INSTRUCTION BOOK for
 A. F. AMPLIFIER AM-215A/U

HOFFMAN RADIO CORPORATION
LOS ANGELES 7, CALIFORNIA

LIST OF EFFECTIVE PAGES

PAGE NUMBERS	CHANGE IN EFFECT	PAGE NUMBERS	CHANGE IN EFFECT
Title page	Original	$3-0$ to 3-2	Original
A to C	Original	$4-1$	Original
i to v	Original	$5-0$ to $5-10$	Original
$1-0$ to $1-2$	Original	$6-1$ to 6-7	Original
$2-1$	Original	i-1 to i-3	Original

metrar to pile no.
993-100
RESTRICTED

NAVY DEPARTMENT

BUREAU OF SHIPS
WASHINGTON 25, D. C.

6 April 1948

- To: All Activities Concerned with the Installation Operation and Maintenance of the Subject Equipment.

Subj: Instruction Book for A. F. Amplifier, AM-215A/U NAVSHIPS 91078.

1. NAVSHIPS 91078 is the instruction book for the subject equipment and is in effect upon receipt.
2. NAVSHIPS 91078 is a RESTRICTED non-registered publication and shall be handled, transported, and safeguarded in accordance with U.S. Navy Regulations. When superseded by a later edition, this publication shall be destroyed.
3. Any person known to be in the service of the United are cooperating pers of undoubted loyalty and discretion who publication. However, information contained herein shall not be communicated to the public or to the press.
4. This document contains information affecting the National Defense of the United States within the meaning of the Espionage Act, 50 U.S.C., 31 and 32, as amended. Its transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law. (ART. 76 U.S.N. REGS-1920)
5. Extracts from this publication may be made to facilitate the preparation of other Navy instruction books and handbooks.
6. All requests for NAVSHIPS electronios publications should be directed to the nearest District Pubiloations and Printing office. When changes or revised books are distributed, notice will be ingiuded in the applicable maintenance bulletin and the ELBCTRON Magazine.

E. W. Mills
Chief of Bureau

mon bureau of ships, navy derartmentr, washingTon 25, D. C.

ORIGINAL

RESTRICTED

RECORD OF CORRECTIONS MADE

CHANGE NO.	DATE	SIGNATURE OF OFFICER MAKING CORRECTION
		,
.		
		.
		-
\square		
		\cdots -
		.
.		
\square		

TABLE OF CONTENTS

Tables

LIST OF TABLES

Table Title Page Table Title Page
SECTION 1. GENERAL DESCRIPTION1-1 Equipment Supplied1-2
1-2 Equipment Required but Not Supplied 1-2
1-3 Shipping Data 1-2
1-4 Vacuum Tube Complement 1-2
SECTION 3. INSTALLATION
3-1 Output Load Matching Chart 3-2
SECTION 5. MAINTENANCE
5-1 Operator's Emergency Maintenance $5-1$
5-2 Trouble Shooting Chart 5-3
5-3 Tube Operating Voltages and Currents 5-5
5-4 Tube Characteristics 5-6
5-5 Winding Data 5-6
SECTION 6. PARTS LIST
6-1 Weights and Dimensions of Spare Parts Boxes 6-1
6-2 Shipping Weights and Dimensions of Spare Parts Boxes 6-1
6-3 Major Unit 6-1
6-4 Combined Parts and Spare Parts Lists 6-2
6-5 Cross Reference Parts List 6-6
6-6 List of Manufacturers 6-6
6-7 Applicable Color Codes
and Miscellaneous Data $6-7$

GUARANTEE

The Contractor guarantees that at the time of delivery thereof the articles provided for under this contract will be free from any defects in material or workmanship and will conform to the requirements of this contract. Notice of any such defect or non-conformance shall be given by the Government to the Contractor within one year of the delivery of the defective or non-conforming article, unless a different period of Guaranty is specified in the schedule. If required by the Government within a reasonable time after such notice, the Contractor shall with all possible speed correct or replace the defective or non-conforming article or part thereof. When such correction or replacement requires transportation of the article or part thereof, shipping costs, not exceeding usual charges, from the delivery point to the Contractor's plant and return, shall be borne by the Contractor; the Government shall bear all other shipping costs. This Guaranty shall then continue as to corrected or replacing articles or, if only parts of such articles are corrected or replaced, to such corrected or replacing parts, until one year after the date of re-delivery, unless a different period of Guaranty is specified in the schedule. If the Government does not require correction or replacement of a defective or non-conforming article, the Contractor, if required by the contracting officer within a reasonable time after the notice of the defect or non-conformance, shall repay such portion of the contract price of the article as is equitable in the circumstances.

INSTALLATION RECORD

Contract Number NObsr-39405
Date of Contract, 30 June 1947

Serial Number of equipment.

Date of acceptance by the Navy.
Date of delivery to contract destination

Date of completion of installation \qquad

Date placed in service

Blank spaces on this page shall be filled in at time of installation.

REPORT OF FAILURE

Report of failure of any part of this equipment, during its entire service life, shall be made to the Bureau of Ships in accordance with current regulations using form NAVSHIPS NBS 383 (revised) except for Marine Corps equipment, in which case the "Signal Equipment Failure Report" form shall be used and distributed in accordance with instructions pertaining thereto. The report shall cover all details of the failure and give the date of installation of the equipment. For procedure in reporting failures see Chapter 67 of the Bureau of Ships Manual or superseding instructions.

ORDERING PARTS

All requests or requisitions for replacement material should include the following data:

1. Federal stock number or, when ordering from a Marine Corps or Signal Corps supply depot, the Signal Corps stock number.
2. Name and short description of part.

If the appropriate stock number is not available the following shall be specified:

1. Equipment model or type designation, circuit symbol, and item number.
2. Name of part and complete description.
3. Manufacturer's designation.
4. Contractor's drawing and part number.
5. JAN or Navy type number.

DESTRUCTION OF ABANDONED MATERIAL IN THE COMBAT ZONE

In case it should become necessary to prevent the capture of this equipment, and when ordered to do so, DESTROY IT SO THAT NO PART OF IT CAN BE SALVAGED, RECOGNIZED, OR USED BY THE ENEMY. BURN ALL PAPERS AND BOOKS.
Means:

1. Explosives, when provided.
2. Hammers, axes, sledges, machetes, or whatever heavy object is readily available.
3. Burning by means of incendiaries such as gasoline, oil, paper or wood.
4. Grenades and shots from available firearms.
5. Burying all debris, where possible and when time permits.
6. Throwing overboard or disposing of in streams or other bodies of water.

