFT LINKAGE (FINAL)

Requirement
Typebox in position to print eighth character from right in the top row at midpoint of platen. Proper type pallet should align with print hammer.

To Adjust
Position oscillator left hand shift link bracket with two clamp screws loosened. With printer operating alternate characters (& and C), refine adjustment for correct alignment if necessary.

Note: Take up typebox carriage play in both directions and set print hammer to approximate center of play, as gauged by eye.

Do not disturb preliminary adjustment (2.39).
2.53 Printing Mechanism (continued)

(A) PRINTING TRACK

Requirement
Printing track in its extreme downward position. Extreme right hand character selected. Printing hammer operating bail latching extension held with left face in line with the latch shoulder. Printing arm slide positioned alternately over each track mounting screw. Printing bail reset each time. Clearance between latching extension and operating bail latch should be:
- Min 0.015 inch --- Max 0.040 inch

To Adjust
Position the printing track up or down with its mounting screws loosened. Hold clearance to maximum.

(B) PRINTING HAMMER PLUNGER SPRING

Requirement
Min 3 oz --- Max 5-3/4 oz to start plunger moving.

(Top View)

(E) PRINTING HAMMER OPERATING BAIL LATCH SPRING (Not as Illustrated)

Requirement
Printing track in its extreme upward position
- Min 3 oz --- Max 4-1/2 oz to start latch moving.

(F) PRINTING HAMMER OPERATING BAIL SPRING (Not as Illustrated)

Requirement
Operating bail latched. Spring adjusting bracket in left hand (no. 1) notch. Hammer yield spring unhooked
- Min 10 oz --- Max 13 oz to start bail moving.

(C) PRINTING HAMMER OPERATING BAIL SPRING

Requirement
Use notch no. 1 for printing one to three copies, no. 2 for four or five copies, and no. 3 for six or more copies.

To Adjust
Position spring adjusting bracket in required notch.

(D) PRINTING HAMMER YIELD SPRING

Requirement
Printing hammer operating bail against its stop
- Min 1 oz --- Max 2-1/2 oz to start hammer bail moving (horizontal position).
2.54 Printing Mechanism (continued)

PRINTING HAMMER STOP BRACKET

Requirement
With print hammer in upper left typebox position and printing bail in its maximum downward position, there should be

Min 0.005 inch --- Max 0.050 inch

clearance between print hammer and type pallet at any point along length of platen.

Note: Refine this adjustment to 0.005 to 0.015 inch on sprocket feed printer, if necessary to improve copy legibility on multiple forms.

To Adjust
Position stop bracket by means of its two mounting screws.

Note: The printing hammer operating bail spring bracket positions no. 2 and 3 are to be used only for making multiple copies.

TYPE PALLET SPRING

Requirement
Typebox removed from the unit. 8 oz scale applied vertically to the end of the pallet shank.

Min 1/4 oz --- Max 3/4 oz to start pallet moving.

To Check
Printing carriage near middle of platen. Printing hammer operating bail spring bracket in no. 1 position. Printing track in max downward position. Printing hammer operating bail against stop.

To Adjust
Position secondary printing arm with clamp screws loosened.

(1) Requirement
Clearance between secondary printing arm and forward extension of hammer operating bail

Min some --- Max 0.015 inch

To Check
Printing carriage near middle of platen. Printing hammer operating bail spring bracket in no. 1 position. Printing track in max downward position. Printing hammer operating bail against stop.

(2) Requirement
Clearance between latching extension of printing hammer operating bail and latching surface of operating bail latch

Min 0.006 inch

To Check
Printing track in uppermost position. Check both right and left positions.
2.55 Spacing Mechanism (continued)

Note 1: Check related adjustments (2.44, 2.48, and 2.56), if the following adjustments are remade.

Note 2: For sprocket feed units see 2.76 thru 2.82.

LEFT MARGIN

(1) Requirement (72 Character Line)
Typebox clutch disengaged. Spacing drum in returned position. Clearance between left edge of platen and print indicator located in front of printing hammer stop bracket
- Min 15/16 inch---Max 1-1/16 inch
- (In Bell System Switched-Network Services Min 9/16 inch---Max 11/16 inch)

AUTOMATIC CR-LF BELLCRANK SPRING
(For Units So Equipped)

Requirement
Function clutch disengaged.
- Min 2-1/2 oz---Max 7 oz to move the bellcrank.

PRINT INDICATOR

(2) Requirement
Spacing clutch disengaged. Front spacing feed pawl farthest advanced. Spacing drum fully returned. Play in spacing shaft gear (2.29) taken up clockwise. Clearance between pawl and shoulder of ratchet wheel tooth immediately ahead
- Min some---Max 0.008 inch

(3) Requirement
Rear pawl, when farthest advanced, should rest at bottom of indentation between ratchet wheel teeth.

To Adjust
Return print carriage to its left position. Loosen four indicated carriage return ring mounting screws. Hold carriage return ring in its counterclockwise position. Locate typebox so that print indicator which is in front of printing hammer stop bracket is in required position. Tighten four mounting screws.

Note 3: The left margin may be varied as required. Maximum range of adjustment for mechanisms with standard 10 characters per inch spacing is: friction feed platen 85 characters and sprocket feed platen 74 characters.
2.56 Spacing Mechanism (continued)

Note 1: Check related adjustments (2.36, 2.55, and 2.48), if the following adjustments are remade.

SPACING CUTOUT TRANSFER BAIL

RIGHT MARGIN

Requirement
Typebox clutch disengaged. Carriage in position to print character on which spacing cutout is to occur. Front feed pawl farthest advanced. Spacing cutout transfer bail held in its uppermost position. On units having two piece spacing cutout bail, push the cutout bail towards rear of unit through hole in front plate. Clearance between extension on space suppression ring and transfer bail
- Min 0.006 inch---Max 0.025 inch

To Adjust
Position space suppression ring with four indicated mounting screws loosened.

Note 2: Range of adjustment is from 0 to 85 characters on units with ring-type cutout arm. (Printers used in Bell System switched network services should be adjusted to 72 characters.)

Note 3: On units equipped with automatic carriage return-line feed ring, this adjustment is not applicable.

SPACING CUTOUT TRANSFER BAIL SPRING

Requirement
- Min 1 oz—Max 3-1/2 oz
to start bail moving.

SPACE SUPPRESSION BYPASS SPRING (On Unit Equipped With Separate Cutout Lever and Spring)

Requirement
With typing unit upside down, hook a scale on the spacing cutout lever extension pawl next to the spring and pull towards the rear of the unit.
- Min 20 oz---Max 26 oz
to start the pawl moving.
2.57 Printing Mechanism (continued)

TYPEBOX ALIGNMENT

Requirement
Printed impression of characters at top and at bottom should be equal (gauge visually).

To Adjust
Loosen nut. Operate printer under power. Repeat characters E and Z. Turn adjusting screw in or out (in steps of 1/4 turn) to meet requirement. Tighten nut.

Note: Check and refine PRINTING HAMMER STOP BRACKET (2.54) if necessary.
2.58 Printing Mechanism (continued)

(A) RIBBON REVERSE SPUR GEAR

Requirement
When right reversing lever is in max downward position, the left reversing lever should be in its max upward position.

To Adjust
Loosen the setscrews in the detent cam. Loosen the left spur gear nut. Securely tighten the right spur gear nut. Move the right reversing lever to its max upward position and hold the left reversing lever in its max downward position. Then tighten the left spur gear nut.

Note: Rotate typebox clutch 1/2 turn. Right reversing lever upward. Move right ribbon lever under right ribbon reversing lever. There should be some clearance between levers. Check left side same way. Refine adjustment if necessary.

(B) RIBBON REVERSE DETENT

Requirement
Ribbon reverse detent link buckled in its downward position, clearance between detent link and detent lever

Min some---Max 0.055 inch when play in the lever is taken up lightly toward the right side of the printer.

To Adjust
Hold left ribbon reversing lever in its downward position, position detent link, and tighten the upper setscrew in the hub of the detent link. Buckle the detent link upward and tighten lower setscrew.

RIBBON REVERSE SHAFT
SPUR GEAR NUT
DETENT LINK
RIBBON REVERSE SHAFT
DETENT LEVER
DETENT SPRING
(Rear Left View)

(C) RIBBON REVERSE DETENT LEVER SPRING

Requirement
Detent link buckled in upward position

Min 10 oz---Max 18 oz to start detent lever moving toward rear.
2.59 Printing Mechanism (continued)

RIBBON FEED LEVER BRACKET

(1) **Requirement (Left-Hand Mechanism)**
- Left reversing lever in upward position. Ribbon mechanism in upper position. Ratchet wheel held against the detent lever.
- Clearance between the front face of the feed lever and the shoulder of a tooth on the ratchet wheel
 - Min 0.015 inch --- Max 0.035 inch

(2) **Requirement (Right-Hand Mechanism)**
- Right reversing lever and ribbon mechanism in upward position. Adjust feed lever bracket in the same manner.

Note 1: Rotate the main shaft. The ratchet wheel should step one tooth only with each operation.

To Adjust
Position the feed lever bracket with its mounting screws loosened.

RIBBON REVERSING LEVER (LEFT)

LONG FEED LEVER SPRING

FEED LEVER BRACKET

MOUNTING SCREWS

DETENT LEVER

RIBBON FEED LEVER SPRING

Requirement
- Ribbon feed levers in uppermost position.
 - For Long Lever: Push downward near its spring.
 - For Short Lever: Push downward at point near long lever spring.
 - Min 3/4 oz --- Max 2 oz
to start feed levers moving. Measure all four levers.

Note 2: If minimum requirement of short lever is not met, pull lower end of torsion spring to rear.

RIBBON RATCHET WHEEL FRICTION SPRING

Requirement
- Feed levers disengaged.
 - Min 3 oz --- Max 8-1/2 oz
to start the ratchet wheel moving.
2.60 Printing Mechanism (continued)

RIBBON LEVER SPRING

Requirement
- Min 1-1/2 oz --- Max 3 oz to start the lever moving. Check both right and left springs.

RIBBON LEVER SPRING

RIBBON LEVER

SPOOL SHAFT

RIBBON TENSION SPRING

Requirement
- Ribbon ratchet wheel positioned so that each driving pin is toward the outside of the spool shaft.
- Min 3 oz --- Max 5-1/2 oz to start spool shaft moving.

(Top View)
2.61 Line Feed and Platen Mechanism (continued)

(B) **PLATEN DETENT BAIL SPRING**

Requirement
Detent seated between two teeth on line feed spur gear.
- Min 16 oz---Max 32 oz to start detent bail moving.

To Adjust
Rotate the detent eccentric with its mounting screw loosened.
Keep high part of eccentric upward.

(C) **LINE FEED BAR RELEASE LEVER SPRING**

Requirement
Min 3 oz---Max 8 oz to start lever moving.

To Adjust
Line feed clutch disengaged. Platen rotated until detent stud is seated between two teeth on line feed spur gear. When hand wheel is released, manually set the teeth on the line feed bars into engagement with the teeth on the line feed spur gear. The detent stud should contact one gear tooth and be not more than 0.010 inch from other tooth.

(D) **LINE FEED BAR BELLCRANK SPRING (FRICITION FEED)**

Requirement
Left-hand line feed bar in rear position
- Min 19 oz---Max 24 oz to start bar moving.
2.62 Line Feed and Platen Mechanism (continued)

LINE FEED SPUR GEAR

LINE FEED BAR
(ADJACENT TO SIDE FRAME)

BRACKET MOUNTING NUTS

LINE FEED BAR BUMPER

(Rear Right View)

LINE FEED BAR BUMPER (SIX STOP CLUTCH ONLY)

Requirement
With the line feed clutch tripped manually, rotate the main shaft until the line feed bar adjacent to side frame is at its maximum travel away from the line feed spur.

Min 0.065 inch --- Max 0.080 inch

clearance between the other line feed bar and the line feed bar bumper.

To Adjust
Loosen the two bracket mounting nuts and position the bracket thru its elongated slots until proper clearance is obtained. Then tighten the two mounting nuts.

Note: Recheck vertical tab or form-out adjustment (variable features).
2.63 Function Mechanism (continued)

STRIPPER BLADE DRIVE CAM POSITION

Requirement
Stripper blade drive cam should move each stripper blade cam arm on equal distance above and below center line of its pivot (gauge by eye).
 (a) Upward direction
 (b) Downward direction

To Check
With function clutch disengaged observe engagement of stripper blade drive cam (upper peak) with stripper blade cam arm. Then rotate clutch to turn cam to its extreme downward position and observe engagement of lower cam peak.

To Adjust
With stripper blade drive arm mounting screws loosened. Equalize the overtravel of each cam peak.
2.64 Function Mechanism (continued)

(A) FUNCTION LEVER SPRING

Note: If a function lever operates a contact or a slide, hold off the contact or slide when checking the spring.

Requirement
Function lever in unoperated position. Suppression bail held forward.
Min 1-1/2 oz --- Max 2-3/4 oz to start function lever moving. Check each spring.

(B) FUNCTION PAWL SPRING

Requirement
Rear end of function pawl resting on function bar
Min 3 oz --- Max 5 oz to start pawl moving. Check each spring.

(C) FUNCTION BAR SPRING

Requirement
Function clutch disengaged.
Function pawl held away.
Min 2-1/2 oz --- Max 3-1/2 oz to start function bar moving.

CAUTION: SEVERE WEAR TO THE POINT OF OPERATION FAILURE WILL RESULT IF THE TELETYPewriter IS OPERATED WITHOUT EACH FUNCTION PAWL HAVING EITHER A RELATED FUNCTION BAR OR, WHERE A FUNCTION BAR IS MISSING, A RELATED FUNCTION PAWL CLIP TO HOLD THE FUNCTION PAWL AWAY FROM THE STRIPPER BLADE.
2.65 Function Mechanism (continued)

FUNCTION PAWL TIMING CONTACT

Note 1: This adjustment applies to the ATX stunt box arrangement slot 32.

Requirement

With the function pawl in the nonselect position (contact resting on adjusting stud of function pawl), clearance between the contact arm and the near contact should be

Min 0.005 inch --- Max 0.015 inch

To Adjust

Position adjusting stud by means of its mounting screw.

FUNCTION CONTACT SPRING

Requirement

Min 1 oz --- Max 2 oz to open switch contact.

To obtain this clearance, position the contact plate before tightening the contact plate screws.

Note 2: If the switches are removed from the stunt box, the following requirements apply.

Provide at least 0.006 inch clearance between the contact arm and the vertical portion of the contact clip. If the switch has contacts front and rear, this clearance applies to both front and rear. To obtain this clearance, position the contact plate before tightening the contact plate screws.

On switches with contacts front and rear, check to see that there is a gap of at least 0.008 inch between the formed-over end of the front contact clip and the bottom of the contact arm when the rear contact is closed.
2.66 Spacing Mechanism (continued)

SPACING SUPPRESSION BAIL SPRING

Requirement
Spacing suppression bail in rear position. Scale applied near center of horizontal portion of bail.
Min 1/2 oz---Max 1-1/2 oz
to start ball moving.
2.67 Line Feed and Platen Mechanism (continued)

SINGLE-DOUBLE LINE FEED STRIPPER BAIL ASSEMBLY SPRINGS

(1) Requirement
Line feed clutch disengaged and single-double line feed lever in single line feed position.
Min 1/2 oz --- Max 2 oz to start stripper bail arm moving upward.

