Flesher Corporation

TU-300
OPERATORS MANUAL

TABLE OF CONTENTS

INTRODUCTION. (2)
UNPACKING AND CARE (3)
SPECIFICATIONS (4)
CIRCUIT DESCRIPTION (6)
OPERATING INSTRUCTIONS (11)
CONNECTION ILLUSTRATIONS (14)
ALIGNMENT PROCEDURE
WITHOUT TEST EQUIPMENT, but WITH AFSK OPTION INSTALLED. (17)
WITH AFSK AND A VOLTMETER (20)
WITHOUT ASK (23)
VOLTAGE CHART (25)
FACTORY SERVICE (26)
PARTS LIST (27)
SCHEMATIC DRAWINGS (35)

TU-300
 INTRODUCTION

CONGRATULATIONS

on your purchase of an flesher Corporation professional quality $T U-3 \emptyset \emptyset$ RTTY terminal unit. Your investment in Flesher corporation RTTY products is an investment in operating pleasure for years to come. Each Flesher Corporation product is backed up by years of engineering experience and technological innovation, assuring you a high degree of reliability you expect in professional electronic equipment.

The TU-3øø is a result of customer input and over a year of development. The combination of this input, professional engineering and quality components make the TU-3øø a highly reliable and versatile RTTY terminal unit. We welcome you to the growing family of flesher Corporation product owners.

To be sure of obtaining the best possible performance from your new Flesher Corporation $T U-3 \emptyset \emptyset$, read this operating manual carefully to become thoroughly familiar with the various features and controls before connecting it into your system.

TU-300

UNPACKING AND CARE

* Carefully remove all items from the container and check for damage.
* Before discarding any of the packing material, examine the container carefully for items you may have overlooked. It will be to your advantage to save original carton and fillers. They will prove valuable in preventing damage should you ever have to transport or ship the unit.
* Do not attempt installation without first reading the OPERATING INSTRUCTIONS and CONNECTION ILLUSTRATIONS.
* The TU-3øø must not be exposed to excessive moisture, or direct sources of heat.
* All wiring should be made as short in length as possible.
* Be sure the system is grounded with a good earth or water pipe ground to provide some protection agains voltage surges and built-up static charges. Ground leads should be as short as possible.
* To clean the cabinet, use a mild glass cleaner and soft cloth. Care should be exercised when cleaning the front panel or rear panel, markings could be damaged with excessive pressure and with certain cleaners.
* In extended non-use periods, it is recommended that the appliance power cord be unplugged from the outlet.

TU-300
 SPECIFICATIONS

SIZE: $\quad 7 \mathrm{l} / 2^{\prime \prime} \times 3^{\prime \prime} \mathrm{X}$ lb"
POWER: l2øVAC, $50-50 \mathrm{~Hz}, 5$ watts.
INPUTS: CW KEY. Active in SEND only. TTL compatible. Requires pull-down to enable AFSK down to enable AFSK downshift for CW ID.

AFSK KEYING Input (TLL). TTL compatible, MARK high. Requires pull-down for SPACE.

AFSK KEYING Input (RS 232). Bi-polar input. MARK= - 3 V min., $\operatorname{SPACE}=+3 \mathrm{~V}$ min.

AUDIO INPUT. Receiver audio input. May be connected to any source - 4 ohm to $6 \emptyset \emptyset$ ohms impedance. $1 \emptyset \emptyset \mathrm{mv}$ min. input level.

SEND CONTROL (TTL). TTL compatible. Requires pull-down to place the $T U-3 \emptyset \emptyset$ in SEND mode from an external control.

OUTPUTS: KEYING OUTPUT (TTL). TTL compatible demodulator output. MARK high.

KEYING OUTPUT (RS 232). Bi-polar demodulator output. MARK $=-6 \mathrm{~V}$ min., SPACE $=+6 \mathrm{~V}$ min. into a 3 K ohm load.

SCOPE OUTPUTS. High impedance (5øK ohms) MARK and SPACE filter outputs, phase corrected for accurate "+" scope tuning display.

AFSK AUDIO OUTPUT. Adjustable level (\emptyset to 2 volts RMS), 60ø ohm impedance.

FSK OUTPUT. Bi-polar output. MARK $=-6 \mathrm{~V}$ min., $\mathrm{SPACE}=$ +6 V min. into a 3 K ohm load.

AUXILIARY POWER (autostart). 5 amp relay contact output with standard U.S. $12 \emptyset$ VAC power receptical on the rear chassis.

AUXILIARY SEND/RECEIVE switch contacts. Single pole, single throw auxiliary contacts from front panel SEND/RECEIVE switch.

RDA OUTPUT. Receive Data Available. TTL compatible output with active pull-down. Indicates presence of received signal in receive mode. Locked on (pulled down) during SEND.

TU-300 SPECIFICATIONS

(CONT.)

DISPLAYS: TUNING INDICATOR: Ten segment LED bar graph signal strength indicator. Displays output level of filters.

POWER INDICATOR: Indicates when power is applied to unit.

SEND LED: Indicates when the $T U-3 \emptyset 0$ is in send mode.
RDA LED: Receive Data Available. Indicates when signal is present and autostart relay is on.

MARK LED: Indicates the presence of a signal at the mark filter output when in the receive mode. In send mode, indicates the presence of MARK on the AFSK input.

SPACE LED: Indicates the presence of a signal at the space filter output when in the receive mode. In send mode, indicates the presence of SPACE on the AFSK input.

AUXILIARY INPUT/OUTPUT CONNECTOR P2: Auxiliary connector for optional loop power supply. TTL compatible keying input and output connections and +12 volts and ground.

TU-300 CIRCUIT DESCRIPTION

ACTIVE FILTER

The TU-3ø0 active filters consist of three stages of two pole active bandpass filters. Each stage is a low. gain, low Q stage which, when cascaded with the other two stages, result in a very stable, high Q circuit.