Procedure:

1. Obliterate all identifying marks. Destroy nameplates and circuit labels.
2. Demolish all panels, castings, switch and instrument boards.
3. Destroy all controls, switches, relays, connections and meters.
4. Rip out all wiring and cut interconnections of electrical equipment. Smash gas, oil, and water cooling systems in gas engine generators, etc.
5. Smash every electrical or mechanical part, whether rotating, moving or fixed.
6. Break up all operating instruments such as keys, phones, mićrophones, etc.
7. Destroy all classes of carrying cases, straps, containers, etc.
8. Bury or scatter all debris.

SAFETY NOTICE

The attention of officers and operating personnel is directed to Chapter 67 of the Bureau of Ships Manual or superseding instructions on the subject of radiosafety precautions to be observed.

This equipment employs voltages which are dangerous and may be fatal if contacted by operating personnel. Extreme caution should be exercised when working with the equipment.
While every practicable safety precaution has been incorporated in this equipment, the following rules must be strictly observed:

KEEP AWAY FROM LIVE CIRCUITS:

Operating personnel must at all time observe all
safety regulations. Do not change tubes or make adjustments inside equipment with high voltage supply on. Under certain conditions dangerous potentials may exist in circuits with power controls in the off position due to charges retained by capacitors. To avoid casualties always remove power and discharge and ground circuits prior to touching them.

DON'T SERVICE OR ADJUST ALONE:

Under no circumstances should any person reach within the enclosure for the purpose of servicing or adjusting the equipment without the immediate presence or assistance of another person capable of rendering aid.

RESUSCITATION

AN APPROVED POSTER ILLUSTRATING THE RULES FOR RESUSCITATION BY THE PRONE PRESSURE METHOD SHALL BE PROMINENTLY DISPLAYED IN EACH RADIO, RADAR, OR SONAR ENCLOSURE. POSTERS MAY BE OBTAINED UPON REQUEST TO THE BUREAU OF MEDICINE AND SURGERY.

Figure 1-1. AF Amplifier AM-215A/U

SECTION 1

GENERAL DESCRIPTION

1. PURPOSE OF EQUIPMENT.

The AF Amplifier AM-215A/U, Figure 1-1, is a multiple input audio frequency amplifier designed for general communication work in conjunction with Naval electronic receiving equipment and associated loudspeaker units.

2. DESCRIPTION OF UNIT.

The $\mathrm{AM}-215 \mathrm{~A} / \mathrm{U}$ is a five tube, three stage audio frequency amplifier with push-pull output, incorporating inverse feedback. The power supply and amplifier are included in one compact unit.
a. CONTROLS.-The three controls for the unit are mounted on the front panel along with a shutter type pilot light. They are respectively: a POWER ON-OFF switch, S102, a VOLUME control, R107, and a CHANNEL SELECTOR switch, S101. The CHANNEL SELECTOR switch has five positions and is used to select one of the five input channels as the source of sound for the amplifier.
b. INPUTS.-Five 600 ohm input circuits are provided for connecting to sources of audio, such as radio receivers, microphones or phono preamplitiers, etc. Une input circuit at a time is connected to the input transformer, T101, by the input selector switch, S101, as desired. The other input circuits are each terminated in a 620 ohm resistor.

A maximum of two watts continuous power may be fed into each input. A minimum of approximately six milliwatts is required to produce full output.
c. OUTPUT.-The maximum output of the amplifier is 10 watts with less than 10% total harmonic distortion at nominal voltage rating. Two output impedances are provided, 600 ohms and 15 ohms , for feeding a conventional 600 ohm line or a standard speaker voice coil.
d. POWER SUPPLY.-The power supply is built on the same chassis with the amplifier. It operates from a $110 / 115 / 120$ volt AC power source, of 50 or 60 cycles, and supplies all filament and plate power required by the amplifier.
e e. CASE.-The complete equipment is housed in a die cast aluminum case which is made up of two pieces riveted together. The front panel of the amplifier serves as the cover for the case. The chassis is mounted to the rear side of front panel, extending back from the panel at 90 degrees. The panel and chassis are also die cast aluminum. A neoprene gasket is placed around the grooved edge of the panel so that when the case is
closed the unit is sealed and made "drip proof." The two Dzus fasteners at the top of the panel are used to secure the panel shut. The panel is hinged at the bottom so that it and the chassis will swing out of the case for adjusting and servicing. The tubes are accessible when the panel is opened approximately 60 degrees. When the panel is opened 180 degrees the chassis will be outside the case, be upside down and completely accessible for servicing, see Figure 5-2, page 5-2.

The exterior of the case and panel are finished with a smooth Navy grey enamel. The chassis and interior of the case are painted grey.

The unit may be mounted from the rear, top, or bottom surface of the case as described in Section 3, Installation.

3. REFERENCE DATA.

a. NOMENCLATURE. - AF AMFLIFIER AM215A/U.
b. CONTRACT NUMBER AND DATE.-NObsr39405, 30 June 1947.
c. CONTRACTOR.-Hoffman Radio Corp., 3761 So. Hill Street, Los Angeles 7, California.
d. COGNIZANT NAVAL INSPECTOR.-Inspector of Naval Material, Los Angeles District, 1206 So. Santee Street, Los Angeles 15, California.
e. NUMBER OF PACKAGES PER COMPLETE SHIPMENT OF EQUIPMENT.-Two: one packageEquipment; one package-Equipment Spare Parts.
f. TOTAL CUBICAL CONTENTS.-Equipment and Equipment Spare Parts; crated 1.26 cubic feet, uncrated 0.79 cubic feet.
g. TOTAL WEIGHT.-Equipment and Equipment Spare Parts: crated 51.8 pounds, uncrated 45.5 pounds.
b. FREQUENCY RANGE. -250 to $4000 \mathrm{cps}, \pm 3 \mathrm{db}$.
i. POWER OUTPUT. -10 watts maximum at 10% total harmonic distortion, or less, at nominal voltage rating.
j. OUTPUT IMPEDANCE.- 600 ohms center tapped and 15 ohms.
k. POWER GAIN.-32.2 db.
l. AUDIO INPUT POWER.- 2 watts maximum into each input; 6 milliwatts minimum for full power output.
m. INPUT IMPEDANCE.- 600 ohms each input.
n. POWER SOURCE REQUIRED FOR EQUIPMENT. $-110 / 115 / 120$ volts A.C., $50 / 60 \mathrm{cps}$, single phase, .57 amperes, 55 watts.