(2) Requirement
Line feed clutch disengaged and single-double line feed lever in single line feed position.
Min 1/2 oz --- Max 2 oz to start arm moving to left as shown.
RIGHT MARGIN WITH AUTOMATIC CARRIAGE RETURN-LINE FEED RING

Requirement (On Units So Equipped)
Typebox clutch disengaged. Carriage positioned two spaces before character on which automatic carriage return-line feed is to occur. Front feed pawl farthest advanced. Clearance between extension on ring and automatic carriage return-line feed bellcrank
Min 0.040 inch---Max 0.055 inch

To Adjust
Position ring with four indicated mounting screws loosened.

Note: Range of line adjustment is from 0 to 85 characters.
2.69 Positioning Mechanism (continued)

HORIZONTAL STOP SLIDE SPRING

Front Top View

HORIZONTAL STOP SLIDE SPRING

Requirement

Codebars in marking position (left). Typebox clutch rotated 1/4 turn from its stop position. Horizontal motion decelerating slides (2.40) held away from horizontal stop slides.

Min 1/2 oz—Max 1-1/2 oz for upper and lower slides
Min 1-3/4 oz—Max 3 oz for middle slide to start slide moving.

Note: When checking upper and lower slides, hold middle slide 1/32 inch forward.

2.70 Line Feed and Platen Mechanism (continued)

PAPER STRAIGHTENER LEVER SPRING (FRICITION FEED)

Requirement (Left and Right Springs)
Min 1-1/2 oz—Max 4 oz to start the lever moving.

Note: For sprocket feed mechanism, see 2.76.
2.71 Line Feed and Platen Mechanism (continued)

PAPER FINGER SHAFT

(Front View)

PAPER FINGER

PAPER FINGER (FRICITION FEED)

Requirement
The pressure end of the paper fingers should overlap the paper from 3/8 inch to 1/2 inch.

To Adjust
Position the paper fingers by sliding them on their shaft.

PAPER FINGER SPRING (FRICITION FEED)

Requirement
Pull upward on right paper finger to start left paper finger moving from platen.
Min 3 oz---Max 6 oz

Note: For sprocket feed mechanism, see 2.80.

PAPER FINGER (RIGHT)

(Right Side View)

PAPER FINGER SPRING

PRESSURE ROLLER

PRESSURE ROLLER LEVER SPRING (FRICITION FEED)

Requirement
Min 28 oz---Max 36 oz to start each center lever moving alternately.

PRESSURE ROLLER LEVER

COMPRESSION SPRING

PAPER PRESSURE BAIL SPRING (FRICITION FEED)

Requirement
Scale hooked over pressure bail at each end of platen.
Min 7 oz---Max 20 oz to move pressure bail from platen.
SECTION 574-220-700TC

2.72 Codebar Mechanism (continued)

CODEBAR DETENT

Requirement

Front plate removed. All clutches disengaged. Suppression and shift codebars should detent equally (gauged by eye).

To Adjust

Equalize the detenting of the codebars by adding or removing shims between the casting and the codebar bracket.

CODEBAR DETENT SPRING

Note: Unless there is reason to believe that these springs are causing operating failure, do not check this requirement.

Requirement

Codebar detent bracket carefully removed and codebars removed from detent bracket. Scale applied to detent ball and pulled in direction of ball travel

- Min 1-1/2 oz --- Max 3-1/2 oz
- (no. 6 codebar for non-Bell, no. 6 and no. 7 codebars for Bell
- Min 4 oz --- Max 6 oz)

SHIMS

to start ball moving against compression of spring.

Check each ball.

CODEBAR YIELD SPRING

Requirement

Selector clutch, codebar clutch, and typebox clutch disengaged. No. 1 codebar in spacing position

- Min 14 oz --- Max 23 oz
to start codebar shift bar pivot moving away from codebar. Check no. 2 and common codebar shift bar in the same manner.
MARGIN INDICATOR LAMP

Requirement
Operating under power, the lamp should light on the desired character.

To Adjust
Set the typebox carriage to print the desired character and position the cam disc counterclockwise on the spring drum with its three mounting screws loosened so that the switch just opens. If a line shorter than 72 characters is required, it may be necessary to remove the cam disc screws and insert them in adjacent slots in the disc, if the range of rotation in one slot is not enough. Range is from the 5th through the 85th character.

(Min 65 characters—Max 69 characters in Bell System switched network service)
2.74 Printing Mechanism (continued)

(B) PRINT SUPPRESSION BLOCKING LEVERS

To Check
Manually move blocking bail blade opposite blocking lever.

Requirement
No. 6 codebar marking. No. 7 and suppression codebars spacing. Clearance between blocking levers and blocking bail blade should be equal within 0.020 inch.

To Adjust
Position eccentric post, keeping high part of eccentric toward front of unit.

(C) PRINT SUPPRESSION BLOCKING LEVERS SPRING

Requirement
Codebars to right (spacing). Typebox clutch in stop position
Min 2-3/4 oz---Max 4 oz

to start lever moving.

(A) PRINT SUPPRESSION MECHANISM

Requirement
Blocking lever extensions fully engaged by associated codebars.

To Adjust
Position print suppression assembly, with mounting screws friction tight, so lower lever extension is equally engaged by no. 6 and no. 7 codebars as gauged by eye.
TYPEBOX CLUTCH SUPPRESSION ARM

Requirement
- Blocking bail blocked. Rotate main shaft until function clutch shoe lever is opposite function clutch trip lever.
- Min 0.003 inch clearance between typebox clutch trip arm extension and clutch trip lever.
- Min 0.006 inch clearance between function clutch shoe lever and function clutch trip lever.

To Adjust
- Position suppression arm with mounting screws friction tight.

Print Suppression Blocking Bail Spring

Requirement
- All codebars right (spacing). Typebox clutch in stop position
 - Min 1/2 oz—Max 1-1/2 oz to start bail moving.
2.76 Line Feed and Platen Mechanism (continued)

(A) PAPER FINGER SHAFT SPRING (SPROCKET FEED)

Requirement
Hold latch away from shaft extension
Min 6 oz---Max 10 oz
to move paper finger against the platen.

(B) PAPER FINGER LATCH SPRING (SPROCKET FEED)

Requirement
Hold paper finger against platen.
Min 8 oz---Max 12 oz
to start latch moving.

PLATEN DETENT BAIL SPRING

Use 2.61.
2.77 Line Feed and Platen Mechanism (continued)

(A) LEFT MARGIN (SPROCKET FEED)

(1) Requirement
Typebox clutch disengaged. Spacing drum fully returned. Clearance between centerline of sprocket pins in left hub and print indicator located in front of printing hammer stop bracket.
Min 5/16 inch---Max 7/16 inch

(2) Requirement
Spacing clutch disengaged. Front spacing feed pawl farthest advanced. Spacing drum fully returned. Play in spacing shaft gear (2.29) taken up clockwise. Clearance between pawl and shoulder of ratchet wheel tooth immediately ahead
Min some---Max 0.008 inch

(3) Requirement
Rear pawl, when farthest advanced, should rest at bottom of indentation between ratchet wheel teeth.

To Adjust
Position carriage return ring with mounting screws loosened.

(B) PRINTING CARRIAGE POSITION (2.51)
(C) PRINTING HAMMER STOP BRACKET (2.54)
(D) RIGHT MARGIN (2.56)
(E) TYPEBOX ALIGNMENT (2.57)

Note: Following this adjustment, all screws should be tightened.
2.78 Line Feed and Platen Mechanism (continued)

(A) LINE FEED SPUR GEAR DETENT ECCENTRIC Use 2.61.

(B) PRINTED LINE (SPROCKET FEED)

Requirement
The bottom of the printed line should be 1/32 inch ± 1/64 inch (plus a multiple of 1/6 inch if required) above a horizontal line drawn even with the bottom edge of any sprocket hole.

To Adjust
Loosen screws and position left sprocket.

Note: This adjustment is dependent on the type of form, and the location of the first printed line. The tolerances are field limits therefore the adjustment is not made in the factory.

(C) PLATEN ENDPLAY (SPROCKET FEED)

Requirement
Line feed pawls disengaged. Platen shaft should have some endplay
Max 0.010 inch

To Adjust
Position platen spur gear with clamp screw loosened.

(D) SPROCKET PIN SEPARATION (SPROCKET FEED)

(1) Requirement
With single sheet of sprocket feed paper placed on the platen the sprocket pins should be centrally located in the feed holes of the paper.

To Adjust
Position right sprocket with clamp screw loosened.

(2) Requirement
Printed line should be parallel to a line drawn perpendicular to edge of paper within plus or minus 1/32 inch.

To Adjust
Position right sprocket with clamp screw loosened.
2.79 Line Feed and Platen Mechanism (continued)

(1) Requirement
Sprocket pin should be centrally located in the paper finger slot.

(2) Requirement
The gap between the platen and the paper finger should be
- Min 0.050 inch—Max 0.150 inch
 (for stapled copies)
- Min 0.020 inch—Max 0.060 inch
 (unstapled or single copy).

Note: It is desirable to have the clearance at the minimum which will pass the stationery freely. This minimum is dependent upon the type of paper, number of copies, stapling, etc.

To Adjust
With paper finger assembly in latched position, loosen both clamp screws, position assembly horizontally to meet Requirement (1). Rotate assembly to meet Requirement (2).

(3) Requirement (Not Illustrated)
Min 0.035 inch
between leading edge of paper finger and ribbon guide. Both right and left paper fingers must be parallel to the same printed line as gauged by eye.

To Adjust
Select rubout combination and rotate typebox clutch 1/2 revolution. Position paper fingers by means of elongated mounting holes. After tightening the screws recheck Requirements (1), (2), and (3).
2.80 Line Feed and Platen Mechanism (continued)

(B) **SPROCKET PIN SPRING (SPROCKET FEED)**

Requirement (Early Design)

Pins to be tested aligned with slots in guide bracket.

- Min 6 oz---Max 8 oz to start depressing the pin.

![SPROCKET PIN SPRING](image)

(A) **PAPER GUIDE (SPROCKET FEED)**

Requirement

The clearance between the platen and the front edge of the paper guide should be

- Min 0.050 inch---Max 0.150 inch (stapled copies)
- Min 0.020 inch---Max 0.060 inch (unstapled or single copy).

To Adjust

Position the guide with its rear mounting screws loosened.

(C) **RIBBON REVERSE SPUR GEAR**

Use 2.58.

(D) **RIBBON REVERSE DETENT**

Use 2.58.

(E) **LINE FEED BAR BELLCRANK SPRING (SPROCKET FEED)**

Use 2.61 except

- Min 28 oz---Max 38 oz to start bar moving.

Note: It is desirable to have the clearance at the minimum which will pass the stationery freely. This minimum is dependent upon the type of paper, number of copies, stapling, etc.
STRIPPER SLIDE BAIL ARM

Requirement

(1) **Clearance**

- Between top edge of stripper slide bail and lower surface of the closest line feed function pawl should be
 - Min 0.030 inch
 - Max 0.045 inch

To Check

- Single-double line feed lever in double line feed position and all clutches in latched stop position.
- Select line feed function. Rotate main shaft until codebar clutch stop lever just touches codebar clutch shoe lever. Take up play of stripper bail cam shaft drive arm to make clearance a maximum between the stripper bail and line feed function pawl. Take up play of stripper slide bail and function pawl in downward direction.

To Adjust

- Position stripper slide bail arm with its clamping screw loosened. Position arm laterally to clear stripper slide when screw is tightened.

(2) **Requirement**

- The line feed trip lever should reset at a point over, or just past, the second stop-lug by not more than 1/3 the distance between lugs.

To Check

- Single-double line feed lever in double position. Select line feed function and rotate main shaft.

To Adjust

- Refine LINE FEED CLUTCH TRIP LEVER ADJUSTING SCREW (2.25), if necessary. Recheck Requirement (1) of this adjustment.
2.82 Function Mechanism (continued)

STRIPPER SLIDE SPRING

Requirement
Stripper blade in its lowermost position.
Min 2 oz---Max 3 oz to pull spring to installed length.

(Rear View)

STRIPPER SLIDE BAIL TORSION SPRING

Requirement
Single-double feed lever in single position.
Select line feed function and rotate main shaft until stripper slide bail just strips line feed function pawl.
Min 1 oz---Max 1-1/2 oz to just start bail moving.
3. VARIABLE FEATURES

3.01 Vertical Tabulator Mechanism (For Bell System Switched Network Service)

(A) VERTICAL TABULATOR SLIDE RETAINER

Requirement
Clearance between vertical tab slide and retaining edge of retainer
Min some --- Max 0.012 inch

To Adjust
Move retainer to extreme forward position and locate up or down to meet requirement.

(B) MOUNTING BRACKET

(1) Requirement
Select form-out code combination and rotate main shaft until form-out slide is in forwardmost position. Clearance between form-out (inside) blocking lever and form-out slide.
Min some --- Max 0.020 inch
when play in blocking lever is taken up to make clearance minimum.

(2) Requirement
Select vertical tab code combination and rotate main shaft until vertical tab slide is in forwardmost position. Clearance between vertical tab slide and vertical tab blocking (outer) lever
Min 0.002 inch
when play in blocking lever is taken up to make clearance minimum.

To Adjust
With mounting bracket screw friction tight, position lower portion of mounting bracket to meet Requirements (1) and (2).
3.02 Vertical Tabulator Mechanism (continued)
(For Bell System Switched Network Service)

(B) INDEXING DISC

Requirement
Line feed clutch disengaged. Form-out stop plate adjacent to form-out follower. Clearance between stop plate and follower
Min 0.015 inch -- Max 0.040 inch with slack taken up in idler and form start gears to make gap minimum.

To Adjust
Pull gear out of engagement with idler. Turn handwheel clockwise until a stop plate just operates follower and then engage first tooth on idler. Position disc with three mounting screws.

(C) POINTER ADJUSTMENT

Requirement
Line feed clutch disengaged. Form-out stop plate adjacent to follower. Pointer on printer side frame should line up with notch in index disc.

To Adjust
Pointer mounting screw, on printer side frame, friction tight. Position pointer so it lines up with notch on index disc, and clears any stop plate by approximately 1/16 inch.

(A) FORM START GEAR PLAY

Requirement
Barely perceptible backlash between idler gear and form start gear.

To Adjust
Position gear pivot post on bracket by nut in center of handwheel. Check in at least three position, 120 degrees apart.
3.03 Vertical Tabulator Mechanism (continued)
(For Bell System Switched Network Service)
(Transmitter Control Switch Adjustments)

(D) NORMALLY OPEN CONTACT GAP

Requirement
Blocking levers unoperated. Gap between normally open contacts
Min 0.008 inch -- Max 0.012 inch

To Adjust
Bend stiffener.

(A) TRANSFER CONTACT SPRING

Requirement
Blocking levers unoperated.
Min 2 oz -- Max 3 oz

to just open contacts. Bend long contact spring to meet requirement.

(B) NORMALLY OPEN CONTACT SPRING

Requirement
Blocking levers unoperated
Min 1 oz -- Max 2 oz

to just move short contact spring away from stiffener. Bend short contact spring to meet requirement.

(H) VERTICAL TAB BLOCKING LEVER SPRING

Requirement
Blocking lever arms resting on top of their slides. Unhook blocking lever spring from mounting bracket.
Min 9 oz -- Max 11 oz
to pull spring to operating length. Check both blocking lever springs.