On all filters except for the filter tuned for 2295 Hz , R1 is the input resistor. R2, R3, R4, Cl and C2 are not used. The first stage of the active filter consist of the first half of Cl, the second stage the other half of Cl, and the final stage, the first half of IC 2. Each stage is tuned independently with a trimmer potentiometer. The second half of IC2 is used as a voltage level comparator. The output of the comparator switches the bias voltage for the gate of the field effect transistor Ql which switches the audio output from the third active filter stage to the output connection of the filter board. Ql transistor is switched off when the output "pin 7 " of IC 2 is approximately minus lo volts. Ql switches on when the output of IC2 changes to plus 10 volts. Pin 7 of IC2 is at the minus lo volt potential when the inverting input (pin 6) is a higher voltage level than the non-inverting input (pin 5).

On the ACTIVE FILTER board tuned to 2295 Hz , an additional phase shift network is formed by resistors R2, R3, R4 and capacitors Cl and C2. This phase shift network provides sufficient additional delay of the signal passing throught the 2295 Hz filter to provide proper phase relationship between the mark and space signals of a 2125 Hz filter and the 2295 Hz filter to provide a proper plus shaped oscilloscope pattern which may be used for tuning.

Frequency select diodes \varnothing through 7 are used to select the output frequency of audio frequency shift meyer (AFSK) when one is installed.

DEMODULATOR

The TU-3øØ DEMODULATOR consist of a discriminator stage, low pass filter stage, signal balance restorer circuit, slicer circuit and a mark hold circuit.

The discriminator circuit consist of diodes DI and D2, and resistors RI, R2 and RIf. The output from the discriminator is a pulsating $D C$ voltage of the polarity determined by which of the filter signals (mark or space) is dominant.

The discriminator is connected to the input of the low pass filter at the junction of Cl, R3 and RIf. C2 and Cl complete the low pass filter circuit.

The output of the low pass filter is connected to the signal balance restorer circuit. The circuit supplies an output voltage to

TU-300 CIRCUIT DESCRIPTION

R8 which is summed with the output of the low pass filter through R6 to offset any signal level difference between the mark and space filter outputs, the mark output from the low pass filter is negative and the mark output is positive. This signal is connected to two precision rectifier stages, one being a positive rectifier and the other being a negative rectifier follower. The output from each rectifier charges capacitors C3 and C4 respectively and are summed through R4 and R5. Any difference in the level of the mark and space voltages at the output of the low pass filter then appears as a non-zero output from the summing resistors R4 and R5. This error voltage is amplified by Cl part ' C ' and summed with the original output voltage of the low pass filter at the inverting input of IC2, stage 'A'. The output from the signal balance restorer provides a bias voltage which will center the output levels of the low pass filter at the input of the slicer. The slicer stage, IC2 stage 'A', is a positive feed back or hysteresis type slicer. As such, it has a dead band which is determined by the ratio $R 9$ and Rlø resistors, and will only change state when the input voltage exceeds the hysteresis level. This circuit prevents low level signal fluctuation from generating eroneous output signals.

The MARK HOLD circuit returns the $T U-3 \emptyset \emptyset$ output to the mark state any time a space signal is longer than any normal space pulse width should be. on the TU-3øø demodulator this is set at approximately 150 MS. The output of the slicer for a space signal is a positive going voltage. This positive going transition coupled through C5 raises the voltage across Rl2 to approximately +12 volts and then decays towards zero as capacitor C5 charges. The initial positive going signal is greater than the voltage level set by voltage divider Rl3 and Rl4 on the non-inverting input of IC2. This causes the output of IC2 to go positive. As C5 charges through Rl2, the voltage at the non-inverting input of IC2 decays towards zero and as this decaying voltage crosses the threshold level set by voltage divider resistors Rl3 and Rl4, the output of IC2 switches negative. Under normal conditions, the length of time that the output of the slicer is positive is less than the length of time required for $C 5$ to charge through R12, therefore the mark hold circuit will have no noticable effect on the output signal. Only when the space signal from slicer output exists for longer than the decay time determined by C 5 and Rl 2 will the mark hold circuit take effect.

AUDIO FREQUENCY SHIFT MEYER (AFSK)

The TU-3øø AUDIO FREQUENCY SHIFT KEYER is a crystal controlled oscillator, programmable frequency divider, and band pass filter which provides a sinusoidal audio frequency output in the range from $2 \emptyset \emptyset \emptyset$ to $3 \emptyset \emptyset \emptyset \mathrm{~Hz}$.

The time base for the TU-3øø AUDIO FREQUENCY SHIFT KEYER is a 5.508 Mhz crystal connected to a CMOS 4069 inverter. The output of the oscillator is connected directly to the input of the first

TU-300 CIRCUIT DESCRIPTION

programmable divider, IC 2. The output of IC 2 is conected to the second programmable frequency stage IC 3. Together IC 2 and IC 3 provide frequency division by any integer number between 2 and 256 . The output from the programmable dividers IC2 and IC3 is connected to a divide by sixteen divider IC4. IC 4 is enabled or disabled by an external connection. By this method the output of the AUDIO FREQUENCY SHIFT KEYER is turned on and off. The output of IC 4 is a symmetric square wave which is connected to the input of the low pass filter IC5. This low pass filter is designed to have a relative flat response in the range from $2 \emptyset \emptyset \emptyset$ to $3 \emptyset \emptyset \emptyset \mathrm{~Hz}$.

MAIN CIRCUIT BOARD LOGIC

The MAIN CIRCUIT BOARD logic consist of the input and output circuits neccessary to interface the various plug in circuit boards with the front panel controls and the "outside world".

INPUTS

KEY-N input switches the AFSK to the downshift CW ID frequency when the TU- $3 \emptyset \emptyset$ is in the transmit mode. KEY-N input is a TTL compatible input connected to an inverter transistor Q3. Q3 provides isolation from the outside world and the CMOS inverter IC3 (pin 2). The output of the inverter enables the CW ID frequency select diodes on the AFSK circuit board. The output of the inverter also connects to AND gates IC2 (pin 5 and pin 8). These two gates disable the mark and space frequency control. KEY-N must be pulled "LO" to downshift.