NAVSHIPS 91078
GENERAL
AM-215A/U
DESCRIPTION
o. POWER FACTOR OF EQUIPMENT.- 84%.
p. EQUIPMENT LISTS.-Tables $1-1$ and $1-2$ list the
equipment supplied and the equipment required but not supplied on the contract.
TABLE 1-1. EQUIPMENT SUPPLIED

$\begin{aligned} & \text { QUAN- } \\ & \text { TITY } \\ & \text { PER } \\ & \text { EQUIP- } \\ & \text { MENT } \end{aligned}$	NAME OF UNIT	NAVY TYPE DESIGNATION	OVER-ALL DIMENSIONS			volume	WEIGHT
			HEIGHT	WIDTH	DEPTH		
1	AF AMPLIFIER	AM-215A/U	$83 / 8$	12	7	0.41	23.5
1	SET OF EQUIPMENT SPARE PARTS		6-3/16	131/4	71/4	0.34	22
2	INSTRUCTION BOOKS	$\underset{91078}{\text { NAVSHIPS }^{2}}$	11	$81 / 2$	-	-	-

Dimensions are inches, volume cubic feet, weight pounds.
TABLE 1-2. EQUIPMENT REQUIRED BUT NOT SUPPLIED

QUANTITY PER EQUIPMENT	NAME OF UNIT	NAVY TYPE DESIGNATION	REQUIRED USE	REQUIRED CHARACTERISTICS
1 to 5	SOURCE OF AUDIO FREQUENCY, SUCH AS NAVY RADIO RECEIVER, MICROPHONE OR PHONO PREAMPLIFIER, ETC.		TO SUPPLY A DESIRED SOUND SIGNAL TO THE AMPLIFIER INPUT	OUTPUT IMPEDANCE 600 ohms. OUTPUT POWER: 6 milliwatts minimum, 2 watts maximum.
1 or more	REPRODUCERS, SUCH AS LOUD SPEAKERS, HEADSETS, ETC.		A.F. REPRODUCTION	MUST MATCH AMPLIFIER 600 ohm or 15 ohm OUTPUT

q. SHIPPING DATA.-Table 1-3 gives information on the equipment and equipment spare parts as packed for shipment.
r. EQUIPMENT SIMILARITIES.-The A.F. Amplifier AM-215A/U is similar to the AM-215/U Ampli-
fier mechanically and electrically, and the units are interchangeable. Both are designed for 5 input channels and a 600 ohm and a 15 ohm output.
s. VACUUM TUBE COMPLEMENT. - The tubes used in the equipment are listed in Table 1-4.

TABLE 1-3. SHIPPING DATA

SHIPPING BOX NO.	NAME	DESIGNATION	HEIGHT	WIDTH	DEPTH	VOLUME	WEIGHT
	AF AMPLIFIER	AM-215A/U	$103 / 4$	$143 / 8$	$91 / 2$		
2	EQUIPMENT SPARE PARTS		7	$133 / 4$	8	0.45	23.5

Dimensions are inches, volume cubic feet, weight pounds.
table 1-4. VACUUM TUBE COMPLEMENT

SYMBOL	TYPE	FUNCTION
V101	JAN 12AU7	ONE TRIODE AS VOLTAGE AMPLIFIER ONE TRIODE AS PHASE INVERTER
V102	JAN 6AQ5	POWER AMPLIFIER
V103	JAN 6AQ5	POWER AMPLIFIER
V104	JAN6X4	RECTIFIER
V105	JAN6X4	RECTIFIER

SECTION 2

THEORY OF OPERATION

1. GENERAL.

A complete schematic of the AF amplifier AM215A/U is given in Figure $5-5$ and is referred to in the following text.

The AM-215A/U is a straightforward amplifier of advanced design incorporating a direct coupled stage, phase inversion, inverse feedback and push-pull output.

2. INPUTS.

Terminals are provided for connecting five pairs of 600 ohm lines to the input of the amplifier. These are numbered 1 to 5 and respectively correspond to the numbering on the CHANNEL SELECTOR switch S101 as shown in Figure 1-1.
The circuits of the channel selector switch S101 are arranged to connect one pair of input terminals at a time, respectively, to the primary of the input transformer T101; at the same time each of the other inputs is connected to a 620 ohm loading resistor to properly terminate the lines not connected to T101.
The secondary of T101 is loaded by R106 and R107, and this load is reflected to the input line by the primary as 600 ohms. The center tap on the primary is brought out to a terminal to provide for grounding, if required, when used with balanced input lines. There is a static shield between primary and secondary to eliminate electrostatic coupling and reduce spurious input noise.

R107 is the amplifier gain or volume control.

3. DIRECT COUPLING.

V101 is a double triode used as a voltage amplifier and phase inverter. The plate of the voltage amplifier (pin 1) is directly connected to the grid of the phase inverter (pin 7), using R110 as a common plate-grid resistor. R110, being 470,000 ohms, produces a large voltage drop due to the plate current through it, and this puts the grid of the phase inverter at a low positive voltage with respect to ground. The cathode current of the phase inverter flowing through the 51,000 ohm cathode resistor R 108 results in a positive voltage on the cathode more positive than that on the grid, thus
giving the triode its proper negative grid bias. The circuit is self equalizing and produces a satisfactory grid bias on the phase inverter through every normal variation of operating voltage and tube condition.

4. PHASE INVERTER.

The phase inverter is of the divided load type. R112 in the plate circuit and R111 in the cathode circuit are equal and each produce the same amount of signal voltage drop, but the voltage across one is 180° out of phase with the voltage across the other. This produces input for the push-pull stage that follows.

5. OUTPUT.

The push-pull output stage, V102 and V103, is conventional. Two output impedances are provided on T102: 15 ohms for a standard speaker voice coil and 600 ohms for a regular 600 ohm line. The 600 ohm output has a center tap brought out to a terminal for grounding when required in connection with a balanced output line. C104 is connected from V103 grid to ground to stabilize the amplifier by eliminating the generation of high frequencies when the amplifier is driven to maximum or near maximum output.

Inverse feedback from the plate of V102 to the cathode of the voltage amplifier is fed through R109. The inverse feedback reduces distortion and improves output voltage regulation with respect to load. A change of 2 to 1 from the normal output load will cause a change in output voltage no greater than 2 db . However this reduces the power output. Full power output can be obtained only by use of a correctly matching output load. Section 3, Installation discusses matching the output load impedance in paragraph 4.

6. POWER SUPPLY.

The power supply is conventional, furnishing all plate and filament power for the amplifier from a regular AC power source as specified. The rectifiers V104 and V105 are connected in a full wave rectifier circuit with T103. Two tubes are used to handle the current required by the amplifier. The filtering is done by C106, C107 and L101.

