INSTRUCTION BOOK
 for
 RADIO RECEIVING SET AN/URR-35C

RAULAND-BORG CORPORATION CHICAGO 18, ILLINOIS

DEPARTMENT OF THE NAVY BUREAU OF SHIPS

LIST OF EFFECTIVE PAGES

PAGE NUMBERS	CHANGE IN EFFECT	PAGE NUMBERS	CHANGE IN EFFECT
Title Page	Original	$4-1$ to $4-4$	Original
A-C	Original	$5-1$ to $5-2$	Original
i to \mathbf{v}	Original	$6-1$ to $6-3$	Original
$1-0$ to $1-7$	Original	$7-0$ to $7-40$	Original
$2-0$ to $2-17$	Original	$8-1$ to $8-47$	Original
$3-0$ to $3-12$	Original	$i-0$ to i-4	Original

DEPARTMENT OF THE NAVY bureau of ships WASHINGTON 25, D.C.

in raply refer to

Code 993-100
19 January 1956

From: Chief, Bureau of Ships
To: All Activities Concerned with the Installation, Operation and Maintenance of the Subject Equipment

Subj: Instruction Book for Radio Receiving Set AN/URR-35C NAVSHIPS 92676

1. This is the instruction book for the subject equipment and is in effect upon receipt.
2. When superseded by a later edition, this publication shall be destroyed.
3. Extracts from this publication may be made to facilitate the preparation of other Department of Defense Publications.
4. All Navy requests for NAVSHIPS Electronics publications should be directed to the nearest District Publications and Printing Office. When changes or revised books are distributed, notice will be included in the Electronics Information Bulletin, NAVSHIPS 900,022(A) and in the Index of Bureau of Ships General and Electronics Publications, NAVSHIPS 250-020.

A. G. MUMMA
Chief of Bureau

RECORD OF CORRECTIONS MADE

CHANGE NO.	DATE	SIGNATURE OF OFFICER MAKING CORRECTION

TABLE OF CONTENTS

SECTION 1-GENERAL DESCRIPTION
Paragraph Page

1. Introduction 1-1
2. Description 1-1
a. Purpose 1-1
b. Basic Principles of Operation 1-1
c. Equipment Arrangement 1-1
3. Description of Májor Components 1-1
a. Cabinet 1-1
b. Front Panel and Chassis Frame Assembly 1-2
c. Preselector Section 1-2
d. Dial-Drive Assembly 1-2
e. IF/AF Section 1-3
f. Power Supply Section 1-3
g. Low-Pass Filter F-304/URR-35C 1-4
4. Associated Equipment 1-5
a. Antenna 1-5
b. Antenna Transmission Line $1-5$
c. Phones and Audio Output $1-5$
d. Crystals 1-5
5. Reference Data $1-5$
a. Nomenclature $1-5$
b. Contract Number and Date 1-5
c. Contractor 1-5
d. Cognizant Naval Inspector 1-5
e. Number of Boxes 1-5
f. Cubical Contents 1-5
g. Weight 1-5
b. Frequency Range 1-5
i. Tuning Bands 1-5
j. Number of Preset Frequencies 1-5
k. Type of Frequency Control $1-5$
l. Type of Receiver 1-5
m. Intermediate Frequencies 1-5
n. Receiver Outputs 1-5
o. Type of Reception 1-5
p. Crystals 1-5
q. Frequency Stability 1-5
r. Silencer Circuit Characteristics 1-5
s. Impedances. 1-5
t. Antenna System 1-5
u. Power Requirements 1-5
v. Sensitivity $1-7$
w. Selectivity 1-7
6. Similarities and Differences in Models 1-7
SECTION 2-THEORY OF OPERATION
7. General Principles 2-1
8. Detailed Circuit Analysis 2-1
a. Preselector. 2-1
(1) R-F Amplifier Section 2-1
(a) Antenna Input 2-1
(b) Tuning Capacitor Assembly. 2-1
(c) First R-F Amplifier. 2-4
(d) Second R-F Amplifier 2-4
(e) Mixer 2-5
(2) Oscillator-Multiplier Section 2-5
(a) Oscillator-First Doubler 2-5
(b) Second Doubler $2-7$
(c) Tripler 2-7
b. I-F Amplifier and Converter Stages 2-8
(1) First Intermediate-Frequency Amplifier 2-8
(2) Second Oscillator 2-8
(3) Second Mixer 2-8
(4) Second and Third Intermediate- Frequency Amplifiers 2-10
(5) INPUT Meter Circuit 2-10
c. Audio-Frequency Detector 2-10
d. Noise Limiter 2-10
e. AGC-Silencer Amplifier 2-11
f. AGC-Silencer Diode 2-12
g. Silencer. 2-12
b. Audio-Frequency Stages 2-13
i. Power Supply 2-16
(1) Filament and Heater Supply 2-16
(2) Plate and Screen Supply 2-16
(3) Bias Voltage 2-16
(4) Primary Circuit 2-16
(5) Blower and Thermostat 2-16
j. Low-Pass Filter F-304/URR-35C 2-16
(1) Antenna Lead Circuit 2-16
(2) A-C Power Circuit 2-16
(3) Audio Output Circuit 2-17
SECTION 3-INSTALLATION
9. Unpacking the Equipment 3-1
a. General 3-1
b. Unpacking Radio Receiver R-482C/
URR-35 and Accessories 3-1
c. Unpacking Maintenance Parts Kit 3-1
10. Preparation for Use 3-1
a. Removal of Chassis 3-1
b. Inspection 3-1
c. Check of Transformer Connections 3-2
11. Installation 3-2
a. Location of Equipment 3-2
(1) Table or Bench Mounting 3-3
(2) Relay Rack Mounting 3-3
b. External Connections 3-3
12. Initial Adjustments 3-4
a. General 3-4
b. Crystal-Controlled Tuning 3-5
c. Manual Tuning 3-5

table of Contents (Cont)

d. Noise Limiter 3-5
e. Silencer 3-9
SECTION 4—OPERATION

1. Introduction 4-1
2. Operating Controls 4-1
a. Location of Controls 4-1
b. Functions of Controls 4-1
(1) MEGACYCLES Dial 4-1
(2) INPUT Meter 4-1
(3) CRYSTAL Indicator Lamp 4-1
(4) OUTPUT Meter 4-1
(5) Fuse 4-1
(6) INP. MTR. Adjustment 4-1
(7) Fuse 4-1
(8) Spare Fuse 4-1
(9) N.L. Switch 4-1
(10) SILENCER Control 4-1
(11) A.F. LEVEL Control 4-1
(12) Headphones Jack 4-1
(13) POWER Switch 4-1
(14) PHONES Control 4-1
(15) SILENCER Switch. 4-1
(16) DIMMER Control 4-2
(17) LOCK. 4-2
(18) Tuning Control 4-2
(19) CRYSTAL Holder 4-2
(20) OSC. Switch. 4-2
(21) ALIGN-REC. Switch. 4-2
3. Modes of Operation 4-3
a. Manual Tuning. 4-3
b. Crystal-Controlled Tuning. 4-3
4. Operating the Receiver 4-3
a. Preparation for Operation 4-3
b. Crystal-Controlled Tuning. 4-3
c. Manual Tuning 4-3
d. Silencer Operation 4-4
e. Noise-Limiter Circuit 4-4
f. Input Meter 4-4
5. De-energizing the Receiver. 4-4
SECTION 5—OPERATOR'S MAINTENANCE
6. General 5-1
7. Routine Operational Check. 5-1
8. Emergency Maintenance 5-1
a. General 5-1
b. Replacement of Fuses 5-1
c. Replacement of Electron Tubes 5-1
SECTION 6-PREVENTIVE MAINTENANCE
9. General 6-1
10. Routine Maintenance Checks 6-13. Lubrication6-1
a. Guide Rails and Alignment Pins 6-1
b. Dial-Drive Mechanism 6-1
11. Re-tropicalization 6-1
SECTION 7—CORRECTIVE MAINTENANCE
12. Localization of Trouble 7-0
13. Trouble Shooting 7-0
a. General 7-0
b. Trouble-Shooting Chart 7-1
c. Voltage and Resistance Measurements.. $7-5$
d. Access to Wiring and Components 7-5
e. Operation of Receiver Out of Cabinet 7-5
14. Sensitivity Check 7.5
a. General. 7-5
b. Over-all Sensitivity 7-6
c. Measurement of Gain $7-7$
(1) IF/AF Gain Measurement $7-7$
(2) Preselector Gain Measurement $7-7$
15. Alignment Procedures $7-7$
a. Equipment Required. $7-7$
b. Preparation of Receiver for Alignment $7-7$
c. Alignment of I-F Section 7-8
d. Alignment of AGC Transformer T210. 7-10
e. I-F Gain Adjustment 7-10
f. Alignment of Preselector 7-11
g. Alignment of Preselector if Alignment- Point Crystals are Not Available. 7-14
16. Audio-Frequency Response 7-15
17. Repair and Replacement of Parts 7-15
a. General. 7-15
b. Blower BL301. 7-15
c. Blower Capacitor C304 7-15
d. Blower-Motor Bearings 7-15
e. Power Transformer T301 7-16
f. Dial-Drive Assembly 7-18
g. Preselector 7-18
(1) Removal 7-18
(2) Reinstallation of Same Preselector 7-20
(3) Installation of New Preselector with Shaft Lock 7-20
(4) Installation of New Preselector without Shaft Lock 7-23
b. R-F Cable Assemblies 7-23
i. Alignment Tool H201 7-23
18. Component Data 7-24
a. Electron Tubes 7-24
b. Crystals 7-24
c. Transformers and Inductors 7-24
SECTION 8-PARTS AND SPARE PARTS LISTS (AND MISCELLANEOUS TABLES)

LIST OF ILLUSTRATIONS

SECTION I-GENERAL DESCRIPTION
Figure Title Page
1-1 Radio Receiving Set AN/URR-35C. 1-0
1-2 Radio Receiver R-482C/URR-35, Front View 1-2
1-3 Radio Receiver R-482C/URR-35, Rear View (Upside Down) showing Low-Pass Filter F-304/URR-35C. $1-3$
1-4 Radio Receiver R-482C/URR-35, Identification of Major Subassemblies. 1-4
SECTION 2-THEORY OF OPERATION
2-1 Radio Receiver R-482C/URR-35, Block Diagram 2-0
2-2 Preselector Viewed from Left Side of Unit, Shielding Covers Removed 2-2
2-3 Preselector Viewed from Bottom of Unit, Shielding and Insulating Covers Removed 2-3
2-4 R-F Amplifier Section of Preselector, Simplified Schematic Diagram 2-4
2-5 Oscillator-Multiplier Section of Preselec- tor, Simplified Schematic Diagram 2-6
2-6 Oscillator, Simplified Equivalent Circuit 2-7
2-7 I-F Amplifiers and INPUT Meter Circuit, Simplified Schematic Diagram 2-9
2-8 A-F Detector and Noise Limiter Circuits, Simplified Schematic Diagram 2-11
2-9 AGC and Silencer Circuits, Simplified Schematic Diagram 2-12
2-10 Audio-Amplifier Stages, Simplified Schematic Diagram 2-14
2-11 Power Supply, Simplified Schematic Diagram. 2-15
2-12 Low-Pass Filter F-304/URR-35C, Simplified Schematic Diagram 2-17
SECTION 3-INSTALLATION
3-1 Packaging of Radio Receiving Set AN/URR-35C 3-0
3-2 Removing Chassis from Cabinet 3-1
3-3 Interior of Cabinet with Chassis Removed. 3-2
3-4 Radio Receiver R-482C/URR-35, Relay-Rack Mounting Brackets Attached and Shockmounts Removed 3-3
3-5 Connectors and Cables for External Connections 3-4
3-6 Assembling Connector Plug P404 to Type RG-10/U Cable 3-6
3.7 Preselector, Outline Drawing 3-7
Figure Title Page
3-8 Low-Pass Filter F-304/URR-35C, Outline Drawing 3-8
3-9 Relay-Rack Mounting Bracket, Outline Drawing 3-10
3-10 Radio Receiver R-482C/URR-35, Outline Drawing 3-11
SECTION 4-OPERATION
4-1 Radio Receiver R-482C/URR-35, Operating Controls 4-2
SECTION 6-PREVENTIVE MAINTENANCE
6-1 Dial Drive Mechanism, Details and Lubrication 6-3
SECTION 7-CORRECTIVE MAINTENANCE
7-1 Tube Socket Voltage and Resistance Measurements 7-4
7-2 Preselector Voltage and Resistance Measurements 7-5
7-3 Bench Test Set-up for I-F Alignment. $7-7$
7-4 Radio Receiver R-482C/URR-35, Top View - Identification of Components. 7-8
7.5 Use of Alignment Tool and Identification of I-F Transformers 7-9
7-6 Typical I-F Selectivity Characteristics 7-10
7-7 Bench Test Set-up for R-F Alignment 7-11
7-8 Details of Trimmer Inductances L103, L104, L107, L108, L111, and L112 7-11
7-9 Preselector Viewed from Left Side of Chassis, Showing Alignment Adjusting Screws 7-12
7-10 Preselector Viewed from Top Side of Chassis, Showing Alignment Adjusting Screws 7-13
7-11 Preselector Viewed from Bottom Side of Chassis, Showing Alignment Adjusting Screws 7-14
7-12 Typical Audio Response Characteristic s 7-15
7-13 Radio Receiver R-482C/URR-35, Bottom View - Identification of All Resistors and Terminal Boards. 7-16
7-14 Radio Receiver R-482C/URR-35, Bottom View-Identification of All Components Except Resistors and Terminal Boards. 7-17
7-15 Blower BL301, Exploded View 7-19

LIST OF ILLUSTRATIONS (Cont)

Figure Title Figure Title Page7-16 Socket Assemblies from R-F AmplifierSection of Preselector7-20
7-17 Socket Assemblies from Amplifier- Oscillator Section of Preselector $7-20$
7-18 Capacitor C101 from R-F Amplifier Section of Preselector 7-21
7-19 Capacitor C102 from Amplifier- Oscillator Section of Preselector $7-22$
7-20 Low-Pass Filter F-304/URR-35C, Cover Removed $7-23$
7-21 Assembling R-F Cable to Connectors J404 and J407. 7-24
7-22 Assembling R-F Cable to Connector P101 7-25
7-23 Connecting R-F Cable between Inductance L122 and Transformer T201. 7-26
7-24 Crystal Unit CR-24/U, Outline Drawing and Data 7-27
7-25 Crystal Unit CR-23/U, Outline Drawing and Data 7-28
7-26 Radio Receiver R-482C/URR-35, Schematic Diagram $7-35$
7-27 Preselector Wiring Diagram 7-37
7-28 IF/AF Chassis, Power Supply, and Low-Pass Filter F-304/URR-35C, Wiring Diagram 7-39

LIST OF TABLES

SECTION I-GENERAL DESCRIPTION
Table Title Page
1-1 Equipment Supplied 1-6
1-2 Equipment Required but Not Supplied 1-6
1-3 Shipping Data 1-7
1-4 Electron Tube Complement 1-7
SECTION 3-INSTALLATION
3-1 Connector Plugs Supplied for External Connections 3-5
SECTION 4-OPERATION
4-1 Typical INPUT Meter Calibration 4-4
SECTION 5-OPERATOR'S MAINTENANCE
5-1 Routine Operational Check Chart 5-1
SECTION 6-PREVENTIVE MAINTENANCE
6-1 Routine Maintenance Check Chart 6-2

SECTION 7-CORRECTIVE MAINTENANCE

Table Title Page
7-1 Trouble-Shooting Chart 7-1
7-2 I-F and A-F Test Data 7-3
7-3 Test-Jack and Terminal-Board Voltage and Resistance Measurements 7-6
7-4 Substitute Alignment-Tool Fabrication 7-25
7-5 Tube Characteristics 7-28
7-6 Winding Data 7-29
SECTION 8-PARTS AND SPARE PARTS LISTS (AND MISCELLANEOUS TABLES)
8-1 List of Major Units 8-1
8-2 Table of Replaceable Parts 8-2
8-3 Maintenance Parts Kit 8-43
8-4 Cross-Reference Parts List 8-44
8-5 Applicable Color Codes and Miscellane- ous Data 8-46
8-6 List of Manufacturers 8-47

INSTALLATION RECORD

Contract Number NObsr-64647
Date of Contract, 28 February 1955
Serial Number of equipment.
Date of acceptance by the Navy
Date of delivery to contract destination
Date of completion of installation
Date placed in service

Blank spaces on this page shall be filled in at time of installation.

(A.C. POWER)

Figure 1-1. Radio Receiving Set AN/URR-35C

SECTION 1

GENERAL DESCRIPTION

1. INTRODUCTION.

This instruction book describes the circuit theory, installation, operation and maintenance of Radio Receiving Set AN/URR-35C.

2. DESCRIPTION.

a. PURPOSE.-Radio Receiving Set AN/URR-35C is designed to provide a means for reception of ampli-tude-modulated voice ($\mathrm{A}-3$) and modulated-continuouswave (A-2) transmissions. The carrier frequency range is 225 to 400 megacycles. The receiver may be used on Naval vessels, at Naval air and shore radio stations, or at any other units of the military establishment.

b. BASIC PRINCIPLES OF OPERATION.-Radio

 Receiving Set AN/URR-35C is a VHF/UHF, doublesuperheterodyne type of receiving equipment. It is designed primarily for operation as a pretuned, singlechannel, crystal-controlled receiver. By using a suitable crystal, any channel within the frequency range of the receiver may be selected. Provisions are also included for continuously variable manual tuning. There is only one tuning control for tuning to any frequency for either crystal-controlled or manual operation. Either of these two methods of operation may be selected by means of the OSC. switch on the front panel.The receiver sensitivity is eight microvolts or better across the 50 ohm input circuit. The signal-tonoise ratio for the receiver is $10-\mathrm{db}$. There are two intermediate frequencies: the first is 18.6 megacycles, and the second is 1.775 megacycles.

All power necessary for operation of the receiver is obtained from a built-in power supply which can be adjusted to operate from a $105-115$-, or 125 -volt $50 / 60-\mathrm{cps}$, single-phase source. The audio and power source connections to the receiver are filtered to limit possible radio-frequency interference.
c. EQUIPMENT ARRANGEMENT. - Radio Receiving Set AN/URR-35C is shown in figure 1-1. It consists of Radio Receiver R-482C/URR-35, a pair of auxiliary angle brackets for relay-rack mounting, three plugs to mate with receptacles on the receiver for external connections, and two copies of the instruction book. The receiver proper consists of a panel, frame and chassis assembly housed in a cabinet fitted with shockmounts. The equipment may be mounted on a bench or other firm horizontal surface, or (after attaching brackets) in a standard 19-inch relay rack.

The circuit components are grouped, on a functional basis, into five major sections: there are preselector, IF/AF chassis, power supply, front panel, and lowpass filtering sections. The first three sections are assembled within the chassis frame, and the front panel section is attached to the front of this frame. The low-pass filtering section (Low-Pass Filter F-304/URR-35C) is mounted against the rear wall of the cabinet. The preselector section consists of the r-f amplifier-converter and the oscillator-multiplier sub-sections. The ganged tuning capacitors in the two sub-sections are geared togteher through a common dial-drive assembly. The receiver is tuned by means of a single front-panel tuning control.

All primary operating controls and the meters are mounted in the front panel; see figure 1-2. The crysstal, the fuses, and those controls which require only occasional change for operational adjustments are in panel compartments accessible through hinged doors. Trimmer adjustment controls are readily accessible when the chassis is removed from the cabinet. Trimmer adjustments in the r-f amplifier and the oscillatormultiplier sections are accessible through holes located in the cover shields and the insulating covers of the preselector unit. Trimmer adjustments for the i-f section are located at the tops (accessible through holes in the shields) and bottoms of the i-f transformer assemblies. Cable connections for antenna, audio output, and power are made to connectors on the lower side of the low-pass filter, attached to the rear of the cabinet. There is a phone jack mounted on the front panel.