AFSKIN-TTL input signal causes the AFSK to switch between mark and space frequencies when the $T U-3 \varnothing \varnothing$ is in the transmit mode. This input must be high for a mark frequency output and low for a space frequency output. AFSKIN-TTL signal connects to inverter transistor Q4 which provides isolation between the outside world and the CMOS inverter Cl. The output of Cl (pin li) is wired OR'ed with the output of Cl pin 15 which is the bipolar serial input for the AFSK. (AFSKIN-RS) This signal also connects to inverter Cl (pin) l. Reverse shift of a send signal is accomplished by selecting either the input signal of Cl (pin 1) or the output signal of the same stage (pin 16) "SEND REVERSE" switch. The output of this switch connects to IC2 (pin 6) and provides the frequency switching control for mark and space frequencies. AFSKIN-TTL.is TTL compatible.

AFSKIN-RS input also provides the determination of the mark or space output frequencies when the $T U-3 \emptyset \emptyset$ is in the transmit mode. This signal is connected through IC pin 2 and is wired OR'ed with the AFSKIN-TTL signal. AFSK-RS input requires a bi-polar input signal.

SEND-N controls the operating mode of the TU-3øD. When SEND-N line is left open or held at plus five volts the $T U-3 \varnothing \varnothing$ is in the receive mode. The SEND-N is pulled down or to a low TTL level, the

TU-300 CIRCUIT DESCRIPTION

TU-3øø is switched to the send mode. This signal disables the outputs of all the active filters by changing the bias level of the enable filter line through R37 and R38. The enable filter signal is at a positive voltage level in receive mode, and a negagive voltage level in the transmit mode. SEND -N also is connected to inverter transistor Q8 which serves as isolation between the outside world and the CMOS circuits. The collector of $Q 8$ is connected to inverter IC3 which enables the AFSK and to the inputs of gates IC2 (pin 2) and IC2 (pin 12). When enabled, these gates allow the mark and space LED's on the TU-3øø front panel to indicate the status of the AFSK input signal. The mark and space LED's are turned on by Cl (pin lb) and Cl (pin 11). The output of $Q 8$ is low when in the send mode. This enables both the selected space filter select diodes and the mark filter select diodes through diodes D6 and D7 respectively. The AFSK input signal provides the final determination of which frequency is selected.

RECEIVE AUDIO input signal is the signal from the receiver audio output circuit which contains the audio frequency shifted TTY signal. This signal must be tuned so that the mark frequency is at 2125 Hz and the space signal 2295 , 2550 or 2975 Hz for 170 Hz shift, for 425 Hz shift, and 850 Hz shift respectively. Minimum audio input level is 100 mv .

OUTPUT SIGNALS

RDA (RECEIVE DATA AVAILABLE) output indicates the presence of an output signal from either the mark or the space filter. Diodes DI and $D 17$ rectify the space and mark audio outputs respectively. These two signals are summed and filtered by C4. This voltage level is then compared to the reference level set by R28 and R29 at IC5 (pin 3). This reference voltage is approximately +4 volts so that when the peak output of either filter exceeds 4 volts peak the output of IC5 (pin l) will go to approximately negative lo volts. This causes C5 to discharge through R44 and D2ø and as soon as the decaying voltage drops below approximately 6 to 7 volts negative, the output of IC5 (pin 7) switches positive. This positive output drives the input of IC 3 (pin 7) which pulls RDA output low. IC 3 (pin) also turns on the RDA LED on the front panel through R33. If the audio output level of the filters drops below the threshold voltage set by R28 and R29 the output of IC5 (pin 1) will go to approximately $+1 \emptyset$ volts. This positive voltage will charge capacitor C5 through R3ø. When the voltage level of IC5 exceeds approximately 8 volts, the output of IC 5 (pin 7) returns to the negative state and the RDA output goes to a TTL high level state. The comparator circuit is forced to the RDA 'ON' state by D9 when the $T U-3 \emptyset \emptyset$ is in the transmit mode, and is disabled when the front panel STANDBY switched is depressed.

DMOUT-TTL output is derived from the demodulator circuit board output which drives Q5 through D3 and R16 to a low state when a space output is present from the demodulator. DMOUT-TTL is pulled to a high TTL level by the voltage divider combination of the SIP

TU-300 CIRCUIT DESCRIPTION

and Rl5 when a mark signal is present at the demodulator output.
DMOUT-RS signal is the demodulator output signal passed through current limiting resistor Rlø. This is a bi-polar signal, mark= -lø volts and space $=+1 \emptyset$ volts (no load).

SCOPE MARK output is a monitor output from the 2125 Hz mark filter through current limiting resistor R8.

SCOPE SPACE output is the audio output from the selected space filter through current limiting resistor R7.

OTHER CIRCUITS

MARK LED on the front panel is turned on by two different circuits depending on whether the $T U-3 \emptyset \emptyset$ is in transmit or receive mode. In the receive mode the MARK LED is driven by the audio output from the mark filter rectified through D5 which drives ICl (pin 5). Since this input is a pulsating DC audio voltage, the output of ICl (pin 12) will also be a pulsating voltage. The pulsation rate is too high to be noticed by the eye and the LED will appear to be fully on. Current is limited through the LED by resistor R2ø. In the transmit mode the MARK LED is controlled by the condition of the AFSK input signal which is gated through IC2 (pin 3). This input drives the inverter ICl (pin 6). The output of ICl (pin 11) turns on the MARK LED through R18 and R2ø current limiting resistors.