Figure 3-1. Outline and Installation Drawing

SECTION 3
 INSTALLATION

1. UNPACKING.

The AF Amplifier AM-215A/U is packed for domestic shipment in a fiberboard shipping box (Box 1). The box should be opened at the top by cutting the tape that binds down the flaps and raising the flaps. Remove the packing list and the two instruction books from the packing above the unit. Pull out packing from around the unit to loosen it and lift from the box. Tear off the paper wrapping.

The equipment spares are similarly packed in a fiberboard box (Box 2). Open it in the same manner and remove the metal spare parts box and packing list.

2. GENERAL.

The AF Amplifier may be mounted by means of bolts through the top, back or bottom of the case in the areas shown cross-hatched in Figure 3-1 Outline and Installation Drawing. Input, output and power circuits may be brought into the case by means of terminal tubes in any of these shaded areas when the clearance from the chassis is sufficient, preferably at the top or near the top close to the connecting terminals.

All holes required for mounting bolts and terminal tubes are to be drilled in the case by the installing activity to fit the needs of the particular installation. An example
of a possible installation is shown in Figure 3-3 Typical Tubes and Cables.

3. INSTALLÁTION PROCEDURE.

a. Before drilling mounting holes in the case remove the unit from the case as follows:

1. Release the two fasteners at the top of the panel by turning them counterclockwise and tip the unit out of the case.
2. Take off the "CAUTION $110-120 \mathrm{~V}$ " plate and disconnect the wires from the lower edge of the terminal strips, in the back of the case, by loosening the screws which hold the spade lugs.
3. Remove the screws that hold the two cable clamps at each side of the case.
4. Remove the cotter pin from the end of the hinge pin and take out the hinge pin.
5. Remove the unit from the case. See Figure 3-2.
b. Drill the required holes in the area shown crosshatched in figure 3-1, taking into consideration the clearance between the chassis and the case. Be careful not to damage the terminal strips. Four $1 / 4^{\prime \prime}$ or $3 / 8^{\prime \prime}$ steel bolts should be used for mounting, placed as far apart as the cross-hatched area and other conditions will permit.
c. Mount the case and connect the terminal tubes.

Figure 3-2. Amplifier Removed from Case

Paragraph 3.d.

d. Pass the required leads through the terminal tubes and connect them to the top of the proper terminals, as marked, by soldering or by using the top screws.

CAUTION

Do not handle any wires that are carrying power or signal voltages. Be sure all circuits are off.
e. Reassemble the hinge by inserting the hinge pin from either side, screw the cable clamps in place and reconnect the amplifier wires to their corresponding terminals as marked. Replace "CAUTION $110-120 \mathrm{~V}$ " plate.
f. Close the case and engage panel fasteners.
g. Complete all connections to power source, signal sources and reproducers, or line load. The signal sources must be adjusted to deliver average power in the range of 6 milliwatts to 2 watts. Over two watts may damage the amplifier and less than 6 milliwatts may not give full output when required.

4. MATCHING IMPEDANCES.

Each source of audio frequency should have a $\mathbf{6 0 0}$ ohm output impedance. Sources not having 600 ohm output must have their output adjusted to properly match the 600 ohm amplifier input, if they are to operate properly.

Full power output'from the amplifier can be obtained only when the impedance of the load matches the amplifier output to which it is connected. The following table gives numerous combinations for correctly loading
the amplifier.
Considerable mismatching can be tolerated without excessive distortion, due to the action of the inverse feedback, but improper matching causes a loss in power output approximately proportional to the ratio of mismatch.

When two or more equal loads are connected the power will divide equally between them. When both the 600 and 15 ohm outputs are used simultaneously each should be connected to a load which is twice the impedance of the winding. This will properly load the amplifier and each load will receive half the power output.

5. ADJUSTING FOR HIGH OR LOW LINE. VOLTAGE.

It is important that the taps on the power transformer T103 be properly connected for the line voltage supplied to the amplifier. Excessive voltage will shorten tube and component life, and low voltage will reduce the maximum undistorted output. Primary terminals are provided on the bottom of T103 for primary voltages as follows:

$$
\begin{aligned}
& \text { terminals } 1 \text { and } 2-110 \text { volts } \\
& \text { terminals } 1 \text { and } 3-115 \text { volts } \\
& \text { terminals } 1 \text { and } 4-120 \text { volts }
\end{aligned}
$$

The amplifier is wired at the factory for 115 volts.
Measure the line voltage and make certain that the primary leads are soldered to the terminals most nearly corresponding to the actual line voltage.

TABLE 3-1. OUTPUT LOAD MATCHING CHART

\(\left.$$
\begin{array}{|c|c|c|c|c|}\hline \begin{array}{c}\text { OUTPUT } \\
\text { WINDING }\end{array} & \begin{array}{c}\text { SINGLE } \\
\text { LOAD }\end{array} & \begin{array}{c}\text { SERIES } \\
\text { LOADS }\end{array} & \begin{array}{c}\text { PARALLEL } \\
\text { LOADS }\end{array} & \begin{array}{c}\text { SERIES PARALLEL } \\
\text { LOADS }\end{array} \\
\hline 600 & 600 & \begin{array}{c}\text { Two } 300 \\
\text { Three } 200 \\
\text { or } \\
\text { Four } 150\end{array} & \begin{array}{c}\text { Two } 1200 \\
\text { Three } 1800 \\
\text { or }\end{array}
$$

Four 2400\end{array}\right]\)| Four 600 |
| :---: |
| 15 |

All values are in ohms.

6. INSTALLATION CHECK.

With power source on, throw the POWER switch S102 to ON. The pilot light I101 should glow; turn the lens housing counterclockwise to make certain the
shutter is open.
Operate all signal sources and turn the CHANNEL SELECTOR switch S101 to each of the five positions noting whether each signal is reproduced normally. Check the operation of the volume control, R107.

INPUT CABLES		
INPUTS	CABLE	TERM. TUBE SIZE
1	TTHFWA-1	B
3	TTHFWA-3	C
5	TTHFWA-5	C

TTHFWA-3

Figure 3-3. Typical Tubes and Cables

SECTION 4

OPERATION

1. GENERAL.

The operating controls are illustrated in Figure 1-1. Turn the VOLUME CONTROL R107 to 1 or 2, and throw the POWER switch S102 to ON. Illumination of the pilot light I101 indicates the power is on when the
shutter is open. Rotate the lens housing of the pilot light to adjust the shutter for the desired brilliance. Turn the CHANNEL SELECTOR S101 to the desired input channel and adjust the VOLUME CONTROL R107 for the desired volume. To turn the equipment off first decrease volume to 0 and then throw the POWER switch to OFF.