The equipment is supplied with a full complement of tubes and fuses installed, and with a spare fuse inside the right-hand access door in the front panel. The tube complement is summarized in table 1-4.

3. DESCRIPTION OF MAJOR COMPONENTS.

a. CABINET.-The receiver cabinet is fabricated from an aluminum alloy and finished in a gray enamel; see figures $1-2$ and 1-3. Guide rails, located on the bottom of the cabinet, permit easy withdrawal of the panel-and-chassis assembly. When installed in a standard relay rack, the four shockmounts are removed and the angle brackets are attached to the sides of the cabinet. When the cabinet is arranged for table mounting, the angle brackets are removed and the shockmounts are attached to the bottom of the cabinet. Ventilation within the cabinet is provided by an internally mounted blower, through dust filters and louvres in the sides of the cabinet.

Figure 1-2. Radio Receiver R-482 C/URR-35, Front View
b. FRONT PANEL AND CHASSIS FRAME AS-SEMBLY.-An aluminum frame, attached to the front panel, mounts the preselector, IF/AF, and power supply chassis to form a complete chassis assembly; see figure $1-4$. The panel is finished in gray enamel, which blends with the cabinet color, and is fitted with handles to facilitate withdrawal of the panel-and-chassis assembly from the cabinet. There is a spring-stop mechanism on each side of the chassis which allows it to be withdrawn almost all of the way out of the cabinet, but prevents it from falling out unintentionally. When these stop mechanisms are pressed upward through finger holes on the underside of the chassis frame, the panel-and-chassis assembly can be completely removed from the cabinet. Two hinged doors through the front panel, one at either side, permit access to the crystal, fuses, and semifixed controls or adjustments. They are held closed by knurled-head spring fasteners. These are released by turning one half turn to the left.
c. PRESELECTOR SECTION. (See figures 1-4, 2-2 and $2-3$.)-The preselector section is mounted along the left side of the chassis frame, and comprises all parts of the r-f amplifier-converter and oscillatormultiplier sections. The r-f amplifier-converter section is above the oscillator-multiplier section, and each consists of an aluminum casting with removable metal covers. The two r -f amplifier stages and the mixer, or first detector, are mounted in the r -f amplifier-converter section. The fundamental oscillator, two frequency doubler stages, and one frequency tripler stage are mounted in the oscillator-multiplier section. Partitions in the castings provide r-f shielding between the stages.

The five-section signal-frequency tuning capacitor, C101, in the r-f amplifier-converter section is geared and synchronized to the four-section tuning capacitor, C102, in the oscillator-multiplier section. Each of these ganged capacitors consists of a number of splitstator sections, and of an equal number of rotor sections mounted on a common metal shaft. Wiping contacts ground the shaft to the casting wall. The effective rotation of the ganged capacitors is 85 degrees.

The tuning inductances for the r-f amplifier sections and for the frequency-tripler section consist of semicircular strips of invar. Each adjustable trimmer inductance consists of two parallel rods and an adjustable shorting bar. These inductances and the concentric-cylinder trimmer capacitors are integral parts of the ganged capacitor sections. The tuning capacitors for the fundamental oscillator and for the two doubler stages are similar in construction. The oscillator coil has a ceramic form to provide a high degree of stability with temperature variations. The frequency-doubler coils are space-wound on micafilled bakelite forms.

All the tube sockets are mounted directly over the related sections of the ganged tuning capacitors to reduce lead lengths to a minimum.
d. DIAL-DRIVE ASSEMBLY. - Tuning is accomplished by a smooth and free-running gear train mechanism employing spring-loaded gears to eliminate backlash. This mechanism provide's an effective 19 -to1 reduction ratio between the tuning crank on the front panel and the main drive shaft of the preselector. There are mechanical stops at each end of the tuning
range. With this arrangement, 19 complete revolutions of the tuning crank cause the dial to rotate through its full 340 degrees, and the ganged tuning capacitors to rotate through their full 85 degrees of rotation. This covers the entire frequency range of 225 to 400 megacycles in one continuous band.

The main tuning indicator dial is $2-5 / 8$ inches in diameter and is calibrated directly in megacycles. There is a mark at each two-megacycle division; each fifth mark is indexed; and each tenth mark is identified with the appropriate frequency numerals. Rotation of the tuning crank in a clockwise direction increases the frequency. There is a LOCK with which the tuning drive mechanism can be locked at any desired frequency setting.

The calibrated dial is illuminated from the rear by two 6-volt pilot lamps mounted behind the panel. A DIMMER control potentiometer, mounted on the front panel, permits control of the brilliance of the dial lamps. The dial lamps are located directly above the dial-drive assembly, behind the front panel.
e. IF/AF SECTION. - The IF/AF section of the chassis is shown in figure 1-4. It is located on the right-hand side of the chassis frame, and mounts the second mixer and oscillator, the i-f stages, the a-f detector, the automatic-gain-control (AGC) circuit, the silencer circuit, the noise-limiter circuit, and the three stages of audio amplification.
f. POWER SUPPLY SECTION.-The power supply section of the chassis, shown in figure $1-4$, is mounted

Figure 1-3. Radio Receiver R-482 C/URR-35, Rear View (Upside Down) Showing Low-Pass Filfer F-304/URR-35
at the rear of the IF/AF section. It includes all the circuit parts necessary to provide the a-c and d-c voltages required for operation of the equipment from a source of $105 / 115 / 125$-volt, $50 / 60$-cps, single-phase power. The ventilating blower is also mounted on this chassis.
g. LOW-PASS FILTER F-304/URR-35C.-The lowpass filter is shown in figures $1-3$ and $7-20$. It provides through connections from the receiver proper to the antenna input, and contains r-f noise-filter circuits for audio output and power input. The filter parts are mounted on a base plate which is attached to the rear wall of the receiver cabinet by snap-slide fasteners located on the inside of the cabinet. The filter cover, when attached to the base plate, constitutes an r-f shield. The A.C. POWER input, J401, AUDIO output, J402, and 50 OHM ANT. transmission line input, J404,
are mounted on the sloping underside of the base plate. These constitute all the external connections except the headphone jack on the front panel. When the receiver panel-and-chassis assembly is slid into the cabinet, two connector plugs engage mating receptacles on the rear of the filter base plate, making the necessary connections into and out of the receiver circuits. The filter components are accessible for servicing by removing the filter cover, without removing the filter from the cabinet.

Connector plugs P401, P402, and P404 (see figure $1-1$) are supplied with the equipment for use as required. A-c power is supplied through P401 and J401. The audio output signal is applied to a 600 -ohm line through P402 and J402. The input signal from the antenna is brought into the receiver through P404 and J404. In each case, external cables must be fabricated using these connectors, to fit local conditions.

Figure 1-4. Radio Receiver R-482C/URR-35, Identification of Major Subassemblies

4. ASSOCIATED EQUIPMENT.

The components and parts described below are not supplied, but are required to complete the installation of Radio Receiving Set AN/URR-35C.
a. ANTENNA.-The antenna to be used with this receiver must be designed to have an impedance of approximately 50 ohms with characteristics that result in good matching with the transmission line over the frequency range of $225-400$ megacycles. Antenna AT-150/SRC or AS-390/SRC will fulfill these requirements. The applicable installation plan will indicate the particular type of antenna to be used.

One rod or the ground plane is grounded to the supporting tube and the outer conductor of the coaxial transmission line. The "line" radiator extending vertically is supported by an insulated stud connected to the center lead of the transmission line.
b. ANTENNA TRANSMISSION LINE.-A coaxial transmission line having a nominal characteristic impedance of about 50 ohms is required for connection between the antenna and the receiver. The applicable installation drawings indicate the type to be used for this purpose.
c. PHONES AND AUDIO OUTPUT.-The audio output circuit at the AUDIO receptacle, J402, on the rear of the equipment is designed to operate into a load impedance of 60 to 600 ohms, and to maintain its output voltage constant within 3 db over this impedance range. Audio output is also wired to a phone jack, J501, on the front panel. Any 600 -ohm headphones fitted with a Navy type $-49109,-49016$, or -49034 plug can be connected into this jack.
d. CRYSTALS.-The equipment is designed for use with a type CR-24/U crystal in the crystal clip in the left-hand front panel compartment. This should be in place whether the equipment is operated with MANUAL or CRYSTAL controlled tuning. A type CR-23/U crystal, used in the second oscillator circuit, is mounted in a socket on the IF/AF chassis. Complete data on these crystal units are given in figures 7-25 and 7-26.

5. REFERENCE DATA.

a. NOMENCLATURE.-Radio Receiving Set AN/ URR-35C.
b. CONTRACT NUMBER AND DATE.-NObsr64647, 28 February, 1955.
c. CONTRACTOR.-Rauland-Borg Corporation, 3515
W. Addison, Chicago 18, Illinois.
d. COGNIZANT NAVAL INSPECTOR. - Inspector of Naval Material, Chicago, Illinois.
e. NUMBER OF BOXES.-Two.
f. CUBICAL CONTENTS.-See tables 1-1 and 1-3.
g. WEIGHT.-See tables $1-1$ and $1-3$.
b. FREQUENCY RANGE. $\mathbf{- 2 2 5}$ to 400 megacycles.
i. TUNING BANDS.-One, continuous.
j. NUMBER OF PRESET FREQUENCIES.
(1) MANUAL TUNING.-None.
(2) CRYSTAL TUNING.-One, as determined by the crystal unit installed.
k. TYPE OF FREQUENCY CONTROL-Crystalcontrolled oscillator, used only in CRYSTAL tuning operation.
l. TYPE OF RECEIVER.-Double superheterodyne.
m. INTERMEDIATE FREQUENCIES. - 18.6 and 1.775 megacycles.
n. RECEIVER OUTPUTS.
(1) AUDIO CHANNEI OUTPUT. -60 milliwatts maximum into a 600 -ohm load, with 7 percent maximum distortion.
(2) PHONE JACK OUTPUT. - Same as (1), above.
o. TYPE OF RECEPTION.-Amplitude-modulated voice or MCW.

p. CRYSTALS.

(1) Type CR-23/U, 16.8250 mc .
(2) Type CR-24/U, 20.3000 to 34.8833 mc to cover tuning range of receiver (none supplied by contractor).
q. FREQUENCY STABILITY.-Over-all stability of receiver for any selected frequency when operated between 103.5 and 126.5 volts ac (using 115 -volt transformer tap), between $-20^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right)$ and $+50^{\circ} \mathrm{C}$ $+122^{\circ} \mathrm{F}$), and between 30 percent and 90 percent humidity:

	CRYSTAL Operation	MANUAL Operation
For voltage variation	Negligible	$\pm 0.02 \%$
For temperature variation	$\pm 0.008 \%$	$\pm 0.1 \%$

r. SILENCER CIRCUIT CHARACTERISTICS.
(1) EFFECTIVE SILENCING RANGE.-Up to a maximum of 300 microvolts input.
(2) AUDIO OUTPUT REDUCTION.-Up to 40 db under standard output conditions.
(3) TIME-CONSTANT.-Less than 0.2 second.
s. IMPEDANCES.
(1) ANTENNA INPUT. -50 ohms, coaxial.
(2) AUDIO CHANNEL OUTPUT. - 600 ohms nominal.
(3) PHONE JACK OUTPUT. -600 ohms nominal.
t. ANTENNA SYSTEM.-None supplied by contractor; see table 1-2.

u. POWER REQUIREMENTS.

(1) VOLTAGE.- 105 to 125 volts, 50 or 60 cps ac, single phase.
(2) CURRENT. -0.97 amp nominal, 1.04 amp maximum.

TABLE 1-1. EQUIPMENT SUPPLIED

$\begin{array}{\|c} \substack{\text { QUANTITY } \\ \text { PER } \\ \text { EQUIPMENT }} \end{array}$	NAME OF UNIT	NAVY TYPE DESIGNATION	OVER-ALL DIMENSIONS*			VOLUME*	WEIGHT*
			HEIGHT	WIDTH	DEPTH		
1	Radio Receiver	R-482C/URR-35	8-7/16	17-1/2	19-1/8	2824	55
1	Connector Plugs	See table 3-1					3 oz.
Set							
1	Relay-rack mount-		7	1-1/8	12		1 lb .
Pair	ing brackets						5 oz.
2	Instruction books	NAVSHIPS 92676	11	8-1/2	1/2	68	1-1/2
1	Maintenance spare parts		13	8-3/4	4	485	12-1/2

*Unless otherwise stated, dimensions are expressed in inches, volumes in cubic inches, and weights in pounds.

TABLE 1-2. EQUIPMENT REQUIRED BUT NOT SUPPLIED

$\begin{gathered} \text { QUANTITY } \\ \text { PER } \\ \text { EQUIPMENT } \end{gathered}$	NAME OF UNIT	NAVY TYPE DESIGNATION	REQUIRED USE	REQUIRED Characteristics
1	Antenna	AT-150/SRC or AS-390/SRC (see applicable installation drawing)	Signal pickup	1/4-wave, broad band; to cover $225-400 \mathrm{mc}$ frequency range; 50 -ohm terminal impedance
As required	Antenna transmission line	RG-10/U (see applicable installation drawing)	Antenna-to-receiver connection	Coaxial 50 -ohm surge impedance
1 Each channel	Crystal unit	CR-24/U	Crystal control of tuning	Crystal freq. $=$ (Channel freq. +18.6) mc
				12
As required	Power cable	MCOS-2	Power input from $50-60 \mathrm{cps}$, 105-125 v source	2 wires; \#18 or larger
As required	Audio output cable	TTHFWA-1-1/2	Audio-output connection to interphone or other audio responsive device	Twisted shielded pair
1	Headphones, with cord and plug	49985-A	Listening	600 ohms impedance

(3) POWER.-98 watts with blower off, 108 watts with blower on (at 115 volts, 60 cps).
v. SENSITIVITY.-Eight microvolts across the 50 ohm antenna input circuit, for a $10-\mathrm{db}$ signal-to-noise
ratio (signal modulated 30% at 1000 cps).
w. SELECTIVITY.-70 to 85 kc down 6 db ; less than 190 kc down 60 db .

TABLE 1-3. SHIPPING DATA

SHIPPING BOX NUMBER	CONTENTS		OVER-ALL DIMENSIONS*			VOLUME*	WEIGHT*
	NAME	designation	height	WIDTH	DEPTH		
1	Radio Receiver and accessories	R-482C/URR-35	14	20-1/2	29-1/4	8395	86
2	Maintenance Parts Kit		13	8-3/4	4	455	12-1/2

*Dimensions are expressed in inches, volumes in cubic inches, and weights in pounds.

TABLE 1-4. ELECTRON TUBE COMPLEMENT

UNIT	number of tubes of type indicated							
	\%	\%	$\frac{0}{4}$		앙		\%	边
Preselector				6	3			9
IF/AF Section			1	4	2	2		9
Power Supply	1	1					1	3
Total Number of Each Type	1	1	1	10	5	2	1	21

6. SIMILARITIES AND DIFFERENCES.

Radio Receiving Sets AN/URR-35, AN/URR-35A, AN/URR-35B, and AN/URR-35C are all similar in function and external appearance. The range of frequencies tuned, the operating modes, sensitivity, and response characteristics are the same for the entire series.

The AN/URR-35A is the same as the AN/URR-35 except for minor changes in the values of two resistors.

The AN/URR-35B contained a new blower and a plug-and-jack type of connection for the blower motor circuit. This facilitated repair of the blower motor. Later modifications of some of the external connectors replaced earlier versions on previous models.

The value of the I.F. GAIN control was increased to a higher value for better control.

The AN/URR-35C eliminates the entire scanning circuit and the test cables which were included with previous equipment. Again, there are a few minor modifications of resistance values. The two voltage regulator tubes were replaced by the "WA" versions, which are late models of tube types OA2 and OB2.

All parts are interchangeable between the various models of the AN/URR-35() series except for the Low Pass Filter, F-304/URR-35C, which is furnished with Radio Receiving Set AN/URR-35C. Since it has no provision for the scanning circuit, connector P201 on the rear of the receiver chassis (all models except R-482C/URR-35) will prevent Low Pass Filter F-304/ URR-35C from making contact in the other two connectors between the receiver and the filter.

Figure 2-1. Radio Receiver R-482C/URR-35, Block Diagram

SECTION 2 THEORY OF OPERATION

1. GENERAL PRINCIPLES.

Radio Receiver R-482C/URR-35 is of the superheterodyne type, employing two frequency conversions. It is designed for either manual tuning or crys-tal-controlled operation over a frequency range of 225 to 400 megacycles. The receiver produces an audio output to headphones or to an external speaker or inter-communication system.

As shown in the block diagram, figure 2-1, the receiver is basically conventional in most respects. Two stages of r-f amplification precede the mixer stage. The local injected signal is obtained from an oscillator followed by three stages of frequency multiplication. The oscillator functions as either a crystalcontrolled or a self-excited circuit, depending on the position of the OSC. switch. The five-gang capacitor which tunes the r -f and mixer stages is geared to the four-gang capacitor in the oscillator-multiplier section to provide single-control tuning. All stages in the receiver "front end" are part of a compact preselector subassembly.

The received signal is converted to an intermediate frequency of 18.6 mc in the mixer stage of the r-f amplifier section. This signal is then coupled to the first i-f amplifier, which is in the IF/AF section of the receiver. The output of the first i-f amplifier is applied to the second mixer, where the signal is mixed with the output of the crystal-controlled second oscillator. The i-f signal is converted to a frequency of 1.775 mc in the second mixer and then applied to the second i-f amplifier. This amplified signal is then applied to the third i-f amplifier, which further amplifies the signal before it reaches the a-f detector and the AGC-silencer amplifier. The detected a-f signal is fed to the first audio amplifier via the noise limiter and the silencer diode. Each of these two stages may be disabled operationally, if so desired, by means of a front-panel control (N.L. and SILENCER switches, as applicable).

The signal from the first a-f amplifier is applied through the A.F. LEVEL potentiometer to the second a-f amplifier and then to the audio-output stage. The audio-output stage applies its signal through a transformer to the headphone jack, to the OUTPUT meter, and to the AUDIO connector. These outputs are connected in parallel from the secondary of the output transformer.

The silencer circuit and the AGC circuit are interrelated. As previously stated, the signal from the third i-f amplifier is applied both to the a-f detector diode
and to the AGC-silencer amplifier. The i-f signal is further amplified by the AGC-silencer amplifier and then applied to the AGC-silencer diode. The rectified output of this stage is used both as AGC voltage and as the control voltage for the silencer diode. When no signal is being received, or a signal below a preset level is received, the silencer-diode cathode is biased to a value which cuts off the silencer diode. When the received signal is greater than this preset level, the output of the AGC-silencer diode reduces the bias to a level which will permit the silencer diode to conduct.

2. DETAILED CIRCUIT ANALYSIS.

a. PRESELECTOR. (See figures 2-2 and 2-3.)
(1) R-F AMPLIFIER SECTION.
(a) ANTENNA INPUT.-The antenna input circuit of Radio Receiver R-482C/URR-35, having a nominal 50 -ohm impedance, is to be used with coaxial transmission line. The transmission line connects to the 50 OHM ANT. receptacle, J404, located on the rear of Low-Pass Filter F-304/URR-35C at the rear of the receiver. Plug P404 has to be assembled to the transmission line to complete this connection.