(F) VERTICAL TAB BLOCKING LEVER ARM

Requirement
Vertical tab blocking lever resting on top of slide, clearance between blocking lever arm and insulator pad
Min some

To Adjust
Position blocking lever arm with mounting screws friction tight.

(E) CONTACT BRACKET

Requirement
Form-out blocking lever resting on top of form-out slide. Clearance between blocking lever and insulator tip of swinger
Min some

To Adjust
Position contact assembly bracket with mounting screws friction tight.
3.04 Vertical Tabulator Mechanism (continued) (For Bell System Switched Network Service) (Transmitter Control Switch Adjustments)

(G) NORMALLY CLOSED CONTACT GAP

(1) Requirement
Select form-out code combination. Rotate main shaft until form-out slide is in forwardmost position and form-out blocking lever drops behind slide. Clearance between normally closed contact points

Min 0.008 inch

To Adjust
Refine NORMALLY OPEN CONTACT GAP and CONTACT BRACKET (3.03, (D) and (E)).

(2) Requirement
Select vertical tab code combination. Rotate main shaft until vertical tab slide is in forwardmost position and vertical tab blocking lever drops behind slide. Clearance between normally closed contact points

Min 0.008 inch

To Adjust
Refine NORMALLY OPEN CONTACT GAP and VERTICAL TAB BLOCKING LEVER ARM (3.03, (D) and (F)).

(C) NORMALLY CLOSED CONTACT SPRING

Requirement
Blocking levers operated
Min 2 oz — Max 3 oz
to just move short contact spring away from stiffener.
Bend short contact spring to meet requirement.
3.05 Vertical Tabulator Mechanism (continued)
(For Bell System Switched Network Service) (Form-Out and Tabulator Stops)

Note 1: Form-Out Stop Adjustment — Form-out index plates should be placed in numbered slots corresponding to length of form to be used. Form-out device may now be synchronized with form by first positioning form so that typing unit prints in first typing line of form. (When typing unit is in stop position, top of ribbon guide lines up with bottom of printing line.) With form in this position, pull form start gear out of engagement with idler and turn it until pointer on printer side is lined up with notch in index disc. (Form start gear is held in engagement with idler by spring tension, and may be disengaged by pulling the handwheel assembly out to left.)

Note 2: Tabulation Stop Adjustment — Tabulation stops within a form may be synchronized by first positioning form so typing unit will print on first typing line of form. (Procedure is outlined in Note 1.) Next, line feed platen to desired first printing line in form. Place stop plate in disc slot which lines up with vertical tab follower (inner). In same manner, place tab stop plates at succeeding desired printing lines within form. Tab stop plates may be placed on their sides in disc to nullify undesired printing positions on form.

To Check
Trip line feed clutch. Rotate main shaft until form-out follower is on peak of form-out stop plate.

To Adjust
Position adjustable arm at lower pry points with clamp screw loosened.
3.06 Vertical Tabulator Mechanism (continued)
(For Bell System Switched Network Service) (Off Normal Contact Adjustments)

(C) CONTACT BRACKET

Requirement
Follower lever on peak of a form-out stop plate. Clearance between contact points
Min 0.010 inch---Max 0.020 inch

To Adjust
Position contact assembly bracket with mounting screws friction tight.

(A) SHORT CONTACT SPRING

Requirement
Follower lever operated.
Min 2 oz---Max 3 oz
to just move short contact spring away from stiffener. Bend short contact spring to meet requirement.

(B) LONG CONTACT SPRING

Requirement
Follower lever unoperated.
Min 2 oz---Max 3 oz
to just open contacts. Bend long contact spring to meet requirement.

(D) FOLLOWER LEVER

Requirement
Index disc rotated to bring form-out stop plate one slot away from operating position. Clearance between follower lever and insulator tip
Min 0.010 inch---Max 0.020 inch

To Adjust
Rotate eccentric post until requirement is met.
Vertical Tabulator Mechanism (continued)
(Common to 3.01 and 3.24)

FORM-OUT PAWL SPRING

Requirement
- Form-out pawl extension resting against backstop.
 - Min 3 oz---Max 8 oz to move pawl away from backstop.

VERTICAL TABULATOR BAIL SPRING

Requirement
- Extension of tab bail resting against backstop.
 - Min 3 oz---Max 8 oz to move bail away from backstop.

FORM FEED-OUT TORSION SPRING

Requirement
- Rotate main shaft until line feed clutch is in stop position. Disengage line feed clutch trip lever.
 - Min 2 oz---Max 6 oz to start bail moving toward rear of unit.
3.08 Form-Out Mechanism

(A) FORM-OUT LEVER BACKSTOP

Requirement

Line feed clutch trip lever against eccentric post. Form-out lever against formed extension of mounting plate. Clearance between trip lever and form-out lever

Min some---Max 0.010 inch

To Adjust

(B) SOLENOID LEVER (See also 3.09.)

Requirement

When solenoid plunger is seated, form-out slide, through combined motions of nonrepeat slide, form-out lever and form-out bail, should have moved forward to permit form-out blocking lever to fall in behind it. Clearance between slide and blocking lever

Min 0.020 inch---Max 0.030 inch

To Adjust

Rotate eccentric screw to meet requirement. Make adjustment with high point of eccentric guide upward.

(C) FORM FEED-OUT NONREPEAT SLIDE SPRING

Requirement

Typing unit upside down and form feed-out solenoid unoperated

Min 3 oz---Max 4 oz

to pull spring to position length.

Page 96
Note: This adjustment insures that nonrepeat slide is stripped out of engagement with form-out lever before solenoid plunger is fully seated. It will also reduce the Min 0.020 inch—Max 0.030 inch clearance between form-out blocking lever and form-out slide, 3.08 (B), at point of stripping. Check for at least some clearance at this point. Solenoid plunger must not bind against solenoid. Loosen mounting screws and move solenoid up or down.

Requirement
Solenoid plunger seated. There should be some clearance between the nonrepeat slide and the form-out lever.

To Adjust
With high point of eccentric toward front, rotate eccentric guide to meet requirement.
3.10 Low Paper and Paper Out Alarm Mechanisms

LOW PAPER AND PAPER OUT ALARM
(SPROCKET FEED)

(1) Requirement
Without paper in unit, rear ends of switch operating levers should be in lowermost position. Switch plungers should be depressed. Normally open contacts should be closed. Ends of switch levers should be within outline of typing unit frame.

(2) Requirement
Rear ends of switch operating levers lifted to height of plane of upper surface of paper guide, switch plungers should be extended. Min some clearance between switch levers and plungers.

To Adjust
Position plate with switch mounting plate mounting screws friction tight.

PAPER OUT ALARM SENSING LEVER SPRING
(SPROCKET FEED)

Requirement
Min 1/2 oz---Max 1 oz
to lift end of lever, which rides paper, to same plane as upper surface of paper guide. Measure both sensing lever springs in same manner.
3.11 Paper Out Alarm Mechanism (continued)
(Friction Type) (Later Design)

Note: Adjustment requirements for the new-style paper-out alarm.

SWITCH

Requirement
Switch in uppermost position parallel to switch bracket.

To Adjust
Position switch with switch mounting screws loose.

LEVER

Requirement
Flat side of empty paper spindle parallel with upper surface of lever extension. Lever 1/4 inch below paper spindle.

To Adjust
Position bracket with post vertically up or down with mounting screws loose. If necessary, form the lever by hand.

LEVER SPRING

Requirement
Spring scale applied in downward direction to lever near spring eye
Min 11 oz -- Max 18 oz
to move switch lever clear of switch button.
3.12 Low Paper and Paper Out Alarm Mechanism (continued)

PAPER OUT ALARM BELLCRANK FOLLOWER SPRING (FRICTION FEED) (Early Design)

Requirement

Roll of paper removed from unit.
- Min 3-1/2 oz --- Max 4-1/2 oz
 to move lever far enough to just clear lower switch.

(Right Side View)

PAPER OUT ALARM ASSEMBLY (FRICTION FEED)

1. **Requirement (Early Design)**
 - The upper switch should operate when paper supply is reduced to approximately
 - Min 10 feet --- Max 15 feet
 on the roll.

2. **Requirement**
 - Paper follower bellcrank should operate upper switch at approximately 1/4 inch from flat side of empty paper spool.

To Adjust

Position bracket with two bracket mounting screws friction tight.
3.13 Horizontal Tabulator Mechanism

HORIZONTAL TAB OPERATING LEVER EXTENSION LINK SPRING

Requirement

Unhook trip arm latch lever spring. Operating lever in operated position
Slide arm against blocking lever.

Min 8-3/4 oz --- Max 10-3/4 oz
to start link moving.

Note: On units equipped with transmitter control contacts, hold contact
spring away from stud while measuring tension.

HORIZONTAL TAB OPERATING LEVER LINK

Requirement

Rotate function clutch until function pawl stripper blade is in lower position, and function reset bail roller on high part of cam. Pull horizontal tab function pawl to rear until latched on function bar. Clearance between operating lever extension link and blocking lever

Min 0.005 inch --- Max 0.025 inch

with play taken up to minimize clearance.

To Adjust

Position extension link on operating lever with mounting stud friction tight.

Note: When pulling function pawl to rear, if operating lever cam plate should be stripped off the tab slide arm before function pawl is latched on function bar, temporarily disable cam plate stripper bail arm by loosening its adjusting screw.
3.14 Horizontal Tabulator Mechanism (continued)

HORIZONTAL TAB INTERMEDIATE BAIL SPRING

Requirement
Trip lever arm and intermediate bail unoperated
Min 1-1/2 oz---Max 3-1/2 oz
to pull spring to installed length.

(Left Side View)
3.15 Horizontal Tabulator Mechanism (continued)

(B) HORIZONTAL TAB SPACING TRIP LEVER

Requirement
Spacing clutch trip lever arm against its stop. Operating lever against adjusting screw. Clearance between spacing trip lever and trip lever arm
Min some---Max 0.010 inch

To Adjust
Loosen mounting screw and mounting stud friction tight. With spacing trip lever riding on clutch trip lever arm, slowly rotate operating lever adjusting plate by means of screwdriver pry slots until spacing trip lever just falls off trip lever arm.

(A) HORIZONTAL TAB OPERATING LEVER CAM PLATE

(1) Requirement
Horizontal tab slide arm unoperated. Operating lever against adjusting screw. Clearance between slide arm and cam plate
Min some

(2) Requirement
With the operating lever extension link in the unoperated position, it should engage at least 2/3 of the surface of the step in the blocking lever, as gauged by eye.

To Adjust
Position adjusting screw.
3.16 Horizontal Tabulator Mechanism (continued)

HORIZONTAL TAB OPERATING LEVER CAM PLATE SPRING

Requirement
- Operating lever unoperated.
- Horizontal tab function pawl unlatched.
- Min 4 oz---Max 9 oz to start stripper bail moving.

HORIZONTAL TAB SLIDE ARM SPRING

Requirement
- Operating lever operated. Slide arm unoperated.
- Min 1-1/2 oz---Max 4 oz to start slide moving.

CAM PLATE STRIPPER BAIL

Requirement
- Operating lever and horizontal tab slide arm unoperated. Rotate spacing clutch until high of restoring cam is opposite stripper bail. Clearance between stripper bail and high of restoring cam
 - Min 0.010 inch---Max 0.025 inch

To Adjust
- Position stripper bail on stripper bail arm with stripper bail arm screw friction tight.
3.17 Horizontal Tabulator Mechanism (continued)

(A) SPACING CUTOUT TRANSFER BAIL SET COLLAR

Requirement
Transfer bail should have
Min some---Max 0.008 inch
endplay.

To Adjust
Position set collar with adjusting screw loosened.

(B) RIGHT MARGIN ADJUSTMENT

Requirement
Clearance between spacing cutout lever on spacing drum and bail extension arm
Min 0.006 inch---Max 0.025 inch

To Check
Place typebox in position to print character on which spacing cutout is desired.
Pull forward on part of transfer bail extending below mounting shaft until bail is in fully operated position. Gauge clearance.

To Adjust
Position cutout lever with clamp screws loosened.

Note: Four screws must be loosened to adjust cutout lever (see figure in 2.56). Do not loosen hex head screw that clamps front ring.

(C) SPACE SUPPRESSION BYPASS

SPRING

Requirement
Typing unit upside down
Min 20 oz---Max 26 oz
to start bail extension moving.
3.18 Horizontal Tabulator Mechanism (continued)

TABULATOR PAWL (PRELIMINARY)

Note: Prior to adjustment, check LEFT MARGIN (2.55) and SPACING GEAR PHASING (2.29) adjustments.

1. **Requirement**
 Beginning with 15th slot (counterclockwise from roller on slotted ring), position tab stops approximately an equal number of slots apart over remaining length of printing line.

 To Adjust
 To move stops, hook small spring hook in hole of stop. Pull tab stop straight out from spacing drum and slide it on garter spring while continuing to pull it straight out. Spacing drum may have to be rotated manually to facilitate locating stops in some slots.

 CAUTION: CHECK THAT ALL STOPS ARE FULLY SEATED IN SLOTS, AND NOT TURNED SIDEWAYS.

2. **Requirement**
 All clutches disengaged. Front spacing feed pawl in lower position, pawl adjusting plate should be positioned at center of vertical and horizontal adjustments.

 To Adjust
 Vertically position with both right and left screws loosened. Horizontally position with only left screw loosened. (Vertical adjustment is always made first.)

3. **Requirement**
 Disengage spacing feed pawls. Let spacing drum return to maximum counterclockwise position. Keep spacing clutch disengaged manually. Advance spacing drum until first stop is immediately left of pawl.

 To Adjust
 Adjust horizontal position of pawl adjusting plate so tabulator stop is in line with left edge of shoulder on pawl.

4. **Requirement**
 With blocking lever and operating lever extension link unblocked, disengage spacing feed pawls and let spacing drum move back exactly 2 full spaces. Both spacing feed pawls should be fully engaged.

 To Adjust
 With extension link blocked by blocking lever, gauge clearance between slope on pawl and tab stop. Note clearance. Advance drum until next stop is just left of tab pawl. Let spacing drum move back two full spaces. With extension link blocked by blocking lever, gauge and note clearance as before. Repeat procedure for remaining three stops. Note stop that gives maximum clearance. Use this stop as reference stop for final vertical and horizontal adjustments.
3.19 Horizontal Tabulator Mechanism (continued)

TABULATOR PAWL VERTICAL ADJUSTMENT (FINAL)

Requirement

Using stop with maximum clearance (determined by preliminary adjustment), position spacing drum until tab stop is opposite shoulder on tab pawl. With operating lever extension link blocked by blocking lever

Min 0.055 inch --- Max 0.075 inch clearance between tab stop and tab pawl.

To Adjust

Position pawl adjusting plate with both screws loosened. Tighten right screw only, using wrench to hold bushing from turning.

REFERENCE TABULATOR STOP

TABULATOR PAWL

BLOCKING LEVER SPRING

HORIZONTAL TAB PAWL SPRING

Requirement

Tab pawl unoperated

Min 3 oz --- Max 5 oz to start pawl moving.