SPACE LED is controlled similar to the MARK LED.
RECEIVE AUDIO AMPLIFIER is a two stage amplifier consisting of Q1 and Q2. The audio input signal is coupled to Ql through Cl and resistor Rl. The voltage divider consisting of $R 2$ and $R 3$ provides base bias for the base of transistor Q1. Q2 is an emitter follower which drives the signal level clipping diodes Dl and D2. The clipped audio signal drives all active filter inputs......

TU-300
 OPERATING INSTRUCTIONS

FRONT PANEL SWITCH FUNCTIONS

POWER:
STAND-BY:

SEND/REC:

REVERSE SHIFT:

FREQUENCY SHIFT: Interlocking switches.

$17 \emptyset \mathrm{~Hz}$ - Selects frequency.	2295	Hz	filter	for	SPACE
425 Hz - Selects frequency.	2550	Hz	filter	for	SPACE
$85 \emptyset \mathrm{~Hz} \mathrm{-} \mathrm{Selects}$	2975	Hz	filter	for	SPACE

TU-300
 OPERATING INSTRUCTIONS

(CONT.)

FRONT PANEL

INDICATORS
(1) POWER INDICATOR
(7) POWER
(13) 425 HZ SELECT
(2) SEND INDICATOR
(8) OPERATE/STANDBY
(14) $85 \emptyset \mathrm{HZ} \mathrm{SELECT}$
(3) RDA INDICATOR
(9) SEND/RECEIVE
(4) MARK INDICATOR
(1ø) REVERSE SEND
(5) SPACE INDICATOR
(11) REVERSE RECEIVE
(6) TUNING INDICATOR
(12) 170 HZ SELECT

TU-300
 OPERATING INSTRUCTIONS

(CONT.)

REAR CHASSIS PANEL
(1) Pl CONNECTOR
(3) P2 CONNECTOR
(5) SERIAL NO. (WIRED)
(2) AC POWER CORD
(4) GROUND TERMINAL
(6) AUXILIARY AC

TU-300
 CONNECTION ILLUSTRATIONS

The following illustrations may not meet your exact wiring needs, but are intended to show typical connections. Flesher Corp. does not provide connection drawings for specific equipment because of the wide variety of equipment available today. The Flesher Corporation warranty does not cover damage resulting from improper connecting the $T U-3 \emptyset \emptyset$ to other equipment, and makes no claim that the $T U-3 \varnothing \varnothing$ is compatible with specific equipment. It is the user's responsibility to determine the compatibility of the $T U-3 \emptyset \emptyset$ with other equipment. Refer to the $T U-3 \varnothing \varnothing$ specifications and the specifications of the equipment to which it will be connected.

Make sure that the POWER SWITCH is in the OFF position and the unit unplugged before making any installation or connections.
SEE BULLETIN

RECEIVER CONNECTION:

Connect pin 13 of $T U-3 \varnothing \emptyset \quad P l$ to the receiver speaker plus terminal.

Connect Pin 25 of $T U-3 \varnothing \emptyset P l$ to the receiver speaker common terminal. Any output impedance from 4 ohms to $6 \emptyset \emptyset$ ohms will work fine.

TRANSMITTER AFSK VEX CONNECTION:
Connect pin 12 of $T U-3 \varnothing \emptyset \mathrm{Pl}$ to microphone audio input of transmitter.

Connect pin 24 of $\mathrm{TU}-3 \varnothing \varnothing \mathrm{Pl}$ to transmitter common.

TRANSMITTER AFSK AND BT CONNECTION:
Connect pin 12 of $T U-3 \varnothing \varnothing$ Pl to microphone audio input of transmitter.
Connect pin 11 of $T U-3 \emptyset \emptyset$ Pl to transmitter PTT.

Connect pin 24 of $T U-3 \emptyset \emptyset P l$ to the transmitter common.

Solder a jumper between pins $1 \varnothing$ and 23 of $\mathrm{TU}-3 \emptyset \emptyset \mathrm{Pl}$.

CONNECTION ILLUSTRATIONS

TRANSMITTER FSK CONNECTION:
Connect pin 14 of $T U-3 \emptyset \emptyset P l$ to FSK keying input of transmitter.

Connect pin 15 of $T U-3 \varnothing \varnothing$ Pl to transmitter common.
 PI AFSK-IN TTL
TTL COMPATIBLE INTERFACE CONNECTION:
TU-3øø DEMODULATOR TTL compatible keying output connected at pin 3 of Pl.

TU-3øø AFSK TTL compatible keying input connected at pin 5 of Pl .

TU-3øø common at pin 16 of Pl .

AFSK-IN RS-232
DEMOD-OUT RS-232
COMMON

RS-232c COMPATIBLE INTERFACE CONNECTION:

TU-3øø DEMODULATOR RS-232c compatible output keying connected to pin 4 of. Pl.

TU-30ø AFSK RS-232c compatible keying input connected at pin 6 of $P 1$.

TU-3øø common connected at pin 17 of Pl.

TU-300 ALIGNMENT

WITHOUT TEST EQUIPMENT, but WITH AFSK OPTION INSTALLED

If the AFSK (Audio Frequency Shift Keyer) option is not installed, the TU-3øØ must be aligned with a calibrated sine wave AUDIO SIGNAL GENERATOR. (See "ALIGNMENT WITH TEST EQUIPMENT".)

Use of the BAR GRAPH front panel display and an installed and working AFSK in the following procedure eliminates the need for test equipment. Before alignment, check to make sure all the boards are properly installed in their sockets and are in the proper positions.
() Do not plug the $T U-3 \varnothing \varnothing$ into $A C$ power until instructed.
() Remove the TU-3øø inter-chassis from outer cover by removing the two 8-32 $\mathrm{X} 3 / 8^{\prime \prime}$ screws on each side of the cabinet rear.
() Remove the circuit board support bracket fastened by two 6-32 X 1/4" flat head screws on either side.
() Bend a one inch length of 22 gauge bare (or a trimmed resistor lead) in a "U" shape and insert this wire in pins 12 and 13 of Pl connector on the rear of the chassis (the mating connector should not be installed). This jumper connects the AUDIO OUTPUT of the AFSK to the AUDIO INPUT of the DEMODULATOR.