A short piece of coaxial cable in the filter extends the antenna transmission line to connector J407, at the rear of the filter base plate (figure 3-3). This connector, in turn, plugs into coaxial receptacle P101, from which the antenna circuit extends to the tuned circuit composed of L101, C161, and L121; see figure 2-4. This circuit is inductively coupled to L102, in the input circuit of the first r-f stage.
Inductance L101 is an assembly consisting of an outer conductor of bent copper tubing, with an insulated inner conductor. Capacitor C161 serves to tune out the inductive reactances in the antenna input circuit.
(b) TUNING CAPACITOR ASSEMBLY.-The grid and plate circuits of the two r-f amplifier stages and the grid circuit of the mixer stage are arranged in push-pull, and are tuned by means of a balancedtype, five-gang capacitor.
Each section of this capacitor consists of a split-stator plate assembly and a rotor plate assembly mounted on a common metal shaft. The rotor of the capacitor is grounded to the chassis frame by means of wiping contacts. The trimmer inductances, L103, L104, L107, L108 and L111, and the trimmer capacitors, C140 through C144, are integral parts of the stators and are connected across the split-stator plates. The tank circuit inductors, L102, L105, L106, L109, and L110, are semi-circular metal loops, and are also integral

Figure 2-2. Preselector Viewed from Left Side of Unit, Shielding Covers Removed

Figure 2-3. Preselector Viewed from Bottom of Unit, Shielding Covers Removed
parts of the stators. The trimmer inductors (figure 7-8) each consist of two parallel round rods connected by a shorting bar. Changing the position of the shorting bar varies the inductance of each coil. Each concentric-cylinder type trimmer capacitor consists of a metal block mounted on one stator section, and a partially threaded rod which extends from a bracket on the other stator section into the center bore in the block. The block and rod constitute, respectively, the stator and rotor plates of the trimmer capacitor. The capacity of the trimmer is varied by turning the rod to adjust the amount of projection into the block. An insulating tube in the bore of the block serves as the dielectric.
(c) FIRST R-F AMPLIFIER.-As shown in the simplified schematic diagram, figure 2-4, the antenna circuit is coupled to the grid-input circuit of this stage. The grid circuit consists of tank inductance L102, trimmer inductance L103, section A of capacitor C101, and trimmer capacitor C140. Critical coupling maintains uniform sensitivity over the entire frequency range. Two type 5654/6AK5W tubes, V101 and V102, are operated in push-pull. This circuit arrangement effectively reduces the resulting circuit capacity and inductance to approximately one half the values which would be present with a single tube. This permits a greater range of frequency coverage and a higher circuit operating efficiency. AGC voltage is applied to the grid circuit of the stage through decoupling resistor R101 and the center tap of coil L102. A feed-through type of r-f bypass capacitor, C105, functions to bypass the AGC line at this point. Capacitor C105 is located in the casting wall. Plate and screen voltages are connected through resistor R104, and the B+ circuit is bypassed with capacitor C112. Resistors R102 and R103 are screen-voltage dropping resistors, and resistor R126 decouples the plate and screen circuits. The screen grids are bypassed to ground through the interelectrode capacities of the tubes and the stray wiring and socket capacities. Capacitors C103 and C104 overcome the inductance of the cathode leads, and effectively bring the cathodes closer to r -f ground potential. The plate circuit is similar in design to the grid circuit, and consists of tank inductance L105, section 3 of tuning capacitor C101, trimmer inductance L104, and trimmer capacitor C141. Plate voltage is brought through resistor R104 to the center tap of coil L105. Coils L105 and L106 are shielded from each other by the wall of the casting, so there is practically no inductive coupling between them. Instead, the coupling from the first r -f stage to the second r-f stage is accomplished through capacitors C108 and C109. These capacitors connect directly from the plate circuit of the first r-f stage to the grid circuit of the second r-f stage.
(d) SECOND R-F AMPLIFIER. - This stage, using tubes V103 and V104 in push-pull, is identical in design and in circuit constants to that of the first r-f stage; see figure 2-4. The tuned grid circuit consists of section C of tuning capacitor C101, tank

Section 2
 Paragraph 2a(1)(d)

inductance L106, trimmer inductance L107, and trimmer capacitor C142. The plate circuit consists of section D of tuning capacitor C 101 , tank inductance L109, and trimmers L108 and C143. AGC voltage is applied to the center tap of coil L106 through decoupling resistor R105; the AGC line is bypassed to ground through capacitor C113. Plate and screen voltages are brought through resistor R108; the supply is bypassed to ground through capacitor C114. Resistors R106 and R107 are screen-voltage dropping resistors, and resistor R127 decouples the plate and screen circuits. The screen grids are bypassed to ground through the interelectrode capacities of the tubes and the stray wiring and tube socket capacities.
(e) MIXER.-The mixer, or first detector, stage uses a type 5670 dual triode tube, V105, connected in a push-push arrangement; see figure $2-4$. The grids are connected in push-pull through the resonant circuit consisting of section E of tuning capacitor C101, tank inductance L110, trimmer capacitor C144, and trimmer inductance L111. The plates of the two triodes are connected directly together and receive their voltage through resistor R110. Plate voltage is blocked from the grounded primary of L122 by capacitor C117. This capacitor and capacitor C119, connected in series, resonate with L122 at the intermediate frequency of 18.6 mc . The plates of tube V105 are connected to the junction of the two capacitors in order to provide impedance matching between the tube and the tuned circuit. With the push-push arrangement of the mixer, a high gain is obtained in the frequency conversion, because the push-push conversion transconductance is approximately twice that of a single converter tube.

The output of the second r-f stage is coupled to the grid circuit of the mixer stage through capacitors C 110 and C111. The output of the oscillator-multiplier circuit is inductively coupled to the grid circuit of the mixer through a coupling loop consisting of inductance L119 and capacitor C135 in the oscillatormultiplier unit (figure 2-5), and inductance L120 and capacitor $\mathrm{Cl18}$ in the r-f mixer (figure 2-4). Coaxial cable L118, which acts as an RF coil, provides inductive and direct coupling between the oscillatormultiplier and the mixer. This coupling arrangement maintains a more uniform mixer-injection voltage throughout the frequency range of operation. The values of capacitors C118 and C135 are chosen so that, together with the shunt capacity of the short coaxial connecting line and the coupling coils, the loop is series resonant at a frequency below the low end of the band (190 mc), and is parallel resonant at a frequency above the high end of the band (470 mc). Consequently, at the low-frequency end, the transfer voltage induced in the mixer input tank is increased, while at the high-frequency end of the band the induced transfer voltage is decreased. If the coupling were not resonated, as described above, the induced voltage would tend to drop off at the low-frequency end of the band, due to the change in Q of the oscilla-tor-multiplier tank circuits.

The output of the mixer stage is link-coupled to the grid circuit of the first i-f stage. This type of coupling is necessary because of the physical layout of the equipment. The plate inductance of the mixer, L122, is contained in the mixer compartment' of the r-f amplifier casting, while the i-f input transformer, T201, is located on the IF/AF chassis. A length of RG58/U coaxial cable joins the secondary winding of transformer L122 in the preselector to the primary winding of transformer T201 on the IF/AF chassis, thus establishing a low-impedance inductive coupling between the two stages. The $18.6-\mathrm{mc}$ test jack, J101, has been provided so that test signals may be inserted through capacitor C162 into the mixer output transformer. Resistor R126 terminates the lead from the test signal generator.

Plate voltage for tube V105 is applied to both plates through decoupling resistor R110. The supply voltage is bypassed to ground through capacitor C115. The grids of the mixer tube are biased by the voltage developed across grid-leak resistor R109, which is bypassed by capacitor C116. This biasing network is connected to the grids through the center tap of inductance L110.
(2) OSCILLATOR-MULTIPLIER SECTION.-The oscillator-multiplier section generates a local injection signal which has a frequency 18.6 mc higher than the received signal. The basic oscillator frequency is generated in triode V106A, and is multiplied 12 times in the two doublers and one tripler which follow; see figure 2-5. When the OSC. switch, S203, is in the MANUAL position, the range of the oscillator is from 20.2063 to 35.05 mc , and the frequency at the plate of the tripler may range from 242.4756 to 420.60 mc , allowing the radio receiver to operate over a frequency range of 223.8756 to 402.0 mc . When switch S203 is in the CRYSTAL position, the receiver will operate at the frequency determined by the crystal unit, within the frequency range of 222.75 to 404.0 mc . The fundamental frequencies of the crystals will be between 20.115 and 35.2167 mc .

Tuning of the various stages is accomplished by capacitor C102, which has four sections, each a splitstator type. The use of split-stator capacitors in the balanced tank circuits permits the use of a grounded rotor to reduce inter-sectional capacitance. Rotor grounding is accomplished through wiping contacts. Since there is no appreciable amount of r -f current through these contacts, the inherent noise associated with wiping contacts is not present. Capacitor C102 is geared to the five-section capacitor, C101, to provide single-control tuning for the receiver; see figures 2-2 and 2-3. The trimmer inductance of the tripler stage and the trimmer capacitors in all the stages of the oscillator-multiplier section are integral parts of the tuning capacitor, similar to those described previously in subparagraph $2 a(1)(b)$ of this section.
(a) OSCILLATOR-FIRST DOUBLER.-The oscillator and first doubler stages are considered toge-

ther because they are inter-related. They each use one half of a type 5670 dual triode tube, V106; see figure 2-5. One half of the tube, V106A, functions as a grounded-grid oscillator. The second half of the dual triode, V106B, is arranged as a split-load cathode follower, and serves both as a frequency doubler and as a source of feedback to the oscillator cathode.

To explain how the oscillator works, figure 2-6 shows an equivalent, but simplified, circuit. L and C form a tank circuit in the plate circuit of the oscillator, V 1 ; it is tuned to the fundamental resonant frequency of crystal Y1. Oscillations appearing at the plate of V1 are coupled through to the grid of V2 through C1. V2 acts as a cathode follower, with its output voltage across the cathode circuit being in phase with the output from V1. Crystal Y1, oscillating in a series-resonant mode, transmits the voltage at the cathode of V2 back to the cathode of V1. In turn, V1 acts as a grounded-grid amplifier and reinforces the oscillations at its plate. Thus, the positive feedback necessary to sustain oscillation is obtained, but only at the frequency at which the crystal is resonant.

If the crystal were shorted out, the positive feedback path from V2 to V1 would remain, but would no longer be frequency selective. Therefore, the frequency of oscillation would be determined by the resonant at frequency of the L-C tank in the plate circuit of V1.

In the actual circuit (figure 2-5), V106A and V106B correspond, respectively, to V1 and V2 of figure 2-6. Y201 corresponds to Y1, while R111, R116 and C. 137 are equivalent to $R 1, R 2$, and $C 1$, respectively. The oscillator tank circuit, L114, C102A, and C148, corresponds to the simplified components, L and C. The plate circuit of the first doubler, V106B, is tuned to the second harmonic of the oscillator frequency. Therefore, the impedance of the plate circuit at the oscillator frequency is very low, resulting effectively in grounded-plate (cathode follower) operation of V106B at that frequency.

The oscillator functions as a crystal-controlled circuit when OSC. switch S203 is in the CRYSTAL position. The crystal, Y201, is a harmonic-mode type CR-24/U, which establishes the frequency of the feedback voltage from the cathode of V106-B to the cathode of V106-A. Capacitor C159, in series with the crystal, is utilized to resonate the inductance of the crystal leads so that zero phase shift exists between the two cathodes.

For manual tuning, the crystal is shorted out when switch S203 is in the MANUAL position. V106A then functions as a free-running oscillator, with its frequency determined by the setting of tuning capacitor C102A. Since the feedback path between the two cathodes of the two triode sections is not frequency selective, the free-running oscillator is less stable than the crystal-controlled type of operation.

On MANUAL operation, the receiver may be operated either with or without a crystal in the crystal

Section 2
Paragraph 2a(2)(a)

Figure 2-6. Oscillator, Simplified Equivalent Circuif
socket. However, since the original factory adjustment of the receiver was made with a crystal in the socket, it follows that dial calibration will be more accurate, and the reserve gain greater, if the receiver is operated with a crystal in the crystal socket during MANUAL operation. In the neighborhood of 400 megacycles, the resonant frequency of the receiver increases approximately 0.1 percent when the crystal is removed from the socket. Near 225 megacycles, the corresponding increase is approximately 0.04 percent. This effect is attributed to the fact that there is some capacity between the crystal and ground, which also exists effectively between the cathodes of the oscillator tubes and ground. When the crystal is removed from the socket, this capacity is removed, and so there is a shift in the oscillator frequency.

The oscillator tank consists of section A of tuning capacitor C102, trimmer capacitor C148, and inductance L114. The tank circuit is kept balanced by capacitor C121, which equalizes the output capacitance of V106A. Resistor R112 tends to suppress spurious oscillations. Inductance L123 offsets the heater-cathode capacitive reactance to minimize phase shift of the feedback voltage from the cathode of V106B to the cathode of V106A. Capacitor C160 prevents L123 from shorting the bias developed across resistor R111 to ground. Plate voltage is fed to the center tap of L114 through resistor R113 from a 150 volt regulated source. Capacitor C120 is the bypass for radio frequencies for the voltage source.

The output of the oscillator stage is coupled to the grid of the first doubler through capacitor C137. Grid bias for V106B is provided by the voltage drop across resistor R116 and by the drop across grid-leak resistor R114. Plate voltage is applied through the untunned
primary of bifilar-wound transformer L115. Voltage is obtained from a 150 volt regulated source through decoupling resistor R125, and the circuit is bypassed for radio frequencies with capacitor C123.

The first-doubler cathode circuit is not bypassed, so that the r-f voltage dropped across resistor R116 may be fed back to cathode resistor R111 in the oscillator. The values of R111 and R116 are such that the feedback is limited, but is large enough to prevent oscillations which might occur due to the capacitance across the crystal holder.

There is a test point at the grid of the first doubler to measure the $\mathrm{d}-\mathrm{c}$ bias on the tube. The amount of voltage measured indicates the amount of drive from the oscillator. Resistor R115 and capacitor C122 decouple the grid circuit from the test point.
(b) SECOND DOUBLER.-The second doubler stage uses two sections of the type 5670 dual triode, V107, in a push-push circuit arrangement; see figure $2-5$. The grid circuit is balanced and is tuned to the second harmonic of the oscillator frequency. The tuned circuit consists of the center-tapped secondary winding of transformer L115, section B of tuning capacitor C126 compensates for the capacitance unbalance to ground in the secondary winding of transformer L115.

The grids are returned through the center tap on the secondary of L115 and through resistors R117 and R118 to a -3 -volt tap on the power supply. This bias voltage functions to prevent excessive rise in plate current if the driving voltage is removed. Capacitors C124 and C125 function to bypass r-f currents around this circuit. A test point, connected to the junction of resistors R117 and R118, provides means for measuring the second-doubler grid-leak bias. This indicates the relative amount of drive from the first doubler.
The plates of tube V107 are connected together for the push-push arrangement, and untuned inductance L116 is the plate load. This inductance is center tapped to provide a balanced load for coupling to the grids of the tripler stage. Capacitor C128, at the ground side of L116, functions to balance the output capacitance of the second-doubler triodes at the opposite end of the inductance. Plate voltage is applied through decoupling resistor R119 to the center tap of L116. Capacitor C127 is an r-f bypass for the B+ circuit. Coils L116 and L117 are isolated by the preselector casting, and have no noticeable inductive coupling. Instead, capacitors C129 and C130 connect the grids of the tripler stage.

The push-pull circuit arrangement reduces the generation of odd harmonics. This eliminates the possibility of resultant spurious signals, which might otherwise be amplified and radiated by the receiver antenna.
(c) TRIPLER.-The tripler stage uses two type 5654/6AK5W pentodes, V108 and V109 in pushpull; see figure $2-5$. The parallel-resonant grid cir-

Paragraph 2a(2)(e)

cuit consists of inductance L117, section C of tuning capacitor Cl 02 , and trimmer C 145 . It is tuned to the fourth harmonic of the oscillator fundamental frequency. The center tap of L117 is returned through resistors R120 and R121 to the -3 volt grid-bias tap in the power supply. This bias voltage functions to prevent excessive plate currents in the tubes if their driving voltage is removed. The bias circuit is bypassed to ground for r-f by capacitors C131 and C132. A tap at the junction of resistors R120 and R121 provides a metering point for checking to see that there is driving voltage applied to the grids of the tripler from the second-doubler. Grid-leak bias voltage developed across resistor R120 indicates the relative amount of driving voltage. This tap is also connected to the ALIGN position of switch S201 for alignment purposes; see paragraph $2 f$ of this section.

The plate circuit of the tripler stage is tuned to a frequency which is three times its grid input frequency. This produces a total multiplication of 12 times the fundamental oscillator frequency, and results in an output frequency which is 18.6 mc higher than the received frequency. The tripler plate circuit is a parallel-resonant combination of inductances L112 and L113, and capacitors C102D and C146. Inductor L113 and capacitor C146 are trimmers, and capacitor C102D is a part of the tuning capacitor. Plate and screen voltages are applied through resistor R124 to the center tap of L113 and the junction of screen voltage dropping resistors R122 and R123, respectively. Capacitors C133, C134, and C136 bypass radio frequencies to ground, as required.

The output of the tripler stage is coupled through inductor L119 and capacitor C135 in the oscillatormultiplier section of the preselector, and through capacitor C118 and inductor L120 on the r-f converter chassis, to the grid of the mixer stage, as described in paragraph $2 a(1)(e)$ of this section.

b. I-F AMPLIFIER AND CONVERTER STAGES.

 -The mixer output is link-coupled to the IF/AF chassis. The first stage on that chassis is tuned to the first intermediate frequency, 18.6 mc . This signal is converted to a frequency of 1.775 mc in the second mixer, and then applied to two more i-f amplifiers, tuned to the second intermediate frequency. The third i-f amplifier is followed by the detector, noise limiter, and AGC circuits, and then by two a-f amplifiers, which precede the audio output stage. The overall i-f selectivity curve is shown in figure 7-6.(1) FIRST INTERMEDIATE-FREQUENCY AM-PLIFIER.-The i-f signal from the mixer stage of the r-f amplifier section is link-coupled into transformer T201. This transformer, tuned to resonance at 18.6 mc , feeds the grid of the first i-f amplifier, V201; see figure 2-7. The first i-f amplifier is a $5654 / 6 \mathrm{AK} 5 \mathrm{~W}$ pentode. AGC voltage is applied through resistor R201 and the transformer to the grid of the i-f amplifier. The AGC system is decoupled from the i-f signal by
resistor R201 and capacitor C201A. The plate and screen voltages for V201 are obtained from the +180 volt supply through the i-f gain control, R233. Screen voltage is supplied from this potentiometer through screen-voltage dropping resistor R205. This screen is decoupled from the power supply by this resistor and by capacitor C202A. Plate voltage is supplied from potentiometer R233 through resistor R206 and through i-f transformer T202. Capacitor C202B and resistor R206 serve to decouple the power supply from the plate circuit. The output signal from the amplifier is applied to i-f transformer T202, which is a shielded and double-slug-tuned i-f transformer. It is tuned to resonance at 18.6 mc .
Potentiometer R233 is connected as a rheostat, and is the I. F. GAIN control. With it, the actual amount of voltage available for the screen and plate circuits of the first i-f stage can be varied. With less resistance in the circuit, there will be more voltage and a greater resultant gain. Conversely, more resistance decreases plate and screen voltages, and reduces the gain of the stage. The proper adjustment for this control is shown in paragraph $4 c$ of Section 7.
(2). SECOND OSCILLATOR.-Triode V203B, one half of a type 5670 tube, is used as a crystal-controlled oscillator in order to create a heterodyning signal for the second of the two frequency conversions in this radio set; see figure 2-7. The crystal, Y202, is a type CR-23/U, cut to have a nominal frequency of 16.8250 mc . Grid-leak bias is supplied for the oscillator tube by resistor R209, connected from the control grid to ground and in parallel with the oscillator crystal. Plate voltage for the stage is supplied from the +105 volt source to the plate through oscillator transformer T203. The output signal is applied to the mixer stage from a tap on the transformer coil. The oscillator may be tested by measuring the grid voltage developed across resistor R209 at test point J202. This test point is connected to the common junction of the grid, the grid-biasing resistor, and the crystal, through resistor R210. Resistor R210 and capacitor C244 form a low-pass filter, which isolates the grid circuit from the meter used to measure the grid bias. The sine-wave signal applied to the grid by the oscillator crystal is amplified in the tube and applied to transformer T203. A portion of the signal is applied from a tap on the transformer winding (for impedance matching) to capacitor C208, and from this capacitor to the cathode of the second mixer.
(3) SECOND MIXER.-The second mixer, V203A, is one half of a 5670 twin-triode tube, as shown in figure 2-7. The i-f input signal is applied through the secondary winding of i-f transformer T202 to the control grid of the mixer, and the oscillator injection voltage is applied to the cathode. Resistor R266, in the grid circuit, tends to prevent spurious oscillation, while cathode resistor R211 serves as the point of oscillator injection. Plate voltage is supplied to this stage through resistor R212 and i-f transformer T204.