HORIZONTAL TAB BLOCKING LEVER RETURN SPRING

Requirement

Operating lever slide arm held to rear

Min 2-1/2 oz --- Max 4-1/2 oz to start lever moving.
3.20 Horizontal Tabulator Mechanism (continued)

TABULATOR PAWL HORIZONTAL ADJUSTMENT

Requirement
All clutches disengaged. Front spacing feed pawl in lower position. Position spacing drum so tab stop with maximum clearance (as determined by preliminary adjustment) is immediately left of pawl. Operating lever extension link forward in unblocked position. Disengage feed pawls, let spacing drum move back one full space. Both feed pawls should be fully engaged. Pull back extension link to blocked position on blocking lever. Trip spacing clutch stop lever and slowly rotate main shaft and spacing clutch until blocking lever is just tripped, allowing extension link to move forward. At this point, some portion of clutch disc stop-lug should be aligned with rear surface of spacing shaft gear. Take up play in spacing shaft towards rear of unit.

To Adjust
Trip spacing clutch and rotate clutch until middle of stop-lug is in line with rear surface of spacing shaft gear. If blocking lever trips too soon, first adjust the pawl adjusting plate to left until blocking lever can be placed in blocked position on extension link. Slowly move adjusting plate to right, with left screw loosened, until blocking lever just trips. When adjusting for trip-off point, take care that blocking lever is cammed down by tab stop and not pulled or pushed out of blocked position when prying adjusting plate. Recheck trip-off point against position of clutch stop-lug as before.

Note: After obtaining trip-off point of blocking lever, continue rotating spacing clutch to full stop position. Tab pawl should be right of tab stop. When extension link is moved to rear, blocking lever should move to blocked position. If tip of pawl should remain on end of tab stop, readjust pawl to right until there is

Min 0.003 inch----Max 0.008 inch

Clearance between right surface on tab stop and left edge on pawl tip.
3.21 Horizontal Tabulator Mechanism (continued)

(C) RIGHT MARGIN TABULATOR STOP
(WITH WIDE SHELF)

Requirement
Check right margin and tabulator pawl adjustments. Position printing carriage at right margin (spacing cutout operated). Insert stop with wide shelf in slot immediately to left of pawl. Shelf should extend to right so pawl rests on it.

(A) TABULATOR STOPS SETTING

Requirement
To move stops, hook small spring hook in hole in stop and pull straight out from drum. Slide stop on spring while continuing to pull out from drum. Position drum to facilitate moving stops.

CAUTION: CHECK TO INSURE THAT ALL STOPS ARE FULLY SEATED IN SLOTS, AND NOT TURNED SIDEWAYS.

COLUMNAR TABULATOR STOP

Requirement
Place carriage in position to print first character in column. Insert stop in slot immediately to left of tab pawl. To facilitate installation, mark desired slot position, rotate drum to a more accessible position. For slots near left margin, count number of space operations from left margin and place stop in corresponding slot number, beginning with slot no. 1 just to right of roller.

Note: When printing forms, check stop settings with relation to columns. Corresponding stops on all machines connected in a circuit must be same number of spacing operations from left margin.
3.22 Transmitter Distributor Transfer Control Contacts

(D) CONTACT ASSEMBLY BRACKET (PRELIMINARY)

Requirement (Not Illustrated)
Operating lever unoperated. Clearance between stud on operating lever and long contact spring
Min 0.020 inch---Max 0.025 inch

To Adjust
Position contact assembly bracket with mounting screws loosened. The bracket pivots about a pin at upper end of bracket.

(B) NORMALLY OPEN CONTACT SPRING

Requirement
Operating lever unoperated
Min 1 oz---Max 2 oz
to just move short contact spring away from stiffener.

To Adjust
Bend short contact spring.

(F) NORMALLY OPEN CONTACT GAP

Requirement
Operating lever unoperated.
Min 0.010 inch---Max 0.015 inch
between normally open contacts.

To Adjust
Bend stiffener.

(E) TRANSMITTER CONTROL CONTACT GAP

Requirement (Not Illustrated)
Operating lever in operated position.
Min 0.010 inch---Max 0.015 inch
between normally closed contacts.

To Adjust
Bend stiffener.

(C) NORMALLY CLOSED CONTACT SPRING

Requirement
Operating lever operated.
Min 2 oz---Max 3 oz
to just move short contact spring away from stiffener.

To Adjust
Bend short contact spring.

(G) CONTACT ASSEMBLY BRACKET (FINAL)

Requirement
Operating lever unoperated. There should be some clearance between stud on operating lever and long contact spring.

To Adjust
Remake adjustments (D), (E) and (F).
3.23 Transmitter Distributor Transfer Control Contacts (Later Design)

(A) TRANSFER CONTACT SPRING

Requirement
With the operating lever in the unoperated position, hook scale over the transfer contact swinger and pull at right angle to it.
Min 2 oz---Max 3 oz
to just open the contacts.

To Adjust
Bend the contact swinger spring.

(B) NORMALLY OPEN CONTACT SPRING

Requirement
With the operating lever in the unoperated position, hook scale over the short contact spring just above the contact point and pull at right angles to it.
Min 1 oz---Max 2 oz
to just move the short contact spring away from the stiffener.

To Adjust
Bend the short contact spring.

(C) CONTACT SPRING

Requirement
With the transfer contact swinger held away from the extension of the long contact spring, hook scale over the extension and pull at right angles to it.
Min 2 oz---Max 3 oz
to separate the contact points.

To Adjust
Bend the long contact spring.

(D) CONTACT ASSEMBLY BRACKET (PRELIMINARY)

Requirement
With the operating lever in the unoperated position, there should be
Min 0.020 inch---Max 0.025 inch
between the stud on the operating lever and the long contact spring.

To Adjust
Position the contact assembly bracket with the mounting screw loosened. The bracket pivots about a pin at the upper end of the bracket.

(E) NORMALLY OPEN CONTACT GAP

Requirement
With the operating lever in the unoperated position, there should be
Min 0.012 inch---Max 0.020 inch
between the normally open contacts.

To Adjust
Bend the stiffener.
3.24 Transmitter Distributor Transfer Control Contacts (continued)

(A) TRANSMITTER CONTROL CONTACT GAP

Requirement
With the operating lever in the operated position, there should be
Min 0.010 inch---Max 0.015 inch
between the normally closed contacts.

To Adjust
Bend the stiffener.

(B) CONTACT ASSEMBLY BRACKET (FINAL)

Requirement
With the operating lever in the unoperated position, there should be some clearance
between the stud on the operating lever and the long contact spring.

To Adjust
Remake TRANSFER CONTACT SPRING (3.23) and
TRANSMITTER CONTROL CONTACT GAP adjustments.
3.25 Keyboard Lock Mechanism

Requirement (Unit Upside Down)
Scale applied to bellcrank
Min 1/2 oz—Max 1-1/2 oz to start keyboard locklever moving.

(Right Side View)
SECTION 574-220-700TC

3.26 Local Backspace Mechanism

CAMMING BAIL STOP ARM

Requirement
Spacing clutch disengaged, front feed pawl in lower position, backspace bail held operated, clutch tripped and main shaft rotated until the front feed pawl tooth is opposite the peak of the first spacing drum tooth that moves down past the pawl tooth. Clearance between pawl tooth and the tooth on the spacing drum ratchet wheel
Min 0.020 inch---Max 0.035 inch

To Adjust
Position the adjusting plate on the intermediate arm in the center of its adjusting range. Then position the camming bail stop arm with its mounting screw friction tight to meet the requirement.

---SPACING ECCENTRIC ASSEMBLY----BACKSPACE BAIL

CAMMING BAIL SPRING

Requirement
Min 1 oz---Max 2-1/4 oz to start bail moving.

Note: See appropriate section for related keyboard adjustments.
3.27 Vertical Tabulator Mechanism

(C) FORM START GEAR PLAY

Requirement
Barely perceptible backlash between idler gear and form start gear.

To Adjust
Position gear pivot post with nut loosened.

Note: Gears should mesh accurately when checked at 3 equal distances around circumference of gear.

(E) INDEXING DISC

Requirement
Clearance between form-out stop plate and follower should be
Min 0.020 inch -- Max 0.040 inch

To Check
Line feed clutch disengaged. Stop plate adjacent to follower. Slack in gears taken up to make gap a maximum.

To Adjust
Pull gear out of engagement with idler gear. Turn hand wheel clockwise until stop plate just operates the follower, then engage first tooth on idler. Position indexing disc with three mounting screws loosened.

(D) BLOCKING LEVER

See 3.28.

(A) VERTICAL TABULATOR SLIDE RETAINER

Requirement
Clearance between vertical tab slide and retaining edge of retainer should be
Min some -- Max 0.012 inch

To Adjust
Position retainer forward and locate it up or down with mounting screws loosened.

(B) MOUNTING BRACKET

(1) Requirement
Clearance between form-out blocking lever (inner lever) and form-out slide
Min some -- Max 0.020 inch

To Check
Select FORM-OUT (CONTROL L) code combination, hold stripper slide bail to the rear of unit and rotate main shaft until form-out slide is in most forward position. Take up play in form-out blocking lever to make clearance minimum.

(2) Requirement
Clearance between vertical tab slide and vertical tab blocking lever (outer lever)
Min 0.002 inch

To Check
Select VERTICAL TAB (CONTROL K) code combination, hold stripper bail to rear of unit and rotate main shaft until vertical tab slide is in most forward position. Take up play in vertical tab blocking lever to make clearance minimum.

To Adjust
Position lower portion of mounting bracket with mounting screws loosened.
3.28 Vertical Tabulator Mechanism (continued)

(I) FORM-OUT STOP PLATE POSITION

Requirement
Place a form-out stop plate in the numbered slots on disc corresponding to length of page form to be used. Synchronize form-out device with a form by positioning form so that typing unit will print in first typing line of the form. When typing unit is in stop position, top of ribbon guide should align with bottom of printing line.

To Position
With page form in desired position, disengage form-stop gear from its idler gear. Rotate form-start gear until notch in indexing disc aligns with pointer on side of printer. Re-engage gears.

Requirement
Place a form-out stop plate in the numbered slots on disc corresponding to length of page form to be used. Synchronize form-out device with a form by positioning form so that typing unit will print in first typing line of the form. When typing unit is in stop position, top of ribbon guide should align with bottom of printing line.

To Position
With page form in desired position, disengage form-stop gear from its idler gear. Rotate form-start gear until notch in indexing disc aligns with pointer on side of printer. Re-engage gears.

Requirement
Line feed clutch disengaged. Index stop plate adjacent to follower. Pointer should line up with notch in indexing disc and clear any index plate approximately 1/16 inch.

To Adjust
Position pointer on side frame with its mounting screw loosened.

(F) SWITCH CONTACT PRESSURE
(Transmitter Control Only)

Requirement
Contacts closed
Min 2 oz --- Max 3 oz to move contact swinger away from its mating contact.

To Adjust
Bend swinger.

(G) TRANSMITTER CONTROL SWITCH
See 3.29.

(D) BLOCKING LEVER

Requirement
Clearance between bottom of blocking lever and top of slide when follower is on peak of a stop plate should be
Min 0.005 inch --- Max 0.045 inch

To Adjust
Trip line feed clutch. Rotate main shaft until follower is on peak of stop plate. Position adjustable arm with mounting screws loosened. Make adjustment for each blocking lever.
3.29 Vertical Tabulator Mechanism (continued)

(J) TABULATION STOP PLATE POSITION

Requirement
With adjustment (I) met. line feed platen to desired first line of printing in that form.

To Position
Place tabulation stop plate in index disc slot to align with follower. Install additional tab stop plates at succeeding desired printing lines within the form. When tabulation at a given point is not needed, rotate tab stop plates on their sides.

(K) BLOCKING LEVER SPRING

Requirement
With spring unhooked and blocking lever on top of slide.

Min 9 oz---Max 11 oz
to pull respective spring to position length.

LINE FEED CLUTCH TRIP LEVER SPRING
See 2.23.

VERTICAL TAB BAIL SPRING
See 3.07.

FORM-OUT PAWL SPRING
See 3.07.

FUNCTION CONTACT SPRING
See 2.65.

(G) TRANSMITTER CONTROL SWITCH (SINGLE CONTACT TYPE)

(1) Requirement
With control contacts open clearance between contacts should be
Min 0.010 inch---Max 0.020 inch

To Check
Select form-out code. Rotate main shaft until form-out slide is in most forward position and form-out blocking lever drops behind its slide.

(2) Requirement
Same as Requirement (1)

To Check
Select vertical tab code. Rotate main shaft until vertical tab slide is in most forward position and vertical tab blocking lever drops behind its slide.

(3) Requirement
With transmitter control contacts closed, there should be some clearance between insulator tip of swinger and lobes of both form-out and vertical tab blocking levers. (See figure in 3.28.)

To Check
Rotate main shaft until both form-out and vertical tab blocking levers are resting on top of slides.

To Adjust
Position switch assembly at pry point with center mounting screw loosened.
3.30 Transmitter Control Contacts (Later Design)

(A) SWITCH CONTACT PRESSURE

Requirement
With the break (lower) contacts closed and the make contacts open, it should require
 Min 20 grams—Max 25 grams
to move the contact swinger away from its mating break contact.

To Adjust
Bend the swinger until the requirement is met.

(B) NORMALLY OPEN CONTACT GAP

Requirement
The contact gap between the swinger and the make (upper) contact should be
 Min 0.008 inch—Max 0.020 inch

To Adjust
Bend the make contact spring until the requirement is met.

(C) CONTACT BRACKET

Requirement
Rotate the main shaft until both the form-out and vertical tab blocking levers are unoperated (resting on top of the slides). The transmitter control contacts (lower set) should be closed and there should be
 Min 0.005 inch—Max 0.015 inch
between the insulator pad of the swinger and the lobe of the bail.

To Adjust
With mounting screws friction tight, position mounting bracket. Tighten screws.
3.31 Upper Solenoid (For Applicable Units)

UPPER SOLENOID

Requirement
With the solenoid held in the energized condition, position the solenoid so that there is

Min 0.060 inch --- Max 0.080 inch

between the solenoid bail stop and the codebar detent housing.

Note: Take up play in bail to the left to make this clearance a maximum.

To Adjust
Loosen the two solenoid adjusting screws and position the solenoid to meet the requirement.

To Check
Apply 110 volts ac to the solenoid. If the solenoid buzzes, the suppression bar is stopped before the solenoid is in its proper energized condition. Refine above.

CODEBAR DETENT HOUSING

SOLENOID

BAIL

LINK

SOLENOID BAIL STOP

(Top View)

SOLENOID SPRING

(Left Side View)

ADJUSTING SCREWS

Requirement
With the solenoid in the de-energized condition, unhook the front end of the spring. To pull spring to installed length

Min 2 oz --- Max 3 oz

Page 119
3.32 Lower Solenoid (For Applicable Units)

LOWER SOLENOID

Requirement
With the solenoid in the de-energized condition there should be
Min 0.030 inch --- Max 0.070 inch
between the clutch suppression arm and the end of the solenoid lever.

To Adjust
Loosen the two solenoid adjusting screws and position the solenoid to the requirement.

SOLENOID SPRING

Requirement
With the solenoid in the de-energized condition unhook the front end of the spring. Pull spring to installed length.
Min 2 oz --- Max 3 oz

To Adjust
Replace the spring.
3.33 Print-Nonprint Solenoid Mechanism

(A) SOLENOID PLUNGER

(1) Requirement
With the solenoid plunger held against the stop inside of the solenoid, the outer edge of the end of the suppression codebar should line up with the outer edge of the end of spacing no. 2 codebar. Also, when the suppression codebar is spacing, the tines of the suppression bar should line up with the tines of the no. 2 codebar. Vertically align either point by eye in both marking and spacing positions.

