INSTRUCTION MANUAL

MODEL 1306
MESSAGE GENERATOR

NOTICE

One diode type used in this equipment is identified in the parts lists and schematic diagrams as General Electric Type 1N4009. In actuality, however, this diode type may have been replaced with Fairchild Types FD100 or FDH600. Both the FD100 and the FDH600 are directly interchangeable with the 1N4009. The Type FDH600 is physically smaller than the Type FD100 and is used on matrix boards where vertically mounted diodes are required.

1306

CHANGE	SECTION	PAGE	FIG.	REFERENCE	CORRECTION
1	$\begin{aligned} & \text { V } \\ & \text { VI } \end{aligned}$		$\begin{aligned} & 5-2 \\ & 6-3 \end{aligned}$	C36	Changed value of capacitor from 820 PF to .002 MF . 7 December 67
2	VI		6-1	Parts list	Changed part number of item 9 to C1303-4 and of item 10 to C1301-5. 22 January 68
3	V I		6-12	L1 and L2	Replaced Li and L2 with two No. 5250, 100 MH Miller chokes (now item 16 on parts 1ist). Added item 17, am't required of 22 gauge, Alpha, natural tubing. 28 February 68
4	VI		6-7	Parts 1ist	Item 1 changed to N0464B. Item 22 removed. Item 21 changed to two, number 2059 Stimpson eyelets. 22 February 68
5	VI		6-4	Parts 1ist	Item 1 changed to N0454B. 23 February 68
6	VI		6-1	Parts list	Item 31 changed to number 267031-7, Amp connectors. Added item 36 : Six polarizing keys, Amp, number 676112. $13 \text { May } 68$
7	V		5-7	R11	R11 should be 27 K . 6 June 68

1306

CONTENTS

SECTION PAGEIINTRODUCTION1-1
II INSTALLATION 2-1
III OPERATION 3-1
IV THEORY OF OPERATION 4-1
V SCHEMATIC DIAGRAMS 5-1
VIASSEMBLY DRAWINGS6-1

ILLUSTRATIONS

FIGURE
Mode1 1306 Message Generator
Output Signal Connections
Universal Speed Chip Board (Bottom View)
Component Side View Of Matrix Board N0453
Block Diagram, Model 1306
SN7490N Decade Counter Logic
SN7441N BCD-To-Decimal Decoder Logic
Schematic, Time Base Circuits
Schematic, Parallel-To-Serial Shift Register
Schematic, Matrix Scanning Circuits
Schematic, Matrix Circuits
Schematic, Optional Isolated Polar Keyer
Schematic, Optional Isolated Neutral Keyer
Schematic, Low Level Power Supply
Schematic, Optional Loop Power Supply
Wiring Diagram, Model 1306
Assembly, Model 1306
P。C. Board Assembly, Time Base Circuits
P.C. Board Assembly, Parallel-To-Serial Shift Register
P.C. Board Assembly, Matrix Scanning Circuits
P.C. Board Assembly, Matrix Circuits
P.C. Board Assembly, Optional Isolated Polar Keyer
P.C. Board Assembly, Optional Isolated Neutral Keyer
P.C. Board Assembly, Low Level Power Supply

ILLUSTRATIONS (cont.)

FIGURE

$6-9$	Assembly, Optional Loop Power Supply
$6-10$	Assembly, Switch And Lights Bracket
$6-11$	Assembly, Switch And Transformer Bracket
$6-12$	Assemb1y, Output Filter

Figure 1-1. Mode1 1306 Message Generator

SECTION I

INTRODUCTION

1.1 PURPOSE OF EQUIPMENT

The Model 1306 Message Generator is designed to serve as a continuous source of standard 5-level teleprinter code for testing the operation and quality of telegraph terminal systems. The character sequence can be wired to provide a message length of 1 to 80 characters with individual characters tailored to customer requirements.

1.2 PHYSICAL DESCRIPTION

The Model 1306 is an all solid-state device containing five plug-in printed circuit boards housed in an aluminum cabinet 19 inches wide, 18 inches deep, and $1-3 / 4$ inches high. The top cover of the cabinet is removable for maintenance and troubleshooting. Front panel items include two indicator lamps, a mode switch, a power switch, and a slot for accepting miniature plug-in printed circuit boards called "speed chips." The speed chip is the means by which the output baud rate is selected. A separate speed chip is required for each baud rate.
1.3 SPECIFICATIONS

A list of specifications for the Model 1306 Message Generator is contained in table $1-1$.

Table 1-1. Specifications, Model 1306
Output Code Standard 5-1evel teleprinter code, 7.0 or 7.5 units in length

Output Speed. 50 to 1600 wpm, selectable by front panel speed chip

Message Format. Customer option
Message Length. Up to 80 characters
Output Circuit. Provides polar logic level signal with a minimum of ± 6 volts into 1000 ohms

Optional Output Circuits. . Dry contacts of:

1. A non-isolated 60 ma neutral keyer 2. An isolated 60 ma neutral keyer 3. An isolated 60 ma polar keyer

Table 1-1. Specifications, Model 1306 (cont.)

2.1 UNPACKING AND INSPECTION

Carefully unpack and remove the Model 1306 Message Generator from its shipping container. Inspect the unit for damage. If any damage is found, file a written claim with the shipping agency. Send a copy of this claim to Frederick Electronics Corporation, P.O. Box 502, Frederick, Maryland 21701.