If you have built your $T U-3 \varnothing \varnothing$ from a kit, the following two steps may be skipped since the components refered to will not have been installed.
(x) () Disconnect one lead of $D 9$ on the MAIN CIRCUIT BOARD.
(x) () Disconnect one lead of Dl on each FILTER board to be aligned.
() Adjust AFSK gain trimmer to center of rotation.
() Adjust all trimmers on FILTER BOARDS to center of rotation.

TU-300 ALIGNMENT
WITHOUT TEST EQUIPMENT, but WITH AFSK INSTALLED

() Apply power to the TU-3øø. Be sure the unit does not sit on a metal bench or on metal objects which may short out the circuits on the bottom of the circuit board.
() Set the front panel controls so that all switches are in the 'OUT' position except POWER, $17 \emptyset \mathrm{HZ}$ FREQUENCY SELECT and the SEND switches.

() Adjust the AFSK gain trimmer so the fifth or sixth LED of the BAR GRAPH display flickers or glows dimly.
() Adjust the three trimmers on the 2125 Hz filter for maximum indication on the BAR GRAPH display. You may have to reduce the AFSK gain while peaking the trimmers on the filters, to keep the signal strength indicator from exceeding full scale.
() Select REVERSE SEND on front panel switch.
() Adjust the gain trimmer of the AFSK so the fifth or sixth LED of the BAR GRAPH display flickers or glows dimly again.
() Adjust the three trimmers on the 2295 Hz filter for maximum indication on the BAR GRAPH display. Use the same procedure as before.

TU-300 ALIGNMENT

WITHOUT TEST EQUIPMENT, but WITH AFSK INSTALLED

If you do not have the 425 Hz and $85 \emptyset \mathrm{~Hz}$ filter boards skip the next six instruction steps.
(x) () Select 425 Hz on the front panel.
(x) () Adjust the gain trimmer of the AFSK so the fifth or sixth LED of the BAR GRAPH display flickers or glows dimly again.
(x) () Adjust the three trimmers on the 2550 Hz filter for maximum indication on the BAR GRAPH display. Use the same procedure as before.
(x) () Select $85 \emptyset \mathrm{~Hz}$ on the front panel.
(x) () Adjust the gain trimmer of the AFSK so the fifth or sixth LED of the BAR GRAPH display flickers or glows dimly again.
(x) () Adjust the three trimmers on the 2975 Hz filter for maximum indication on the BAR GRAPH display. Use the same procedure as before.
() Turn the $T U-3 \emptyset \emptyset$ off and unplug it from AC power.
() Remove all filter circuit boards being careful not to move the trimmer positions.
() Install (or reconnect) Dl on all filter boards.
() Install (or reconnect) D9 on the MAIN CIRCUIT BOARD.
() Replace the filter circuit boards, again be careful not to move the trimmer adjustments.
() Remove the jumper from pins 12 and 13 of Pl connector.
() Final adjustment of the AFSK GAIN trimmer must be made according to your transmitter audio input requirements (and vox requirements if used). Make this adjustment with your transmitter microphone gain set at either its normal setting or at midrange. Adjust the AFSK gain for normal transmitter output.
() Position the board support bracket carefully over the top rear corners of the boards and line the bracket up with the holes on the chassis sides.
() Install a 6-32 X 1/4" flat head screw in each side and tighten both screws.
() Install inter-chassis into outer cover and secure with the two 8-32 X 3/8" screws on each side of rear chassis sides.

TU-300 ALIGNMENT

WITH Ar sk And A VOLTMETER

EQUIPMENT REQUIRED: AC VOLTMETER

Before alignment, check to make sure all the boards are properly installed in their sockets and are in the proper positions.
() Do not plug the $T U-3 \emptyset \varnothing$ into $A C$ power until instructed.
() Remove the TU-3øø inter-chassis from outer cover by removing the two 8-32 X 3/8" screws on each side of the cabinet rear.

If you have built your $T U-3 \emptyset \emptyset$ from a kit, the follow step may be skipped since the PC board bracket has not been installed as yet.
(X) () Remove the circuit board suport bracket fastened by two 6-32 X li" flat head screws on either side.
() Bend a one inch length of 22 gauge bare (or a trimmed resistor lead) in a "U" shape and insert this wire in pins 12 and 13 of Pl connector on the rear of the chassis (the mating connector should not be installed). This jumper connects the AUDIO OUTPUT of the AFSK to the AUDIO INPUT of the DEMODULATOR.

If you have built your $T U-3 \emptyset \emptyset$ from a kit, the following three steps may be skipped since the components refered to will not have been installed.
$(X)(X)$ Remove the plug in circuit boards from the MAIN CIRCUIT BOARD.
$(X)(X)$ Disconnect one lead of D9 on the MAIN CIRCUIT BOARD.
(X) () Disconnect one lead of Di of each FILTER BOARD to be aligned.
() Adjust AFSK gain trimmer to center of rotation.
() Adjust all trimmers on the FILTER BOARDS to center of rotation.

FILTER TRIMMERS

TU-300 ALIGNMENT
 WITH AFSK AND A VOLTMETER

() Adjust AC volt meter for approximately 20 VAC.
() Attach the common lead of the volt meter to the ground lugs located at the rear of the chassis.
() Apply power to the $T U-30 \emptyset$. Be sure the unit does not sit on a metal bench or on metal objects which may short out the circuits on the bottom circuit board.
() Set the front panel controls so that all switches are in the 'OUT' position except POWER, $17 \emptyset \mathrm{HZ}$ FREQUENCY SELECT and the SEND switches.
() Touch the positive probe of the AC voltmeter to 'TP' of the 2125 Hz filter board.
() If neccessary, start with a low scale on the voltmeter and then graduate to a higher scale to obtain a good visual reading.
() Adjust the three trimmers on the 2125 Hz filter for maximum indication on the voltmeter.
() Select REVERSE SEND on the front panel switch.