To Adjust
Loosen the solenoid mounting screws and move the solenoid forward or backward to meet both of these requirements. Check outer edges of the bars and the tine line-up by eye. Check tines by sighting over and through stunt box at rear of unit. Recheck requirement. Tighten screws.

(2) Requirement
With 48 v dc applied to the solenoid, recheck Requirement (1); the suppression codebar should not overtravel when the solenoid is energized.

To Adjust
Same as above.

(B) SOLENOID CONTACT

Requirement
With the solenoid de-energized and the plunger in the unoperated position there should be

\[
\begin{align*}
\text{Min} & \quad 0.010 \text{ inch} \\
\text{Max} & \quad 0.020 \text{ inch}
\end{align*}
\]

gap between the contacts.

Note: Open up the contact cover to measure gap and to facilitate the following adjustments. Close contact cover after the requirements are met.

To Adjust
Bend the contact springs to gain the requirement.
3.34 Print-Nonprint Solenoid Mechanism (continued)

SUPPRESSION BAR RETURN SPRING (FOR UNITS EMPLOYING THE PRINT SUPPRESS SOLENOID MECHANISM)

Requirement
With the solenoid de-energized and suppression bar moved to the left, push against the left end of the bar and parallel to the bar. All bearing points in solenoid linkage must be free of binds.

Min 2-1/2 oz—Max 4-1/2 oz
to start the bar moving to the right.

(Front View of Printer)
SOLENOID ENERGIZED

Requirement
With the solenoid plunger held against the solenoid pole face stop, the solenoid pin should operate the contact swinger and close the contacts. It should require a force of at least

Min 2 oz —

to separate the contacts.

To Adjust
Loosen the contact bracket mounting screws and position the bracket so that the solenoid pin strikes the contact button just before the end of the plunger travel. Tighten screws. Bend the stationary contact to meet the requirement. Recheck requirement and then close contact cover.
3.36 Print-Nonprint Solenoid Mechanism (continued)

Solenoid De-Energized

Requirement
All pivot points on the solenoid linkage must be free of binds. With the solenoid plunger in its unoperated position, a force of no more than Max 1-1/4 oz applied to the end of the plunger should move the plunger when the suppression bar return spring is removed.

To Adjust
Inspect all pivot points for binds.
3.37 Print-Nonprint Solenoid Mechanism (continued)

CONTACT BUTTON AND SOLENOID PIN ALIGNMENT

Requirement
The swinger contact button and the solenoid plunger pin should be aligned by eye such that the pin strikes the flat surface of the button.

To Adjust
Loosen the contact pile-up mounting screws and move the contacts left or right to gain the alignment of button and pin. Check to see that the contact points mate fully.

(Front View)
SECTION 574-220-700TC

3.38 Timing Contact Mechanism (Operated by Selector)

Note 1: In this text, the letters S, B, and M are used to denote respectively the "swinger", "break" (normally closed with lever riding cam depression) and "make" (normally open; closed only with lever riding cam peak) contact springs.

Note 2: When making adjustments (F) through (H) make certain the "S" spring insulator is clear of the operating lever.

Note 3: Parts should be well aligned and free of sharp bends. Contact points misalignment should not exceed 1/4 the diameter of points.

(A) "M" CONTACT SPRINGS

Requirement

Min 4 oz
to move contact spring away from its stiffener.

To Adjust
Bend contact spring.

(B) "B" CONTACT SPRINGS

Requirement

Min 4 oz
to move contact spring away from its stiffener.

To Adjust
Bend contact spring.

(C) "S" - "B" CONTACT SPRINGS

Requirement

Min 3-1/2 oz——Max 4-1/4 oz
to move swinger contact away from normally break contact.

To Adjust
Bend swinger contact spring.

(E) "S" - "M" CONTACT GAP

Requirement

Min 0.012 inch——Max 0.020 inch

To Adjust
Bend stiffener.

(D) TWIN "B" CONTACT SPRINGS

(1) Requirement
Both contacts should open at the same time.

(2) Requirement
The insertion of an 0.008 inch gauge between one pair of points should not cause the other pair to separate.

To Adjust
Bend springs or slightly twist stiffener. Recheck contact pressure.

(F) TWIN SPRINGS ("M" CONTACTS)

Requirement
Both make and swinger contacts should make approximately the same time (within 0.006 inch as gauged by eye).

To Adjust
Bend make contact springs or slightly twist stiffener.

Page 126
3.39 Timing Contact Mechanism (Operated by Selector) (continued)

(H) CONTACT ASSEMBLY POSITION

(1) Requirement
Set range scale at 50 (important). Rotate shaft so operating lever is on lowest part of cam.

To Adjust
With mounting screws loosened position contact assembly by means of its oversize mounting holes so lever can be moved

Min 0.002 inch --- Max 0.006 inch
before it touches the swinger spring, and so first touch is on lower half of spring stud wearing plate.

(2) Requirement
(At higher settings, movement will be larger; disregard.) Tighten screws and recheck. Rotate shaft and note the high part of cam causes both "M" contacts to move at least

Min 0.012 inch
If this contact movement is not met at setting 60 and 90, check for insecure parts and refine contact gap between swinger and make contact. If still not met, replace range scale sector rack.

(G) ALIGNMENT OF OPERATING LEVER WITH CAM

(1) Requirement
Operating lever's full thickness should ride cam.

To Check
Take up all cam endplay toward selector to clutch drum, all operating lever endplay (at its bearing) in opposite direction. Observe lever and cam for full engagement.

(2) Requirement
Lever should not exert pressure against face of clutch disc.

To Adjust
Refine clutch drum endplay.

(I) OPERATING LEVER SPRING

Requirement
The spring should hold operating lever against cam with light pressure. With spring removed

Min 2 oz --- Max 3 oz
to stretch spring to 5/8 inch length.
3.40 Timing Contact Mechanism (Operated by Selector) (continued)

(A) TIMING VERIFICATION, 11.00 UNIT CODE

Note 1: DXD means distortion test set.

Note 2: Requirements (1), (2), or (4), may be omitted if the stroboscopic tests of Requirement (3) are to be made.

(1) Requirement
TP174451 Cam: With range scale at 45, manually rotate main shaft with selector armature spacing. The M contacts should close soon after, but not before, the locklever blocks the selector armature after the no. 8 selection. Continue rotation into the next cycle. With the selector armature marking, note that the M contacts again close and that they open and the B contacts close before the selector clutch slips (it may not latch because of the slow rotation).

(2) Requirement
TP174450 Cam: With range scale at 90 and the selector marking, rotate the shaft and latch the clutch. The M contacts should be closed. Trip the clutch and slowly rotate the shaft. The B contacts close after rotation starts. Repeat at range setting 45.

(3) Requirement
Stroboscopic Tests: Connect the B-S or S-M terminals (as required into a 120 v dc viewing circuit of 11.00 unit DXD or similar stroboscopic test set, 600 opm. Connect the DXD test message output or a comparable signal source in a line circuit to the selector magnets. Set distortion at zero. Synchronize the viewing scale with the transmitted signals. Observe DXD stroboscopic display of signals listed below. Ignore rhythmic shifting of a signal. This shifting occurs because of slight rotational displacement of the motor armature (and of the selector cam) as it encounters loads such as line feed, etc, from one printer cycle to the next. The shifting is exhibited as lighter colored display at the beginning or end of a signal. True readings are at the observed midpoints of shifting areas. If any shift area should be excessive, say over 18 DXD divisions total, it may be indication of binds, slippages, or wear in the machine. Signals should be clear of gaps (except see ++ below) (indicate dirt, chatter, or bounce) after the first ten DXD divisions of closure. Where only one range setting is specified, it indicates that tests at that setting are sufficient to verify performance at other settings.
3.41 Timing Contact Mechanism (Operated by Selector) (continued)

<table>
<thead>
<tr>
<th>Test Conditions</th>
<th>Signal Length in Viewed DXD Divisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cam</td>
<td>Contact Paired</td>
</tr>
<tr>
<td>TP174451</td>
<td>S-M</td>
</tr>
<tr>
<td></td>
<td>B-S</td>
</tr>
<tr>
<td>TP174450</td>
<td>S-M</td>
</tr>
<tr>
<td></td>
<td>B-2</td>
</tr>
<tr>
<td>TP323070</td>
<td>B-S</td>
</tr>
</tbody>
</table>

++ While viewing DXD, slowly move range scale from 90 to 45. If, at some setting there is within the signal a gap, it should not exceed 8 DXD divisions.

(4) Requirement
TP323070 Cam: With range scale set at 50 and the clutch latched, the normally closed contact should be closed. Trip the clutch and manually rotate the main shaft. The contact should open after the locklever is in place for the number one selection and close before the locklever is in place for the number five selection.

(B) CORRECTION OF TIMING
Check for the following:

(1) Wrong cam
(2) Range scale knob maladjusted
(3) Contact, lever, and bracket adjustments. Refine if required.
(4) Parts loose
(5) Contacts dirty
(6) Improper test connections
(7) Improper synchronism of sending and stroboscopic portions of test set. Note that test message is to be sent direct to selector magnets. Introduction of a line relay, contact protection network, or any other condition affecting magnet release time will displace the viewed signals produced by the modification kits.
3.42 Two Color Ribbon Mechanism

ECCENTRIC POST

MOUNTING SCREWS
(2 places)

RIBBON LEVERS

Requirement
Lever extensions fully engaged by codebars no. 6 and 7, as gauged by eye.

To Adjust
Position contact assembly with mounting screws friction tight.

(Left Side View)

CONTACT ACTIVATING LEVER

Requirement
With codebars no. 6 and 7 in same condition (marking or spacing), the clearance between the contact swinger pad and its respective lever should be Min 0.010 inch.

To Adjust
Position eccentric post; keep high part of eccentric toward left of unit.

(Top View)
3.43 Two Color Ribbon Mechanism (continued)

CONTACT SPRING

Requirement
To separate the normally closed contacts, it should require
Min 1-1/2 oz---Max 2-1/2 oz

To Adjust
Bend stationary contact spring.

CONTACT GAP

Requirement
With no. 6 and 7 codebars in opposite conditions (one marking and one spacing), there should be a gap between the contact points
Min 0.020 inch

To Adjust
Refine CONTACT ACTIVATING LEVER (3.42).

(Top View)
Note: Before proceeding with WIRE BAIL adjustment, loosen switch plate mounting screws and rotate switch and latch to a position where they do not interfere with bail. Position the spring post by means of set collar so that spring has some initial tension. Spring post should be approximately 30° from vertical (see drawing, 3.46).

WIRE BAIL

Requirement
Wire bail should rest on paper fingers approximately in radius of fingers. Wire bail should touch at least one finger with not more than Max 0.015 inch clearance between other finger and wire bail.

To Adjust
Bend wire bail to meet requirement.

Note: Make sure there is no bind in the bail after making adjustment.
3.45 Paper Jam Alarm (Sprocket Feed) (continued)

SWITCH POSITION

Requirement

With wire bail held against paper fingers and operating lever latched behind operating bail, there should be

Min 0.035 inch---Max 0.065 inch

between top of bail and bottom of step in lever. Lever should depress switch plungers sufficiently to operate switches.

To Adjust

Loosen screws and position switch plate. Tighten screws.
3.46 Paper Jam Alarm (Sprocket Feed) (continued)

(Right Front View)

BAIL SPRING

(1) Requirement
It should require
Min 1/2 oz—Max 1-1/2 oz
to lift bail high enough to release
operating lever and operate switches
when scale is hooked to center of bail
and pulled vertically.

(2) Requirement
Position collar laterally to provide
Min some—Max 0.006
endplay for bail.

To Adjust
Loosen setscrew. Position collar to meet
requirements. Tighten setscrew.

Note 1: With play of bail taken to right, left side of bail should clear left paper finger arm.
Refine left PAPER FINGER (SPROCKET FEED) (2.79) adjustment if necessary.

Note 2: With typing unit installed in its cabinet, lift bail to its maximum upward position, there
should be some clearance between bail and operating lever.

Note 3: BAIL SPRING adjustments may be refined to make mechanism more or less sensitive
to paper buckling.
3.47 Universal Function Bar

CODING

CODING FOR 8-LEVEL FUNCTION BARS

<table>
<thead>
<tr>
<th>Letter</th>
<th>Row A</th>
<th>Row B</th>
<th>Row C</th>
<th>Row D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. To operate function bars on symbols and numbers in row B, number 6 tine is left on the marking side and number 7 tine is left on the spacing side.
2. To operate function bars on nonprinting functions in row C, number 6 and number 7 tines are left on the spacing side.
3. Suppression tine can be coded marking, spacing, or both to control the function bar. In selective calling systems and systems using the stunt shift solenoid, code as follows:
 a. To sense suppression bar in mark (nonselect or nonprint), break off the spacing tine.
 b. To sense suppression bar in space (solenoid operated, select or print), break off the marking tine.
 c. To sense in either condition break off both tines.
 d. In TWX and other systems not using a stunt shift solenoid, the suppression codebar is held by a clip in the spacing position. Break off marking tine.
4. To operate function bar on code in row D, number 6 and number 7 tines are left on the marking side.
5. The number 8 codebar is omitted from the printer since the number 8 code bit is not used for printing.
6. These characters in row C have no associated keytop on Model 35 keyboards.
7. Bell system uses the 1966 ASCII code as shown on the above illustration except for the following:
 - ENQ: WRU DC1: XON
 - BEL: BELL DC2: TAPE
 - LF: LINE FEED DC4: XOFF
 - CR: RETURN DCB: TAPE
8. Refer to appropriate parts section for additional cross reference information pertaining to function bars and codes.
35 Keyboard and Base for Keyboard Send-Receive and Receive-Only Sets

Adjustments

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. GENERAL</td>
<td>2</td>
</tr>
<tr>
<td>2. BASIC UNITS</td>
<td>4</td>
</tr>
</tbody>
</table>

Keyboard
- Ball wedge lock, ball endplay and universal bail latch (final) | 14
- Ball wedge lock and ball track clearance (preliminary) | 14
- Clutch latch lever spring tension | 6
- Clutch shoe lever | 5
- Clutch shoe lever spring tension | 7
- Clutch shoe spring tension | 7
- Clutch stop lever | 6
- Clutch stop lever spring tension | 6
- Clutch trip bar spring tension | 9
- Codebar and code lever clearance | 9
- Codebar bail spring tension | 12
- Codebar guide clearance | 4
- Codebar reset bail | 11
- Codebar reset bail and nonrepeat lever | 13
- Codebar reset bail latch spring | 11
- Codebars, shift lockbar, and inversion bar springs | 9
- Code lever spring tension | 20
- Code lever universal bail spring | 4
- Function bail lever and code lever clearance | 10
- Intermediate gear assembly | 23
- Inversion bar latching bail spring | 17
- Inversion codebar latch (earlier design) | 16
- Inversion codebar latch (later design) | 17
- Inversion latch spring tension | 16
- Keypad guide spacing | 12
- Local carriage return function bail spring tension | 20
- Local line feed trip link spring | 16
- Lock bar channel | 10
- Lock bar endplay (preliminary) | 14
- Margin indicator spring | 21
- Mounting typing unit on keyboard or base | 22
- Nonrepeat lever spring tension | 13