2.2 POWER REQUIREMENTS

The Model 1306 is normally shipped ready to operate on 105-125 vac, $47-63 \mathrm{~Hz}$. The unit will also operate on $210-250 \mathrm{vac}, 47-63$ Hz b repositioning an internal 115/230-volt slide switch. This switch is mounted inside the unit on a bracket which also mounts transformer Tl. The switch is locked in the $115-v o l t$ position. To change to the 230-volt position, proceed as follows:

1. Remove power plug from $a \cdot c$ outlet.
2. Remove top cover of Model 1306.
3. Locate switch and loosen screw holding locking plate.
4. Slide switch to $230-v o l t$ position and tighten screw. The unit will now operate on 230 -volts a-c.
5. Replace cover and insert power plug into 230 vac outlet.

2.3 MOUNTING

The Model 1306 is designed to mount in a standard 19-inch equipment rack. A vertical rack space of $1-3 / 4$ inches is required. If slide mounting is desired, use Chassis Trak part C-300-S-20.

2.4 OUTPUT SIGNAL CONNECTIONS

Figure 2-1 shows the output signal connections for the Message Generator Make those connections that apply to particular operating requirements and ignore those that do not apply.

Refer to detalls 1 and 2 for instruction in the mothods of assembling cable plugs Allow sufficient slack in the cabling to avoid strain on leads or connectors and to allow the unit to be fully withdrawn when slide mounted.

241 HIGH LEVEL CONNECTIONS TBI
When an optional High Level Keyer is plugged in, the contacts of the keyer's electronic relay will appear at TB1. Under this con. dition, pin 4 is the common or swinger contact, pin 3 is closed to pin 4 for mark, and pin 5 is closed to pin 4 for space. Neutral

MODEL 1306
rear panel.

Figure 2-1. Output Signal Connections (C1345)

Detail 1. Connector Pin Assembly

As shown above, the complete cable plug is formed by inserting the lead wire and pin assemblies into the proper holes in the rear of the nylon connector body. A small screwdriver blade or similar tool may be used to assure full pin seating by placing the tool along the wire and pressing end-wise on the shoulder formed by tabs wrapped around the wire insulation. Proper seating obtains when the barbs on the pin sides have expanded beyond the hole diameter as viewed from the mating side of the connector plug.

Removal of pins from the connector body for replacement or wiring alterations may be facilitated by the tool listed below. The tool works by collapsing the retaining barbs on a pin so that it may be pulled out.

A hand operated crimping tool is available and may be desirable whenever large numbers of connections are required.

The following items are manufactured by:
Molex Products Company 5224 Katrine Ave. Downers Grove, I11. 60515

Removal tool
Hand crimping tool
plug connector body
Male connector pin
Female connector pin

Part Numbers: HT-1010-2B
HT-1031-C
1360 - P
1380
1381
keyers use only pins 3 and 4.. The keyer outputs are not polarity sensitive, but an EXTERNAL CURRENT LIMITING RESISTOR MUST BE USED to set loop current to a value below 100 ma. The output keyer is protected with a $1 / 10$ ampere fuse in both the mark and space leads. When driving an inductive load, an additional appropriate resistorcapacitor arc suppressor should be used across the electronic relay contacts.

The optional telegraph Loop Dower supply output appears at pins 1 and 2, with pin 2 as the positive terminal. The power supply is capable of continuously supplying a maximum of 100 ma . The voltage may range from 120 volts (full load) to 150 volts (open circuit).

CAUTION

> The optional telegraph Loop Power Supply is not protected by internal current limiting or fusing. As a result, a continuous short circuit or current overload may cause equipment damage before the primary power fuse functions. Therefore, check all connections before applying primary power

When both high level and low level connections are made, it is desirable to keep the cabling separate to avoid introducing noise into the low level circuits. Either physical separation or shielding would be satisfactory.

2.4.2 LOW LEVEL CONNECTIONS - J6

The logic level output at pin 7 is a polar signal which alternates between ± 10 volts (open circuit), and which provides at least a ± 6 volt level when loaded with 1000 ohms to ground (pin 12). Mark is normally the negative level.

2.5 SELECTING OPERATING MODES

2.5.1 STEP AND BURST MODES

The step and burst circuits are controlled by an external signal applied between pin 8 or pin 11 and ground (pin 12) of connector J6. The required voltage for either circuit is +6 volts minimum. This voltage may be supplied externally from a neutral or polar logic level source, or, if desired, the positive Model 1306 power supply level may be switched by remote switch or relay contacts. The positive power supply lovel is available at pin 6 of $J 6$. The step or burst pulse duration must be at least one millisecond.

If the step mode is selected, the burst circuit must be clamped on by connecting a jumper from pin 6 to pin 11 of $J 6$. If the burst mode is selected, pins 6 and 8 must be jumpered. The
front panel MODE switch remains in the STEP position for both burst and step operation. Refer to details 1 and 2 for connector fabrication data.
2.5.2 POSITIVE OR NEGATIVE MARK LOW LEVEL OUTPUT

1. Remove Output Register board N0375A from Model 1306.
2. Locate - MARK + eyelets (adjacent to TP1).

NOTE

For a negative mark, perform step 3; for a positive mark, perform step 4.
3. Bend and insert a U-shaped jumper between center eyelet and - eyelet for negative mark (EIA) output.
4. Bend and insert a U-shaped jumper between center eyelet and + eyelet for positive mark output.
5. Solder eyelets selected in step 3 or 4 above and clip excess lead length.
6. Replace board N0375A in Mode1 1306.

