UNCLASSIFIED

TECHNICAL MANUAL
 FOR
 TYPE RS-111-1B-7
 PANORAMIC DATA
 RECEIVING SET

NOTE: The RS-111-1B-7 Receiving Systern is the commercial version of the AN/URR-52A. This instruction manual for the AN/URR-52A is entirely applicable to the RS-111-1B-7.
uRRSL

WATKINS -IOHNSON COMPANY
 CEI DIVISION
 6006 EXECUTIVE BOULEVARI)
 ROCKVILLE, MARYLAND 20852

5

-

)

The following changes are required in this manual:

Page	Ref. Symbol	Change	Applies To
5-39	A1C3	was Roanwell MG 11016, now JFil Inc. VC26G	Parts List Only
5-52	A2C1	was 301C0H569D ($\pm 0.5 \mathrm{pF}$), now 301C0H1569C (± 0 。 25 pF)	Parts List Only
5-52	A2C3	was CC20CK1R5C, now Erie 301-000C0K0109C	Parts List Only
5-54	A2C23	was NP0A, now Erie 301-000C0j0279C	Parts List Only
5-57	A 2 L 1	was 2027, now 2027-3	Parts List Only
5-59	A 2 R5	was RC07GF622J (1/4W), now RC42GF622J (2W)	Parts List Only
5-59	A 2 R6	was RC07GF470J (47 ohms), now RC07GF 100J (10 ohms)	Parts List Only
5-63	A3C6	was Roanwell MG1305, now JFD Inc. VC21GY	Parts List Only
5-65	A3C33	was same as A3C9, should read same as A3C5	Parts List Only
5-66	A3C38	was CC20CK010C, now Erie 301-00C0K0109C	Parts List Only
$\begin{aligned} & 5-76 \\ & 6-9 \end{aligned}$	A4C33	Add Quality Components QC(.27pF, K) (Nominal value). Show C33 across CR1.	Parts List and Figure 6-4
5-79	A4R7	was RC07GF683J (68K), now RC07GF680J (68 ohms)	Parts List Only
$\begin{aligned} & 5-87 \\ & 6-13 \end{aligned}$	A5A1R20	was RC07GF684J (680K), now RC07GF274J (270K)	Parts List and Figure 6-6
5-89	A5A2C2	was MC3.4PFP0RM10PCT (3.4 pF), now MC4.3PFPORM10PCT (4.3 pF)	Parts List Only
$\begin{aligned} & 5-93 \\ & 6-15 \end{aligned}$	A5CR1	was 1N198, now 1N1449	Parts List and Figure 6-7
$\begin{aligned} & 5-93, \\ & 6-15 \end{aligned}$	A5CR2	was 1N198, now 1N1449	Parts List and Figure 6-7
5-94	A5A2R3	was RC07GF473J (47K), now RC07GF562J (5.6K)	Parts List Only
5-95	A5A2R21	was RC32GF103J (1W), now RC07GF103J (1/4W)	Parts List Only
5-95	A5A2 R22	was RC32GF103J (1W), now RC07GF103J (1/4W)	Parts List Only
5-95	A5A2R23	was RC32GF103J (1W), now RC07GF 103J (1/4W)	Parts List Only
5-98	A5W 1	was 2126-127, now CEI 30020-428	Parts List Only
5-98	A5W2	was 2126-127, now CEI 30020-429	Parts List Only
5-101	A5A3T1	was 10272, now CEI 10998	Parts List Only
5-102	A5P1	was Winchester MRE7-2P-G7, now Phelps Dodge 1026/174	Parts List Only
5-102	A5P2	was Amphenol 27-26, now Phelps Dodge 1026/174	Parts List Only

Page	Ref. Symbol	Change	Applies To
5-102	A5P3	was Amphenol 27-26, now Phelps Dodge 1026/174	Parts List Only
5-102	A5P4	was Amphenol 27-26, now Phelps Dodge 1026/נ74	Parts List Only
5-102	A5P5	was Amphenol 27-26, now Winchester MRE7-2P-G7	Parts List Only
$\begin{aligned} & 5-104 \\ & 6-19 \end{aligned}$	A6C3	was CC20CK010C (1.0 pF), now Erie 301-000C0j0229C (2.2 pF)	Parts List and Figure 6-9
$\begin{aligned} & 5-107 \\ & 6-19 \end{aligned}$	A6R. 1	was RC07GF272J (2.7K), now RC07GF332J (3.3K)	Parts List and Figure 6-9
$\begin{aligned} & 5-107 \\ & 6-19 \end{aligned}$	A6R2	was RC07GF272J (2.7K), now RC07GF332J (3.3K)	Parts List and Figure 6-9
$\begin{aligned} & 5-107 \\ & 6-19 \end{aligned}$	A6R12	was RC07GF272J (2.7K), now RC07GF302J (3K)	Parts List and Figure 6-9
5-108	A6R16	was RC07GF680J (68 ohms, now RC07GF104J (100K)	Parts List Only
5-112	A7A1L2	was 1131-37, now 1131-40	Parts List Only
$\begin{aligned} & 5-116, \\ & 6-21 \end{aligned}$	A7A2R7	was RC07G.F103J (10K), now RC07GF123J (12K)	Parts List and Figure 6-10
$\begin{aligned} & 5-116, \\ & 6-21 \end{aligned}$	A7A2R8	was RC07GF222J (2.2K), now RC07GF471J (470 ohms)	Parts List and Figure 6-10
5-118	A7C21	was Allen-Bradley SS5A102W, now Electro Motive DM10-470J	Parts List Only
5-119	A7C26	was Radio Marcials Co. SMG0IGMV, now AllenBradley SS5A102W	Parts List Only
$\begin{aligned} & 5-121, \\ & 6-21 \end{aligned}$		Add A7L10, CEI 1131-37 (See addenda Figure A-1)	Parts List and Figure 6-10
5-121		Delete A7Q4	
$\begin{aligned} & 5-122, \\ & 6-21 \end{aligned}$		Add A7R21, RC07GF471J (See addenda Figure A-2)	Parts List and Figure 6-10
5-125	A8A1C12	Should read same as A5A1C2	Parts List Only
5-125	A8A1C13	Should read same as A5A1C2	Parts List Only
5-125	A8A1CR1	Should read same as A5A2CR1	Parts List Only
5-125	A8A1L2	was 1131-37, now 1131-40	Parts List Only
5-129	A8A2Y1	was Piezo CR18U21。4MC, now CEI 91803-1.	Parts List Only
5-131	A8C26	Should read same as A1C38	Parts List Only
5-132	A8C38	was QCIPFP0RM10PCT, now QC0. 82PFP0RM10PCT	Parts List Only
5-135	A8CR3	was 1N 462 A , now 1N198A	Parts List Only
5-135	A8FL1	was McCoy 40B4, now Piezo 4065527	Parts List Only
5-136	A\&FL2	was McCoy 40B1, now Piezo 4065526	Parts List Only
$\begin{aligned} & 5-142, \\ & 6-23 \end{aligned}$		Add A8R69, RC07GE471] (Soe addenda Figure A-3)	Parts List and Figure 6-11

FIGURE A-I

FIGURE A-2

Page	Ref. Symbol	Change	Applies To
$\begin{aligned} & 5-147, \\ & 6-27 \end{aligned}$	A10R4	was RN60D6811J, now RC07GF622J	Parts List and Figure 6-13
$\begin{aligned} & 5-153 \\ & 6-31 \end{aligned}$	A12Q1	was 2 N 3053 , now 2 N 2270	Parts List and Figure 6-15
$\begin{aligned} & 5-153, \\ & 6-31 \end{aligned}$	A12Q3	was 2 N 3053 , now 2 N 2270	Parts Iist and Figure 6-15
$\begin{aligned} & 5-153, \\ & 6-31 \end{aligned}$	A12Q4	was 2N3053, now 2 N 2270	Parts List and Figure 6-15
$\begin{aligned} & 5-153, \\ & 6-31 \end{aligned}$	A12Q5	was 2 N 3053 , now 2 N 2270	Parts List and Figure 6-15
5-154	A12R12	was RC32GF633J (63K), now RC32GF363J (36K)	Parts List Only
5-154	A12RA3	was Wakefield NF207, now Birtcher 3AL635-2R	Parts List Only
5-157	A15R3	was IRC CT150-104K, now Beckman 62PR500K	Parts List Only
$\begin{aligned} & 5-157, \\ & 6-35 \end{aligned}$	A15R4	was RC07GF204J (200K), now RC07GF104J (100K)	Parts List and Figure 6-17
5-162	J10	was JJ-034, now Switcheraft L11	Parts List Only
5-173	W14	was 30020-127, now 30020-427	Parts List Only

FIGUPE A. 3

TECHNICAL MANUAL FOR
 TYPEAN/URR-52A PANORAMIC DATA RECEIVING SET

[^0]
WARNING

This equipment employs voltages which are dangerous and may be fatal if contacted. Extreme caution should be exercised in working with the equipment with any of the protective covers removed.

TABLE OF CONTENTS

SECTION I
 GENERAL DESCRIPTION

1.1 Electrical Description 1-1
1.2 Mechanical Description 1-1
SECTION II
CIRCUIT DESCRIPTION
2.1 General 2-1
2.2 Functional Analysis 2-1
2.3 30-60 mc RF Tuner 2-3
2.4 60-300 mc RF Tuner 2-3
2.5 235-500 mc RF Tuner 2-4
2.6 490-1000 mc RF Tuner 2-5
2.7 60-21.4 mc Converter 2-5
2.8 Bandswitching 2-6
2.9 20/75/300-kc Bandwidth IF Strip 2-6
2.10 AGC Monitor Amplifier 2-8
2.11 2 -mc Bandwidth IF Strip 2-8
2.12 Video Amplifier 2-9
2.13 Audio Amplifier 2-9
2.14 Gain Control System 2-9
2.15 Signal Monitor 2-9
2.16 Power Supply 2-11
SECTION III
INSTALLATION AND OPERATION
3.1 Installation
SECTION IV MAINTENANCE3-1
3.2
3.2 Operation Operation 3-1
4.1 General 4-1
4.2 Maintenance of Gear Trains and Tuning Dials 4-1
4.3 Plug-In Modules 4-2
4.4 Troubleshooting 4-2
4.5 Alignment Instructions 4-2
4.6 20/75/300-kc IF Alignment 4-4
4.7 $2-\mathrm{mc}$ IF Alignment 4-6
$4.8 \quad 60-21.4-m c$ Converter Alignment 4-7
4.9 $235-500-\mathrm{mc}$ RF Tuner Alignment 4-9
4.10 490-1000-mc RF Tuner Alignment 4-10
4.11 60-300-mc RF Tuner Alignment 4-10
4.12 $30-60-\mathrm{mc}$ RF Tuner Alignment 4-12
4.13 Signal Monitor Alignment 4-13
SECTION VIDENTIFICATION TABLE OF PARTS
5.1 Unit Numbering Method 5-1
5.2 Reference Designation Prefix 5-1
5.3 Identification Table of Parts 5-1

LIST OF ILLUSTRATIONS

Illustration Page
Table 1-1Table 1-2
Table 4-1
Figure 1-1
Figure 1-2
Type AN/URR -52A Panoramic Data Receiving Set, Specifications,Type AN/URR-52A Panoramic Data Receiving Set, Tube and Transistor Complementvi
1-2Type AN/URR -52A Panoramic Data Receiving Set, Tube and Transistor Element Voltages
4-15
Type AN/URR -52A Panoramic Data Receiving Set, Front View. 1-0
1-2Figure 2-1Type AN/URR -52A Panoramic Data Receiving Set, Rear ViewFigure 4-1Equipment Setup, $20-\mathrm{kc} / 75-\mathrm{kc} / 300-\mathrm{kc}$ IF Alignment2-0
4-3
Figure 4-2 Typical Response Curve, 300-kc Discriminator Alignment. 4-5
Figure 4-3 Typical Response Curve, $300-\mathrm{kc}$ Bandwidth IF Alignment 4-5
Typical Response Curve, $20-\mathrm{kc}$ Bandwidth IF Alignment Figure 4-4 4-5
Typical Response Curve, $75-\mathrm{kc}$ Bandwidth IF Alignment Figure 4-5 4-5
Equipment Setup, 2 -mc IF Alignment Figure 4-6 4-6
Figure 4-7 Typical Response Curve, 2 -mc Discriminator Alignment 4-7
Figure 4-8 Typical Response Curve, 2-mc Bandwidth IF Alignment 4-7
Figure 4-9 Equipment Setup, Converter Alignment 4-8
Figure 4-10 Equipment Setup, Converter and Tuner Alignment 4-9
Figure 4-1 Typical Response Curve, A4V3 to A6V2 Interstage Alignment 4-10
Figure 4-12 Typical Response Curve, 235-500 mc Tuner Alignment 4-10
Figure 4-13 Typical Response Curve, $60-300 \mathrm{mc}$ Tuner Alignment 4-12
Figure 4-14 Typical Response Curve, $30-60 \mathrm{mc}$ Tuner Alignment 4-12
Figure 4-15 VHF Gear Train Assembly, Exploded View 4-17
Figure 4-16 UHF Gear Train Assembly, Exploded View 4-19
Figure 5- Type AN/URR -52A Panoramic Data Receiving Set, Top View 5-2
Figure 5-2 Type AN/URR -52A Panoramic Data Receiving Set, Top View 5-3
Figure 5-3 Type AN/URR -52A Panoramic Data Receiving Set, Bottom View 5-4
Figure 5-4 Type 7165 30-60-mc Tuner, Component Locations 5-5
Figure 5-5 Type 7165 30-60-mc Tuner, Component Locations 5-6
Figure 5-6 Type 7165 30-60-mc Tuner, Component Locations 5-7
Figure 5-7 Type 7164 60-300-mc Tuner, Component Locations 5-8
Figure 5-8 Type 7164 60-300-mc Tuner, Component Locations 5-9
Figure 5-9 Type 7162 235-500-mc Tuner, Component Locations 5-10
Figure 5-10 Type 7162 235-500-mc Tuner, Component Locations 5-11
Figure 5-11 Type 7163 490-1000-mc Tuner, Component Locations 5-12
Figure 5-12 Type 7163 490-1000-mc Tuner, Component Locations 5-13
Figure 5-13 Type 7930 Signal Monitor, Component Locations 5-14
Figure 5-14 Type 8003 Shaping Amplifier /Sweep Oscillator, Component Locations 5-15
Figure 5-15 Type 8003 Shaping Amplifier/Sweep Oscillator, Component Locations 5-16
Figure 5-16 Type 8101 IF Output Amplifier, Component Locations 5-17
Figure 5-17 Type 8101 IF Output Amplifier, Component Locations 5-18
Figure 5-18 Type 8202 Horizontal Sweep Oscillator, Component Locations. 5-19
Figure 5-19 Type 7120 60-21.4-mc Converter, Component Locations 5-20
Figure 5-20 Type 7120 60-21.4-mc Converter, Component Locations 5-21
Figure 5-21 Type 721212 -mc Bandwidth IF Strip, Component Locations. 5-22
Figure 5-22 Type 721212 -mc Bandwidth IF Strip, Component Locations. 5-23
Figure 5-23 Part 10523 Limiter/Demodulator, Component Locations 5-24
Figure 5-24 Part 10527 Video/AGC Amplifier, Component Locations 5-25
Figure 5-25 Type 72120 20/75/300-kc Bandwidth IF Strip, Component Locations 5-26
Figure 5-26 Type 72120 20/75/300-kc Bandwidth IF Strip, Component Locations 5-27
Figure 5-27 Type 72120 20/75/300-kc Bandwidth IF Strip, Component Locations 5-28
Figure 5-28 Type 72120 20/75/300-kc Bandwidth IF Strip, Component Locations 5-29

IllustrationFigure 5-29 Part 10710 Limiter/Demodulator, Component Locations5-30
Figure 5-30 Part 1769-3 Beat Frequency Oscillator, Component Locations 5-31
Figure 5-31 Type 7312 Video Amplifier, Component Locations 5-32
Figure 5-32 Type 7400A Audio Amplifier, Component Locations 5-33
Figure 5-33 Type 7633 Power Supply Regulator (CRT), Component Locations 5-34
Figure 5-34 Type 7631 Power Supply Regulator (Gen.), Component Locations 5-35
Figure 5-35 Type 79125 Coupling Network, Component Locations 5-36
Figure 5-36 Type 7836 AGC Monitor Amplifier, Component Locations 5-37
Figure 6-1 Type 7165 30-60-mc Tuner, Schematic Diagram 6-3
Figure 6-2 Type 7164 60-300-mc Tuner, Schematic Diagram 6-5
Figure 6-3 Type 7162 235-500-mc Tuner, Schematic Diagram 6-7
Figure 6-4 Type 7163 49-1000-mc Tuner, Schematic Diagram 6-9
Figure 6-5 Type 7930 Signal Monitor, Schematic Diagram 6-11
Figure 6-6 Type 8003 Shaping Amplifier/Sweep Oscillator, Schematic Diagram 6-13
Figure 6-7 Type 8101 IF Output Amplifier, Schematic Diagram 6-15
Figure 6-8 Type 8202 Horizontal Sweep Oscillator, Schematic Diagram 6-17
Figure 6-9 Type 7120 60-21.4-mc Converter, Schematic Diagram 6-19
Figure 6-10 Type 72121 2-mc Bandwidth IF Strip, Schematic Diagram 6-21
Figure 6-11 Type 72120 20/75/300-kc Bandwidth IF Strip, Schematic Diagram 6-23
Figure 6-12 Type 7312 Video Amplifier, Schematic Diagram 6-25
Figure 6-13 Type 7400A Audio Amplifier, Schematic Diagram 6-27
Figure 6-14 Type 7633 Power Supply Regulator (CRT), Schematic Diagram 6-29
Figure 6-15 Type 7631 Power Supply Regulator (Gen.), Schematic Diagram. 6-31
Figure 6-16 Type 79125 Coupling Network, Schematic Diagram 6-33
Figure 6-17 Type 7683 AGC Monitor Amplifier, Schematic Diagram 6-35
Figure 6-18 Type AN/URR -52A Panoramic Data Receiving Set, Main Chassis Schematic Diagram 6-37

Outputs from $20-\mathrm{kc} / 75-\mathrm{kc} / 300-\mathrm{kc}$ Bandwidth

Figure 1-1

Figure 1-1. Type AN/URR-52A Panoramic Data Receiving Set, Front View

SECTION I

GENERAL DESCRIPTION

1.1 ELECTRICAL DESCRIPTION

The AN/URR-52A Panoramic Data Receiving Set provides a visual display and AM, FM, and CW reception of RF signals in the 30 to $1000-\mathrm{mc}$ frequency range in four bands: $30-60 \mathrm{mc}, 60-300 \mathrm{mc}, 235-500 \mathrm{mc}$, and 4901000 mc . The unit provides four IF bandwidths: $20 \mathrm{kc}, 75 \mathrm{kc}, 300 \mathrm{kc}$, and 2 mc . The bandwidth in operation is determined by the setting of the front-panel IF BANDWIDTH switch. A single AM video or FM video output from the IF strip in operation is available depending on the setting of the front-panel function switch. The 20/75/300-kc bandwidth IF strip contains a beat frequency oscillator (BFO) which operates in the CW position of the function switch when one of these three bandwidths is selected. A single FINE TUNING control provides vernier tuning of the tuner in operation; the switching of the four tuners is controlled by the RANGE switch on the front panel. The visual display of the signals is provided by a signal monitor which is an integral part of the unit. Pertinent specifications for the AN/URR-52A are included in Table 1-1; the tube and transistor complement is presented in Table 1-2.

1.2 MECHANICAL DESCRIPTION

The entire AN/URR-52A Panoramic Data Receiving Set is packaged in a cabinet which is 5.25 -inches high, 19 -inches wide, and 15.5 -inches deep. The unit weighs approximately 35 pounds and operates from a $115 / 230$ volt, $50-400 \mathrm{cps}$ source; power consumption is approximately 50 watts.
1.2.1 As shown in Figure 1-1, the front panel of the AN/URR-52A contains: four tuning dials and knobs; FINE TUNING, AUDIO GAIN, VIDEO GAIN, BFO TUNING, and RF GAIN controls; function, RANGE, and IF BANDWIDTH switches; PHONES jack; and a tuning meter. These controls, switches and indicators are primarily associated with the receiver functions of the unit. The front panel additionally contains GAIN, SWEEP WIDTH, CENTER FREQ, INTENSITY, and FOCUS controls which are associated with the signal monitor section of the AN/URR-52A; the rectangular CRT screen is also installed in the front panel.
1.2.2 The input and output connections are made on the rear apron (see Figure 1-2). Terminal board TB1 provides AUDIO and AGC outputs and a voltage output corresponding to the band selected. The 30-1000 MC INPUT jack, J1, is an N-type connector. A three-pin Deutsch, quick-disconnect type of jack is used as the $115 / 230 \mathrm{~V}$ AC INPUT connector, J4. The remaining connectors are all BNC-type which are marked as follows: VIDEO OUTPUT J3, NB IF OUTPUT J17, WB IF OUTPUT J18, 30-60 MC LO OUTPUT A13J3, 60-300 MC LO OUTPUT A13J4, 500-1000 MC LO OUTPUT A14J3, and 235-500 MC LO OUTPUT A14J4. The rear apron also mounts the two ac line fuses, F1 and F2, power switch S4, and the permanently connected power cord.
1.2.3 The AN/URR-52A contains 15 subassemblies. Nine of these (the $30-60 \mathrm{mc}$ tuner, $60-300 \mathrm{mc}$ tuner, 235500 mc tuner, $490-1000 \mathrm{mc}$ tuner, $60-21.4 \mathrm{mc}$ converter, local oscillator coupling networks, $2-\mathrm{mc}$ IF strip, and 20/75/300 kc IF strip) are constructed on silver-plated brass chassis which have been gold-flashed to prevent tarnishing. Five of the assemblies are constructed on etched circuit boards: the video amplifier, audio amplifier, and low voltage power supply etched board assemblies mount plug-in fashion on top of the chassis while the high voltage power supply etched board is mounted on the inside of the side panel. The AGC monitor amplifier board mounts on the bottom of the main chassis. The fifteenth assembly contains the signal monitor circuitry and is constructed on a brass deck which is mounted above the main chassis. The signal monitor assembly includes the cathode ray tube and three etched circuit board subassemblies: the shaping amplifier and sweep oscillator, the IF output amplifier, and the horizontal sweep oscillator.

Figure 1-2. Type AN/URR-52A Panoramic Data Receiving Set, Rear View

Table 1-2. Type AN/URR-52A Panoramic Data Receiving Set, Tube and Transistor Complement

	Ref. Desig.	Type	Function	Ref. Desig.	Type	Function
	Q1	Main Chassis		2-mc Bandwidth IF Amplifier (cont.)		
		2N1544	Voltage Regulator	A7Q3	2N2708	IF Amplifier
				A7A1Q1	2N706	1st Limiter
		30-6	Tuner	A7A1Q2	2N706	1st Limiter
	AlV1	6CW4	RF Amplifier	A7A1Q3	2N706	2nd Limiter
	AlV2	6 CW 4	RF Amplifier	A7AlQ4	2N706	2nd Limiter
	AlV3	7587	Mixer	A7A1Q5	2N2270	DC Amplifier
	AlV4	6CW4	Local Oscillator	A7A1Q6	2N2270	DC Amplifier
	60-300 mc Tuner			A7A1Q7	2N2270	Emitter Follower
				A7A2Q1	2N2270	AGC Amplifier
	A2V1	8058	RF Amplifier	A7A2Q2	2N2270	AGC Amplifier
	A2V2	8058	RF Amplifier	A7A2Q3	2N2270	Emitter Follower
	A2V3	7587	Mixer	A7A2Q4	2N2270	Emitter Follower
	A2V4	6CW 4	Local Oscillator	A7A2Q5	2N2270	Emitter Follower
\cdots	235-500 mc Tuner			20/75/300-kc Bandwidth IF Amplifier		
	A3V1	7077	RF Amplifier	A8Q1	2N2708	300-kc BW IF Amp
	A3V2	7077	RF Amplifier	A8Q2	2N2708	$75-\mathrm{kc}$ BW IF Amp
	A3V3	7587	Mixer	A8Q3	2N2708	20-kc BW IF Amp
	A3V4	7486	Local Oscillator	A8Q4	2N2708	300-kc BW IF Amp
		490-1000 mc Tuner		A8Q6	2N2708	
				A8Q7	2N2708	IF Amplifier
	A4V1	7486	Local Oscillator	A8Q8	2N2708	IF Amplifier
	A4V2	6CW 4	IF Amplifier	A8Q9	2N697	Emitter Follower
	A4V3	6CW 4		A8Q10	2N697	Emitter Follower
		Signal Monitor Chassis		A8Q11	2N697	AGC Amplifier
	A5V1	$3 \overline{\mathrm{XP1}}$	CRT	A8Q12	2N697	DC Amplifier
	A5A1Q1	2N706	Shaping Amplifier	A8Q13	2N1131	AGC Regulator
	A5A1Q2	2N706	Shaping Amplifier	A8A1Q2	2N706	1st Limiter
	A5A1Q3	2N706	Shaping Amplifier	A8A1Q3	2N706	2nd Limiter
	A5A1Q4	2N706	Shaping Amplifier	A8A1Q4	2N706	2nd Limiter
	A5A1Q5	2N706	Mixer	A8A1Q5	2N697	Emitter Follower
	A5A1Q6	2N706	Sweep Oscillator IF Amplifier	A8A1Q6	2N697	Emitter Follower
	A5A2Q2	2N706	Mixer	A8A2Q1	2N706	BFO
	A5A2Q3	2N706	IF Amplifier		Video	ifier
	A5A2Q4	2N706	IF Amplifier	A9Q1	2N697	Video Amplifier
	A5A2Q5	2N706	Local Oscillator	A9Q2	2N526	Video Amplifier
	$\begin{aligned} & \text { A5A3Q1 } \\ & \text { A5A3Q2 } \end{aligned}$	$\begin{aligned} & \text { 2N489 } \\ & \text { 2N2270 } \end{aligned}$	Sawtooth Generator Sawtooth Generator			
	A5A3Q3	2N697	Horizontal Amplifier		Audio	fier
	A5A3Q4	2N1925	Horizontal Amplifier	A10Q1	2N335	Audio Amplifier
	A5A3Q5	2N2270	Voltage Regulator	A10Q2 A10Q3	$\begin{aligned} & \text { 2N335 } \\ & \text { 2N2270 } \end{aligned}$	Driver Power Amplifier
$($		60-21.4-mc Converter		CRT Power Supply Regulator		
	A6V1	7587	IF Amplifier	AllV1	GV3A-1	Voltage Regulator
	A6V2	7587	IF Amplifier			
	A6V3	7587	Mixer	General Power Supply Regulator		
	A6V4	6CW 4	Local Oscillator	A12Q1	2N2270	Voltage Regulator
				A12Q2	2N1038	Voltage Regulator
		2-mc Band	IF Amplifier	A12Q3	2N2270	Voltage Regulator
	A7Q1	2N2708	IF Amplifier	A12Q4	2N2270	Voltage Regulator
	A7Q2	2N2708	IF Amplifier	A12Q5	2N2270	Voltage Regulator
				AGC Monitor Amplifier		
				$\begin{aligned} & \text { A15Q1 } \\ & \text { A15Q2 } \end{aligned}$	$\begin{aligned} & \text { 2N929 } \\ & \text { 2N3251 } \end{aligned}$	DC Amplifier DC Amplifier

SECTION II

CIRCUIT DESCRIPTION

2.1 GENERAL

An over-all description of the AN/URR-52A Panoramic Data Receiving Set is presented in the following paragraphs using the functional block diagram Figure 2-1, and the schematic diagrams included at the back of this manual. Note that the unit numbering method is used for the electrical components, which means that parts on assemblies and subassemblies of the unit carry a prefix before the usual class letter and number of the item (such as AlRl and A3C5). These prefixes are omitted on illustrations and in the text except in those cases where confusion might result from their omission.

2.2 FUNCTIONAL ANALYSIS

The AN/URR -52A contains a single antenna input for the entire 30 to 1000 mc frequency range. The input to the tuner in operation is connected to the antenna input by means of three coaxial relays under the control of the front panel RANGE switch. This same switch also removes source voltages to the three tuners which are not in operation. In addition the switch applies the voltage used by the coaxial relays to the rear apron terminal board TBl.
2.2.1 The incoming RF signal to the $490-1000-\mathrm{mc}$ tuner is applied to a tuned preselector. The local oscillator in this tuner operates at a frequency $60-\mathrm{mc}$ higher than the incoming carrier. The oscillator signal is injected into the tuned preselector where a crystal mixer heterodynes it with the incoming signal. The $60-\mathrm{mc}$ difference fre quency from the crystal mixer is amplified and then connected to the converter.
2.2.2 When the $235-500-\mathrm{mc}$ tuner is in operation, the R F signal is amplified by stages A3V1 and A3V2 and then coupled to the mixer stage, A3V3. The local oscillator, A3V4, operates at a frequency $60-\mathrm{mc}$ higher than the in coming carrier; the output signal from the oscillator is also applied to the mixer. The $60-\mathrm{mc}$ IF from the mixer is coupled to the converter.
2.2.3 The converter contains two $60-\mathrm{mc}$ IF amplifier stages, A6V1 and A6V2; stage A6V1 is associated with the $60-\mathrm{mc}$ output from the $235-500-\mathrm{mc}$ tuner and A6V2 with the $60-\mathrm{mc}$ output from the $490-1000-\mathrm{mc}$ tuner. The RANGE switch disables one stage or the other (or the entire converter) depending on the tuner selected. The output of A6V1 (or A6V2 if the $490-1000-\mathrm{mc}$ tuner is in operation) is coupled to the mixer stage, A6V3. The local oscillator in the converter is crystal controlled at 81.4 mc . The mixer combines the incoming signal and the oscillator signal to produce a second IF at 21.4 mc which is connected to a common $21.4-\mathrm{mc}$ IF output network on the $30-60 \mathrm{mc}$ tuner.
2.2.4 The 60-300-mc tuner contains a cascode RF amplifier, a mixer stage, and a local oscillator stage which operates at a frequency $21.4-\mathrm{mc}$ higher than the incoming carrier. The output from this tuner is a $21.4-\mathrm{mc}$ IF which is connected to the common $21.4-\mathrm{mc}$ IF output network located in the $30-60-\mathrm{mc}$ tuner.
2.2.5 When the $30-60-\mathrm{mc}$ tuner is selected for operation, the incoming signal from the antenna is applied to a cas code RF amplifier formed by stages AlV1 and AlV2. The output of the RF amplifier is coupled to a mixer stage, AlV3. The local oscillator stage, AlV4, operates $21.4-\mathrm{mc}$ higher than the carrier frequency; the output from the oscillator is applied to the mixer stage. The $21.4-\mathrm{mc}$ IF from the mixer is coupled to the IF output network.
2.2.6 The IF output network, located in the $30-60-\mathrm{mc}$ tuner, receives the output from the mixer stages in the $30-$ $60-\mathrm{mc}$ tuner, $60-300-\mathrm{mc}$ tuner and $60-21.4-\mathrm{mc}$ converter, depending on the setting of the RANGE switch. This network provides impedance transformation to match the output of the tuners to the input of the IF amplifiers.
2.2.7 The $21.4-\mathrm{mc}$ IF from the low band tuner output network is simultaneously applied to the input of the 2 -mc bandwidth IF amplifier, the input of the $20 / 75 / 300-\mathrm{kc}$ bandwidth IF amplifier, and, through a resistive pad, to the input of the signal monitor assembly.
2.2.8 The $2-\mathrm{mc}$ bandwidth IF strip contains three stages of amplification, A7Q1 through A7Q3. The signal at the
output of the third IF amplifier is coupled to an AM detector, to symmetrical limiter stages and to the rear apron WB IF OUTPUT jack. The output of the AM detector, through emitter followers, is connected through two coaxial relays to the rear apron VIDEO OUTPUT jack. The output from the symmetrical limiter stages is applied to an FM discriminator. A dc amplifier receives the video output from the discriminator. The output signal from the dc amplifier is applied through an emitter follower and two SPDT relays to the rear apron VIDEO OUTPUT jack. The first coaxial relay to receive the AM or FM video signals from the $2-\mathrm{mc}$ IF strip is controlled by the front panel function switch. Placing the switch in the FM position energizes the relay. The signal is then connected to a second relay which is controlled by the IF BANDWIDTH switch. A two stage AGC amplifier within the strip provides a gain control voltage which is applied to the first and second IF amplifier stages.
2.2.9 The $20 / 75 / 300-\mathrm{kc}$ bandwidth IF strip contains three paths through which the signal can be conducted to subsequent stages in the unit. All three paths are similar, each containing two IF amplifiers separated by bandpass filters. The circuits in two paths are disabled by the IF BANDWIDTH switch while the circuits in the third path are activated, depending on whether this switch is placed in the $20 \mathrm{KC}, 75 \mathrm{KC}$ or 300 KC position. The bandpass filter in the $300-\mathrm{kc}$ bandwidth path is conventional LC circuit while crystal filters are used in the 20 kc and 75 kc paths. The signal out of the path in operation receives additional amplification in stages A8Q7 and A8Q8 before application to the limiters, AM detector and NB IF OUTPUT jack. From the detector, the AM video signal is connected through two emitter followers to an AGC amplifier (A8Q11, A8Q12 and A8Q13). The video signal from the emitter followers is applied through the function switch to the video amplifier module. The voltage at the output of the AGC amplifier is used to control the gain of several stages in the receiver when the function switch is in the FM or AM/AGC positions. The AGC signal is also applied to the input of the AGC monitor amplifier, Al5. This subassembly contains two dc amplifier stages (A15Q1, A15Q2) which amplify the AGC voltage and apply it to terminal seven of TBl.
2.2.10 The output of the symmetrical limiter stages in the $20 / 75 / 300-\mathrm{kc}$ bandwidth IF strip is applied to an FM discriminator circuit which includes A8AlCR4 and A8A1CR5. The output of the discriminator is amplified and applied to an emitter follower. The FM video signal from the emitter follower is used to drive the TUNING meter and is also connected to the FM position on the function switch. The AM video signal from this IF strip is connected to the AM/AGC, AM/MAN, and CW positions of the function switch. Thus, the signal at the arm of the function switch is either the FM video output or the AM video output as determined by the switch setting.
2.2.11 The video signal from the arm of the function switch is applied through the VIDEO and AUDIO gain controls to the video and audio amplifiers, respectively. The output from the video amplifiers (A 9 Q 1 and A 9 Q 2) is connected to an SPDT relay which applies it to the rear apron VIDEO OUTPUT jack, J3.
2.2.12 The audio amplifier receives its input through the AUDIO GAIN control. The module contains an amplifier (A10Q1), emitter follower (A10Q2) and a power amplifier (A10Q3). The audio output from the module is available at the PHONES jack on the front panel and at the terminal strip on the rear apron.
2.2.13 The output of the local oscillator in the four tuners is connected to one of two coupling networks. One network couples the outputs of the $30-60-\mathrm{mc}$ tuner local oscillator and the $60-300-\mathrm{mc}$ tuner local oscillator to rearapron jacks marked $30-60 \mathrm{MC}$ LO OUTPUT and $60-300 \mathrm{MC}$ LO OUTPUT. The outputs of the oscillators in the remaining two tuners are similarly coupled through a second coupling network to the 235-500 MC LO OUTPUT and 500-1000 MC LO OUTPUT jacks.
2.2.14 The front-panel FINE TUNING and BFO TUNING controls are used to vary the frequency of the local oscillator in operation. The BFO stage (A 3 A 2 Q 1) is crystal controlled at 21.4 mc . The BFO is activated when the function switch is placed in the CW position; the $21.4-\mathrm{mc}$ output of the BFO is injected into the AM detector in the multiple-bandwidth IF strip. Since the BFO is crystal controlled, it is necessary to vary the frequency of the local oscillator in the tuner in operation in order to vary the pitch of the CW -audio signal.
2.2.15 The signal monitor assembly contains the cathode ray tube (CRT), and the sweep generator, IF output amplifier, and shaping amplifier/sweep oscillator subassemblies. The sawtooth generator section provides the waveform which is used to control both the horizontal deflection on the CRT and the frequency excursions of the sweep oscillator. The fact that this single waveform controls the action in both of these circuits explains how synchronization is obtained between the various signals in the incoming RF spectrum and their position on the CRT trace.
2.2.16 The sawtooth waveform originates in $A 3 Q 1$ and $A 3 Q 2$ and associated circuitry. The sawtooth wave is ampli-
fied by stages A3Q3 and A3Q4 and then connected to the horizontal output transformer. Control of the CRT trace width is provided by a width potentiometer which operates in conjunction with the horizontal amplifiers. A horizontal position control, connected in the horizontal transformer circuit, provides a means of centering the trace on the CRT screen. The sawtooth waveform is connected from the horizontal transformer to the def lection plates in the CRT, and through the sweep range and sweep width controls to the sweep oscillator.
2.2.17 The input to the signal monitor is the $21.4-\mathrm{mc}$ IF output from the tuner in operation. This signal is applied to the shaping amplifiers, A1Q1 through A1Q4. These shaping amplifiers provide a response curve which adds to the tuner response curve and provides an essentially flat $3-\mathrm{mc}$ bandwidth. The signal from the shaping amplifiers is coupled to the mixer stage, AlQ5; this stage also receives the output of the sweep oscillator. The sweep oscillator, A1Q6, has a normal resting frequency of 28.1 mc , which is $6.7-\mathrm{mc}$ higher than the incoming signal. However, using maximum sweep width, an incoming signal at 19.9 mc and an oscillator frequency of 26.6 mc combine in the mixer to produce 6.7 mc (the first IF), or an incoming 22.9 mc and an oscillator frequency of 29.6 mc also combine with 6.7 mc as a resultant. These two conditions are noted in order to explain the relationship between the signal monitor IF, the sweep oscillator frequency, and the position of a signal in the incoming spectrum.
2.2.18 The sawtooth waveform produced in the sawtooth generator section is applied to a varicap modulator (AlC3) in the shaping amplifier/sweep oscillator section. The varicap modulator reacts to the impressed sawtooth wave and causes the sweep oscillator to move up and down in frequency in conformance with the sawtooth waveform. Therefore, a $6.7-\mathrm{mc}$ output is produced from the mixer as the sweep oscillator changes in frequency and differs from a signal in the input spectrum by exactly 6.7 mc . Since the horizontal movement of the trace on the CRT is controlled by this same sawtooth wave, the signals out of the first mixer ultimately appear as vertical pips across the face of the tube in a manner which corresponds to their original position in the input spectrum.
2.2.19 The IF output amplifier section of the signal monitor chassis contains a 6.7 mc IF amplifier (A2Q1) followed by a second mixer stage (A2Q2). A crystal-controlled oscillator in this section, A2Q5, produces a $5.75-\mathrm{mc}$ output which is also applied to the second mixer. The $950-\mathrm{kc}$ second IF from the mixer is amplified in A2Q3 and A2Q4 and then applied to a push-pull detector. The output from this detector consists of two equal signals of opposite polarity which are applied to the vertical deflection plates of the CRT.
2.2.20 The front-panel GAIN control, associated with the signal monitor, controls the gain of the shaping amplifiers and all IF amplifiers. Controlling the gain of these stages sets the amplitude of the pips on the screen, assuming a constant input signal level. The linearity control adjusts circuit parameters in the varicap modulator in order to provide a linear sweep on the CRT. The vertical position of the trace on the CRT screen is adjusted by the vertical position control, which functions in conjunction with the push-pull detector circuitry.
2.2.21 The power supply for the receiving system is self-contained and is designed to operate from a primary power source of $115 / 230$ volts, $50-400 \mathrm{cps}$. All voltages required by the unit are developed in the power supply.

2.3 30-60 MC RF TUNER

The type 7165 tuner covers the 30 to 60 mc range. The tuner schematic is shown in Figure 6-1; the reference designation prefix is Al.
2.3.1 RF Amplifier. - The RF amplifier consists of two type 6CW4 Nuvistor triodes, V1 and V2, in a cascode amplifier configuration. Input tuning is accomplished by inductor L2A, one section of a four-section inductuner, in the grid circuit of V1. Output tuning is accomplished by inductor L2B, another inductuner section in the plate circuit of V2. Neutralization is achieved by feeding a small out-of-phase signal from the plate to the grid of V1 through broadband transformer Tl . To extend the dynamic range of the receiver, the RF amplifier signal handling capability is improved by applying a delayed gain control voltage derived in the multiple-bandwidth IF strip and fed to the grid of V1 through resistors R2 and R3.
2.3.2 Local Oscillator. - The local oscillator is a type 6CW4 Nuvistor triode, V4, operated in a Colpitts configuration with the plate at RF ground. The tank circuit is tuned by inductor L2D, a section of the inductuner. The frequency of operation is maintained $21.4-\mathrm{mc}$ above the carrier. The output of the oscillator is coupled to the grid of the mixer through capacitor C18 and to the LO output jack through capacitor C44.
2.3.3 Mixer. - The mixer, V3, is a type 7587 Nuvistor tetrode with its input circuit tuned by inductuner section L2C. Both the signal from the RF amplifier and the output of the local oscillator are applied to its grid, and the two signals are mixed to produce a $21.4-\mathrm{mc}$ IF. The point TPl, decoupled from the grid, can be used to check oscillator injection and also to check RF alignment by means of an oscilloscope. The mixer output is a plate circuit pi-network formed by capacitor C22 as one leg, the variable inductor L5, and the mixer plate capacitances plus cable capacitance as the other leg. This network also serves as the mixer output network for the 60-21.4 mc converter mixer and the $60-300 \mathrm{mc}$ tuner mixer. The common output to the IF strip is taken through blocking capacitor C24 and jack J3.