() Touch the positive probe of the AC voltmeter to 'TP' of the 2295 Hz filter board.
() Adjust the three trimmers on the 2295 Hz filter for maximum indication on the voltmeter.

If you do not have the 425 Hz and 850 Hz filter boards skip the next five instructions steps.
(X) () Touch the positive probe of the voltmeter to 'TP' of the 2550 Hz filter board.
(X) () Adjust the three trimmers on the 2550 Hz filter for maximum indication on the voltmeter.
(X) () Select 850 Hz on the front panel.
(X) () Touch the positive probe of the voltmeter to 'TP' of the 2975 Hz filtler board.
(X) () Adjust the three trimmers on the 2975 Hz filter for maximum indication on the voltmeter.
() Turn the $T U-3 \emptyset \emptyset$.off and unplug it from $A C$ power.
() Remove common lead of AC voltmeter from the ground lug located at the rear of the chassis.
() Remove al filter circuit boards being careful not to move ; the trimmer positions.
() Install (or reconnect) Dl on all filter boards.
() Install (or reconnect) $D 9$ on the MAIN CIRCUIT BOARD.
() Replace the filter circuit boards, again be careful not to move the trimmer adjustments.
() Remove the jumper from pins 12 and 13 of Pl connector.
() Final adjustment of the AFSK GAIN trimmer must be made according to your transmitter audio input requirements (and vox requirements if used). Make this adjustment with your transmitter microphone gain set at either its normal setting or at mid-range. Adjust the AFSK gain for normal transmitter output.
() Postition the board support bracket carefully over the top rear corners of the boars and line the bracket up with the holes on the chassis sides.
() Install a 6-32 X 1/4" flat head screw in each side and tighten both screws.
() Install the inter-chassis into outer cover and secure with the two 8-32 X 3/8" screws on each side of the rear chassis sides.

TU-300 ALIGNMENT

WITHOUT AFSK, but WITH TEST EQUIPMENT

EQUIPMENT REQUIRED: OPTIONAL EQUIPMENT:

Calibrated sine wave AUDIO SIGNAL GENERATOR, AC VOLTMETER or OSCILLOSCOPE

Before alignment, check to make sure all the boards are properly installed in their sockets and are in the proper positions.

The BAR GRAPH display is refered to in the following tuning instructions, but an AC voltmeter or oscilloscope can be used for tuning by connecting the instrument common lead to chassis ground and the probe lead to the test point of each filter board marked "TR".
() Do not plug the $T U-3 \varnothing \emptyset$ into AC Power until instructed.
() Adjust all filter board trimmers to center of travel.
() Set the front panel controls so that all switches are in the 'OUT' position except POWER and $17 \emptyset \mathrm{~Hz} \mathrm{FREQUENCY}$ SELECT.

() Connect the common lead of the sine wave Audio Signal Generator to the chassis ground lug.
() Connect the output of the Audio Signal Generator to pin 13 of Pl using a scrap resistor lead or a piece of 22 gauge bare wire.

() Apply power to the TU-3øø. Be sure the unit does not sit on a metal bench or on metal objects which may short out the circuits on the bottom of the circuit board.
() Adjust the Audio Signal Generator for 2125 Hz .

TU-300 ALIGNMENT
 WITHOUT AFSK, but WITH TEST EQUIPMENT

() Adjust the gain of the Audio Signal Generator so the fifth or sixth LED on the BAR GRAPH tuning indicator flickers or glows dimly.
() Adjust the three trimmers on the 2125 Hz filter for maximum indication on the BAR GRAPH display. You may have to reduce the Audio Signal Generator gain while peaking the trimmers on the filters to keep the signal strength indicator from exceeding full scale.

FILTER TRIMMERS

() Adjust the Audio Signal Generator for 2295 Hz .
() Adjust the three trimmers on the 2295 Hz filter for maximum indication on the BAR GRAPH display. Use same procedure as before.
() For optional filters, use the same tuning procedure with the appropriate frequency shift selected on the front panel and the proper frequency set on the Audio Signal Generator, depending on which filter is to be tuned.
() When all filters have been tuned, position the board support bracket over the top rear corners of the plug in boards and line the bracket up with the holes on the chassis sides.
() Installa 6-32 $\times 1 / 4$ " flat head screw in each side and tighten both screws.
() Install inter-chassis into outer cover and secure with the two $8-32 \times 3 / 8^{\prime \prime}$ screws on each side of rear chassis sides.

TU-300 VOLTAGE CHART

$$
\begin{aligned}
& \text { SWITCH CONDITIONS: POWER }=\text { ON OPERATE/STANDBY }=\text { OPERATE } \quad \text { REC./SEND }=\text { REC. } \\
& \text { REVERSE SHIFTS }=0 F F \text { FREQUENCY SHIFT }=\text { SELECT ANY }
\end{aligned}
$$

PINS	1	2	3	4	5	6	7	8	9	$1 \emptyset$	11	12	13	14	15	16	
IC1	+9	\emptyset	+9	+3.7	+3.7	+3.7	+3.7	+9	+9	+.6							
IC2	+9	+.1	+.1	+.1	+12	+.6	\emptyset	+12	+.6	+.1	+.1	+.1	+.6	+12			
IC3	+.1	+.1	+.1	+.1	+4.5	\emptyset	\emptyset	\emptyset	+19	+5	+19	+.6	+12	+.6	+12	+.6	
IC4	-12	\emptyset	-3	-12	-12	$-1 \varnothing$	+12	\emptyset									
IC5	+12	\emptyset	+3.6	-12	-6.8	+12	$-1 \emptyset$	+12									
IC6	$-2 \emptyset$	-12	\emptyset	\emptyset	-5	\emptyset	\emptyset	+12	+19								
IC7	+19	\emptyset	+5														

Pl
P2

TRANSISTOR	EMITTER	BASE	COLLECTOR
Q1	+.9	+1.6	+6.5
$Q 2$	+5.8	+6.5	+12
$Q 3$	\emptyset	.7	+.1
$Q 4$	\emptyset	.7	+.1
$Q 5$	\emptyset	\emptyset	+5
$Q 6$	\emptyset	+.7	\emptyset

EBC

All voltages are approximate and will vary somewhat from unit to unit.