2.5.3 1.5-UNIT STOP BIT

There are two methods of obtaining a 1.5 -unit output stop bit: The first method requires wiring of low level connector J6; the second method requires wiring of Output Register board N0375A.
a. J6 Connector Wiring

1. Refer to details 1 and 2 for connector fabrication data.
2. Connect a jumper from pin 9 to pin 12 .
b. Output Register Board Wiring
3. Remove register board N0375A from Model 1306.
4. Locate $\frac{1}{2}$-UNIT STOP eyelets. Bend and insert a Ushaped jumper between eyelets.
5. Solder both eyelcts and clip excess lead length.
6. Replace board N0375A in Model 1306.

2.6 OUTPUT RATE SELECTION

The Model 1306 is capable of operating at speeds up to 1300 baud. The different baud rates are obtained by means of miniature printed circuit boards (called speed chips) which plug into the time base boarl through the front panel of the unit. Each unit is shipped from the factory with two speed chips, one of which is prewired for a user-specified baud rate, and one which is left unwired for user's selection and completion. The unwired or universal speed chips may
be wired for any baud rate desired. When inserting a speed chip, make sure that the side marked TOP is facing upward.

The time base circuit consists of a 38.4 kHz crystal oscillator and a 10 -stage binary counter. The binary counter divides the oscillator output. Thus, by sampling individual or combined counter stage outputs, any integral division from the basic oscillator frequency to $1 / 1024$ of the frequency may be obtained.

The speed chips provide the means of setting a particular binary division rate. Factory-wired speed chips are available for all stand ard telegraph rates. (See table 2-1.) In the absence of a speed chip, the unit operates at 37.5 baud. With data rates for which there is no standard chip, a universal speed chip can be wired to provide any baud rate within the range of the equipment.

2.6.1 UNIVERSAL SPEED CHIP

An illustration of the universal speed chip is shown in figure 2-2. The speed chip has a system of hole-pairs numbered so that each represents a different binary division factor in the time base circuit. Hole-pair 1 and hole-pair 16 are identified in figure 2-2. Notice that the common track connects to one hole of each hole pair. A particular binary division factor is selected by soldering a small U-shaped wire between the two holes of a numbered pair. For example, if a division factor of 86 is required, jumper wires are connccted at hole pairs $2,4,16$, and 64.

The division factor related to a specific rate is found from the formula:

$$
\text { Division Factor }=\frac{\text { Crystal Frequency in } I l z}{\text { Desired Baud Rate }} \times 1 / 2
$$

Once the division factor is found, the proper hole-pairs to be wired can be determined. An example of this process is given for a baud rate of 200 .

1. Determine division factor.

$$
\text { Division Factor }=\frac{38,400 \mathrm{~Hz}}{200 \mathrm{Baud}} \times 1 / 2=96
$$

NOTE

Since the time base circuitry overall division ratio is necessarily even, any fractional rosult obtained from the formula must be reduced or increased slightly to produce a valid division factor.

Table 2-2. Factory Wired Speed Chips

Baud Rate	Part Number ClI 94-
45.5	1
50.0	2
56.9	3
74.2	4
75.0	5
110.0	6
135.0	7
150.0	8
300.0	9

Figure 2-2. Universal Speed Chip Board (Bottom View)
2. Determine which binary counter stages to use.
a. Select the next binary division factor which is less than 96. This factor (64) is part of the answer.
b. Subtract 64 from 96. The result (32) is the remaining part of the answer. Therefore, the binary counter divide-by-64 and divide-by-32 outputs require speed chip jumpers for 200 baud operations.

2.7 MATRIX BOARD WIRING

Matrix characters are assigned to the board by inserting a type 1N4009 diode at the proper location for each mark bit of a character. A sufficient quantity of these diodes is supplied with each unit to allow the user to change characters. Consult the code chart in table 2-2 for the mark and space bits comprising a character. The matrix board has five character-bit diode positions and one reset jumper position for each character. (Refer to figure 2-3.) The reset jumper is inserted only at the end of the message, and care must be used to insure that only one jumper is installed per board. All wiring changes are confined to matrix board N0453.

2.7.1 INSERTING A NEW CHARACTER

1. Remove matrix board $N 0453$ from Model 1306.
2. Determine position of new character in message sequence. Locate proper scan line. (Lines 1 through 80 correspond to characters 1 through 80.)
3. Unsolder and remove any existing diodes connected to scan line.
4. Refer to selected character in table 2-2 and determine which output bits are mark. The mark bit lines must have diodes inserted. For example, character C must have diodes inserted between selected scan line and bit lines 2,3 , and 4. (Refer to figure 2-3.)
5. Bend and insert diodes where indicated. Cathode end of diode (marked with black band) must be toward bit line eyelets.
6. Solder both ends of diodes and clip excess lead length.
7. This procedure completes the wiring of one new character. Repeat procedure for each additional new message character.
8. Replace matrix board N0453 in Model 1306.

2.7.2 INSERTING A RESET JUMPER

1. Remove matrix board N0453 from Model 1306.
2. Unsolder and remove existing reset jumper wire
3. Determine position of last character in message sequence. (Lines 1 through 80 correspond to characters 1 through 80.)
4. Bend and insert an appropriate wire jumper between last character scan line and reset line.
5. Solder both ends of jumper and clip excess lead length.
6. Replace matrix board N0453 in Model 1306.