FAILURE REPORTS

AFAILURE REPORT must be filled out for the failure of any part of the equipment whether caused by defective or worn parts, improper operation, or external influences. It should be made on Failure Report, form NBS383, which has been designed to simplify this requirement. The card must be filled out and forwarded to BUSHIPS in the franked envelope which is provided. Full instructions are to be found on each card.

Use great care in filling the card out to make certain it carries adequate information. For example, under "Circuit Symbol" use the proper circuit identification taken from the schematic drawings, such as T-803, in the case of a transformer, or R-207, for a resistor. Do not substitute brevity for clarity. Use the back of the card to completely describe the cause
of failure and attach an extra piece of paper if necessary.
The purpose of this report is to inform BUSHIPS of the cause and rate of failures. The information is used by the Bureau in the design of future equipment and in the maintenance of adequate supplies to keep the present equipment going. The cards you send in, together with those from hundreds of other ships, furnish a store of information permitting the Bureau to keep in touch with the performance of the equipment of your ship and all other ships of the Navy.
This report is not a requisition. You must request the replacement of parts through your Officer-in-Charge in the usual manner.

Make certain you have a supply of Failure Report cards, and envelopes on board. They may be obtained from any Electronics Officer.

Figure 5-1. Failure Report, Sample Form

SECTION 5 MAINTENANCE

1. OPERATORS MAINTENANCE.

a. GENERAL.-To insure proper operation of the AM-215A/U Amplifier, the equipment should be given a daily operational check. Turn on the amplifier, supply input signal and check the loudspeaker output, or other reproducer output, for general quality and volume. Rotate the volume control to check for normal, quiet, control of amplifier output. Adjust the pilot light for desired brilliance by rotating the lens housing. Check each active input for normal operation.

b. EMERGENCY MAINTENANCE.-
 NOTICE TO OPERATORS

Operators shall not perform any of the following emergency maintenance procedures without proper authorization.

CAUTION

Be sure the POWER switch is in OFF position while replacing tubes or fuses or doing work inside the case.

TABLE 5-1. OPERATORS EMERGENCY MAINTENANCE

TROUBLE SYMPTOM	probable cause	CORRECTION
Power switch on Pilot Light off.	Pilot lamp I101, burned out.	Replace pilot lamp from spares. See Pilot Lamp Replacement paragraph.
	Fuse, F101 or F102, blown.	Replace with fuse or fuses from spares in unit or from spare parts kit. See Warning below, and Fuse Replacement paragraph.
	AC power source not on.	Turn on power source; report power failure.
Power on, pilot glows, no signal output, or unsatisfactory output.	No input, or unsatisfactory input signal.	Try other inputs; check unsatisfactory input source; check input connections on terminal strips.
	Defective tubes.	Replace any tubes that do not light and then, if necessary, replace each of the other tubes one by one. See Tube Replacement paragraph.

Do not replace either fuse with one of greater than 1 ampere rating unless continued operation is more important than probable damage. If a fuse burns out immediately after replacement, do not replace it a second time until the cause has been corrected.
(1.) PILOT LAMP REPLACEMENT.-To replace the pilot lamp, unscrew the lens-shutter assembly, counterclockwise, from the front of the panel. Release the lamp by pressing it in and turning counterclockwise. Insert the new lamp (Mazda 44) and lock it in place. Replace the lens-shutter assembly.
(2.) FUSE REPLACEMENT.-Open the case by releasing the fasteners at the top of the panel with a quarter turn counterclockwise. Tip the panel out so that the top of the chassis is accessible. The fuses are plainly marked F101 and F102. Extract the fuse by turning the knurled fuse holder cap approximately an eighth turn counterclockwise and lifting both the cap and the fuse out of the holder. Pull the fuse out of the cap. Insert a new fuse in the cap and replace in holder. Use the SPARE FUSES which are held in clips on the chassis,
and replenish from spare parts.
(3.) TUBE REPLACEMENT.-To replace tubes, open the case the same as for fuse replacement. Before removing a tube, snap the wire tube clip off the top of the tube by pressing on the two outside loops while steadying the tube with the thumb or a finger. Grasp the tube and pull straight up from the socket with a very slight rocking motion. Use only a slight rocking motion, if any; excessive rocking will break off tube pins or damage the socket. The tube types are plainly marked on the chassis besides the socket. When the tube is out of the socket, align the tube clip, by bending if necessary, so that the center loop is straight above the center of the socket.

When putting a tube into the socket, align the pins of the tube to correspond with the holes in the socket; hold the tube straight above the socket, pressing it against the tube clip; and push the tube straight into the socket. Snap the tube clip over the top of the tube by pressing on the center loop with thumb or finger while steadying the tube.

After replacing tubes, make certain that all tube clips are in place on top of the tubes before closing the case.

NOTE

ALL TUBES OF A GIVEN TYPE SUPPLIED WITH THE EQUIPMENT SHALL BE CONSUMED PRIOR TO EMPLOYMENT OF TUBES FROM GENERAL STOCK.

(4.) A \#8 ALLEN WRENCH, held in a clip on the chassis, is provided for tightening the knob set screws.

NOTE

```
THE ATTENTION OF MAINTENANCE PERSONNEL IS INVITED TO THE REQUIREMENTS OF CHAPTER 67 OF THE BUREAU OF SHIPS MANUAL OF THE LATEST ISSUE.
```


2. PREVENTIVE MAINTENANCE.

a. After each 500 hours of operation, all tubes should be removed from the amplifier and tested. See paragraph 1.b.(3.) above. Replace all defective tubes.

Figure 5-2. Amplifier Open for Maintenance
b. When the tubes are tested, the amplifier chassis and terminal connection strips should be given a thorough visual inspection for loose, broken or corroded connections and for damaged components.
c. Make certain that the power supply is properly adjusted for high or low line voltage (Sec. 3, Para. 5). Excessive voltage will shorten tube life.

3. CORRECTIVE MAINTENANCE.

a. FAILURE REPORTS.-Make failure reports as instructed on page 5-0.
b. GENERAL.-The AF Amplifier AM-215A/U is described in Section 1 where various ratings are listed; its operating principles are discussed in Section 2 and Section 6 lists parts data and color codes that will be helpful in maintenance.

Figures 5-1 through 5-6 and Table 5-2 will assist in corrective maintenance. Other data is included in this section.