NAVSHIPS 92676

Figure 2-7. I-F Amplifiers and INPUT Mefer Circuif, Simplified Schematic Diagram

Resistor R212 and capacitor C209 decouple the power supply from the i-f signal in transformer T204.

Mixing takes place inside the tube, as the i-f signal and the heterodyning signal are applied, respectively, to the control grid and cathode of the mixer stage. Both of these frequencies and the sum and difference frequencies are present in the plate circuit of the tube; however, the second i-f transformer, T204, is sharply tuned to resonance at the difference frequency of 1.775 mc , so this frequency, only, develops output voltage, and the others are all bypassed. The primary of transformer T204, which is the plate load for the mixer, is loaded by a resistor. Capacitor C210 couples the signal from the secondary of transformer T204 to the primary of transformer T205.

Test jack J201 permits test signals to be applied through capacitor C207 into the 1.775 mc i-f stages. Resistor R207 terminates the cable connection from the test signal generator.
(4) SECOND AND THIRD INTERMEDIATEFREQUENCY AMPLIFIERS.-The components and circuitry of the second and third i-f amplifier stages are almost identical; see figure 2-7. The essential difference between the two i-f amplifier stages is that the gain of the second i-f amplifier stage is controlled by the AGC voltage, while the third i-f amplifier stage is self-biased.

Power is supplied to the type 5654/6AK5W second and third i.f amplifiers, V204 and V205, from the +180 -volt source, through the i-f transformers to the plates. The screen grids also are supplied from the +180 volt source. The resistor, R267 and R268, in the control grid circuit of each stage prevents spurious oscillation.

Between the second mixer and the second i-f amplifier, there is an interstage coupling network consisting of i-f transformers T204 and T205. Between the second and third i-f amplifiers, there is another interstage coupling network consisting of transformers T206 and T207. Each of these coupling networks functions as a quadruple-tuned circuit. This results in an i-f passband with a relatively flat top and with very steep sides, to obtain the desired selectivity; see figure 7-6. Transformer T208, between the third i-f amplifier and the a-f detector, is a conventional double-tuned network. Each of the windings in the i-f transformers which connect to d-c voltages is decoupled from the power supply by a resistance-capacity network. Resistor R213 and capacitor C211 decouple the AGC line from the secondary of transformer T205. Resistor R220 and capacitor C215 decouple the B+ line from the primary of transformer T206. Resistor R223 and capacitor C217 decouple the B+ line from the primary of transformer T208.
(5) INPUT METER CIRCUIT.-INPUT meter M501 indicates the approximate incoming signal strength. It also serves as an alignment indicator for the oscil-
lator-multiplier section when switch S201 is placed in the ALIGN position. The meter circuit is shown in figure 2-7. One side of meter M501 is connected through a low-pass filter, consisting of resistor R216 and capacitor C213, to the junction of resistors R214 and R215 in the screen-grid circuit of the second i-f amplifier, V204. The other side of the meter is connected through a similar filter (R217 and C214) to the variable contact of INP. MTR. potentiometer R218. Potentiometer R218, together with resistors R224 and R225, form a series voltage divider network from +180 and ground.

With no signal present in the receiver, pentode V204 will conduct a large current, causing a voltage drop across resistor R215. The INP. MTR. control, R218, is then adjusted to the same potential as the junction of R214 and R215. This results in equal potentials at each side of meter M501 and, consequently, no meter indication. When a signal is received, the AGC voltage increases the bias on tube V204, and reduces the screen grid current through the tube. This decreases the voltage drop across resistor R 215 . Since a voltage difference then exists across the meter terminals, the meter will show a deflection.
The INPUT meter functions in the same manner when it is used for alignment purposes. However, the AGC voltage is replaced by the tripler grid-leak bias, as explained in detail in paragraph $2 f$ of this section.
c. AUDIO-FREQUENCY DETECTOR.-The audiofrequency detector, V206A, is one half of a type 5726/6AL5W twin diode; see figure 2-8. The i-f signal from terminal 1 of transformer T208 is applied to the diode plate. Resistors R226, R227 and R229, connected between the diode cathode and terminal 6 of T208, constitute the diode load. These resistors are bypassed for radio frequencies by capacitors C220, C221 and C222. The audio-frequency output, obtained from the junction of resistors R226 and R227, is applied through the noise-limiter diode and the silencer diode (either or both of which can be disabled-the noise limiter mechanically and the silencer electrically) to the grid of the first a-f amplifier.

The detector output can be checked at jack J203, the detector test point. This jack is connected to terminal 6 of i-f transformer T208 through isolation resistor R262.
d. NOISE LIMITER.-Diode V206B, one half of a type 5726/6AL5W twin diode, functions as a seriestype noise limiter. It is connected between the a-f detector and the silencer diode; see figure 2-8. The N.L. (noise limiter) switch S202, cuts the noise limiter in or out of the circuit as desired for operating conditions. When switch S202 is in the OUT position, the audio signal obtained at the junction of resistors R226 and R227 is applied directly to the silencer circuit; noise limiter V206B has no effect on the signal. However, when switch S202 is set at IN, the noise limiter functions as follows:

Figure 2-8. A-F Detector and Noise Limiter Circuits, Simplified Schematic Diagram

The negative voltage, developed across detector load resistors R226 and R227, is applied through resistor R228 to capacitor C223, building up on this capacitor a negative potential approximately equal to the total average rectified d-c voltage between terminal 6 of transformer T208 and ground. The audio-frequency component of the rectified voltage is taken from the detector diode circuit at the junction of resistors R226 and R227. The audio-frequency path is then from plate to cathode of V206B, and across switch S202 to the silencer circuit. It will be noted that the cathode of V206B is at the potential of terminal 6 of T208, which is more negative than the diode plate because of the voltage-divider action of R226 and R227. Since the diode cathode is at a negative potential with respect to the plate, current flows within the tube and an a-f path is established.

In the event that a sharp pulse of noise is received, the long time-constant of R228 and C223 does not permit capacitor C223 to charge to the high transient voltage. However, the voltage at the junction of R226 and R227 follows the change rapidly, placing the plate of V206B at a more negative potential than the cathode. This cuts off the diode for the duration of the noise pulse. Consequently, the noise pulse does not reach the a-f circuit (via the silencer diode). Resistor R229, in the load circuit of the a-f detector, acts as an accelerating circuit to bring the noise-limiter diode to the condition of non-conduction more quickly, when a noise pulse enters the receiver. A positive pulse
from the cathode end of R229 is coupled to the diode cathode through capacitor C233 and resistor R231. This positive voltage aids the negative voltage at the plate in cutting off the diode for the duration of the noise pulse.

Resistors R232 and R227 form a voltage divider across the 105 -volt regulated supply. Since the plate of V206B is tied to the junction of these resistors, it is biased by approximately +4.7 volts. This positive bias determines the operating point of the diode such that the forward (conducting) resistance is sufficiently low to cause less than a $3-\mathrm{db}$ insertion loss.
e. AGC-SILENCER AMPLIFIER. - The AGC-silencer amplifier, shown in figure 2-9, amplifies the output from the i-f amplifiers to a level which is suitable for use in the AGC and silencer circuits. The i-f signal from terminal 1 of transformer T208 is coupled through capacitor C224 to the control grid of V207, a 5654/6AK5W pentode amplifier. The grid is biased from the -9 volt source in the power supply through resistor R230. The screen grid is supplied from the +150 volt source in the power supply, and is decoupled from the power supply by resistor R239 and capacitor C225. Plate voltage is supplied from the +180 volt source through transformer T210. Transformer T210 comprises a parallel-resonant circuit at the second intermediate frequency, 1.775 mc , and serves as the plate load for tube V207. The amplified signal from this stage is coupled through capacitor C226 to AGC-silencer diode V208A.

NAVSHIPS 92676
THEORY OF OPERATION

Figure 2-9. AGC and Silencer Circuits, Simplified Schematic Diagram

The AGC-silencer amplifier is decoupled from the power supply by a resistor in transformer T210 and by capacitors C229 and C245. A B+ test point, J205, is connected to the power supply through resistor R263.
f. AGC-SILENCER DIODE. - The AGC-silencer diode, V208A, is a shunt rectifier which provides the required d-c voltages for the AGC and silencer circuits. As shown in figure 2-9, one half of a 5726/ 6AL5W twin diode serves this purpose. When switch S201 is in the REC. position, the diode load consists of resistors R240 and R243 in series with the seriesparallel network of resistors R242, R241, and R244. The junction of resistors R241 and R244 is connected to the -3 volt bias source, so the plate of V208A is biased at approximately -1.8 volts. When the peak value of the 1.775 mc signal, coupled to the diode plate from V207, exceeds this delay bias, the diode conducts to develop a negative rectified voltage across the load resistors. The voltage which is obtained at the junction of resistors R240 and R243 is the AGC voltage; this voltage is bypassed for radio frequencies by capacitor C231 and is fed to the AGC line through a low-pass filter, R245 and C228B, which removes the audio frequency components from the voltage. AGC voltage is applied to the first and second r-f amplifiers, first and second i-f amplifiers, and the first a-f amplifier. Resistance-capacitance decoupling networks are connected in the grid circuits of all the controlled r -f and i-f amplifiers. Regardless of whether or not AGC voltage is developed from a re-
ceived signal, there is a minimum bias of -1.8 volts at each of the controlled stages because of the connection of the diode load circuit to the -3 volt bias source. AGC voltage may be checked at jack J204, which is connected to the AGC line through isolating resistor R264.

The negative d-c voltage which is developed at the plate of tube V208A is used as the control voltage for silencer diode V208B. This circuit is explained in paragraph 2 g of this section.

The AGC circuit also provides means for indicating the alignment of the oscillator-multiplier section of the receiver. When switch S201 is placed in the ALIGN position, the grid-leak bias developed across resistor R121 in the tripler grid circuit is applied to the AGC line through resistor R252. As the tank circuits of the oscillator, first and second doublers, and tripler grid circuit are tuned to resonance, the tripler grid-leak bias increases and places a negative voltage on the AGC line. This results in a reading on INPUT meter M501, as explained in paragraph $2 b(5)$ of this section. The greater the meter deflection, the greater the drive and bias at the tripler grid. Hence, an indication of alignment is obtained for the oscillator and first and second doubler stages.

g. SILENCER.-The noise silencer (squelch) circuit

 can be used to prevent noise from reaching the audio section of the receiver in the absence of an incoming signal of predetermined minimum level. Silencer diodeV208B, connected between N.L. switch S202 and the first a-f amplifier, V209A, permits the audio signal to pass during conduction and cuts off the audio signal when it is not conducting. Diode V208B is one half of a type 5726/6AL5W dual diode; see figure 2-9. The silencer may be connected into, or cut out of, the receiver circuit by means of SILENCER switch S501. SILENCER potentiometer R247 is used to adjust the silencing threshold.

Both the plate and the cathode of silencer diode V208B are biased. The plate is biased from a point on the voltage divider, formed by resistors R247, R248, and R249, connected between the +105 volt source and ground. The cathode is biased by the voltage which appears at the junction of resistors R237 and R238, connected between the +105 volt source and the plate of AGC-silencer diode V208A. Audio frequency components of the voltage from V208A are filtered out by R237 and C228A. Capacitor C230, together with resistors R235 and R236, filters high-frequency audio components from the voltages which are applied to the silencer diode. Capacitor C246 bypasses the +105 volt source.

In normal operation, with no signal received, the cathode of the silencer diode is held at about +30 volts by the voltage applied to it through resistor R236 from the junction of resistors R237 and R238. When SILENCER switch S501 is in its OUT position, the diode plate is biased at approximately +58 volts, being connected to the junction of resistors R248 and R249 through resistor R246. Since the plate of the silencer diode is much more positive than the cathode, the diode conducts. In this condition, any signal or noise present at the cathode is passed through the diode to the first audio amplifier stage and the silencer does not provide any function.

The silencer circuit is made to operate by placing the SILENCER switch, S501, at the IN position. In this switch position, the plate of diode V208B is connected through resistor R246 to the adjustable arm of SILENCER potentiometer R247. This decreases the positive voltage applied to the plate. Potentiometer R247 permits the plate voltage to be adjusted from zero to approximately +36 volts, so the silencer diode may or may not conduct, depending on the setting of the potentiometer. With no received signal, potentiometer R247 should be set just beyond the point which cuts off the diode, thus preventing noise from passing through to the first audio amplifier. When a signal which exceeds the noise level is received, a negative voltage is developed at the plate of AGCsilencer diode V208A; see paragraph $2 f$ of this section. This voltage, applied to the voltage divider network (R237 and R238) in the cathode circuit of the silencer diode, reduces the positive bias at the cathode and permits the diode to conduct. Thus, the audio signal fed to the cathode from switch S202 is passed through the silencer diode to the audio amplifiers.
b. AUDIO FREQUENCY STAGES.-The audio frequency stages of the radio receiver, shown in figure $2-10$, are conventional in most respects. The first and second a-f amplifiers, V209A and V209B, are the two halves of a type 5670 twin triode. The input signal is applied from the silencer diode through coupling capacitor C232 to the grid of V209A. Bias is applied to the control grid from the AGC source through a voltage divider, resistors R250 and R251. In the plate circuit, capacitor C235A attenuates the unwanted higher frequencies so that only the voice frequencies necessary to efficient communication legibility are amplified. The output of this amplifier is applied to a two-section high-pass filter which helps establish the lower limit of the $350-$ to $3500-\mathrm{cps}$ audio passband. The filter is composed of capacitor C233, resistor R254, capacitor C234, and potentiometer R255. Potentiometer R255 is the A.F. LEVEL control. The signal is transferred through the adjustable arm of the potentiometer to the control grid of V209B, the second a-f amplifier.

The second a-f amplifier stage, V209B, has an unbypassed cathode resistor, R256, to provide degenerative feedback. It is boosted by a feedback loop from the secondary of output transformer T209 through resistor R261. The amplified output of the second a-f amplifier is applied to the grid of the a-f output stage, tube V210. Capacitor C235B sets the high-frequency limit at 3500 cycles per second.
The a-f output tube, V210, is a type 6AK6 power pentode which delivers approximately 1.1 watts to audio output transformer T209. The maximum distortion is 5%. Cathode resistor R259 is bypassed by capacitor C237A. Capacitors C238 and C239, in the plate circuit of tube V210, set the high-frequency limit of the audio circuit at 3500 cycles per second.
Audio signals from the a-f output stage are transformer coupled through T209 to the required output circuits. The impedance step-down of the transformer is 10,000 to 60 , with a balanced secondary output. The output signals are connected to the OUTPUT meter circuit, and to one circuit for headphones and another for an external speaker or other external applications.
There is an r-f filter between the secondary of transformer T209 and the OUTPUT meter, M502. It is composed of inductors L202 and L203 and capacitors C240 and C241. The OUTPUT meter shows, in decibels, the relative strength of the audio output.

The circuit to the headphones jack, J501, contains a volume control plus an r-f filter similar to the filter for the OUTPUT meter. PHONES volume control R502 allows the audio output to be regulated to the headphone circuit without any interference with the external audio output circuit. The r-f filter consists of inductors L204 and L205 and capacitors C242 and C243.

The third audio output circuit transmits the audio

Figure 2-10. Audio-Amplifier Stages, Simplified Schematic Diagram

Figure 2-11. Power Supply, Simplified Schematic Diagram
signals via connectors P301 and J405 for external use through the AUDIO output receptacle, J402, located at the rear of the cabinet. This circuit is filtered against external r-f fields by inductors L405, L406, L407, and L408, and capacitors C405, C406, C407, and C408. This filter is a part of Low-Pass Filter F-304/URR-35C. The signals are connected from the receiver into the Filter through connectors P301 and J405.
i. POWER SUPPLY.-The power supply, located at the rear of the IF/AF chassis, contains the power transformer, T301, rectifier V301, voltage regulators V302 and V303, d-c filter and bleeder networks, and a blower unit. The simplified schematic diagram is shown in figure 2-11.

Power transformer T301 is the source for all filament voltages and for the high voltage which is rectified for plate, screen, and bias voltages as required in the receiver.
(1) FILAMENT AND HEATER SUPPLY.-Three of the four secondary windings on transformer T301 provide filament or heater power. One supplies five volts for the type 5931 rectifier tube, V301; a second supplies 6.3 volts for the detector, noise limiter, AGC-silencer, and silencer diodes, tubes V206 and V208; and a third provides 6.3 volts for all the other tube filaments in the receiver, and for lamps $I 501$ and I502 in series with their dimmer rheostat, R501. The center tap of the diode heater secondary (the second mentioned above) is connected to a 9 volt negative potential instead of to ground. This bias on the filaments of these tubes minimizes hum.
(2) PLATE AND SCREEN SUPPLY.-The fourth secondary winding on transformer T301 furnishes high voltage to the plates of rectifier tube V301, a type 5931 tube, for full wave rectification. The rectified output is applied through resistors R307, R308, and R310 to voltage regulator tube V303, a type OA2WA tube. From this circuit, a regulated +150 volts is available for use in the local oscillator and first doubler stages in the preselector, and in the AGCsilencer amplifier. The rectified output is also applied through a filter, consisting of inductor L301 and capacitors C301, C302, and C303, for the +180 volt output; it is also applied from the filter through resistors R302, R303, and R309 to voltage regulator tube V302, a type OB2WA tube, for a regulated +105 volt output. The +180 - and +105 -volt outputs are used for plates and screens. To minimize hum, inductor L301 is tapped so that its inductance between terminals 1 and 2 and the capacity of C302 form a series resonant circuit at the ripple frequency, so ripple current has a low impedance path to ground.
(3) BIAS VOLTAGE.-Bias voltages are obtained by operating the negative side of the rectifier below ground potential. This output is derived from return current through resistors R301, R241, R242, and R244 to provide -9 volts for biasing the grid of the AGC-
silencer amplifier and - 3 volts for use in the AGC circuits and as a bias for the grids of the doubler and tripler stages in the oscillator-multiplier section of the preselector. The full -9 volt potential is also applied to the heaters of diodes V206 and V207; see paragraph $2 i(1)$ above.
(4) PRIMARY CIRCUIT.-The primary of power transformer T301 is tapped for operation from a 105 -, 115 -, or 125 -volt, 50 or 60 cycle, single phase a-c line. The power supply (and therefore the receiver) is turned on or off by the front-panel POWER switch, S502, which switches both sides of the power line. Circuit protection is provided by the two fuses, F201 and F202, which are in fuseholders mounted inside the right hand front panel compartment. Line power comes into the power supply through A.C. POWER connector J401 and connectors J405 and P301. The circuit is filtered against external r-f fields by a two section filter in Low-Pass Filter F-304/URR-35C; the components used are inductors L401, L402, L403, and L404, and capacitors C401, C402, C403, and C404.
The primary circuit of power transformer T301 is connected for 115 volt input, using terminals 1 and 3. If the voltage in the power source to which it is connected is consistently low or high, more satisfactory receiver operation can be obtained by changing the connections; see paragraph $2 d$ of Section 3.
(5) BLOWER AND THERMOSTAT. - Blower BL301 is mounted in the power supply section. It is used to circulate filtered air into the receiver cabinet to keep the operating temperature inside the cabinet within satisfactory limits. It is controlled by thermostatic switch S301, mounted inside the rear wall of the cabinet. Switch S301 automatically closes and applies voltage to the blower through connectors J301 and P302 whenever the inside ambient temperature reaches $+49^{\circ} \mathrm{C}\left(+120^{\circ} \mathrm{F}\right)$. Capacitor C304 provides the 90 degree phase shift necessary for operation of the split-phase motor from a single-phase line.
j. LOW-PASS FILTER F-304/URR-35C.-The LowPass Filter, F-304/URR-35C, allows the necessary connections into and out of the rear of the receiver, but eliminates unwanted signals from passing through the lines. There are three main circuits through the filter; the antenna lead, the a-c power lead, and the audio output lead.
(1) ANTENNA LEAD CIRCUIT.-R-f signals from an antenna are brought through a coaxial lead and connected to ANT jack J404 with plug P404, which is furnished with the receiver. They pass through the low-pass filter to jack J407, on the receiver side. When the receiver chassis is in place inside the cabinet, plug P101 on the rear of the preselector unit fits into jack J407 and carries the signals through into the receiver.
(2) A-C POWER CIRCUIT.-Power for the receiver is connected through plug P401, furnished with the

Figure 2-1 2. Low-Pass Filfer F-304/URR-35C, Simplified Schematic Diagram
equipment, to jack J401. There is a two section r-f filter which eliminates any radio frequency energy which may tend to come in through the power lines; this consists of inductors L401, L402, L403, and L404, and capacitors C401, C402, C403, and C404; see paragraph $2 i(4)$ above. The a-c power is then connected to terminals 70 and 71 in jack J405, on the receiver side of the Low-Pass Filter. When the receiver chassis is in place inside the cabinet, plug P301 on the rear of the power supply fits into jack J405 and connects the a-c power through into the receiver.
(3) AUDIO OUTPUT CIRCUIT.-The signal from the output transformer, T209, is connected through terminals 68 and 69 of plug P301 to the same numbered terminals of jack J405 on the receiver side of the Low-Pass Filter. The audio signals then pass through a two section filter to jack J402, and are connected through plug P402, furnished with the receiver, to be used for external applications such as speakers, intercommunication systems, recorders, etc. The filter, composed of inductors L405, L406, L407, and L408, and capacitors C405, C406, C407, and C408, allows the audio signals to pass through, but prevents any feeding back of r-f signals through the audio lines from outside the receiver.