Figure 2-3. Component Side View of Matrix Board N0453

SECTION III

OPERATION
3.1 GENERAL
The Message Generator is ready for operation after installationis completed as described in section II of this manual. Table 3-1lists the functions of all controls and indicators.
Table 3-1. Controls And Indicators, Model 1306
NAMEREFERENCENUMBER
FUNCTION
POWER ON switch S1
POWER ON 1amp DS2
SPEED slot
OUTPUT MARK 1amp DS1
MODE switch S2

Controls a-c power to Message Generator

Lights to indicate that $a-c$ power is applied to equipment

Accepts plug-in speed chips for desired output baud rates

Indicates a mark output

1) П: Provides reversals output, i.e., alternate mark and space
2) MARK: Provides steady mark output
3) STEP: Allows user to control character readout of Message Generator
4) RUN: Provides continuous programmed message output

3.2
 OPERATION

1. Insert proper speed chip. (See paragraph 2.6 for chip wiring information.)
2. Set MODE switch to desired position.
3. Set POWER switch to ON position.

SECTION IV

THEORY OF OPERATION

4.1 FUNCTIONAL DESCRIPTION

A functional block diagram of the Model 1306 is shown in figure 4-1. For the purpose of discussion, assume that the MODE switch is in the STEP position and a step level is applied to the start-stop flip-flop via the step gate. In the set state, the start-stop flipflop sets the parallel-to-serial register START flip-flop to space, sets the transfer flip-flop, and removes reset from the time base divider circuits. The latter action allows the time base to generate clock pulses at a baud rate determined by a front panel plug-in speed chip. The output clock pulses are applied to various circuits including the transfer flip-flop and the parallel-to-serial register.

The first clock transition resets the transfer flip-flop and thereby reads the first matrix character into the register. Onehalf bit time later the clock pulses begin shifting data out of the register. As the register releases the data to the output circuits, each flip-flop is successively set to the space state by a gate attached to the INDEX 2 flip-flop. When the index 1 level (stop bit) has advanced to the START flip-flop, the all space condition of the register is recognized by a sense empty gate and used to set a register empty flip-flop.

The register empty flip-flop enables the start-stop flip-flop reset gate, enables one input of the index ANI) gate, and disables the step gate. One-half bit time later the clock signal resets the start-stop flip-flop. This action advances the scanning circuits, enables the second input to the index AND gate, and clamps the register START flip-flop to the mark state. Notice that the time baso continues operation due to the effect of the register empty flipflop on the enable clamp. The index ANI gate sets a mark into the INDEX 1 flip-flop and resets the stop flip-flop. The former action disables the sense empty gate which, in turn, opens both register empty flip-flop reset gates.

The 1 -unit reset gate is normally used to reset the empty flipflop one-half bit time after the start-stop flip-flop is reset. The l-unit gate is disabled by inserting a jumper between the gate and ground, In this manner, the 1.5 -unit gate and the stop flip-flop reset the empty flip-flop In operation, one bit time after reset of the start-stop flip-flop, the stop flip-flop is set by the clock signal. The resultant output from the stop flip-flop is coupled through the 1.5 -unit gate and used to reset the cmpty flip-flop. Jhe empty flip-flop then releases the time base enable clamp and allows the time base divider to reset The next step pulse input initiates a new sequence and reads the second matrix character from the unit.

Figure 4-1. Block Diagram, Model 1306
(D1211)

In the RUN MODE a continuous level is supplied to the step gate and the matrix characters are continuously read from the unit. Burst mode operation is similar to the RUN mode operation with the exception that readout stops after one complete message sequence.

4.2 INTEGRATED CIRCUIT DISCUSSION

The Model 1306 character scan line decade counter circuits incorporate Motorola SN7490N Decade Counter and Texas Instruments SN7441N BCD-to-Decimal Decoder integrated circuit packages. Both packages are discussed in the following paragraphs.

4.2.1 SN7490N DECADE COUNTERS

The SN7490N Decade Counter (figure 4-2) consists of four, dualrank, master-slave flip-flops connected together internally to provide a divide-by-two counter and a divide-by-five counter. Output 1 (pin 12) is from the divide -by-two counter; outputs 2,4, and 8 (pins 9,8 , and 11) are from the divide-by-five counter. Since the divide-by-two section is not internally connected to the divide-by-five section, the decade counter may be utilized in several different modes. For purposes of this discussion, however, only the BCD arrangement is applicable.

In order to connect the two sections for $B C D$ counter operation, the $B D$ (pin 1) input must be externally connected to the 1 output. The input count is then applied to the T input (pin 14), and the countdown sequence is as shown in the truth table of figure 4-2. Gated direct reset inputs are available for resetting all outputs to the logical zero state (R_{0} at pins 2 and 3), or to the BCD count of 9 (R_{9} at pins 6 and 7). These direct reset inputs override any count inputs applied to the counter.

4.2.2 SN7441N BCD-TO-DECIMAL DECODER

The SN7441N Decoder consists of ten standard TTL (TransistorTransistor Logic) gate circuits and ten output driver circuits. The BCl input connections are compatible with the SN7490N Decade Counter outputs. A truth table and logic symbol for the decoder are shown in figure 4-3.

4.3 CIRCUIT DESCRIPTION

4.3.1 TIMI: BASE CIRCUITS

Refer to figure 5.1. The time base circuits consist of a crystal oscillator, a start-stop flip-flop, start-stop control circuits, and a divider and associated speed chip. Time base oscillator stages Q1 and Q2 form a series resonant crystal oscillator which operates continuously at a 38.4 kHz rate. The oscillator signal at the emitter of 02 is coupled to the base of Q3. The collector of QJ drives amplifier Q7 which, in turn, drives the first stage

INPUT

Figure 4-2. SN7490N Decade Counter Logic

TRUTH TABLE

INPUT				
OUTPUT				
ON \ddagger				
0	C	B	A	0
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9

\ddagger ALL OTHER OUTPUTS ARE OFF

Figure 4-3. SN7441N BCD-To-Decimal Decoder Logic
of the divider. Start-stop flip-flop Q33-Q34 controls operation of the divider circuits. The flip-flop is set in the STEP (includes step and burst operation) and RUN modes to the Q33 on-Q34 off state by a positive level at pin 6 . In the reversals ($\square \perp)$ mode the flipflop is clamped to the set state by a ground connected to the collector of Q3.3.