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
</table>
| Signal contact clearance | 8
- Signal contact drive link | 8
- Signal contact spring | 8
- Signal generator frame | 22
- Signaling code contact (strobing) | 19
- Spacebar bail pivot | 4
- Timing belt | 24
- Transfer bail detent latch spring | 8
- Transfer bail detent plate | 8
- Transfer lever locking bail spring | 21
- Transfer lever spring | 21
- Universal bail extension | 15
- Universal bail latch lever (preliminary) | 15
- Universal bail latch spring | 15
- Universal bail — rear blade | 15
- Wall mounted intermediate gear assembly | 24

RO Base
- Local carriage return bail spring | 25
- Local line feed spring | 26

3. VARIABLE FEATURES | 27
- Answer-back main shaft gear | 27
- Backspace transfer bail adjusting lever | 42
- Backspace transfer bail spring | 42
- Backspace trip link horizontal spring | 42
- Backspace trip link vertical spring | 42
- Keyboard universal contact | 43
- Local reverse line feed trip link horizontal spring | 48
- Local reverse line feed trip link vertical spring | 48
- Local single line feed trip link horizontal front spring | 45
- Local single line feed trip link horizontal rear spring | 45
- Local single line feed trip link vertical spring | 45
- No. 5, 8 inversion code bar springs | 44
- Receive-break switch | 43
- Receive-break switch tension | 43
- Timing cam follower spring (earlier design) | 29

© 1962, 1963, and 1968 by Teletype Corporation
All rights reserved
Printed in U.S.A.
CONTENTS PAGE

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timing cam follower spring (later design)</td>
<td>31</td>
</tr>
<tr>
<td>Timing contact (earlier design)</td>
<td>28</td>
</tr>
<tr>
<td>Timing contact (later design)</td>
<td>30</td>
</tr>
<tr>
<td>Timing contact stiffener spring</td>
<td>29</td>
</tr>
<tr>
<td>Timing contact (strobing)</td>
<td>33</td>
</tr>
<tr>
<td>Timing contact swinger spring (earlier design)</td>
<td>29</td>
</tr>
<tr>
<td>Timing contact swinger spring (later design)</td>
<td>32</td>
</tr>
<tr>
<td>Transition bar spring</td>
<td>44</td>
</tr>
</tbody>
</table>

Auxiliary Contact Mechanism

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxiliary contact refinement (strobing)</td>
<td>40</td>
</tr>
<tr>
<td>Cam follower spring</td>
<td>34</td>
</tr>
<tr>
<td>Contact gap</td>
<td>34</td>
</tr>
<tr>
<td>Contact stiffener spring</td>
<td>34</td>
</tr>
<tr>
<td>Contact swinger spring</td>
<td>34</td>
</tr>
</tbody>
</table>

Code Reading Contact Mechanism

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusting code reading contacts</td>
<td>36</td>
</tr>
<tr>
<td>Backstop - normally closed contact</td>
<td>35</td>
</tr>
<tr>
<td>Code reading contact refinement (strobing)</td>
<td>39</td>
</tr>
<tr>
<td>Code reading contact trace</td>
<td>40</td>
</tr>
<tr>
<td>Contact swinger spring</td>
<td>35</td>
</tr>
<tr>
<td>Drive arm extension spring</td>
<td>38</td>
</tr>
<tr>
<td>Intermediate lever spring</td>
<td>37</td>
</tr>
</tbody>
</table>

CONTENTS PAGE

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latchlever spring</td>
<td>37</td>
</tr>
<tr>
<td>Marking contact gap</td>
<td>37</td>
</tr>
<tr>
<td>Normally closed contact spring</td>
<td>35</td>
</tr>
<tr>
<td>Normally open contact gap</td>
<td>35</td>
</tr>
<tr>
<td>Reset bail</td>
<td>38</td>
</tr>
<tr>
<td>Reset bail spring</td>
<td>38</td>
</tr>
</tbody>
</table>

Strobing Requirements

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code reading and timing contacts</td>
<td>41</td>
</tr>
<tr>
<td>Signal generator contacts</td>
<td>41</td>
</tr>
</tbody>
</table>

Universal Keyboard Switch Mechanism

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyboard switch (horizontal)</td>
<td>46</td>
</tr>
<tr>
<td>Keylever switch (vertical)</td>
<td>47</td>
</tr>
</tbody>
</table>

1. GENERAL

1.01 This section covers adjustments for the 35 keyboard and base for keyboard send-receive and receive-only sets. It is reissued to incorporate recent engineering changes. Arrows in the margins indicate changes and additions.

1.02 The adjustments of each unit are arranged in a sequence that would be followed if a complete readjustment of the unit were undertaken. Tools and spring scales required to perform the adjustments are listed.

Figure 1 - 35 Keyboard for Send-Receive Sets with Answer-Back
in Section 570-005-800TC. After an adjustment has been completed, be sure to tighten any nuts or screws that may have been loosened. The adjusting illustrations, in addition to indicating the adjusting tolerances, positions of moving parts, and spring tension, also show the angle at which the scale should be applied when measuring spring tensions. If a part that is mounted on shims is to be removed, the number of shims used at each of its mounting screws should be noted so that the same shim pile-up can be replaced when the part is remounted.

1.03 When the requirement calls for a clutch to be disengaged, the clutch shoe lever must be fully latched between its trip lever and latchleve so that the clutch shoes release their tension on the clutch drum. When engaged, the clutch shoe lever is unlatched and the clutch shoes are wedged firmly against the clutch drum.

1.04 References made to left or right, up or down, front or rear, etc apply to the unit in its normal operating position as viewed from the operator's position in front of the unit.

1.05 The spring tensions given in this section are indicated values and should be checked with proper spring scales in the position indicated.

1.06 When cleaning plastic parts, use soap or detergent and water. Do not use solvents containing alcohol or chlorinated components.
SECTION 574-221-700

2. BASIC UNITS

Keyboard

2.01 Codebar and Spacebar Mechanisms

(B) CODE LEVER UNIVERSAL BAIL SPRING

Requirement
Generator clutch disengaged.
Min 1 oz --- Max 2-3 4 oz
to start bail moving.

(A) CODEBAR GUIDE CLEARANCE

Requirement
Clearance between the top of no. 1 and no. 8 codebars should be
Min some --- Max 0.006 inch
All codebars should move freely.

To Adjust
With mounting screws for either the left or right codebar guides friction tight, position guides. Tighten screws.

(C) SPACEBAR BAIL PIVOT

Requirement
Min some --- Max 0.010 inch
Spacebar free from bind.

To Adjust
Position spacebar with pivot screws.
2.02 Signal Generator Clutch and Gear Mechanism

Requirement
Clearance when clutch is disengaged should be
Min 0.055 inch---Max 0.085 inch
less than when clutch is engaged.

To Check
Latch clutch in disengaged position and measure clearance. Rotate gear until oil hole is upward, Engage clutch and measure clearance.

To Adjust
Loosen the two adjusting disc clampscrews to position disc.
2.03 Signal Generator Clutch Mechanism

(B) CLUTCH STOP LEVER SPRING TENSION

Requirement
Clutch engaged and rotated 1/4 turn
Min 2 oz---Max 3 oz
to start lever moving.

(A) CLUTCH STOP LEVER

Requirement
Should fully engage clutch shoe lever.
During rotation, the lever should not touch the clutch drum at any point.

To Adjust
Position stop lever with its clamp-screw loosened.

(C) CLUTCH LATCHLEVER SPRING TENSION

Requirement
Clutch latchlever resting on the highest point of clutch disc.
Min 2 oz---Max 3 oz
to start latchlever moving.
2.04 Signal Generator Clutch Mechanism (continued)

CLUTCH SHOE LEVER SPRING TENSION

Requirement
- Clutch engaged.
- Cam disc held to prevent turning
 - Min 15 oz --- Max 20 oz
 - to move shoe lever in contact with stop-lug.

CLUTCH SHOE SPRING TENSION

Note: In order to check this spring tension, it is necessary to remove the clutch from the main signal generator drive shaft. Therefore, it should not be checked unless there is good reason to believe that it does not meet its requirement.

Requirement
- Clutch drum removed,
 - Min 3 oz --- Max 5 oz
 - to start primary shoe moving away from secondary shoe at point of contact.
2.05 Transfer Ball and Contact Box Mechanism

(B) TRANSFER BAIL DETENT LATCH SPRING

Requirement
Min 2-3/4 oz --- Max 4-1/4 oz
to start latch moving.
Hold transfer bail to left.

To Adjust
Rotate detent plate right or left by means
of screwdriver with detent plate mounting
screws loosened.

(A) TRANSFER BAIL DETENT PLATE

Requirement
Equal left and right clearance within 0.002
inch when transfer bail is at extreme left
or right position as these occur in a char­
acter between start and no. 1 pulses only.

To Adjust
Depress Y keylever and rotate signal generator cam sleeve until each contact has
fully opened.

Requirement
Marking and spacing gaps should be equal within 0.001 inch.

To Adjust
Loosen mounting screws and move contact box by means of eccentric.

Note 1: Check by means of signal checking device if available, and carefully refine
the adjustment to eliminate all bias from the signals by equalizing the current-on
and current-off intervals (2.17).

(C) SIGNAL CONTACT CLEARANCE

To Check
Depress Y keylever and rotate signal generator cam sleeve until each contact has
fully opened.

Requirement
Marking and spacing gaps should be equal within 0.001 inch.

To Adjust
Loosen mounting screws and move contact box by means of eccentric.

Note 1: Check by means of signal checking device if available, and carefully refine
the adjustment to eliminate all bias from the signals by equalizing the current-on
and current-off intervals (2.17).

(D) SIGNAL CONTACT DRIVE LINK

Requirement
With main shaft in stop position and trans­fer bail detent latch spring unhooked (see
figure above), move latches away from
transfer ball extension. Hold the toggle
firmly against contacts
Min 6 oz --- Max 9 oz
to start transfer ball extension moving.

Note 2: For servicing instructions
on gold-plated contacts, see 2.19

(E) SIGNAL CONTACT SPRING

Requirement
Remove drive link spring.
Transfer bail held clear of drive link.
Min 2 oz --- Max 3 oz
to start link moving.
2.06 Codebar and Codelever Mechanism

(C) CODEBARS, SHIFT LOCKBAR, AND INVERSION BAR SPRINGS

Requirement
Depress rub out or delete key. Power off.
Transfer levers held tight.
Min 5 oz --- Max 7-1/2 oz
for 1, 2, 3, 4, 5, 6, 7, and 8 codebars.
Min 2 oz --- Max 4 oz
for all remaining bars to start each bar moving.

(B) CLUTCH TRIPBAR SPRING TENSION

Requirement
Clutch disengaged. Power off
Min 8 oz --- Max 12 oz
to move bar.

(A) CODEBAR AND CODE LEVER CLEARANCE

Requirement
Permutation must be such that the highest level (no. 8 level in an 8-level code) is spacing. The key code lever located furthest to the right should meet the requirement.
While key is held down and cam cycled to stop position, gap between left side of key code lever and codebar blocked.
Min 0.006 inch --- Max 0.017 inch

To Adjust
Position guide by adjusting slot with four mounting screws loosened. Tighten screws.
SECTION 574-221-700TC

2.67 Function Bail and Lock Ball Track Mechanism

(A) FUNCTION BAIL LEVERS AND CODE LEVER CLEARANCE

Requirement
Function bails should operate within their guides without binding.

To Adjust
Position function bail assembly with two mounting studs loosened, one at each end.

(B) LOCK BALL CHANNEL

Requirement
There should be a clearance between the end of the lock ball channel and adjusting screw when most of the code levers are centrally located in the lock ball channel slots.

To Check
Remove the lock ball retainer. Remove a wedge from each end and one from the center in order to view the position of the code lever.

To Adjust
Loosen the lock ball channel mounting screws. Back off lateral adjusting screws and position channel. Turn one adjusting screw in against the end of the channel and lock it. Turn the other adjusting screw in to the end of the channel and back it off 1/4 turn. Lock the screw. Replace the wedges and check their position with respect to the balls. Pull channel assembly downward until all code levers strike their upstop without wedges jumping out of position. Replace lock ball retainer. Back off ball endplay adjusting screw.
2.08 Codebar Bail Mechanism

CODEBAR RESET BAIL LATCH SPRING

Requirement

Min 1/2 oz -- Max 1-1/2 oz
to start codebar reset bail latch moving.

A) **CODEBAR RESET BAIL**

Requirement

Cam eccentric and arm holding ball in extreme reset position to left

Min some -- Max 0.006 inch
between roller bearing mounted on reset bail and reset bail latch.

To Adjust

Adjust eccentric stud so that the high point is in the upper half of its adjustment arc.
2.09 Codebar Bail Mechanism (continued)

CODEBAR BAIL SPRING TENSION

Requirement
- Clutch disengaged. Spring unhooked from arm
- Min 9 oz --- Max 11 oz to pull to installed length.

2.10 Keytop Guide Mechanism

FRAME MOUNTING SCREWS (4)

KEYTOP GUIDE SPACING

Requirement
- Gap between frame and left and right mounting bracket should be
 - Min 0.141 inch --- Max 0.171 inch

To Adjust
- Tighten or loosen as required the four frame mounting screws.
2.11 Nonrepeat Lever Mechanism

(B) NONREPEAT LEVER SPRING TENSION

Requirement
Clutch disengaged, any keyleever depressed
Min 2-1/4 oz—Max 3-1/4 oz
to start nonrepeat lever moving downward.

(A) CODEBAR RESET BAIL AND NONREPEAT LEVER

Requirement
Mechanism in initial trip-off condition, any key
depressed, no power
Min some—Max 0.010 inch
between roller of reset bail and nonrepeat
lever pick-up step.

To Adjust
Loosen locknut and shoulder screw and
move mechanism left or right.

Note: Do not permit clutch to rotate when
 tripping off.
2.12 Wedge Lock and Ball Track Mechanism

Note: Remove keyboard hood in order to make this adjustment. See disassembly and reassembly.

(A) BALL WEDGE LOCK AND BALL TRACK CLEARANCE (PRELIMINARY)

To Check
Depress Q and P keylevers alternately with 32 oz pressure and measure clearance in each instance. There should be no clearance between lower edge of code lever extensions and bottom of slots in wedges.

Requirement
Clearance between tip of wedge and the ball track
Min 0.005 inch --- Max 0.015 inch
and equal within 0.005 inch.

To Adjust
Position ball track up or down with the two mounting screws loosened.

(B) LOCK BALL ENDPAY (PRELIMINARY)

To Check (with ball endplay adjustment screw backed off)
Depress key at extreme right end of the A row with 32 oz pressure.

Requirement
Clearance between balls should be minimum.

To Adjust
Maintain 32 oz pressure and rotate adjusting screw with fingers until a slight resistance is felt. Tighten locknut.

Note: A total of 53 balls are required in the ball track assembly.

(C) BALL WEDGE LOCK, BALL ENDPAY AND UNIVERSAL BAIL LATCH (FINAL)

Note: Perform this adjustment following UNIVERSAL BAIL EXTENSION (2.13) (Universal Bail Latchlever).