2.4 60-300 MC RF TUNER

The type 7164 tuner covers the frequency range of 60 to 300 mc . It contains an $R F$ amplifier, mixer, and local oscillator stages. A schematic diagram of the tuner is included as Figure 6-2; prefix the parts in this assembly with A2.
2.4.1 RF Amplifier. - The tuner employs type 8058 Nuvistor triodes, V1 and V2, in a cascode configuration as the RF amplifier. The input to the tuner is applied through jack Jl. The input is tuned by inductor LlA, one section of a four-section inductuner. The amplifier is neutralized by the use of a bridge arrangement which balances the plate-to-grid capacitance of V1. The arms of the bridge are: capacitor C 3 , the combination of capacitors C 4 and C 5 , the input capacitance of V1, and the plate-to-grid capacitance V1. The gain of the RF amplifier is varied by a delayed gain control voltage which is derived in the multiple-bandwidth IF strip and applied to the stage through resistor R3.
2.4.2 Local Oscillator. - The local oscillator stage, V4, employs a type 6CW4 Nuvistor triode in a Colpitts configuration. It is tuned by L1D, a section of the inductuner, and maintained at a frequency 21.4 -mc higher than the incoming RF carrier. Tank circuit capacitors C25 and C26 have a negative temperature coefficient to compensate for frequency drift due to ambient temperature change. The output from the oscillator is coupled through capacitor C20 to the mixer control grid circuit, and from the divider formed by capacitors C22 and C42 to the LO output.
2.4.3 Mixer. - The mixer stage, V3, utilizes a type 7587 Nuvistor tetrode. The interstage coupling network between the RF amplifier second stage and the mixer input is tuned by inductors L1B and L1C, two sections of the inductuner. The mixer stage heterodynes the incoming RF signal and the local oscillator signal to produce a $21.4-\mathrm{mc}$ IF signal in the plate circuit. The $21.4-\mathrm{mc}$ signal in the plate circuit is coupled through blocking capacitor C39 and jack J2 to the common IF output network located in the $30-60 \mathrm{mc}$ tuner.

2.5 235-500 MC RF TUNER

The operation of the type 7162 tuner is explained in the following paragraphs. Refer to the schematic diagram, Figure 6-3 and note that the reference designation prefix for this subassembly is A3.
2.5.1 RF Amplifier. - The RF a mplifier consists of two type 7077 ceramic triodes, V1 and V2, both in groundedgrid configuration. The nominal input impedance at jack Jl is 50 ohms. The input circuit is a pi-network matching the antenna to the input of the first stage, V1. Interstage coupling and coupling from the second stage to the mixer is by means of double-tuned circuits. Tuning within the RF amplifier is by inductors L3A, L3B, L3C, L3D, and L3E, five sections of a six-section inductuner. An improvement in stability is obtained by returning the cathode of V1 and V2 to a -6.3 volt regulated source through resistors R1 and R3.
2.5.2 Local Oscillator. - The local oscillator, V4, is a type 7486 ceramic triode operated in a Colpitts configuration. The tank circuit is tuned by inductor L 3 F , a section of the inductuner. The operating frequency is maintained 60 mc above the carrier. Increased frequency stabilization is obtained by the use of a regulated -6.3 volt filament supply. The oscillator's signal is coupled to the low band tuner mixer through capacitor C28. Fine tuning and BFO pitch control are accomplished by a voltage-variable capacitor, CR1, which varies the capacitance of the tank circuit. A voltage-variable capacitor is a semi-conductor device whose effective capacitance varies with the voltage across it. The capacitance of CR1 is controlled by a dc voltage applied through resistors R13 and R15. The level of this voltage is controlled by the FINE TUNING potentiometer and the BFO TUNING potentiometer.
2.5.3 Mixer. - The mixer, V3, is a type 7587 Nuvistor tetrode with its input circuit tuned by inductuner section L3E. Both the signal from the RF amplifier and the output of the local oscillator are applied to its grid and the two signals are mixed to produce a $60-\mathrm{mc}$ IF. An oscilloscope can be connected at test point TP1 in the mixer grid circuit to check oscillator injection and also to check the RF response. The mixer output is taken from the tuner
and applied to the converter through a double-tuned coupling whose primary is inductor L14 and whose secondary is inductor A6L1 in the converter. Capacitor A6Cl establishes the degree of coupling between L14 and A6L1.

2.6 490-1000 MC RF TUNER

The type 7163 tuner consists of a preselector, local oscillator, mixer, and two IF amplifiers. The reference designation prefix is A4; a schematic diagram of the tuner is presented in Figure 6-4.
2.6.1 Quadruple-Tuned Preselector. - The RF input circuit in the 490-1000 mc tuner presents an impedance designed for a 50 -ohm antenna. The signal is coupled from the input to the quadruple-tuned preselector. 'Iuning is accomplished by four tuned cavities. The signal passes from cavity to cavity through coupling irises. The cavities are resonated to the carrier frequency by changing the capacitance between the inner conductor and ground. This action effectively produces quarter-wave tuning and is analagous to coaxial-line cavity tuning in which the resonant frequency is determined by the position of the plunger. From the fourth cavity, inductor L6 couples the signal to the crystal mixer.
2.6.2 Local Oscillator. - The local oscillator, V1, is a type 7586 ceramic triode operated as a modified Colpitts oscillator. The tank circuit is a length of transmission line. Capacitor ClE, ganged with the high band tuning control, loads the transmission line so as to make its effective length one-half wavelength at the desired frequency. The oscillator is operated at a frequency 60 mc above the carrier. Increased frequency stabilization is obtained by the use of a regulated -6.3 vdc filament supply. Fine tuning and BFO pitch control are accomplished by the use of a voltage-variable capacitor, CR2, in the same manner used for fine tuning of the other three tuners (see paragraph 2.5.2). The oscillator signal to the crystal mixer is picked up by the inductor L6 whose lower end reaches through a shield into the chamber where the oscillator stage is mounted.
2.6.3 Crystal Mixer. - The mixer, CR1, is a type 1N82A crystal diode. It receives both the incoming carrier and the oscillator injection signal through inductor L6. Jack J4 is present to facilitate checking the oscillator injection level. The mixer output, a $60-\mathrm{mc}$ IF signal, is applied to the $60-\mathrm{mc}$ IF low-noise amplifier within the tuner .
2.6.4 $60-\mathrm{mc}$ IF Amplifier. - To compensate for the lack of gain in the quadruple-tuned preselector, the high band tuner has a $60-\mathrm{mc}$ IF amplifier consisting of two type 6CW4 triodes, V2 and V3, in cascode configuration. Coupling from the mixer is through inductors L13, L15, and capacitor C21. The first stage is neutralized by inductor L16. The output from the amplifier is through a double-tuned circuit, the primary of which is inductor L17 and the secondary of which is inductor A6L2 located in the $60-21.4 \mathrm{mc}$ converter. Capacitor A6C2 fixes the degree of coupling between L17 and A6L2.

2.760 TO 21.4-MC CONVERTER

The type 7120 converter contains $60-\mathrm{mc}$ IF buffer amplifiers, a mixer, and an $81.4-\mathrm{mc}$ crystal-controlled oscillator. As shown on the schematic diagram (Figure 6-9) of the converter, A6 is used as the reference designation prefix.
2.7.1 $60-\mathrm{mc}$ IF Amplifiers. - The converter uses type 7587 Nuvistor tetrodes (V1 and V2) to amplify the incoming $60-\mathrm{mc}$ signal from the $235-500 \mathrm{mc}$ tuner or the $490-1000 \mathrm{mc}$ tuner. V1 operates in conjunction with the $235-500 \mathrm{mc}$ tuner and V2 with the $490-1000 \mathrm{mc}$ tuner. As the RANGE control switches the source voltages to the tuners, it also switches B-plus to these two stages in the converter. Plate voltage for V3 and V4 is supplied through CR1 or CR2, one of which is forward biased by the voltage applied to C8 or C11. The output from the stage in operation is applied through a double-tuned coupling (L 3 and L4) to the grid circuit of the mixer stage.
2.7.2 81.4-mc Oscillator. - The oscillator, V4, utilizes a type 6CW4 Nuvistor triode. It is crystal controlled and operates at a frequency of 81.4 mc . Feedback to sustain oscillation is from grid to plate through capacitor C25. The output signal is coupled through capacitor C21 to the mixer.
2.7.3 Mixer and IF Output Network. - The mixer stage employs a type 7587 Nuvistor tetrode. The 81.4 mc output 'rom the oscillator is coupled to the control grid. The mixer heterodynes this signal with the $60-\mathrm{mc}$ incoming IF signal to produce a 21.4 mc second IF. The output from the plate of the mixer is taken through capacitor C29 to the common IF output network located in the $30-60 \mathrm{mc}$ tuner.

2.8 BANDSWITCHING

Bandswitching is accomplished by switching the dc voltage sources to the tuners and the converter (see Figure 6-18). The RANGE switch, Sl , is divided into four sections. These four sections control the lamps behind the tuning dials, the coaxial relays which switch the tuner inputs, and the regulated and unregulated power supply voltages to the tuners and converter. Three coaxial relays are incorporated in order that a single antenna input may be used to supply all four RF tuners. Switch section S1AW applies +23 volts to relays K1, K2, or K3 depending on the switch setting. As shown on the main chassis schematic diagram (Figure 6-18) relay Kl is energized when the RANGE switch is placed in the $30-60 \mathrm{MC}$ position. The RF input to tuner A1 is through relay K 2 (J 14 to J16), and relay K1 (J11 to J12). Selection of the 60-300 MC range de-energizes Kl and the signal path is through relay K2 (J14 to J16) and K1 (Jll to J13) to the 60-300 mc RF tuner. Switching to the 235-500 MC position energizes relays K 2 and K 3 feeding the input signal through relay K2 (J14 to J15) and relay K3 (J20 to J19). Diode CR2 is forward biased providing a dc path to K2. Selection of the 490-1000 MC range de-energizes relay K2, energizes relay K3 and reverse biases diode CR2. The signal path is through relay K2 (J14 to J15) and relay K3 (J20 to J21) to the high band tuner. RANGE switch, Sl, also applies the relay voltage to corresponding pins on terminal board TBl.

2.9 20/75/300-KC BANDWIDTH IF STRIP

The circuits in the $20 / 75 / 300-\mathrm{kc}$ bandwidth IF strip are explained in the following paragraphs using the schematic diagram, Figure 6-11. Parts in this IF strip carry the reference designation prefix A8. The 21.4 -me input is connected to the IF strip through input jack Jl. An impedance matching network consisting of resistors R1, R2, and R3 feeds the input signal to the SM OUTPUT jack J2. The IF BANDWIDTH switch determines if the signal is passed through the $20 \mathrm{kc}, 75 \mathrm{kc}$, or 300 kc bandpass amplifiers by supplying base bias from the AGC amplifier to the IF amplifiers for the selected bandwidth.
2.9.1 300-kc Bandwidth IF Amplifiers. - Transistors Q1 and Q4 are the first and second IF amplifiers for the $300-\mathrm{kc}$ bandwidth. The bandwidth is determined by the interstage coupling between Q1 and Q4, a double-tuned, overcoupled network. The tuned circuit in the collector of Q1 consisting of C22, C23, and L4 has the junction of C22 and C 23 grounded to provide a signal voltage at the junction of C23 and L4 which is out of phase with the input signal. This voltage is coupled back to the base of Q1 through C14 to neutralize the stage. This same method of neutralization is used by the second IF amplifier, Q4. The gain of both stages is controlled by the AGC amplifier when the function switch is in the FM or AM/AGC positions, and by the RF GAIN control when the function switch is in AM/MAN or CW positions. Placing the IF BANDWIDTH switch in the 75 KC position or the 20 KC position removes base bias from both Q1 and Q4, disabling these stages.
2.9.2 $75-\mathrm{kc}$ and $20-\mathrm{kc}$ Bandwidth IF Amplifiers. - Transistors Q3 and Q6 are the first and second IF amplifiers for the $20-\overline{\mathrm{k}} \mathrm{c}$ bandwidth. The $20-\mathrm{kc}$ bandpass is determined by crystal filter FL2 in the coupling network between Q3 and Q6. The tuned collector load of Q6 is shared with Q5 and Q4. Neutralization of Q6 is accomplished by feeding back an out-of-phase signal from the junction of C43 and L9 through C44 to the transistor's base. Neutralization of Q3 is not necessary as the heavy loading of the crystal filter in the collector circuit insures that oscillation will not occur. Operation of the $75-\mathrm{kc}$ bandwidth path is identical to the operation of the $20-\mathrm{kc}$ path. The $75-\mathrm{kc}$ path includes stages Q2 and Q5 and filter FL1.
2.9.3 Third and Fourth IF Amplifiers. - The third and fourth IF amplifiers, Q7 and Q8, are common to all three IF bandwidths. Double-tuned, over-coupled networks are used to connect the stages and as the output circuit of Q8. Both transistors are neutralized using the same method described for the $300-\mathrm{kc}$ IF amplifiers. The output of Q8 is fed to the AM detector, CR3, and through a capacitive voltage divider to the FM demodulator and the narrow band (NB) IF output jack, J17, on the rear apron.
2.9.4 AM Detector and Output. - The 21.4 mc signal from the fourth IF amplifier is applied to the AM detector, CR3. Capacitors C65 and C68, are resistor R55 form a filter to eliminate the RF signal components from the output of the detector. The audio-video output from the detector is fed through cascaded emitter followers Q9 and Q10 to the AGC amplifier and to section S2A of the function switch. Series-connected silicon diodes CR1 and CR2 are used to compensate for the voltage drop across the base-emitter junction of silicon transistors Q9 and Q10. This refinement is included so that the AM video output will be zero volts with no signal input. Resistor R54 connects CR1 and CR2 to the plus 12 -volt supply. Thus the junction of R54 and CR1 is clamped at 1.2 volt (0.6 volt drop across each diode). The base of Q9 is clamped at 1.2 volt through resistor R55 which compensates for the 0.6 volt drop across the base-emitter junction of each transistor. Note that the clamp voltage appears at both ends of the AM
detector, CR3, so that its operation is not affected.
2.9.5 FM Limiters. - The 21.4 -me signal from the IF amplifiers is fed to a symmetrical limiter stage formed by A1Q1 and AlQ2 from a capacitive voltage divider. The incoming signal swings about a dc level of approximately plus 3 volts established by base-bias resistors AlR1 and A1R2. Similar networks are in the base circuits of A1Q2, A1Q3, and A1Q4. Transistors A1Q1 and A1Q2 share a common emitter resistor, AlR3. Under no-signal conditions the combined emitter currents of the two transistors develops a voltage across AlR3 which approaches plus 3 volts. When a signal is applied to the base of A1Q1, the positive-going half cycle causes increased conduction through A1Q1 which increases the voltage drop across AlR3. This action causes the collector of A1Q2 to move rapidly toward the source voltage level. The negative-going half cycle of the incoming signal reverses the process, reducing the conduction through A1Q1, and increasing the conduction through A1Q2. The base of A1Q2 is held at RF ground potential by capacitor AlC2. Diodes AlCR1, AlCR2 and AlCR3 in the base circuit of AlQ1 prevent large positive-going signals from overloading the limiter, and large negative-going signals from back biasing the base-emitter junction of AlQ1. If the input signal exceeds approximately 7 volts peak-to-peak, Zener diode AlCR2 breaks down and clips positivegoing cxcursions in cxcess of approximately 4 volts. Negative-going excursions in excess of approximately 4 volts forward bias AlCR3, shorting signal voltage greater than the clipping level to ground. Diode AlCR1 in series with AlCR 2 blocks the Zener on negative excursions, preventing it from acting as an ordinary diode. The first limiter output is coupled to the second limiter through capacitor AlC3. Operation of the second limiter is identical to that of the first.
2.9.6 FM Discriminator and Output. - The FM discriminator is a modified Foster-Seeley circuit. Capacitor AlC5 couples the $21.4-\mathrm{mc}$ signal from the second limiter to a resonant circuit consisting of capacitor AlC7, variable inductor AlL3, and the primary of the discriminator transformer, AlTl, which is tuned to the same frequency. An inductive voltage divider is formed by AlL 3 and the primary of AlT , with only a very small percentage of the limiter output appearing across the transformer primary. Capacitor AlC8 couples the reference voltage to the secondary of AlT1. Capacitive center-tapping of the secondary through AlC9 and AlC10 makes it possible to obtain a high degree of discriminator balance unaffected by coil characteristics or the position of the tuning slug. The FM video output from the discriminator is direct coupled to cascaded emitter followers A1Q5 and A1Q6. The output from A1Q6 is coupled to the tuning meter and, through section S2A of the function switch, to the AUDIO GAIN and VIDEO GAIN controls.
2.9.7 Beat Frequency Oscillator. - The BFO is a subassembly on the IF strip; its complete reference designation is A 8 A 2 . In the CW mode of operation a 21.4 mc signal from the BFO is injected into the AM detector through capacitor C64. This signal beats with the IF frequency to produce an audible note. The BFO is placed in operation by the application of plus 24 volts through switch section S2C on the main chassis. The plus 24 volts biases diode CR2 in the forward direction, which applies the de voltage to the collector of transistor Q1. The BFO is a selfregulating Colpitts oscillator. The output signal is derived from the feedback divider circuit consisting of capacitors C 1 and C3. With the BFO on, diode CR1 is back biased and has little effect upon the circuit. When switch S2C is moved to any position other than the CW position, minus 24 volts is applied to CR1 and CR2. Diode CR1 is now forward biased and CR2 is back biased. When CR1 is conducting, a short circuit is effectively placed across crystal Y1. If this action were not taken, the crystal would be coupled to the IF strip through capacitors C3 and C64. This could cause undesirable effects in the IF response curve. Back biasing CR2 protects transistor Q1 from having the negative voltage applied to its collector.
2.9.8 AGC Amplifier. - The AGC amplifier controls the gain of two of the RF tuners, the converter and the 20/75/ $300-\mathrm{kc}$ IF strip when the function switch is in the FM or AM/AGC position.
2.9.8.1 Input to the AGC amplifier is the AM video output from the emitter of Q10. Resistor R58 and capacitor C69 form a modulation filter to remove audio variations from the dc component present at the AM detector output and at the emitter of Q10. A second modulation filter consists of resistor R62 and capacitor C70 in the collector circuit of Q11. Transistor Q11 is cut-off under no-signal conditions. As the output from the AM detector increases in the positive direction, Q11 begins to conduct. The negative-going voltage on the collector is fed to transistor Q12 through section S2A of the function switch. AGC voltage for the IF strip is obtained at the emitter of Q12. With no signal input this point is approximately plus 10 volts. As the base of Q12 goes less positive, as a result of the collector voltage of Q11 decreasing, the emitter also becomes less positive, thus decreasing the gain of the IF strip. The IF AGC voltage is also coupled to the base of A15Q1 in the AGC monitor amplifier.
2.9.8.2 AGC voltage for the two tuners and the converter is obtained from the collector of Q13, a PNP transistor. This transistor is biased to saturation until the tuner signal-to-noise ratio reaches approximately 30 db , thus providing a delayed AGC voltage for the tuner. Until this signal level is reached, the tuner AGC output at the junction of resistors R66 and R67 is approximately zero and the tuner in use operates at maximum gain. This point is clamped by diode CR4 to prevent it from ever going more positive than 0.5 volt. When the signal-to-noise ratio reaches the proper level, the positive-going collector voltage of Q12 takes control of Q13, biasing it out of saturation. As the input signal strength increases, the collector of Q12 goes more positive, further decreasing the conduction through Q13. This results in the tuner AGC voltage increasing in the negative direction from zero volts towards the minus 24 -volt supply. Once the tuner AGC voltage is obtained, the IF AGC voltage remains fairly constant so that the receiver gain is now controlled by the tuner AGC for stronger signals. The delayed AGC voltage for the tuners is also coupled to the input of the AGC monitor amplifier, A15.

2.10 AGC MONITOR AMPLIFIER

Figure 6-17 is the schematic diagram for the AGC monitor amplifier; its reference designation prefix is A15. Incoming RF and IF AGC voltages are applied to the amplifier through resistors R1 and R2 respectively. Zener diodes CR1 and CR2 are forward biased from the -24 volt supply through resistors R3 and R4. These series connected diodes provide the necessary voltage drop to establish the proper bias level at the base of dc amplifier Q1. Under no signal conditions the base of Q1 is held at approximately -8.0 volts. Potentiometer R 3 is adjusted so that the output of the amplifier is zero volts with no signal input. The collector of Q1 is dc coupled to the base of Q2, a PNP transistor. When AGC is being applied, the base of Q1 goes more positive causing the stage to conduct harder. The increased voltage drop across R5 causes Q2 to conduct less. As a result, the voltage at the collector and at the output of the amplifier increases in the negative direction toward the -24 -volt supply. The amplifier is designed so that a change of approximately 5.0 volts at the input will cause a change of approximately 15 volts at the output. This output signal voltage is connected to terminal seven of TBI.

2.11 2-MC BANDWIDTH IF STRIP

Figure 6-10 is the schematic diagram for the $2-\mathrm{mc}$ IF strip. Components in the strip carry the reference designation prefix A7. This IF strip contains its own AGC circuit, limiter stages, FM discriminator, and AM and FM output stages.
2.11.1 IF Amplifiers. - There are three stages of IF amplification: transistors Q1, Q2, and Q3. The 2-mc IF bandwidth is determined by interstage coupling. Each stage is overcoupled to produce a dip in the over-all IF response curve. This is to compensate for the peaked output from the tuners so that the over-all response will be essentially flat over the $2-\mathrm{mc}$ bandwidth. The C4, C5, L2 tuned circuit in the collector of Q1 has the junction of C4 and C5 grounded to provide a signal voltage at the junction of C5 and L2 which is out of phase with that at the input. This voltage is coupled back to the base through capacitor C 2 to neutralize the stage. Both the second and third IF amplifiers use this same method of neutralization. The gain of Q1 and Q2 is controlled by A2Q2, the AGC regulator transistor. Output from the third IF amplifier, Q3, is fed to the AM detector and, through a capacitive voltage divider, to the limiter stages, and wide band (WB) IF output jack, J18, on the rear apron.
2.11.2 AM Detector and Output. - Diode CR1 detects the AM signal and feeds it to emitter follower stage, A2Q3. The output of A2Q3 is ac coupled through capacitor A2C2 to a second emitter follower, A2Q4. Transistor A2Q4 provides a low-impedance output to the AM VIDEO output jack, J5, on the rear apron of the receiver.
2.11.3 FM Limiters and Discriminator. - The FM limiter and discriminator circuits are nearly identical to those in the $20 \overline{/ 75 / 300-k c}$ IF strip except for component values. For a discussion of the operation of these circuits refer to paragraphs 2.9.5 and 2.9.6. The video output from the Foster-Seeley discriminator is direct coupled to cascaded emitter followers A1Q5, A1Q6, and A1Q7 which provide high current amplification to drive a low-impedance load.
2.11.4 AGC Amplifier. - The AGC amplifier consists of a dc amplifier, A2Q1, and a series regulator, A2Q2. Input voltage to A2Q1 is obtained from the emitter of A2Q3. Resistor A2R1 and capacitor A2C1 form a filter which removes the modulation from the signal so that A 2 Q 1 is supplied with a dc voltage which varies in proportion to the average level of the input carrier signal. This voltage is amplified by A2Q1 which, in turn, controls the current flow through A2Q2. The series regulator is connected between the plus 12 -volt supply and the base-bias circuits of the first and second IF amplifier stages. If, for example, the detector output is increasing in the positive direction, the control voltage on the base of A 2 Q 2 goes more negative, reducing the positive base bias on the first and second

IF stages. This, in turn, decreases the gain of the IF strip. When the average detector output is increasing in the negative direction, the control voltage on the base of A 2 Q 2 goes more positive, resulting in increased IF gain.

2.12 VIDEO AMPLIFIER

The type 7312 video module amplifies either the AM or the FM output of the multiple-bandwidth IF strip as determined by the setting of the function switch. The reference designation prefix for this assembly is A9; a schematic diagram of the amplifier is shown in Figure 6-12. If the function switch is in the FM position, the FM video signal is applied to the VIDEO GAIN and AUDIO GAIN controls. In any of the other three function switch positions, the AM video signal from the multiple-bandwidth IF strip is applied through switch section S2B to the gain controls. The AM or FM video signal from the arm of potentiometer R9 enters the video amplifier on pin 1 and is applied to the base of Q1 through capacitor C1. The video signal is amplified by Q1 and Q2 and coupled to the output through capacitor C2. This signal is coupled to relay K6 which applies it to the rear apron VIDEO OUTPUT jack, J 3 . The relay is energized when the function switch is placed in the 2000 KC position

2.13 AUDIO AMPLIFIER

The type 7400A audio amplifier (see Figure 6-13) is contained on a separate module and uses three-dc coupled transistors, Q1, Q2, and Q3. The first stage is a conventional voltage amplifier in a common emitter configuration. The input signal from the AUDIO GAIN potentiometer, R10, is applied to this stage through capacitor C1 and resistor R1. The second stage is an emitter follower used to match the high output impedance of the first stage to the low input impedance of the third stage, the power amplifier. An improvement in stability is obtained by a coupling network between the second and third stages. This coupling is made up of capacitor C2 and resistor R8 in parallel. Resistor R7 provides direct signal feedback from the third to the first stage. Resistor R10, in the emitter circuit of the output stage, provides additional stability. The output is through transformer Tl which forms the third stage collector load.

2.14 GAIN CONTROL SYSTEM

The over-all system of gain control used within the receiver sections of the receiving system can be understood using the block diagram, Figure 2-1, or the main chassis schematic diagram, Figure 6-18.
2.14.1 Both delayed and undelayed gain control voltages are used in the receiver section of the unit. A delay network in the $20 / 75 / 300-\mathrm{kc}$ bandwidth IF strip provides a delayed gain control voltage which is applied to the $30-60 \mathrm{mc}$ tuner, the $60-300 \mathrm{mc}$ tuner, and the converter (see paragraph 2.9 .8). The undelayed gain control voltage present at the arm of function switch section S 2 B is used to control the gain of certain stages in the multiple bandwidth IF strip. The $2-\mathrm{mc}$ bandwidth IF strip uses an AGC voltage derived in that strip to control the gain of its own first and second IF amplifiers.
2.14.2 In the FM or AM/AGC positions of the function switch, an AGC voltage derived in the multiple-bandwidth IF strip is used for gain control in all receiver sections except the $2-\mathrm{mc}$ bandwidth IF strip. In the CW or AM/MAN settings of the function swtich, this AGC voltage is replaced by a voltage from the arm of the RF GAIN potentiometer R7.

2.15 SIGNAL MONITOR

The type 7930 signal monitor section of the AN/URR-52A Panoramic Data Receiving Set provides a visual display of the received signal. The input to the signal monitor is the $21.4-\mathrm{mc}$ IF from the tuner in operation. This signal is connected through a resistive pad in the multiple-bandwidth IF strip to jack A5Jl on the signal monitor chassis. Refer to the main chassis schematic diagram, Figure 6-18, and the signal monitor chassis schematic diagram, Figure 6-5, in conjunction with the individual subassembly schematics as necessary during the following paragraphs.
2.15.1 Shaping Amplifier/Sweep Oscillator. - The shaping amplifier/sweep oscillator (see the schematic diagram, Figure 6-6) contains four shaping amplifier stages (Q1 through Q4), a sweep oscillator (Q6), and a mixer stage (Q5). The $21.4-\mathrm{mc}$ input is connected through jack Jl to the primary of transformer Tl . The signal. at the secondary of Tl is applied to the base of Q1, the first shaping amplifier. The method of coupling used between the shaping amplifiers and between the shaping amplifier and the mixer consists of stagger-tuned transformers T2 through T5. Each transformer has its primary connected in the collector circuit of the preceding stage and one of the two secondary windings connected in the base circuit of the succeeding stage. The third winding is connected as a tuned circuit.

In the first two transformers (T 2 and T 3) a resistance is added across the tank to lower the Q of the circuit. The gain of all four shaping amplifier stages is controlled by a voltage derived at the arm of the GAIN potentiometer (A5R1) and fed to the base circuits of these stages through the secondary windings of the transformers involved.
2.15.1.1 The mixer stage, Q5, receives the $21.4-\mathrm{mc}$ center-frequency signal from the secondary of transformer T5. The output of the sweep oscillator is coupled through capacitor C27 and also appears on the base of Q5. The mixer collector circuit is connected through jack J2 to the input of the IF output amplifier, where the primary of the input transformer on this subassembly acts as the collector load for the mixer.
2.15.1.2 The sweep oscillator is a Colpitts type with the output taken from the feedback divider. The frequency of the sweeposcillator at any particular instant of time is under the control of a sawtooth waveform which is applied to the junction of diodes CR4 and CR5. This waveform originates in the horizontal sweep oscillator section of the signal monitor chassis. This general waveform is ultimately impressed across voltage-variable capacitor C32, which is in parallel with the oscillator tank circuit The voltage-variable capacitor is a semiconductor device whose effective capacitance varies with the amplitude of the voltage impressed across it. The sawtooth wave varies the capacitance of C32 which, in turn, varies the frequency of the sweep oscillator. Since the voltage-vs-capacitance curve of C32 is not linear, the waveform of the incoming sawtooth must be re-formed to provide a linear sweep. This reshaping is accomplished at higher amplitude levels of the sawtooth wave by Zener diodes CR4 and CR5 and associated series resistors, R23 and R24. These Zeners break-down at specific amplitude levels and tend to round-off the top of the wave. The lower portion of the wave is adjusted by the action of diode CR1 in series with the linearity control, R18. A fixed bias is applied to this network through resistor R19. The center frequency of the sweep oscillator is set by a dc voltage applied from the arm of the CENTER FREQ control, A5R3.
2.15.2 IF Output Amplifier. - The input to the IF output amplifier (see Figure 6-7) is a 6.7-mc signal from the first mixer. A double-tuned coupling is provided between the input and the base of the $6.7-\mathrm{mc}$ IF amplifier stage, Q1. This double-tuned circuit is formed by the secondary of T 1 , capacitors $\mathrm{C} 1, \mathrm{C} 2$, and C 3 , and the primary of T2. Transformer action of T2 places the signal in the base circuit of Q1. The coupling between the IF amplifier and the second mixer is similar to the one previously described. An additional winding on T 3 is used to provide a neutralizing voltage which is coupled by capacitor C37 to the base of Q1. The second stage in the IF output amplifier is the mixer Q2, which combines the $6.7-\mathrm{mc}$ incoming signal with the $5.75-\mathrm{mc}$ output of the oscillator (Q5) to produce a $950-\mathrm{kc}$ second IF. The frequency of the oscillator is stabilized at $5.75-\mathrm{mc}$ by crystal Y1. The output of the oscillator is coupled into the mixer base by C14. Stages Q3 and Q4 provide amplification at $950-\mathrm{kc}$ and increased selectivity. The output of stage Q4 is applied to the detector (CR1 and CR2) circuits which provide equal but opposite outputs to the vertical deflection plates of the CRT. The gain of the $6.7-\mathrm{mc}$ IF amplifier and the first $950-\mathrm{kc}$ IF amplifier is controlled by the setting of the GAIN potentiometer which varies the base bias on these stages.
2.15.3 Horizontal Sweep Oscillator. - The horizontal sweep oscillator subassembly (see Figure 6-8) generates the waveform used to control the excursions of the first local oscillator (A5AlQ6) and the horizontal deflection of the trace on the CRT.
2.15.3.1 Capacitor Cl charges from the plus 24 -volt source through resistor R 1 . When the voltage on Cl reaches a certain level, the unijunction transistor Q1 is fired. The firing of Q1 allows Cl to discharge through resistor R13 and the transistor. This action develops a pulse across R1 which is reflected through diode CR1 and turns stage Q2 on. Capacitor C2 has charged while Q2 was off through diode CR2, resistors R3 and R5, and potentiometer R4 to the plus 24 -volt line. When Q2 goes on, capacitor C2 discharges quickly through this transistor. Since C2 is connected from the base of Q4 to ground, conduction through Q4 follows the charge and discharge of C2. Transistors Q3 and Q4 are arranged as complementary emitter followers with bootstrapping action provided by connecting the output back to the base of Q3 through capacitor C7. Diode CR2 is used to offset the base-bias on Q3.
2.15.3.2 The output waveform at the emitters of Q3 and Q4 is coupled by capacitor C3 to the horizontal output transformer T 1 . One output at the secondary of Tl is applied through the sweep range control (R11) to the sweep oscillator. Two other outputs, of equal but opposite polarity, are taken at each end of the secondary and coupled through capacitors C4 and C5 to the horizontal deflection plates in the CRT. The horizontal position control \uparrow R9) is used to center the trace horizontally on the CRT. This potentiometer allows the dc voltage applied to one of the horizontal plates to be varied from zero to plus 24 volts. The fixed voltage on the other plate is held at plus 12 volts by the voltage divider action of resistors R7 and R8.

2.16 POWER SUPPLY

The AN/URR-52A Panoramic Data Receiving Set includes the ac input circuits (shown in Figure 6-18), the general power supply regulator (see Figure 6-15), and a regulator for the CRT voltages (see Figure 6-14).
2.16.1 Input Circuit. - The ac input to the unit is connected through the power plug P42 which is a Deustch quickdisconnect type of jack. The power is then fed through jack J4, line fuse Fland the on off switch, S5, which is ganged with the AUDIO GAIN control. The arrangement of the two primary windings on the power transformer is controlled by the $115 / 230 \mathrm{~V}$ switch, S 4 . In the 115 V setting of S 4 , the windings are in parallel; in the 230 V setting the windings are in series and the $1 / 4$ ampere fuse, $F 2$, is included in the circuit. Three of the six secondary windings on the power transformer operate in conjunction with regulator A12, and a fourth operates in conjunction with regulator All. The functions of these windings will be explained in subsequent paragraphs. The remaining two windings provide 6.3 vac to filaments and dial lamps, and the filament voltage to the CRT respectively.
2.16.2 General Regulator. - The schematic diagram for the type 7631 Power supply regulator is shown in Figure 6-15; its reference designation prefix is Al2. The ac voltage at the 5-6 winding of Tlenters the regulator on pins 9 and 10 and is applied to a full-wave rectificr formed by CR5 and CR6. The output of the rectifier is connected through pin 14 to a capacitance-input filter formed by C3A, R13, and C3B. The output of the filter is the plus 175 volt supply. The 175 volt source is connected back to the regulator through pin 12 where Zener diode CR20 and resistor R12 provide a regulated 56 volt source. The $13-14$ winding on Γ is connected to full-wave rectiliers forned by CR1, CR2 and CR3, CR4. The output of one of these rectifiers is filtered by capacitor Cl on the main chassis and is used as the plus 14 volt source. The output of the other rectifier (through pin 15) operates into a series regulator circuit which includes transistor $Q 1$. The voltage at the emitter of $Q 1$ is minus 6 volts regulated. The $9-10$ secondary winding on transformer Tl operates into three full-wave rectifiers located on the general power supply regulator module. One of these rectifiers consists of CR7 and CR8; the output of this rectifier is filtered by Cland is the 23 volt supply used for relay operation. The output of the second rectifier (CR9, CRIO) is connected to a regulator which inclades stages Q1, Q3 and Q4. Zener diode CR16 sets the base bias on Ql which, in turn, sets the base bias on (Q3 and Qt. Resistors R7 and R8, in conjunction with diodes CR14, CR15 and CR17provide short-circuit protection for the transistors. The output of this regulator is plas 24 volis. The regulator formed by (5 and CRIM operates trom e 24 -volt source to provide a plus 12 -volt supply. A similar regulator ($Q 2$, CR13, and (2 R 2) operates from the
.R11 - CR12 rectifier to supply nainus 24 volts.
2.16.3 CRT Regulator. - Figure 6-14 is the schematic diagram for the type 7633 power supply regulator; its reference designation prefix is All. The output of the 11-12 secondary winding of Tl is connected to the (el regulator assembly where a full-wave rectifier formed by diodes CRI and CR2 provide a negative high-voltage source. Tube V1, in series with resistor R1, provides a minus 1200 voltsupply at the output of the rectifier. A voltage divider consisting of resistors R2, R4, R6 and R7, and potentiometers R 3 and RS is connected between the minus
 R3 functions as the INTENSITY control. Potentiometer R5 is the FOCUS control and the arm of this control is cont nected to the CRT first anode. The minus 1200 volt potential is connected to the CRT eontrol grid.

9

)

)
,

SECTION III

INSTALLATION AND OPERATION

3.1 INSTALLATION

The AN/URR-52A is designed for installation in a standard 19 -inch rack. The unit requires 5.25 inches of vertical space and will project 15.5 -inches back into the rack. Adequate ventilation should be provided.

CAUTION

Before placing the unit in a rack, first install one pair of shelf angles (Bud type SA-1350 or equivalent, or other hardware which will support the bottom of the chassis. Do not attempt to make an installation using the mounting holes in the front panel as the only means of support.
3.1.1 Power Connection. - Place the rear-apron slide switch, S4, in either 115 V or 230 V depending on the power source to be used. Connect the power cord to the ac outlet; the third pin of the plug grounds the unit. If a three pin receptacle is not available, use the three-to-two pin adapter provided.
3.1.2 Antenna Connections. - Connect the $30-1000 \mathrm{mc}$ antenna to the $30-1000 \mathrm{MC}$ INPUT jack Jl using an N-type connector and $50-$ ohm coaxial cable.
3.1.3 Audio Output Connection. - The 600-ohm audio output is available at terminals 1 and 2 of the terminal strip marked TBI AUDIO on the rear apron, and at the PHONES jack on the front panel.

3.1.4 AGC Output Connection. - The AGC output is available at terminal 7 of TB1.

3.1.5 Video Output. - The AM or FM video signal from the $2-\mathrm{mc}$ IF strip is available at the VIDEO OUTPUT jack, J 3 , when the BANDWIDTH switch is in the 2000 KC position. The AM or FM output from the multiple bandwidth IF strip is coupled to the VIDEO OUTPUT jack when the BANDWIDTH switch is placed in the $20 \mathrm{KC}, 75 \mathrm{KC}$, or 300 KC positions.
3.1.6 Local Oscillator Outputs. - The output of the local oscillator in operation is available at one of the four BNC -type connectors on the rear apron. The output of the oscillator in the $30-60-\mathrm{mc}$ tuner is present at jack Al3J3. The output of the oscillator in the $60-300-\mathrm{mc}$ tuner is present at jack Al3J4. The output of the oscillator in the $235-500-\mathrm{mc}$ tuner is present at jack A14J4. The output of the oscillator in the $490-1000-\mathrm{mc}$ tuner is present at jack Al4J3 (500-1000 MC LO OUTPUT).
3.1.7 Bandswitching Voltage Outputs. - Voltage outputs corresponding to the band selected are present at terminals $3,4,5$, and 6 of TB1. These terminals are marked BAND A, B, C, and D respectively.

3.2 OPERATION

The front panel operating controls on the AN/URR -52A are explained in the following paragraphs.
3.2.1 Range Switch. - The RANGE switch selects the proper tuner for use as determined by the frequency of the incoming signal. A lamp will light behind the tuning dial of the tuner selected.
3.2.2 Audio Gain Control and Power Switch. - The combination AUDIO GAIN control and ac power switch turns on the receiving system when rotated clockwise from the PWR OFF position. Once the unit is operating, this control sets the audio level at the PHONES jack and at the rear apron audio terminal strip.
3.2.3 Function Switch. - Set the function switch in one of the four positions before the receiver is tuned. When
this switch is in the AM/MAN or CW positions, the gain of the receiver must be manually controlled using the RF GAIN potentiometer. The BFO is automatically activated when the switch is placed in the CW mode.
3.2.4 BFO Tuning Control. - The BFO TUNING control allows the operator to change the pitch of the CW audio signal from the $20 / 75 / 300-\mathrm{kc}$ bandwidth strip when the function switch is placed in the CW position. Place the BFO TUNING control at mid-position when tuning; the audio pitch can then be increased or decreased as desired.
3.2.5 IF Bandwidth Switch. - The IF BANDWIDTH switch controls both IF strips. Set this switch as desired depending on the characteristics of the signal to he received. This switch applies the video signal from either the $2-\mathrm{mc}$ IF or multiple -bandwidth IF strip to the VIDEO OUTPUT jack, J3.
3.2.6 RF Gain Control. - The RF GAIN control is used to manually control the gain of the receiver sections (except the $2-\mathrm{mc}$ bandwidth IF strip) when the function switch is in the AM/MAN or the CW position. In the other two function switch positions, the RF GAIN control is inoperative.
3.2.7 Tuning Meter. - The tuning meter indicates the relative position between the incoming signal and the center of the IF bandpass.
3.2.8 Cathode Ray Tube. - The CRT displays the signals present at the output of the tuner in operation.
3.2.9 Gain Control. - Use the GAIN control to adjust the amplitude of the display on the CRT. Adjustment of this control does not affect the receiver sections of the unit.
3.2.10 Sweep Width Control. - The SWEEP WIDTH control varies the display bandwidth on the CRT. Clockwise rotation of the control increases the bandwidth. When searching for a signal, place the control at the maximum clockwise position and then reduce the bandwidth as desired by counterclockwise rotation of the control after the signal has been located.
3.2.11 Center Frequency Control. - Use the CENTER FREQ control to move the displayed pips on the CRT either right or left as desired or to place a particular pip on the center marker before reducing the displayed bandwidth.
3.2.12 Focus and Intensity Controls. - Adjust the FOCUS and INTENSITY controls for maximum sharpness and the desired brightness of the CRT trace.