The collector of stage Q34 keeps the divider stages reset by controlling enable clamp 029. (Q29 may also be controlled by a register empty level.) When the flip-flop is reset, Q29 is turned off and thus holds output flip-flop stage Q31 off. At the same time, O29 holds on both trigger amplifier Q30 and reset clamp Q28. Turnon of 228 forces one-shot stage 29 to turn off by grounding the junction of R59-R61. The resultant positive collector level of Q9 is connected to onc emitter of each divider stage, thus forcing that stage to be turned off.

The diviler stages consist of transistors Q10 through Q27. Collector levels of stages Q10, Q12, Q14, Q16, Q18, Q20, Q22, Q24 and (22 can be sampled individually by a plug-in "speed chip." In this manner, a specific division factor can be obtained. In operation, when a given division factor is recognized, the plug-in speed-chip sets the onc-shot through diodes CR30-CR31. The oneshot then rescts the divider and drives the output flip-flop.

For purposes of discussion, assume that the speed chip selects a division factor of 128 , and that the start-stop flip-flop has just been set. lach divider stage has been previously reset to the even-transistor-on and odd-transistor off state (Q10 on-Q11 off, etc.). Setting the start-stop flip-flop releases the reset level and allows the diviller to count the oscillator frequency. When the speed chip is wired for a division factor of 128 , the collector output of Q22 is connccted to the input of reset one-shot Q8-Q9. When a count of 64 is roached, 022 is turned off, CR23 is back-biased, and the base of Q8 is driven positive through R56, CR30, and CR31. This action sets the one-shot to the $Q 8$ on-Q9 off state, and the positive collector level of Q9 resets the divider and turns on trigger amplifier $Q 30$.
'The zero-going output of Q30 drives output flip-f1op Q31-Q32. This flip-flop divicles the one-shot pulses by two, thereby producing a total crystal oscillator division factor of 128 . Resetting the divider returns Q22 to the conducting state and thus removes the positive level from the base of Q8. One-shot Q8-Q9 relaxes after approximately one-half an oscillator cycle.

After six consecutive divider output flip-flop cycles, the parallel-to-serial register circuits remove the static set level from pin 6 and sinultaneously enable (ground) the reset gate at pin 7 of the start-stop flip-flop. The reset gate clock input connects to pin l of the output flip-flop and the next zero-going transition (onehalf clock time later) resets the start-stop flip-filp. Reset of
the start-stop flip-flop cannot immediately reset the divider circuits because clamp Q29 is held on by a register empty level. One-half clock time later (one clock time if 1.5 -unit stop bit option is selected), the register empty flip-flop and divider circuits are reset. During the run mode, the divider circuits operate continuously because the start-stop flip-flop is set (by step level at pin 6) coincident with reset of the register empty flip-flop.

4.3.2 PARALLEL-TO-SERIAL SHIFT REGISTER

Refer to figure 5-2. The parallel-to-serial shift register consists of an eleven stage register (only eight stages are used), a sense empty gate and associated register empty flip-flop, a transfer flip-flop, a stop bit flip-flop, an index AND gate, and a step circuit Transistor circuits Q9 through Q18 form the 5 register stages which accept parallel data bits from the matrix circuits. Data is set into the register each time the transfer flip-flop is reset by the incoming clock signal.

Two index f1ip-flops (Q19-Q20 and Q21-Q22) are provided: index 1 (Q19-Q20) inserts the character stop bit and index 2 fills the register with spaces following readout. Start stage Q1-Q2, which is set by the start stop flip-flop, inserts the character start pulse.

When the register is at rest, the transfer and register empty flip flops are in the reset state and the stop bit flip-flop is in the set state. In addition, the shift register is set as follows: INDEX 2 is space, INDEX 1 is mark, the five data bit stages are space, and START is mark. In operation, when a positive step level is applied to pin 6 it is inverted by Q3l and used as one input to step gate Q36. The other gate input comes from the register empty flipflop which is reset at this time. Thus, the gate applies a positive set level to the time base start-stop flip-flop.

In the set state, the start-stop flip-flop applies a ground level to the register at pin 9. This level sets the transfer fin flop and inserts a space into the register start flip-flop. Normal operation of the time base also begins at this point. As a result, when the first clock transition appears at pin 13 (phase two), the transfer flip-flop is reset and matrix data is read into the register. One-half bit later the clock signal reverses to a positive polarity and provides the first register shift pulse via shift gate Q24. This action shifts the first data bit into the START stage. Successive shift pulses move the data out of the register serially.

When the INDEX 1 bit (mark) has advanced to the START stage, the previous stages have been shifted to the space state, Sense empty gate Q23 recognizes this condition by turning off. The positive output of the sense empty gate sets register empty flip-flop Q27 Q28 to the Q27 on and Q28 off state. The empty flip-flop then performs the following functions: emitter-follower Q26: (2) enables gate (through pin C), (3) enables (1) disables step gate Q36 via the start-stop flip-flop reset one input of the index $A N D$ gate
(CR38); (4) disables the shift gate (Q24); (5) clamps time base clamp Q29 to the on state (through pin 8). One-half bit later, the startstop flip-flop is reset. (Notice that enable clamp Q29 allows the time base divider to continue running even though the start-stop flip-flop is reset.)