RADIO RECEIVING SET AN/URR-35A

Figure 3-1. Packaging of Radio Receiving Set AN/URR-35 C

SECTION 3 INSTALLATION

1. UNPACKING THE EQUIPMENT.

a. GENERAL.-There are two cartons which together comprise one complete Radio Receiving Set AN/URR35C. These are indicated as Shipping Boxes $\# 1$ and \#2 in Table 1-3. Shipping Box \#1 contains the Radio Receiver R-482C/URR-35 complete as shown in figure $1-1$. Shipping Box $\# 2$ contains the maintenance spare parts which accompany each receiver. The method of packing Shipping Box \#1 is shown in figure 3-1.
b. UNPACKING RADIO RECEIVER R-482C/URR-35 AND ACCESSORIES.
(1) Open the top of the outer carton. Be careful to prevent cutting through the instruction books which are located in a waterproof bag just inside the carton top.
(2) Remove the waterproof bag and open it to obtain the two instruction books which are furnished as a part of each complete equipment.
(3) Open the water-vapor-proof barrier and the top of the inner carton.
(4) Remove the spacer over the front panel of the receiver, and pull the relay rack mounting brackets out of the recesses in the wraparound portion of the liner.
(5) Pull up on the handle at each side of the front panel of Receiver R-482C/URR-35. It will slide straight out of the container. The three plugs (see Table 3-1) which will be used to make external cables for installation are packed in a bag and tied to the receiver.

c. UNPACKING MAINTENANCE PARTS KIT.

The maintenance parts kit for Radio Receiving Set AN/URR-35C is packed in a single carton and sealed with paper tape. Its dimensions are shown in Table $1-3$. Cut through the paper tape to open the box, and check the enclosed packing slip against the contents of the kit. Keep the maintenance parts in the box and store them in a place designated by the officer-incharge.

2. PREPARATION FOR USE.

a. REMOVAL OF CHASSIS.-Remove the chassis from the cabinet prior to installing the equipment. Inspect the receiver to see that all tubes are seated properly in their sockets and that there are no other loose parts (see subparagraph b below). Check the power transformer connections (see subparagraph c below). To remove the chassis from the cabinet, loosen the four fasteners in the extreme corners of the front panel by turning each a quarter turn to the left.

Pull the chassis forward until the spring-actuated stops on the bottoms of the side rails prevent further travel; release these stops (one on each side) by pressing them upward (see figure 3-2). With the stops released, remove the chassis completely from the cabinet. The appearance of the inside of the cabinet is shown in Figure 3-3.

CAUTION

It may be difficult to overcome the friction to unseat the plugs from the jacks at the rear of the chassis. Do not attempt to pry against the gasket between the front panel and the cabinet. Pull only on the two handles on the front panel to perform the removal.
b. INSPECTION.-Before installing or operating the radio receiver, inspect the equipment for possible damage or disarrangement during shipment. Check to see that no nuts, washers, or bits of solder or other foreign particles have become lodged where they might cause a short circuit. A careful search should also be made for broken wires and loose connections, since a detailed mechanical inspection at this time

Figure 3-2. Removing Chassis from Cabinet

Figure 3-3. Interior of Cabinet with Chassis Removed
can save much inconvenience later. Operate all mechanical controls in each alternate position, or through their full range of travel, in order to detect any bent shafts or other evidences of abnormal operation. Tighten any screws or nuts which may have worked loose. Check to see that all tubes are well seated in their sockets, that all tube shields are firmly in place, that fuses F201 and F202 are in their holders, and that the fuseholders are in place in the panel compartment.

c. CHECK OF TRANSFORMER CONNECTIONS.

 -The primary of power transformer T301 is tapped to permit operation of the receiver from a $50-$ or 60 cycle power source of 105,115 , or 125 volts. When the equipment is shipped from the factory, T301 is wired for operation from a 115 volt $60-\mathrm{cps}$ source. If the equipment is to be used where the source voltage is 115 volts, and the receiver has not been previously used, proceed directly to paragraph 3, below. However, if the equipment has been used previously, or if the available power source is closer to 105 volts or 125 volts than to 115 volts, check and possibly change the primary connections for transformer T301. As shown in figure 7-28, a brown wire is connected to terminal 3 of T301 for operation from a 115 volt source. For operation from a 105 volt source, move the wire from terminal 3 to terminal 2; for operation from a 125 volt source, move the wire from terminal 3 to terminal 4.
Note

For operation from a $50-\mathrm{cps}$ source, use the next higher voltage tap on T301 with respect to the line voltage.

3. INSTALLATION.

a. LOCATION OF EQUIPMENT.-In locating the receiver, consider the accessibility of a suitable source of $105 / 125-\mathrm{volt}, 50 / 60-\mathrm{cps}$ power, of the antenna lead-in, and of any supplemental equipment which may be employed. It should be located where adequate fresh air is available for ventilation. Also, clearance should be adequate to permit removal of the chassis from the cabinet, and to permit access to the tubes and adjustments in the preselector without complete removal of the chassis. Outline drawings, showing all pertinent dimensions, appear in figures 3-7 through 3-10.

Note

The latest applicable Bureau of Ships installation plans should be followed, if available, rather than the instructions specified in this section.

The receiver is shipped with four shockmounts attached, ready for installation on a table or bench. If the receiver is to be installed in a standard relay rack, remove the four shockmounts and attach the mounting brackets to the sides, as shown in figure 3-4.
(1) TABLE OR BENCH MOUNTING.-If the receiver is to be set up on a bench or table, and the installation is to be more than temporary, it should be bolted in place. To do this, drill four $3 / 8$-inch diameter holes in the bench, in line with the centers of the shockmounts; dimensions are shown in figure 3-10. Remove the receiver chassis from the cabinet and drop a 5/16-inch diameter bolt through the hollow core of each shockmount and through the mating hole on the bench. Assemble a suitable flat washer and nut to each bolt under the bench. Draw each nut up tight, but not tight enough to place the shockmount under compression. Then add a second nut and tighten it up against the first to prevent loosening.

Before dropping the mounting bolts through the shockmounts, make sure that the phosphor-bronze ground strap provided is located in the hollow of one of the shockmounts so that the bolt passing through that shockmount will also pass through the large hole in one end of the strap. The other end of the strap should be fastened to the bottom of the cabinet by one of the four screws securing the shockmount involved.
(2) RELAY-RACK MOUNTING.-If the receiver is to be mounted in a standard 19 -inch relay rack, it will be necessary to remove the four shockmounts from the bottom of the cabinet and to attach the two angle brackets provided to the sides of the cabinet; see figure 3-4. The shockmounts can be taken off by merely removing the bolts in the corners of their flange plates. The angle brackets are symmetrical in shape and are attached, one to each side of the cabinet, by means of No. 8-32 x 1/2-inch long Phillip's-head machine screws. Five holes in each bracket line up with five tapped inserts in each side of the cabinet;
see figure 3-3. (The required screws will be found threaded into the tapped holes in the cabinet.) Removal of the shockmounts will also cause detachment of the phosphor-bronze grounding strap, which is ordinarily connected between one of the shockmount mounting screws and the $5 / 16$-inch diameter cabinet mounting bolt which drops through the hollow core of the shockmount. This strap will not be needed for relay-rack mounting, but should be put in safe keeping for possible future use.

Note

Size "A" or larger spacer panel should be used between equipment when mounted in racks for shore installation.
b. EXTERNAL CONNECTIONS.-External connections are made to suitable connectors on Low-Pass Filter F-304/URR-35C, which is attached to the rear of the receiver cabinet; see figure 1-3. Cables for making external connections to the receiver are not supplied, but connector plugs suitable for use with such cables are provided. The types and functions of these plugs are indicated in figure 3-5 and summarized in table 3-1.

Procedures for fabricating a cable from coaxial transmission line and the coaxial connector are shown in figure 3-6.

Plug P401, provided for the power cable, has three female contacts. Contacts A and C connect to the a-c line, and contact B connects to ground. Pins A and C on the four-contact audio-output connector, P402, provide a balanced output connection for any audio-frequency load having an impedance between 60 and 600 ohms. Pin B of this connector is connected to ground,

Figure 3-4. Radio Receiver R-482C/URR-35, Relay-Rack Mounting Brackets Aftached and Shockmounts Removed

Note

An impedance-matching transformer should be used only as an interim measure until the recommended amplifier can be installed.
The GND stud on the rear of the filter assembly, between receptacles J 401 and J 404 , should be connected to the station ground with a short length of copper strap, not less than one-half inch wide.

4. INITIAL ADJUSTMENTS.

a. GENERAL.

(1) If not already in place, insert the crystal required for the desired channel of operation in the crystal holder in the left-hand compartment of the front panel; see figure 4-1. The correct crystal frequency to be used can be determined from the formula:

Figure 3-5. Connectors and Cables for Exfernal Connections

TABLE 3-1. CONNECTOR PLUGS SUPPLIED FOR EXTERNAL CONNECTIONS

REF. SYMBOL OF PLUG	TYPE OF PLUG	MATING RECEPTACLE	CABLE OR WIRE USED WITH PLUG	EXTERNAL CIRCUIT
P401	AN3106-14S-7S plug, AN3057-6 cable clamp	J401 (A.C. POWWR)	MCOS-2	105/125-v, 50/60-cps, 1-ph. power source
P402	AN3106-14S-2S plug, AN3057-6 cable clamp	J402 (AUDIO)	TTHFWA-1-1/2	Audio output to interphone or other audio listening device(s)
P404	UG-941A/U	(50 OHM ANT.)	RG-10/U	Antenna input (50-ohm impedance)

Crystal frequency (in mc) $=$
selected channel frequency (in mc) +18.6 mc

12

(2) Connect one end of the a-c power cable to the A.C. POWER receptacle on the rear of the filter, and the other end to the a-c power source.
(3) Connect the cable from the transfer panel or speaker-amplifier to the AUDIO receptacle on the rear 'of the filter, or plug a headset into the phone jack, J 501 on the front panel.
(4) Connect the antenna transmission line to the 50 OHM ANT. receptacle on the rear of the filter.
(5) \mid Position the receiver controls (see figure 4-1) as follows:
(a) OSC. switch in CRYSTAL position.
(b) N.L. switch in OUT position.
(c) SILENCER switch in OUT position.
(d) A.F. LEVEL control turned fully clockwise.
(e) PHONES control at 8.
(f) ALIGN-REC. switch in REC. position.
(6) Place the POWER switch in its ON position. After about four seconds the CRYSTAL neon lamp should light, indicating that the receiver is under crystal control and that plate power is on. If the panel is not illuminated properly, rotate the DIMMER control to bring lamps I 501 and I 502 up to the desired brilliance. After about two minutes' warm-up time, loosen the LOCK knob beside the tuning control.
b. CRYSTAL-CONTROLLED TUNING. - Rotate the tuning control until the selected channel frequency appears on the calibrated dial visible through the window marked MEGACYCLES. This frequency will be equal to 12 times the crystal output frequency, less 18.6 megacycles. The dial reading will indicate approximate tuning. With no signal coming into the receiver, the exact setting is obtained by tuning for a maximum reading (maximum noise) on the OUTPUT meter or on the INPUT meter. The level which will be indicated on the OUTPUT meter should be between -5 db and +10 db . The indication on the INPUT meter may rise as high as 0.4 milliampere. With the
noise level on the OUTPUT meter within the specified range, zero the INPUT meter by means of the INP. MTR. screwdriver-adjust potentiometer located in the right-hand compartment.

Note

Because a harmonic-mode crystal is used to control the oscillator circuit, it is possible that, at the frequencies mentioned below, resonance peaks will be observed at two different points in the frequency range when the receiver is being tuned for a maximum indication on the OUTPUT meter.
When tuning to a channel between 225 and 233 megacycles, the second response would occur at the high-frequency end of the band, between 387 and 400 megacycles. Conversely, when tuning to a channel between 387 and 400 megacycles, the second response would occur at the low-frequency end of the band, between 225 and 233 megacycles.
To prevent incorrect tuning of the receiver in the 225-233 and 387-400 megacycle ranges, the calibrated dial should be set at the approximate frequency of the desired channel. The final adjustment should then be made by peaking the OUTPUT meter for maximum noise indication.
c. MANUAL TUNING.-To operate the equipment as a continuously variable, manually tuned receiver, place the OSC. switch in its MANUAL position. This will cause the CRYSTAL neon lamp to go out. The receiver may now be tuned to any frequency within the 225-400 megacycle range by operation of the tuning control, as for crystal-controlled tuning. The sensitivity of the receiver is approximately the same for either crystal-controlled or manual tuning and will be greater than 8 microvolts, in series with 50 ohms, for a $10-\mathrm{db}$ signal-to-noise ratio over the entire range.
d. NOISE LIMITER.-Place the N.L. switch, located in the right-hand compartment, in its IN posi-

INSTRUCTIONS FOR ASSEMBLY

OF AN TYPE UG-2IA/U, UG-21B/U, UG-22A/U, UG-22B/U, UG-23A/N OR UG-23B/U CONNECTOR TO AN TYPE RG-IO/U COAXIAL CABLE.

CABLE CLAMPING PARTS

(3)
(4)

JACK BODY

PLUG BODY
MALE CONTACT

1. SLIDE PART \#1 OVER ARMOR AND PUSH ARMOR BACK. CUT VINYLITE OUTER JACKET OFF, SQUARE AND EVEN, ONE INCH from end, being careful not to damage wire braid.

2. PUSH WIRE BRAID BACK AND CUT OFF $1 / 4^{\prime \prime}$ OF DIELECTRIC. PULL BRAID FORWARD AGAIN AND TAPER INWARD AT END (IF NECESSARY FOR REMAINDER OF THIS STEP). SLIDE PART * 2 OVER VINYLITE JACKET AND FOLLOW WITH PARTS $\# 3, * 4$ AND \#5, making sure that ${ }^{\circ} 5$ clears all braid wires and that its internal shoulder rests squarely against end of jacket.

3. UNBRAID ENDS OF WIRE SHELD AND PULL OUT PARALLEL. THEN FOLD THESE BACK OVER PART * 5 AND CUT OFF FLUSH WITH SHOULDER ON THIS PART. CUT OFF DIELECTRIC AGAIN, THIS TIME SO AS TO LEAVE $5 / 32^{\prime \prime}$ OF DIELECTRIC EXPOSED. CUT SQUARE AND EVEN, BEING CAREFUL NOT TO NICK CENTER CONDUCTOR. CUT OFF CENTER CONOUCTOR $3 / 16^{*}$ FROM END OF DIELECTRIC AND TIN. SOLDER THIS TIP TO MALE OR FEMALE CONTACT. KEEP SOLDER AND FLUX OFF OF END OF DIELECTRIC, AND REMOVE EXCESS.
4. INSERT CABLE, AS ASSEMBLED, IN PLUG OR JACK BODY AS FAR AS IT WILL GO. PUSH PARTS * 4 AND $\# 3$ INTO BODY, AND SCREW IN PART \#2. HOLD BOOY WITH WRENCH TO TIGHTEN, USING CARE NOT TO LET BOOY OR CABLE ROTATE. PULL ARMOR FORWARD OVER TAPERED PORTION OF PART \#2. CUT OFF EXCESS ARMOR AND UNBRAID ENDS FOR A SHORT DISTANCE. BRING PART ${ }^{\boldsymbol{*}} 1$ FORWARD TO CLAMP ARMOR BETWEEN THE TWO TAPERED SUR FACES. BE CAREFUL THAT LOOSE ENDS OF ARMOR WIRES DO NOT EXTEND INTO SCREW THREADS AND JAM.

NOTE:
AN TYPE MX-364A/U CONNECTORS MUST BE USED WITH APPROVED CABLE.

Figure 3-6. Assembling Connector Plug P404 to Type RG-10/U Cable

Figure 3-7. Preselector, Oufline Drawing

NAVSHIPS 92676

Figure 3-8. Low-Pass Filter F-304/URR-35 C, Outline Drawing
tion. Excessive noise at the receiving location should be reduced by the noise limiter. Regardless of the amount of received noise, however, cutting the noise limiter into the receiver circuit will result in a drop of approximately 3 db in the reading of the OUTPUT meter. The N.L. switch may be placed in either the IN or OUT position, depending upon the noise level at the receiving site.
e. SILENCER.-Place the front-panel SILENCER switch to its IN position. With no received signal, set the SILENCER screwdriver-adjust control, located in the right-hand compartment, at the point at which the noise level becomes inaudible. When making this adjustment, be certain that the A.F. LEVEL control is turned fully clockwise and the PHONES control is set to 8. Restore the SILENCER switch to its OUT position.

Figure 3-9. Relay-Rack Mounting Bracket, Outline Drawing

SECTION 4 OPERATION

1. INTRODUCTION.

It is assumed that Radio Receiver R-482C/URR-35 will have been installed, and that all necessary adjustments will have been made according to the instructions in Section 3, before it has been turned over to operating personnel. It is also assumed that those frequencies to which the receiver is likely to be tuned will have been determined, and that suitable crystals will be ready if crystal-controlled tuning is to be used.

The operator should become familiar with all the controls on the receiver front panel and inside the panel compartments. With these, he will be able to tune the receiver to any channel within the 225 to 400 megacycle range of the receiver.