SECTION IV

MAINTENANCE

4.1 GENERAL

The AN/URR -52A Panoramic Data Receiving Set has been carefully designed to operate for long periods of time with little more than routine maintenance. Should trouble occur, it is important that maintenance personnel be familiar with Section II, in which the circuits are described. In addition, they should refer to Figures 5-1 through 5-36 where the component locations are shown; to the schematic diagrams, Figure 6-1 through 6-18; and to Table 4-1, the tube and transistor element voltages.

CAUTION

The physical placement and lead length of components in the four tuners are extremely critical. When replacing any component in the tuners, the new part must duplicate the location and lead length of the original part. In addition, certain components are sufficiently critical to preclude their replacement at anymaintenance level. These components are suitably indicated on the illustrations, schematic diagrams and in the parts lists.

4.2 MAINTENANCE OF GEAR TRAINS AND TUNING DIALS

If it should be necessary to align the RF tuners in the AN/URR-52A, the gear trains and tuning dials must first be checked for mechanical alignment. The gear train mechanisms use friction drive and rely on the stops of the inductuner to halt the turning in the case of the $30-60 \mathrm{mc}, 60-300 \mathrm{mc}, 235-500 \mathrm{mc} R \mathrm{~F}$ tuners, and on stops mounted on the gear train to halt the turning in the case of the $490-1000 \mathrm{mc}$ tuner. Exploded views of the gear train assemblies are presented in Figures 4-15 and 4-16. These illustrations are included as an aid in disassembly in the event the gear trains are to be repaired in the field. It is recommended that disassembly be performed only by trained and experienced maintenance personnel.

4.2.1 $30-60 \mathrm{mc}$ RF Tuner. - Proceed as follows:

(1) Release the Allen head set screws on each side of the coupling between the gear train shaft and the inductuner shaft.
(2) Rotate the inductuner shaft to maximum clockwise position.
(3) Turn the dial until the hairline is at the second mark above 62.
(4) Tighten the coupling between the gear train and the inductuner shaft.
(5) Check the operation by turning the tuning crank counterclockwise until the inductuner no longer turns. The dial should read at the mark just beyond 30 .

4.2.2 60-300 mc RF Tuner. - Proceed as follows:

(1) Release the Allen head set screws on each side of the coupling between the gear train and the inductuner shaft.
(2) Rotate the inductuner shaft to maximum clockwise position.
(3) Turn the dial until the hairline is at the first mark above 300.
(4) Tighten the coupling between the gear train and rhe inductuner shaft.
(5) Check the operation by turning the tuning crank counterclockwise until the inductuner no longer turns. The dial should read at the mark just beyond 60 .

4.2.3 235-500 mc RF Tuner. - Proceed as follows:

(1) Release the Allen head set screws on each side of the coupling between the gear train shaft and the inductuner shaft.
(2) Rotate the inductuner shaft to maximum clockwise position.
(3) Turn the dial until the hairline is at the mark above 500.
(4) Tighten the coupling between the gear train and the inductuner shaft.
(5) Check the operation by turning the tuning crank counterclockwise until the inductuner no longer turns. The dial should read at the fifth mark beyond 235 mc .
4.2.4 490-1000 mc R F Tuner. - Proceed as follows:
(1) Release the Allen head set screws on each side of the coupling between the gear train shaft and the RF tuner shaft.
(2) Rotate the RF tuner shaft to maximum counterclockwise position.
(3) Turn the dial until the hairline is at the mark below 490. The gear train should be at the low end stop.
(4) Tighten the coupling between the gear train and the RF tuner shaft.
(5) Check the operation by turning the tuning crank clockwise until the RF tuner shaft no longer turns. The dial should read between 1000 and the mark beyond 1000 .

4.3 PL_UG-IN MODULES

The plug -in modules can be easily removed by pulling them out of the receptacles into which they are fitted. The numbers on the pins coming out of the modules correspond to the numbers indicated on the main chassis schematic diagram, Figure 6-18, at the points where the connecting leads pass through the line outlining each moduie on the schematic. For example, the output from the audio amplifier to the PHONES jack is through pins 11 and 13 of the receptacle into which the audio amplifier module is plugged.

4.4 TROUBLESHOOTING

Most troubles will be caused by failures of the fuse, tubes, diodes, or relays. The proper functioning of all these parts should be assured either by test or by replacement with parts known to be good before any further troubleshooting is carried out. After the above measure has been carried out, initial troubleshooting should be directed toward localizing the problem to a specific portion of the receiving system. In the case of the plug-in modules, a quick check can be made by simply plugging in a new module known to be good. Another procedure which should be considered for localizing troubles is to feed in a signal at the antenna jack and then check the signals present at each test point. To this end, it is desirable that all maintenance personnel familiarize them selves with the alignment procedures, even if an alignment is not required, because those procedures include methods of checking performance which may help in analyzing the cause of the trouble. In addition, be certain that the power supply is functioning normally before any other circuit is suspected.

4.5 ALIGNMENT INSTRUCTIONS

The alignment procedures in this book are suitable for performance in the field when making periodic performance checks, or when making adjustments after replacing tubes or components. Only those controls specifically referred to within a series of steps given for aligning a particular circuit affect the work in that circuit. Those controls not mentioned in any one series of steps may be left in any position. The alignment of this receiving system should be performed only with suitable equipments by technicians thoroughly familiar with the receiver. If the limits and tolerances specified in the following steps cannot be obtained during a field alignment, a factory alignment is necessary.
4.5.1 Use of Marker During Alignment. - A post-detection type of marker adder is recommended, and the alignment procedures in this book assume that one is to be used. However, if such a marker adder is not
ת, me dive
available, the marker generator output should be loosely coupled to the sweep generator output. This can be done by connecting the marker signal source to a turn or two of insulated wire wrapped around the sweep generator lead near the point of connection to the circuit under test, or by coupling to the sweep generator lead through a small capacitor. To insure that the addition of the marker is not affecting the response curve, disconnect the marker generator and observe that no change in the curve's shape or symmetry occurs.
4.5.2 Use of Oscilloscope During Alignment. - The vertical and horizontal amplifier inputs on the oscilloscope should be set in the dc coupled mode. The dc component of the signal on the vertical input should be cancelled out by applying an equal voltage to the unused vertical differential scope input, since the dc component sometimes makes it impossible to center the signal vertically. Otherwise it will sometimes be necessary to use the ac coupled mode. A low-capacity shielded cable should be used to connect to the oscilloscope, and the shield should be grounded as closely as possible to the point to which the center conductor is connected.
4.5.3 Equipments Required. - The following equipments, or their equivalents, are required to perform the com -. plete receiving system alignment.
(1) Signal Generator, Newlett-Packard 612A
(2) Signal Generator, Hewlett-Packard 608D
(3) Signal Generator, Hewlett -Packard 606A
(4) Sweep Generator, Telonic, Model SM-2000 with Types LH-2 and SH-1 Plug-In heads
(5) Sweep Generator, Jerrold 900A
(6) VTVM, RCA Type WV -98B
(7) Power Supply, Eico 1020
(8) Oscilloscope, Tektronix 503
(9) Marker, 21.4 mc , Type C, for Telonic SM-2000

Figure 4-1. Equipment Setup, 20-kc/75-kc/300-kc IF Alignment

$4.620 / 75 / 300 \mathrm{KC}$ TR ALIGNMENT

The alignment procedure for the multiple bandwidth IF strip is presented in the following paragraphs. It will be necessary to remove the IF chassis to perform the alignment.
4.6.1 Initial Settings. - The following steps should be performed before beginning alignment:
(1) Set the recciver function switch to FM position; bandwidth switch to 300 kc .
(2) Disconnect IF strip from RF tuners by removing P21 irom A8Jl.
(3) Set oscilloscope horizontal sensitivity to obtain a 10 cm wide sweep, and the vertical sensi ivity to 0.2 volt per cm .
(1) Install the LH-2 plug -in head in the sweep generator.
(5) Set the sweep generator output frequency to 21.4 mc ; set sweep rate to line irequency.
(6) Calbrate signal generator for a $21.4-\mathrm{mc}$ output.
4.6.2 Discriminato: Alignment. - Proceed as follows:
(1) Remove Q8.
(2) Remove bottom cover from the IF strip.
(3) Set up equipment as shown in Figure 4-1.
(4) Adjust sweep generator output to display an S-curve response on the oscilloscope.
(5) Adjust All3 for amplitude symmetry and AlTl for zero crossing of the S-curve about the 21.4-mc marker. A typical response is shown in Figure 4-2.
(6) Replace Q8.
4.6.3 300-ke if Aligment. - Proceed as follows:
(1) Set up the equipment as shown in Figure 4-1, except that the sweep output is connect to the junction of L13 and C55.
(2) Adjust L16 and $L 15$ for a maximum amplitude response centered on the 21.4-me marker.
(3) Change the sweep gene rator output to A8]1.
(4) Adjust L13, L12, L10, L9, L5, and L4 (in that order), for a maximum amplitude response.
(5) Replace bottom cover
(6) Readust L5 and L4 for a symmetrical, single-peak response, centered at 21.4 mc , with a $3-\mathrm{db}$ andwidth of 300 kc . Readjust L10 and L9 if necessary. A rgoical response is shown in Figure 4-3.

(1) Leve equpront set up as in paragraph 4.6.3, step (3).
(2) Ser liv bardwadn switch to the 20 KC position.
(3) Set oscilloscope horizontal sensitivity to obtain a 10 cm wide sweep, and the vertical sensitivity to 0.2 volt per cm.
(4) Set the sweep generator sweep rate to 5 cps ; adjust frequency and output level until a response curve is displayed on the oscilloscope.
(5) Adjust L7 and L3 for a symmetrical response similar to the response shown in Figure 4-4.

200KC /CM

Figure 4-2. Typical Response Curve, $300-\mathrm{kc}$ Discriminator Alignment
$75 \mathrm{KC} / \mathrm{CM}$

Figure 4-3. Typical Response Curve, $300-\mathrm{kc}$ Bandwidth IF Alignment
4.6.5 $75-\mathrm{kc}$ IF Alignment. - Proceed as follows:
(1) Leave the equipment set up as in paragraph 4.6.3, step (3).
(2) Set the bandwidth switch to the 75 KC position.
(3) Set oscilloscope horizontal sensitivity to obtain a 10 cm wide sweep, and the vertical sensitivity to 0.2 volt per cm .
$5 \mathrm{KC} / \mathrm{CM}$

Figure 4-4. Typical Response Curve, 20 -kc Bandwidth IF Alignment
$15 \mathrm{KC} / \mathrm{CM}$

Figure 4-5. Typical Response Curve, 75 -kc Bandwidth IF Alignment
(4) Set the sweep generator sweep rate to 5 cps ; adjust frequency and eutput level until a response curve is displayed on the oscilloscope.
(5) Adjust L6 and L2 for a symmetrical response similar to the response shown in Figure 4-5.

4.7 2-MC IF ALIGNMENT

The alignment of the $2-\mathrm{mc}$ bandwidth IF strip is explained in the following paragraphs.
4.7.1 Preliminary Steps. - Perform the following steps prior to the alignment:
(1) Remove the $20 / 75 / 300-\mathrm{kc}$ IF strip from the receiver.
(2) Disconnect plug P20 from A7J2.
(3) Remove the bottom cover from the $2-\mathrm{mc}$ IF strip.
(4) Set IF BANDWIDTH switch to 2 MC ; place function switch in FM position.
4.7.2 Discriminator Alignment. - Proceed as follows:
(1) Connect equipment as shown in Figure 4-6.
(2) Adjust power supply for a +4 volt output.
(3) Set output frequency of sweep generator to 21.4 mc . Turn internal $21.4-\mathrm{mc}$ marker on.
(4) Calibrate 606A signal generator for a 19.9 mc output; calibrate the 608D signal generator for a 22.9 mc output.
(5) Adjust sweep generator and oscilloscope controls to display an " S " response curve.
(6) Adjust A7A1L3 for amplitude symmetry and A7A1T1 for zero crossing of the "'S" curve. The $3-\mathrm{mc}$ markers should appear at the peaks of the response. A typical response is shown in Figure 4-7.

Figure 4-6. Equipment Setup, 2 -mc IF Alignment
4.7.3 IF Alignment. - $\operatorname{Proceed}$ as follows:
(1) Set output frequency of 606A signal generator to 19.4 mc and output frequency of 608 D signal generator to 22.4 mc .
(2) Adjust power supply for +6.5 volt output.
(3) Connect equipment as shown in Figure 4-6 except that the sweep generator output is connected to A7Jl and the marker adder input is connected to the emitter of A7Q3.
(4). Set output frequency of sweep generator to 21.4 mc ; turn internal $21.4-\mathrm{mc}$ marker on.
(5) Adjust sweep generator and oscilloscope controls to display a response curve.
(6) Adjust A7L9, A7L8, A7L6, A7L5, A7L3, and A7L2, in the order given, for a maximum amplitude, symmetrical response centered about the $21.4-\mathrm{mc}$ marker. The $2-\mathrm{mc}$ markers should appear at the $3-\mathrm{db}$ points on the response curve. A typical response is shown in Figure 4-8.

Figure 4-7. Typical Response Curve, $2-\mathrm{mc}$ Discriminator Alignment
$400 \mathrm{KC} / \mathrm{CM}$

Figure 4-8. Typical Response Curve, $2-\mathrm{mc}$ Bandwidth IF Alignment

4.8 CONVERTER ALIGNMENT

The alignment of the $60-21.4 \mathrm{mc}$ converter is described in the following paragraphs.
4.8.1 Initial Settings. - Make the following initial settings:
(1) Set the function switch to the AM/AGC position.
(2) Set the RANGE switch to the 235-500 MC position.
(3) Set the IF BANDWIDTH switch to the 300 KC position.
(4) Set sweep generator and signal generator to 60 mc .
4.8.2 V1 to V3 Interstage Alignment. - Proceed as follows:
(1) At A6C7, ground the AGC line.
(2) Connect equipment as shown in Figure 4-9.
(3) Set sweep generator and signal generator to 60 mc .
(4) Adjust oscilloscope until a response curve is displayed.
(5) Adjust A6L1 for a peak response.
(6) Adjust A6L3 and A6L4 for a maximum double-tuned response centered at 60 mc .
4.8.3 A3V3 to A6V1 Interstage Alignment. - Proceed as follows:
(1) At A6C7, ground the AGC line.
(2) Set the signal generator to exactly 325 mc .
(3) Connect signal generator to rear panel jack, Jl, and tune the AN/URR-52A to the signal generator using the tuning meter to indicate proper tuning.
(4) Set equipment as shown in Figure 4-10.
(5) Set the sweep generator to 325 mc .
(6) Calibrate the signal generator to produce a 60 -mc marker.
(7) Set oscilloscope vertical sensitivity at 50 millivolts per cm and adjust sweep generator sweep width until a response curve is displayed on the oscilloscope.

Figure 4-9. Equipment Setup, Converter Alignment
(8) Adjust A3L14 and A6Ll for a maximum tuned response centered at 60 mc .

4.8.4 A4V3 to A6V2 Interstage Alignment. - Proceed as follows:

(1) Ground the AGC line at A6C7.
(2) Set the signal generator to exactly 500 mc .
(3) Set the receiver RANGE switch to $490-1000$ MC position.
(4) Connect signal generator to Jl on the rear apron and tune the receiver to the signal generator using the tuning meter to indicate proper tuning.
(5) Set up equipment as shown in Figure 4-10, except the sweep output will connect to Jl on the rear apron.
(6) Set sweep generator to 500 mc .
(7) Calibrate signal generator to produce a $60-\mathrm{mc}$ marker.
(8) Set the oscilloscope vertical sensitivity to 50 millivolts per em and adjust sweep generator sweep width until a response curve is displayed on the oscilloscope.

Figure 4-10. Equipment Setup, Converter and Tuner Alignment
(9) Adjust A4L17 and A6L2 for a maximum tuncd response centered at 60 mc . A typical response is shown in Figure 4-11.

4.9 235-500 MC TUNER

The alignment of the RF circuits is highly critical and should not be attempted in the field unless considered absolutely necessary, such as after replacement of a variable capacitor in the interstage between V1, V 2 and V 3 . The replacement of an RF amplifier tube, 7077 , or the mixer tube, 7587 , in most cases will restore the original performance of the tuner without any alignment.
4.9.1 Local Oscillator Alignment. - The local oscillator is aligned as follows:
(1) Check the mechanical alignment of the gear train and tuning dial as described in paragraph 4.2 .3 prior to electrical alignment.
(2) Connect the signal generator to jack JI on the rear apron.
(3) Calibrate the signal generator to 250 mc .
(4) Set the receiver RANGE switch to $235-500 \mathrm{MC}$, IF BANDWIDTH switch to 300 KC , and function switch to AM/AGC.
(5) Tune the receiver to the signal generator using the tuning meter to indicate proper tuning.
(6) The receiver tuning dial should indicate $250 \mathrm{mc} \pm 1 \%$.
(7) Repeat steps (3) through (6) for 350 mc and 450 mc .
(8) If any of the dial indications exceed the $\pm 1 \%$ tolerance, adjust C39. After any adjustment of C39, repeat steps (3) through (7).
4.9.2 RF Circuit Alignment. - Proceed as follows:
(1) Set the RANGE switch in the 235-500 MC position.
(2) Set up equipment as shown in Figure 4-9 except that the sweep output will connect to Jl on the rear apron and the external detector input will be connected to A3TPI.
(3) Set both sweep generator and the tuner at 500 mc .
(4) Set the oscilloscope horizontal sensitivity to obtain a 10 cm wide sweep, and the vertical sensitivity to 50 millivolts per cm .
(5) Adjust the sweep generator sweep width and frequency until a response curve is displayed on the oscilloscope.
(6) Adjust A3C6, A3C13, A3C17 and A3C24 for a maximum tuned response centered at 500 mc . A typical response is shown in Figure 4-12. If the alignment is being performed after the replacement of one of these four capacitors, adjust only the one that has been replaced.
(7) Adjust A 3 Cl for maximum gain at 500 mc .
(8) Inductor A3L14 is aligned in conjunction with the converter; see paragraph 4.8.3.

4.10 490-1000 MC TUNER

Under no circumstances should adjustment be made in the high band RF tuner section. The tuned circuits are factory aligned, and will need no further adjustment. If the receiver is unusually noisy, check all cable connections. The most likely cause of trouble in the RF section will be a damaged crystal mixer, and its replacement will usually restore the original performance. The local oscillator adjustments are made using an accurately aligned IF strip. Before alignment of the tuner is attempted, check the 300 kc IF alignment as described in paragraph 4.6. Inductor L17 is aligned in conjunction with the converter as described in paragraph 4.8.4.

Figure 4-11. Typical Response Curve, A4V3 to A6V2 Interstage Alignment

4.10.1 Local Oscillator Alignment. - Proceed as follows:

(1) Check the mechanical alignment of the gear train and tuning dial as described in paragraph 4.2.4 prior to electrical alignment.
(2) Connect the signal generator to jack Jl on the rear apron.
(3) Calibrate the signal generator to 500 mc .
(4) Set the receiver RANGE switch to 490-1000 MC, IF BANDWIDTH switch to 300 KC , and function switch to AM/AGC.
(5) Tune the receiver to the signal generator frequency using the tuning meter to indicate the proper tuning.
(6) The receiver tuning dial should indicate $500 \mathrm{mc} \pm 1 \%$.
(7) If this dial indication exceeds the tolerance, adjust C7.
(8) Repeat steps (3) through (5) for 1000 mc .
(9) If the dial reading exceeds the $\pm 1 \%$ tole rance, adjust C6.
4.10.2 Checking High Band Tuner Oscillator Injection Current. - To check the high band local oscillator injection current, connect a milliammeter to the mating plug provided for jack A4J4 and insert the plug into the jack. This places the meter in series with the crystal mixer dc ground return. The normal current reading is greater than 0.5 ma and less than 2.5 ma .

4.11 60-300 MC TUNER

The tuner is aligned in part using an accurately aligned IF strip. Before an alignment of the tuner is attempted, check the 300 kc IF alignment as described in paragraph 4.6. Check the mechanical alignment of the gear train and tuning dial as described in paragraph 4.2 .2 prior to electrical alignment.

4.11.1 Initial Settings. - Make the following initial settings:

(1) Set the function switch in the AM/MAN position.
(2) Adjust the RF GAIN control fully clockwise.
(3) Set the RANGE switch in the 60-300 MC position.
(4) Set the IF BANDWIDTH switch to the 300 KC position.

4.11.2 Local Oscillator Alignment. - Proceed as follows:

(1) Connect the output of the signal generator to jack Jl on the rear apron.
(2) Calibrate the signal generator to produce a 100 mc signal.
(3) Tune the receiver to the signal generator frequency using the tuning meter to indicate proper tuning.
(4) The tuning dial should indicate $100.0 \mathrm{mc} \pm 1 \%$.
(5) Repeat steps (2) through (5) for 60 mc .
(6) Repeat steps (2) through (5) for 290 mc .
(7) If any of the tuning dial indications exceed the $\pm 1 \%$ tolerance, adjust C29. If C29 is adjusted, repeat steps (2) through (7).
4.11.3 RF Circuit Alignment. - Proceed as follows:
(1) Set up equipment as shown in Figure 4-9 except the sweep output will connect to Jl, and the external detector will be connected to A2TP1.
(2) Set the receiver tuning dial to 100 mc and the sweep generator to 100 mc .
(3) Calibrate the signal generator to produce a 100 -mc marker.
(4) Remove the local oscillator tube V4.
(5) Set the oscilloscope horizontal sensitivity to obtain a 10 cm wide sweep, and the vertical sensitivity to 50 millivolts per cm .
(6) Adjust sweep generator sweep width and frequency until a response curve is displayed on the oscilloscope screen.
(7) Adjust C11 and C18 for a symmetrical, double-tuned response, with the 100 mc marker appearing between the center of the response and the low frequency peak. Adjust Cl5 for a peak to -peak bandwidth of 3.5 mc . A typical response is shown in Figure 4-13.
(8) Adjust C5 for a maximum amplitude of the response at 100 mc .
(9) Check the response at 60 mc and 300 mc . The response shape will vary but the marker should still be on or between the peaks of the response curve.
(10) Re-install the local oscillator tube V4.

4.12 30-60 MC TUNER

The tuner is aligned in part using an accurately aligned IF strip. Before an alignment of the tuner is attempted, check the 300 KC IF alignment as described in paragraph 4.6. Check the mechanical alignment of the gear train and tuning dial as described in paragraph 4.2.l prior to electrical alignment.
4.12.1 Initial Settings. - Make the following initial settings:
(1) Set the IF BANDWIDTH switch to 300 KC .
(2) Set the RANGE switch to the $30-60 \mathrm{MC}$ position.
(3) Set the function switch to the AM/MAN position.
4.12.2 Local Oscillator Alignment. - Proceed as follows:
(1) Connect the output of the signal generator to the input jack Jl on the rear apron.
(2) Calibrate the signal generator to produce a 30 mc signal.
(3) Tune the receiver to the signal generator frequency using the tuning meter to indicate proper tuning.

Figure 4-13. Typical Response Curve, $60-300 \mathrm{mc}$ Tuner Alignment

Figure 4-14. Typical Response Curve, 30-60 mc Tuner Alignment
(4) The receiver tuning dial should indicate $30.0 \mathrm{mc} \pm 1 \%$.
(5) Repeat steps (2) through (5) for $40 \mathrm{mc}, 50 \mathrm{mc}$ and 60 mc .
(6) If any of the tuning dial indications exceed the $\pm 1 \%$ tolerance, adjust C27. After any adjustment of C27, repeat steps (2) through (6).
4.12.3 RF Circuit Alignment. - Proceed as follows:
(1) Set up the equipment as shown in Figure 4-9, except the sweep output is connected to Jl on the rear apron and the external detector is connected to AlTPl.
(2) Adjust RF GAIN for a -1.5 volt reading at AlC38.
(3) Set the receiver tuning dial to 30 mc and the sweep generator to 30 mc .
(4) Remove the local oscillator tube, V4.
(5) Set the oscilloscope horizontal sensitivity to obtain a 10 cm wide sweep, and the vertical sensitivity to 50 millivolts per cm .
(6) Adjust sweep generator sweep width and frequency until a response curve is displayed on the oscilloscope.
(7) Using a calibrated $30-\mathrm{mc}$ marker from the signal generator, adjust C3 for maximum amplitude of the response at 30 mc .
(8) Adjust C13 and C15 for a symmetrical response centered at 30 mc . A typical response is shown in Figure 4-14.
(9) Check the response at $40 \mathrm{mc}, 50 \mathrm{mc}$ and 60 mc . The response shape will vary but the markers should still be on or between the peaks of the response curve.
(10) Re-install the local oscillator tube, V4.

4.12.4 Mixer Plate Coil Alignment. - Proceed as follows:

(1) Set IF BANDWIDTH switch to the 20 KC position.
(2) Set function switch to AM/MAN position.
(3) Set RF GAIN fully cw.
(4) Set receiver tuning dial to 30.0 mc .
(5) From the signal generator, feed a calibrated $30.0-\mathrm{mc}$ signal to the input jack Jl .
(6) Connect the VTVM to A8E2 and adjust signal generator output level until a -3.5 volt indication is obtained.
(7) Adjust L5 for a maximum indication on the VTVM.

4.13 SIGNAL MONITOR

The alignment procedure for the signal monitor section of the receiving system is presented in the following paragraphs. Throughout the alignment, adjust the gain, focus, and intensity controls as necessary.
4.13.1 IF Output Amplifier Alignment. - Proceed as follows:
(1) Set the center frequency control to mid-range.
(2) Connect the output of the signal generator through a 1000 pf capacitor to A5AlTPl .
(3) Calibrate the signal generator to 6.7 mc .
(4) Adjust A5A2Tl through A5A2T9 for a maximum deflection on the CRT, decreasing the signal generator output level as needed to keep the base line on the CRT.
4.13.2 Shaping Amplifier Alignment. - Proceed as follows:
(1) Set the center frequency control to mid-range.
(2) Set sweep width control to maximum cw position.
(3) Connect the output of the signal generator calibrated to 21.4 mc through a 1000 pf capacitor to A5AlTPl.
(4) Adjust A5AlT6 until the pip is centered horizontally .
(5) Decrease sweep width, and note whether or not the pip has moved from its position while moving the sweep width.
(6) If the pip has moved appreciably, adjust A5AlT6 for best centering consistent with minimum pip movement with changes in sweep width.
(7) The response should now be in the center of the signal monitor screen with the center frequency adjust set at mid-range. If this is not the case, A5A3R9 (Horizontal Position adjust) may be adjusted to center the response.
(8) It may be necessary to repeat steps (2) through (5) until no adjustment of A5AlT6 or A5A3R9 is necessary.
(9) Set the signal generator to 22.9 mc .
(10) Set the sweep width control to maximum cw position.
(ll) Adjust A5A3R1l to center this signal on the far left reticule mark; adjust A5A1T5 for peak signal amplitude.
(12) Change the signal generator to 19.9 mc ; adjust A5AlT 4 for a peak signal indication.
(13) Adjust A5AlR 18 until this signal is centered on the far right side reticule mark. A5A3R1l may interact with A5AlR18, so it will be necessary to recheck these adjustments.
(14) Move the signal generator to A5AlJl.
(15) Calibrate the signal generator to 20.4 mc .
(16) Adjust A5AlT2 for a peak indication on the signal monitor.
(17) Calibrate the signal generator to 22.4 mc
(18) Adjust A5AlT3 for a peak indication on the signal monitor.
4.13.3 Horizontal Width Adjustment. - The horizontal width control, A5A3R4, should be set so that the horizontal sweep just starts to wrap around the edges of the tube.
4.13.4 Vertical Position Adjustment. - The vertical position control, A5A3R6, should be set so that the horizontal sweep is vertically positioned on the horizontal reticule, with no signal input and the gain control set maximum ccw.

Table 4-1. AN/URR-52A Panoramic Data Receiving Set, Tube and Transistor Element Voltages

		2	4	8	10	12				
Desig.	Type		Grid	Cathode	Heater	Heater	Plate	Emitter	Base	Collector
AlV1	6CW 4	82.0	0.14	0.72	6.3ac	0				
AlV2	6CW 4	144.0	76.0	82.0	6.3ac					
AlV3	7587	66.0		0	0	6.3ac	110			
AlV4	6CW 4	92.0	46.0*\#	46.0*\#	6.3ac	0				
A2V1	8058	0	0	0	0	6.3ac	102			
A2V2	8058	0.5	0.5	0.5	0	6.3ac	108			
A2V3	7587	20.0	-0.9	0	0	6.3ac	110			
A2V4	6CW 4	73.0	10.9*\#	11.8*\#	0	6.3 ac				
A3V1	7077		0	0	0	6.3ac	118.0			
A3V2	7077		0	0.6	0	6.3ac	118.0			
A3V3	7587	14.0	-0.96	0	6.3ac	0	180.0			
A3V4	7486		-1.6*\#	0	0	6.3ac	86.0			
A4V1	7486		-0.5*\#	0	0	6.3 ac	100.0			
A 4 V 2	6CW-4	92.0	0	0.5	0	6.3ac				
A4V3	6CW 4	170	83.0	92.0	0	6.3 ac				
A5A1Q1	2N706							2.3	3.0	11.0
A5A1Q2	2N706							2.3	2.9	11.6
A5A1Q3	2N706							2.3	2.9	11.6
A5A1Q4	2N706							2.3	2.9	11.6
A5A1Q5	2N706							1.0	1.5	0.35
A5A1Q6	2N706							5.0	5.3	14.7
A5A2Q1	2N706							2.3	3	12.4
A5A2Q2	2N706							0.95	1.6	14.2
A5A2Q3	2N706							2.3	1.1	13.4
A5A2Q4	2N706							13.8	5.0	12.2
A5A2Q5	2N706							5.2	2.2 (1)	$14.7{ }_{(2)}$
A5A3Q1	2N489							8.2	$21.5{ }^{(1)}$	$0.28{ }^{(2)}$
A5A3Q2	2N2270							0	0	10.6
A5A3Q3	2N697							10.6	11.2	24
A5A3Q4	2N1925							10.6	10.6	0
A5A3Q5	2N2270							14.6	15.0	24.0
A6V1	7587	1.38	0.9	0	0	6.3ac	180			
A6V2	7587	36	-0.94	0.24	0	6.3ac	180			
A6V3	7587	21.0	-0.7	0	0	6.3 ac	130			
A6V4	6CW 4	84.0	-4.4	0	0	6.3ac				
A7Q1	2N2708							2.5	3.1	12.0
A7Q2	2N2708							2.3	3.0	11.2
A7Q3	2N2708							2.0	2.8	10.4
A7A1Q1	2N706							2.7	3.3	11.2
A7A1Q2	2N706							2.7	3.4	11.4
A7A1Q3	2N706							2.7	10.2	11.6
A7A1Q4	2N706							2.7	3.2	11.6
A7A1Q5	2N2270							1.6	2.1	12.0
A7A1Q6	2N2270							1.4	1.6	12.0
A7A1Q7	2N2270							0.1	0.5	9.7
A7A2Q1	2N2270							11.0	11.7	12.0
A7A2Q2	2N2270							0	-0.44	11.7
A7A2Q3	2N2270							-0.46	0.14	13.8
A7A2Q4	2N2270							0.48	1.1	11.4
A7A2Q5	2N2270							0.11	0.94	11.3
A8Q1	2N2708							2.0	2.8	11.9

Table 4-1. AN/URR-52A Panoramic Data Receiving Set, Tube and Transistor Element Voltages (Cont.)

Ref. Desig.	Type	2	4	8	10	12	Plate	Emiiter	Base	Collector
			Grid	Cathode	Heater	Heater				
A8Q2	2N2708							1.9	2.7	11.8
A8Q3	2N2708							2.0	2.8	11.7
A8Q4	2N2708							2.0	2.8	11.9
A8Q5	2N2708							1.8	2.6	11.8
A8Q6	2N2708							1.9	2.7	11.8
A8Q7	2N2708							2.1	2.8	10.9
A8Q8	2N2708							2.6	3.4	11.6
A8Q9	2N697							0.7	1.2	12.2
A8Q10	2N697							0	0.6	12.2
A8Q11	2N697							1.44	-. 04	12.2
A8Q12	2N697							10.8	11.4	11.0
A8Q13	2N1131							11.7	11.0	11.6
A8A1Q1	2N706							2.7	3.2	11.4
A8A1Q2	2N706							2.7	3.3	11.3
A8A1Q3	2N706							3.0	3.1	11.5
A8A1Q4	2N706							3.0	3.1	11.5
A8A1Q5	2N697							0.68	1.2	12
A8A1Q6	2N697							-24	0.68	12
A8A2Q1	2N706							17.0	16.0	23.0
A9Q1	2N697							1.37	2.0	25.0
A9Q2	2N526							25.0	25.0	16.0
A10Q1	2N335							0.6	1.25	6.0
A10Q2	2N335							4.7	5.4	24.0
A10Q3	2N 2270							1.2	1.5	22.5
AllV1	GV3A1200						1100			
,A12Q1	2N2270							24.5	25.0	31.0
A12Q2	2N2270							24.5	25.0	31.0
A12Q3	2N1038							-25.0	-24.5	-33.0
A15Q1	2N929							-16.1	-15.5	8.0
A15Q2	2N3251							8.6	8.0	0

Test Conditions: All voltages are positive dc with respect to chassis unless otherwise indicated. Readings taken with RCA WV-98B VTVM with 115 vac applied to the receiving system. Control settings as follows: FOCUS, INTENSITY, and CENTER FREQ for normal operation; GAIN, SWEEP WIDTH, RF GAIN, BFO TUNING, VIDEO GAIN, AUDIO GAIN, and FINE TUNING at max cw; RANGE switch set to tuner being measured; IF BANDWIDTH to IF strip being measured; function switch in CW .

NOTES:

* - indicates 1 meg resistor used in series with probe.
\# - indicates reading which may vary with tuning.
(1) - Base one.
(2) - Base two.

Figure 4-16. UHF Gear Train Assembly,

SECTION V

IDENTIFICATION TABLE OF PARTS

5.1 UNIT NUMBERING METHOD

The unit numbering method of assigning reference designations (electrical symbol numbers) has been used to identify assemblies, subassemblies (and modules), and parts. An example of the unit method follows:

AlR 1

Subassembly	Class and No. of Item

Designation
Read from right to left as:

First (1) resistor (R) of first (1) subassembly (A)

As shown on the main chassis schematic, components which are an integral part of the main chassis have no subassembly designation.

5.2 REFERENCE DESIGNATION PREFIX

Partial reference designations have been used on the equipment and on the illustrations in this manual. The partial reference designations consist of the class letter(s) and identifying item number. The complete reference designations may be obtained by placing the proper prefix before the partial reference designations. Prefixes are provided on drawings and illustrations following the notation "REF DESIG PREFIX".

5.3 IDENTIFICATION TABLE OF PARTS

The Identification Table OF Parts presented on the following pages lists the repair parts for the AN/URR-52A Panoramic Data Receiving Set.

Figure 5-1

Figure 5-1. Type AN/URR -52A Panoramic Data Receiving Set, Top View

Figure 5-2

Figure 5-2. Type AN/URR-52A Panoramic Data Receiving Set, Top View

Figure 5-3

Figure 5-3. Type AN/URR-52A Panoramic Data Receiving Set, Bottom View

REF DESIG PREFIX AI

Figure 5-4. Type 7165 30-60 mc Tuner, Component Locations

Figure 5-5. Type 7165 30-60 mc Tuner, Component Locations

REF DESIG PREFIX AI

Figure 5-6. Type 7165 30-60 mc Tuner, Component Locations

Figure 5-7

REF DESIG PREFIX A2

* INDICATES NON-MAINTENANCE ITEM

Figure 5-7. Type 7164 60-300 mc Tuner, Component Locations

REF DESIG PREFIX A2

Figure 5-8. Type 7164 60-300 mc Tuner, Component Locations

Figure 5-9
REF DESIG PREFIX A3

* INDICATES NON-MAINTENANCE ITEM

Figure 5-9. Type 7162 235-500 mc Tuner, Component Locations

Figure 5-10. Type 7162 235-500 mc Tuner, Component Locations

* INDICATES NON-MAINTENANCE ITEM

Figụre 5-11. Type 7163 490-1000 mc Tuner, Component Locations

REF DESIG PREFIX A4

* INDICATES NON-MAINTENANCE ITEM

Figure 5-12. Type 7163 490-1000 mc Tuner, Component Locations

Figure 5-13. Type 7930 Signal Monitor, Component Locations

Figure 5-14. Type 8003 Shaping Amplifier/Sweep Oscillator, Component Locations

Figure 5-15. Type 8003 Shaping Amplifier/Sweep Oscillator, Component Locations

Figure 5-16. Type 8101 IF Output Amplifier, Component Locations

Figure 5-17
REF DESIG PREFIX A5A2

Figure 5-17. Type 8101 IF Output Amplifier, Component Locations

Figure 5-18. Type 8202 Horizontal Sweep Oscillator, Component Locations

Figure 5-19

Figure 5-19. Type 7120 60-21.4 mc Converter, Component Locations

Figure 5-20. Type 7120 60-21.4 mc Converter, Component Locations

Figure 5-21. Type $721212-\mathrm{mc}$ Bandwidth IF Strip, Component Locations

Figure 5-22. Type 72121 2-mc Bandwidth IF Strip, Component Locations

REF DESIG PREFIX A7AI

Figure 5-23. Part 10523 Limiter/Demodulator, Component Locations

REF DESIG PREFIX A7A2

Figure 5-24. Part 10527 Video/AGC Amplifier, Component Locations

Figure 5-25. Type 72120 20/75/300 kc Bandwidth IF Strip, Component Locations

Figure 5-26. Type 72120 20/75/300 kc Bandwidth IF Strip, Component Locations

Figure 5-27. Type 72120 20/75/300 kc Bandwidth IF Strip, Component Locations

Figure 5-28. Type 72120 20/75/300 kc Bandiwdth IF Strip, Component Locations

Figure 5-29

REF DESIG PREFIX A8AI

Figure 5-29. Part 10710 Limiter/Demodulator, Component Locations

Figure 5-30. Part 1769-3 Beat Frequency Oscillator, Component Locations

Figure 5-31. Type 7312 Video Amplifier, Component Locations

Figure 5-32. Type 7400A Audio Amplifier, Component Locations

REF DESIG PREFIX All

Figure 5-33. Type 7633 Power Supply Regulator (CRT), Component Locations

Figure 5-34. Type 7631 Power Supply Regulator (Gen.), Component Locations

Ref desig prefixes Al3, Al4

Figure 5-35. Type 79125 Coupling Network, Component Locations

Figure 5-36. Type 7836 AGC Monitor Amplifier, Component Locations

7165		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				$\begin{aligned} & \text { CONTRACT NO } \\ & \text { DA18-119-AMC -02499(X) } \\ & \hline \end{aligned}$		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART numbers involved (4)	JAN OR MIL TYPE NUMBER (5)	MAN- AGER (6)	FEDERAL STOCK number 7)	```tOTAL Number parts per END ITEM (8)```	REF FIGURE (9)
Fig. 5-1, Fig. 5-2, Fig. 5-3	RECEIVING SET, RADIO-INDICATOR, PANORAMIC, AN/URR-52A: Aluminum chassis and front panel, grey enamel finished front panel with black photo etched overlay, 5.20 in. h, 19.0 in. w, 17.7 in. d o/a dim., $21.4-\mathrm{mc}$ receiver and signal monitor IF frequency, 20/75/300 kc, 2 -mc receiver IF bandwidths, requires 115 or 230 vac , 60 cps power source; Communica tion Electronics, Inc.	Intercept AM, FM and CW signals propagated by a transmit ter with effective tuning range of 30-1000 mc in four bands; Band A, $30-60 \mathrm{mc}$; Band B, $60-300 \mathrm{mc}$; Band C, 235-500 mc; Band D, 490-1000mc.					1	
Fig. 5-4, Fig. 5-5, Fig. 5-6 Al	AMPLIFIER, radio frequency: Brass chassis, silver plate, gold flashed, 2.190 in. h, 4.940 in . w, 5.880 in . lg o/a dim., $30-90 \mathrm{mc}$ input frequency range, $21.4-\mathrm{mc}$ output frequency, 50 -ohm input impedance; Communication Electronics, Inc. Type 7165.	Tunes $30-60 \mathrm{mc}$ frequency range and converts received signals to $21.4-\mathrm{mc}$ out put.	Al				1	5-3
AlCl *	CAPACITOR, fixed, mica dielectric: 1 section, 500 wvdc, $15 \mathrm{pf} \pm 5 \%$, -55 deg C to 150 deg C operating temp range, plastic case 0.190 in . thk by 0.330 in . w by $0.360 \mathrm{in} . \lg$ o/a dim. 2 radial wire lead terminals; Electro Motive DM10C 150J.	Part of a voltage divider.	$\begin{aligned} & \text { A1C1, A5A } 1 \mathrm{C} 1, \\ & \text { A7A1C6, } \\ & \text { A8A1C7 } \end{aligned}$			5910-960-7288	4	5-5
A 1C2 *	CAPACITOR, fixed, mica dielectric: 1 section 500 wvdc, $15 \mathrm{pf} \pm 5 \%$, -55 deg C to 150 deg C operating temp range, plastic case 0.190 in. thk by 0.330 in . w by $0.360 \mathrm{in} . \lg$ o/a dim., 2 radial wire lead terminals; Electro Motive DM10-220J.	Part of a voltage divider.	AlC2, AlC29			5910-956-8397	2	5-4