Occassionally it may become neccessary to have your TU-3øø repaired. If difficulties arise, first check the fuse and then consult the VOLTAGE CHART to determine if the problem is of a minor nature which can be rectified quickly in your own home. If the problem is beyond this information, you may call CUSTOMER SERVICE DEPARTMENT (913-234-Ø198) to determine if it will be neccessary to ship it back to Flesher Corporation.

If service is required, ship the product postage prepaid to:
Flesher Corporation
P.O Box 976

Topeka, Kansas 66601
Or UPS prepaid to: 507 Jackson St.
Topeka, Kansas 66603
Your $T U-3 \emptyset \emptyset$ should be packaged carefully using the original packing material. If packing has been discarded or damaged, write to the factory for new material. New packing material will be shipped to you at a nominal charge.

When shipping, insure the unit for the full value and be sure to obtain a receipt from the carrier.

The package should include a letter with a complete discription of the problem.

TU-300
 MAIN CIRCUIT BOARD PARTS LIST

ITEM	P.N.		DESCRIPTION			
R1	100	710	-330 ohm resistor	1/4 watt	5\%	ORG-ORG-BRN
R2	101	110	n 15 K ohm resistor	1/4 watt	5\%	BRN-GRN-ORG
R3	100	910	-2.2k ohm resistor	1/4 watt	5\%	RED-RED-RED
R4	100	910	-2.2 K ohm resistor	1/4 watt	5\%	RED-RED-RED
R5	100	710	-330 ohm resistor	1/4 watt	5\%	ORG-ORG-BRN
R6	100	830	-lK ohm resistor	1/4 watt	5\%	BRN-BLK-RED
R7	101	230	-47 K ohm resistor	1/4 watt	5\%	YEL-VIO-ORG
R8	101	230	-47K ohm resistor	1/4 watt	5\%	YEL-VIO-ORG
R9	100	990	-4.7 K ohm resistor	1/4 watt	5\%	YEL-VIO-RED
R1ø	100	830	-1K ohm resistor	1/4 watt	5\%	BRN-BLK-RED
R11	100	930	--2.7K ohm resistor	1/4 watt	5\%	RED-VIO-RED
R12	$10 \emptyset$	930	-2.7 K ohm resistor	1/4 watt	5\%	RED-VIO-RED
R13	100	930	-2.7 K ohm resistor	1/4 watt	5\%	RED-VIO-RED
R14	100	930	$\cdots-2.7 \mathrm{~K}$ ohm resistor	1/4 watt	5\%	RED-VIO-RED
R15	100	950	-3.3 K ohm resistor	1/4 watt	5\%	ORG-ORG-RED
R16	101	970	-10k ohm resistor	1/4 watt	5\%	BRN-BLK-ORG
R17	100	930	-2.7 K ohm resistor	1/4 watt	5\%	RED-VIO-RED
R18	100	690	-270 ohm resistor	1/4 watt	5\%	RED-VIO-BRN
R19	100	690	-270 ohm resistor	1/4 watt	5\%	RED-VIO-BRN
R2ø	100	590	-1øø ohm resistor	1/4 watt	5\%	BRN-BLK-BRN
R21	100	590	-løø ohm resistor	1/4 watt	5\%	BRN-BLK-BRN
R22	100	990	-4.7K ohm resistor	1/4 watt	5\%	YEL-VIO-RED
R23	100	990	-4.7k ohm resistor	1/4 watt	5\%	YEL-VIO-RED
R24	100	990	-4.7 K ohm resistor	1/4 watt	5\%	YEL-VIO-RED
R25	100	990	-4.7K ohm resistor	1/4 watt	5\%	YEL-VIO-RED
R26	101	070	-1ØK ohm resistor	1/4 watt	5\%	BRN-BLK-ORG
R27	100	790	-680 ohm resistor	1/4 watt	5\%	BLU-GRY-BRN
R28	101	390.	300k 2zok ohm resistor	1/4 watt	5\%	RED-RED-YEL
R29	101	310	-100K ohm resistor	1/4 watt	5\%	BRN-BLK-YEL
R3ø	$1 \emptyset 1$	450	-390K ohm resistor	1/4 watt	5\%	ORG-WHT-YEL
R31	101	310	-løøK ohm resistor	1/4 watt	5\%	BRN-BLK-YEL
R32	101	$39 \varnothing$	-220k ohm resistor	1/4 watt	5\%	RED-RED-YEL
R33	$1 \emptyset 0$	730	- 390 ohm resistor	1/4 watt	5\%	ORG-WHT-BRN
R34	100	830	-1K ohm resistor	1/4 watt	5\%	BRN-BLK-RED
R35	101	390	-220k ohm resistor	1/4 watt	5\%	RED-RED-YEL
R36	101	319	--løøK ohm resistor	1/4 watt	5\%	BRN-BLK-YEL
R37	101	310	-løøK ohm resistor	1/4 watt	5\%	BRN-BLK-YEL
R38	101	450	-390k ohm resistor	1/4 watt	5\%	ORG-WHT-YEL
R39	100	990	-4.7K ohm resistor	1/4 watt	5\%	YEL-VIO-RED
R4ø	$1 \varnothing 0$	930	-2.7 K ohm resistor	1/4 watt	5\%	RED-VIO-RED
R41	100	930	-2.7K ohm resistor	1/4 watt	5\%	RED-VIO-RED
R42	101	$\emptyset 7 \emptyset$	--løK ohm resistor	1/4 watt	5\%	BRN-BLK-ORG
R43	100	950	-3.3K ohm resistor	1/4 watt	5\%	ORG-ORG-RED
R44	101	110	-15K ohm resistor	1/4 watt	5\%	BRN-GRN-ORG
R45	$1 \emptyset \emptyset$	$99 \emptyset$	-4.7K ohm resistor	1/4 watt	5\%	YEL-VIO-RED
R46	101	$31 \varnothing$	-1ø0K ohm resistor	1/4 watt	5\%	BRN-BLK-YEL
R47	101	$39 \varnothing$	-220k ohm resistor	1/4 watt	5\%	RED-RED-YEL
R48	$1 \emptyset \emptyset$	830	=i=1K ohm resistor	1/4 watt	5\%	BRN-BLK-RED
SIP	107	$\emptyset \emptyset 8$	Resistor	$7 \mathrm{~K} \times 9$		(1)