The following discussion is intended to aid in locating and correcting sources of trouble in the most direct, efficient manner. When a trouble is not obvious, start first with simple tests and then proceed with the purpose of localizing the trouble to one section or one stage of the amplifier, where a more detailed test can locate the exact component which is at fault. Analyze symptoms and try to select the tests that will most quickly reveal the cause of the trouble.
c. TROUBLE SHOOTING CHART.-Table 5-2 is a complete listing in block form of possible symptoms of trouble and the probable causes. Points of inspection or test are in the right hand blocks and trouble symptoms are listed on the lines leading to the left, with blocks of possible causes at the ends of these lines. The chart progresses from simple troubles and tests to the more complex, including signal tracing steps on the bottom half of the page.
d. SIMPLE TESTS.-Simple tests include Operators Maintenance and the upper blocks on the trouble shooting chart. Such tests as visual inspection, replacing of fuses and tubes, and trying other input channels can be made without instruments and will often correct the trouble or indicate its cause.

Figure 5-3. AF Amplifier AM-2 1 5A/U Components, Top View

Figure 5-4. AF Amplifier AM-215A/U Components, Bottom View

e. VOLT-OHMMETER TESTS.

Equipment required.
Volt-ohm-milliammeter-such Model OE series or equivalent.

If simple tests do not correct the trouble or reveal its cause much can be learned with voltage or/and resistance tests. Data for these tests is given at the bottom of the Schematic Diagram, Figure 5-5. For these tests open the case as shown in Figure 5-2.

CAUTION

DO NOT CONTACT ANY TERMINALS OR WIRES WHILE THE UNIT IS TURNED - ON, WITH ANYTHING EXCEPT PROP. ERLY INSULATED TEST PRODS.

One of the principal voltages in the amplifier is the " B " voltage measured at the screen (pin 6) of V102, or V103, the power output tubes, or at C107.

If this voltage is normal and the amplifier still is inoperative or operates improperly, proceed with a complete stage by stage voltage and resistance test; or use signal tracing methods.

CAUTION

BE SURE AMPLIFIER IS TURNED OFF AND ALL CONDENSERS ARE DISCHARGED BEFORE USING OHMMETER TESTS.

f. SIGNAL TRACING.-

(1) Equipment Required

1. Audio oscillator, such as Model LO or LAJ series or equivalent.
2. Oscilloscope, such as OBL series or equivalent.
3. Volt-Ohm-Milliammeter such as Model OE series or equivalent.

Set up the signal tracing test by first connecting a 600 ohm resistor of 20 watts rating or higher to the 600 ohm output terminals-all other output loads disconnected. Connect the output of the audio oscillator to a vacant pair of input terminals. If all inputs are in use, disconnect one pair of input leads for this test. Turn the Channel Selector switch to the corresponding number. Adjust the audio oscillator to a frequency of 1000 cps and to an output that will produce 1.9 volts at the amplifier input, as measured by the AC part of the volt-ohm-milliammeter. Set the volume control to maximum.

Follow the signal through the amplifier, stage by stage, as indicated in Table 5-2; using the oscilloscope to indicate the presence or absence of signal and/or the character of the signal. Proper interpretation of the oscilloscope pattern will indicate the type and source of trouble. If necessary, follow the signal tracing by voltage and/or ohmmeter testing of the individual stage or component suspected.
(2.) Gain and Power Output.

A normal amplifier will give full output with 1.9 volts or less applied to the input. Full output is indicated by 77.5 volts across the 600 ohm output load. With a sine wave input, the normal full output as viewed on the oscilloscope will approximate a sine wave with the peaks slightly flattened.
g. HUM.-Common causes of hum are defective tubes, open or shorted capacitors or defective input grounding. Interchanging the output tubes, or replacing and interchanging, will frequently reduce hum originating in this stage. Hum sources can be readily located by signal tracing.
b. DISTORTION.-The cause of distortion is most easily isolated by signal tracing, while defective tubes, incorrect voltages, leaky condensers, etc. are causes that can be found by voltage or resistance tests or by the substitution of parts. Do not replace major parts unless sufficient testing has been done to prove that other parts are not at fault.

TABLE 5-3. TUBE OPERATING VOLTAGES AND CURRENTS

TUBE TYPE	FUNCTION	PLATE (E)	PLATE (MA)	SCREEN (E)	SCREEN (MA)	CATH (E)	GRID (E)	HEATER AC (E)
	Voltage Amplifier	77	.5	-	-	4.9	0	6.3
	Phase Inverter	192	1.6	-	-	85	77	6.3
6 6AQ5	Power Amplifier	275	$* 36$	280	$* 2.5$	15	0	6.3
$6 \mathbf{6 X 4}$	H V Rectifier	$\mathbf{2 7 0}$	$* 85$	-	-	300	0	6.3

Note: All voltages measured to ground; 20,000 ohms per volt dc meter; 1000 ohms per volt ac meter; zero signal; *each tube.

TABLE 5-4. TUBE CHARACTERISTICS

TUBE TYPE	FILAMENT VOLTAGE (V) AC	FILAMENT CURRENT (A) AC	PLATE VOLTAGE (V)	GRID BIAS (V)	SCREEN VOLTAGE (V)	PLATE CURRENT (MA)	SCREEN CURRENT (MA)	ACPLATERESISTANCE(OHMS)	VOLTAGE AMPLIFICATION FACTOR (MU)	$\begin{aligned} & \text { TRANSCON- } \\ & \text { DUCTANCE } \\ & \text { (MICROMHOS) } \end{aligned}$		EMISSION	
										NORMAL	MINIMUM	$\begin{gathered} 15 \\ (M A) \end{gathered}$	$\begin{aligned} & \text { TEST } \\ & \text { VOLT } \end{aligned}$
12AU7	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & .15 \\ & .30 \end{aligned}$	${ }^{1} 250$	-18.5	-	${ }^{1} 10.5$	-	${ }^{1} 7700$	${ }^{1} 17$	${ }^{1} 2200$	${ }^{1} 1750$	70	30
6AQ5	6.3	. 45	250	-12.5	250	47	7	52,000	-	4100	3000	100	30
6 X 4	6.3	. 60	-	-	-	-	-	-	-	-	-	${ }^{2} 140$	${ }^{2} 50$

For condenser-input filter; A-C plate voltage per plate (rms) 325 volts; D-C output current $70 \mathrm{ma} . \quad{ }^{1}$ Each triode $\quad{ }^{2}$ Eách diode