Indicates Non-Maintenance Item

		COMMUNICATION ELECTRONICS INCORPORATED DA18-119-AMC-0249						
$\begin{gathered} \hline \text { REF. } \\ \text { SYM. } \\ \text { OR } \\ \text { PART } \\ \text { NUMBER } \\ \text { (} 1 \text {) } \\ \hline \end{gathered}$	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	$\begin{gathered} \hline \text { JAN } \\ \text { OR } \\ \text { M1L } \\ \text { TYPE } \\ \text { NMBER } \\ \text { (5) } \end{gathered}$	MANAGER (6)	FEDERAL STOCK number (7)	total NUMBER PARTS PER END ITEM (8)	REF figure (9)
AlC3*	CAPACITOR, variable, glass dielectric: 1 section, 1250 wvdc, 0.6 pf to 9.0 pf screw driver type, 0.312 in . dia by $1.156 \mathrm{in} . \lg$ o/a dim.; Roanwell MGll016.	Padder	AlC3, AlC13, AlC15, AlC27, A2C11, A2C15 A2C 18, A2C29			5910-916-0798	8	5-4
AlC4*	CAPACITOR, fixed, mica dielectric: 270 pf $\pm 5 \%, 500$ wvdc; per MIL -C -5.	Coupling	AlC4, AlCll	CM05F271J03		5910-649-2915	2	5-5
AlC5	CAPACITOR, fixed, ceramic dielectric: 1 section, 1000 pf , GMV, 500 wvdc, insulated body, 0.156 in . thk by 0.235 in . dia o/a dim., 2 radial wire lead terminals; Radio Materials Co. SM001GMV .	Filtering	AlC5, AlC8, AlC9, AlC10, AlC19, AlC20, AlC23, AlC24, AlC26, AlC31, AlC32, AlC33, AlC34, AlC35, A1C36, A2C21, A2C30, A2C31, A2C32, A2C33, A2C39, A4C20, A4C21, A4C22, A4C23, A4C27, A4C28, A6C12, A6C14, A6C16, A6C22, A6C23, A6C25, A6C26, A6C27, A6C29, A7AlC2, A7AlC4, A7AlC5, A7A1C12, A7A1C14, A7C1, A7C10, A8A1C2, A8AlC3, A8AlC4, A8AlC5,			5910-899-7745	57	5-6

		CONTRACTOR COMMUN	ATION ELECTR	ONICS INCORP	PORA	CONTRACT NO. DA18-119.	AMC -02499	
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUnCtion (3)	ALL SYMBOLS AND PART NUMBERS involved (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ \text { (5) } \end{gathered}$	man- AGER (6)	FEDERAL STOCK NUMBER (7)	total number PARTS PER END ITEM (B)	REF figure (9)
			A8A2C2, A8C5, A8C7, A8C8, A8C13, A8C17, A8C20, A8C35, A8C37, A8C39					
AlC6 *	CAPACITOR, fixed, ceramic dielectric: 1 section, 0.33 pf $\pm 10 \%, 500 \mathrm{wvdc}, 0.125 \mathrm{in}$. dia by $0.250 \mathrm{in} . \lg$ o/a dim ., 2 axial wire lead terminals; Quality Components QC -33PFPORM10PCT.	Neutral ization	AlC6			5910-855-5056	1	5-5
A1C7	CAPACITOR, fixed, ceramic dielectric: $1.5 \mathrm{pf} \pm 0.25 \mathrm{pf}, 500$ wvdc ; per MIL-C-20.	Neutralization	$\begin{aligned} & \text { A1C7, A2C3, } \\ & \text { A4C9, A5A1C27 } \end{aligned}$	CC20CK1R5C		5910-725-1709	4	5-4
AlC8	CAPACITOR, Same as AlC5.	Bypass						5-5
AlC9 *	CAPACITOR, Same as AlC5.	Neutralization						5-6
AlC10*	CAPACITOR, Same as AlC5.	Filtering						5-5
AlC11 *	CAPACITOR, Same as AlC4.	Coupling						5-5
AlC12 *	CAPACITOR, fixed, mica dielectric 1 section, $18 \mathrm{pf} \pm 5 \%, 500$ wvdc, -55 deg C to 150 deg C operating temp range, plastic case 0.220 in . thk, by $0.420 \mathrm{in} . \mathrm{h}$ by $0.490 \mathrm{in} . \mathrm{lg}$ o/a dim ., 2 radial wire lead terminals; Electro Motive DM10C180J.	Part of a voltage divider.	$\begin{aligned} & \text { A1C12, } \\ & \text { A5A2C37 } \end{aligned}$			5910-728-2790	2	5-5
AlCl3*	CAPACITOR, Same as AlC3.	Part of a tuned circuit.						5-5

[^1]| | | CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED | | | | CONTRACT NO.DA18-119-AMC-02499(X) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| REF. SYM. OR PART NUMBER (1) | NAME OF PARTS OR DESCRIPTION (2) | FUNCTION (3) | ALL SYMBOLS AND PART numbers involved (4) | $\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MLL } \\ \text { TYPE } \\ \text { NUMBER } \\ (5) \end{gathered}$ | MANAGER
 (6) | federal STOCK NUMBER 7) | total NUMBER PARTS PER END ITEM (8) | REF FIGURE (9) |
| AlC $14 *$ | CAPACITOR, fixed, ceramic dielectric: 1 section, $2.2 \mathrm{pf} \pm 0.25$ pf, 500 wvdc , uninsulated case 0.200 in . dia by $0.400 \mathrm{in} . \lg$ o/a dim., 2 axial wire lead terminals; Erie 301-000COJO229C. | Coupling | $\begin{aligned} & \text { A1C } 14, \text { A4C } 26, \\ & \text { A6C } 4 \end{aligned}$ | | | 5910-957-5121 | 3 | 5-4 |
| AlC15* | CAPACITOR, Same as AlC3. | Part of a tuned circuit. | | | | | | 5-5 |
| AlC 16 * | CAPACITOR, fixed, mica dielectric 1 section $12 \mathrm{pf} \pm 5 \%$, 500 wvdc, -55 deg C to 150 deg C operating temp range, plastic case 0.220 in . thk by $0.420 \mathrm{in} . \mathrm{h}$ by $0.490 \mathrm{in} . \lg$ o/a dim., 2 radial wire lead terminals; Electro Motive DM10C 120J. | Part of a voltage divider. | A1C16, A1C43,
 A6C5, A6C6 | | | 5910-771-6072 | 4 | 5-6 |
| A1C17 * | CAPACITOR, fixed, mica dielectric: 1 section $47 \mathrm{pf} \pm 5 \%$, 500 wvdc, -55 deg C to 150 deg C operating temp range, plastic case 0.220 in . thk by $0.420 \mathrm{in} . \mathrm{h}$ by $0.490 \mathrm{in} . \lg$ o/a dim., 2 radial wire lead terminals; Electro Motive DM10-470J. | Coupling | AlC17,
 A5A2C32, A5A2C34, A7A1C8, A7A1C9, A7C20, A7C21, A8C22, A8C23, A8C 42, A8C 43, A8C53, A8C54, A8C61, A8C62, A8C80 | | | 5910-956-8400 | 16 | 5-5 |
| AlC 18 | CAPACITOR, fixed, ceramic dielectric: 1 section, $1.2 \mathrm{pf}, \pm 0.25$ pf, 500 wvdc, uninsulated case 0.200 in . dia by $0.400 \mathrm{in} . \lg$ o/a dim., 2 radial wire lead terminals; Erie 301COK129C. | Coupling | $\begin{aligned} & \mathrm{A} 1 \mathrm{C} 18, \mathrm{~A} 2 \mathrm{C} 22, \\ & \mathrm{~A} 2 \mathrm{C} 25 \end{aligned}$ | | | 5910-993-1821 | 3 | 5-5 |
| AlC 19 | CAPACITOR, Same as AlC5. | Filtering | | | | | | 5-6 |

[^2]| | | CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED | | | | CONTRACT NO.
 DA18-119-AMC -02499(X) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| REF. SYM. OR PART NUMBER (1) | NAME OF PARTS OR DESCRIPTION (2) | FUNCTION
 (3) | ALL SYMBOLS AND PART NUMBERS INVOLVED (4) | JAN OR MYL TYPE NUMBER (5) | MAN-
 AGER
 (6) | FEDERAL STOCK NUMBER
 (7) | TOTAL NUMBER PARTS PER END ITEM (8) | REF FIGURE
 (9) |
| AlC20 | CAPACITOR, Same as AlC5. | F iltering | | | | | | 5-6 |
| AlC2 1 | CAPACITOR, fixed, ceramic dielectric: 1 section, $1000 \mathrm{pf}, \mathrm{GMV}$, 500 wvdc, metal case 0.281 in . dia by $0.437 \mathrm{in} . \lg$ o/a dim., standoff type 1 solder lug terminal; AllenBradley SS5A102W. | Bypass | AlC21, AlC25, A2C6, A2C8, A2C38, A2C40, A4C17, A4C24, A4C32, A6C 13, A6C31, A7C6, A7C14, A7C22, A7C26, A7C32, A8C6, A8C12, A8C21, A8C31, A8C41, A8C50, A8C58 | | | 5910-898-0216 | 23 | 5-5 |
| A1C22 | CAPACITOR, fixed, ceramic dielectric: 1 section, $330 \mathrm{pf} \pm 10 \%$, 500 wvdc, 0.281 in . dia by $0.687 \mathrm{in} . \mathrm{lg}$ o/a dim., 2 solder lug terminals; Allen-Bradley FA5C3311. | Filtering | AlC22 | | | | 1 | 5-5 |
| AlC23 | CAPACITOR, Same as AlC5. | Coupling | | | | | | 5-6 |
| AlC24 | CAPACITOR, Same as AlC5. | Coupling | | | | | | 5-4 |
| AlC25 | CAPACITOR, Same as AlC21. | F iltering | | | | | | 5-4 |
| AlC26 | CAPACITOR, Same as AlC5. | Filtering | | | | | | 5-4 |
| AlC27* | CAPACITOR, Same as AlC3. | Part of a tuned cir cuit. | | | | | | 5-5 |
| AlC28* | CAPACITOR, fixed, mica dielectric: 1 section, $10 \mathrm{pf} \pm 5 \%, 500$ wvdc, -55 $\operatorname{deg} \mathrm{C}$ to 150 deg C operating temp range, plastic case 0.190 in . thk by 0.330 in . w by $0.360 \mathrm{in} . \lg$ o/a dim., 2 radial wire lead terminals; Electro Motive DM10F100J. | Blocking | $\begin{aligned} & \text { A1C28, AlC30, } \\ & \text { A5A1C28, } \\ & \text { A5A1C29, } \\ & \text { A7A1C7 } \end{aligned}$ | | | 5910-760-6877 | 5 | 5-6 |

* Indicates Non-Maintenance Item

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NODA18-119-AMC -02499(X)		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	$\begin{gathered} \text { ALL } \\ \text { SYMBOLS } \\ \text { AND PART } \\ \text { NUMBERS } \\ \text { INVOLVED } \\ (4) \end{gathered}$	JAN OR MIL TYPE NUMBER (5)	MAN- AGER (6)	FEDERAL STOCK NUMBER (7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)
			A8A2C4, A8C1, A8C2, A8C3, A8C4, A8C10, A8C11, A8C26, A8C40, A8C49, A8C50, A8C71, A8C72, A8C73, A8C74, A8C75, A8C76					
AlC39	CAPACITOR, Same as AlC38.	Filtering						5-4
A1C40	CAPACITOR, Same as AlC38.	Filtering						5-4
AlC41	CAPACITOR, Same as AlC38.	Filtering						5-5
AlC42*	CAPACITOR, fixed, ceramic, dielectric: 2 pf $\pm 0.25 \mathrm{pf}, 500 \mathrm{wvdc}$; per MIL-C-20.	Blocking	AlC42, AlC44	CC20CK020C		5910-842-2292	2	5-6
AlC43	CAPACITOR, Same as AlCl6.	Coupling						5-5
AlC44	CAPACITOR, Same as AlC42.	Coupling						5-6
AlCR1	SEMICONDUCTOR DEVICE, diode: Silicon hermetically sealed 0.125 in. dia by $0.300 \mathrm{in} . \lg$ o/a dim., 2 axial wire lead terminals; Thompson Ramo Woolridge V27E.	Varies oscillator tank circuit frequency	$\begin{aligned} & \text { A1CR1,A2CR1, } \\ & \text { A5A1C32 } \end{aligned}$			5910-902-8035	3	5-4
AlCR2	SEMICONDUCTOR DEVICE, diode: EIA designation 1N3044B; per MIL-S-19500.	Voltage regulator.	$\begin{aligned} & \mathrm{A} 1 \mathrm{CR} 2, \mathrm{~A} 2 \mathrm{CR} 2, \\ & \mathrm{~A} 3 \mathrm{CR} 2, \mathrm{~A} 4 \mathrm{CR} 3 \end{aligned}$	$\begin{aligned} & \text { JAN } \\ & \text { IN3044B } \end{aligned}$		5960-893-6766	4	5-6
AlFBl	FERRITE BEAD: Parasitic suppres sor, ferrite, 0.047 in . id by 0.138 in. od by 0.118 in . lg o/a dim.; Ferroxcube 56-590-65-4A.	Filtering	AlFB1,AlFB2, A1FB3, AlFB4, AlFB5, AlFB6, A1FB7, A2FB1,			5844-980-1271	12	5-6

* Indicates Non-Maintenance Item

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATEL				CONTRACT NO.DA18-19-AMC-02499(X)		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	function (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	$\begin{gathered} \hline \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ (5) \\ \hline \end{gathered}$	MANAGER (6)	FEDERAL STOCK NUMBER $\text { (} 7 \text {) }$	```total Number PARTS PER END ITEM (8)```	REF figure (9)
			A6FB1, A7FB1, A7FB2, A8FBl					
AlFB2	FERRITE BEAD, Same as AlFBl.	Filtering						5-6
AlFB3	FERRITE BEAD, Same as AlFBl.	Filtering						5-4
AlFB4	FERRITE BEAD, Same as AlFBl.	Filtering						5-5
AlFB5	FERRITE BEAD, Same as AlFBl.	Filtering						5-6
AlFB6	FERRITE BEAD, Same as AlFBl.	Filtering						5-4
AlFB7	FERRITE BEAD, Same as AlFBl.	Filtering						5-5
Aljl	CONNECT.OR, receptacle, electrical: series BNC; per MIL -C -3608.	RF input connector.	Alj1, Alj5, A2J1, A2J4, Al3J1, Al3J2, A13J3, A13J4, Al4J1, A14J2, Al4J3,A14J4	UG 1094AU		5935-665-5718	12	5-4
AlJ2	CONNECTOR, receptacle, electrical: l male contact, 1 connector mating end, low -loss plastic dielec tric insulation, 50 ohms impedance, straight, 0.234 in . dia by 0.594 in . \lg o/a dim., mtd w/10-32 hex nut; Amphenol 27-9.	Mixer input jack.	AlJ2, AlJ3, A1J4, A2J2, A3J2, A4J2, A5A1J1, A5A1J2, A5A2Jl, A6Jl, A6J2, A6J3, A7J1, A7J2, A7J3, A7J4, A7J5, A8Jl, A8J2, A8J3			5935-518-9551	20	5-6
AlJ3	CONNECTOR, Same as Alj2.	Mixer output jack.						5-4
AlJ4	CONNECTOR, Same as Alj2.	Mixer input jack.						5-4
AlJ5	CONNECTOR, Same as Aljl	LO output jack.						5-4

IDENTIFICATION TABLE OF PARTS

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				$\begin{aligned} & \hline \text { CONTRACT NO } \\ & \text { DA18-119-AMC -02499(X) } \\ & \hline \end{aligned}$		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MAN- AGER (6)	FEDERAL STOCK NUMBER $\text { (} 7 \text {) }$	tOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
AlLl *	COIL, radio frequency: 12 turns closewound no. 28 sns wire, 0.130 in. dia by $0.500 \mathrm{in} . \lg$ o/a dim., plastic coil form, uninsulated, 2 axial wire lead terminals; Communication Electronics, Inc. 1131-6.	Trimmer coil for L2A.	AlLl, AlL3, AlL4				3	5-4
$\begin{aligned} & \text { AlL2A, B, } \\ & \text { C, D* } \end{aligned}$	TUNER, radio frequency: variable inductor, 4 sections $30-60 \mathrm{mc}$ frequency range, 4 solder lug terminals, 1.500 in . by 1.500 in . by 3.250 in. o/a dim; Communication Electronics, Inc. 2026.	Four -section induc tuner used to tune fre quency range of $30-$ 60 mc .	AlL2A, B, C, D				1	$\begin{aligned} & 5-4 \\ & 5-6 \end{aligned}$
AlL3 *	COIL, Same as AlLl.	Trimmer coil for L2B.						5-6
AlL4*	COIL, Same as AlLl.	Trimmer coil for L2C.						5-4
AlL5	COIL, radio frequency: 18 turns closewound no. 34 sf wire . 0.438 in. dia by $1.497 \mathrm{in} . \lg$ o/a dim. , shielded 2 solder lug terminals, mounted w/1/4-28 hex nut; Communication Electronics, Inc. 1472-3.	Part of a tuned circuit.	AlL5, A7L2, A7L3, A7L5, A7L6, A7L8, A7L9, A8L2, A8L3, A8L4, A8L5, A8L6, A8L7, A8L9, A8L10, A8L12, A8L13, A8L15, A8L16				19	5-4
AlL6*	COIL, radio frequency: 14 turns closewound no. 20 sns wire, 0.130 in. dia by $0.500 \mathrm{in} . \lg$ o/a dim ., plastic coil form, uninsulated, 2 axial wire lead terminals: Communication Electronics, Inc. 1131-7.	Trimmer coil for L2D.	AlL6				1	5-4

* Indicates Non-Maintenance Item

		CONTRACTOR COMMUNICATION ELECTR ONICS INCORPORATEL				CONTRACT NO. DA18-119-AMC-02499(X)		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS involved (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ \text { (} 5 \text {) } \\ \hline \end{gathered}$	MAN- AGER (6)	FEDERAL STOCK NUMBER (7)	tOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
AlL7*	COIL, radio frequency: 31 turns closewound no. 31 sns wire. 0.187 in. dia by $0.625 \mathrm{in} . \lg$ o/a dim., plastic coil form insulated, 2 axial wire lead terminals; Communication Electronics, Inc. 1131-8.	Padder inductor for L2D.	AlL 7				1	5-4
AlL8	COIL, radio frequency: $3.3 \mu \mathrm{~h}$, 0.35 ohms resistance, 127 mc nominal resonance frequency, $50 \mathrm{mini}-$ mum Q, 0.212 in . dia by 0.625 in . \lg o/a dim., plastic coil form, baked varnish insulation. 2 axial wire lead terminals; Wilco Corp. 211-11.	Filtering	AlL 8			5950-681-9446	1	5-5
AlR 1	RESISTOR, fixed, composition: $100 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Input load resistor .	$\begin{aligned} & \text { A1R 1, A1R20, } \\ & \text { A2R1, A2R20, } \\ & \text { A6R3, A6R6, } \\ & \text { A7A1R11, } \\ & \text { A7A2R1, } \\ & \text { A8A1R14, } \\ & \text { A8A1R 15, } \\ & \text { A8A1R 17, } \\ & \text { A8R64, A9R9, } \\ & \text { A10R6 } \end{aligned}$	RC07GF 104J		5905-686-3129	14	5-4
A1R2 *	RESISTOR, fixed, composition: $47 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R - 11 .	Dropping	AlR2, AlR6, AlR 18, A2R 15, A4R6, A4R8, A5A1R16, A8A2R1, A8R55	RC07GF 473J		5905-683-2246	9	5-6
AlR3	RESISTOR, fixed, composition: $270 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Part of a filter .	AlR3	RC07GF 274J		5905-681-8822	1	5-5

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				$\begin{aligned} & \text { CONTRACT NO } \\ & \text { DA18-119-AMC-02499(X) } \end{aligned}$		
REF SYM. OR NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ \text { (5) } \end{gathered}$	MAN- AGER (6)	FEDERAL STOCK number (7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)
AlR 4	RESISTOR, fixed, composition: 51 ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R - 11 .	Part of a filter.	A1R4, A2R19, A3R16, A4R1	RC07GF510J		5905-683-7720	4	5-4
AlR5	RESISTOR, fixed, composition: 150 ohms $\pm 5 \%, 1 / 4 W$; per MIL-R -11	Cathode resistor for AlV1.	AlR5, R6	RC07GF 151J		5905-683-2243	2	5-5
AlR6*	RESISTOR, Same as AlR2.	Part of a voltage divider.						5-6
AlR7*	RESISTOR, fixed, composition: 10 ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL $-\mathrm{R}-11$.	Part of a voltage divider.	AlR7 A4R9, A5A1R27, A5AlR28, A8R 46, A 12R 1, Al2R6,	RC07GF 100J		5905-817-7971	7	5-5
AlR8	RESISTOR, fixed, composition: $6.8 \mathrm{~K} \pm 5 \%$, 1 W ; per MIL-R-11.	Dropping	AlR8	RC32GF682J		5905-299-2036	1	5-6
AlR9*	RESISTOR, fixed, composition: $4.7 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Swamping	A1R 9, A2R16, A2R17, A5A2R12, A5A3R3, A5A3R 14	RC07GF 472J		5905-686-9998	6	5-5
AlR 10	RESISTOR, fixed, composition: $470 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Part of a voltage divider.	AlR10, AlR11, A2R 9, A2R 10, A3R7, A3R8, A3R10, A3R11, A5A3R7, A5A3R8, A15R1	RC07GF 474J		5905-681-8957	11	5-6
A1R11	RESISTOR, Same as AIR 10.	Part of a voltage divider.						5-6
A1R12	RESISTOR, fixed, composition: $330 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W} ;$ per MIL-R-11.	Part of a filter .	A1R12, A2R11, A5A2R16, A5A2R 18, A6R17, A7AlR19,	RC07GF 334J		5905-686-3131	8	5-6

* Indicates Non-Maintenance Item

		COMMUNICATION ELECTRONICS INCORPORATED				$\begin{aligned} & \hline \text { CONTRACT NO. } \\ & \text { DA18-119-AMC-02499(X) } \end{aligned}$		
$\begin{gathered} \text { REF } \\ \text { SYM. } \\ \text { OR } \\ \text { PART } \\ \text { NUMEER } \\ (1) \\ \hline \end{gathered}$	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ \text { (5) } \\ \hline \end{gathered}$	MAN- AGER (6)	FEDERAL STOCK NUMBER \square	tOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
			A8A1R19, A8R56					
A1R13	RESISTOR, fixed, composition: $33 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Dropping	AlR13, A2R12, A3R13, A4R3, A5A1R23, A6R 18, A7A1R4, A8R58, A8R59	RC07GF333J		5905-686-3903	9	5-4
A1R14	RESISTOR, fixed, composition: $13 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Part of a filter .	$\begin{aligned} & \text { A1R14, A2R2, } \\ & \text { A3R5 } \end{aligned}$	RC32GF 133J		5905-279-2549	3	5-5
A1R15	RESISTOR, fixed, composition: $1 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Dropping	AlR15, A3R1, A3R3, A4R5, A4R 12, A5A1R3 A5AlR 4, A5AlR5, A5AIR6, A5AIR 7, A5AlR8, A5AIR9, A5AIR10, A5AIR13, A5A2R1, A5A2R4, A5A2R7, A5A2R8, A5A2R10, A5A2R11, A5A2R14, A6R10, A7A1R3 A7A2R3, A7R3, A7R8, A8AIR3, A8R 14, A8R 16, A8R18, A8R35, A8R37, A8R38, A8R47, A9R1,	RC07GF 102J		5905-681-6462	41	5-5

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NO. DA18-119-AMC-02499(X)		
REF. SYM. OR PART NUMBER (1)	name of parts or description (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ \text { (5) } \end{gathered}$	MANager (6)	FEDERAL STOCK NUMBER (7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
			A9R4, A12R2, Al2R3, Al2R4, Al2R5, Al5R6					
AIR 16	RESISTOR, fixed, composition: $4.7 \mathrm{~K} \pm 5 \%, 1 / 2 \mathrm{~W}$; per MIL-R-11.	Part of a filter ; dropping.	AIR 16	RC20GF472J		5905-279-3504	1	5-4
AlR 17	RESISTOR, fixed, composition: $2.2 \mathrm{~K} \pm 5 \%, 1 / 4 W$; per MIL-R - 11 .	Part of a filter	AlR17, A7A2R8	RC07GF222J		5905-723-5251	2	5-4
AlR 18*	RESISTOR, Same as AlR2.	Part of a voltage divider.						5-5
AlR19*	RESISTOR, fixed, composition: $22 \mathrm{~K} \pm 5 \%, 1 / 2 \mathrm{~W}$; per MIL-R-11.	Part of a voltage divider.	AIR 19	RC20GF223J		5905-687-0002	1	5-6
AlR20	RESISTOR, Same as AlR1.	Dropping						5-4
AlR2 1	RESISTOR, fixed, composition: 1.5 meg $\pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Part of a voltage divider.	A1R21, A3R 17	RC07GF 155J		5905-800-3481	2	5-6
AlTl *	TR ANSFORMER, radio frequency: CEI 1131-09 coil with 13 turns no. 27 wire ccw around plastic sleeving, 3 wire terminals, 0.250 in . dia, by $0.750 \mathrm{in} . \mathrm{lg}$; Communication Electronics, Inc. 1134.	Neutralization	AlTl				1	5-4
AlTPl	JACK, tip: Insulated, low -loss plastic, white, 3500 vac nominal rating, single thru hole mtg, 0.218 in . dia by $0.438 \mathrm{in} . \lg$ o/a dim., 1 solder lug terminal; Taurus TJ-6.	Test point	AlTP1, A2TP1, A3TP1, A4TPl, A5AlTPI, A5AITP2, A6TPI			5935-226-0489	7	5-4
AlV1	ELECTRON TUBE: EIA designation 6CW4, metal case, high -mu, triode; RCA 6CW4.	RF Amplifier	$\begin{aligned} & \text { AlV1, AlV2, } \\ & \text { AlV4, A2V4, } \\ & \text { A4V2, A4V3, } \\ & \text { A6V4. } \end{aligned}$			5960-956-8414	7	5-4

[^3]

	7164	CONTRACTOR COMMUN	COMMUNICATION ELECTR ONICS INCOI		PORA	$\begin{gathered} \text { CONTRACT NO. } \\ \text { DA18-119- } \\ \hline \end{gathered}$	MC -02499	
\square	NAME OF PARTS OR DESCRIPTION (2)	function (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MANAGER (6)	FEDERAL STOCK NUMBER (7)	total NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)
$\begin{aligned} & \text { Fig. } 5-7 \\ & \text { Fig. } 5-8 \\ & \text { A2 } \end{aligned}$	AMPLIFIER, radio frequency: Brass chassis, silver plate, goldflashed, 2.950 in. h, 4.190 in. w, $7.880 \mathrm{in} . \mathrm{lg}$, o/a dim., $60-300 \mathrm{mc}$ input frequency range, $21.4-\mathrm{mc}$ output frequency, 50 -ohm input impedance; Communication Electronics, Inc. type 7164.	Tunes 60-300 mc frequency range and converts received frequencies to 21.4mc output.	A2				1	5-3
A2C 1 *	CAPACITOR, fixed, ceramic dielectric: 1 section, 5.6 pf ± 0.5 $\mathrm{pf}, 500 \mathrm{wvdc}$, uninsulated case, 0.200 in . dia by $0.400 \mathrm{in} . \mathrm{lg}$, o/a dim., 2 radial wire lead terminals; Erie 301COH569D.	Part of a voltage divider.	A2Cl			5910-828-5842	1	5-7
A2C2 *	CAPACITOR, fixed, ceramic dielectric: 1 section, $8.0 \mathrm{pf} \pm 0.5$ pf, 500 wvdc, uninsulated case, 0.200 in . dia by $0.400 \mathrm{in} . \lg$, o/a dim., 2 radial wire lead terminals; Erie 301COH829D.	Part of a voltage divider.	A2C2			5910-823-1818	1	5-7
A2C3 *	CAPACITOR, Same as AlC7.	Neutralization						5-7
A2C4 *	CAPACITOR, fixed, ceramic dielectric: 1 section, 6.2 pf ± 0.5 pf, 500 wvdc, uninsulated case, 0.200 in . dia by $0.400 \mathrm{in} . \lg$, o/a dim., 2 radial wire lead terminals; Erie 301COH629D.	Padder for A2C5.	$\begin{aligned} & \text { A2C } 4, \text { A3C34, } \\ & \text { A7C23 } \end{aligned}$				3	5-7
A2C5 *	CAPACITOR, variable, ceramic dielectric: 1 section, 500 wvdc, 0.5 to $4.5 \mathrm{pf}, 0.250 \mathrm{in}$. dia by $1.297 \mathrm{in} . \mathrm{lg}$, o/a dim., 1 solder tab terminal; Cambion CST6.	Neutralization	A2C5, A3C 1			5910-648-7991	2	5-7
A2C6	CAPACITOR, Same as AlC2l.	Filtering						5-7

* Indicates Non-Maintenance Item

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				$\begin{aligned} & \hline \text { CONTRACT NO. } \\ & \text { DA18-119-AMC-02499(X) } \end{aligned}$		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	function (3)	ALL SYMBOLS AND PART NUMBERS involved (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ (5) \end{gathered}$	MANAGER (6)	federal STOCK NUMBER (7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
A2C7 *	CAPACITOR, fixed, mica dielectric: 1 section, $500 \mathrm{wvdc}, 510 \mathrm{pf}$ $\pm 5 \%$, -55 deg C to 150 deg C operating temp range, plastic case, 0.240 in . thk by 0.420 in . h by $0.490 \mathrm{in} . \mathrm{lg}$, o/a dim., 2 radial wire lead terminals; Electro Motive DM15-511J.	Coupling	A2C7			5910-649-2917	1	5-8
A2C8	CAPACITOR, Same as AlC21.	Filtering						5-7
A2C9 *	CAPACITOR, fixed, composition dielectric: 1 section, $0.47 \mathrm{pf} \pm 10 \%$, 500 wvdc, uninsulated case, 0.150 in . dia by $0.235 \mathrm{in} . \lg$, o/a dim., 2 axial wire lead terminals; Quality Components QC0.47PFPORM10PCT.	Part of a tuned circuit.	A2C9			5910-899-5818	1	5-8
A2C10*	NOT USED							
A2C11*	CAPACITOR, Same as AlC3.	Part of a tuned circuit.						5-7
A2C12*	CAPACITOR, fixed, ceramic dielectric: 47 pf $\pm 5 \%$, 500 wvdc; per MIL-C-20.	Filtering	A2C12, A2C 13	CC30CH470J		5910-577-7921	2	5-8
A2C13*	CAPACITOR, Same as A2C 12.	Filtering						5-7
A2C14*	CAPACITOR, fixed, ceramic dielectric: $1.0 \mathrm{pf} \pm 0.25 \mathrm{pf}, 500$ wvdc; per MIL-C-20.	Coupling	A2C 14, A2C16, A2C20, A3C38, A6C3	CC20CK010C		5910-583-1590	5	5-8
A2C 15 *	CAPACITOR, Same as AlC3	Part of a tuned circuit.						5-7
A2C16*	CAPACITOR, Same as A2C14.	Coupling						5-7

* Indicates Non-Maintenance Item

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NO. DA18-119-AMC -02499(X)		
REF SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART Numbers involved (4)	JAN OR MIL TYPE NUMBER (5)	MANAGER (6)	FEDERAL STOCK NUMBER (7)	total number PARTS PER END ITEM (8)	REF FIGURE (9)
A2C17 *	CAPACITOR, fixed, composition dielectric: l section, $0.22 \mathrm{pf} \pm 10 \%$, 500 wvdc, uninsulated case, 0.160 in. dia by $0.240 \mathrm{in} . \lg$, o/a dim., 2 axial wire lead terminals; Quality Components QC0.22PRPORM10PCT.	Feedback	A2C17			5910-890-8973	1	5-8
A2C18 *	CAPACITOR, Same as AlC3	Part of a tuned circuit.						5-8
A2C19 *	CAPACITOR, fixed, ceramic dielectric: 1 section, 5.1 pf ± 0.5 pf, 500 wvdc, uninsulated case, 0.200 in . dia by $0.400 \mathrm{in} . \mathrm{lg}$, o/a dim., 2 radial wire lead terminals; Eire 301COH519D.	Coupling	A2C19			5910-833-0688	1	5-7
A2C20	CAPACITOR, Same as A2C14.	Coupling						5-8
A2C21	CAPACITOR, Same as AlC5.	Filtering						5-7
A2C22 *	CAPACITOR, Same as AlC 18.	Coupling						5-8
A2C23	CAPACITOR, fixed, ceramic dielectric: 1 section, 2.7 pf nominal value, NPOA; Erie 301.	Coupling	A2C23				1	5-8
A2C24	CAPACITOR, Same as AlC38.	Filtering						5-7
A2C25 *	CAPACITOR, Same as AlCl8.	Part of a voltage divider.						5-7
A2C26 *	CAPACITOR, fixed, ceramic dielectric: l section, $2.7 \mathrm{pf} \pm 0.25$ pf, 500 wvdc, -470 deg C temp coefficient, tol J, uninsulated case, 0.200 in . dia by $0.400 \mathrm{in} . \mathrm{lg}$, o/a dim., 2 radial wire lead terminals; Erie 301T2J279C.	Part of a voltage divider.	A2C26				1	5-8

* Indicates Non-Maintenance Item

* Indicates Non-Maintenance Item

		CONTRACTOR COMMU	TION ELECT	NICS INC	PORA	$\begin{aligned} & \hline \text { CONTRACT NO } \\ & \text { DA18-119 } \\ & \hline \end{aligned}$	AC-024990	
$\begin{gathered} \text { REF. } \\ \text { SYM } \\ \text { OR } \\ \text { PART } \\ \text { NUMBER } \\ \text { (1) } \\ \hline \end{gathered}$	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MAN- AGER (6)	FEDERAL STOCK NUMBER 7)	tOTAL NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)
A2C41	CAPACITOR, fixed, air dielectric: l section, undetermined value, uninsulated, 0.650 in . thk by 0.190 in . h by $3.380 \mathrm{in} . \mathrm{lg}$, o/a dim., no terminals, contains facilities for mounting lor 2 capacitors; Communication Electronics, Inc. 1101.	Coupling	A2C41				1	5-7
A2C42	CAPACITOR, fixed, ceramic dielectric: 1 section, 4.7 pf ± 0.25 pf, 500 wvdc , uninsulated case, 0.200 in . dia by $0.400 \mathrm{in} . \mathrm{lg}$, o/a dim., 2 radial wire lead terminals; Erie 301 COH 479 C .	Filtering	$\begin{aligned} & \text { A2C } 42, \text { A3C } 30 \\ & \text { A6C } 9 \end{aligned}$			5910-842-0885	3	5-7
A2C43	CAPACITOR, Same as AlC38.							5-7
A2C44*	CAPACITOR, fixed, ceramic dielectric: 1 section, $2.4 \mathrm{pf} \pm 0.25$ pf, 500 wvdc, uninsulated case, 0.200 in . dia by $0.400 \mathrm{in} . \mathrm{lg}$, o/a dim., 2 radial wire lead terminals; Erie 301COJ249C.	Coupling	A2C $44, \mathrm{~A} 8 \mathrm{C} 63$				2	5-8
A2CR1	DIODE, Same as AlCR1.	Varies oscillator tank circuit frequency.						5-7
A2CR 2	DIODE, Same as AlCR 2.	Voltage regulator.						5-8
A2FB1	FERRITE BEAD, Same as AlFBl.	Filtering						5-8
A2J1	CONNECTOR, Same as Aljl.	RF input jack.						5-8
A2J2	CONNECTOR, Same as Alj2.	IF output jack.						5-7
A2J3	NOT USED							

* Indicates Non-Maintenance Item

* Indicates Non-Maintenance Item

		CONTRACTOR				CONTRACT NO. DA18-119-AMC -()2499(X)		
REF. SYM. OR PART NUMBER (1)	name of parts or description (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MAN- AGER (6)	FEDERAL STOCK NUMBER	total number PARTS PER END ITEM (8)	REF Figure (9)
A2L6*	COIL, radio frequency: 1 section, undetermined inductance, copper strip, (0.093 in. w by (0.190 in. h by $1.310 \mathrm{in} . \mathrm{lg}$, o/a dim., Communication Electronics, Inc. 10166.	Trimmer coil for L1B.	A2L6				1	5-7
A2L7 *	COIL, radio frequency: 1 section, 17 turns, closewound no. 28 sns wire, iron coil form, 0.150 in. dia by $0.500 \mathrm{in} . \lg$, o/a dim., 2 axial wire lead terminals, insulated; Communication Electronics, Inc. 1131-2.	Padder coil for L1B.	A2L7				1	5-8
A2L8 *	COIL, radio frequency: 1 section, undetermined inductance, brass strip, ().090 in. thk by ().19() in. w by $1.380 \mathrm{in} . \mathrm{lg}$, o/a dim., uninsulated; Communication Electronics Inc. $1200-(02$.	Trimmer coil for LIC.	A2L8				1	5-7
A2L9 *	COIL, radio frequency: 1 section, 16 turns, closewound no. 26 sn wire, uninsulated, iron coil form, (0.150 in. dia by (0.50) in. lg, o/a dim.; Communication Electronics, Inc. 1131-27.	Part of a tuncd circuit.	A2L9				1	5-8
A2Ll0 *	COIL, radio frequency: 1 section, undetermined inductance, copper strip, ().032 in. thk by (0.370 in. h by $1.69(\mathrm{in} . \mathrm{lg}$, o/a dim., uninsulated; Communication Electronics Inc. 1107-2 .	Part of a tuncd circuit.	A2L10)				1	5-8

* Indicates Non-Maintenance Item

		CONTRACTOR COMMUN CATION ELECTRONICS INCORPORATED				$\begin{aligned} & \hline \text { CONTRACT NO. } \\ & \text { DA18-119-AMC -02499(X) } \end{aligned}$		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	function (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MYL } \\ \text { NUMBE } \\ \text { (5) } \end{gathered}$	MANAGER (6)	FEDERAL STOCK NUMBER (7)	total number PARTS PER END ITEM (8)	REF FIGURE (9)
A2L11	COIL, radio frequency: 1 section, undetermined inductance, copper strip, 0.032 in. thk by 0.120 in. h by $1.380 \mathrm{in} . \mathrm{lg}$, o/a dim., uninsulated; Communication Electronics Inc. 10169.	Part of a tuned circuit.	A2L11				1	5-8
A2L12	COIL, radio frequency: 1 section, $27 \mu \mathrm{~h}$, Q80 min., 33.2 mc nominal, self-resonant frequency, iron core form, 0.156 in . dia by $0.500 \mathrm{in} . \mathrm{lg}$, o/a dim., 2 axial wire lead terminals; Wilco W270.	Filtering	A2L12			5950-902-3655	1	5-7
A2L13	COIL, radio frequency: 1 section, 28 turns, closewound no. 26 sns wire, insulated, iron core form, 0.250 in . dia by $0.687 \mathrm{in} . \mathrm{lg}$, o/a dim., 2 axial wire lead terminals; Communication Electronics, Inc. 1131-5.	Filtering	A2L13				1	5-7
A2R 1	RESISTOR, Same as AlR1.	Input load resistor.						5-7
A2R2	RESISTOR, Same as AlR 14.	Part of a filter.						5-7
A2R3	RESISTOR, fixed, composition: $680 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Dropping	A2R3, A5A1R14, A5AlR20, A5A2R20	RC07GF684J		5905-681-8823	4	5-8
A2R 4	NOT USED	---------------						
A2R5	RESISTOR, fixed, composition: $6.2 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Part of a filter.	A2R5	RC07GF622J		5905-190-8868	1	5-7
A2R6	RESISTOR, fixed, composition: 47 ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R - 11 .	Part of a filter.	A2R6, A5A2R24, A7A1R7,	RC07GF 470J		5905-802-6730	24	5-7

		${ }^{\text {CONTRACTOR }}$ COMM	ATION ELECT	ONICS INCOR	PORAT	CONTRACT NO DA18-119	MC -024990	
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	function (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ (5) \end{gathered}$	MANAGER (6)	FEDERAL STOCK number (7)	tOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
A2R7 *	RESISTOR, fixed, composition: $15 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Swamping	A7A1R20, A7A1R25, A7A2R10, A7R4, A7R 10, A7R 16, A7R 17, A7R18, A8A1R6, A8A1R13, A8R 15, A8R 17, A8R19, A8R39, A8R 40, A8R41, A8R48, A8R51, A8R53, A8R68, A9R8 A2R7, A5A1R15, A5A3R19, A8R5, A8R8, A8R 10, A8R28, A8R30, A8R32, A8R43	RC07GF 153J		5905-681-8818	10	5-7
A2R8	RESISTOR, fixed, composition: $6.8 \mathrm{~K} \pm 5 \%, 2 \mathrm{~W}$; per MIL-R-11.	Dropping	A2R8	RC42GF682J		5905-279-2528	1	5-7
A2R9	RESISTOR, Same as AlR 10.	Part of a voltage divider.						5-8
A2R 10	RESISTOR, Same as AlR10.	Part of a voltage divider.						5-8
A2R11	RESISTOR, Same as AlR 12.	Dropping						5-8
A2R 12	RESISTOR, Same as AlR13.	Dropping						5-8
A2R 13	RESISTOR, fixed, composition: $10 \mathrm{~K} \pm 5 \%, 1 / 2 \mathrm{~W}$; per MIL-R-11.	Dropping	A2R 13	RC20GF 103J		5905-185-8510	1	5-7