Requirement (under power)
1) Trip-off pressure of any key in row A should be
Min 2 oz --- Max 6 oz
2) Apply 6-1/2 oz pressure perpendicular to A key, depress each key in that row.
The A key should trip each time a key is released.
3) Repeat (2) with the 6-1/2 oz pressure on extreme right key in that row.
4) The clutch should not trip when two keys are depressed simultaneously.
5) With 5-1/4 ± 1/4 oz applied to the spacebar, depress carriage return key.
The spacebar should trip each time the carriage return key is released
(by moving the finger off the key in a horizontal direction).

To Adjust
If necessary, refine BALL WEDGE LOCK AND BALL TRACK CLEARANCE (PRELIMINARY) (2.12), LOCK BALL ENDPAY (PRELIMINARY) (2.12), UNIVERSAL BAIL LATCHLEVER (PRELIMINARY) (2.13), and UNIVERSAL BAIL EXTENSION (2.13).
2.13 Universal Bail Latchlever

UNIVERSAL BAIL LATCHLEVER SPRING

- **Requirement**
 - Clutch disengaged, universal bail held away from latchlever
 - Min 7-1/2 oz -- Max 11 oz to start latchlever moving.

- **To Check**
 - Depress G key slowly with 32 oz pressure. Manually rotate universal bail backwards and release quickly.

UNIVERSAL BAIL LATCH

- **Requirement** (power off)
 - Universal bail extension roller resting against end of universal ball latchlever
 - Min 0.050 inch -- Max 0.080 inch between extension and non-repeat lever

- **To Check**
 - Depress keylever and release it. Check clearance.

UNIVERSAL BAIL EXTENSION

- **Requirement** (preliminary)
 - Clearance between universal bail latchlever and roller on universal bail extension.
 - Min 0.015 inch -- Max 0.025 inch

- **To Check**
 - Depress G key slowly with 32 oz pressure. Manually rotate universal bail backwards and release quickly.

UNIVERSAL BAIL -- REAR BLADE

- **Requirement**
 - Unit in initial trip-off condition, no key depressed, no power, extension post of universal bail resting against the end of latch
 - Min some -- Max 0.015 inch between universal bail rear blade and any code lever.

- **To Adjust**
 - Position rear blade with mounting screws loosened.

BALL WEDGE LOCK, BALL ENDFLATE AND UNIVERSAL BAIL LATCH (FINAL) (2.12)

UNIVERSAL BAIL LATCHLEVER

CLAMPSCREW

MOUNTING SCREW

CODE LEVER

NONREPEAT LEVER

EXTENSION

REAR BLADE
2.14 Local Line Feed Trip Link Mechanism

Requirement
- Min 5 oz -- Max 10 oz

2.15 Inversion Codebar Latch Mechanism (Earlier Design)

INVERSION LATCH SPRING TENSION

Requirement
- Min 3-1/2 oz -- Max 4-1/2 oz
to move bail on parity keyboards.
- Min 3/4 oz -- Max 1-1/2 oz
to move bail on nonparity keyboards.

INVERSION CODEBAR LATCH (EARLIER DESIGN)

Requirement
- Signal generator disengaged
 - Min 0.002 inch -- Max 0.012 inch
gap between inversion codebar and its latch.

To Adjust
- With screw on inversion bail friction tight,
moves adjustable extension to obtain clearance.
2.15 Inversion Codebar Latch Mechanism (Later Design)

INVERSION BAR LATCHING BAIL SPRING

(1) Requirement
Min 2-1/2 oz – Max 3-1/2 oz to move no. 5 inversion bail.

(2) Requirement
Min 1-1/2 oz – Max 2-1/2 oz to move no. 8 inversion bail.

INVERSION CODEBAR LATCH (LATER DESIGN)

Requirement
Signal generator clutch disengaged.
Min 0.002 inch – Max 0.012 inch gap between number 5 and 8 inversion codebars and their respective latches. Check clearance at both the number 5 and 8 inversion codebars and adjust to whichever is closest.

To Adjust
With respective screws on inversion ball latch friction tight, move adjustable extension to obtain clearance. Tighten screws and recheck clearance.
2.17 Signal Contacts

Procedure

1. Disconnect arc suppressor or rf filter. Reconnect signal generator contacts so current to stroboscope lamp of DXD test set is interrupted. Synchronize signal generator with DXD so end of stop pulse image is in line with 0 mark of start pulse on DXD scale when transmission is continuous and both units are operating at 100 speed (600 rpm).

 Note 1: End of stop pulse image not to vary from 0 mark more than 1/2 division. If variation occurs, adjust scale so variation extends equally to either side of 0 mark.

 Note 2: For units equipped with signal regenerators, remove regenerator circuit card before applying test set probes to signal contacts.

 CAUTION: APPLYING OPERATING VOLTAGE OF SIGNAL DISTORTION TEST SET DIRECTLY TO GOLD-PLATED SIGNAL CONTACTS MAY MAKE THEM UNSUITABLE FOR SPECIAL LOW-VOLTAGE APPLICATIONS. SEE 2.19 FOR SERVICING INSTRUCTIONS.

 Note 3: Numbers in parenthesis () are for units using timing contacts for signal regenerators.

2. Nominal length of intelligence pulses is 100 divisions. If adjustment to feeler gauges does not permit pulse lengths within tolerance, refine contact box adjustment. Favor intelligence pulses by using up the designated tolerances of stop pulse so each is near as possible to 100 divisions in length.

Requirements

1. Each marking code pulse to begin not later than 8 (12) mark and no earlier than 92 (88) mark of previous pulse.

2. Each marking code pulse to end not earlier than 92 (88) mark or later than 8 (12) mark in pulse following one being observed.

3. Marking code pulses may have break not more than three divisions wide and occurs only at end of code pulse image between the 92 (88) mark and end of image.

4. Stop image should not change in length or position more than one division while changing from R to Y selector (or equivalent permutations for other codes).
2.18 Signal Contacts (continued)

2.19 Gold-Plated Signal Contacts

(a) Units may have signal contacts made of either unplated or gold-plated tungsten. If in doubt as to the type of contacts, remove signal generator cover and inspect contacts for gold plating.

(b) Cleaning

(1) Use twill jean cloth (KS2423) to clean gold-plated contacts.

(2) Open contacts. Drop strip of twill jean between them. Close contacts. Draw twill jean part way through. Open contacts and withdraw twill jean.

(3) This procedure prevents small fibres at edges of twill jean strip from becoming lodged between contacts.

(4) Clean unplated tungsten contacts in accordance with standard procedures.

(c) Servicing for special low-voltage applications.

(1) For standard applications including those with data sets, observe standard maintenance procedures and intervals. Special low-voltage applications are covered below.

Note 4: If necessary, reposition stabilizer mechanism so end of stop image coincides with 0 mark of start pulse on scale. (Do not remove scale.)

(5) DXD strobing should yield allowable spacing signal distortion of ±12%.

To Adjust
Loosen mounting screws and move contact box by means of eccentric.

(2) For optimum reliable operation in special low-voltage applications, clean gold-plated contacts with twill jean, as instructed above. The recommended cleaning interval for gold-plated contacts in special low-level applications (less than 250 microwatts) and having an average weekly use of 60 hours should not exceed 90 days. This interval may be reduced, dependent on the signal circuit configuration, usage, and environment.

Note 1: Applying operating voltage of standard distortion test set directly to contacts may damage gold plating and impair special low-voltage operation. When electrically adjusting or testing contacts (2.17) use an intermediate device, keyed by the contacts, to interrupt current to stroboscopic lamp of test set. This intermediate device must be capable of being keyed by a 3 to 20 volt change at maximum of 20 milliamperes.

Note 2: Normally for special low-voltage applications, contacts should be used in circuits operating between 3 and 20 volts dc at a current level not to exceed 60 milliamperes. Between 20 and 70 volts dc the current should be adjusted so as not to exceed a 120 milliwatt power level. The contacts are not normally intended for use on voltages above 70 volts dc. Exceeding this level for an appreciable length of time may result in damage to the gold plating and make them unfit for special low-voltage applications.
2.20 Code Lever and Local Carriage Return Function Bail Mechanism

CODE LEVER SPRING TENSION

1. Requirement
 - Min 1 oz – Max 2 oz
 - to start code lever moving downward.

2. Requirement
 - Power on. Generator clutch disengaged
 - Min 3 oz – Max 5 oz
 - to operate keylever or spacebar.

LOCAL CARRIAGE RETURN FUNCTION BAIL SPRING TENSION

(Combin ed Code Lever and Bail Spring)

Requirement
- Min 1 oz – Max 3 oz
- to move keylever downward.
2.21 Transfer Lever and Margin Indicator Mechanism

TRANSFER LEVER LOCKING BAIL SPRING

Requirement
Spring unhooked from post.
- Min 5 oz---Max 7 oz
 to pull to installed length.

TRANSFER LEVER SPRING

Requirement
Clutch disengaged.
- Min 1-1/2 oz---Max 2-1/2 oz
 to start each of ten levers moving.

MARGIN INDICATOR SPRING

Requirement
Min 7 oz---Max 11 oz
 to move lever up
 free of pin.

MARGIN INDICATOR CONTACT SWITCH LEVER

MARGIN INDICATOR SWITCH BRACKET

MARGIN INDICATOR SWITCH
2.22 Mounting Typing Unit on Keyboard or Base

Note: Similar requirement for wall mounted printer. See 2.24 and Figure 2.

SIGNAL GENERATOR FRAME

Requirement

With typing unit mounted in position, there should be a perceptible amount of backlash between the signal generator driven gear and the signal generator driving gear at the point where backlash is the least.

To Adjust

Remove the signal generator frame rear mounting screw and loosen the shim screw. Add or subtract shims as required.

MOUNTING TYPING UNIT ON KEYBOARD OR BASE

Requirement

When placing the typing unit on the base, hold it tilted slightly to the right and lower the right end into engagement with the right locating stud. While easing the left end downward, rotate the motor by hand to properly mesh the gears. Secure by four mounting screws. Rotate the motor by hand to insure proper meshing of gears.
2.23 Keyboard or Base, Motor and Typing Unit Gearing

Note 1: Not applicable to wall mounted printer. See 2.24.

Note 2: This requirement should be checked with typing unit mounting screws tight.

INTERMEDIATE GEAR ASSEMBLY

Requirement
Backlash between motor pinion and its driven gear, and between typing unit main shaft gear and its driving gear
Min 0.004 inch—Max 0.008 inch
as gauged by feel.

To Adjust
Loosen intermediate gear assembly mounting screws (4). Loosen two locknuts which lock adjusting bushings at rear of assembly. Loosen nut plate mounting screw just in front of gear bracket. Move assembly backward or forward and adjust height at rear by means of adjusting bushing nearest motor (back out other bushing for clearance after correct adjustment is obtained). Lock adjusting bushing nut, turn other bushing with fingers until it touches base, and tighten locknut.
2.24 Keyboard Wall Mounted Base, Motor and Typing Unit Gearing

WALL MOUNTED INTERMEDIATE GEAR ASSEMBLY

(1) Requirement
Clearance between driven gear on printer and intermediate gear should be
- Min 0.004 inch – Max 0.008 inch

To Adjust
Loosen three mounting screws and make them friction tight. Position the assembly toward front or rear to meet requirement.

(2) Requirement
There should be some clearance between right belt retainer on intermediate gear assembly and spacing cutout lever on printer.

To Adjust
Position the assembly toward the left to meet requirement. Tighten screws.

TIMING BELT

Requirement
Force of 2 ±1/2 oz to deflect belt 1/8 inch when measured midway between pulleys.

To Adjust
With motor plate mounting screws loosened, slide motor toward front of base to increase tension or toward rear of base to decrease tensions. Tighten screws.
The following list of keyboard adjustments, plus those shown in Par. 2.25 and Par. 2.26 constitute the adjustments for an RO base.

- ANSWER-BACK MAIN SHAFT GEAR (if so equipped) Par. 3.01
- INTERMEDIATE GEAR ASSEMBLY Par. 2.23
- WALL MOUNTED INTERMEDIATE GEAR ASSEMBLY Par. 2.24
- FUNCTION BAIL LEVERS AND CODE LEVER CLEARANCE Par. 2.07
- MARGIN INDICATOR SPRING Par. 2.21
- MOUNTING TYPING UNIT ON KEYBOARD OR BASE Par. 2.22

2.25 Local Carriage Return Function Bail Mechanism

LOCAL CARRIAGE RETURN BAIL SPRING

Requirement
Min 1/2 oz – Max 2 oz

to start local carriage return bail moving.
2.26 Local Line Feed Mechanism

LOCAL LINE FEED SPRING

Requirement
- Min 14 oz -- Max 20 oz to start trip link moving.

CLUTCH TRIP LEVER (ON TYPING UNIT)

TRIP LINK

TRIP LINK AND LEVER RESTORING SPRING

FUNCTION LEVER

LOCAL LINE FEED BAIL

KEY LEVER
3. VARIABLE FEATURES

3.01 Answer-Back Mechanism

Note 1: See appropriate section for adjustments of the answer-back mechanism. Not applicable to wall mounted printer.

ANSWER-BACK MAIN SHAFT GEAR

Requirement
There should be
- Min 0.004---Max 0.008
backlash at the point of minimum clearance between the answer-back main shaft gear and the outboard gear of the intermediate gear assembly on the keyboard or base. Gauge by feel.

To Adjust
With two nut plate screws tightened to friction tight, loosen the four answer-back mounting screws. Taking up all play in the answer-back mounting holes toward the front of the answer-back, position the assembly until the requirement is met. Tighten all screws. The answer-back assembly may be removed and replaced without remaking the adjustment by taking up all play in the mounting holes in the same manner.

Note 2: This adjustment is made after the intermediate gear assembly to typing unit gear adjustment and motor pinion gear adjustments have been made.
3.02 Timing Contact Mechanism (Early Design)

TIMING CONTACT

(1) Requirement
 Contacts should be closed when nylon pad is raised 0.007 inch.
 Contacts should be open when nylon pad is raised 0.015 inch.

 Note 1: Identification mark viewed on top side of hex
 and follower on low part of cam.

(2) Requirement
 Min 0.003 inch
 gap between contacts with the follower on any peak of cam.
 Min 0.002 inch
 gap on units prior to serial #88,800.

To Adjust
Loosen two timing contact bracket posts. With screwdriver
between bracket upright and rear plate adjust gap
Min some---Max 0.010 inch
Adjust eccentric screw to meet (2) Requirement.

Note 2: Use signal checking device to refine this adjustment.
3.03 Timing Contact Mechanism (Early Design) (continued)

TIMING CONTACT SWINGER SPRING

Requirement
Contacts closed
- Min 2 oz---Max 3-1/2 oz to just open contacts.

To Adjust
Use spring bender TP110455.

TIMING CAM FOLLOWER SPRING

Requirement
Signal generator latched. Contact spring held back
- Min 6 oz to start cam follower moving.

TIMING CONTACT STIFFENER SPRING

Requirement
Contact open
- Min 5 oz---Max 8 oz to move contact.

To Adjust
Remove contact assembly from unit by removing two studs securing it to rear plate. Loosen two screws holding contact pile-up to contact assembly bracket and bend contact using spring bender TP110455 until requirement is met.