TABLE 5-5. WINDING DATA
Note: Refer to Fig. $5-5$ for schematic diagrams

SYMBOL DESIGNATION	Chicago TRANSF NUMBER	WINDING	WIRE SIZE	TURNS	$\begin{gathered} \text { D-C } \\ \text { RESISTANCE } \\ \text { OHMS } \end{gathered}$	IMPEDANCE RATIO	$\begin{aligned} & \text { HIPOT } \\ & \text { A-C } \\ & \text { vOLTS } \end{aligned}$	REMARKS
T101	$\begin{gathered} 12700 \\ 7 \mathrm{~A}-\mathrm{SPL} \end{gathered}$	Primary Term 1-3 CT Term 2 Secondary Term 4-5	\#37PE \#41PE	$\begin{gathered} 788 \\ \mathrm{CT} \\ 5312 \end{gathered}$	$\begin{aligned} & 150 \\ & 1600 \end{aligned}$	$\begin{gathered} 1 . \\ \text { to } \\ 33.3 \end{gathered}$	750 750	600 Ohms CT 20,000 Ohms Electrostatic shield between primary and secondary; vacuum impregnated with Irvington \# 100 varnish.
T102	$\begin{aligned} & 12701 \\ & 7 \text { 7F-DO } \end{aligned}$	Primary Term 1-3 CT Term 2 Secondary Term 4-6 CT Term 5 Secondary Term 7-8	\#36PE \#33PE \#23PE	2052 536 CT 86	290 34 0	$\begin{gathered} 16.7 \\ \text { to } \\ 1 \\ 667 \\ \text { to } \\ 1 \end{gathered}$	$\begin{aligned} & 1750 \\ & 1750 \\ & 1750 \end{aligned}$	10,000 Ohms Impedance 600 Ohms Impedance 15 Ohms Impedance 50 ma pri DC current; vacuum impregnated with Irvington \# 100 varnish.
T103	$\begin{array}{\|c\|} \hline 12702 \\ \text { K2C4-130. } \\ 11 / 4^{\prime \prime} \\ \hline \end{array}$	Primary Term 1-4 taps at 2 and 3 Secondary HV-Term 5.7 CT Term 6 6.3V-Term 8-9	\#24PE \# 32PE \# 17PE	$\begin{gathered} 445 \\ \text { taps at } \\ 426, \\ 407 \\ \\ 2112 \\ \text { CT } \\ 251 / 2 \end{gathered}$	10 190 0		$\begin{aligned} & 1750 \\ & 1750 \\ & 1750 \end{aligned}$	$0,110,115,120 \mathrm{~V} ; 50 / 60 \text { cycles. }$ 535 V @ 85 ma 6.3 V @ 2.65 amps Vacuum impregnated with Irvington \#100 varnish.
L101	$\begin{aligned} & 12703 \\ & \text { K8A. } \\ & \text { BO-1" } \end{aligned}$	Single	\# 32PE	3519	270	-	1750	$\begin{aligned} & 10 \mathrm{hy}, 85 \mathrm{ma} \\ & \text { Vacuum impregnated with Irvington \# } 100 \\ & \text { varnish. } \end{aligned}$

SECTION 6

PARTS LIST

TABLE 6-1. WEIGHT AND DIMENSIONS OF SPARE PARTS BOX*

EQUIPMENT SPARES					
SPARE PARTS BOX	OVERALL dimensions			volume	WEight
	HEIGHT	WIDTH	DEPTH		
One Only	63/16	131/4	71/4	0.34	22

TABLE 6-2. SHIPPING WEIGHT AND DIMENSIONS OF SPARE PARTS BOX*

EQUIPMENT SPARES						
SHIPPING BOX NUMBER	SPARE PARTS BOX	OVERALL DIMENSIONS				
	HEIGHT	WIDTH	DEPTH		WEIGHT	
	One Only	7	$133 / 4$	8		23.5

*Dimensions are in inches; volume, cubic feet; weight, pounds.

NOTE: The Tender and Stock Spare Parts are shipped in bulk and therefore are not shown in the spare parts list.

TABLE 6-3. MAJOR UNIT

SYMBOL GROUP	NAME OF MAJOR UNIT	DESIGNATION
$101-199$	AF AMPLIFIER	AM-215A/U

NAVSHIPS 91078
Section 6
AM－215A／U

－	－	－	－		∞					\cdots	r	\cdots	\cdots	\cdots
\rightarrow	\cdots	\rightarrow	\rightarrow		r					\cdots	\cdots	\sim	\sim	－
$\begin{aligned} & \text { I } \\ & \text { H } \end{aligned}$	$\frac{\pi}{0}$	N	$\begin{aligned} & \text { g్ine } \\ & 0.000 ~ \end{aligned}$							$\begin{aligned} & \text { ¢ } \\ & \text { Zun } \end{aligned}$	$\begin{aligned} & \text { 즐 } \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { O2 } \\ & \text { I } \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{Z}{2} \end{aligned}$
$\begin{aligned} & \text { c } \\ & \text { 岂 } \end{aligned}$	$\begin{aligned} & \underset{\sim}{x} \\ & \underset{a}{2} \end{aligned}$				$\underset{\sim}{\infty}$					$\underset{\sim}{\text { Ü }}$	$\stackrel{9}{7}$	$\begin{aligned} & \text { Q } \\ & \text { U } \\ & \text { un } \end{aligned}$	ત్ ָ	$\begin{aligned} & \underset{\sim}{Z} \\ & \text { Ú } \end{aligned}$
	근	in	M		$\begin{aligned} & \dot{0} \\ & \text { Z } \\ & \text { Z } \\ & i \end{aligned}$					$\begin{aligned} & \dot{\circ} \\ & \underset{Z}{Z} \\ & \underset{i}{4} \end{aligned}$		$\begin{aligned} & \dot{0} \\ & \text { Z } \\ & \text { Z } \\ & \stackrel{3}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \text { Z } \\ & \text { Z } \\ & 4 \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \text { Z } \\ & \text { Z } \\ & i \end{aligned}$
กิ Nin ल్ర														$\begin{aligned} & \underset{N}{x} \\ & \underset{\sim}{4} \\ & \text { m } \\ & \text { ô } \\ & \text { ô } \end{aligned}$
$\underset{\text { 出 }}{=}$	$\begin{aligned} & \text { an운 } \\ & \text { an } \\ & \hline 10 \end{aligned}$	$\begin{aligned} & \text { - } \\ & 5 \\ & \text { n } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & 5 \\ & \text { on } \\ & 0 \\ & 0 \end{aligned}$								$\begin{aligned} & \text { E0 } \\ & \text { دै } \\ & \text { so } \end{aligned}$			
									toty se awes					
\square \square	-7 0	잉	$\begin{aligned} & \text { ö } \\ & \hline 0 \end{aligned}$	$\begin{array}{lll} \text { サi } \\ \text { O } \\ \hline \end{array}$	$\begin{aligned} & \text { ت} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { In } \end{aligned}$	on	$\begin{aligned} & \text { ザ } \\ & \text { İ } \end{aligned}$	$\begin{aligned} & \text { 윽 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathscr{y} \\ & \text { वี } \end{aligned}$	$\begin{aligned} & \text { Ki} \\ & \text { Z } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{0}{4} \end{aligned}$	\％	$\begin{aligned} & 0 \\ & \underset{\sim}{7} \end{aligned}$