* Indicates Non-Maintenance Item

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NO. DA18-119-AMC-02499(X)		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MAN- AGER (6)	FEDERAL STOCK NUMBER (7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF Figure (9)
A2R14	NOT USED							
A2R15	RESISTOR, Same as AlR2.	Grid biasing.						5-8
A2R16	RESISTOR, Same as AlR 9.	Cathode biasing.						5-8
A2R17	RESISTOR, Same as AlR 9.	Dropping						5-8
A2R 18*	RESISTOR, fixed, composition: $22 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Part of a filter.	A2R 18, A5AlR11, A5A2R5, A7A2R2, A8R54, R14	RC07GF223J		5905-687-0002	6	5-7
A2R 19	RESISTOR, Same as AlR 4.	Part of a filter.						5-8
A2R20	RESISTOR, Same as AlR 1.	Dropping						5-8
A2TPl	JACK, TIP, Same as AlTPl.	Test point.						5-7
A2V1	ELECTRON TUBE: EIA designation 8058; per MIL-E-1.	RF amplifier	A2V1, A2V2	8058		5960-710-2769	2	5-7
A2V2	ELECTRON TUBE, Same as A2V1.	RF amplifier						5-7
A2V3	ELECTRON TUBE, Same as AlV3.	Mixer						5-7
A2V4	Electron TUBE, Same as AlVl.	Oscillator						5-8
A2XV1	SOCKET, Same as AlXV1.	Mounts A2V1.						5-7
A2XV2	SOCKET, Same as AlXV1.	Mounts A2V2.						5-7
A2XV3	SOCKET, Same as AlXVl.	Mounts A2V3.						5-7
A2XV4	SOCKET, Same as AlXV1.	Mounts A2V4.						5-8

* Indicates Non-Maintenance Item

REF SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)		JAN OR MIL TYPE NUMBER (5)	MAN(6)	FEDERAL STOCK NUMBER (7)	total Number PARTS PER END ITEM (8)	$\begin{gathered} \text { REF } \\ \text { FIGURE } \end{gathered}$ (9)
$\begin{aligned} & \text { Fig. 5-9 } \\ & \text { Fig. 5-10 } \\ & \text { A3 } \end{aligned}$	AMPLIFIER, radio frcquency: Brass chassis, silver-plated, gold flashed, 2.960 in. h, 4.120 in. w, $9.310 \mathrm{in} . \mathrm{lg}$, o/a dim., $235-500 \mathrm{mc}$ input frequency range, $60-\mathrm{mc}$ out put frequency, 50-ohm input impedance; Communication Elec tronics, Inc. type 7162.	Tunes 235 to 500 mc frequency range and converts received signals to $60-\mathrm{mc}$ output.	A3				1	5-3
A3Cl *	CAPACITOR, Same as A2C5.	Padder for C2.						5-9
A3C2	CAPACITOR, fixed, ceramic dielectric: 1 section, $2 \mathrm{pf} \pm 10 \%$, 500 wvdc, uninsulated case, 0. 156 in. dia by $0.225 \mathrm{in} . \lg$, o/a dim., 2 axial wire lead terminals; Quality Components QC2PFPORMIOPCT.	Tunced to input signal.	A3C2, A3C 14			5910-836-6736	2	5-9
A3C3	CAPACITOR, fixed, ceramic diclectric: 1 section, $470 \mathrm{pf} \pm 20 \%$, $50(0$ wvdc, metal case, 0.281 in . dia by $0.437 \mathrm{in} . \mathrm{lg}$, o/a dim., standoff type, 1 solder lug terminal; Allen-Bradley SS5A4712.	Coupling	$\begin{aligned} & \text { A3C } 3, \text { A3C } 4, \\ & \text { A3C7, A3C } 5, \\ & \text { A3C18, A3C29, } \\ & \text { A3C5) } \end{aligned}$			5910-956-8406	7	5-9
A3C4	CAPACITOR, Same as A3C3.	Filtering						5-9
A3C5	CAPACITOR, fixed, ceramic dielectric: 1 section, $470 \mathrm{pf} \pm 20 \%$, 500 wvdc, metal case, 0.281 in . dia by $0.687 \mathrm{in} . \mathrm{lg}$, o/a dim., feedthru type, 2 solder lug terminals; Allen-Bradley FA5C4712.	Filtering	A3C5, A3C8, A3C9, A3Cl0, A3C16, A3C 19, A3C21, A3C22, A3C25, A3C26, A3C33, A3C40, A3C42, A3C43, A3C44, A3C45, A3C48, A4C 12, A4C 14, A4C 18, A4C 19, A4C30, A4C3 1				23	5-9

* Indicates Non-Maintenance Item

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATEX ${ }^{\text {CONTRACT NO, }}$ DA18-119-AMC-02499						
\square	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS involved (4)	JAN OR MIL TYPE NUMBER (5)	MAN- AGER (6)	federal STOCK NUMBER \square	TOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
A3C6*	CAPACITOR, variable, glass dielectric: 1 section, 0.5 pf min to 4.5 pf max, 1000 wvdc, screw driver type, 0.312 in . dia by 0.562 in. \lg o/a dim.; Roanwell MG1305.	Part of a tuned circuit.	A3C6, A3C13, A3C17, A3C24, A3C39			5910-226-0486	5	5-9
A3C7	CAPACITOR, Same as A3C3.	Filtering						5-9
A3C8	CAPACITOR, Same as A3C5.	Filtering						5-9
A3C9	CAPACITOR, Same as A3C5.	Filtering						5-10
A3C10	CAPACITOR, Same as A3C5.	Filtering						5-9
A3Cll	CAPACITOR, fixed, ceramic dielectric: 1 section, $0.68 \mathrm{pf} \pm 10 \%$, 500 wvdc, uninsulated case, 0.156 in. dia by $0.225 \mathrm{in} . \lg$ o/a dim., 2 axial wire lead terminals; Quality Components QC0.68PFPORM10PCT.	Coupling	A3C11, A3C47, A7C 19, A8C 14, A8C52, A8C60			5910-078-9508	6	5-9
A3C12	CAPACITOR, fixed, ceramic dielectric: 1 section, 1 pf $\pm 10 \%$, 500 wvdc, uninsulated case, 0.125 in. dia by $0.250 \mathrm{in} . \lg$ o/a dim., 2 axial wire lead terminals; Quality Components MCIPFPORMIOPCT .	Coupling	$\begin{aligned} & \text { A3C } 12, \text { A3C } 23, \\ & \text { A6C } 15 \end{aligned}$			5910-226-0474	3	5-10
A3C13*	CAPACITOR, Same as A3C6.	Part of a tuned circuit.						5-9
A3C14	CAPACITOR, Same as A3C2.	Coupling						5-9
A3C15	CAPACITOR, Same as A3C3.	F iltering						5-9
A3C16	CAPACITOR, Same as A3C5.	Filtering						5-9

* Indicates Non-Maintenance Item

		CONTRACTOR COMMUN	TION ELECTR	ICS INC	PORAT	CONTRACT NO. DA18-119	$\mathrm{MC}-02499$	
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	function (3)	ALL SYMBOLS ANDPART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MAN- AGER (6)	FEDERAL STOCK NUMBER (7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)
A3C17*	CAPACITOR, Same as A3C6.	Part of a tuned circuit.						5-10
A3C18	CAPACITOR, Same as A3C3.	Filtering						5-10
A3C19	CAPACITOR, Same as A3C5.	Filtering						5-9
A3C20	CAPACITOR, fixed, ceramic dielectric: 1 section, $0.51 \mathrm{pf} \pm 10 \%$, 500 wvdc, uninsulated case, 0.156 in. dia by $0.225 \mathrm{in} . \lg$ o/a dim., 2 axial wire lead terminals; Quality Components QC0.51PFPORM10PCT.	Coupling	A3C20			5910-668-4293	1	5-9
A3C21	CAPACITOR, Same as A3C5.	Filtering						5-10
A3C22	CAPACITOR, Same as A3C5.	Filtering						5-9
A3C23*	CAPACITOR, Same as A3C12.	Coupling						5-10
A3C24*	CAPACITOR, Same as A3C6.	Part of a tuned circuit.						5-10
A3C25	CAPACITOR, Same as A3C5.	Filtering						5-10
A3C26	CAPACITOR, Same as A3C5.	Filtering						5-9
A3C27*	CAPACITOR, fixed, ceramic dielectric: 1 section, $2.7 \mathrm{pf} \pm 0.25$ pf, 500 wvdc , uninsulated case, 0.200 in . dia by $0.400 \mathrm{in} . \lg \mathrm{o} / \mathrm{a}$ dim., 2 radial wire lead terminals; Erie 301COJ279C.	Coupling	A3C27, A6C24			5910-226-0475	2	5-10

* Indicates Non-Maintenance Item

REFSYM.ORPARTNUMBER(1)		CONTRACTOR				CONTRACT NO. DA18-119-AMC -02499(X)		
	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ (5) \end{gathered}$	MAN- AGER (6)	FEDERAL STOCK NUMBER \square	TOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
A3C28*	CAPACITOR, fixed, ceramic dielectric: 1 section, $1.8 \mathrm{pf} \pm 10 \%$, 500 wvdc, uninsulated case, 0.157 in. dia by $0.225 \mathrm{in} . \lg$ o/a dim., 2 axial wire lead terminals; Quality Components QC1.8PFPORMIOPCT.	Coupling	A3C28			5960-617-9354	1	5-9
A3C29	CAPACITOR, Same as AlC3.	Filtering						5-9
A3C30	CAPACITOR, Same as A2C42.	Filtering						5-9
A3C31	CAPACITOR, fixed, ceramic dielectric: 470 pf $\pm 20 \%$, 1000 wvdc; per MIL-C-11015.	Filtering	$\begin{aligned} & \text { A3C31, A3C41, } \\ & \text { A5A1C30, } \\ & \text { A6C10 } \end{aligned}$	CK60AW 471 M		5910-781-3802	4	5-10
A3C32*	CAPACITOR, fixed, ceramic dielectric: 1 section, 0.82 pf $\pm 10 \%$, 500 wvdc, uninsulated case, 0.156 in . dia by $0.225 \mathrm{in} . \lg$ o/a dim., 2 axial wire lead terminals; QUALITY COMPONENTS MC0.82PFPORMIOPCT .	Part of a tuned cir cuit.	A3C32, A6C21			5910-889-2392	2	5-9
A3C33	CAPACITOR, Same as A3C9.	Filtering						5-10
A3C34 *	CAPACITOR, Same as A2C4.	Part of a voltage divider.						5-10
A3C35 *	CAPACITOR, fixed, ceramic dielectric: 1 section, $6.2 \mathrm{pf} \pm 0.5$ $\mathrm{pf}, 500 \mathrm{wvdc}$, temperature coeifficient -750, uninsulated 0.200 in . dia by $0.400 \mathrm{in} . \lg \mathrm{o} / \mathrm{a}$ dim., 2 radial wire lead terminals; Erie 301-000U2JO629D.	Part of a voltage divider.	A3C35			5910-226-0478	1	5-9

* Indicates Non-Maintenance Item

		CONTRACTOR COMMUNI	CATION ELEC	NICS INCOI	PORAT	$\begin{array}{r} \text { CONTRACT NO. } \\ \text { DA18-119 } \end{array}$	AMC -02499	
REF. SYM. OR PART NUMBER (I)	NAME OF PARTS OR DESCRIPTION (2)	function (3)	ALL SYMBOLS AND PART NUMBERS involved (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ (5) \end{gathered}$	MAN- AGER (6)	federal STOCK NUMBER (7)	total NUMBER PARTS PER END ITEM (B)	REF figure (9)
A3C36*	CAPACITOR, fixed, ceramic dielectric: 1 section, $0.47 \mathrm{pf} \pm 10 \%$, 500 wvdc , uninsulated, 0.125 in . dia by 0.250 in . \lg o/a $\operatorname{dim} ., 2$ axial wire lead terminals; Quality Components MC0.47PF PORM10PCT.	Blocking	A3C36			5910-688-6886	1	5-10
A3C37	NOT USED	------						
A3C38*	CAPACITOR, Same as A2C14.	Feedback						5-10
A3C39*	CAPACITOR, Same as A3C6.	Part of a tuned circuit.						5-9
A3C40	CAPACITOR, Same as A3C5.	Filtering						5-10
A3C41	CAPACITOR, Same as A3C31.	Coupling						5-10
A3C42	CAPACITOR, Same as A3C5.	Filtering						5-10
A3C43	CAPACITOR, Same as A3C5.	Filtering						5-9
A3C44	CAPACITOR, Same as A3C5.	Filtering						5-9
A3C45	CAPACITOR, Same as A3C5.	Filtering						5-9
A3C46	CAPACITOR, Same as A2C27.	Filtering						5-9
A3C47	CAPACITOR, Same as A3Cll.	Filtering						5-10
A3C48	CAPACITOR, Same as A3C5.	Filtering						5-10
A3C49	NOT USED	------						
A3C50	CAPACITOR, Same as A3C3.	Filtering						5-10

* Indicates Non-Maintenance Item

		CONTRACTOR COMMUNICATION ELECTRONICS INCOI			PORAT	CONTRACT NO. DA18-119	AMC -02499	
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MANAGER (6)	federal STOCK NUMBER	total number PARTS PER END ITEM (8)	REF figure (9)
A3CR 1	SEMICONDUCTOR DEVICE, diode: Silicon, varicap, 0.125 in. dia by $0.281 \mathrm{in} . \mathrm{lg}$ o/a dim., hermetically sealed, 2 axial wire lead terminals; Thompson, Ramo, Woolridge PC115,	Varies oscillator tank circuit frequency.	A3CR 1, A4CR2			5960-226-0404	2	5-10
A3CR 2	SEMICONDUCTOR, Same as AlCR2	Voltage regulator						5-9
A3 J1	CONNECTOR, receptacle, electrical: 1 male contact, 1 connector mating end low-loss plastic dielectric insulating material, 50 -ohms impedance, right angle, 0.750 in . by 0.937 in . by 1.093 in . o/a dim., 4 holes 0.140 in . dia in flange for mounting; JETDS UG535/U.	R F input jack.	$\begin{aligned} & \text { A3J1, A3J3, } \\ & \text { A4J1 } \end{aligned}$			5935-259-0817	3	5-10
A3 J2	CONNECTOR, Same as Alj2.	IF output jack.						5-10
A3J3	CONNECTOR, Same as A3Jl.	LO output jack.						5-9
A3Ll *	COIL, radio frequency: fixed inductor, brass, 0.091 in. thk by 0.190 in . w by $1.000 \mathrm{in} . \lg$, inductance undetermined; Communication Electronics, Inc. 1966.	Series trimmer for A3L3A.	A3L 1				1	5-9
A3L2 *	COIL, radio frequency: 17 turns closewound, no. 27 sn wire 0.150 in. dia by $0.500 \mathrm{in} . \mathrm{lg}$, iron core form, 2 axial wire terminals; Communication Electronics, Inc. 1131-21.	RF choke	A3L2, A3L5, A3L6, A3L9, A3L 10, A3L11, A3L17, A3L19, A3L20, A3L21, A3L23			5950-956-8408	11	5-10

* Indicates Non-Maintenance Item

* Indicates Non-Maintenance Item

* Indicates Non-Maintenance Item

* Indicates Non-Maintenance Item

		${ }^{\text {CONTRACTOR }}$ COM	ATION ELECTR	ONICS IN	ORA	CONTRACT NO. DA18-119	4MC -02499	
REF. SYM. OR PART NUMBER (I)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART Numbers involved (4)	JAN OR MIL TYPE NUMBER (5)	MAN- AGER (6)	FEDERAL STOCK NUMBER	total number PARTS PER END ITEM (8)	REF figure (9)
A3R 17	RESISTOR, Same as AlR2l.	Part of a voltage divider.						5-10
A3TPl	JACK, TIP, Same as AlTPl.	Test point						5-9
A3V1	ELECTRON TUBE: EIA designation 7077; per MIL-E-1.	RF amplifier	A3V1, A3V2	JAN7077		5960-688-6706	2	5-9
A3V2	ELECTRON TUBE, Same as A3V1.	RF amplifier						5-9
A3V3	ELECTRON TUBE, Same as Alv3.	Mixer						5-9
A3V4	ELECTRON TUBE: EIA designation 7486; per MIL-E-1.	Oscillator	A3V4, A4V1	JAN7486		5960-845-9953	2	5-10
A3XV1	SOCKET, electron tube: Silver plated, beryllium copper contacts, 3 solder lug terminals, chassis barrier mounted with 2 no. 2-56 screws 0.625 in . by 0.860 in . by 1.281 in. assembled; Jettron 86-040.	Mounts A3V1.	A3XV1, A3XV2			5935-785-8823	2	5-9
A3XV2	SOCKET, Same as A3XV1.	Mounts A3V2.						5-9
A3XV3	SOCKET, Same as AlXV1.	Mounts A3V3.						5-9
A3XV4	SOCKET, electron tube: Silver plated beryllium copper contacts, riveted to epoxy glass laminate, 0.531 in . h by 0.900 in . w by 1.190 in. lg ; Communication Electronics, Inc. 10898.	Mounts A3V4.	A3XV4				1	5-10

7163		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				$\begin{gathered} \text { CONTRACT NO } \\ \text { DA18-119-AMC-02499(X) } \end{gathered}$		
REF SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS ANDPART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MAN- AGER (6)	FEDERAL STOCK NUMBER (7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
$\begin{aligned} & \text { Fig. } 5-11, \\ & \text { Fig. } 5-12 \\ & \text { A4 } \end{aligned}$	AMPLIFIER, RADIO FREQUENCY: Brass chassis, silver plated, goldflashed, 1.75 in. h, 4.0 in. w, 5.5 in. do/a dim., 490-1000-mc input frequency range, $60-\mathrm{mc}$ input frequency, 50 -ohm input impedance; Communication Electronics, Inc. Type 7163.	Tunes 490 to 1000 mc frequency range and converts received sig nals to $60-\mathrm{mc}$ output.	A4				1	5-1
$\begin{aligned} & \mathrm{A} 4 \mathrm{ClA}, \mathrm{~B}, \\ & \mathrm{C}, \mathrm{D}, \mathrm{E}^{*} \end{aligned}$	CAPACITOR, variable, air die lectric: 5 sections, installed into and a part of the amplifier chassis; Communication Electronics, Inc. 1271.	Preselector variable tuning element.	$\begin{aligned} & \text { A4C } 1 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D} \text {, } \\ & \mathrm{E} \end{aligned}$				1	$\begin{aligned} & 5-11, \\ & 5-12 \end{aligned}$
A4C2 *	CAPACITOR, variable, air dielectric: (part of the chassis); Communication Electronics, Inc. 1261.	Trimmer for A4ClA.	$\begin{aligned} & \text { A4C2, A4C3, } \\ & \text { A4C4, A4C5 } \end{aligned}$				4	5-12
A4C3 *	CAPACITOR, Same as A4C2.	Trimmer for A4ClB.						5-11
A4C 4 *	CAPACITOR, Same as A4C2.	Trimmer for A4C 1C.						5-11
A4C5 *	CAPACITOR, Same as A4C2.	Trimmer for A4C1D.						5-11
A4C6 *	CAPACITOR, variable, air dielectric: Screw adjusted plate mounted in/and a part of amplifier chassis; Communication Electronics, Inc. 1276.	Trimmer for A4ClE.	A4C6				1	5-12
A4C7 *	CAPACITOR, variable, ceramic dielectric: l section, 0.5-3.0 pf, $0.750 \mathrm{in} . \mathrm{o} / \mathrm{a} \mathrm{lg}$ single wire lead terminal; Erie 3115-001-1R .	Trimmer for A4C9.	A4C7				1	5-11

* Indicates Non-Maintenance Item

		$\begin{array}{r} \hline \text { CONTRACTOR } \\ \\ \text { COMMUN } \\ \hline \end{array}$	ATION ELEC	ONICS INCOR	ORA	$\begin{aligned} & \text { CONTRACT NO. } \\ & \text { DA18 }-119 . \end{aligned}$	MC -02499	
$\begin{gathered} \text { REF. } \\ \text { SYM. } \\ \text { OR } \\ \text { PART } \\ \text { NUMBER } \\ \text { (} 1 \text {) } \end{gathered}$	NAME OF PARTS OR DESCRIPTION (2)	function (3)	ALL SYMBOLS AND PART NUMBERS involved (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ (5) \end{gathered}$	MAN- AGER (6)	FEDERAL STOCK NUMBER \square	TOTAL NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)
A4C8	CAPACITOR, fixed, ceramic dielectric: 1 section, $1.0 \mathrm{pf} \pm 0.1 \mathrm{pf}$, 500 wvdc, uninsulated case, 0.200 in. dia by 0.400 in . lg, 2 radial wire lead terminals; Erie 301 -000COKO109B.	With A4C9 corrects oscillator tracking.	A4C7				1	5-11
A4C9	CAPACITOR, Same as AlC7.	With A4C7, corrects oscillator tracking.						5-11
A4C 10	CAPACITOR, fixed, ceramic dielectric: 1 section, $0.27 \mathrm{pf} \pm 10 \%$, $500 \mathrm{wvdc}, 0.10 \mathrm{in}$. dia by 0.250 in . $\lg , 2$ axial wire lead terminals; Quality Components MC0-27PFPORMIOPCT.	Coupling	A4C10			5910-226-0479	1	5-12
A4C 11	NOT USED	------						
A4C12	CAPACITOR, Same as A3C5.	Filtering						5-12
A4C 13	CAPACITOR, fixed, ceramic dielectric: l section, 137 pf $\pm 20 \%$, 500 wvdc, 0.125 in . w by 0.500 in . h. by $0.500 \mathrm{in} . \lg$, standoff type, 1 solder lug terminal; Sickles 32-25394-1.	Filtering	A4C 13			5910-776-6849	1	5-11
A4C 14	CAPACITOR, Same as A3C5.	Filtering						5-11
A4C 15	CAPACITOR, fixed, mica dielectric $15 \mathrm{pf} \pm 10 \%$, 500 wvdc; per MIL -C-10950.	Filtering	A4C 15	CBIIRD150K			1	5-11

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATEL				$\begin{aligned} & \text { CONTRACT NO } \\ & \text { DA18-119-AMC -02499(X) } \end{aligned}$		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS ANDPART numbers involved (4)	JAN OR MIL TYPE NUMBER (5)	MANAGER (6)	federal STOCK NUMBER (7)	total Number PARTS PER END ITEM (8)	REF figure (9)
A4C 16	CAPACITOR, fixed, mica dielectric: 1 section, 56 pf $\pm 5 \%$, 500 wvdc, -55 deg C to +150 deg C operating temp range, plastic case, 0.190 in . thk by 0.330 in . w by $0.360 \mathrm{in} . \mathrm{lg}$, 2 radial wire lead terminals; Electro Motive DM10-560J.	Filtering	A4C 16, A5A1C6 A5AlCll, A5AlC16, A5A1C23, A5A2C1, A5A2C12			5910-226-0471	7	5-12
A4C 17	CAPACITOR, Same as AlC21.	Filtering						5-12
A4C 18	CAPACITOR, Same as A3C5.	Filtering						5-12
A4C19	CAPACITOR, Same as A3C5.	Filtering						5-12
A4C20	CAPACITOR, Same as AlC5.	Filtering						5-11
A4C2 1	CAPACITOR, Same as AlC5.	Coupling						5-11
A4C22	CAPACITOR, Same as AlC5.	Filtering						5-12
A4C23	CAPACITOR, Same as AlC5.	Coupling						5-11
A4C24	CAPACITOR, Same as AlC2l.	Filtering						5-12
A4C25	CAPACITOR, Same as AlC38.	Filtering						5-12
A4C26	CAPACITOR, Same as AlCl4.	Part of a filter .						5-11
A4C27	CAPACITOR, Same as AlC5.	Filtering						5-12
A4C28	CAPACITOR, Same as AlC5.	Coupling						5-12
A4C29	CAPACITOR, Same as AlC38.	Filtering						5-12
A4C30	CAPACITOR, Same as A3C5.	Filtering						5-12
A4C3 1	CAPACITOR, Same as A3C5.	Filtering						5-11

		CONTRACTOR COMMUNIC	ATION ELECT	ONICS INCOR	PORA	CONTRACT NO. DA18-119	MC -02499	
$\begin{gathered} \text { REF. } \\ \text { SYM. } \\ \text { OR } \\ \text { PART } \\ \text { NUMBER } \\ \text { (I) } \end{gathered}$	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS involved (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ (5) \end{gathered}$	MAN- AGER (6)	FEDERAL STOCK NUMBER (7)	total number PARTS PER END ITEM (8)	REF figure (9)
A4C32	CAPACITOR, Same as AlC21.	Filtering						5-11
A4CR 1	SEMICONDUCTOR DEVICE, diode: EIA designation 1N82A; per MIL-S-19500.	Crystal detector	A4CR 1	JAN 1N82A		5960-669-6876	1	5-11
A4CR 2	DIODE, Same as A3CR1.	Varies oscillator tank circuit frequency.						5-11
A4CR3	DIODE, Same as AlCR2.	Voltage regulator						5-12
A4Jl	CONNECTOR, Same as A3Jl.	RF input jack.						5-12
A4J2	CONNECTOR, Same as Alj2.	IF output jack.						5-12
A4J3	CONNECTOR, receptacle, electrical: Type BNC; per Communication Electronics Nomenclature Subpanel UG290A/U.	LO output jack	A4J3			5935-201-3511	1	5-12
A4J4	JACK, telephone: 2 conductor miniature jack, single hole, mounted with no. 10-48 hex nut, 0.500 in. dia by $0.531 \mathrm{in} . \lg ;$ Switchcraft TR $-2 A$.	Test jack	A4J4			5935-045-9075	1	5-12
A4L1*	COIL, radio frequency: No. 16 wire bent 90 deg, having 1 leg $0.060 \mathrm{in} . \mathrm{lg}$ and $1 \mathrm{leg} 0.880 \mathrm{in} . \mathrm{lg}$; Communication Electronics, Inc. 1461.	Input coupling coil	A4Ll	*			1	5-12
A4L2*	COIL, radio frequency: Shaped brass soldered into and becoming a part of the tuner chassis; Communication Electronics, Inc. 1265.	Part of RF tuning circuit.	A4L2, A4L3, A4L4, A4L5				4	5-11

* Indicates Non-1- tenance Item

 REF. SYM. PR PART NUMBER (1)		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				$\begin{aligned} & \hline \text { CONTRACT NO. } \\ & \text { DA18-119-AMC-02499(X) } \\ & \hline \end{aligned}$		
	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MAN- AGER (6)	FEDERAL STOCK NUMBER (7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
A4L3 *	COIL, Same as A4L2.	Part of RF tuning circuit.						5-11
A4L4*	COIL, Same as A4L2.	Part of RF tuning cir cuit.						5-11
A4L5 *	COIL, Same as A4L2.	Part of RF tuning circuit.						5-11
A4L6 *	COIL, radio frequency: No. 20 wire shaped, 0.500 in . by 0.900 in . o/a dim.; Communication Electronics, Inc. 1462 .	Detector input coupling coil.	A4L6				1	5-12
A4L7 *	COIL, radio frequency: Shaped brass soldered into and becoming a part of the tuner chassis; Communication Electronics, Inc. 1301.	Part of oscillator tank circuit.	A4L7				1	5-12
A4L8 *	COIL, radio frequency: 0.012 in . thk copper strip, 0.140 in . wide " J" shaped, bend with short leg $0.090 \mathrm{in} . \lg$ and long $\lg 0.620 \mathrm{in} . ;$ Communication Electronics, Inc. 1973.	Tunes plate circuit of AlVl.	A4L8				1	5-12
A4L9 *	COIL, radio frequency: 10 turns no. 26 wire, closewound, 0.107 in . i.d., no core, radial leads; Communication Electronics, Inc. 1466-4.	RF choke	A4L9				1	5-11
A4L 10	COIL, radio frequency: 14 turns no. 26 wire, closewound, 0.107 in. i.d., no core, radial leads; Communication Electronics, Inc. 1466-3	RF choke	A4L 10, A4Lll				2	5-11

* Indicates Non-Maintenance Item

* Indicates Non-Maintenance Item

 REFF. SYM. OR PART NUMBER (1)		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NO.DA18-119-AMC -02499(X)		
	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS ANDPART NUMBERS INVOLVED (4)	$\begin{gathered} \hline \text { JAN } \\ \text { OR } \\ \text { MLL } \\ \text { TYPE } \\ \text { NUBER } \\ \text { (5) } \\ \hline \end{gathered}$	MAN - AGER (6)	FEDERAL STOCK NUMBER (7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
A4R3	RESISTOR, Same as AlR 13.	Part of a filter.						5-11
A4R 4	RESISTOR, Same as A3R6.	Part of a filter.						5-11
A4R5	RESISTOR, Same as AlR 15.	Dropping						5-11
A4R6	RESISTOR, Same as AlR2.	Dropping						5-12
A4R7	RESISTOR, fixed, composition: $68 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R -11	Cathode resistor	A4R7	RC07GF683J		5905-681-8853	1	5-11
A4R8	RESISTOR, Same as AlR2.	Part of a voltage divider.						5-11
A4R 9	RESISTOR, Same as AlR7.	Part of a voltage divider.						5-12
A4R 10	RESISTOR, fixed, composition: $2.7 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Part of a filter.	A4R 10, A5A1R12, A5A2R6, A5A2R 13, A5A3R5, A6R1, A6R2, A6R12, A7A1R16, A7AlR27, A8R63	RC07GF272J		5905-686-3798	11	5-12
A4R 11	RESISTOR, fixed, composition: $11 \mathrm{~K} \pm 5 \%$, lW; per MIL-R-11.	Dropping	A4R 11	RC32GF113J		5905-665-6047	1	5-12
A4R 12	RESISTOR, Same as AlR 15.	Dropping						5-11
A4TPl	JACK, tip, Same as AlTPl.	Test point						5-12
A4V1	ELECTRON TUBE, Same as A3V4.	Oscillator						5-12
A4V2	ELECTRON TUBE, Same as AlV1.	60-mc Amplifier						5-11

7930		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NO.DA18-119-AMC-02499(X)		
$\begin{gathered} \text { REF. } \\ \text { SYM. } \\ \text { OR } \\ \text { PART } \\ \text { NUMBER } \\ \text { (1) } \end{gathered}$	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ \text { (} 5 \text {) } \end{gathered}$	MAN- AGER (6)	FEDERAL STOCK NUMBER (7)	total NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)
$\begin{aligned} & \text { Fig. } 5-13 \\ & \text { A5 } \end{aligned}$	INDICATOR, PANORAMIC: Brass chassis, silver plated, gold-flashed 9.6 in. $\mathrm{lg}, 8.2 \mathrm{in} . \mathrm{w}, 1.5 \mathrm{in} . \mathrm{d} \mathrm{o} / \mathrm{a}$ dim., contains three etched circuit boards, $21.4-\mathrm{mc}$ IF input frequency, horizontal and vertical deflection output voltages, drives cathode ray tube, 50 -ohm input impedance, $21.4-\mathrm{mc}$ lst IF frequency, $6.7-\mathrm{mc}$ 2nd IF frequency, $950-\mathrm{kc} 3 \mathrm{rd}$ IF frequency, Communication Electronics, Inc. type 7930.	Provides visual display of signals within 3.0 mc around frequency to which receiver is tuned.	A5				1	5-2
Fig. 5-14 Fig. 5-15 A5A1	AMPLIFIER-OSCILLATOR: Etched circuit board, epoxy resin glass base laminate, l-oz copper (1side) $8.0 \mathrm{in} . \mathrm{lg}, 1.8 \mathrm{in} . \mathrm{w}, 0.6 \mathrm{in}$. do/a dim., 21.4-mc input frequency, $6.7-\mathrm{mc}$ output frequency, non-linear sawtooth input voltage; Communication Electronics, Inc. type 8003.	Shapes incoming IF signal and sawtooth voltage, synchronizes incoming signal with horizontal CRT sweep, drives IF output amplifier A5A2.	A5A1				1	5-13
A5AlCl	CAPACITOR, Same as AlCl.	Part of a tuned circuit.						5-15
A5A1C2	CAPACITOR, fixed, ceramic dielectric: $0.005 \mu \mathrm{f} \pm 20 \%, 500$ wvdc, insulated case, 0.156 in. thk by 0.390 in. dia, disk style, 2 radial wire lead terminals; Radio Materials Corp. SM-005UFPORM20PCT	Filtering	A5A1C2, A5A1C3, A5A1C4, A5A1C5, A5A1C7, A5A1C8, A5A1C9, A5A1Cl0, A5AlC12, A5A1C13, A5AlC14, A5A1C15, A5A1C17,				33	5-14

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NO.DA18-119-AMC-02499(X)		
REF SYM. OR NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MYPL } \\ \text { NUMBER } \\ \text { (5) } \end{gathered}$	MAN- AGER (6)	FEDERAL STOCK NUMBER $\text { (} 7 \text {) }$	total Number PARTS PER END ITEM (B)	REF figure (9)
			A5A1C18, A5A1C19, A5A1C20, A5A1C21, A5A1C22, A5A1C24, A5A1C25, A5A1C26, A5AlC31, A7AlC 1 , A7AlC3, A7A1C11, A8AlCl, A8A 1C6, A8AlC12, A8AlCl3, A8C9, A8C18, A8C59, A8C65					
A5A1C3	CAPACITOR, Same as A5AlC2.	Filtering						5-15
A5A1C4	CAPACITOR, Same as A5AlC2.	Filtering						5-14
A5A1C5	CAPACITOR, Same as A5AlC2.	Filtering						5-14
A5A1C6	CAPACITOR, Same as A4Cl6.	Part of a tuned circuit.						5-15
A5A1C7	CAPACITOR, Same as A5AlC2.	Filtering						5-14
A5A1C8	CAPACITOR, Same as A5AlC2.	Filtering						5-14
A5A1C9	CAPACITOR, Same as A5AlC2.	Degeneration						5-15
A5A1C10	CAPACITOR, Same as A5A1C2.	Filtering						5-14
A5A1Cl1	CAPACITOR, Same as A4Cl6.	Part of a tuned circuit.						5-14
A5A1C12	CAPACITOR, Same as A5AlC2.	Filtering						5-14

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NODA18-119-AMC-02499(X)		
REF. SYM. OR PART NUMBER (1)	NAME Of PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS involved (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ \text { (5) } \end{gathered}$	MAN- AGER (6)	FEDERAL STOCK number \square	total NUMBER PARTS PER END ITEM (8)	REF figure (9)
A5A1C13	CAPACITOR, Same as A5Alc2.	Filtering						5-14
A5A1C14	CAPACITOR, Same as A5Alc2.	Degeneration						5-15
A5A1C15	CAPACITOR, Same as A5AlC2.	Filtering						5-14
A5A1C16	CAPACITOR, Same as A4C16.	Part of a tuned circuit.						5-14
A5A1C17	CAPACITOR, Same as A5A1C2.	Filtering						5-14
A5A1C18	CAPACITOR, Same as A5A1C2.	Filtering						5-15
A5A1C19	CAPACITOR, Same as A5A1C2.	Filtering						5-14
A5A1C20	CAPACITOR, Same as A5A1C2.	Filtering						5-15
A5A1C21	CAPACITOR, Same as A5A1C2.	Degeneration						5-15
A5A1C22	CAPACITOR, Same as A5A1C2.	Filtering						5-14
A5A1C23	CAPACITOR, Same as A4Cl6.	Part of a tuned circuit.						5-14
A5A1C24	CAPACITOR, Same as A5A1C2.	Filtering						5-15
A5A1C25	CAPACITOR, Same as A5AlC2.	Filtering						5-14
A5A1C26	CAPACITOR, Same as A5AlC2.	Degeneration						5-15
A5A1C27	CAPACITOR, Same as AlC7.	Coupling						5-15
A5A1C28	CAPACITOR, Same as AlC28.	Part of a voltage divider.						5-14
A5A1C29	CAPACITOR, Same as A1C28.	Part of a voltage divider.						5-15
A5A1C30	CAPACITOR, Same as A3C31.	Coupling						5-15

		COMMUNICATION ELECTRONICS INCOH			PORATED	$\begin{aligned} & \text { CONTRACT NO. } \\ & \text { DA18-119-AMC-02499(X) } \\ & \hline \end{aligned}$		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS involved (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ (5) \end{gathered}$	MAN- AGER (6)	FEDERAL STOCK NUMBER (7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)
A5AlC31	CAPACITOR, Same as A5AlC2.	Filtering						5-15
A5AlC32	CAPACITOR, Same as AlCR 1.	Variable coupling capacitor.						5-14
A5AlC33	CAPACITOR, fixed, mica dielectric: l section, 360 pf $\pm 5 \%, 500$ wvdc, insulated case, 0.190 in . thk by 0.330 in . h by $0.360 \mathrm{in} . \mathrm{lg}, 2$ radial wire lead terminals; Electro Motive DM10F361J.	Filtering	A5A1C33, A5A2C17, A5A2C19, A5A2C24, A5A2C26, A5A2C31			5910-954-7817	6	5-15
A5AlCR 1	SEMICONDUCTOR DEVICE, diode: EIA designation 1 N 462 .	Part of a wave shaping network.	A5A1CR 1 , A5AlCR2, A5AlCR3, A5A3CR 1 , A5A3CR2			5960-543-0432	5	5-14
A5AlCR2	DIODE, Same as A5AICR 1.	Clamping						5-15
A5A1CR3	DIODE, Same as A5AlCR1.	Part of a wave shaping network.						5-14
A5AlCR 4	SEMICONDUCTOR DEVICE, diode: EIA designation 1 N 749.	Part of a wave shaping network.	A5AicR 4			5960-877-8285	1	5-15
A5A1CR5	SEMICONDUCTOR DEVICE, diode: EIA designation lN746.	Part of a wave shaping network.	A5AlCR5			5960-984-3570	1	5-14
A5AlJl	CONNECTOR, Same as Alj2.	IF input jack.						5-14
A5Alj2	CONNECTOR, Same as Alj2.	IF output jack.						5-14
A5AlLl	COIL, radio frequency: 35 turns, closewound, no. 34 sn wire, iron core, insulated case, 0.150 in. dia by $0.400 \mathrm{in} . \lg$, 2 axial wire lead terminals; Communication Elec tronics, Inc. 1131-39.	RF choke.	A5AlLl, A5A1L2, A5AlL3, A5AlL4, A5A1L5, A5A1L6,				8	5-14

		CONTRACTOR COMMUNIFATION ELECTRONICS INCORPORATED				$\begin{gathered} \text { CONTRACT NO. } \\ \text { DA18-119-AMC-02499(X) } \\ \hline \end{gathered}$		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS involve (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ \text { (5) } \end{gathered}$	MANAGER (6)	FEDERAL STOCK NUMBER (7)	total NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)
A5A1Q2	TRANSISTOR, Same as A5AlQ1.	Shaping amplifier.						5-15
A5AlQ3	TRANSISTOR, Same as A5AlQ1.	Shaping amplifier						5-15
A5A1Q4	TRANSISTOR, Same as A5AlQ1.	Shaping amplifier						5-14
A5AlQ5	TRANSISTOR, Same as A5AlQl.	Shaping amplifier .						5-15
A5A1Q6	TRANSISTOR, Same as A5AlQl.	Shaping amplifier						5-14
A5AIR 1	RESISTOR, fixed, composition: $1.1 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL -R - 11	Biasing	A5A1R1	RC07GF 112 J		5905-800-8063	1	5-14
A5A1R2	RESISTOR, Same as A3R6.	Dropping						5-15
A5A1R3	RESISTOR, Same as AlR 15.	Biasing						5-14
A5AlR 4	RESISTOR, Same as AlR 15.	Part of a filter.						5-15
A5AlR5	RESISTOR, Same as AlR 15.	DC return.						5-14
A5AlR6	RESISTOR, Same as AlR 15.	Part of a filter.						5-15
A5A1R7	RESISTOR, Same as AlR 15.	DC return.						5-14
A5A1R8	RESISTOR, Same as AlR 15.	Part of a filter.						5-15
A5AlR 9	RESISTOR, Same as AlR 15.	DC return.						5-14
A5A1R 10	RESISTOR, Same as AlR 15.	Part of a filter.						5-15
A5A1R 11	RESISTOR, Same as A2R18.	Part of a filter.						5-15
A5A1R 12	RESISTOR, Same as A4R10.	Part of a voltage divider.						5-15
A5A1R 13	RESISTOR, Same as AlR 15.	DC return.						5-14
A5A1R14	RESISTOR, Same as A2R3.	Dropping						5-14

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATEX				CONTRACT NO. DA18-119-AMC-02499(X)		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS involved (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ \text { (5) } \end{gathered}$	MAN- AGER (6)	FEDERAL STOCK NUMBER 7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)
A5AlR 15	RESISTOR, Same as A2R7.	Part of a voltage divider.						5-15
A5A1R 16	RESISTOR, Same as AlR2.	Part of a filter.						5-14
A5AlR 17	RESISTOR, fixed, composition: $27 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Part of a filter.	A5A1R 17	RC07GF 273J		5905-686-3838	1	5-15
A5A1R 18	RESISTOR, variable: 500K, linear, $\pm 20 \%, 0.500 \mathrm{in}$. dia by $1.093 \mathrm{in} . \mathrm{lg}$, 3 solder pin terminals; AllenBradley FR504M.	Linearity adjust.	A5AlR 18				1	5-15
A5A1R19	RESISTOR, fixed, composition: $51 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Dropping	A5A1R19, A7A2R9, R1, R15	RC07GF513J		5905-682-4103	4	5-1.4
A5A1R20	RESISTOR, Same as A2R3.	Part of a wave shaping network.						5-14
A5A1R21	RESISTOR, fixed, composition: $240 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Part of a wave shaping network.	A5AlR21, A5AlR24, A5A3R 10 , A8A2R2	RC07GF 244J		5905-681-8820	4	5-14
A5A1R22	RESISTOR, fixed, composition: $130 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Part of a wave shaping network.	A5A1R22	RC07GF 134J		5905-686-3130	1	5-15
A5A1R23	RESISTOR, Same as AIR 13.	Part of a wave shaping network.						5-15
A5A1R24	RESISTOR, Same as A5A1R21.	Part of a wave shaping network.						5-14
A5A1R25	RESISTOR, Same as A3R14.	Swamping.						5-14
A5A1R26	RESISTOR, Same as A3R 14.	Swamping.						5-14
A5A1R27	RESISTOR, Same as AlR7.	Collector load.						5-15