Reset of the start-stop flip-flop clamps the START stage of the register to mark and enables the second index AND gate input (CR31). The index AND gate then sets INDEX 1 (stage Q19-Q20) to the mark state (Q19 off-Q20 on) and sets the stop bit flip-flop to the Q32 off-Q33 on state. Setting a mark into INDEX 1 causes the sense empty gate output to return to ground and thus enable the register empty flip-flop reset gates.

The register empty flip-flop is reset by one of two gates to provide either a 1 or a 1 - f it stop level. Normal operation uses gate CR36-CR37, R123-R124-R125, and C34 to provide a 1-unit stop level. Since the l-unit reset gate is connected to phase two of the clock signal, the empty flip-flop is reset one-half bit after reset of the start-stop flip-flop or 1 bit after recognition of an empty register. The l-unit gate can be disabled to allow operation of the 1.5 -unit gate by inserting a jumper from the junction of R124R125 to ground. (See paragraph 2.5.3.)

The 1.5 -unit reset gate involves the use of stop flip-flop Q32.Q33. The gate consists of C33-R116-CR35 and operates on set of the stop flip-flop. The latter flip-flop which is reset when the index AND gate is enabled, is set by the next zero-going clock transition at pin 13. At the end of a character readout, the register empty flip-flop ls sct. This action allows reset of the start-stop flipflop following a one-half bit delay (clock at pin 13 is zero at this time). The two flip-flops enable the index AND gate and thus provide reset of the stop flip-flop. The latter flip-flop is then set on the next zero-going clock transition (l bit later). Thus, the total stop bit time of the register is 1.5-units.

At this point, the register has completed a character readout sequence and rests in the conditions described initially. If the front pancl MODE switch is in the RUN position, the register will begin a new cycle following reset of the register empty flip-flop. In the reversals mode ($\square \perp$), the input to the START stage of the register is disconnected from the preceding stage (pin 10) by the lollli switch. This input is then connected through the switch to its 01 collector output (pin 2l). Connected in this manner, the start flip-flop will alternately toggle between mark and space when draven by the clock signal. In order to provide a continuous clock signal, the MODE switch aiso clamps the start-stopfip-flop to start by grounding the collector of Q33. Sense empty gate Q23 is also grounded at pin W during thas time to prevent the register empty flip flop from blocking shift gate Q24. Placing the MODE switch in the MARK position disables the start-stop flip-flop set imput and thereby disables all register operations.

The register serial output is connected through either a + MARK or a - MARK jumper and pin 22 to low level keyer input pin 3. In addition, pin 21 of the START flip-flop is connected directly to the optional high level keyer input.

The low level keyer consists of inverter Q37, driver Q40, and complementary emitter-follower Q38-Q39. A zero-level applied at pin 3 turns off Q37 and thereby removes forward bias from Q40. As Q40 turns off, the center of voltage divider R138-R139 swings negative. The regative level is conveyed to output pin 4 by emitter-follower Q39. A positive level at pin 3 turns on Q37 providing forward bias for Q40. This action drives the voltage divider positive and emitterfollower Q38 supplies the level to pin 4 . The keyer output is connected to pin 7 of rear panel low level connector $J 6$ and to the front panel OUTPUT MARK lamp driver circuit.

4.3.3 MATRIX SCANNING CIRCUITS

Refer to figure 5-3. The matrix scanning circuits consist of a units section and a tens section. Since both sections are basically similar in operation; only the units section is discussed. The units section consists of an SN7490N decade counter I.C. package, an SN7441N BCD-to-Decimal decoder I.C. package, and ten matrix driver stages. In operation, a drive level is applied to the decade counter T input each time the start-stop flip-flop is reset. Thus, each time a character is read from the register, the counter is advanced and a new matrix character is available to the register.

The decade counter output levels are applied to the BCD-toDecimal decoder for subsequent conversion to decimal outputs. Each decimal (0 through 9) output leve1 is inverted by an individual transistor stage (Q1 through Q10) before being connected to the matrix circuits. After each character is read from the register, the decade counter is advanced and the next decimal line is activated. This action reads the next consecutive character from the matrix. In addition, decimal line number 9 drives the tens decade counter input. As a result, the tens counter is advanced once every ten characters and each advancement activates a new section of the matrix.

The matrix has a reset line which can be wired to provide reset of the decade counters at any point from 1 through 80 characters. For example, the matrix reset could be wired to scan line 58 , in which case the output message would be 58 characters in length. This reset line connects to pin 13 of the scanning circuit board; when activated, the line turns off Q36. The positive pulse from Q36 is applied to the zero reset inputs of both the units and tens decade counters. In addition, a reset output at pin 11 provides reset of the burst flip-flop. Reset stage Q36 has an additional input from startup preset clamp Q37 to provide reset of the two counters when $a-c$ power is first applied to the unit.

Refer to figure 5-4. The matrix circuits consist of a number of diode-resistor networks arranged in eight scan line groups. Each group consists of ten gates made up of two diodes and a resistor. One input of each gate is connected to a single tens decimal line. For example, diodes CR11 through CR20 all connect to decimal line 1 of the tens counter. The second input of each gate is connected to successive decimal line outputs of the units decade counter, i.e., 0 line to CR51, line 1 to CR52, line 2 to CR53, and so on through 9. The tens decade counter is advanced on the trailing edge of the ninth units decimal line. Wired in this manner, the first matrix group will read out characters 1 through 10 sequentially. The trailing edge of the ninth units decimal line advances the tens counter and the next gate group is activated. The units decimal lines now read out characters 11 through 20 , and so on to a maximum of 80 characters.