2. OPERATING CONTROLS.

a. LOCATION OF CONTROLS. - All controls which are required for ordinary operation are located on the front panel and in front panel compartments; see figure 4-1. Those which are used the most are recessed into the lower part of the central portion of the panel. The crystal and the lesser used adjustments are enclosed in the compartments on either side of the panel. The INPUT and OUTPUT meters, the panel lamp which indicates crystal operation, and the viewing window for the calibrated tuning dial are in the central portion of the front panel above the recessed portion.
b. FUNCTIONS OF CONTROLS.-The function of the various front-panel controls are described below. The paragraph number for each control corresponds to the index number in figure 4-1.
(1) "MEGACYCLES" DIAL.-This dial indicates the frequency, in megacycles, to which the receiver is tuned. It is calibrated directly in megacycles.
(2) "INPUT" METER.-The INPUT meter provides a relative indication of the input signal level. It may also be used as a tuning indicator.
(3) "CRYSTAL" INDICATOR LAMP. - This lamp glows whenever the receiver is being operated with crystal control. The receiver must then be tuned to the frequency determined by the crystal in the CRYSTAL holder (19).
(4) "OUTPUT" METER.-The OUTPUT meter is calibrated in decibels (db). It shows the strength of the audio output and has a zero db reference level of 6 milliwatts into a 600 -ohm line.
(5) FUSE.-The two line fuses (numbers 5 and 7
in figure 4-1) are mounted in extractor-post holders. They protect the receiver circuits against damages which would be caused by short circuits or by other circuit faults.
(6) "INP. MTR." ADJUSTMENT.-This screw-driver-adjustment controls the sensitivity of the INPUT meter circuit. Use it to set the meter reading at zero when there is no signal being received.
(7) FUSE.-The second line fuse, as mentioned in subparagraph (5) above.
(8) SPARE FUSE.-A spare fuse, which is identical to either of the two operating fuses, is mounted in a fuse clip on the inside of the right-hand compartment door.
(9) "N.L." SWITCH.-The N.L. (noise limiter) switch permits the operator to switch the noise limiter circuit IN or OUT of the receiver circuit. The manner in which it is used will be determined by the amount of noise at the receiver location.
(10) "SILENCER" CONTROL. - This screw-driver-adjust potentiometer is used to set the operating threshold of the silencing circuit. It is normally adjusted just beyond the point which cuts off the audio output in the absence of a received signal.
(11) "A.F. LEVEL" CONTROL. - The A.F. LEVEL control is a screwdriver-adjust potentiometer. It is the gain control for the audio-frequency section in the receiver. Its adjustment will depend on the requirements of the reproducing equipment connected to the AUDIO output on the Low-Pass Filter at the rear of the receiver.
(12) HEADPHONES JACK.-This jack is the contact receptacle into which the plug for any standard headset can be connected. Lift the spring-loaded dust cover for access.
(13) "POWER" SWITCH.-The POWER switch is used to turn the entire receiver ON or OFF.
(14) "PHONES" CONTROL.-This control adjusts the volume of the audio output at the headphones jack. It is used to control the headphones volume level after the A.F. LEVEL control has been preset to some specific gain, as required by the auxiliary listening equipment connected to the AUDIO output connector at the rear of the receiver (see subparagraph (11) above).
(15) "SILENCER"' SWITCH.-This control permits the operator to switch the silencer circuit IN or OUT of the receiver circuit. Use of the silencer circuit is determined by operating requirements and con-
ditions at the receiver location.
(16) "DIMMER" CONTROL.-The DIMMER control adjusts the intensity of the tuning dial illuminating lamps.
(17) "LOCK". -When this knob is turned to its extreme clockwise position, as indicated by the arrow directly above it, the tuning control is locked at the frequency to which it is tuned. This prevents accidental detuning of the receiver. It releases when it is turned counter-clockwise.
(18) TUNING CONTROL.-This is a knob with a crank handle. It is used to tune the receiver. The crank handle permits rapid tuning, and the larger knob aids fine-tuning after an approximate frequency setting has been made.
(19) "CRYSTAL" HOLDER.-The CRYSTAL holder serves as the mounting for the type CR-24/U crystal which is used for crystal-controlled operation. It is necessary to have a crystal mounted in this holder, even though it is not in use, in order to manually tune the receiver to the frequencies as indicated on the MEGACYCLES dial.
(20) "OSC"' SWITCH. - The position to which the OSC. switch is set determines the mode of operation for the receiver. When it is in the CRYSTAL position, the receiver tuning is crystal-controlled. When the switch is in the MANUAL position, the receiver tuning is manually operated.
(21) "ALIGN-REC." SWITCH. - This switch controls the functional operation of the INPUT meter.

1. MEGACYCLES Dial
2. INPUT Meter (M501)
3. CRYSTAL Indicator Lamp (I503)
4. OUTPUT Meter (M502)
5. Fuse (F201)
6. INP. MTR. Adjustment (R218)
7. Fuse (F202)
8. Spare Fuse (F203)
9. N.L. Switch (S202)
10. SILENCER Threshold Control (R247)
11. A.F. LEVEL Control (R255)
12. Headphones Jack (J501)
13. POWER Switch (S502)
14. PHONES Gain Control (R502)
15. SILENCER Switch (S501)
16. DIMMER Control (R501)
17. Tuning LOCK (E502)
18. Tuning Control (C101, C102)
19. CRYSTAL Holder (Y201)
20. OSC. Switch (S203)

Figure 4-1. Radio Receiver R-482A/URR-35, Operating Controls

When the switch is in the normal REC. position, the meter functions as an input-level meter. When the switch is set to ALIGN, the input meter may be used by maintenance personnel for the purpose of aligning the oscillator, first doubler, second doubler, and tripler grid circuits. For normal receiving operation, this switch should always remain in the REC. position.

3. MODES OF OPERATION.

a. MANUAL TUNING.-With manual tuning, the receiver can be tuned continuously through the 225 to 400 megacycle range in one band, in the manner of any standard superheterodyne receiver. The entire range is covered with 19 complete turns of the tuning control, which stops automatically at each end of the tuning range. As the control is rotated, the frequency to which the receiver is tuned is indicated on the calibrated MEGACYCLES dial, through the viewing window in the panel directly above. No adjustments other than the rotation of this control are necessary, though it may be desirable at times to adjust the volume or to switch the noise limiter and silencer circuits in or out.
b. CRYSTAL-CONTROLLED TUNING.-Crystalcontrolled operation allows the receiver to be tuned, at any given time, to only the channel determined by the crystal installed in the CRYSTAL holder in the left-hand compartment. This mode of operation has advantages of stability and freedom from drift, and an inherent ability to produce sharper tuning. The essential difference between manual- and crystal-controlled tuning is that the oscillator frequency is fixed by the crystal during crystal-control, and is freerunning to track with the tuning of an incoming r-f signal during manual-control.

4. OPERATING THE RECEIVER.

a. PREPARATION FOR OPERATION.

(1) Insert the plug for a headset into the frontpanel jack and position the receiver controls (see figure 4-1) as follows:
(a) ALIGN-REC. switch in the REC. position.
(b) N.L. switch at OUT position.
(c) SILENCER switch at OUT position.
(d) A.F. LEVEL control turned fully clockwise
(e) PHONES gain control at 8.
(f) OSC. switch in position for desired mode of operation. Use the CRYSTAL position for crystalcontrolled tuning, or the MANUAL position for tuning.
(2) Set the POWER switch at ON. If the receiver has been prepared for crystal-controlled operation (OSC. switch at CRYSTAL), the CRYSTAL neon lamp should light approximately four seconds after power is applied. Rotate the DIMMER control to adjust the illumination on the MEGACYCLES dial as desired. After about two minutes of warm-up time, loosen the LOCK knob and proceed with the instructions in subparagraph b or c below, as applicable.

Note

The receiver sensitivity is better than 8 microvolts for a $10-\mathrm{db}$ signal-to-noise ratio, and is the same for either crystal-controlled or manual operation.
b. CRYSTAL-CONTROLLED TUNING.-If it is not already in the holder, insert the crystal required for the desired channel of operation in the CRYSTAL holder. Determine the correct crystal frequency from the formula:
Crystal frequency (in mc) $=$
selected channel frequency (in mc) +18.6 mc

12

Be certain that the OSC. switch is in the CRYSTAL position. Then rotate the tuning control until the selected channel frequency appears through the MEGACYCLES window on the calibrated dial. This frequency will be 18.6 mc less than 12 times the crystal fundamental frequency. Turn the tuning control carefully to the exact setting for a maximum reading on the OUTPUT meter or on the INPUT meter. If no signal is coming into the receiver, the maximum reading on the OUTPUT meter will indicate maximum noise. If no signal is coming into the receiver, the INPUT meter should indicate zero; if it does not, readjust the INP. MTR. control, located in the right-hand compartment, to correct the situation.

Note

Because a harmonic-mode crystal is used to control the oscillator circuit, it is possible to obtain two resonance peaks, at the frequencies mentioned below, at two different points in the tuning range of the receiver when it is tuned for a maximum indication on the OUTPUT meter.
When you tune to a frequency between 225 and 233 mc , the second response would occur at the high-frequency end of the band, between 387 and 400 mc . Conversely, when tuning to a frequency between 387 and 400 me, the second peak would occur at the lowfrequency end of the band, between 225 and 233 mc .
To prevent incorrect tuning of the receiver in these ranges, set the calibrated dial to the approximate frequency of the desired channel, and make the final adjustment for a peak on the OUTPUT meter without tuning to the opposite end of the tuning range.
c. MANUAL TUNING.-When the OSC. switch is in the MANUAL position, the receiver can be tuned to any frequency in the range of 225 to 400 mc by rotating the tuning control on the front panel. The frequency is shown on the MEGACYCLES dial. When there is no signal being received, the indication on the OUTPUT meter should be between -5 and +10 db .

If the indication on the INPUT meter is other than zero, readjust the INP. MTR. control, located in the right-hand compartment. When tuning in a signal, tune for the maximum indication on the INPUT meter.

Note

There must be a type CR-24/U crystal in the CRYSTAL holder in order to obtain correct frequency tuning during manual operation. The crystal frequency will not affect the tuned frequencies other than to track actual tuned frequencies with indications on the MEGACYCLES dial.
d. SILENCER OPERATION.-If desired, the silencer (squelch) circuit may be put into operation by placing the SILENCER switch at its ON position, and then adjusting the SILENCER control in the right hand compartment for the desired silencing level.

Note

In setting the SILENCER control, use extreme care to prevent loss of weak signals.

The silencing level should ordinarily be the point at which noise just becomes inaudible under the conditions of no-signal input, with the A.F. LEVEL control set for maximum and the PHONES gain control set at 8 . Further silencing entails the danger of squelching weak signals which it might be desirable to hear. On the other hand, restraint in the use of silencing to less than a complete silencing of noise, in the hope of picking up very weak signals, is useless because signals which do not exceed the noise level will not be intelligible in any case. Silencing beyond the minimum necessary for noise suppression would be permissable in the situation where a known signal is anticipated, and where the signal is known to be strong enough to override the "squelching" effect of the silencer circuit.
e. NOISE-LIMITER CIRCUIT.-If the noise level is excessive when a signal is being received, the N.L. switch in the right hand compartment may be set to its IN position. This circuit acts as a noise-peak limiter and is effective in the reduction of interference or noise peaks of high intensity and short duration. For this reason, it may not always be effective in limiting commutator hum and similar continuous noises, where no large abrupt peaks are present. Because the noise-limiter circuit may cause slight distortion of deeply modulated signals, it should be switched off whenever receiving conditions permit.

Note

Use of the noise-limiter circuit will reduce the OUTPUT meter indication about 3 db .
f. "INPUT" METER.-The INPUT meter provides an approximate indication of the level, in microvolts, of the incoming signal. However, the relation between the level of the incoming signal and the position of the meter pointer is not linear. Furthermore, this relation will vary with the frequency at which the receiver is operated. It will also vary slightly between any two receivers operating at the same frequency. It is therefore desirable that a calibrated chart be prepared, correlating measured values of signal level with corresponding INPUT meter readings. A typical chart is shown in table 4-1.

To prepare such a chart for an individual receiver, disconnect the antenna input cable from the 50 OHM ANT. receptacle and substitute the output of a calibrated r-f signal generator having a 50 ohm output impedance. Tune the receiver and the signal generator to the same frequency. With known values of input, it is only necessary to record the INPUT meter readings as they correspond to various r-f signal strengths.
table 4-1. TYPICAL "INPUT" METER CALIBRATION

INPUT (MICROVOITS)	"INPUT" METER READING
0.5	.03
1.0	.07
2.5	.29
10	.60
50	.80
100	.86
1,000	.90
10,000	.95

5. DE-ENERGIZING THE RECEIVER.

In order to completely de-energize the receiver, it is only necessary to place the front-panel POWER switch in its OFF position.
hand panel compartment, F201 and F202, are the only fuses used in Radio Receiver R-482C/URR-35; see figure $4-1$. These protect the 115 -volt, $50 / 60 \mathrm{cps}$ primary circuit in the power transformer. If one of these fuses blows, replace it with another which has exactly the same rating, and then only after the circuit has been examined to make sure that no obvious fault exists. The Standard Navy Stock Number for these fuses is $\mathrm{N} 17-\mathrm{F}-16302-100$.

WARNING

> Never replace a fuse with one of higher rating unless continued operation of the receiver is more important than the probable damage to it. If a fuse blows out immediately after replacement, do not make a second replacement until the cause of the trouble has been corrected.

A spare fuse, F203, is mounted in clips on the inside of the panel compartment door. Additional spare fuses should be kept at hand for replacement use. If fuse F201 and/or fuse F202 blows following a replacement, it is possible that the rectifier tube, V301, is faulty, and the operator may try replacement of this tube. (Refer to paragraph $3 c$ below). However, if this fails to correct the trouble, further servicing must be entrusted to qualified maintenance personnel.
c. REPLACEMENT OF ELECTRON TUBES.-The full complement of electron tubes used in Radio Receiver R-482C/URR-35 is shown in table 1-4. These tubes are all located in either the preselector unit, or in the IF/AF section or the power supply section of the receiver chassis. Their locations are shown in figures 2-2 and 7-4.

Access to tubes in the IF/AF section is gained by
table 5-1. ROUTINE OPERATIONAL CHECK CHART

WHAT TO CHECK	HOW TO CHECK	REMARKS
Dial lamps	Check visually to see that lamps are lighted when DIMMER control is rotated to maximum clockwise position.	Failure of one lamp is fault in lamp. Failure of both probably indicates power failure. Check fuses and A.C. POWER input connection.
CRYSTAL neon glow lamp	Check visually to see that lamp glows when OSC. switch is in CRYSTAL position.	Unlighted lamp indicates loss of plate voltage. Failure of lamp itself very unlikely.
Receiver operation	Turn A.F. LEVEL control to maximum clockwise posi- tion and throw SILENCER switch to OUT position. OUTPUT meter should indicate noise output.	A reading of between -5 db and +10 db on OUTPUT meter indicates normal operation of receiver.
External cables and connectors	Check connectors at rear of receiver for lonseness or intermittent connection.	Loose connections may cause inter- mittent operation.

NAVSHIPS 92676
OPERATOR'S MAINTENANCE
AN/URR-35C
releasing the four fasteners in the corners of the front panel and withdrawing the chassis as far as the mechanical stops will permit. Access to tubes in the power supply section is gained by releasing these stops as shown in figure 3-2, and removing the chassis from the cabinet. To gain access to the tubes in the preselector, the shielding covers at the left side of the chassis must be removed. This is best done with the chassis resting on its right side. If the receiver fails to operate, but the dial lamps remain lighted indicating the presence of primary power, the cause may be attributable to tube failure. Since it will not be known which tube has failed, each tube in the receiver should be replaced with a tube, of the same type and known to be good, in the following order until the defective one is located: first, those in the power supply
section; next, those in the IF/AF section; and finally, those in the preselector.

Note

In the receiver, as shipped from the factory, all tubes are of "reliable" construction except for the type 6AK6 audio output tube (V210), When making replacements, use "reliable" tubes wherever possible.

The type 5654/6AK5W pentode utilized in the receiver is similar to a type 6AKS pentode. Also, the type $5726 / 6 A L 5 W$ twin diode is similar to a type 6AL5. In an emergency, a 6AK5 or 6AL5 may be used to replace its counterpart.

SECTION 6 PREVENTIVE MAINTENANCE

1. GENERAL.

While Radio Receiving Set AN/URR-35A has been designed and built to give as continuous and troublefree operation as possible, a certain amount of wear and deterioration must be expected in any apparatus of this nature. If detected and corrected at an early stage, trouble from these causes can be minimized. However, if nothing is done until trouble actually occurs, a serious shut-down may be necessary at a time when use of the equipment is most needed.

2. ROUTINE MAINTENANCE CHECKS.

Since wear and deterioration, though they represent potential trouble, are not always evident in themselves, it is essential to continued trouble-free operation that certain vital points be inspected periodically, and that necessary replacements and adjustments be made when discovered. Such systematic inspection and adjustment will increase the efficiency and life of the equipment.

Note

> THE ATTENTION OF MAINTENANCE PERSONNEL IS INVITED TO THE REQUIREMENTS OF CHAPTER 67 OF THE BUREAU OF SHIPS MANUAL, OF THE LATEST ISSUE. PERSONNEL ARE ALSO REQUESTED TO READ THE SAFETY INSTRUCTIONS INCLUDED IN THE FRONT MATTER OF THIS BOOK.

A practical working schedule is outlined in this section. However, it may be found desirable to modify this schedule as experience dictates, since the exact intervals at which certain maintenance procedures must be performed will be determined by such factors as the operating schedule of the station or ship, and prevailing atmospheric conditions.

Suggested routines for periodic electrical and mechanical inspection are given in the routine maintenance check chart, table 6-1.

Note

To gain access to the wiring and components, release the four fasteners in the corners of
the front panel and withdraw the chassis as far as the mechanical stops will permit. Then, release the stops as shown in figure 3-2 and remove the chassis from the cabinet.

3. LUBRICATION.

a. GUIDE RAILS AND ALIGNMENT PINS.-To facilitate removal of the chassis from the cabinet, apply a thin coat of ball and roller bearing lubricant, Navy Specification 14-L-3, to the top of each guide rail and to the guide pins in the cabinet. Apply it very sparingly to these parts whenever it is required. The guide rails and pins are shown in figure 3-3.

Note

When ordering lubricant, Navy Specification 14-L-3, refer to Standard Navy Stock Number W14-L-84-900 for 1-1b can, or W14-L-$84-910$ for $5-\mathrm{lb}$ can.
b. DIAL DRIVE MECHANISM.-If operation of the dial-drive mechanism becomes sluggish due to accumulated dust and grit in the gears, it may be advisable to clean and relubricate the gears, as explained in figure $6-1$. To clean the gears, use a small brush generously charged with Dry Cleaning Solvent 140F (FED. SPEC. P-5-661b) and start with the top gear and work down. To relubricate, apply a coating of the above-mentioned lubricant to the teeth of the accessible gears, using a suitable camel's-hair brush (Standard Navy Stock Number 38-B-725).

Note

When ordering Solvent 140 F , refer to Federal Stock Number WM6850-274-5421 for a 5gallon can.

4. RE-TROPICALIZATION.

In manufacture, Radio Receiver R-482C/URR-35 is not tropicalized as a complete assembly, but instead, use is made of materials and parts which are either inherently moisture- and fungus-resistant, or which have been tropicalized individually prior to assembly in the receiver. Since the repair parts provided are identical with the parts used in the equipment, pretropicalized parts will be replaced with pre-tropicalized parts and the over-all resistance of the equipment to moisture and fungus should be unaffected.