TU-300
 MAIN CIRCUIT BOARD PARTS LIST

(CONT.)

TU-300
 MAIN CIRCUIT BOARD PARTS LIST

(CONT.)

ITEM	P.N.	DESCRIPTION	
$\sim \mathrm{ICl}$	125150	IC, MCl416	
- IC2	125 Ø12	IC, 4081, CMOS	
-IC3	125150	IC, MCi416	
-IC4	125078	IC, 741	
- IC5	125022	IC, MC1458CPI	
-IC6	125179	IC, NE5553U, Regulator	
- IC 7	125 ø0ø	IC, 7805, Regulator, 5V	
$\int \begin{aligned} & \mathrm{Q} 1 \\ & \mathrm{Q} 2 \end{aligned}$	$120{ }_{\text {n }} 027$	Transistor, 2N4123	
	"	"	
Q4	"	" "	
Q5	"	" "	
Q6	"	" "	
T1	$130 \square 01$	Transformer	
	$\sqrt{140} 332$	Fuse	(1)
	$\checkmark 140331$	Clip, fuse mounting	(2)
	V140 333	Switch set	- (1)
VPl	$\checkmark 140334$	Connector, PC mount, DB25	
	$\downarrow 137180$	Connector, PC mount, 15 pin	(6)
	$\sqrt{140} 330$	Relay	
P2	$\checkmark 137127$	Header, right angle, 4 pin	
	$\checkmark 140101$	Socket, IC, 16 pin	(2)
	$\checkmark 140100$	Socket, IC', 14 pin	(1)
	V40 191	Socket, IC, 8 pin	(2)
	$\checkmark 145079$	Screw, Nylon, 4-4ø x 3/8	(2)
	$\checkmark 145086$	Screw, Nylon, 4-4ø x l $1 / 4$	(2)
	$\checkmark 145049$	Nut, Nylon, 4-40	(4)
	335103 A	Circuit Board	(1)

TU-300
 DISPLAY
 PARTS LIST

TU-300
 CHASSIS PARTS LIST

ITEM	P.N.		DESCRIPTION QU	QUANITY
	150	497	Cover, chassis	(1)
	$15 \emptyset$	498	Chassis, internal	(1)
	$1{ }^{1} 40$	495	Chassis, front panel	(1)
	150	496	Extrusion	(1)
	150	494	Bracket, PC support	(1)
	150	499	Legend, front panel	(1)
	137	019	Outlet, grounded AC	(1)
	140	058	Cord, power, AC	(1)
	145	216	Screw, 4-40 X 1/4" LG, FH, Slotted	d (7)
	145	$\emptyset 45$	" " 6-32 x 1/4" " "	(2)
	145	ø23	" " $6-32 \times 1 / 4$ " Binder head	(6)
	145	043	" " $6-32 \mathrm{X}$ l/2" Binder head	(1)
	145	015	Nut, 6-32	(2)
	145	ø17	Lock washer, Int. star \#6	(1)
	145	$\emptyset 39$	Screw, 8-32 X 3/8 Binder head	(2)
	145	079	Screw, 4-40 X 3/8 Nylon	(2)
	145	049	Nut, 4-40, Nylon	(4)
	140	344	Lug, Int. star, ground	(2)
	140	$\emptyset 46$	Strain relief	(1)
	150	$5 \emptyset 5$	Feet, rubber	(4)
	145	018	Washer, \#6 flat	(2)
	145	086	Screw, 4-40 X 1 l/4 Nylon	(2)

TU-300
 DEMODULATOR BOARD PARTS LIST

TU-300
 UNIVERSAL FILTER PARTS LIST

I TEM	P.N.	
	335	099A
ICl	125	$\emptyset 22$
IC2	125	ø22
Q1	125	039
P1	106	041
P2	106	041
P3	$1 \emptyset 6$	041
D1	120	005
	120	$\emptyset \emptyset 5$
* ${ }^{+}$Cl	110	181
* C2	110	181
C3	"	"
C4	"	"
C5	"	"
C6	"	"
C7	"	"
C8	"	"
C9	110	199
Clø	110	199

DESCRIPTION

> Circuit board (1)
> IC,MCl458CP, Dual Op Amp IC,MCl458CP, Dual Op Amp
> Transistor, MPFlll, FET
> Pot, $5 \emptyset \emptyset$ ohm, PC mount
> Pot, $5 \emptyset \emptyset$ ohm, PC mount
> Pot, $5 \emptyset \emptyset$ ohm, PC mount
> Diode, lN4148, silicon, fast switching Diode, lN4l48 (for freq select) (5)
> Capacitor, . Øø " *see note

Capacitor, .øluf, løøV, disc
Capacitor, .øluf, løøV, disc
*NOTE: These capacitors are only used in the 2295 Hz filter board. The other filter boards will not use CI and C2, and should not be installed.

The following is a list of resistors in universal package. You should refer to the resistor chart in selecting the correct values for the particular frequency you are tuning the filter for.

TU-300
 AFSK BOARD PARTS LIST