		CONTRACTOR COMMU	ATION ELE	NICS INC	PORA	CONTRACT NO DA18-1	$\text { IC }-02499($	
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	function (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ (5) \end{gathered}$	MANAGER (6)	FEDERAL STOCK NUMBER $\text { (} 7 \text {) }$	TOTAL NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)
A5A1R28	RESISTOR, Same as AIR7.	Part of a voltage divider.						5-15
A5AlT 1	TRANSFORMER, radio frequency: 2 windings, 18 turns, no 32 wire and 4 turns no. 34 wire, untapped, aluminum case, 0.562 in . by 0.562 in. by 0.600 in. o/a dim., 4 solder pin terminals; Communication Electronics, Inc. 3476-1.	Input transformer.	A5A1Tl				1	5-14
A5A1T2	TRANSFORMER, radio frequency: 3 windings, $10 \mathrm{l} / 2$ turns no. 29 wire, 3 turns no. 32 wire, and 2 turns no. 34 wire, untapped, aluminum case, 0.562 in . by 0.562 in. by 0.600 in . o/a dim., 6 solder pin terminals; Communication Electronics, Inc. 3476-2	Part of a tuned circuit.	$\begin{aligned} & \text { A5A1T2, } \\ & \text { A5A1T3, } \\ & \text { A5A1T4, } \end{aligned}$				3	5-15
A5AlT3	TRANSFORMER, Same as A5AIT2.	Part of a tuned circuit.						5-15
A5AlT4	TRANSFORMER, Same as A5AlT2.	Part of a tuned circuit.						5-15
A5AlT5	TRANSFORMER, radio frequency: 3 windings, $10 \mathrm{l} / 2$ turns no. 29 wire, 3 turns no. 32 wire, and 2 turns no. 34 wire, untapped, aluminum case, 0.562 in . by 0.562 in. by 0.600 in. o/a dim., 6 solder pin terminals; Communication Electronics, Inc. 3476-11	Part of a tuned circuit.	A5A1T5				1	5-15

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NO.DA18-119-AMC-02499(X)		
REF SYM. OR NUMBER (I)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS involved (4)	JAN OR MIL TYPE NUMBER (5)	MANAGER (6)	FEDERAL STOCK NUMBER 7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
A5A1T6	COIL, radio frequency: $121 / 2$ turns no. 32 wire, aluminum case, 0.562 in . by 0.562 in . by 0.600 in . o/a dim., 2 solder pin terminals; Communication Electronics, Inc. 3476-3.	Part of a tuned circuit.	A5AlT6.				1	5-14
A5AlTPl	JACK, Same as AlTPl.	Test point.						5-14
A5AlTP2	JACK, Same as AlTPl.	Test point.						5-14
Fig. 5-16 Fig. 5-17 A5A2	AMPLIFIER, intermediate frequency: Etched circuit board, 8.0 in. $\mathrm{lg}, 1.8 \mathrm{in} . \mathrm{w}, 0.95 \mathrm{in} . \mathrm{d}$, o/a dim., epoxy resin glass base laminate, l-oz. copper (1-side), $6.7-\mathrm{mc}$ input frequency, $950-\mathrm{kc}$ resultant frequency, crystal controlled oscillator; Communica tion Electronics, Inc., type 8101.	Provides second conversion for desired resolution and synchronization of in coming RF signals to receiver section drives vertical delection plates of CRT.	A5A2				1	5-13
A5A2Cl	CAPACITOR, Same as A4Cl6.	Part of a tuned circuit.						5-17
A5A2C2	CAPACITOR, fixed, ceramic dielectric: 1 section, $3.4 \mathrm{pf} \pm 10 \%$, $500 \mathrm{wvdc}, 0.100 \mathrm{in}$. dia by 0.250 in. $\lg , 2$ axial wire lead terminals; Quality Components MC3.4PF PORM10PCT.	Coupling	$\begin{aligned} & \text { A5A2C2, } \\ & \text { A5A2C } 11 \end{aligned}$				2	5-16
A5A2C3	CAPACITOR, fixed, mica dielectric: l section. $82 \mathrm{pf} \pm 5 \%, 500$ wvdc, $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ operating temp range, insulated plastic case, 0.190 in . thk by 0.330 in . w by $0.360 \mathrm{in} . \mathrm{lg}$, o/a dim., 2 radial wire lead terminals; Electro Motive DM10-820 J.	Part of a tuned circuit.	$\begin{aligned} & \text { A5A2C3, } \\ & \text { A5A2C10, } \\ & \text { A6C } 1, \text { A6C2 } \end{aligned}$			5910-226-0470	4	5-16

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NO DA18-119-AMC-02499(X)		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	function (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MANAGER (6)	FEDERAL STOCK NUMBER (7)	total NUMBER PARTS PER END ITEM (8)	REF figure (9)
A5A2C4	CAPACITOR, fixed, ceramic dielectric: l section. $0.05 \mu \mathrm{f} \pm 20 \%$, 50 wvdc, disk type, ceramic case, 0.156 in. thk by 0.475 in. dia, 2 radial wire lead terminals; Sprague 55C23.	Filtering	A5A2C4, A5A2C5, A5A2C6, A5A2C8, A5A2C9, A5A2C13, A5A2C 15 , A5A2C16, A5A2C22, A5A2C23, A5A2C28, A5A2C30, A5A2C33			5910-061-7356	13	5-16
A5A2C5	CAPACITOR, Same as A5A2C4.	Filtering						5-16
A5A2C6	CAPACITOR, Same as A5A2C4.	Filtering						5-16
A5A2C7	NOT USED	------------						
A5A2C8	CAPACITOR, Same as A5A2C4.	Filtering						5-16
A5A2C9	CAPACITOR, Same as A5A2C4.	Filtering						5-16
A5A2C 10	CAPACITOR, Same as A5A2C3.	Part of a tuned circuit.						5-16
A5A2C11	CAPACITOR, Same as A5A2C2.	Coupling .						5-17
A5A2C 12	CAPACITOR, Same as A4Cl6.	Part of a tuned circuit.						5-16
A5A2C13	CAPACITOR, Same as A5A2C4.	Filtering						5-16

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NO DA18-119-AMC-02499(X)		
$\begin{aligned} & \text { REF. } \\ & \text { SYM. } \\ & \text { OR } \\ & \text { PART } \\ & \text { NUMBER } \\ & \text { (1) } \\ & \hline \end{aligned}$	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS ANDPART NUMBERS INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ \text { (5) } \\ \hline \end{gathered}$	MAN AGER (6)	FEDERAL STOCK NUMBER (7)	```TOTAL ```	REF figure (9)
A5A2C14	CAPACITOR, fixed, ceramic dielectric: 1 section, $2.2 \mathrm{pf} \pm 10 \%$, $500 \mathrm{wvdc}, 0.125 \mathrm{in}$. dia by 0.250 in . $\mathrm{lg}, 2$ axial wire lead terminals; Quality Components MC2-2PF PORM10PCT.	Coupling	$\begin{aligned} & \text { A5A2C14, } \\ & \text { A5A2C18, } \\ & \text { A5A2C25 } \end{aligned}$			5910-844-7873	3	5-17
A5A2Cl5	CAPACITOR, Same as A5A2C4.	Degeneration						5-17
A5A2C16	CAPACITOR, Same as A5A2C4.	Filtering						5-16
A5A2C17	CAPACITOR, Same as A5AlC33.	Part of a tuned circuit.						5-17
A5A2C18	CAPACITOR, Same as A5A2C14.	Coupling						5-16
A5A2C19	CAPACITOR, Same as A5AlC33.	Part of a tuned circuit.						5-16
A5A2C20	CAPACITOR, fixed, ceramic dielectric: l section, $0.1 \mu \mathrm{f}+80 \%$ $20 \%, 10 \mathrm{wvdc}$, disk type, 0.408 in . dia, 2 radial wire lead terminals; Centralab UK10-104.	Filtering	$\begin{aligned} & \text { A5A2C20, } \\ & \text { A5A2C21, } \\ & \text { A5A2C27, } \\ & \text { A5A2C29 } \end{aligned}$			5910-995-2851	4	5-17
A5A2C2 1	CAPACITOR, Same as A5A2C20.	Degeneration						5-16
A5A2C22	CAPACITOR, Same as A5A2C4.	Filtering						5-17
A5A2C23	CAPACITOR, Same as A5A2C4.	Filtering						5-16
A5A2C24	CAPACITOR, Same as A5AlC33.	Part of a tuned circuit.						5-16
A5A2C25	CAPACITOR, Same as A5A2Cl4.	Coupling						5-16
A5A2C26	CAPACITOR, Same as A5AlC33	Part of a tuned circuit.						5-17

		COMMUNICATION ELECTRONICS INCORPORATED				$\begin{aligned} & \text { CONTRACT NO. } \\ & \text { DA18-119-AMC -02499(X) } \end{aligned}$		
$\begin{gathered} \text { REF. } \\ \text { SYM. } \\ \text { OR } \\ \text { PART } \\ \text { NUMBER } \\ \text { (1) } \end{gathered}$	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ \text { (5) } \end{gathered}$	MANAGER (6)	FEDERAL STOCK NUMBER (7)	tOTAL NUMBER PARTS PER END ITEM (B)	REF FIGURE (9)
A5A2C27	CAPACITOR, Same as A5A2C20.	Filtering						5-16
A5A3C28	CAPACITOR, Same as A5A2C4.	Filtering						5-16
A5A2C29	CAPACITOR, Same as A5A2C20.	Degeneration						5-17
A5A2C30	CAPACITOR, Same as A5A2C4.	Filtering						5-17
A5A2C31	CAPACITOR, Same as A5AlC33.	Part of a.tuned circuit.						5-16
A5A2C32	CAPACITOR, Same as AlCl7.	Coupling						5-17
A5A2C33	CAPACITOR, Same as A5A2C4.	Filtering						5-16
A5A2C34	CAPACITOR, Same as AlCl7.	Coupling						5-17
A5A2C35	CAPACITOR, fixed, mica dielec tric: l section, $68 \mathrm{pf} \pm 2 \%, 500$ wvdc, $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ operating temperature range, plastic insulated case, 0.190 in. thk by 0.330 in . w by $0.360 \mathrm{in} . \mathrm{lg}, 2$ radial wire lead terminals; Electro Motive DM10E680G.	Part of a vo ltage divider.	$\begin{aligned} & \text { A5A2C35, } \\ & \text { A8A2C3 } \end{aligned}$			5910-904-9836	2	5-16
A5A2C36	CAPACITOR, fixed, mica dielec tric: l section, $33 \mathrm{pf} \pm 2 \%$, 500 wvdc, $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ operating temperature range, plastic insulated case, 0.190 in. thk by 0.330 in . w by $0.360 \mathrm{in} . \mathrm{lg}, 2$ radial wire lead terminals; Electro Motive DM10E330G.	Part of a voltage divider.	$\begin{aligned} & \text { A5A2C36, } \\ & \text { A7A2C3, } \\ & \text { A7C4, A7C12, } \\ & \text { A8A1C11, } \\ & \text { A8C68 } \end{aligned}$			5910-080-0292	6	5-16
A5A2C37	CAPACITOR, Same as AlCl2.	Neutralization						5-17

IDENTIFICATION TABLE OF PARTS

		CONTRACTOR				CONTRACT NODA18-119-AMC-02499(X)		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS involved (4)	JAN OR MIL TYPE NUMBER (5)	MANAGER (6)	FEDERAL STOCK NUMBER (7)	total NUMBER PARTS PER END ITEM (B)	REF figure (9)
A5A2R 19	RESISTOR, Same as A5A2R17.	Dropping						5-17
A5A2R20	RESISTOR, Same as A2R3.	Biasing						5-17
A5A2R21	RESISTOR, Same as A3R2.	Biasing						5-17
A5A2R22	RESISTOR, Same as A3R2.	Swamping						5-17
A5A2R23	RESISTOR, Same as A3R2.	Swamping						5-16
A5A2R24	RESISTOR, Same as A2R6.	Parasitic suppressor						5-17
A5A2Tl	TR ANSFORMER, radio frequency: 2 windings, $30 \mathrm{l} / 2$ turns no. 36 wire and $12 \mathrm{l} / 2$ turns no. 34 wire, untapped, aluminum case, 0.562 in . by 0.562 in . by 0.600 in . o/a dim., 4 solder pin terminals; Communication Electronics, İnc. 3476-4	Part of a tuned circuit.	A5A2T 1				1	5-16
A5A2T2	TRANSFORMER, radio frequency: 2 windings, 30 turns no. 36 wire and 10 turns no. 34 wire, untapped, aluminum case, 0.562 in . by 0.562 in by 0.600 in . o/a dim., 4 solder pin terminals; Communication Electronics, Inc. 3476-5	Part of a tuned circuit.	$\begin{aligned} & \text { A5A2T2, } \\ & \text { A5A2T4 } \end{aligned}$				2	5-17
A5A2T3	TR ANSFORMER, radio frequency: 3 windings, 30 turns no. 36 wire, 12 turns no. 34 wire, and $21 / 2$ turns no. 36 wire, untapped, aluminum case, 0.562 in . by 0.562 in . by 0.600 in . o/a dim., 4 solder pin terminals; Communication Elec tronics, Inc. 3476-6	Part of a tuned circuit.	A5A2T3				1	5-16
A5A2T4	TRANSFORMER, Same as A5A2T2.	Part of a tuned circuit.						5-17

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				$\begin{aligned} & \hline \text { CONTRACT NO. } \\ & \text { DA18-119-AMC -02499(X) } \end{aligned}$		
	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ (5) \end{gathered}$	MANAGER (6)	federal STOCK number (7)	total NUMBER PARTS PER END ITEM (8)	REF figure (9)
A5A2T5	TRANSFORMER, radio frequency: l winding, $90 \mathrm{l} / 2$ turns no. 36 wire tapped at $60 \mathrm{l} / 2$ turns, aluminum case, 0.562 in . by 0.562 in . by 0.600 in. o/a dim., 3 solder pin terminals; Communication Elec tronics, Inc. 3476-7.	Part of a tuned circuit.	A5A2T5, A5A2T7, A5A2T9				3	5-17
A5A2T6	TRANSFORMER, radio frequency: l winding, $90 \mathrm{l} / 2$ turns no. 36 wire tapped at $801 / 2$ turns, aluminum case, 0.562 in . by 0.562 in . by 0.600 in. o/a dim., 3 solder lug terminals; Communication Elec tronics, Inc. 3476-8.	Part of a tuned circuit.	$\begin{aligned} & \text { A5A2T6, } \\ & \text { A5A2T8 } \end{aligned}$				2	5-16
A5A2T7	TRANSFORMER, Same as A5A2T5.	Part of a tuned circuit.						5-17
A5A2T8	TRANSFORMER, Same as A5A2T6.	Part of a tuned circuit.						5-16
A5A2T9	TRANSFORMER, Same as A5A2T5.	Part of a tuned circuit.						5-16
A5A2Y1	CR YSTAL UNIT, quartz: 5.750 mc ; per MIL-C-3098.	Determines oscillator center frequency.	A5A2Y1	CR 18/U			1	5-17
$\begin{aligned} & \text { Fig. 5-18 } \\ & \text { A5A3 } \end{aligned}$	GENERATOR, sweep: Etched circuit board, epoxy resin glass base laminate with 1 -oz copper (1 -side), 8.0 in. lg, 2.35 in. w, 1.2 in. d, o/a dim., dc input, sawtooth voltage output; Communication Elec tronics, Inc. type 8202.	Generates sawtooth sweep voltage for use by CRT and sweep oscillator in A5Al.	A5A3				1	5-13

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				$\begin{aligned} & \text { CONTRACT NO. } \\ & \text { DA18-119-AMC-02499(X) } \end{aligned}$		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	$\begin{aligned} & \text { ALL } \\ & \text { SYMBOLS } \\ & \text { AND PART } \\ & \text { NUMBERS } \\ & \text { INVOLVED } \\ & (4) \end{aligned}$	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ \text { (5) } \end{gathered}$	MAN- AGER (6)	FEDERAL STOCK NUMBER \square	TOTAL NUMBER PARTS PER END ITEM (8)	REF Figuse (9)
A5R1	RESISTOR, variable: 1 section, $2.5 \mathrm{~K} \pm 10 \%, 1 / 4 \mathrm{~W}$, linear taper, 0.500 in . dia by 0.312 in . lg, with 0.875 in . shaft and 0.375 in . bush ing, 3 solder lug terminals; Mallory 70-08462.	Gain control.	A5R 1, A5R3				2	5-2
A5R 2	RESISTOR, variable: 1 section, $100 \mathrm{~K} \pm 10 \%, 1 / 4 \mathrm{~W}$, linear taper, 0.500 in . dia by $0.312 \mathrm{in} . \mathrm{lg}$, with 0.875 in. shaft and $0.375 \mathrm{in}^{\text {. bush - }}$ ing, 3 solder lug terminals; Mallory 70-08460 .	Sweep width control.	A5R2, R 2				2	5-2
A5R3	RESISTOR, Same as A5R 1.	Center frequency control.						5-2
A5V1	ELECTRON TUBE: EIA designation 3XP1; per MIL-E-1.	Cathode ray tube.	A5V1	JAN3XP1		5960-636-1526	1	5-1
A5W 1	CABLE, assembly, radio frequency: 2 connector plugs, Amphenol no. 27-9, and RG174/Ucable with a total length of 5.000 in ; Communication Electronics, Inc. 2126-127.	Connects A5Al to A5A2.	A5W 1, A5W 2				2	5-i3
A5W 2	CABLE, Same as A5Wl.	Connects IF input signal to A5A1.						5-13
A5XV1	SOCKET, electron tube: 8 phospher bronze contacts, 3 amp current rating, 1250 volts, 0.875 in. thk by 1.156 in . w by $1.625 \mathrm{in} . \mathrm{lg}$, o/a dim., 8 solder lug terminals, mica filled phenolic dielectric material; Amphenol 78S8L.	Mounts A5V1.	A5XV1			5935-222-9967	1	5-1

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NO. DA18-119-AMC-02499(X)		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ (5) \\ \hline \end{gathered}$	MAN- AGER (6)	FEDERAL STOCK NUMBER 7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
A5A3CR3	SEMICONDUCTOR DEVICE, diode: EIA designation 1N965B; per MIL-S-19500.	Voltage regulation.	A5A3CR3	JAN1N965B		5960-752-6163	1	5-18
A5A3CR 4	SEMICONDUCTOR DEVICE, diode: EIA designation 1 N 970 B ; per MIL-S-19500.	Voltage regulation.	A5A3CR4, A12CR13, Al2CR 16	JANIN970B		5960-878-4287	3	5-18
A5A3Q1	TRANSISTOR: EIA designation 2N489; per MIL-S-19500.	Sawtooth generator .	A5A3Q1	JAN2N489		5960-838-1142	1	5-18
A5A3Q2	TRANSISTOR: EIA designation 2N2270; per MIL-S-19500.	Driver	A5A3Q2, A5A3Q5, A7AlQ5, A7AlQ6, A7A1Q7, A7A2Q1, A7A2Q2, A7A2Q3, A7A2Q4, A10Q2, A 10Q3	JAN2N2270		5960-066-4454	11	5-18
A5A3Q3	TRANSISTOR: EIA designation 2N697; per MIL-S-19500.	Emitter follower .	A5A3Q3, A8A1Q5, A8A1Q6, A8Q9, A8Q10, A8Q11, A8Q12, A9Q1	JAN2N697		5960-837-7262	8	5-18
A5A3Q4	TRANSISTOR: EIA designation 2N1925	Emitter follower.	A5A3Q4				1	5-18
A5A3Q5	TRANSISTOR, Same as A5A3Q2.	Emitter follower.						5-18
A5A3R 1	RESISTOR, fixed, composition: $56 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Part of sawtooth generator network.	A5A3R1	RC07GF 563J		5905-800-0179	1	5-18
A5A3R2	RESISTOR, Same as A5A2R15.	Biasing						5-18

		CONTRACTOR COMMUNICATION ELECTRONICS INCOF PORATED				$\begin{aligned} & \text { CONTRACT NO. } \\ & \text { DA18-119-AMC -02499(X) } \end{aligned}$		
$\begin{gathered} \text { REF. } \\ \text { SYM. } \\ \text { OR } \\ \text { PART } \\ \text { NUMBER } \\ \text { (1) } \end{gathered}$	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS involved (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ \text { (} 5 \text {) } \end{gathered}$	MAN- AGER (6)	FEDERAL STOCK NUMBER \square	TOTAL NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)
A5A3R3	RESISTOR, Same as AlR9.	Extends range of A5A3R4.						5-18
A5A3R4	RESISTOR, variable: 10K, linear, $\pm 20 \%, 0.500 \mathrm{in}$. dia by $1.093 \mathrm{in} . \mathrm{lg}$, 3 solder pin terminals; AllenBradley FR103M.	Horizontal width control.	A5A3R4				1	5-18
A5A3R5	RESISTOR, Same as A4R 10.	Biasing						5-18
A5A3R6	RESISTOR, variable: 20K, linear, $\pm 20 \%, 0.500 \mathrm{in}$. dia by $1.093 \mathrm{in} . \mathrm{lg}$, 3 solder pin terminals; AllenBradley FR203M	Vertical positioning control.	$\begin{aligned} & \text { A5A3R6, } \\ & \text { A5A3R9 } \end{aligned}$				2	5-18
A5A3R7	RESISTOR, Same as AlR 10.	Biasing						5-18
A5A3R8	RESISTOR, Same as AIR 10.	Biasing						5-18
A5A3R9	RESISTOR, Same as A5A3R6.	Horizontal positioning control.						5-18
A5A3R 10	RESISTOR, Same as A5A1R21.	Dropping						5-18
A5A3R 11	RESISTOR, variable: 100K, linear, $\pm 20 \%, 0.500 \mathrm{in}$. dia by $1.093 \mathrm{in} . \mathrm{lg}$, 3 solder pin terminals; AllenBradley FR104M	Sweep range adjust control.	A5A3R11				1	5-18
A5A3R 12	RESISTOR, fixed, composition: 820 ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Biasing	$\begin{aligned} & \text { A5A3R12, } \\ & \text { A10R7 } \end{aligned}$	RC07GF 821 J		5905-686-9996	2	5-18
A5A3R 13	RESISTOR, Same as A3R6.	Biasing						5-18
A5A3R 14	RESISTOR, Same as AlR9.	Dropping						5-18
A5A3R 15	RESISTOR, Same as A3R 14.	Dropping						5-18

		CONTRACTOR CCMMUNICATICN ELECTRONICS INCORPORATED				$\begin{aligned} & \text { CONTRACT NO } \\ & \text { DA:8-119-AMC-02499(X) } \end{aligned}$		
REF. SYM. OR NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALLL SYMBLS ANDPART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MANAGER \qquad (6)	FEDERAL STOCK NUMBER (7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF FIGURE \qquad (9)
A5Cl	CAPACITOR, Same as AlC33.	Filtering						5-13
A5C2	CAPACITOR, Same as AlC38.	Filtering						5-13
A5C3	CAPACITOR, Same as AlC38.	Filtering						5-13
A5C4	CAPACITOR, Same as AlC38.	Filtering						5-13
A5C5	CAPACITOR, Same as AlC38.	Filtering				.		5-13
A5C6	CAPACITOR, Same as AlC38.	Filtering						5-13
A5C7	CAPACITOR, Same as AlC3 8.	Filtering						5-13
A5C8	CAPACITOR, Same as Alc38.	Filtering						5-13
A5C9	CAPACITOR, Same as AlC38.	Filtering						5-13
A5C10	CAPACITOR, Same as AlC38.	Filtering						5-13
A5Cll	CAPACITOR, Same as AlC38.	Filtering						5-13
A5C12	CAPACITOR, fixed, ceramic dielectric: 1 section, 33 pf $\pm 10 \%$, 500 wvdc, feedthru type, metal case, 0.281 in . dia by $0.687 \mathrm{in} . \mathrm{lg}$, o/a dim., 2 solder lug terminals; Allen-Bradley FA5C-3301.	Filtering	$\begin{aligned} & \text { A5C 12, A5C } 13, \\ & \text { A5C } 14, \text { A5C } 15 \end{aligned}$				4	5-13
A5C13	CAPACITOR, Same as A5C12.	Filtering						5-13
A5C14	CAPACITOR, Same as A5C12.	Filtering						5-13
A5C15	CAPACITOR, Same as A5C12.	Filtering						5-13

		CONTRACTOR COMMUNICATION ELECTRONICS NCORPORATED				CONTRACT NO. DA: 8-119-AMC-02499(X)		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTIOA (3)	ALL SYMBOLS AND PAPT NUMBERS INVOLVED (4)	JAN OR MLL TYFE NLMBER 15	MAN- ager (6)	FEEERAL STCCK NUMBER (7)	total number PARTS PER END ITEM (8)	REF FIGURE (9)
A5C16	CAPACITOR, fixed, electrolytic: l section, $22 \mu \mathrm{f} \pm 10 \%$, 35 wvdc , insulated case, 0.289 in . dia by 0.722 in. $\lg , 2$ axial wire lead terminals; Sprague 150D226X 9035R2.	Filtering	A5C:6			5910-851-2095	1	5-13
A5J1	ADAPTER, connector: single contact, 2 connector mating ends, lowloss plastic dielectric material, straight bulkhead type, 0.234 in . dia by 0.656 in. lg, o/a dim ., gold plated brass shell; Amphenol 27-11.	Signá injut jack.	A5Jl				1	5-13
A5Pl	CONNECTOR, plug, electrical: 9 pin, rectangular connector, 7 pins rated $7.5 \mathrm{amps}, 2$ pins rated 10 amps, self-aligning, polarized, arc resistant plastic dielectric material, 0.375 in . w by 0.781 in . h by $1.312 \mathrm{in} . \lg$, o/a dim.; Winchester MRE7-2P-G7.	High and low voitage irput connestox.	A5Pl			363-259 6792	1	5-2
A5P2	CONNECTOR, plug, electrical: 1 female contact, l connector mating end, low-loss plastic dielectric material, 50 ohms impedance, rigit angle, 0.234 in . by 0.469 in . by 0.547 in, screw -on type; Am phenol 27-26	$\begin{aligned} & \text { Connects } 4.5 \mathrm{~W} 1 \text { to } \\ & \text { A5A2J1. } \end{aligned}$	A5P2, A5P3, A5P4, A5P5, Plo, P11, P12, P16, P20, P21, P23, P32, P33				13	5-13
A5P3	CONNECTOR, Same as A5P2.	Connects ASW2 to ASjl.						5-13
A5P4	CONNECTOR, Same as A5P2.	$\begin{aligned} & \text { Connects A5W2 } 0 \\ & \text { A5A1II. } \end{aligned}$						5-13
A5P5	CONNECTOR, Same as A5P2.	Comects AEvil to A5A1 J2.						5-13

7120		CONTRACTOP. COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NODA18-119-AMC -02499(X)		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	Function (3)	ALL SYMBOLS AND PART NUMBERS involved (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ (5) \end{gathered}$	MAN- AGER (6)	FEDERAL STOCK NUMBER 7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
Fig. 5-19 Fig. 5-20 A6	CONVERTER, FREQUENCY, ELECTRIC: Brass chassis, silverplated, gold-flashed, $5.500 \mathrm{in} . \mathrm{lg}$, 0.750 in. w, 1.250 in. d o/a dim., $60-\mathrm{mc}$ incoming frequency, $21.4-$ mc output frequency, 50 -ohm input and output impedance; Communication Electronics, Inc. 7120.	Converts incoming $00-\mathrm{mc}$ signal to $21.4-$ mc output.	A6				1	5-1
A6Cl	CAPACITOR, Same as A5A2C3.	Part of a filter.						5-19
A6C2	CAPACITOR, Same as A5A2C3.	Part of a filter.						5-19
A6C3	CAPACITOR, Same as A2C14.	Part of a filter.						5-20
A6C4	CAPACITOR, Same as AlCl4.	Part of a filter.						5-20
A6C5	CAPACITOR, Same as AlCl6.	Coupling						5-20
A6C6	CAPACITOR Same as AlCl6.	Coupling						5-19
A6C7	CAPACITOR, Same as AlC38.	Filtering						5-19
A6C8	CAPACITOR, Same as AlC38.	Filtering						5-19
A6C9	CAPACITOR, Same as A2C42.	Filtering						5-20
A6C10	CAPACITOR, Same as A3C31.	Part of a voltage divider.						5-20
A6C11	CAPACITOR, Same as AlC38.	Filtering						5-20
A6C12	CAPACITOR, Same as AlC5.	Blocking						5-19
A6C13	CAPACITOR, Same as AlC21.	Filtering						5-19
A6C 14	CAPACITOR, Same as AlC5.	Part of a voltage divider.						5-20

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NODA18-119-AMC -02499(X)		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS involved (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ \text { (5) } \end{gathered}$	MANAGER (6)	federal STOCK NUMBER (7)	total number PARTS PER END ITEM (8)	REF figure (9)
A6C15	CAPACITOR, Same as A3C12.	Coupling						5-20
A6C16	CAPACITOR, Same as AlC5.	Filtering						5-19
A6C 17	CAPACITOR, fixed, ceramic dielectric: 1 section, $1.5 \mathrm{pf} \pm 0.1$ pf, 500 wvdc, uninsulated case, 0.200 in . dia by $0.400 \mathrm{in} . \lg \mathrm{o} / \mathrm{a}$ dim., 2 axial wire lead terminals; Erie 301-000COKO159B.	Part of crystal tank circuit.	A6C 17			5910-865-7008	1	5-20
A6C18	CAPACITOR, Same as AlC38.	Filtering						5-19
A6C 19	CAPACITOR, Same as A2C27.	Filtering						5-19
A6C20	CAPACITOR, fixed, ceramic dielectric: 1 section, $6.8 \mathrm{pf} \pm 0.5$ pf, 500 wvdc, uninsulated case, 0.200 in . dia by $0.400 \mathrm{in} . \lg \mathrm{o} / \mathrm{a}$ dim., 2 axial wire lead terminals; Erie 301-000COHO689D.	Coupling	A6C20			5910-754-9391	1	5-19
A6C2 1	CAPACITOR, Same as A3C32.	Coupling						5-20
A6C22	CAPACITOR, Same as AiC5.	Filtering						5-20
A6C23	CAPACITOR, Same as AlC5.	Filtering						5-20
A6C24	CAPACITOR, Same as A3C27.	F Filtering						5-19
A6C25	CAPACITOR, Same as ílc5.	Feedback						5-20
A6C26	CAPACITOR, Same as AlC5.	Filtering						5-19
A6C27	CAPACITOR, Same as AlC5.	Filtering						5-19
A6C28	NOT USED	------						

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NODA18-119-AMC -02499(X)		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	function (3)	ALL SYMBOLS ANDPART NUMBERS INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ \text { (5) } \\ \hline \end{gathered}$	MAN- AGER (6)	federal STOCK NUMBER (7)	tOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
A6L5	COIL, radio frequency: $0.82 \mu \mathrm{~h}$, 40 minimum $\mathrm{Q}, 258 \mathrm{mc}$ nominal resonant frequency, plastic coil form, 0.125 in . dia by $0.250 \mathrm{in} . \mathrm{lg}$, 2 axial wire lead terminals; Wilco 204-11.	Part of oscillator tank circuit.	A6L5				1	5-20
A6R 1	RESISTOR, Same as A4R10.	Impedance matching						5-20
A6R2	RESISTOR, Same as A4R10.	Impedance matching						5-19
A6R3	RESISTOR, Same as AIR 1.	Part of a filter.						5-20
A6R 4	RESISTOR, fixed, composition: $220 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R -11 .	Part of a voltage divider.	A6R4, A6R8, A6R 9, A6R 14, A6R 15, A6R20, A9R2,A15R2	RC07GF224J		5905-682-4105	8	5-19
A6R5	RESISTOR, fixed, composition: 68 ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Part of a voltage divider.	$\begin{aligned} & \text { A6R5, A6R7, } \\ & \text { A6R16 } \end{aligned}$	RC07GF680J		5905-683-2235	3	5-20
A6R6	RESISTOR, Same as AIR 1.	Dropping						5-20
A6R7	RESISTOR, Same as A6R5.	Biasing						5-19
A6R8	RESISTOR, Same as A6R 4.	Dropping						5-20
A6R9	RESISTOR, Same as Agir.	Dropping						5-19
A6R 10	RESISTOR, Same as AlR 15.	Dropping						5-20
A6R 11	RESiSTOR, Same as A3R6.	Part of a filter.						5-19
A6R 12	RESISTOR, Same as A4R10.	Swamping						5-19
A6R 13	RESISTOR, Same as AjA2RIL.	Crystal load						5-19
A6R 14	RESISTOR, Same as A6R 4.	Part of a voltage divider.						5-20

		CONTRACTOR COMMUN	ATION ELECTR	ONICS INCOI	PORAT	CONTRACT NO. DA18-119-	MC -02499	
$\begin{gathered} \text { REF. } \\ \text { SYM. } \\ \text { OR } \\ \text { PART } \\ \text { NUMBER } \\ \text { (} 1 \text {) } \end{gathered}$	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS involved (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ (5) \end{gathered}$	MAN- AGER (6)	FEDERAL STOCK NUMBER (7)	TOTAL NUMBER PARTS PER END ITEM (B)	REF figure (9)
A6R 15	RESISTOR, Same as A6R4.	Part of a voltage divider.						5-19
A6R 16	RESISTOR, Same as A6R5.	Grid leak resistor.						5-20
A6R 17	RESISTOR, Same as AlR 12.	Dropping						5-19
A6R 18	RESISTOR, Same as AlR 13.	Dropping						5-19
A6R 19	RESISTOR, fixed, composition: $24 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Plate load	A6R 19, A8R67	RC07GF243J		5905-721-0579	2	5-19
A6R20	RESISTOR, Same as A6R4.	Part of a voltage divider.						5-20
A6 TPl	JACK, TIP, Same as AltPl.	Test point						5-19
A6V1	ELECTRON TUBE, Same as AlV3.	Amplifier						5-19
A6V2	ELECTRON TUBE, Same as AlV3.	Amplifier						5-19
A6V3	ELECTRON TUBE, Same as AlV3.	Mixer						5-19
A6V4	ELECTRON TUBE, Same as AlV1.	Oscillator						5-19
A6XV1	SOCKET, Same as AlXVl.	Mount A6V1						5-19
A6XV2	SOCKET, Same as AlXV1.	Mount A6V2						5-19
A6XV3	SOCKET, Same as AlXV1.	Mount A6V3						5-19
A6XV4	SOCKET, Same as AlXVl	Mount A6V4						5-19

60T-S

7233		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NO. DA18-119-AMC-02499(X)		
GEF SR OR PART NUMER (1)	IAMME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS ANDPART NUMBERS invo LVED (4)	JAN OR MIL TYPE NUMBER (5)	MANAGER (6)	FEDERAL STOCK NUMBER (7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
$\begin{aligned} & \text { Fig. } 5-21 \\ & \text { Fig. } 5-22 \\ & \text { A7 } \end{aligned}$	AMPLIFIER, intermediate frequency: Brass chassis, silver plated gold flashed, $10.580 \mathrm{in} . \mathrm{lg}, 2.390$ in. w, 1.800 in. d, o/a dim., 2 mc bandwidth, $21.4-\mathrm{mc}$ center frequency, 50 -ohm input and output impedance, AM, FM video output, IF output, signal monitor output; Communication Electronics, Inc. type 72121 .	Detects and amplifies RF signals with in 2 -mc bandwidth, provides audio and video output signals.	A7				1	5-3
Fig. 5-23 A7Al	LIMITER, electrical: etched circuit board, epoxy resin glass base laminate, 1 -oz copper (1 -side), $4.300 \mathrm{in} . \mathrm{lg}, 1.800 \mathrm{in}$. w, 0.625 in. d, o/a dim., FM input signals, video output signals; Communication Electronics, Inc. type 10523.	Removes large positive and negative spikes from RF signals and couples to FM discriminator .	A7Al				1	5-22
A7AlCl	CAPACITOR, Same as A5AlC2.	F iltering						5-23
A7AlC2	CAPACITOR, Same as AlC5.	Coupling						5-23
A7AlC3	CAPACITOR, Same as A5AlC2.	Filtering						5-23
A7AlC4	CAPACITOR, Same as AlC5.	Filtering						5-23
A7AlC5	CAPACITOR, Same as AlC5.	Part of a voltage divider.						5-23
A7AlC6	CAPACITOR, Same as AlCl.	Part of a voltage divider.						5-23
A7AlC7	CAPACITOR, Same as AlC28.	Feedback						5-23
A7AlC8	CAPACITOR, Same as AlCl7.	Part of a voltage divider.						5-23

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				$\begin{aligned} & \text { CONTRACT NO. } \\ & \text { DA18-119-AMC -02499(X) } \end{aligned}$		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	function (3)	ALL SYMBOLS AND PART iNVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ \text { (5) } \end{gathered}$	MAN - AGER (6)	FEDERAL STOCK NUMBER (7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
A7A1C9	CAPACITOR, Same as AlC17.	Part of a voltage divider.						5-23
A7A1C10	CAPACITOR, fixed, mica dielec- tric: l section, 20 pf $\pm 5 \%$, 500 wvdc, -55 deg C to 150 deg C , oper ating temperature range, plastic case, 0.190 in . thk by 0.330 in . h by 0.360 in . lg , 2 radial wire lead terminals; Electro Motive DM10-200J.	Diode load.	$\begin{aligned} & \text { A7AlCl0, } \\ & \text { A8A1C8 } \end{aligned}$			5910-842-3525	2	5-23
A7AlCll	CAPACITOR, Same as A5AlC2.	F iltering						5-23
A7A1C 12	CAPACITOR, Same as AlC5.	Filtering						5-23
A7AlC 13	NOT USED							
A7AlCl 4	CAPACITOR, Same as AlC5.	Diode load.						5-23
A7AlCR 1	SEMICONDUCTOR, Same as A5A2CR1.	Clipping						5-23
A7AlCR2	SEMICONDUCTOR DEVICE, diode: EIA designation 1N753A; per MIL-S-19500.	Regulator	A7AlCR2, A8AlCR2, Al5CR2, CR 1	JANIN753A		5960-752-6121	4	5-23
A7AlCR3	SEMICONDUCTOR, Same as A5A2CR 1 .	Clipping						5-23
A7AlCR 4	SEMICONDUCTOR, Same as A5A2CR 1 .	FM detector .						5-23
A7AlCR5	SEMICONDUCTOR, Same as A5A2CR1.	FM detector .						5-23

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED ${ }^{\text {CONTRACT NO. }}$ DA18-119-AMC-024						
REF. SYM. OR NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MANAGER (6)	FEDERAL STOCK number \square	total NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)
A7A1L1	COIL, radio frequency: 23 turns, closewound, no. 34 sn wire, iron core, insulated, 0.150 in . dia by $0.375 \mathrm{in} . \lg$, 2 axial wire lead terminals; Communication Elec tronics, Inc. 1131-41.	RF choke.	$\begin{aligned} & \text { A7A1L1, } \\ & \text { A8A1Ll } \end{aligned}$			5950-919-3226	2	5-23
A7A1L2	COIL, radio frequency: 120 turns, closewound, no. 40 sn wire, iron core, insulated, 0.150 in . dia by $0.375 \mathrm{in} . \lg$, 2 axial wire lead ter minals; Communication Electronics, Inc. 1131-37.	RF choke.	A7A1L2, A7AlL4, A7L1, A7L4, A7L7, A8A1L2, A8L1, A8L8, A8L11, A8L14, A8L17, A8L18, A8L20			5950-918-7594	13	5-23
A7A1L3	COIL, radio frequency: 15 turns, no. 33 wire, aluminum case, 0.562 in. by 0.562 in. by 0.600 in., o/a dim., 2 solder pin terminals; Communication Electronics, Inc. 3476-19.	Part of a tuned circuit.	A7A1L3				1	5-23
A7AlL4	COIL, Same as A7AlL2.	Part of a filter.						5-23
A7AlQ1	TRANSISTOR, Same as A5AlQ1.	Limiter						5-23
A7AlQ2	TRANSISTOR, Same as A5AlQ1.	Limiter						5-23
A7AlQ3	TRANSISTOR, Same as A5AlQ1.	Limiter						5-23
A7AlQ4	TRANSISTOR, Same as A5AlQl.	Limiter						5-23
A7AlQ5	TRANSISTOR, Same as A5A3Q2.	Emitter follower .						5-23
A7AlQ6	TRANSISTOR, Same as A5A3Q2.	Emitter follower.						5-23
A7AlQ7	TRANSISTOR, Same as A5A3Q2.	Emitter follower.						5-23