Note: Check timing contact swinger spring tension and refine if necessary.
3.04 Timing Contact Mechanism (Later Design)

TIMING CONTACT

(1) Requirement
With unit in the stop position, there should be a gap between contact points
- Min 0.008 inch - Max 0.011 inch

(2) Requirement
With the cam follower on the low parts of the cam, and the clearance taken up between the plunger and the cam follower, there should be some clearance between plunger and contact swinger.

To Adjust
Loosen the two posts holding the timing contact bracket to friction tightness. Position the bracket in order to meet (1) and (2) Requirements. Tighten the posts and recheck the adjustment.

Note: The TIMING CAM FOLLOWER SPRING (3.05) adjustment should be made before the TIMING CONTACT adjustment. If available, use a signal checking device to refine the TIMING CONTACT adjustment.
TIMING CAM Follower SPRING

To Check
Timing contact assembly must be moved out of contact with the cam follower and spring post tightened to check this requirement and TIMING CONTACT SWINGER SPRING (3.06) adjustment.

Requirement
With the signal generator in the latched position, apply the pull end of scale to the cam follower
Min 6 oz---Max 9 oz
to start cam follower moving.
3.06 Timing Contact Mechanism (Later Design) (continued)

TIMING CONTACT SWINGER SPRING

1) Requirement
Contact points should be in line and the head of the plunger should be centered in its hole in the spring as gauged by eye.

To Adjust
Position contact springs with screws friction tight. Tighten screws.

3) Requirement
With contacts closed
Min 3-1/2 oz -- Max 4-1/2 oz
to just open contacts.

To Adjust
Bend spring. Recheck timing contact adjustment.

Note: Timing contact assembly must be moved out of contact with the cam follower and spring post tightened to check requirement (3). Refer to TIMING CAM FOLLOWER SPRING (3.05) adjustment.

2) Requirement
With plunger depressed flush with its bushing, contact gap should be
Min 0.045 inch -- Max 0.065 inch.

To Adjust
Bend spring.
3.07 Timing Contact Refinement

TIMING CONTACT (STROBING) (Using DXD test set, if available)

1. Zero the test set as described in Procedure (1) of 2.17.

2. The light image of the timing contacts should meet the following requirements for speeds up to and including 100 wpm.
 a. Open for a minimum of 20 divisions between the 25 division and 75 division points of each 100 division pulse.
 b. Open for a minimum of 120 divisions between the 25 division and 175 division points of the stop pulse.
 c. The close to open transitions should be in multiples of 100 divisions ±5 divisions of the start pulse.
 d. There should be no contact break between the zero division point and the close to open transition point, and no contact break between the 75 division point and the 100 division point of each pulse. There should be no contact break between the 175 division point and the 200 division point of the stop pulse.

To Adjust
Check and refine, if necessary, the TIMING CONTACT (3.04) adjustment.

Note: The timing contacts should be open when the clutch is disengaged.
3.08 Auxiliary Contact Mechanism

CONTACT SWINGER SPRING

Requirement
Contacts closed
Min 2 oz---Max 3-1/2 oz
to just open contacts.

To Adjust
Use spring bender TP110455.

CONTACT GAP

Requirement
Clutch latched, cam follower on high part of cam. Contact gap should be
Min 0.005 inch---Max 0.015 inch

To Adjust
Loosen posts that hold contact bracket. Position bracket by use of screwdriver placed between bracket upright and rear plate.

CAM FOLLOWER SPRING

Requirement
Signal generator latched. Contact spring held back
Min 6 oz
to start cam follower moving.

CONTACT STIFFENER SPRING

Requirement
Contact open
Min 5 oz---Max 8 oz
to move contact.

To Adjust
Remove contact assembly from unit by removing two studs securing it to rear plate. Loosen two screws holding contact pile-up to contact assembly bracket and bend contact using TP110455 spring bender until requirement is met.

Note 1: Check timing contact swinger spring tension and refine if necessary.

Note 2: See Par. 3.14 for **AUXILIARY CONTACT REFINEMENT (STROBING)**.
3.09 Code Reading Contact Mechanism

Note 1: Adjustments on this page should be made with the contact assembly removed from the keyboard.

Note 2: Each adjustment should start with the contact pile-up farthest from the handle of the bending tool (Par. 3.10).

(A) BACKSTOP - NORMALLY CLOSED CONTACT

Requirement
Normally closed contact leaf should be parallel to mounting plate and align with each other by 0.010 inch.

To Adjust
Bend backstop.

(C) CONTACT SWINGER SPRING

Requirement
Min 30 grams—Max 40 grams to open the closed contact.

To Adjust
Bend swinger.

(B) NORMALLY CLOSED CONTACT SPRING

Requirement
Min 2 oz—Max 6 oz to move contact spring away from backstop. Hold swinger away from closed contact.

To Adjust
Bend spring. To increase tension against backstop, bend backstop away from spring leaf and form leaf toward backstop, then re-position BACKSTOP-NORMALLY CLOSED CONTACT.

(D) NORMALLY OPEN CONTACT GAP

Requirement
Min 0.018 inch—Max 0.030 inch normally open gap.

To Adjust
Bend backstop.
ADJUSTING CODE READING CONTACTS

Note: The contact assembly should be removed from the keyboard to perform the adjustments of Par. 3.09. It is not necessary to remove the wires from the assembly.

Requirement
Each adjustment should start with the contact pile-up farthest from the handle of the bending tool.

To Adjust
After adjusting contact pile-ups 4, 3, 2, and 1, insert the bending tool in the opposite side of the assembly and adjust contact pile-ups 5, 6, 7, and 8 in the order given.
3.11 Code Reading Contact Mechanism (continued)

Note: Perform (A), then install contact assembly on the keyboard for the remaining code reading contact adjustments.

(B) MARKING CONTACT GAP

Requirement
With the clutch latched

- Min 0.005 inch --- Max 0.015 inch contact gap. Check outside levels only.

To Adjust
Loosen four contact mounting bracket screws.
Position contact adjustment mounting bracket.

CAUTION: DO NOT APPLY FORCE TO CONTACT PILE-UP.

(C) INTERMEDIATE LEVER SPRING

Requirement
With the clutch latched

- Min 1 oz --- Max 2 oz
to pull spring to installed length.

(A) LATCHLEVER SPRING

Requirement
With the clutch latched

- Min 2 oz --- Max 4 oz
to pull spring to installed length.
3.12 Code Reading Contact Mechanism (continued)

RESET BAIL

To Check
Clutch unlatched and keyboard eccentric
drive arm extension to extreme left.

Requirement
Gap between any one latch and its
intermediate lever should be
Min 0.005 – Max 0.030 inch

To Adjust
Loosen four mounting plate screws
and position assembly.

DRIVE ARM EXTENSION SPRING

Requirement
Clutch latched
Min 4 oz – Max 5 oz
to pull spring to installed length.

Requirement
Clutch latched
Min 1/2 oz – Max 1-1/2 oz
to pull spring to installed length.
3.13 Code Reading Contact Mechanism (continued)

Note 1: The following tests should be performed using a DXD test set, if available, after the contact assembly has been installed and all adjustments have been made.

Note 2: Minimum signal lengths apply to time between latest start and earliest end of all contact traces.

CODE READING CONTACT REFINEMENT (STROBING)

(1) Requirement

Zero the strobe unit (DXD) as follows:

(a) Connect strobe neon trace to code reading contact no. 1. Send rubout combination from keyboard. Note latest point at which trace begins.

(b) Repeat step (a) for all code reading contacts.

(c) Choose trace that starts latest and set "start-zero" mark of strobe scale to this point.

(d) Record earliest end of neon traces for future adjustment references.

(2) Requirement

Connect neon trace lamp to marking contact (contact that is normally open when keyboard is idle) of code reading contact assembly.

(a) Send rubout combination from keyboard.

(b) Combined code reading contact traces should have minimum signal length of 500 divisions (length between latest start and earliest end) and all bounce should end within 20 divisions of latest start of a contact trace. See Par. 3.14 for figure of strobe trace.

Repeat (2) Requirement for each code reading contact.

To Adjust

Refine BACKSTOP-NORMALLY CLOSED CONTACT (3.09) adjustment.
Refine NORMALLY CLOSED CONTACT SPRING (3.09) and CONTACT SWINGER SPRING (3.09) adjustments if there is excessive bounce.
SECTION 574-221-700TC

3.14 Code Reading Contact Mechanism (continued)
Auxiliary Contact Mechanism (continued)

AUXILIARY CONTACT REFINEMENT (STROBING)

Note 1: The following tests should be performed using a DXD test set, if available, after the contact assembly has been installed and all adjustments have been made.

Note 2: Minimum signal lengths apply to time between latest start and earliest end of all contact traces.

Note 3: Zero the strobe unit (DXD) as explained in (1) Requirement of Par. 3.13.

(1) Requirement
Connect strobe neon trace to auxiliary contacts.

(2) Requirement
Send rubout combination from keyboard.

(3) Requirement
End of neon trace should occur at a minimum of 22 divisions before earliest end of code read contact traces (including any bounce). Start of trace should begin at a minimum of 143 divisions after the strobe "start-zero" mark. The pulse must be at least 250 divisions long.

To Adjust
Refine CONTACT GAP (3.08) adjustment.

--- Diagram ---

Latest Start of All Contact Traces

Earliest End of All Contact Traces

500 Divisions

20 Divisions Maximum Bounce

Par. 3.13 Requirement (2)(b)

143 Divisions

250 Divisions Minimum

22 Divisions

Code Reading Contact Trace

Auxiliary Contact Trace

Page 40
3.15 Strobing Requirement

Note 1: The following tests should be performed using a DXD test set, if available.

Note 2: For units equipped with signal regenerators, remove regenerator circuit card before applying test set probes to signal contacts.

SIGNAL GENERATOR CONTACTS

- **START**
- **1000 DIV**
- **1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | STOP**
- **MARK**
- **SPACE**

CODE READING AND TIMING CONTACTS

- **LATEST START OF ALL CONTACT TRACES**
- **450 DIVISIONS MIN**
- **EARLIEST END OF ALL CONTACT TRACES**

- **KEYBOARD CODE READING CONTACTS**
- **20 DIVISIONS MAX BOUNCE**

- **KEYBOARD TIMING CONTACT**
- **200 DIVISIONS MIN**
- **10 UNIT, 100 WPM**

CAUTION: APPLYING OPERATING VOLTAGE OF SIGNAL DISTORTION TEST SET DIRECTLY TO GOLD-PLATED SIGNAL CONTACTS MAY MAKE THEM UNSUITABLE FOR LOW-VOLTAGE APPLICATIONS. SEE PAR. 2.19 FOR SERVICING INSTRUCTIONS.
SECTION 574-221-700TC

3.16 Local Backspace Mechanism

BACKSPACE TRANSFER BAIL ADJUSTING LEVER

Requirement
Downward pressure on backspace key
Min 16 oz -- Max 28 oz
to operate backspace lever.

To Adjust
Position transfer bail adjusting lever with its mounting screw loosened. If unit is forward spacing, the adjusting lever must be raised until proper backspacing is accomplished.

Note 1: This adjustment may require remaking when a different typing unit is used.

Note 2: The camming bail should return to its unoperated position when the keylever is released. Refine adjustment if necessary.

BACKSPACE TRIP LINK HORIZONTAL SPRING

Requirement
Unhook spring
Min 1-3/4 oz -- Max 3 oz
to pull spring to installed length.

BACKSPACE TRIP LINK VERTICAL SPRING

Requirement
Unhook spring
Min 1-1/2 oz -- Max 3 oz
to pull spring to installed length.

BACKSPACE TRANSFER BAIL SPRING

Requirement
Unhook spring
Min 1/2 oz -- Max 1 oz
to pull spring to installed length.
3.17 Receive-Break Switch Mechanism

RECEIVE-BREAK SWITCH

To Check
Keyboard lock plunger in downward position. Function bail latched.

Requirement
The bail should operate the contact pile-up with some overtravel.

To Adjust
Loosen locknut on adjusting screw and position screw. Recheck for overtravel.

RECEIVE-BREAK SWITCH TENSION

Requirement
Normally open contacts should close and normally closed contacts should open
- Min 10 oz---Max 16 oz

To Adjust
Bend leaves carefully to meet requirements.

3.18 Keyboard Universal Contact Mechanism

KEYBOARD UNIVERSAL CONTACT

Requirement
With clutch latched
- Min 0.010 inch---Max 0.020 inch contact gap.

To Adjust
Bend leaves carefully to meet requirement.
3.19 Codebar Arrangement for Even Parity

CLUTCH TRIP

CONTROL LOCK

5 INVERSION

8 INVERSION

SHIFT LOCK

SEE PAR. 2.06 (B)

SEE PAR. 2.06 (C)

Note 1: On LK814 units
Min 5 oz---Max 9 oz

NO. 5, 8 INVERSION CODE BAR SPRINGS

Requirement
Codebar in latched position.
Unhook spring at guide
Min 6 oz---Max 8 oz
to pull to installed length.

Note 2: On LK814 units
Min 7-1/2 oz---Max 9-1/2 oz

TRANSITION BAR SPRING

Requirement
Unhook spring at guide
Min 1/2 oz---Max 1-1/2 oz
to pull to installed length.
3.20 Local Single Line Feed Mechanism

LOCAL SINGLE LINE FEED TRIP LINK VERTICAL SPRING

Requirement
Unhook spring
Min 1-1/2 oz---Max 2-1/2 oz
to pull spring to installed length.

(Left View)

LOCAL SINGLE LINE FEED TRIP LINK HORIZONTAL REAR SPRING

Requirement
Unhook spring
Min 1-1/2 oz---Max 3-1/2 oz
to pull spring to installed length.

LOCAL SINGLE LINE FEED TRIP LINK HORIZONTAL FRONT SPRING

Requirement
Unhook spring
Min 1-1/2 oz---Max 2-1/2 oz
to pull spring to installed length.
3.21 Universal Keyboard Switch Mechanism

Note: Suitable arc suppression should be provided when warranted.

KEYBOARD SWITCH (HORIZONTAL)

(1) Requirement
Align contact assembly, guide, and code lever assembly.
There should be
Min some---Max 0.020 inch

clearance between the right edge of the contact swinger insulator and the extension of the code lever assembly in the unoperated position.

To Adjust
Loosen screw holding the contact assembly to the retainer bars and adjust. Tighten screw.

(2) Requirement
Clearance between the contact assembly spring and the keyboard wedge retainer should be
Min 0.062 inch

To Adjust
Bend the retainer bar if necessary.
KEYLEVER SWITCH (VERTICAL)

(1) Requirement
With unit in stop position and keylever depressed to a point where clutch engages, center and lower contact should just close or have a maximum gap of 0.008 inch.

(2) Requirement
For keylevers which do not cause clutch engagements, and with keylever unoperated, tip of code lever lobe should overlap contact swinger by Min some---Max 0.020 inch

To Adjust
Loosen two screws which fasten two brackets on the two studs and position complete mounting assembly.
3.23 Local Reverse Line Feed Mechanism

LOCAL REVERSE LINE FEED TRIP LINK

VERTICAL SPRING

Requirement
Typing unit removed.
- Min 1-1/2 ozs -- Max 2-1/2 ozs
- To pull spring to installed length.

LOCAL REVERSE LINE FEED TRIP LINK HORIZONTAL SPRING

Requirement
Typing unit removed.
- Min 1-1/2 ozs -- Max 3-1/2 ozs
- To pull spring to installed length.