NAVSHIPS 91078
AM-215A/U
TABLE 6-4. COMBINED PARTS AND SPARE PARTS LIST (Continued)

TABLE 6-5. CROSS REFERENCE PARTS LIST

JAN (or AWS) DESIGNATION	KEY SYMBOL
CE62C250G	C105
CM20B331M	C101
CP29A1DF503M	C102
CP40C2DF405V	C106
RC30BF274J	R109
RC30BF332J	R108
RC30BF474K	R110
RC30BF513J	R111
RC40BF333J	R106
RC40BF621J	R101
RW30F201	R115
ST22K	S102
6AQ5	V102
6X4	V104
12AU7	V101

NAVY TYPE	KEY SYMBOL
$\begin{gathered} 28032-1 \\ 304573 \\ 304574 \\ 304575 \\ 304576 \\ 491675 \\ 491844 \\ 636060-\mathrm{N} 10 \end{gathered}$	$\begin{gathered} \text { F101 } \\ \text { L101 } \\ \text { T101 } \\ \text { T102 } \\ \text { T103 } \\ \text { XV } 102 \\ \text { XV101 } \\ \text { R107 } \end{gathered}$

TABLE 6-6. LIST OF MANUFACTURERS

$\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$	PREFIX	NAME	ADDRESS
1	CBZ	Allen - Bradley Co.	136 W. Greenfield Avenue Milwaukee 2, Wisconsin
2	CFA	Bussmann Mfg. Co.	University at Jefferson St. Louis 7, Missouri
3	CTR	Chicago Transformer Division Essex Wire Corp.	3501 W. Addison Street Chicago 18, Illinois
4	CAYZ	Dial Light Co. of America, Inc.	900 Broadway New York 3, New York
5	CKB	Hoffman Radio Corp.	3761 S. Hill Street Los Angeles 7, California
6	CJC	Howard B. Jones Division Cinch Mfg. Co.	2460 W. George Street Chicago 18, Illinois
7	CMA	P. R. Mallory \& Co., Inc.	Indianapolis 6, Indiana
8		Molded Insulation Co.	335 E. Price Street Philadelphia 44, Pennsylvania
9	CNA	National Company, Inc.	Malden, Massachusetts
10		Quality Screw Products	112 South 6th Street Montebello, California
11	CTL	Tungsol Lamp Works, Inc.	95 8th Avenue Newark 4, New Jersey

INDEX

SUbJECT

PAGE

D

Data, Reference... 1 -1
Data, Resistance and Voltage... 5-7, 5-8
Description of Unit
1-1
Direct Coupling
2-1
Diagram, Schematic.
5-7, 5-8
5-9, 5-10
Drawing, Outline and Installation

E

Equipment, Controls.. 1-1
$1-1$
$1-1$
$\begin{array}{lll}\text { Equipment, Description.. } & 1-1\end{array}$
$\begin{array}{lll}\text { Equipment, Purpose of... } & 1-1 \\ \text { Equipment, Reference Data....... }\end{array}$
Equipment, Shipping Data... 1 -2
Equipment Similarities.
1-2
Equipment Supplied
1-2

F

Failure Report 5-0

TABLE

5-2
3-2
5-5
5-6

3-3
$5-4$

5-1
5-5
6-7
5-4
5-3

6-5
5-3
PARAGRAPH
\qquad
\qquad
\qquad
\qquad
\qquad

1-2.e.

5-3.c.
\qquad
\qquad
\qquad
\qquad
5-3.
\qquad

1-3.
5-5
..............

5-5
5-6
3-1
1-2.
2-3.
\qquad
\qquad

1-2.a.
1.2.

1-1.
1-3.

1-3.r.
1-1

5-1

G

SUBJECT

FIGURE OR table

I

	Illustrations, List of
	Index
	Impedances, Matching
	Inputs.
	Installation.
	Installation Check
	Installation, Outline and, Drawing.
	Installation, Procedure.

L

List of Tables.. i

M

Maintenance. Maintenance, Corrective.		
		Maintenance, Operator's.
		Maintenance, Preventive
		Matching Impedances

0

Operation.. 4-

Operation, Theory of..
Operator's Maintenance.. 5-1
Operator's Maintenance Chart.. 5-1
Outline and Installation Drawing...-3-0
Output...-1-1.
Output Load Matching... 3-2
P
Parts List.. 6.
Phase Inverter... $\mathbf{2 - 1}$
Power Supply... $\quad \mathbf{1 - 1}$
Preventative Maintenance... . 5 -2
Purpose of Equipment... 1-1

R

Reference Data... 1 -1
Report, Failure.. 5 5-0
5-7, 5-8
S
Shipping Data
1-3
6-1
6-2

PARAGRAPH

S-wNAVSHIPS 91078 AM-215A $/ \mathrm{U}$			
SUBJECT	Page	$\begin{gathered} \text { FIGURE } \\ \text { OR } \\ \text { TABLE } \end{gathered}$	PARAGRAPH
Spare Parts List, Combined Parts and............................	6-1		Section 6
Spare Parts Weight..	6-1	6-1
T			
Tables, List of..	ii	
Theory of Operation.	2-1		Section 2
Trouble Shooting Chart.	5-3	5-2	
Tube Complement.	1-2	1-4
Tube Characteristics	5-6	5-4
Tubes and Cables, Typical...	4-1	3-3	...
\mathbf{U}			
Unpacking...	3-1	3-1.
V			
Vacuum Tube Characteristics.	5-6	5-4
Vacuum Tube Complement..	1-2	1-4
Voltage Data..	5-7, 5-8	5-5
W			
Weights and Dimensions of Spare Parts Boxes..............	6-1	6-1
Weight of Equipment and Equipment Spares................	1-2	1-1
Weight, Shipping of Equipment..................................	1-2	1-3
Weight, Shipping of Spare Parts Boxes........................	6-1	6-2

SUBJECT

Spare Parts List, Combined P
Spare Parts Weight.................
Tables, List of
Theory of Operation.
2-1
Tube Complement $\quad 1-2$
Tube Characteristics... 5 -6
Tubes and Cables, Typical.

U

Unpacking

V

Vacuum Tube Characteristics
,
1-2

6-1
Weight of Equipment and Equipment Spares.
1-2

6-16-2