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NO. DA18-119-AMC-02499(X)		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS Of DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ \text { (} 5 \text {) } \\ \hline \end{gathered}$	MAN- AGER (6)	FEDERAL STOCK NUMBER	total number PARTS PER END ITEM (8)	REF figure (9)
A7A1R 1	RESISTOR, fixed, composition: $12 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Biasing	A7AlR1, A7A1R5, A7AlR8, A7A1R12, A7R 1, A7R7, A7R 14, A8A1R2, A8AlR5, A8AlR7, A8A1R 10, A8A1R 16, A8R 49, A 15R 5	RC07GF 123J		5905-726-4413	14	5-23
A7A1R2	RESISTOR, Same as A5A3R20.	Biasing						5-23
A7A1R3	RESISTOR, Same as AIR 15.	Biasing						5-23
A7A1R 4	RESISTOR, Same as A5A3R20.	Biasing						5-23
A7A1R5	RESISTOR, Same as A7AIR1.	Biasing						5-23
A7A1R6	RESISTOR, Same as A5A3R20.	Part of a voltage divider.						5-23
A7A1R7	RESISTOR, Same as A2R6.	Parasitic suppressor.						5-23
A7A1R8	RESISTOR, Same as A7AIR1.	Biasing						5-23
A7AlR9	RESISTOR, Same as A5A3R20.	Biasing						5-23
A7A1R 10	RESISTOR, fixed, composition: 620 ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Biasing	$\begin{aligned} & \text { A7A AR 10, } \\ & \text { A10R } 8 \end{aligned}$	RC07GF621J		5905-801-6998	2	5-23
A7AlR 11	RESISTOR, Same as AIR1.	Part of a voltage divider.						5-23
A7A1R 12	RESISTOR, Same as A7AlR1.	Biasing						5-23

		CONTRACTOR				CONTRACT NO.DA18-119-AMC-02499(X)		
		COMM	ATION ELECTR	ONICS INCOR	ORA			
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS (4)	JAN OR MIL TYPE NUMBER (5)	MAN- AGER (6)	federal STOCK NUMBER 7)	total number PARTS PER END ITEM (8)	REF FIGURE (9)
A7A1R 13	RESISTOR, Same as A5 A3R20.	Part of a voltage divider.						5-23
A7A1R 14	RESISTOR, fixed, composition: 22 ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Part of a voltage divider.	A7AIR14, A7A1R22, A8AlR11, A8AIR21, A8R20, A8R34, A8R36	RC07GF220J		5905-755-8389	7	5-23
A7A1R 15	RESISTOR, fixed, composition: $75 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Diode shunt.	A7A1R15, A7AlR 17				2	5-23
A7AIR 16	RESISTOR, Same as A4R 10.	Swamping						5-23
A7A1R 17	RESISTOR, Same as A7AIR 15.	Diode shunt.						5-23
A7A1R18	RESISTOR, fixed, composition: $4.7 \mathrm{meg} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11	Biasing	A7A1R18, A8A1R 18	R C07GF 475 J		5905-800-0181	2	5-23
A7AIR 19	RESISTOR, Same as AlR 12.	Biasing						5-23
A7AIR20	RESISTOR, Same as A2R6.	Part of a filter.						5-23
A7A1R21	RESISTOR, Same as A3R14.	Part of a voltage divider.						5-23
A7A1R22	RESISTOR, Same as A7AIR14.	Part of a voltage divider.						5-23
A7A1R23	RESISTOR, Same as A5A3R18.	Part of a voltage divider.						5-23
A7A1R24	RESISTOR, Same as A3R6.	Biasing						5-23
A7A1R25	RESISTOR, Same as A2R6.	Part of a voltage divider.						5-23

		CONTRACTOR COMMUNIC	ATION ELECT	NICS INC	PORA	$\begin{gathered} \text { CONTRACT NO } \\ \text { DA18-119 } \\ \hline \end{gathered}$	MC -02499	
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	function (3)	ALL SYMBOLS AND PART NUMBERS involved (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ (5) \end{gathered}$	MAN- AGER (6)	federal STOCK number (7)	tOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
A7A2R 1	RESISTOR, Same as AlR1.	Part of a filter.						5-24
A7A2R2	RESISTOR, Same as A2R18.	Part of a filter .						5-24
A7A2R3	RESISTOR, Same as AlR 15.	Biasing						5-24
A7 A2R 4	RESISTOR, Same as AlR 13.	Biasing						5-24
A7A2R5	NOT USED							
A7 A2R6	RESISTOR, Same as A3R 14.	Biasing						5-24
A7A2R 7	RESISTOR, Same as A3R 14.	Part of a voltage divider.						5-24
A7A2R 8	RESISTOR, Same as AlR 17.	Part of a voltage divider.						5-24
A7A2R 9	RESISTOR, Same as A5AlR 19.	Biasing						5-24
A7 A2R 10	RESISTOR, Same as A2R6.	Parasitic suppressor.						5-24
A7A2R 11	RESISTOR, Same as A7AlR 26.	Biasing						5-24
A7A2R 12	RESISTOR, Same as A3R6.	Biasing						5-24
A7Cl	CAPACITOR, Same as AlC5.	Coupling						5-21
A7C2	CAPACITOR, fixed, ceramic dielectric: 1 section, $1.8 \mathrm{pf} \pm 0.25$ pf, 500 wvdc , uninsulated case, 0.200 in . dia by $0.400 \mathrm{in} . \lg , 2$ radial wire lead terminals; Erie 301-000COKO189C.	Neutralization	A7C2, A7C11			5910-226-0476	2	5-21

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NO.DA18-1 $9-A M C-02499(X)$		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	function (3)		JAN OR MIL TYPE NUMBER (5)	MANAGER (6)	federal STOCK NUMBER \square	```TOTAL NUMBER PARTS PER END ITEM (B)```	REF figure (9)
A7C3	CAPACITOR, fixed, ceramic dielectric: 1 section, $1500 \mathrm{pf} \pm 10 \%$, 1000 wvdc, insulated disk type, 0.156 in. thk by 0.385 in. dia, 2 radial wire lead terminals; Centralab DD-152.	Emitter bypass.	$\begin{aligned} & \text { A7C3, A7C18, } \\ & \text { A8C51 } \end{aligned}$			5910-913-5598	3	5-21
A7C4	CAPACITOR, Same as A5A2C36.	Part of a voltage divider.						5-22
A7C5	CAPACITOR, fixed, mica dielectric: l section, $100 \mathrm{pf} \pm 5 \%, 500$ wvdc, $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ operating temperature range, plastic case, 0.190 in . thk by 0.330 in . h by $0.360 \mathrm{in} . \mathrm{lg}$, 2 radial wire lead terminals; Electro Motive DM10F101J.	Part of a voltage divider.	A7C5, A7C9, A7C13, A7C17, A7C25, A8C67			5910-959-8347	6	5-21
A7C6	CAPACITOR, Same as AlC2l.	Filtering						5-22
A7C7	CAPACITOR, fixed, ceramic dielectric: 1 section, 3.9 pf ± 0.25 pf, 500 wvdc, uninsulated case, 0.200 in . dia by $0.400 \mathrm{in} . \mathrm{lg}, 2$ radial wire lead terminals; Erie 301COH399C.	Coupling	A7C7, A7C 15			5910-987-1610	2	5-22
A7C8	CAPACITOR, fixed, mica dielectric: l section, $24 \mathrm{pf} \pm 5 \%, 500$ wvdc, $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ operating temperature range, plastic case, 0.190 in . thk by 0.330 in . h by $0.360 \mathrm{in} . \mathrm{lg}, 2$ radial wire lead terminals; Electro Motive DM10-240J.	Part of a voltage divider.	A7C8, A7C 16, A7C24, A8C28, A8C46, A8C56, A8C66				7	5-22
A7C9	CAPACITOR, Same as A7C5.	Part of a voltage divider.						5-21

		CONTRACTOR COMMUNICATION ELECTRONICS INCCRPCRATED				CONTRACT NO. DA18-119-AMC -02499(X)		
REF SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	$\begin{aligned} & \text { ALL } \\ & \text { SMBOLS } \\ & \text { AND PART } \\ & \text { NUMERS } \\ & \text { INVOLVED } \\ & (4) \end{aligned}$	JAN OR MIL TYPE NUMPER (5)	MANAGER (6)	FEDERAL STOCK NUMBER 7)	tOTAL NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)
A7C10	CAPACITOR, Same as AlC5.	Emitter degineration.						5-21
A7C 11	CAPACITOR, Same as A7C2.	Neutralization						5-22
A7C 12	CAPACITOR, Same as A5A2C36.	Part of a voltage divider.						5-22
A7C 13	CAPACITOR, Same as A7C5.	Part of a voltage divider.						5-22
A7C 14	CAPACITOR, Same as AlC2l.	Filtering						5-22
A7C15	CAPACITOR, Same as A7C7.	Coupling						5-21
A7C16	CAPACITOR, Same as A7C8.	Part of a voltage divider.						5-22
A7C17	CAPACITOR, Same as A7C5.	Part of a voltage divider.						5-22
A7C 18	CAPACITOR, Same as A7C3.	Emitter ac degeneration.						5-21
A7C 19	CAPACITOR, Same as A3C11.	Neutralization						5-21
A7C20	CAPACITOR, Same as AlCl7.	Part of a voltage divider.						5-22
A7C21	CAPACITOR, Same as AlC21.	Part of a voltage divider.						5-22
A7C22	CAPACITOR, Same as AlC21.	Filtering						5-21
A7C23	CAPACITOR, Same as A2C4.	Coupling						5-21
A7C24	CAPACITOR, Same as A7C8.	Part of a voltage divider.						5-21

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NO.DA18-119-AMC-02499(X)		
REF. SYM. OR NUMBER (1)	NAME OF PARTS OR DESCRIPTION $\begin{array}{l}\text { (2) }\end{array}$	FUNCTION (3)	ALL SYMBOLS AND PART involved (4)	JAN DR MIL TYPE NUMBER (5)	MANAGER (6)	FEDERAL STOCK NUMBER (7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
A7C25	CAPACITOR, fixed, mica dielectric: l section, $130 \mathrm{pf} \pm 5 \%, 500$ wvdc, $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ operating temperature range, plastic case, 0.190 in. thk by 0.330 in . h by $0.360 \mathrm{in} . \mathrm{lg}$, 2 radial wire lead terminals; Electro Motive DM10-131J.	Part of a voltage divider.	A7C25: A7C30				2	5-21
A7C26	CAPACITOR, Same as AlC5.	Filtering						5-21
A7C27	CAPACITOR, Same as AlC38.	Filtering						5-21
A7C28	CAPACITOR, Same as AlC38.	Filtering						5-22
A7C29	CAPACITOR, Same as AlC38.	Filtering						5-21
A7C30	CAPACITOR, Same as A7C25.	Part of a voltage divider.						5-22
A7C31	CAPACITOR, fixed, electrolytic: 1 section, $47 \mu \mathrm{f} \pm 20 \%$, 6 wvdc , insulated case, 0.185 in . dia by $0.510 \mathrm{in} . \mathrm{lg}$, 2 axial wire lead ter minals; Sprague 150D476X9006B2.	Emitter ac degene ration.	A7C3 1				1	5-21
A7C32	CAPACITOR, Same as AlC21.	Filtering						5-22
A7C33	CAPACITOR, Same as AlC38.	Filtering						5-22
A7C34	CAPACITOR, Same as AlC38.	Filtering						5-22
A7C35	CAPACITOR, Same as AlC38.	Filtering						5-21
A7C36	CAPACITOR, Same as AlC38.	Filtering						5-21
A7C37	CAPACITOR, Same as AlC38.	Filtering						5-22
A7C38	CAPACITOR, Same as AlC38.	Filtering						5-21

		CONTRACTOR COMMUNI	ATION ELECTR	NICS INCOR	PORAT	CONTRACT NO DA18-11	$\text { MC - } 02499$	
REF. SYM. OR PART NUMBER (I)	NAME OF PARTS OR DESCRIPTION $\qquad 12)$	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MAN- AGER (6)	FEDERAL STOCK NUMBER 7)	total number PARTS PER END ITEM (8)	REF Figure (9)
A7CR 1	SEMICONDUCTOR,Same as A7A1CR 1	AM detector.						5-21
A7E1	TERMINAL, feedthru, insulated: Pin type conductor accommodation, low-loss plastic insulation, white, 0.172 in . dia by $0.515 \mathrm{in} . \mathrm{lg}$, press fit mounting; Taurus SFUl6.	Couples FM signal through brass partition to limiter board.	A7E1, A8A2E 1, A8E1, A8E2, A8E3, A8E4				6	5-22
A7FB1	FERRITE BEAD, Same as AlFBl.	RF choke.						5-22
A7FB2	FERRITE BEAD, Same as AlFBl.	RF choke.						5-? 1
A7 J1	CONNECTOR, Same as Alj2 .	IF input jack.						5-22
A7J2	CONNECTOR, Same as AlJ2.	IF output jack.						5-22
A7J3	CONNECTOR, Same as AlJ2.	FM video output jack.						5-22
A7J4	CONNECTOR, Same as AlJ2.	AM video output jack.						5-21
A7J5	CONNECTOR, Same as Alj2 .	IF output jack.						5-22
A7L1	COIL, Same as A7AlL2.	RF choke.						5-21
A7L2	COIL, Same as All5.	Part of a tuned circuit.						5-22
A7L3	COIL, Same as All 5 .	Part of a tuned circuit.						5-22
A7L4	COIL, Same as A7AlL2.	RF choke.						5-21
A7L5	COIL, Same as AlL5.	Part of a tuned circuit.						5-21
A7L6	COIL, Same as Alls.	Part of a tuned circuit.						5-21
A7L7	COIL, Same as A7AlL2.	RF choke.						5-22

		CONTRACTOR COMMUNI	ATION ELECTR	ONICS INCOR	PORAT	$\begin{aligned} & \text { CONTRACT NO. } \\ & \text { DA18-119- } \end{aligned}$	MC -02499	
REF. SYM. OR PART NUMBER (1)	NAME OF PADIS OR DESCRIPTION (e)	FUNCTION (3)	$\begin{aligned} & \text { ALL } \\ & \text { SYMBOLS } \\ & \text { ANDPART } \\ & \text { NUMBERS } \\ & \text { INVOLVED } \\ & \text { (4) } \end{aligned}$	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ \text { (} 5 \text {) } \end{gathered}$	MANAGER (6)	FEDERAL STOCK NUMBER \square	TOTAL NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)
A7R7	RESISTOR, Same as A7AlR1.	Biasing						5-22
A7R8	RESISTOR, Same as AlR15.	Biasing						5-22
A7R 9	RESISTOR, Same as A3R6.	Part of a filter.						5-22
A7R 10	RESISTOR, Same as A2R6.	Parasitic suppressor.						5-21
A7R 11	RESISTOR, Same as A4R2.	Swamping						5-22
A7R 12	RESISTOR, Same as A3R6.	Part of a filter .						5-22
A7R 13	RESISTOR, Same as A5A3R 20.	Biasing.						5-22
A7R 14	RESISTOR, Same as A7AIR1.	Biasing						5-22
A7R 15	RESISTOR, Same as A5A2R 15.	Biasing						5-22
A7R 16	RESISTOR, Same as A2R6.	Parasitic suppressor.						5-22
A7R 17	RESISTOR, Same as A2R6.	Part of a voltage divider.						5-21
A7R 18	RESISTOR, Same as A2R6.	Impedance matching.						5-22
A7R 19	NOT USED							
A7R20	RESISTOR, fixed, composition: $6.8 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL -R - 11 .	Swamping	A7R20	RC07GF682I		5905-258-1197	1	5-21
A7XQ1	SOCKET, semiconductor device: 4 silver plated gold flashed beryllium copper contacts, mica filled phenolic dielectric material, retaining ring mounted, ring not included, 0.400 in . dia by 0.440 in . lg , o/a dim.; Grayhill 22-16-4.	Mounts A7Q1.	A7XQ1, A7XQ2, A7XQ3, A8XQ1, A8XQ2, A8XQ3, A8XQ4, A8XQ5, A8XQ6, A8XQ7, A8XQ8				11	5-21

72120		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				$\begin{aligned} & \text { CONTRACT NO. } \\ & \text { DA18-119-AMC -02499(X) } \end{aligned}$		
REF. SYM. OR NUMBER (I)	name of parts or description (2)	function (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MAN- AGER (6)	FEDERAL STOCK NUMBER (7)	TOTAL NUMBER PARTS PER END ITEM (B)	REF figure (9)
Fig. 5-25 Fig. 5-26 Fig. 5-27 Fig. 5-28 A8	AMPLIFIER, intermediate frequency: Brass chassis, silver plated, gold-flashed, $10.500 \mathrm{in} . \mathrm{lg}$, 2.880 in. w, 2.200 in. d, o/a dim., $21.4-\mathrm{mc}$ center frequency, 20,75 , or 300 kc bandwidth, selectable, 50 ohm input and output impedance; Communication Electronics, Inc. type 72120	Amplify and detect RF signals within selected bandwidth and provide audio and video output signals.	A8				1	5-1
Fig. 5-29 A8Al	LIMITER, electrical: Etched circuit component board, $3.800 \mathrm{in} . \mathrm{lg}$, 1.000 in. w, 0.700 in. d, o/a dim., FM input signal, rectified dc output to video jack; Communication Elec tronics, Inc. 10710.	Removes large positive and negative spikes from input signal, demodulates input signal.	A8A1				1	5-28
A8AlCl	CAPACITOR, Same as A5AlC2.	Filtering						5-29
A8A1C2	CAPACITOR, Same as AlC5.	AC degeneration.						5-29
A7A1C3	CAPACITOR, Same as AlC5.	Coupling						5-29
A8A1C4	CAPACITOR, Same as AlC5.	AC degeneration.						5-29
A8A1C5	CAPACITOR, Same as AlC5.	Coupling						5-29
A8A1C6	CAPACITOR, Same as A5AlC2.	F iltering						5-29
A8A1C7	CAPACITOR, Same as AlCl.	Part of a voltage divider.						5-29
A8A 1 C 8	CAPACITOR, Same as A7AlCl0.	Part of a voltage divider.						5-29

		CONTRACTOR COMMUNICATION ELECTR ONICS INCORPORATED				$\begin{aligned} & \text { CONTRACT NO. } \\ & \text { DA18-119-AMC-02499(X) } \end{aligned}$		
$\begin{gathered} \text { REF. } \\ \text { SYM. } \\ \text { OM } \\ \text { PART } \\ \text { NUMBER } \\ \text { (1) } \end{gathered}$	NAME OF PARTS OR DESCRIPTION (2)	function (3)	ALL SYMBOLS AND PART INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ (5) \end{gathered}$	MAN- AGER (6)	FEDERAL STOCK number 7)	total Number PARTS PER END ITEM (8)	REF FIGURE (9)
A8A1L3	COIL, radio frequency: 18 turns, no. 30 wire, aluminum case, 0.562 in. by 0.562 in . by 0.600 in . o/a dim., 2 solder pin terminals; Communication Electronics, Inc. 3476-20.	Part of a tuned circuit.	A8A1L3			5950-913-9004	1	5-29
A8AlQ1	TRANSISTOR, Same as A5AlQl.	Limiter						5-29
A8A1Q2	TRANSISTOR, Same as A5AlQl.	Limiter						5-29
A8AlQ3	TRANSISTOR, Same as A5AlQ1.	Limiter						5-29
A8AlQ4	TRANSISTOR, Same as A5AlQ1.	Limiter						5-29
A8AlQ5	TRANSISTOR, Same as A5A3Q3.	Emitter follower.						5-29
A8AlQ6	TRANSISTOR, Same as A5A3Q3.	Emitter follower.						5-29
A8AlR 1	RESISTOR, Same as A5A3R20.	Biasing						5-29
A8AIR2	RESISTOR, Same as A7AlR1.	Biasing						5-29
A8A1R3	RESISTOR, Same as AlR 15.	Biasing						5-29
A8AIR 4	RESISTOR, Same as A5A3R20.	Collector load.						5-29
A8A1R5	RESISTOR, Same as A7AlR1.	Biasing						5-29
A8AIR6	RESISTOR, Same as A2R6.	Parasitic suppressor.						5-29
A8A1R7	RESISTOR, Same as A7AIR1.	Biasing						5-29
A8A1R8	RESISTOR, Same as A5A3R20.	Biasing						5-29
A8AIR 9	RESISTOR, fixed, composition: 390 ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Biasing	A8AIR 9	RC07GF391J		5905-683-2236	1	5-29

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				$\begin{gathered} \text { CONTRACT NO } \\ \text { DA18-119-AMC-02499(X) } \end{gathered}$		
$\begin{aligned} & \text { REF. } \\ & \text { SYM. } \\ & \text { OR } \\ & \text { PART } \end{aligned}$ NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MANAGER (6)	FEDERAL STOCK NUMBER (7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
A8AlTl	TRANSFORMER, radio frequency: 2 windings, $141 / 2$ turns no. 30 wire and $11 / 2$ turns no. 27 wire, no taps, aluminum case, 0.562 in . by 0.562 in . by 0.600 in . o/a dim., 4 solder pin terminals; Communica tion Electronics, Inc. 3476-21.	Discriminator trans former.	A8A1Tl			5950-913-9007	1	5-29
$\begin{aligned} & \text { Fig. 5-30 } \\ & \text { A8A? } \end{aligned}$	OSCILLATOR, radio frequency: Etched circuit component board, epoxy resin glass base laminate, 1 -oz copper (1 -side), $1.500 \mathrm{in} . \mathrm{lg}$, 1.700 in. w, 1.700 in. d, o/a dim., $21.4-\mathrm{mc}$ output frequency, crystal controlled; Communication Elec tronics, Inc. type 1769-3.	Beat frequency oscillator.	A8A2				1	5-28
A8A2Cl	CAPACITOR, fixed, mica dielectric: l section, 43 pf $\pm 5 \%$, 500 wvdc, $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ operating temperature range, plastic case, 0.190 in . thk by 0.330 in . h by $0.360 \mathrm{in} . \mathrm{lg}, 2$ radial wire lead terminals; Electro Motive DM10-430J.	Part of a voltage divider.	$\begin{aligned} & \text { A8A2C1, } \\ & \text { A8C24 } \end{aligned}$				2	5-30
A8A2C2	CAPACITOR, Same as AlC5.	Blocking						5-30
A8A2C3	CAPACITOR, Same as A5A2C35.	Part of a voltage divider.						5-30
A8A2C4	CAPACITOR, Same as AlC38.	Filtering						5-30
A8A2CR 1	SEMICONDUCTOR DEVICE, diode: Silicon type; EIA designation 1N462A.	Crystal shunt.	A8A2CR 1 , A8A2CR2, A12CR14, A12CR 15, A12CR 17, A12CR 18,			5960-822-9588	9	5-30

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NO. DA18-119-AMC-02499(X)		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	function (3)	ALL SYMBOLS ANDPART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MAN- AGER (6)	federal STOCK NUMBER (7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
A8A2CR2	SEMICONDUCTOR, Same as A8A2CR 1.	Biasing	A12CR21					5-30
A8A2E 1	TERMINAL, Same as A7E1.	Feedthru						5-30
A8A2Q1	TRANSISTOR, Same as A5AIQ1.	Oscillator						5-30
A8A2R 1	RESISTOR, Same as AlR2.	Biasing						5-30
A8A2R2	RESISTOR, Same as A5AIR21.	Biasing						5-30
A8A2R3	RESISTOR, Same as A3R 14.	Biasing						5-30
A8A2Y1	CR YSTAL UNIT, quartz: Style same as CR18-U except that the 21.400 mc frequency is outside the range of the MIL type crystal; Piezo CR18U21.4MC.	Determines oscillator frequency.	A8A2Y1				1	5-30
A8C 1	CAPACITOR, Same as AlC38.	Filtering						5-28
A8C2	CAPACITOR, Same as AlC38.	Filtering						5-26
A8C3	CAPACITOR, Same as AlC38.	Filtering						5-28
A8C4	CAPACITOR, Same as AlC38.	Filtering						5-27
A8C5	CAPACITOR, Same as AlC5.	Coupling						5-27
A8C6	CAPACITOR, Same as AlC2l.	Filtering						5-26
A8C7	CAPACITOR, Same as AlC5.	Coupling						5-26
A8C8	CAPACITOR, Same as AlC5.	Coupling						5-26
A8C9	CAPACITOR, Same as A5AlC2.	Filtering						5-27

		CONTRACTOR COi MUN	ATION ELECTR	NICS IN	PORAT	$\begin{aligned} & \hline \text { CONTRACT NO. } \\ & \text { DA18-119- } \\ & \hline \end{aligned}$	MC -024990	
\square	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MANAGER (6)	federal STOCK NUMBER (7)	total number PARTS PER END ITEM (8)	REF FIGURE (9)
A8C10	CAPACITOR, Same as AlC38.	Filtering						5-27
A8C11	CAPACITOR, Same as AlC38.	Filtering						5-25
A8C 12	CAPACITOR, Same as AlC2l.	Filtering						5-25
A8C13	CAPACITOR, Same as AlC5.	Part of a shelf net work.						5-25
A8C14	CAPACITOR, Same as A3C11.	Neutralization						5-25
A8C 15	NOT USED							
A8C 16	CAPACITOR, fixed, mica dielectric: l section, 200 pf $\pm 5 \%$, 500 wvdc, $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ operating temperature range, plastic case, 0.190 in . thk by 0.330 in . h by $0.360 \mathrm{in} . \mathrm{w}, 2$ radial wire lead terminals; Electro Motive DM10-201J.	Coupling	A8C 16, A8C78			5910-995-2873	2	5-25
A8C 17	CAPACITOR, Same as AlC5.	Part of a shelf net work.						5-26
A8C18	CAPACITOR, Same as A5AlC2.	Filtering						5-25
A8C 19	CAPACITOR, fixed, mica dielectric: l section, 39 pf $\pm 5 \%, 500$ wvdc, $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ operating temperature range, plastic case, 0.190 in . thk by 0.330 in . h by $0.360 \mathrm{in} . \mathrm{lg}$, 2 radial wire lead terminals; Electro Motive DM10-390J.	Coupling	A8C 19, A8C25, A8C30, A8C32, A8C33, A8C77			5910-954-0146	6	5-25
A8C20	CAPACITOR, Same as AlC5.	Filtering						5-28

		${ }^{\text {CONTRACTOR }}$ COMM	ATION ELECTR	ONICS INCORP	PORAT	$\begin{gathered} \hline \text { CONTRACT NO } \\ \text { DA18-119-1 } \end{gathered}$	MC -02499(
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ \text { (} 5 \text {) } \\ \hline \end{gathered}$	MANAGER (6)	FEDERAL STOCK NUMBER 7)		REF FIGURE (9)
A8C21	CAPACITOR, Same as AlC21.	Filtering						5-27
A8C22	CAPACITOR, Same as AlC 17.	Part of a voltage divider.						5-27
A8C23	CAPACITOR, Same as AlC 17.	Part of a voltage divider.						5-26
A8C24	CAPACITOR, Same as A8A2C21.	Part of a voltage divider.						5-25
A8C25	CAPACITOR, Same as A8A2C1.	Part of a voltage divider.						5-26
A8C26	CAPACITOR, Same as A8C38.	Filtering						5-26
A8C27	CAPACITOR, fixed, ceramic dielectric: 1 section, $0.75 \mathrm{pf} \pm 10 \%$, 500 wvdc, 0.125 in . dia by 0.250 in. $\lg , 2$ axial wire lead terminals; Quality Components QC-75PFPORM10PCT .	Coupling	$\begin{aligned} & \text { A8C27, A8C45, } \\ & \text { A8C } 81 \end{aligned}$				3	5-27
A8C28	CAPACITOR, Same as A7C8.	Part of a voltage divider.						5-25
A8C29	CAPACITOR, fixed, mica dielectric: 360 pf $\pm 5 \%$, 500 wvdc; per MIL -C -5.	Part of a voltage divider.	$\begin{aligned} & \text { A8C29, A8C47, } \\ & \text { A8C57 } \end{aligned}$	CM05F 361J03		5910-964-7276	3	5-25
A8C30	CAPACITOR, Same as A8C 19.	Part of a voltage divider.						5-25
A8C31	CAPACITOR, Same as AlC21.	Filtering						5-26
A8C32	CAPACITOR, Same as A8C19.	Part of a voltage divider.						5-28

		CONTRACTOR COMMUN	ATION ELECTP	NICS INC	PORAT	CONTRACT NO. DA18-119-	MC -02499	
$\begin{gathered} \text { REF. } \\ \text { SYM. } \\ \text { OR } \\ \text { PART } \\ \text { NUMBER } \\ \text { (} 1 \text {) } \end{gathered}$	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS involved (4)	JAN OR MIL TYPE NUMBER (5)	MAN- AGER (6)	federal STOCK NUMBER (7)	total number PARTS PER END ITEM (8)	REF figure (9)
A8C33	CAPACITOR, Same as A8C 19.	Part of a voltage divider.						5-27
A8C34	NOT USED	----------------						
A8C35	CAPACITOR, Same as AlC5.	Part of a shelf network.						5-27
A8C36	CAPACITOR, fixed, ceramic dielectric: 1 section, $0.82 \mathrm{pf} \pm 10 \%$, $500 \mathrm{wvdc}, 0.125 \mathrm{in}$. dia by 0.250 in. lg , o/a dim., 2 axial wire lead terminals; Quality Components QC0.82PFPORM1OPCT .	Neutralization	A8C36, A8C44				2	5-25
A8C37	CAPACITOR, Same as AlC5.	Part of a shelf net work.						5-25
A8C38	CAPACITOR, fixed, ceramic dielectric: l section, l pf $\pm 10 \%$, 500 wvdc, 0.125 in. dia by 0.250 in. lg , o/a dim., 2 axial wire lead terminals; Quality Components QCIPFPORMIOPCT.	Neutralization	A8C38, A8C55			5910-722-2471	2	5-25
A8C39	CAPACITOR, Same as AlC5.	AC degeneration.						5-26
A8C40	CAPACITOR, Same as AlC38.	Filtering						5-26
A8C41	CAPACITOR, Same as AlC2l.	Filtering						5-27
A8C42	CAPACITOR, Same as AlC 17.	Part of a voltage divider.						5-26
A8C43	CAPACITOR, Same as AlC 17.	Part of a voltage divider.						5-28
A8C44	CAPACITOR, Same as A8C36.	Neutralization						5-28

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NO. DA18-119-AMC-02499(X)		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	function (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MAN- AGER (6)	federal STOCK NUMBER (7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
A8C61	CAPACITOR, Same as AlC 17.	Part of a voltage divider.						5-28
A8C62	CAPACITOR, Same as AlC 17.	Part of a voltage divider.						5-27
A8C63	CAPACITOR, Same as A2C44.	Coupling						5-27
A8C64	CAPACITOR, Same as A2C27.	Coupling						5-26
A8C65	CAPACITOR, Same as A5AlC2.	Part of a filter.						5-25
A8C66	CAPACITOR, Same as A7C8.	Part of a voltage divider.						5-26
A8C67	CAPACITOR, Same as A7C5.	Part of a voltage divider.						5-25
A8C68	CAPACITOR, Same as A5A2C36.	Part of a filter.						5-25
A8C69	CAPACITOR, fixed, electrolytic: 1 section, $2.2 \mu \mathrm{f} \pm 10 \%$, 20 wvdc , ins ulated case, 0.141 in . dia by $0.312 \mathrm{in} . \lg$, 2 axial wire lead ter minals; Sprague 150D225X 9020A2.	Filtering	A8C69			5910-850-5355	1	5-25
A8C70	CAPACITOR, Same as A7A2Cl.	Part of a filter.						5-27
A8C7 1	CAPACITOR, Same as AlC38.	Filtering						5-26
A8C72	CAPACITOR, Same as AlC38.	Filtering						5-28
A8C73	CAPACITOR, Same as AlC38.	Filtering						5-28
A8C74	CAPACITOR, Same as AlC38.	Filtering						5-27
A8C75	CAPACITOR, Same as AlC38.	Filtering						5-26
A8C76	CAPACITOR, Same as AlC38.	Filtering						5-28

		CONTRACTOR COMMUNICATION ELECT		ONICS INCORPORATED		$\begin{aligned} & \text { CONTRACT NO. } \\ & \text { DA18-119-AMC-02499(X) } \end{aligned}$		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS ANDPART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MANAGER (6)	FEDERAL STOCK NUMBER (7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
A8F L2	FILTER, bandpass: $21.4-\mathrm{mc}$ center frequency, 20 kc bandwidth, not tapped, aluminum case, 0.625 in . by 1.000 in . by 2.000 in ., 2 solder lug terminals; McCoy 40Bl.	Sets bandwidth of one section of amplifier at 20 kc .	A8F L2				1	5-28
A8J 1	CONNECTOR, Same as Alj2.	IF input jack.						5-28
A8J2	CONNECTOR, Same as Alj2.	IF cutput jack.						5-26
A8J3	CONNECTOR, Same as Alj2.	IF cutput jack.						5-27
A8Ll	COIL, Same as A7AlL2.	R F choke.						5-26
A8L2	COIL, Same as All 5 .	Part of a tuned circuit.						5-27
A8L3	COIL, Same as Alls .	Part of a tuned circuit.						5-27
A8L4	COIL, Same as All:5.	Part of a tuned circuit.						5-26
A8L5	COIL, Same as Alls.	Part of a tuned circuit.						5-26
A8L6	COIL, Same as Alls.	Part of a tuned circuit.						5-25
A8L7	COIL, Same as Alls.	Part of a tuned circuit.						5-26
A8L8	COIL, Same as A7AlL2.	RF choke.						5-28
A8L9	COIL, Same as AlL5.	Part of a tuned circuit.						5-26
A8L 10	COIL, Same as AlL5.	Part of a tuned circuit.						5-27

		CONTRACTOR COMMUNI	ATION ELE	NICS INC	PORAT	$\begin{gathered} \begin{array}{c} \text { CONTRACT NO. } \\ \text { DA18-119- } \end{array} \\ \hline \end{gathered}$	$\mathrm{MC}-02499$	
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	function (3)	ALL SYMBOLS AND PART NUMBERS involved (4)	JAN OR MIL TYPE NUMBER (5)	MAN- AGER (6)	FEDERAL STOCK number (7)	tOTAL NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)
A8L11	COIL, Same as A7AlL2.	RF choke.						5-28
A8L 12	COIL, Same as Alls .	Part of a tuned circuit.						5-25
A8L13	COIL, Same as Alls .	Part of a tuned circuit.						5-25
A8L14	COIL, Same as A7AlL2.	RF choke.						5-28
A8L 15	COIL, Same as Alls.	Part of a tuned circuit.						5-25
A8L16	COIL, Same as Allf	Part of a tuned circuit.						5-25
A9L17	COIL, Same as A7AlL2.	Part of a filter.						5-28
A8L18	COIL, Same as A7AlL2.	RF choke.						5-28
A8L19	COIL, radio frequency: $500 \mu \mathrm{~h}$ $\pm 10 \%, 3.80-\mathrm{mc}$ nominal resonant frequency, 15 minimum Q , var nish insulated, 0.500 in . dia by $0.312 \mathrm{in} . \lg$, 2 axial wire lead terminals; Wilco 1500-15.	RF choke.	A8L19			5950-552-0776	1	5-25
A8L20	COIL, Same as A7AlL2.	RF choke.						5-25
A8P1	CONNECTOR, plug, electrical: 18 pin, rectangular, 7.5 amp , selfaligning, polarized, arc resistant dielectric material, 0.562 in . by 0.781 in . by $1.312 \mathrm{in} .$, o/a dim.; Winchester MRE18P-G7.	Connects va ious voltages to ampli fier.	A8P1				1	5-1
A8Q 1	TRANSISTOR, Same as A7Q1.	$300-\mathrm{kc}$ IF amplifier.						$5-25$

		CONTRACTOR COMMUNI	ATION ELECT	ONICS INCOR	PORA	CONTRACT NO. DA18-119-A	$\text { MC }-024990$	
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	function (3)	ALL SYMBOLS ANDPART NUMBERS INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ \text { (5) } \\ \hline \end{gathered}$	MANAGER (6)	federal STOCK NUMBER (7)	```TOTAL NUMBER PARTS PER END ITEM (8)```	REF FIGURE (9)
A8Q2	TRANSISTOR, Same as A7Q1.	75 -kc IF amplifier.						5-28
A8Q3	TR ANSISTOR, Same as A7Q1.	$20-\mathrm{kc}$ IF amplifier .						5-26
A8Q4	TR ANSISTOR, Same as A7Q1.	$300-\mathrm{kc}$ IF amplifier.						5-28
A8Q5	TRANSISTOR, Same as A7Ql.	$75-\mathrm{kc}$ IF amplifier.						5-28
A8Q6	TRANSISTOR, Same as A7Q1.	$20-\mathrm{kc}$ IF amplifier .						5-26
A8Q7	TRANSISTOR, Same as A7Q1.	Common IF amplifier.						5-25
A8Q8	TR ANSISTOR, Same as A7Ql.	Common IF amplifier.						5-25
A8Q9	TRANSISTOR, Same as A5A3Q3.	Emitter follower.						5-25
A8Q10	TR ANSISTOR, Same as A5A3Q3.	Emitter follower .						5-28
A8Q11	TR ANSISTOR, Same as A5A3Q3.	AGC amplifier.						5-25
A8Q12	TRANSISTOR, Same as A5A3Q3.	AGC amplifier .						5-27
A8Q13	TRANSISTOR: NPN, silicon, EIA designation, 2Nl131; per MIL-S-19500 .	AGC regulator .	A8Q13	JAN2N1131		5960-081-8365	1	5-27
A8R 1	RESISTOR, fixed, composition: 24 ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Part of a voltage divider.	A8R1, A8R3, A8R2 1	RC07GF 240J		5905-835-1632	3	5-28
A8R2	RESISTOR, fixed, composition: 33 ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Part of a voltage divider.	A8R2	RC07GF 330J		5905-806-0636	1	5-25
A8R3	RESISTOR, Same as A8R1.	Part of a voltage divider.						5-26

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				$\begin{aligned} & \text { CONTRACT NO. } \\ & \text { DA18-119-AMC -02499(X) } \end{aligned}$		
$\begin{gathered} \text { REF } \\ \text { SYM. } \\ \text { OR } \\ \text { PART } \\ \text { (1) } \\ \text { (} 1 \text {) } \end{gathered}$	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS ANDPART NUMBERS INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ \text { (} 5 \text {) } \\ \hline \end{gathered}$	MAN- AGER (6)	federal STOCK NUMBER 7)	total NUMBER PARTS PER END ITEM (B)	REF figure (9)
A8R23	RESISTOR, fixed, composition: $8.2 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Filter load.	A8R23	RC07GF 822J		5905-681-9970	1	5-26
A8R24	RESISTOR, fixed, composition: 750 ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Filter load.	A8R24, A8R27	RC07GF751J			2	5-25
A8R25	RESISTOR, Same as A3R6.	Part of a filter.						5-27
A8R26	RESISTOR, Same as A5A3R20.	Filter load.						5-26
A8R27	RESISTOR, Same as A8R24.	Filter load.						5-27
A8R28	RESISTOR, Same as A2R7.	Biasing						5-27
A8R29	RESISTOR, Same as A5A3R20.	Biasing						5-25
A8R30	RESISTOR, Same as A2R7.	Fiasing						5-27
A8R31	RESISTOR, Same as A5A3R20.	Biasing						5-25
A8R32	RESISTOR, Same as $\angle \mathrm{R} 7$.	Biasing						5-26
A8R33	RESISTOR, Same as A5A3R20.	Biasing						5-28
A8R34	RESISTOR, Same as A7AlR14.	Part of a shelf network.						5-28
A8R35	RESISTOR, Same as AIR 15.	Biasing						5-28
A8R36	RESISTOR, Same as A7AlR14.	Part of a shelf network.						5-26
A8R37	RESISTOR, Same as AlR 15.	Biasing						5-26
A8R38	RESISTOR, Same as AlR 15.	Biasing						5-27
A8R39	RESISTOR, Same as A2R6.	Parasitic suppressor.						5-27
A8R 40	RESISTOR, Same as A2R6.	Parasitic suppressor.						5-25

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NO. DA18-119-AMC -02499(X)		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	$\begin{gathered} \text { ALL } \\ \text { SYMBOLS } \\ \text { AND PART } \\ \text { NUMBERS } \\ \text { INVOLVED } \\ \text { (4) } \end{gathered}$	JAN OR MIL TYPE NUMBER (5)	MANAGER (6)	FEDERAL STOCK NUMBER (7)	total NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)
A8R41	RESISTOR, Same as A2R6.	Parasitic suppressor.						5-28
A8R 42	RESISTOR, Same as A3R6.	Part of a filter.						5-25
A8R 43	RESISTOR, Same as A2R5.	Biasing						5-26
A8R 44	RESISTOR, Same as A5A3R20.	Biasing						5-27
A8R 45	RESISTOR, Same as A5A2R15.	Dropping						5-27
A8R 46	RESISTOR, Same as AIR 7.	Biasing						5-28
A8R 47	RESISTOR, Same as AlR 15.	Biasing						5-26
A8R 48	RESISTOR, Same as A2R6.	Parasitic suppressor.						5-27
A8R 49	RESISTOR, Same as A7AlR1.	Biasing						5-28
A8R50	RESISTOR, Same as A5A3R20.	Biasing						5-27
A8R51	RESISTOR, Same as A2R6.	Part of a filter.						5-27
A8R52	RESISTOR, Same as A5A2R 15.	Biasing						5-26
A8R53	RESISTOR, Same as A2R6.	Parasitic suppressor.						5-26
A8R54	RESISTOR, Same as A2R 18.	DC return.						5-25
A8R55	RESISTOR, Same as AlR2.	Part of a filter.						5-27
A8R56	RESISTOR, Same as AlR12.	Biasing						5-26
A8R57	RESISTOR, Same as A3R 14.	Biasing						5-26
A8R58	RESISTOR, Same as AlR13.	Part of a filter.						5-25
A8R59	RESISTOR, Same as AlR 13.	Bias ing						5-26
A8R60	RESISTOR, Same as A3R 15.	Biasing						5-27