Readout of a given character by a scan line gate is accomplished by connecting diodes between the gate output and any one of 5 bit lines. A diode connected between the gate and a bit line provides a mark output: no diode provides a space output.

The matrix bit line outputs are connected to a set of output driver circuits (located on board N0454, figure 5-3). The driver circuits consist of transistors Q11 through Q25. Each driver consists of three transistor stages. The first transistor stage is an emitter-follower which simultaneously drives two output stages. One output stage connects to rear panel output connector J6 while the other stage connects to the parallel-to-serial register input. For example, Q15 is the emitter-follower, Q14 drives the register, and Q16 drives J6.

4.3.5 STEP AND BURST CIRCUITS

Refer to figure 5-7. The step and burst circuits consist of a step inverter, a step gate, and a burst flip-flop. The step gate receives an input from both the step inverter and the burst flipflop. Step inverter Q2 turns on when a positive step level is applied to rear panel connector J6-6. The resultant zero collector level allows step gate $Q 1$ to turn off and thereby provide a step level to the output register step control circuits. The burst flip-flop set input (Q3) is clamped at this time and thus has no control over the step gate. A single character is read from the matrix each time a new step pulse is applied to the circuit.

During burst operation the step inverter is clamped on and thus permits the burst flip-flop (Q3-Q4) to control the gate. The burst flip-flop is set by a positive level from J6-11 and is reset by the scanning circuit decade counter reset level. In the set state, flip-flop stage Q3 is on and step gate Q1 is off, providing a step level to the shift register step control circuits. Each burst input reads a complete message sequence from the matrix circuits,

4.3.6 OPTIONAL HIGH LEVEL KEYERS

4.3.6.1 Isolated Polar Keyer. Refer to figure 5-5. The isolated polar keyer consists of a threshold detector, a gated RC oscillator, a sace keyer, a mark keyer, and an isolated power supply.

A positive mark logic level input switches threshold detector circuit Q1 through Q4 to the Q1 off and Q4 on state. This action gates on RC oscillator Q5 through Q8. The oscillator output is approximately 50 kHz to coupling transformer Tl. The Tl output to the mark channel causes $Q 9$ and $Q 10$ to switch on and off alternately at the 50 kHz rate. Capacitor C6 filters the output of Q 9 and Q10 to provide a continuous zero level at the input to Q11. The space channel (Q13-Q14) functions the same as the mark with the exception that the output is driven positive rather than zero. Transistors Q11 and Q15 invert the two levels and respectively provide a positive signal to Q12 and a zero signal to Q16.

In the mark circuit, the positive output of Q11 turns on loop keyer Q12, thus allowing loop current to flow through the bridge circuit and Q12 to the common side of the loop. In the space circuit the opposite action occurs: Q16 is turned off, thereby preventing loop current flow.

The above conditions are reversed when the input is a space logic level. The space circuit will then pass loop current and the mark circuit output will be off.

The isolated power supply, consisting of T2, CR11 through CR16, and C1 through C3, operates from a 16 -vac source and provides the keyer circuit with the proper operating voltages.
4.3.6.2 Isolated Neutral Keyer. Refer to figure 5-6. The isolated neutral keyer consists of gated RC oscillator Q1-Q2, coupling transformer T1, mark keyer circuit Q 8 through Q 11 , and an isolated power supply. The oscillator is gated on when a positive mark level is applied to pin C of the keyer. The oscillator free-run frequency of approximately 65 kHz is coupled by transformer T 1 to the mark keyer circuit.

The transformer-coupled oscillator signal is applied to the base of Q8, and Q8 follows this signal, turning on and off at the 65 kHz rate. The resultant collector output of Q 8 is filtered by C10 and used as a static turn-off level for Q9. Turn-off of Q9 forward biases emitter-follower Q10, and Q10, in turn, forward biases loop keyer Q11. This latter stage then allows loop current to flow between the output terminals. When the input signal is a space, loop keyer stage Q11 turns off and thus inhibits current flow between the two terminals. Keyer Qll is connected to the output terminals through diode bridge network CR13 through CRI6. This ar rangement insures that the proper polarity is always connected across Q11, regardless of the connected input polarity.

The isolated power supply consists of power transformer T 2 , diode rectifier CR11, and an RC filter circuit. The primary voltage of 16 vac is supplied to $T 2$ by secondary windings of the Model 1306 power supply transformer.

4.3.7 POWER SUPPLIES

4.3.7.1 Low Level Power Supply. Refer to figure 5-7. The low level power supply components are mounted on power supply board N0489A. The supply consists of the following: 115/230 vac switch S3; transformer T1; full-wave diode bridge rectifier CR1 through CR4; positive and negative 12 vdc filter sections R1-Cl and R2-C2; fullwave rectifier CR5-CR6; and positive 5 vdc filter section R3-L8-C3.
4.3.7.2 Optional Loop Power Supply. Refer to figure 5-8. The optional loop power supply is constructed as a plug-in assembly that mounts on the Model 1306 main chassis. The supply consists of transformer Tl, full-wave bridge rectifier CR1 through CR4, and filter network R1, C1, and R2. The supply will provide up to 100 ma at 130 vdc .