TABLE 6-1. ROUTINE MAINTENANCE CHECK CHART

WHAT TO CHECK	How to check	PROCEDURE
Monthly		
Chassis	Remove chassis from case and inspect for loose parts or leads, and for parts damaged due to overheating.	Tighten all loose screws, and all screws on terminal strips. Check all components showing distress for deviation from design values, and replace if necessary; also check circuits involved.
Receiver sensitivity and gain	Check as outlined in par. 3 of Section 7.	If sensitivity or gain is low, receiver will require tube replacement or alignment as outlined in par. 4 of Section 7.
Cables and connectors	Detach cables and examine insulation for possible damage. Examine cable connectors for loose, bent or dirty contacts; also for damaged threads and loose cable clamp screws.	If dirt or grease is present on contacts, clean with Dry Cleaning Solvent 140F (Fed. Stk. No. WM6850-2745421, Fed. Spec. P-S-661b).
Front panel and subpanel controls, switches, knobs, etc.	Check for looseness of switch and control mounting nuts. Check for missing or loose knobs.	Tighten loose nuts, replace missing knobs and tighten loose knobs. A Bristol setscrew key for tightening knob setscrews is mounted at rear of sub-panel.
Blower operation	Check blower operation by closing contacts of thermostatic switch S301 (on rear of chassis behind preselector). This can be done by gently probing switch with an insulated rod when receiver is connected up for bench testing. (WARNING: 115 v ac is present at S301.)	If closing of contacts fails to start blower, check connections to blower and blower capacitor. If necessary to replace blower, follow removal instructions given in par. $6 b$ of Section 7. If blower is excessively noisy, replace bearings as outlined in par. $6 d$ of Section 7.
Electron tubes	Check all electron tubes in mutual-transconductance tube tester, such as Tube Tester TV-3/U series. Replace any tube having transconductance value of less than 75 percent of normal. After test, replace each tube in its original socket.	When making tube replacements, the "reliable" models of all types should be used whenever possible.
Quarterly		
*Air filters	Remove filter units from inside of cabinet by sliding the snap-slide fasteners and inspect.	Clean with solution of hot water and dishwashing compound (Fed. Stk. No. GT 7930-269-1278). Let filters dry thoroughly. Dip in Military Symbol -2190T or -3100 lubricating oil, or equivalent (SAE 30 or 50), using heavier oil (-3100 or SAE 50) at higher operating temperatures. Let excess oil drain off for about one-half hour.
Semi-Annually		
Receiver chassis and cabinet	Inspect receiver chassis, top and bottom, for loose parts, assemblies and chassis assembly screws. Inspect for dirt on tube sockets and in preselector housing. Inspect cabinet for loose mounting screws on track slides and shock mounts. Check for damage to parts due to overheating, etc.	Use a small brush (SNSN 38-B-375) charged with Dry Cleaning Solvent 140F (Fed. Stk. No. WM 6850-2745421, Fed. Spec. P-S-661b).
Dial-drive mechanism	Observe smoothness of dial operation, and inspect gears in drive mechanism visually for evidence of grit and dirt in teeth.	If operation of dial drive indicates that the gears are sticky or binding, clean and re-lubricate in accordance with par. 3 , this section, and figure 6-1.

* In installations at shore stations or in a ship which is tied up at a pier, the dust content of the air may be high. In such cases it is advisable to clean the air filters monthly or weekly, if necessary.

Figure 6-1. Dial-Drive Mechanism, Details and Lubrication

SECTION 7

CORRECTIVE MAINTENANCE

1. LOCALIZATION OF TROUBLE.

Corrective maintenance covers that phase of the care of the equipment dealing with the location and correction of trouble that has already occurred, and which is beyond the province of the operator to attempt to correct. For this work it is assumed that technical personnel with radio training are available.

WARNING

VOLTAGES ARE PRESENT IN THIS
EQUIPMENT WHICH ARE DANGEROUS
AND WHICH MAY BE FATAL IF CON-
TACTED. OBSERVE ALL SAFETY PRE-
CAUTIONS; REFER TO THE SAFETY
NOTICE INCLUDED IN THE FRONT
MATTER OF THIS INSTRUCTION BOOK.
An important part of remedying defective equipment operation lies in the development, and proper use, of a systematic method of localizing the source of trouble to one particular stage or component of the receiver, or to as small a portion of the receiver as
possible. Proper isolation of a source of trouble to a definite portion of the circuit is a time saver, in that it becomes possible to avoid the detailed inspection of those parts of the circuit which may be completely trouble-free.

For the most part, localization of the source of trouble can be accomplished by conventional "signaltracing" methods. This method of trouble shooting entails a stage-by-stage check, starting either at the input of the receiver and tracing ahead, or at the output and checking backward, until a signal interruption is encountered. Regardless of the direction of checking, the defective stage will probably be that in which the signal first was found to be faulty.

2. TROUBLE SHOOTING.

a. GENERAL.-With the equipment properly installed, any irregularities which occur in the performance of the receiver will be attributable either to misadjustment of one or more of the controls, or to the failure of some part.

FAILURE REPORTS

Abstract

'Report each failure of the equipment, whether caused by a defective part, wear, improper operation, or an external cause. Use ELECTRONIC FAILURE REPORT form DD 787. Each pad of the forms includes full instructions for filling out the forms and forwarding them to the Bureau of Ships. However, the importance of providing complete information cannot be emphasized too much. Be sure that you include the model designation and serial number of the equipment (from the equipment nameplate), the type number of the major unit (from the major unit nameplate), and the type number and reference designation of the particular defective part (from the instruction book). Describe the cause of the failure completely, continuing on the back of the form if necessary. Do not substitute brevity for clarity. And remember - there are two sides to the failure report -..

''YOUR SIDE"
Every FAILURE REPORT is a boost for you:

1. It shows that you are doing your job.
2. It helps make your job easier.
3. It insures available replacements.
4. It gives you a chance to pass your knowledge to every man on the team.
"BUREAU SIDE"
The Bureau of Ships uses the information to:
5. Evaluate present equipment.
6. Improve future equipment.
7. Order replacements for stock.
8. Prepare field changes.
9. Publish maintenance data.

Always keep a supply of failure report forms on board. You can get them from the nearest District Publications and Printing Office."

In most cases it will be possible to localize a particular fault from the general nature of the trouble encountered. Faulty or abnormal action of a particular control will often indicate the particular section of the receiver, and the specific portion of the circuit in which the trouble lies. Reference to the schematic diagram of figure $7-26$, and to the simplified diagrams of figures 2-1 and 2-4 through 2-12 will aid in localizing particular faults.

In the case of the IF/AF chassis, a stage-by-stage test is simplified by the incorporation of several test jacks in the equipment. In the power supply circuits, where the signal to be traced is a supply voltage, the procedure to be used is basically the same, except that the voltage will be traced from the output back to the power transformer, rather than from stage to stage. In the preselector, a stage-by-stage check is relatively difficult to accomplish. However, trouble in the pre-
selector can be verified by means of the sensitivity and gain measurements outlined in paragraph 3 of this section. Thereafter, the trouble can be localized to a particular stage by means of voltage and resistance measurements.
b. TROUBLE-SHOOTING CHART.-In tracing faults, an orderly and systematic procedure should be followed. The trouble-shooting chart, table 7-1, gives the symptoms of troubles commonly encountered in the left-hand column, the possible causes of these symptoms in the middle column and suggested corrective measures in the right-hand column .

Table 7-2 indicates approximate test input-signal levels which are required at the various i-f and a-f stages to produce a specified output. Reference to this table may often provide a rapid means of determining which stage or stages require repair or realignment.

TABLE 7-1. TROUBLE-SHOOTING CHART

SYMPTOM	probable Cause	REMEDY
1. Panel lamps do not light when POWER switch is placed in ON position.	1. a. DIMMER control improperly adjusted. b. Panel lamps burned out. c. Line fuse(s) blown. d. No primary power.	1. a. Turn control clockwise. b. Replace lamps I 501 and I 502. c. Replace fuse F201 and/or F202. d. Cable disconnected at J401. Primary power cable defective. Open circuit between J401 and J405 in filter.
2. Line fuses blow repeatedly when replaced.	2. a. Replacement fuses of incorrect size. b. Rectifier tube defective. c. Filter capacitor shorted. d. Short circuit in primary, power supply or filament circuits.	2. a. Use $2-\mathrm{amp}$ fuses. b. Replace V301. c. Replace C301 and/or C303. d. Check tube-socket and terminal board resistance; replace defective parts.
3. Blower does not operate after receiver has been operating for some time.	3. a. Low ambient temperature. b. Thermostatic switch defective. c. Blower-motor-capacitor defective. d. Blower motor defective.	3. a. None-normal condition. b. Replace S301. c. Replace C304. d. Repair or replace blower.
4. CRYSTAL panel lamp does not glow with OSC. switch in CRYSTAL position; receiver otherwise operative.	4. a. OSC. switch contacts defective. b. Neon lamp burned out.	4. a Clean, repair or replace S203. b. Replace lamp 1503.
5. Same as symptom 4, except inoperative in either position of OSC. switch.	5. a. Rectifier tube defective. b. Defective part or circuit in power supply.	5. a. Replace V301. b. Check and trouble-shoot power supply.
6. Receiver inoperative with OSC. switch in MANUAL position, inoperative in CRYSTAL position.	6. a. Crystal not installed in CRYSTAL holder, or crystal frequency not between 20.1125 and 35.2167 mc .	6. a. Install crystal of proper frequency.

NAVSHIPS 92676
CORRECTIVE MAINTENANCE
AN/URR-35C

TABLE 7-1. TROUBLE-SHOOTING CHART (Cont)

TABLE 7-1. TROUBLE-SHOOTING CHART (Cont)

SYMPTOM	Probable Cause	REMEDY
13. No signal indication on OUTPUT meter; normal audio output.	13. Defective part in meter circuit.	13. Check meter M502 and associated chokes and capacitors; replace defective parts.
14. Audio output distorted.	14. a. Same as item 11a. b. Defective a-f filter or coupling capacitor; open grid-leak resistor. c. AGC circuit defective.	14. a. Same as item 11a. b. Check voltages and resistances; replace defective part. c. Check V207 and V208; replace defective tube. Check voltages and resistances at all stages connected to AGC line and check all parts; replace defective parts.
15. Excessive hum in audio output.	15. a. Defective filter capacitor in power supply. b. Audio grid return open.	15. a. Replace C301, C302 and/or C303. b. Check grid resistors in a-f stages.
	c. Defective tube. d. Heater-bias circuit defective.	c. Check V206 and V208 for heater-to-cathode leakage; replace if necessary. d. Check voltage and resistance at heaters V206 and V208; replace defective part.
16. No audio output with N.L. switch in IN position.	16. a. Defective tube. b. Coupling capacitor shorted.	16. a. Replace V206. b. Replace C223.
17. Noise limiter does not limit noise impulses with N.L. switch in IN position.	17. a. Same as item 16. b. Defective part in limiter or detector circuit.	17. a. Same as item 16. b. Check voltages and resistances; replace defective part.

TABLE 7-2. I-F AND A-F TEST DATA

input test point	*INPUT SIGNAL		**OUTPUT
	Frequency	AMPLITUDE	
L111, adjusting screw	18.6 mc	$21 \mu \mathrm{v}$	-4 v at J201
J101	18.6 mc	$250 \mu \mathrm{v}$	-4 v at J204
V201, pin 1	18.6 mc	$4 \mu \mathrm{v}$	10 db on OUTPUT meter
V203, pin 7	1.775 mc	$95 \mu \mathrm{v}$	10 db on OUTPUT meter
J201	1.775 mc	43,000 $\mu \mathrm{v}$	-4 v at J204
V204, pin 1	1.775 mc	$530 \mu \mathrm{v}$	10 db on OUTPUT meter
V205, pin 1	1.775 mc	17,000 $\mu \mathrm{v}$	10 db on OUTPUT meter
V209, pin 7	1000 cps	17 mv	10 db on OUTPUT meter
V209, pin 3	1000 cps	360 mv	10 db on OUTPUT meter
V210, pin 1	1000 cps	2 v	10 db on OUTPUT meter

[^0]

Figure 7-1. Tube Socket Voltage and Resistance Measurements
c. VOLTAGE AND RESISTANCE MEASURE-MENTS.-The values of voltage and resistance between the pin of each tube socket and ground for the IF/AF and power supply sections are indicated in figure 7-1. Similar readings at the tube sockets of the preselector are also included in figure 7-1. Because of the physical arrangement of the preselector in the receiver, these measurements must be made from the top of each preselector tube socket after removing the tube from the socket at which the measurements are to be made. Unless otherwise specified in figure 7-1, all other tubes should remain in place. Since tube-socket voltages obtained in that manner are not indicative of operating conditions, the actual operating voltages (and resistances) at other pertinent test points accessible on the preselector assembly are shown in figure 7-2. Similar values, measured at test jacks and from terminal-board terminals to ground and/or other significant points, are given in table 7-3.

The values specified in figures 7-1 and 7-2, and in table 7-3, were obtained by using an electronic multimeter such as Multimeter ME-25/U series, Vacuum Tube Volt-Ohm-Milliammeter Navy Model OBQ series, or equivalent. The conditions under which voltage and resistance measurements were made are as follows: 115 -volt, $60-\mathrm{cps}$ line voltage; receiver tuned to 300 megacycles; ALIGN-REC. switch in REC. position; SILENCER switch in OUT position and N.L. switch in OUT position. Resistance measurements were made
with the power connector (P401) removed from the A.C. POWER receptacle (J401).

Values of voltage and resistance as measured in the equipment should be within ± 20 percent of those specified in this instruction book.
d. ACCESS TO WIRING AND COMPONENTS.To gain access to the wiring and components, release the four fasteners in the corners of the front panel and withdraw the chassis as far as the mechanical stops will permit. Then release the stops, as shown in figure 3-2, and remove the chassis from the cabinet.
e. OPERATION OF RECEIVER OUT OF CABI-NET.-If the receiver is to be operated after having been removed from the cabinet, proceed as follows:
(1) Disconnect all external cables from the connectors on Low-Pass Filter F-304/URR-35C, at the rear of the receiver.
(2) Disengage the snap-slide fasteners, shown in figure 3-3, which secure the filter housing to the cabinet and remove the filter through the front of the cabinet.
(3) Plug the filter into the connectors on the rear of the receiver chassis and reconnect the external cables to the connectors on the filter.

3. SENSITIVITY CHECK.

a. GENERAL.-The following procedure for checking the sensitivity of the receiver is provided so that the technician can determine whether or not realign-

NOTES 1.' RESISTANCE VALUES SHOWN ARE IN OHMS.
2. VOLTAGE VALUES SHOWN ARE D-C VOLTAGES UNLESS OTHERWISE INDICATED - MEASURED WITH ELECTRONIC VOLTMETER.
3. FOR CONDITIONS OF MEASUREMENT SEE PARAGRAPH 2C OF THIS SECTION.
4. TERMINAL (FEED-THROUGH TYPE) FROM MIXER PLATE.

R-F AMPLIFIER SECTION

Figure 7-2. Preselector Voltage and Resistance Measurements

NAVSHIPS 92676
CORRECTIVE MAINTENANCE
ment is necessary
The procedure outlined is one which does not employ a signal generator, but instead, makes use of tube noise as an indication of sensitivity. This method has been selected because the frequency modulation inherent in most common types of signal generators operating in the $225-400 \mathrm{mc}$ range makes the sensitivity appear to be greater than it actually is. The rated sensitivity of Radio Receiver R-482C/URR-35 is better than 8 microvolts, in series with 50 ohms, for a $10-\mathrm{db}$ signal-to-noise ratio when the carrier is 30 -percent modulated with a $1000-c p s$ tone. Checked with any ordinary signal generator, this sensitivity might appear to be better than 4 microvolts because of slope detection of the frequency-modulated test signal.

Note

If the sensitivity and gain measurements out-
lined in the following paragraphs appear normal, yet receiver performance is poor, it is possible that a "noisy" tube is causing a faulty indication of proper sensitivity. If so, the defective tube may be found by tapping each tube successively while listening to a headset; in nearly all instances, "noisy" tubes are also microphonic. Repeat the sensitivity test after replacing the defective tube or tubes.

b. OVER-ALL SENSITIVITY.

(1) The conditions for making this test are as follows:
(a) OSC. switch S203 (in left compartment) in MANUAL position.
(b) N.L. switch S202 (in right compartment) in OUT position.
(c) SILENCER switch S501 in OUT position.

TABLE 7-3. TEST-JACK AND TERMINAL-BOARD VOLTAGE AND RESISTANCE MEASUREMENTS

TEST JACK OR TERMINAL BOARD	TERMINAL	*D-C Voltage TO GROUND	*RESISTANCE TO GROUND (OHMS)
Osc. test jack J202 Diode test jack J203 AGC test jack J204 180 V test jack J205		$\begin{array}{r} -5.0 \\ -1.7 \\ -2.5 \\ 185 \end{array}$	
Terminal board E303 (Power Supply Section)	$\begin{gathered} 1 \\ 2 \text { to } 3 \\ 3 \text { to } 2 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \end{gathered}$	$\ldots .$. $6.3 \mathrm{ac**}$ $6.3 \mathrm{ac**}$ 0 6.3 ac -4.35 185 105 $\cdots \cdots$ $\cdots \cdots$ $\cdots \cdots$ -7.7 $\cdots \cdots$	$\begin{array}{r} \cdots \cdots \\ 52 \\ 0 \\ 0 \\ 08 \\ 35,000 \\ 35,000 \\ \cdots \cdots \\ \cdots \cdots \\ \cdots \cdots \\ \hline \cdots \cdots \\ 190,000 \end{array}$
Terminal board E301 (Power Supply Section)	$\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \\ & 26 \end{aligned}$	$\begin{array}{r} 185 \\ 140 \\ \cdots \cdots \\ \cdots \end{array}$	$\begin{array}{r} 0 \\ 35,000 \\ 39,000 \\ \ldots \ldots \\ \ldots \ldots \end{array}$
Terminal board E208 (IF/AF Section)	$\begin{aligned} & 31 \\ & 32 \\ & 33 \\ & 34 \\ & 35 \\ & 36 \end{aligned}$	133 $\ldots \ldots$ 140 -2.6 -4.3 -17	$\begin{array}{r} 39,000 \\ \ldots \ldots \\ 39,000 \\ 110,000 \\ 30 \\ 100,000 \end{array}$

[^1](d) A.F. LEVEL screwdriver-adjust control R255 (in right compartment) turned fully clockwise.
(ϵ) ALIGN-REC. switch S201 (in left compartment) in REC. position.
(j) Antenna input connector P404 disconnected from 50 OHM ANT. receptacle J404.
(g) 115 -volt, $60-\mathrm{cps}$ line voltage connected at A.C. POWER receptacle J401 and receiver POWER switch in ON position.
(2) Rotate the tuning control through its entire range and note the readings indicated on OUTPUT meter M502. The meter readings should not change more than 5 db over the tuning range, and the average reading should be $+11 \pm 5 \mathrm{db}$.
c. MEASUREMENT OF GAIN.-To determine whether the gain of the preselector and the IF/AF stages is adequate for normal sensitivity, proceed as follows:
(1) IF/AF GAIN MEASUREMENT.
(a) Set all controls as in paragraph $3 b(1)$, this section, except for OSC. switch S203, which should be set in the CRYSTAL position with no crystal inserted.
(b) Observe the reading on OUTPUT meter M502. If this is greater than 10 db , the IF/AF gain is satisfactory, and the gain of the preselector should next be checked. If the reading is below 10 db , then all tubes (V201 and V203 to V210) in the IF/AF chassis should be tested and those found to be weak or defective replaced. If all the tubes are normal, the i-f stages should be realigned according to the procedure given in paragraph $4 c$ of this section.
(2) PRESELECTOR GAIN MEASUREMENT.
(a) Set all controls as in paragraph $3 b(1)$, this section (OSC. switch in MANUAL position).
(b) Rotate the tuning control back and forth through the frequency range and lock it in the position at which the reading indicated on OUTPUT meter M502 is lowest.
(c) If this minimum reading is at least 1 db higher than the reading obtained when measuring IF/AF gain, in paragraph $3 c(1)(b)$ above, the preselector gain is acceptable.
(d) If the reading is not 1 db higher, the voltage between the adjusting screw of L111 (see figure 7-9) and ground should be measured with a d-c electronic voltmeter, first with OSC. switch S203 in the CRYSTAL position (with no crystal inserted), then with the switch in the MANUAL position. If the potential thus measured is at least 0.2 volt more negative with the switch in the MANUAL position, the oscillator-multiplier section of the preselector is operating properly, and the next step should be the testing of the tubes (V101 to V105) in the r -f section. If the potential measured is not 0.2 volt more negative, then the tubes (V106 to V109) in the oscillator-multiplier section should be checked.
(e) If all tubes (V101 to V109) in the preselector are normal, r-f alignment should be undertaken according to the procedure given in paragraph $4 f$ (or 4 g) of this section.