7312		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATER				$\begin{aligned} & \text { CONTRACT NO } \\ & \text { DA18-119-AMC - } 02499(X) \\ & \hline \end{aligned}$		
$\begin{gathered} \text { REF. } \\ \text { SYM. } \\ \text { OR } \\ \text { PART } \\ \text { NUMBER } \\ \text { (1) } \end{gathered}$	NAME OF PARTS OR DESCRIPTION (2)	function (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ (5) \end{gathered}$	MAN- AGER (6)	federal STOCK NUMBER (7)	tOTAL NUMBER PARTS PER END ITEM (8)	$\begin{gathered} \text { REF } \\ \text { F:GURE } \end{gathered}$ (9)
$\begin{aligned} & \text { Fig. } 5-31 \\ & \text { A9 } \end{aligned}$	AMPLIFIER, video: Etched circuit, plug -in card, epoxy resin glass base laminate, with 1-oz copper (1-side), 2.050 in. h, 2.000 in.w, 0.3000 in. do/a dim., low level video input signal, amplified video output signal; Communication Electronics, Inc. type 7312.	Amplifies video out put from IF strip A8, applies signal to video output jack.					1	- 1
A9C 1	CAPACITOR, Same as A5A3Cl.							5-31
A9C2	CAPACITOR, fixed, electrolytic: 1 section, $10.0 \mu \mathrm{f} \pm 20 \%, 20 \mathrm{wvdc}$, insulated case, 0.185 in . dia by 0.512 in . $\mathrm{lg}, 2$ axial wire lead terminals; Sprague 150D106X0020B2.	Coupling and filtering.	A9C2			5910-542-7372	1	5-31
A9Q1	TRANSISTOR, Same as A5A3Q3.	Amplifier						5-31
A9Q2	TRANSISTOR: PNP, germanium, EIA designation 2N526; per MIL-S-19500.	Amplifier	A9Q2	JAN2N526		5960-892-3473	1	5-31
A9R1	RESISTOR, Same as AIR15.	Part of a filter.						5-31
A9R2	RESISTOR, Same as A6R4.	Biasing						5-31
A9R3	RESISTOR, fixed, composition: $20 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Biasing	A9R3	RC07GF 203J		5905-686-3368	1	ミ-31
A9R 4	RESISTOR, Same as AIR 15.	Biasing						5-31
A9R5	RESISTOR, fixed, composition: 160 ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Biasing	A9R5, A9R7	RC07GF 161J		5905-825-5592	2	5-31
A9R6	RESISTOR, fixed, composition: 2 K $\pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Biasing	A9R6	RC07GF 202J		5905-686-3370	1	5-31

7400A		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NO.DA18-119-AMC-02499(X)		
$\begin{gathered} \text { REF. } \\ \text { SYM. } \\ \text { OR } \\ \text { PART } \\ \text { NUMBER } \\ \text { (} 1 \text {) } \\ \hline \end{gathered}$	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MANAGER (6)	FEDERAL STOCK number (7)	total NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)
$\begin{aligned} & \text { Fig. 5-32 } \\ & \text { A10 } \end{aligned}$	AMPLIFIER, audio: Etched cir cuit, plug-in card, epoxy resin glass base laminate, grade G10 with 1 -oz copper (1 -side), 3.000 in . $\mathrm{lg}, 2.120 \mathrm{in} . \mathrm{h}, 1.200 \mathrm{in} . \mathrm{do}$ o a dim., 13 contacts; Communication Electronics, Inc. type 7400A.	Amplifies audio frequencies from output of IF strip A8.					1	5-1
A 10C 1	CAPACITOR, fixed, electrolytic: 1 section, $0.47 \mu \mathrm{f} \pm 20 \%$, 35 wvdc , insulated case, 0.135 in . dia by $0.322 \mathrm{in} . \lg$, 2 axial wire lead ter minals; Sprague 150D474X0035A2.	Part of a filter.	Al0Cl			5910-683-7276	1	5-32
A 10C2	CAPACITOR, fixed, electrolytic: 1 section, $10 \mu \mathrm{f} \pm 10 \%, 20 \mathrm{wvdc}$, insulated case, 0.185 in . dia by $0.510 \mathrm{in} . \mathrm{lg}, 2$ axial wire lead terminals; Sprague 150D106X 9020B2.	Part of a filter.	A 10C2			5910-812-2752	1	5-32
A 10 CR 1	SEMICONDUCTOR DEVICE, diode: Zener type, EIA designation IN759A; per MIL-S-19500.	Voltage regulation.	$\begin{aligned} & \text { A 10CR1, } \\ & \text { A 12CR 19, } \\ & \text { A 15CR 1 } \end{aligned}$	JANIN759A		5960-846-9157	3	5-32
A10Q1	TRANSISTOR: NPN, silicon type, EIA designation 2N929; per MIL-S-19500.	Audio amplifier .	A10Q1, A 15 Q 1	JAN2N929		596()-()81-3783	2	5-32
A10Q2	TRANSISTOR, Same as A5A3Q2.	Emitter follower .						5-32
A 10Q3	TRANSISTOR, Same as A5A3Q2.	Power amplifier .						5-32
Al0R 1	RESISTOR, Same as A3R14.	Part of a filter .						5-32
Al0R2	RESISTOR, fixed, film: $75 \mathrm{~K} \pm 1 \%$, 1/4W; per MIL-R - 10509 .	Biasing	Al0R2	RN60D75()2F			1	5-32

 REF. SYM. OR PART NUMBER (1)		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORAT				CONTRACT NO.DA18-119-AMC -02499(X)			
	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MANAGER (6)	FEDERAL STOCK NUMBER \square	total NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)	
A10R3	RESISTOR, fixed, film: $10 \mathrm{~K} \pm 1 \%$, 1/4W; per MIL-R -10509.	Biasing	A10R3	\|RN60D1002F			5905-983-6914	1	5-32
A10R 4	RESISTOR, fixed, film: $6.81 \mathrm{~K} \pm 1 \%$, 1/4W; per MIL-R-10509.	Biasing	A10R4	RN60D6811J		5905-681-8754	1	5-32	
A10R5	RESISTOR, fixed, film: 619 ohms $\pm 1 \%, 1 / 4 \mathrm{~W}$; per MIL-R-10509.	DC return.	A10R5	RN60D6190F		5905-702-1148	1	5-32	
Al0R6	RESISTOR, fixed, composition: $3.9 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Dropping	A10R6	RC07GF392J		5905-682-4098	1	5-32	
A10R7	RESISTOR, Same as AlR1.	Feedback						5-32	
A10R 8	RESISTOR, Same as A5A3R12.	Part of a filter.						5-32	
Al0R 9	RESISTOR, Same as A7AlR10.	Biasing						5-32	
A10R 10	RESISTOR, fixed, film: 68.1 ohms $\pm 1 \%, 1 / 4 \mathrm{~W}$; per MIL-R-10509.	DC return.	A10R 10	RN60D68R1F		5905-685-9824	1	5-32	
Al0RAl	HEAT SINK, electrical-electronic component: Copper, snap-on type, 0.255 in . id by 0.375 in . h by 0.720 in. od; Wakefield NF207.	Heat radiator.	$\begin{aligned} & \text { A10RA1, } \\ & \text { A12RA1, } \\ & \text { A12RA2, } \\ & \text { Al2RA3 } \end{aligned}$			5895-758-1799	4	5-32	
A10Tl	TRANSFORMER, audio frequency: $10 \mathrm{~V}, 100 \mathrm{cps}$ to 40 kc , single phase, plastic case, fully enclosed, hermetically sealed, printed circuit mounted, 5 wire terminals; Communication Electronics, Inc. 1170.	Audio output trans former.	AlOTl			5950-913-4388	1	5-32	

7633		CONTRACTOR COMMUNICATION ELECTRON CS INCORPORATED				$\begin{aligned} & \text { CONTRACT NO. } \\ & \text { DA18-119-AMC-02499(X) } \end{aligned}$		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	function (3)	ALL SYMBOLS AND PART NUMBERS involved (4)	JAN OR MIL TYPE NUMBER (5)	MAN- AGER (6)	federal STOCK NUMBER \square	total number PARTS PER END ITEM (8)	REF FIGURE (9)
$\begin{aligned} & \text { Fig. 5-33 } \\ & \text { All } \end{aligned}$	POWER SUPPLY: Etched circuit component board, epoxy resin glass base laminate, grade G10, with 1oz copper (1 -side), $7.180 \mathrm{in} . \mathrm{lg}$, 1.875 in. w, 1.5 in. do/a dim , 600 vac input, high voltage dc output, regulated; Com munication Electronics, Inc. type 7633.	Supplies high voltage for cathode ray tube	All				1	5-1
AllCl	CAPACITOR, fixed, paper dielectric: l section, mylar-paper type, $0.1 \mu \mathrm{f} \pm 10 \%, 1000 \mathrm{wvdc}$, plastic case, 0.750 in . dia by $2.250 \mathrm{in} . \mathrm{lg}$, 2 axial wire lead terminals; Sprague 10TMP10.	Part of a voltage divider.	AllC1, AllC2			5910-985-5159	2	5-33
AllC2	CAPACITOR, Same as Allcl.	Part of a voltage divider.						5-33
AllC3	CAPACITOR, fixed, ceramic dielectric: 1 section, $0.1 \mu \mathrm{f}+80 \%$ 20%, 100 wvdc, insulated case, 0.125 in . thk by 0.625 in . dia disc type, 2 radial wire lead terminals; RMC TA.lUF P80PCTM20PCT.	Filtering	AllC3				1	5-33
AllCR 1	SEMICONDUCTOR DEVICE, diode: Silicon rectifier, 2000 peak inverse volts, 1400 vrms, 2000 continuous reverse dc volts, 50 kcps maximum operating frequency, $-65^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$ operating temp range, hermetically sealed, 0.140 in . dia by $0.310 \mathrm{in} . \mathrm{lg}, 2$ axial solid silver wire lead terminals; Semitech SC20.	Rectifier	AllCR1, AllCR2				2	5-33
AllCR2	SEMICONDUCTOR, Same as AllCR1.	Rectifier						5-33

7631		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATEL				CONTRACT NO. DA18-119-AMC-02499(X)		
REF. SYM. OR PART NUMBER (I)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MANAGER (6)	FEDERAL STOCK NUMBER (7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
$\begin{aligned} & \text { Fig. 5-34 } \\ & \text { A 12 } \end{aligned}$	POWER SUPPLY: Etched circuit, plug -in card, epoxy resin glass base laminate, grade G10, with 1 -oz copper (1 -side), 4.000 in . w, 3.68 in. h, 0.500 in. thk o/a dim., $12 \mathrm{vac}, 157 \mathrm{vac}, 26 \mathrm{vac}$, input voltages, $14 \mathrm{vdc}, 175 \mathrm{vdc}, 23 \mathrm{vdc}$, $24 \mathrm{vdc}, 12 \mathrm{vdc},-24 \mathrm{vdc}$, and 56 vdc output voltages, 18 contacts; Communication Electronics, Inc. type 7631	Rectifies and regulates ac outputs from power transformer, supplies dc voltages for entire unit.	Al2				1	5-3
A12Cl	CAPACITOR, fixed, electrolytic: 1 section, $1.0 \mu \mathrm{f}-10 \%+75 \%, 50 \mathrm{wvdc}$, metal case, hermetically sealed, 0.187 in . dia by $0.500 \mathrm{in} . \lg , 2$ axial wire lead terminals; Sprague 30D105G050AA4.	Filtering	Al2Cl				1	5-34
A12C2	CAPACITOR, fixed, electrolytic: 1 section, $47 \mu \mathrm{f} \pm 20 \%, 35$ wvdc, insulated case, 0.344 in . dia by $0.859 \mathrm{in} . \lg , 2$ axial wire lead ter minals; Sprague 150D476X0035S2.	Filtering	$\begin{aligned} & \text { A12C2, A12C5 } \\ & \text { Al2C6 } \end{aligned}$			5910-801-9721	3	5-34
Al2C3	CAPACITOR, fixed, electrolytic: 1 section, $10 \mu \mathrm{f}-10 \%+75 \%$, 50 wvdc, metal case, hermetically sealed, 0.312 in . dia by $0.688 \mathrm{in} . \lg , 2$ axial wire lead terminals; Sprague 30D106G050CB4.	Filtering	Al2C3, A12C4				2	5-34
A12C4	CAPACITOR, Same as Al2C3.	Filtering						5-34
Al2C5	CAPACITOR, Same as Al2C2.	Filtering						5-34
A12C6	CAPACITOR, Same as Al2C2.	Filtering						5-34

		${ }^{\text {CONTRACTOR }}$ COM	ATION ELEC	ONICS INCOR	PORA	$\begin{aligned} & \hline \text { CONTRACT NO. } \\ & \text { DA18-119 } \end{aligned}$	MC -02499(
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ (5) \end{gathered}$	MANAGER (6)	FEDERAL STOCK NUMBER (7)	tOTAL NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)
A12CR 10	SEMICONDUCTOR, Same as Al2CR 1 .	Rectifier						5-34
A12CR 11	SEMICONDUCTOR, Same as Al2CR 1 .	Rectifier						5-34
A12CR 12	SEMICONDUCTOR, Same as Al2CR 1 .	Rectifier						5-34
Al2CR 13	SEMICONDUCTOR, Same as A5A3CR4.	Regulator						5-34
A12CR 14	SEMICONDUCTOR, Same as A8A2CR 1.	Compensation						5-34
A12CR 15	SEMICONDUCTOR, Same as A8A2CR 1.	Compensation						5-34
Al2CR 16	SEMICONDUCTOR, Same as A5A3CR 4 .	Regulator						5-34
A12R17	SEMICONDUCTOR, Same as A8A2CR 1.	Compensation						5-34
A12CR 18	SEMICONDUCTOR, Same as A8A2CR 1.	Clamping						5-34
Al2CR 19	SEMICONDUCTOR, Same as AlOCR 1 .	Regulator						5-34
A12CR20	SEMICONDUCTOR DEVICE, diode: Silicon, diffused zener, EIA designation 1 N 979 B ; per MIL-S-19500.	Regulator	A12CR20	JANIN979B		5960-740-3042	1	5-34
Al2CR21	SEMICONDUCTOR, Same as A8A2CR 1 .	Compensation						5-34

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NO. DA18-119-AMC-02499(X)		
\square	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS ANDPART NUMBERS INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ (5) \\ \hline \end{gathered}$	MANAGER (6)	federal STOCK number 7)	total NUMBER PARTS PER END ITEM (8)	REF figure (9)
A12Q1	TRANSISTOR: Silicon, NPN; EIA designation 2N3053.	Regulator control.	$\begin{aligned} & \mathrm{A} 12 \mathrm{Q} 1, \\ & \mathrm{~A} 12 \mathrm{Q} 4, \mathrm{~A} 2 \mathrm{Q} 3 \\ & \hline \end{aligned}$				4	5-34
A12Q2	TRANSISTOR: Germanium, PNP; EIA designation 2N1038.	Series regulator.	A12Q2			5960-808-7498	1	5-34
A12Q3	TRANSISTOR, Same as A12Q1.	Series regulator.						5-34
A12Q4	TRANSISTOR, Same as Al2Q1.	Series regulator.						5-34
A12Q5	TRANSISTOR, Same as Al2Q1.	Series regulator.						5-34
A12R 1	RESISTOR, Same as AlR7.	Dropping						5-34
A12R2	RESISTOR, Same as AlR 15.	Biasing						5-34
A12R3	RESISTOR, Same as AlR 15.	Biasing						5-34
Al2R 4	RESISTOR, Same as AlR 15.	Biasing						5-34
A12R5	RESISTOR, Same as AlR 15.	Biasing						5-34
A12R 6	RESISTOR, Same as AlR7.	Biasing						5-34
Al2R7	RESISTOR, fixed, composition: 5.1 ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Dropping	Al2R7, Al2R8	RC07GF5R1]		5905-730-0331	2	5-34
A12R8	RESISTOR, Same as Al2R7.	Dropping						5-34
Al2R9	RESISTOR, fixed, composition: 62 ohms $\pm 5 \%$, lW; per MIL-R-11.	Biasing	A12R9	RC32GF620J		5905-279-1687	1	5-34
A12R 10	RESISTOR, fixed, composition: $2.4 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Biasing	A12R 10, Al2R11, A15R8	RC07GF242J		5905-683-7724	3	5-34
Al2R11	RESISTOR, Same as Al2R10.	Biasing						5-34

79125		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATEL				$\begin{aligned} & \text { CONTRACT NO } \\ & \text { DA18-119-AMC-02499(X) } \\ & \hline \end{aligned}$		
REF. SYM. OR PART NUMBER (I)	NAME OF PARTS OR DESCRIPTION $\text { (2) }$	function (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ \text { (} 5 \text {) } \\ \hline \end{gathered}$	MAN - AGER (6)	federal STOCK NUMBER \square	total number PARTS PER END ITEM (8)	REF FIGURE (9)
$\begin{aligned} & \text { Fig. 5-35 } \\ & \text { A13 } \end{aligned}$	NETWORK, SUMMATION: Brass chassis, silver plated, gold flashed, $1.100 \mathrm{in} . \mathrm{h}, 1.960 \mathrm{in} . \mathrm{lg}, 2.469 \mathrm{in}$. w, o/a dim., two inputs, one output, 50 ohm input and output impedance; Communication Electronics, Inc. type 79125.	Impedance matching, voltage divider.	A13				2	5-1
Al3Jl	CONNECTOR, Same as AlJl.	Al tuner input jack.						5-35
Al3J2	CONNECTOR, Same as AlJl.	A2 tuner input jack.						5-35
Al3J3	CONNECTOR, Same as Aljl.	30-60 mc LO output jack.						5-35
Al3J4	CONNECTOR, Same as Aljl.	60-300 mc LO output jack.						5-35
A13R1	RESISTOR, fixed, composition: 130 ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Part of a voltage divider.	Al3R1, Al3R3, Al3R5, Al3R6, Al4R1, Al4R3, Al4R5, A14R6	RC07GF 131J		5905-807-6269	8	5-35
A13R2	RESISTOR, Same as A3R6.	Part of a voltage divider.						5-35
Al3R3	RESISTOR, Same as Al3R1.	Part of a voltage divider.						5-35
Al3R 4	RESISTOR, Same as A3R6.	Part of a voltage divider.						5-35
Al3R5	RESISTOR, Same as Al3Rl.	Part of a voltage divider.						5-35
Al3R6	RESISTOR, Same as Al3R1.	Part of a voltage divider.						5-35

7836		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NO.DA18-119-AMC-02499(X)		
REF. SYM. OR PART NUMBER (I)	NAME OF PARTS OR DESCRIPTION $\text { (2) }$	function (3)	ALL SYMBOLS ANDPART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MANAGER (6)	FEDERAL STOCK number (7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
$\begin{aligned} & \text { Fig. } 5-36 \\ & \text { A15 } \end{aligned}$	AMPLIFIER, direct current: Etched circuit component board, epoxy resin glass base laminate, grade G10, with l-oz copper (1side), $2.250 \mathrm{in} . \mathrm{lg}, 1.000 \mathrm{in} . \mathrm{w}$, 0.480 in . thk o/a dim., dc input, dc output; Communication Electronics, Inc. type 7836.	Amplifies AGC voltages.	Al5				1	5-3
Al5CR1	SEMICONDUCTOR, Same as Al0CR1.	Reference element.						5-36
Al5CR2	SEMICONDUCTOR, Same as A7AlCR2.	Reference element.						5-36
A15Q1	TRANSISTOR, Same as Al0Ql.	DC amplifier.						5-36
A15Q2	TRANSISTOR: Silicon, PNP, EIA designation 2N325l; per MIL-S-19500.	DC amplifier.	A15Q2	JAN2N3251		5960-765-6071	1	5-36
A15R 1	RESISTOR, Same as AlR 10.	Biasing						5-36
Al5R2	RESISTOR, Same as A6R4.	Biasing						5-36
A15R3	RESISTOR, variable: $100 \mathrm{~K} \pm 10 \%$, $3 / 4 \mathrm{~W}$, screw driver adjust, film element, 0.500 in . dia by 0.225 in . $\mathrm{lg}, 3$ pin terminals; IRC CT150-104K.	Variable biasing control.	A15R3				1	5-36
Al5R 4	RESISTOR, fixed, composition: $200 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Dropping	Al5R 4	RC07GF 204J		5905-681-8821	1	5-36
A15R 5	RESISTOR, Same as A7AlR1.	Biasing						5-36
Al5R6	RESISTOR, Same as AlR 15.	Biasing						5-36

Main Chassis		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				CONTRACT NO.DA $18-119-A M C-02499(X)$		
REF. SYM. OR PART NUMBER (1)	name of parts or description (2)	function (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MANAGER (6)	FEDERAL STOCK nUMBER (7)	total NUMBER PARTS PER END ITEM (8)	REF figure (9)
Cl	CAPACITOR, fixed, electrolytic: 1 section $500 \mu \mathrm{f}-10+100 \%$, 15 vdc , insulated metal case, 0.812 in . dia by $1.750 \mathrm{in} . \mathrm{lg}, 2$ axial wire lead terminals; Sprague 34D507H015GJ4.	Filtering	Cl				1	5-3
C2	CAPACITOR, fixed, electrolytic: 1 section, $50 \mu \mathrm{f}-10+75 \%$, 12 vdc , insulated metal case, 0.437 in . dia by $0.749 \mathrm{in} . \lg , 2$ axial wire lead terminals; Sprague 30D506G012DB4.	Filtering	C2			5910-827-1216	1	5-3
C3	CAPACITOR, fixed, electrolytic: 2 sections (both-identical), $40 \mu \mathrm{f}$ $-10+50 \%, 250 \mathrm{vdc}$, metal case, 1.000 in . dia by $2.000 \mathrm{in} . \mathrm{lg}$, mounting is with 3 twist lock tabs, 3 solder lug terminals; Sprague TVL2520.	Filtering	C3				1	5-1
C4	CAPACITOR, fixed, electrolytic: 1 section, $250 \mu \mathrm{f}-10+100 \%$, 40 vdc, insulated metal case, 0.812 in. dia by $2.250 \mathrm{in} . \mathrm{lg}, 2$ axial wire lead terminals; Sprague 34D257H040GL4.	Filtering	C4				1	5-3
C5	CAPACITOR, fixed, electrolytic: 1 section, $1000 \mu \mathrm{f}-10+100 \%$, 15 vdc, insulated metal case, 0.937 in. dia by 2.250 in. $1 \mathrm{~g}, 2$ axial wire lead terminals; Sprague 34D108H015HL4.	Filtering	C5				1	5-3

		CONTRACTOR				$\begin{aligned} & \text { CONTRACT NO. } \\ & \text { DA18-119-AMC-02499(X) } \end{aligned}$		
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	function (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ \text { (5) } \end{gathered}$	MANAGER (6)	federal STOCK NUMBER (7)	total NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)
J6	CONNECTOR, receptacle, electrical: 14 :ontacts, 7.5 amp , rectangular, self aligning, polarized, arc resistant plastic dielectric material, 0.437 in . by 0.859 in. by 1.250 in . o/a dim; Winchester MRE 14S-G7.	Voltage input connector to subassembly A7.	J6			5935-198-9608	1	5-2
J7	CONNECTOR, receptacle, electrical: 18 contacts, 7.5 amps , rectangular, self aligning polarized arc resistant plastic dielectric material, 0.562 in . by 0.859 in . by 1.312 in. o/a dim; Winchester MRE 18S-G7.	Voltage input and signal output connector.	J7			5935-227-8997	1	5-1
J8	CONNECTOR, receptacle, electrical: 9 contacts, rectangular, 7 contacts rated $7.5 \mathrm{amps}, 2$ contacts rated 10 amps , self aligning, polarized, arc resistant plastic dielectric material, 0.375 in. by 0.859 in . by 1.312 in . o/a dim; Winchester MRE 7-2S-G7.	Voltage input connector for subassembly A8.	J8			5935-257-9260	1	5-2
J9	CONNECTOR, receptacle, electrical: 9 contacts, 7.5 amps , rectangular, self aligning polarized arc resistant plastic dielectric material, 0.375 in . by 0.859 in . by 1.312 in . o/a dim; Winchester MRE 9S-G7.	Voltage input and output connector for subassembly All.	J9			5935-201-4389	1	5-2
J10	JACK, telephone: per MIL-J-641.	Headphone jack.	J10	JJ-034		5935-683-2746	1	5-3
J11	CONNECTOR, receptacle electrical: BNC receptacle, part of Kl.	Relay input connector.						5-2

		CONTRACTOR COMMUN	ATION ELECTR	ONICS INCOR	PORA	CONTRACT NO. DA18-119	$\mathrm{MC}-02499$	
REF. SYM OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS ANDPART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MANAGER (6)	FEDERAL STOCK NUMBER (7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)
K4	RELAY-SWITCH: 4 poles, double throw, $115 \mathrm{v}, 11,000$ ohms, 900 mv nominal power, 3 amp , nylon dust cover, one no. 3-48 thd stud mounting, 0.875 in . by 1.437 in . by 1.500 in . o/a dim; PotterBrumfield KHP17A11-115V.	DC signal switching relay.	K4					5-2
K5	RELAY-SWITCH: SPDT, 2.0 ma , $8,000 \mathrm{ohms}, 2 \mathrm{amp}$ contact load, 8 "J" hook solder terminals, two no 4-40 thd stud mounted, hermetically sealed metal case, 1.000 in . by 1.000 in . by 2.000 in . o/a dim; Sigma 22RJC-5000-G/SIL.	IF signal output switching relay for subassembly A7.	K5, K6				2	5-3
K6	RELAY-SWITCH, Same as K5.	Video signal switching relay.						5-3
M1	AMMETER: Panel type, 100-0-100 μ adc range of inscription, linear graduation, plastic case, 1.344 in . w by 1.594 in . sq, 2 screw stud terminals, accuracy $\pm 2 \%$, black scale markings on white background; Communication Electronics, Inc. 1633.	Tuning meter	M1				1	5-2
P1	CONNECTOR, plug, electrical: Type BNC; per MIL-C-3608.	Connects W1 to J12	$\begin{aligned} & \text { P1, P3, P4, } \\ & \text { P5, P7, P8, } \\ & \text { P9, P24, P25, } \\ & \text { P27, P28, P29, } \\ & \text { P30, P31, P35, } \\ & \text { P38, P39, P40 } \end{aligned}$	UG88E/U		5935-149-4066	18	5-1
P2	CONNECTOR, plug, electrical: Type BNC; per MIL-C-3608.	Connects Wl to AlJl.	P2, P6, P34	UG913A/U			3	5-2

		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				$\begin{aligned} & \text { CONTRACT NO } \\ & \text { DA18-119-AMC-02499(X) } \end{aligned}$		
REF. SYM. OR PART NUMBER (1)	name of parts or description (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MAN- AGER (6)	FEDERAL STOCK NUMBER (7)	TOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
P3	CONNECTOR, Same as Pl.	Connects W2 to J1l.						5-2
P4	CONNECTOR, Same as P1.	Connects W2 to J16.						5-1
P5	CONNECTOR, Same as Pl.	Connects W3 to J13.						5-1
P6	CONNECTOR, Same as P2.	Connects W3 to A2J1.						5-1
P7	CONNECTOR, Same as P1.	Connects W4 to J15.						5-1
P8	CONNECTOR, Same as Pl.	Connects W4 to J20.						5-2
P9	CONNECTOR, Same as P1.	Connects W12 to A4J1.						5-2
P10	CONNECTOR, Same as A5P2.	Connects W7 to AlJ3.						5-2
P11	CONNECTOR, Same as A5P2.	Connects W7 to A7J1.						5-2
P12	CONNECTOR, Same as A5P2.	Connects W10 to AlJ4.						5-2
P13	CONNECTOR, plug, electrical: 1 female contact, 1 connector mating end, low-loss plastic dielectric material, 50 ohms impedance, straight 0.234 in . dia by 0.593 in . lg, screw -on type; Amphenol 27-7.	Connects W10 to A6J3.	$\begin{aligned} & \text { P13, P14, P15, } \\ & \text { P17, P18, P19, } \\ & \text { P22, P36, P37 } \end{aligned}$				9	5-1
P14	CONNECTOR, Same as Pl3.	Connects W6 to AlJ2.						5-2
P15	CONNECTOR, Same as Pl3.	Connects W6 to A2J2.						5-2
P16	CONNECTOR, Same as A5P2.	Connects W8 to A3J2.						5-1
P17	CONNECTOR, Same as P13.	Connects W8 to A6J1.						5-1
P18	CONNECTOR, Same as Pl3.	Connects W9 to A4J2.						5-2

		CONTRACTOR COMMUNIC	ION ELEC	NICS INC	PORA	$\begin{aligned} & \text { ONTRACT NO } \\ & \text { DA18-1 } \\ & \hline \end{aligned}$	MC-02499	
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	$\begin{gathered} \text { JAN } \\ \text { OR } \\ \text { MIL } \\ \text { TYPE } \\ \text { NUMBER } \\ (5) \end{gathered}$	MANAGER (6)	FEDERAL STOCK NUMBER (7)	total NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)
P19	CONNECTOR, Same as P13.	Connects W9 to A6J2.						5-1
P20	CONNECTOR, Same as A5P2.	Connects W11 to A7J2.						5-2
P21	CONNECTOR, Same as A5P2.	Connects W11 to A8J1.						5-1
P22	CONNECTOR, Same as P13.	Connects W14 to A8J2.						5-1
P23	CONNECTOR, Same as A5P2.	Connects W14 to A5J1.						5-2
P24	CONNECTOR, Same as P1.	Connects W17 to A1J5.						5-2
P25	CONNECTOR, Same as P1.	Connects W7 to A13J1.						5-2
P26	NOT USED	-------------------						
P27	CONNECTOR, Same as P1.	Connects W18 to A13J2						5-1
P28	CONNECTOR, Same as P1.	Connects W18 to A2J4.						5-2
P29	CONNECTOR, Same as P1.	Connects W19 to A3J3.						5-3
P30	CONNECTOR, Same as P1.	Connects W19 to A14J2						5-1
P31	CONNECTOR, Same as P1.	Connects W16 to J14.						5-2
P32	CONNECTOR, Same as A5P2.	Connects cable from A7J3 to relay K5.						5-2
P33	CONNECTOR, Same as A5P2.	Connects cable from A7J4 to relay K5.						5-2
P34	CONNECTOR, Same as P2.	Connects W20 to A4J3.						5-1
P35	CONNECTOR, Same as P1.	Connects W20 to A14J1						5-1
P36	CONNECTOR, Same as P13.	Connects W22 to A8J3.						5-1

		CONTRACTOR COMMUN	TION ELEC	ONICS INCOR	PORA'	EDCONTRACT NO. DA18-119	MC-02499(
REF. SYM. OR PART NUMBER (I)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MANAGER (6)	FEDERAL STOCK NUMBER $\text { (} 7 \text {) }$	TOTAL NUMBER PARTS PER END Item (8)	REF figure (9)
R5	RESISTOR, fixed, composition: $180 \mathrm{~K}, \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Part of a voltage divider.	R5, R11	RC07GF184J		5905-681-8819	2	5-2
R6	RESISTOR, Same as AlR5.	Part of a voltage divider.						5-3
R7	RESISTOR, variable: $10 \mathrm{~K}, \pm 0 \%$ 2W; per MIL-R-94.	RF gain control.	R7	$\begin{array}{\|l} \text { R V4NA YSD- } \\ 103 \mathrm{C} \end{array}$		5905-552-3480	1	5-1
R8	NOT USED	-------------------						
R9	RESISTOR, variable: 1 section, $10 \mathrm{~K}, \pm 10 \%, 1 / 4 \mathrm{~W}$, linear taper, 0.500 in . dia by $0.375 \mathrm{in} . \lg$ with 0.875 in . shaft and 0.375 in . bushing, 3 solder lug terminals; Mallory 70-08461.	Video gain control.	R9				1	5-1
R10	RESISTOR, variable: 1 section, $\mathrm{w} /$ spst switch (S5), $100 \mathrm{~K} \pm 10 \%$, 2W, linear taper, 1.156 in. dia by $0.812 \mathrm{in} . \lg$ body with $3 / 8-32$ thd bushing $0.375 \mathrm{in} . \lg$ and 0.562 in . lg shaft, 3 solder lug terminals; Allen-Bradley JSIN056P104UA.	Audio gain control.	R10				1	5-1
R11	RESISTOR, Same as R5.	Part of a voltage divider.						5-3
R12	RESISTOR, fixed, composition: $62 \mathrm{~K} \pm 5 \%, 1 / 4 \mathrm{~W}$; per MIL-R-11.	Dropping	R12	RC07GF623J		5905-682-4104	1	5-2
R13	RESISTOR, fixed, composition: 470 ohms $\pm 5 \%$, 2W; per MIL-R-11.	Part of a filter.	R13	RC42GF471J		5905-683-2242	1	5-3
R14	RESISTOR, Same as A2R18.	Part of a voltage divider.						5-1

IDENTIFICATION TABLE OF PARTS

$\begin{aligned} & \text { REF. } \\ & \text { SYM. } \\ & \text { OR } \\ & \text { PART } \\ & \text { NUBER } \\ & \text { (} 1 \text {) } \end{aligned}$		CONTRACTOR COMMUNICATION ELECTRONICS INCORPORATED				$\begin{aligned} & \hline \text { CONTRACT NO. } \\ & \text { DA18-119-AMC-02499(X) } \end{aligned}$		
	NAME OF PARTS OR DESCRIPTION (2)	function (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MAN- AGER (6)	FEDERAL STOCK NUMBER (7)	tOTAL NUMBER PARTS PER END ITEM (8)	REF figure (9)
T1	TR NSFORMER, power, stepdown and step-up: fully enclosed metal case, hermetically sealed, $115 / 230 \mathrm{~V}, 50-400 \mathrm{cps}$ single phase primary input, 3.000 in . by 3.500 in. by 3.250 in. body, 4 no. 8-32 mounting studs, 16 solder lug terminals; Communication Electronics, Inc. 10775.	rovides high and low voltages for input to rectifiers.	T1				1	5-2
TB1	TERMINAL BOARD: plastic, 8 terminals, screw type, barrier type, 0.406 in . by 0.875 in . by 3.750 in. o/a dim., 4 mounting holes; Cinch 8-140Y.	Provides access to band in use voltage and AGC.	TB1				1	5-3
W1	CABLE ASSEMBLY, radio frequency; single conductor, coaxial type RG55/U cable, UG88E/U and UG913/U connectors, 20.500 in .1 g o/a dim; Communication Electronics, Inc. 30020-408.	Connects J12 to AlJl	W1				1	5-1
W2	CABLE ASSEMBLY, radio frequency single conductor, coaxial type RG55/U cable, UG88E/U connector on each end, $9.500 \mathrm{in} . \mathrm{lg}$ o/a dim; Communication Electronics, Inc. 30020-409.	$\begin{aligned} & \text { Connects } \mathrm{J} 16 \text { to } \\ & \mathrm{J} 11 . \end{aligned}$	W2				1	5-2
W3	CABLE ASSEMBLY, radio frequency: single conductor, coaxial type RG55/U cable, UG88E/U and UG913/U connectors, $17.500 \mathrm{in} . \lg$ o/a dim; Communication Electronics, Inc. 30020-410.	Connects J13 to A2J1	W3				1	5-1

		CONTRACTOR COMMUN CATION ELECTRON CS INCORPORATED				$\begin{aligned} & \text { CONTRACT NO. } \\ & \text { DA18-119-AMC-02499(X) } \end{aligned}$		
REF. SYM. OR PART NUMBER (I)	NAME OF PARTS OR DESCRIPTION (2)	function (3)	ALL SYMBOLS AND PART NUMBERS INVOLVED (4)	JAN OR MIL TYPE NUMBER (5)	MAN- AGER (6)	FEDERAL STOCK NUMBER $\text { (} 7 \text {) }$	total NUMBER PARTS PER END ITEM (8)	REF FIGURE (9)
W4	CABLE ASSEMBLY, radio frequency single conductor, coaxial type RG55/U cable, UG88E/U connector on each end, $5.500 \mathrm{in} . \mathrm{lg}$ o/a dim; Communication Electronics, Inc. 30020-411.	$\begin{aligned} & \text { Connects J15 to } \\ & \text { J20. } \end{aligned}$	W4				1	5-1
W5	CABLE ASSEMBLY, radio frequency: single conductor, coaxial type RG55/U cable, UG88E/U connector on each end, $11.500 \mathrm{in} . \mathrm{lg}$ o/a dim; Communication Electronics, Inc. 30020-412.	$\begin{aligned} & \text { Connects J19 to } \\ & \text { A3Jl. } \end{aligned}$	W5				1	5-2
W6	CABLE ASSEMBLY, radio frequency: single conductor, coaxial type RG174/U cable, Amphenol 27-7 connector on each end, $3.125 \mathrm{in} . \mathrm{lg}$ o/a dim; Communication Electronics, nc. 30020-413.	Connects A1J2 to A2J2.	W6				1	5-2
W7	CABLE ASSEMBLY, radio frequency single conductor, coaxial type RG174/U cable, Amphenol 27-26 connector on each end, 14.00 in . lg o/a dim; Communication Electronics, Inc. 30020-414.	Connects Alj3 to A7Jl	W7				1	5-2
W8	CABLE ASSEMBLY, radio frequency single conductor, coaxial type RG174/U cable, Amphenol 27-7 and 27-26 connectors, $2.750 \mathrm{in} . \mathrm{lg}$ o/a dim; Communication Electronics, Inc. 30020-415.	Connects A3J2 to A6J1.	W8				1	5-1

IDENTIFICATION TABLE OF PARTS

		CONTRACTOR COMMUN	ATION ELEC	NICS IN	ORA	$\begin{gathered} \text { NTRACT N } \\ \text { DA18-1 } \end{gathered}$	MC-02499	
REF. SYM. OR PART NUMBER (1)	NAME OF PARTS OR DESCRIPTION (2)	FUNCTION (3)	ALL SYMBOLS AND PART NUMBERS involved (4)	JAN OR MIL TYPE NUMBER (5)	MANAGER (6)	FEDERAL STOCK NUMBER (7)	```TOTAL NUMBER PARTS PER END ITEM (8)```	REF figure (9)
W20	CABLE ASSEMBLY, radio frequency: single conductor, coaxial type RG55/U cable, UG913/U and UG88E/U connectors, $7.000 \mathrm{in} . \mathrm{lg}$ o/a dim; Communication Electronics, Inc. 30020-424.	Connects A4J3 to A14J1.	W20				1	502
W21	CABLE ASSEMBLY, radio frequency: single conductor, coaxial type RG174/U cable, Amphenol 17825 and 27-7 connectors, $11.500 \mathrm{in} .1 g$ o/a dim; Communication Electronics, Inc. 30020-425.	Connects A7J5 to J18.	W21				1	5-3
W22	CABLE ASSEMBLY, radio frequency: single conductor, coaxial type RG174/U cable, Amphenol 17825 and $27-7$ connectors, $4.500 \mathrm{in} . \mathrm{lg}$ o/a dim; Communication Electronics, Inc. 30020-426.	Connects A8J3 to J17.	W22				1	5-1
XA9	CONNECTOR, receptacle, electrical: printed wiring board type, 8 contacts, 1 connector mating end, arc resistant plastic dielectric, 0.453 in. by 1.000 in . by 2.875 in . o/a dim; flange mounted, 8 solder lug terminals; Elco 00-5002-008-103-002.	Mounts A9.	XA9				1	5-1
XA10	CONNECTOR, receptacle, electrical: printed wiring board type, 13 contacts, 1 connector mating end, arc resistant plastic dielectric, 0.453 in . by 1.000 in . by 3.875 in . o/a dim, flange mounted, 13 solder lug terminals; Elco 00-5002-013-103-002.	Mounts A10.	XA10				1	5-1

SECTION VI

SCHEMATIC DIAGRAMS

ref desig prefix a3

Figure 6-4. Type 7163 490-1000 mc Tuner, Schematic Diagram

NOTES: 1 UNLESS OTHERWISE SPECIFIED:

REF DESIG PREFIX A5A3

Figure 6-8. Type 8202 Horizontal Sweep Oscillator, Schematic Diagram

ref desig prefix ag

NOTES
I. UNLESS OTHERWISE SPECIFIED
a) RESISTANCE IS MEASURED IN OHMS, $\pm 5 \%, I / 4 W$.
b) CAPACITANCE IS MEASURED IN $\mu \mathrm{f}$.
2. ENCIRCLED NUMBERS ARE MODULE PIN NUMBERS
3. HEAVY LINE DENOTES MAIN SIGNAL PATH

Figure 6-12. Type 7312 Video Amplifier, Schematic Diagram

REF DESIG PREFIX AIO

Figure 6-13. Type 7400A Audio Amplifier, Schematic Diagram

REF DESIG PREFIX All

Figure 6-14. Type 7633 Power Supply Regulator (CRT), Schematic Diagram

ref desig prefix al2

Figure 6-15. Type 7631 Power Supply Regulator (Gen.), Schematic Diagram

REF DESIG PREFIX Al3, Al4

Figure 6-16. Type 79125 Coupling Network, Schematic Diagram

NOTES:

I. RESISTANCE IS MEASURED IN OHMS , $\pm 5 \%, 1 / 4 W$ UNLESS OTHERWISE SPECIFIED
2. ENCIRCLED LETTERS ARE FOR REFERENCE ONLY
3. INDICATES SCREWDRIVER ADJUSTMENT

Figure 6-17. Type 7836 AGC Monitor Amplifier, Schematic Diagram

[^0]: Communication Electronics, Inc. 6006 Executive Boulevard Washington Science Center Rockville, Maryland 20852

[^1]: * Indicates Non-Maintenance Item

[^2]: * Indicates Non -Maintenance Item

[^3]: * Indicates Non-Maintenance Item