SECTION V

SCHEMATIC DIAGRAMS

Figure 5-1. Schematic, Time Base Circuits

Figure 5-2. Schematic, Paralle1-To-Serial Shift Register (JOB 3/82) (D1049A)

Figure 5-3. Schematic, Matrix Scanning Circuits
(D1167B)

Figure 5-4. Schematic, Matrix Circuits

1. ADD JUMPER FOR 2OMA OR GOMA OPERATION ONLY WHEN NOT PROVIDED EXTERNALLY.
2.P.C.BOARD REF. NO327
3.P.C. BOARD ASS'Y DOBZ2,SHEET 3
2. UNLESS OTHERWISE SPECIFIED

DIODES ARE IN400Z
RESISTORS ARE $1 / 4 \mathrm{~W}, 10 \%$

Figure 5-5. Schematic, Optional Isolated Polar Keyer

Figure 5-6. Schematic, Optional Isolated Neutral Keyer

Figure 5-7. Schematic, Low Level Power Supply (C1329A)

JUMPERS FOR 115 VAC OR 23OVAC
OPERATION INSTALLED ON MATING ASSY.
(1) RED WIRE 4 IN.LONG.

PURPLE WIRE $31 / 4$ IN, LONG,
BOTH WIRES 22GA, STRIP
I/4 IN BOTH ENDS TIN TIP ONE END.

Figure 5-8. Schematic, Optional Loop Power Supply (B1102A)

Figure 5-9. Wiring Diagram, Model 1306 (JOB 3/82)
(D1149D)

SECTION VI
ASSEMBLY DRAWINGS

Figure 6-1. Assemb1y, Mode1 1306

Figure 6-1. Parts List
(D1146A)

[^0]Figure 6-2. P.C. Board Assembly, Time Base Circuits
(D1042)

Figure 6-2. Parts List (D1042)

Figure 6-3. P.C. Board Assembly, Paralle1-To-Serial Shift Register (JOB 3182)

Figure 6-3. Parts List

Figure 6-4. P.C. Board Assembly, Matrix Scanning Circuits

Figure 6-4. Parts List
(D1166B)

Figure 6-5. P.C. Board Assembly, Matrix Circuits

Figure 6-5. Parts List
(D1169C)

notes.
\therefore SCHENATIC REF DOB23, SHEET 3
12) WEN $1955^{\circ} 15$ USEO ON MODEL

1301 BOG, DO NOT WSTALL ITEMS
2 GS; SHEAR BOARD TO. HORT LENGTH;
AL5O 1505,1306.
3. OPILL GLL COMPONENT MTE HOLES

- (6 HOLES, N9.551.052)DR
- 5 HOLES, No.30 (.128)OR

A- 2 HOLES, NO.22 (.157)DP.
4. DO NOT INSTALK 1 TENS 2,31
ON MODEK $1300,120 Z A, 1202 B, 1305,306$

Figure 6-6. P.C. Board Assembly, Optional Isolated Polar Keyer

$$
\begin{gathered}
1 / \cos =20+1 H \\
404
\end{gathered}
$$

Figure 6-6. Parts List (D0822J)

Notes
1 Schematic ref dobz3, Sheet 2
A WHEN AS:SY 15 ISEDD ON MODEL
1301, 1305, 1306 \& 1309 , DO NOT INSTALL
\& 3 li, Shear Board To
LENGTH
今 DO NOT INSTALL ITEMS 30 \& 31 ON MODEL 1202A, 1202B, 1300,1305 Q 1306

Figure 6-7. P.C. Board Assembly, Optional Isolated Neutral Keyer

Figure 6-7. Parts List
(D1110A)

Figure 6-8. P.C. Board Assembly, Low Level Power Supply (C1332A)

Figure 6-9. Assembly, Optional Loop Power Supply (C1142B)

Figure 6-10. Assembly, Switch And Lights Bracket (C1312A)

Figure 6-11. Assembly, Switch And Transformer Bracket (C1339)

REF Ho Dillag

Figure 6-12. Assembly, Output Filter (D1183)

15	7		NUT, HEX NO. 4-40x1/4 AF	BRASS		NT-P		
14	4		WASHER, NO. 4 INT. JOOTH	PHES. ERZ.		1		
13	4		SCREW ${ }_{3} 6-32 \times 5 / 16$ BD. $H D$	BRA5S				
12	4		SCREW, 4-40×5/16 BD. 4 D .	BRAS5		1		
11	3		SCREW, 4-40× 4 / BD. 40.	BRASS		Nf-P.		
10	4	c8020-632-67	SPEED NUT	TIMNERNM				
9	4	1416-4	SOLOER LUG	SMITH				
8	7	1548-2	TERMINAL	CTC				
7	7	6302	CHOKE	MILLER				
6	7	5HK-510	CAPACITOR, $2.014 \mathrm{~F}_{2} 1000 \mathrm{~V}$	SPRAGUE				
5	5		RES/STOR, $1.2 \mathrm{~K}, 1 / 4 \mathrm{~W} 10 \%$	A-8				
4	1	C1331	COVER	FEC				
3	7	81218	TERMINAL BOARD	1				
2	1	B1219	INSULATOR	\dagger				
1	1	C/330	BRACKET	$F E C$				
ITEM	* $*$ O 0	Part mo	description			Finish	Finism mpec	ext srm
			List of ma	matial				

Figure 6-12. Parts List
(D1183)

[^0]:
 CRYSTAL INSTALLED.
 OUTPUT TIME EASE BOARD, PART
 No. DIOAZ 2 WIML HAVE ins TGLLED AS PER MOTE, IN LIEL
 OF CRYSTAL, (ITEM 20).