4. ALIGNMENT PROCEDURES.

a. EQUIPMENT REQUIRED. - The following equipment is required for proper alignment of the r-f and i-f stages of Radio Receiver R-482C/URR-35:
(1) RF Signal Generator AN/URM-25 series, Navy Model LP series, or equivalent signal generator having output impedance of 50 ohms.
(2) RF Signal Generator AN/URM-26 series, or equivalent.
(3) Multimeter ME-25/U series, Vacuum Tube Volt-Ohm-Milliammeter Navy Model OBQ series, or equivalent.
(4) Insulated alignment tool H 201 and alignment and alignment loading tool H203, both mounted in clips on receiver chassis; see figure 7-4.

b. PREPARATION OF RECEIVER FOR ALIGNMENT.

(1) Remove the receiver chassis from the cabinet and stand it on its right side.
(2) Make connections to Low-Pass Filter F-304/ URR-35C, following the procedure in paragraph $2 e$, this section.
(3) Set the SILENCER and N.L. switches to their OUT positions.

WARNING

WHEN THE RECEIVER IS SET UP FOR BENCH TESTING, AND THE "POWER" SWITCH IS "OFF", DANGEROUS VOLTAGES

Figure 7-3. Bench Test Set-Up for I-F Alignment

ARE STILL PRESENT AT THE FOLLOWING POINTS:

FUSE HOLDERS XF201 AND XF202 AT THE RIGHT SIDE OF THE FRONT SUB-PANEL; SEE FIGURE 7-4.

TERMINALS 9 AND 10 ON POWER SUPPLY TERMINAL BOARD E303; SEE FIGURE 7-13.
c. ALIGNMENT OF I-F SECTION. (See figure 7-3).
(1) Connect the output of RF Signal Generator AN/URM-25, or Navy Model LP, or equivalent, to $18.6-\mathrm{mc}$ test jack J101 (see figure 7-4). Use type RG58/U cable for connections.
(2) Tune the receiver to 218 megacycles, remove the type CR-24/U crystal from the CRYSTAL holder, set the OSC. switch to CRYSTAL and place the ALIGN-REC. switch in the REC. position.
(3) Set the POWER switch to its ON position and allow the receiver to warm up for about five minutes.
(4) Adjust the signal generator for 30 percent modulation at 1000 cps , and tune it to $18,602 \mathrm{kc}$.

Note

Refer to figures 7-4 and 7-5 for the locations of test jacks, i-f transformers and their

Figure 7-4. Radio Receiver R-482 C/URR-35, Top View—Identification of Components
terminals, and controls, as well as for the use and location of alignment tool H203.
(5) Connect the electronic multimeter between AGC test jack J204 and ground.
(6) Adjust the signal generator output for a reading of -3 volts on the electronic multimeter.
$\$ 7$) Turn I.F. GAIN control R233 fully clockwise.
~ (8) Connect the electronic multimeter between oscillator test jack J202 and ground. Adjust transformer T203 for a meter indication of -5 volts.

Note

It is possible to mistune transformer T203, since -5 volts is neither a maximum nor a minimum reading. To ensure correct adjustment, first turn the adjusting screw fully counterclockwise. Then turn the adjusting screw clockwise until the first maximum is
reached. Turn the screw counterclockwise until a reading of -5 volts is obtained on the multimeter.
(9) Reconnect the electronic multimeter between test jack J204 and ground.

- (10) Tune transformer T210 for a maximum indication on the electronic multimeter.
(11) Ground the alligator clip of the alignment loading tool, H203, and set the notch of the hooked probe against terminal 4 of transformer T208. Tune the secondary of transformer T208 for maximum indication on the electronic multimeter by turning the adjusting screw on the bottom of the transformer.

Note

The alignment loading tool, H201, reduces the Q of tuned circuits. In order to avoid misadjust-

Figure 7-5. Use of Alignment Loading Tool and Identification of I-F Transformers
ment of double-tuned transformers because of mutual inductance between the windings, it is necessary to load the transformer primary when tuning the secondary, and to load the secondary when tuning the primary.
(12) Place the notch of the alignment loading tool on terminal 1 of transformer T208 and tune the primary by turning the adjusting screw at the top of the transformer for maximum indication on the electronic multimeter.
(13) Repeat steps (11) and (12) at transformers T207, T206, T205 and T204, in that order.

Note

While aligning these transformers, reduce the output of the signal generator in order to maintain an indication of approximately -4 volts at the electronic multimeter. This will prevent the development of a strong AGC signal, which might result in mistuning the i-f stages.

- (14) Tune the secondary of transformer T202 for maximum indication on the electronic multimeter by turning the adjusting screw at the bottom of the transformer.
(15) Tune the primary of transformer T202 for maximum indication on the electronic multimeter by turning the adjusting screw at the top of the transformer.
(16) Tune the secondary of transformer T201 for maximum indication on the electronic multimeter by turning the adjusting screw at the bottom of the transformer.
(17) Tune the first mixer plate inductance, L122 (located at the top of the preselector, as shown in figure 7-10), for maximum indication on the electronic multimeter.
(18) Repeat steps (10) through (17) until no changes in alignment occur. The over-all i-f selectivity curve appears in figure 7-6.

d. ALIGNMENT OF AGC TRANSFORMER T210.
 (See figure 7-3.)

(1) Perform steps (1) through (5) of paragraph $4 c$, this section.
(2) Turn the output control of the signal generator to zero and note the AGC voltage, as indicated on the electronic multimeter. Increase the signal generator output until the AGC voltage just starts to increase.

FREQUENCY IN MEGACYCLES
Figure 7-6. Typical I-F Selectivity Characteristic
-(3) Tune transformer T210 (see figure 7-4) for minimum indication on the electronic multimeter.

e. I-F GAIN ADJUSTMENT.

(1) Connect the electronic multimeter between AGO test jack J204 (see figure 7-4) and ground.
(2) Set the OSC. switch to its MANUAL position.
(3) Tune the receiver throughout its entire range to find the lowest AGC voltage as indicated by the electronic multimeter.
(4) If the AGC voltage on the electronic multimeter is other than -2.3 volts, adjust it to that value by means of I.F. GAIN control R233, shown in figure 7-4. If it is not possible to adjust the AGC voltage to $\mathbf{- 2 . 3}$ volts, set it to the greatest negative voltage that can be obtained, which should be at least -2.0 volts. A maximum AGC voltage of less than $\mathbf{- 2 . 0}$ volts indicates a faulty receiver.
f. ALIGNMENT OF PRESELECTOR.
(See figure 7-7.)

WARNING

A D-C POTENTIAL OF 180 VOLTS IS PRESENT AT SOME OF THE INDUCTANCE AND CAPACITOR TRIMMER SCREWS AND AT SOME OF THE TRIMMER-INDUCTANCE LOCKING SCREWS (SEE FIGURE 7-10). WHEN LOOSENING OR TIGHTENING THE IOCKING SCREWS BE CERTAIN THAT RECEIVER POWER IS OFF. USE INSULATED ALIGNMENT TOOL H201 (FIGURE 7-4) FOR ALL SPLINED TRIMMER-SCREW ADJUSTMENTS.
\qquad (1) De-energize the receiver and remove the shielding covers from the preselector. Loosen the locking screws on trimmer inductances L103, L104, L107, L108, L111, and L112 (see figure 7-8 and 7-9) about one-eight of a turn, using the Bristol wrench H202 (figure 7-4) mounted near the dial-drive assembly. Replace the shielding covers.
(2) Connect the output of RF Signal Generator AN/URM-26, or equivalent, to the 50 OHM ANT. input connector, J404, on the low-pass filter. Adjust the output attenuator of the signal generator for minimum output.
(3) Install a crystal, in the receiver CRYSTAL holder, which corresponds to some channel frequency between 230 and 234 megacycles, as determined by the formula:
Crystal frequency (mc) $=$
Selected channel frequency $(\mathrm{mc})+18.6 \mathrm{mc}$

Figure 7-7. Bench Test Set-Up for R-F Alignment

Figure 7-8. Details of Trimmer Inductances L103, L104, L107, L108, L111 and L112

Place the OSC. switch in its CRYSTAL position and tune the receiver to the channel frequency selected. Lock the tuning control.

Note

Refer to figures 7-9, 7-10 and 7-11 for locations of preselector tuning and adjustments and test points referenced in the following procedures.
(4) Connect the electronic multimeter between first-doubler-grid test point C122 and ground. Tune oscillator inductance L114 for maximum indication on the meter.

Note

The oscillator, second doubler and triplergrid adjustments, steps (4), (5), (6), (13), (14) and (15), may be made by setting the ALIGN-REC. switch to ALIGN and tuning for a maximum indication on the INPUT meter. Use of the electronic multimeter, however, is the preferable procedure.
(5) Place the probe of the electronic multimeter on second-doubler-grid test point C124 and tune second-doubler-grid inductance L115 for a maximum meter reading.
(6) Place the probe of the electronic multimeter on tripler-grid test point C131 and tune tripler-grid inductance L 117 for a maximum meter reading.
(7) Place the probe of the electronic multimeter on the trimmer screw of mixer-grid inductance L111 and tune tripler-plate inductance L112 for a maximum meter reading.
(8) Connect the electronic multimeter between AGC test jack J204 and ground; see figure 7-4.

Figure 7-9. Preselector Viewed from Left Side of Chassis, Showing Alignment Adjusting Screws

Note

The adjustments in steps (9), (10), (11), (18), (19), and (20) may also be made by using the INPUT meter (M501), with the ALIGN-REC. switch in the REC. position, instead of an electronic multimeter, for tuning indication.
(9) With its modulation off, tune the signal generator for a maximum reading on the meter. The output attenuator should then be adjusted to give a reading of approximately 4 volts on the multimeter (0.4 on the INPUT meter).
(10) Using alignment tool H201, tune the r-f amplifier and mixer inductance trimmer screws for maximum meter readings, in the following order:
(a) Mixer-grid inductance L111.
(b) Second r-f plate inductance L108.
(c) Second r-f grid inductance L107.
(d) First r-f plate inductance L104.
(e) First r-f grid inductance L103.

While tuning, reduce the output of the signal generator as necessary to keep the electronic multimeter reading at approximately 4 volts (0.4 on the INPUT meter).
(11) Set the OSC. switch to MANUAL. Notice that when this is done, the electronic multimeter reading may drop to about 2 volts (0.2 on the INPUT meter). Now tune oscillator inductance L114 until the meter reading is a maximum.

- (12) Set the OSC. switch to CRYSTAL, install a crystal corresponding to some channel frequency between 391 and 395 mc , set the tuning dial to the
crystal channel selected, and lock the tuning dial.
(13) Place the probe of the electronic multimeter on first-doubler-grid test point C122 and tune oscillator trimmer capacitor C148 for a maximum meter reading.

Note

In tuning the trimmer capacitors, a slight amount of capacitance is added to the circuit by the presence of the alignment tool. It is therefore necessary to compensate for this capacitance by tuning the trimmers slightly beyond maximum, in a clockwise direction, so that the electronic multimeter will read a maximum when the alignment tool is removed from the trimmer screw.

- (14) Place the probe of the electronic multimeter on second-doubler-grid test point C124 and tane second-doubler-grid trimmer capacitor C147 for a maximum meter reading.
(15) Place the probe of the electronic multimeter on tripler-grid test point C131 and tune tripler-grid trimmer capacitor C145 for a maximum meter reading.
(16) Place the probe of the electronic multimeter on the trimmer screw of mixer-grid inductance L111 and-tune tripler-plate trimmer capacitor C146 for a maximum meter reading.
(17) Connect the electronic multimeter between $\widehat{\text { AGO test jack J204 and ground; see figure 7-4. }}$
(18) Tune the signal generator for a maximum reading on the meter. The output attenuator of the signal generator should then be adjusted to give a reading of approximately 4 volts on the electronic

Figure 7-10. Preselector Viewed from Top Side of Chassis, Showing Alignment Adiusting Screws

Figure 7-11. Preselector Viewed from Boftom Side of Chassis, Showing Alignment Adjusting Screw/s
multimeter (0.4 on the INPUT meter).
(19) Using alignment tool H201, tune the r-f amplifier and mixer trimmer capacitors for a maximum reading on the electronic multimeter, in the following order:
(a) Mixer-grid capacitor C144.
(b) Second r-f plate capacitor C143.
(c) Second r-f grid capacitor C142.
(d) First r-f plate capacitor C141.
(e) First r-f grid capacitor C 140 .
(20) Set the OSC. switch to MANUAL. Note that when this is done, the electronic multimeter reading may drop to about 2 volts (0.2 on INPUT meter). Now tune oscillator trimmer capacitor C148 until the meter reading is a maximum; refer to the note following step (13).
(21) Repeat steps (4) through (20) until no further adjustment of the trimmer capacitors is necessary to align the high-frequency alignment point.

Note

Always terminate alignment by aligning the preselector at the high-frequency alignment point.
(22) After alignment of the preselector deenergize the receiver and remove the preselector shielding covers. Tighten the trimmer-inductance locking screws carefully, so that the adjustments will not be disturbed.
(23) Check the alignment of the receiver by making the sensitivity and gain measurements outlined in paragraph 3 of this section.
g. ALIGNMENT OF PRESELECTOR IF ALIGN-MENT-POINT CRYSTALS ARE NOT AVAILABLE. -The following procedure must be used if crystals which will tune the receiver to the required alignment frequencies are not available. This procedure describes a different method of aligning the oscillator stage only. Alignment of the other stages of the preselector remains as described in paragraph $4 f$, above.
(1) Set up, near the receiver, a heterodyne frequency meter such as a Navy Model LM or LR series, which will cover the range of $10-18$ megacycles, or the range $20-35$ megacycles, and couple it, through a d-c blocking capacitor, to capacitor C123, located on the oscillator side of the preselector; see figure 7-14.
(2) Set the tuning dial of the receiver to 232 megacycles, throw the CRYSTAL-MANUAL switch to

MANUAL, and install any crystal.

Note

The frequency of the crystal used in this case is immaterial, but a crystal of some frequency must be in the crystal holder for MANUAL operation because of capacity effects.
(3) Tune the frequency meter to 20,883 or 10,441.5 kilocycles.
(4) Tune oscillator inductance L114 until it is adjusted as near as possible to zero beat in the fre-quency-meter headphones.
(5) Proceed with steps (5) through (10), inclusive, of paragraph $4 f$, this section.
(6) Set the tuning dial of the receiver to 393 megacycles.
(7) Tune the frequency meter to 34,300 or 17,150 kilocycles.
(8) Tune oscillator trimmer capacitor C148 until it is adjusted as near as possible to zero beat in the frequency-meter headphones.
(9) Proceed with steps (14) through (19) and steps (21) through (23) of paragraph $4 f$, this section. When repeating the alignment, in accordance with the instructions of step (21), do not perform steps (4), (11), (12), (13) and (20).

5. AUDIO-FREQUENCY RESPONSE.

The audio-frequency response characteristic for Radio Receiver R-482C/URR-35 appears in figure $7-12$. Since there are no adjustments in the a-f stages of the receiver, any significant variation from the response curve must indicate a defective circuit or component.

6. REPAIR AND REPLACEMENT OF PARTS.

a. GENERAL.-The repair and replacement of most of the parts of Radio Receiver R-482C/URR-35 is straightforward, involving only the removal of mounting hardware and the unsoldering of connecting wires.

Figure 7-12. Typical Audio Response Characteristic

However, the procedures in this paragraph are included for the parts specified because the parts are so located that special precautions must be taken, and/or preferred repair procedures followed.

The locations of all components in the radio receiver are shown in figures $1-3,2-2,2-3,3-3,7-4$, 7-13, 7-14, and 7-16 through 7-20.
b. BLOWER BL301.-Blower BL301 is located in the right rear corner of the cabinet, as shown in figure 7-4. To remove it, proceed as follows:
(1) Remove the chassis completely from the cabinet (see paragraph $2 a$, Section 3).
(2) Turn the catch on plug P302 counterclockwise to free it from the flange on receptacle J301. Remove the plug from the jack.
(3) Remove the four mounting screws which hold the fan housing to the chassis frame.
(4) Lift the blower assembly out of the chassis frame.
c. BLOWER CAPACITOR C304.-The blower capacitor, C304, is located underneath blower BL301 in the right rear corner of the chassis. To obtain access to the capacitor for any purpose, remove the blower (paragraph $6 b$ above) and the capacitor will be exposed.
d. BLOWER-MOTOR BEARINGS.-An exploded view of blower BL301 is shown in figure 7-15. This shows the locations of the two sets of bearings which are located, one at each side of the armature on the motor shaft. When the operation of the blower motor gets noisy, replace these bearings, using the following procedure:
(1) Remove the blower, BL301, from the chassis according to instructions in paragraph $6 b$ above.
(2) Use socket head screw wrench H2O2 (see figure 7-4) to loosen the two setscrews which hold the impeller wheel to the shaft. Remove the impeller wheel from the shaft.
(3) Remove the three tie bolts, accessible from the rear of the end bell.
(4) Withdraw the armature with its associated washers. Do not lose any of the three washers or the retaining ring.
(5) Remove the two ball bearings from the armature shaft, using a bearing puller. If necessary, construct one according to the instructions in figure 7-15.
(6) Fit new ball bearings on the shaft, using an arbor press or other suitable bearing installer tool. Use the proper bearing in each position. Front bearing 0308 has a $1 / 4$-inch bore and a $3 / 4$-inch outside diameter. Rear bearing 0309 has a $3 / 16$-inch bore and a $1 / 2$-inch outside diameter.
(7) Reassemble the blower in the reverse sequence of disassembly. Be certain that the three washers and the retaining ring are properly positioned

NAVSHIPS 92676
CORRECTIVE MAINTENANCE
at the end of the shaft before it is placed in the housing.
(8) Replace the blower on the receiver chassis, reversing the procedure specified in paragraph $6 b$, this section.
e. POWER TRANSFORMER T301.-Power transformer T301 is located in the right rear corner of the chassis immediately behind blower BL301; see figure 7-4. Its removal entails unfastening the rear panel of the chassis and separating it from the chassis far
enough to provide an additional half-inch clearance above the transformer. To accomplish this, proceed as follows:
(1) Unsolder the wiring from the terminals of T301; see figure 7-14. Identify each wire in some manner if there is any likelihood that the preformed arrangement of these wires will be disturbed before connections are restored.
(2) Remove the nuts from the four transformermounting studs.

Figure 7-13. Radio Receiver R-482C/URR-35, Botfom View-Identification of All Resistors and Terminal Boards

Section 7
Paragraph 6c

Figure 7-14. Radio Receiver R-482C/URR-35, Boftom View-Identification of All Components Except Resistors and Terminal Boards
(3) Unfasten the rear panel by removing:
(a) Three screws connecting the rear panel to the left side panel.
(b) Three screws connecting the rear panel to the right side panel.
(c) Three screws (horizontal row) connecting the rear panel to the bed of the chassis.
(4) Pull the rear panel away from the chassis far enough to permit removal of transformer T301, but no farther, as excessive displacement will place a strain on the leads to connector P101, and to thermostatic switch S301.
(5) To restore the original transformer, or to substitute a replacement for it, reverse the foregoing procedure, making sure that all transformer leads are reconnected to the proper respective terminals. If the leads have become mixed, consult the color-coding legend on the wiring diagram, figure 7-28.
f. DIAL-DRIVE ASSEMBLY.-The dial-drive assembly is located between the front panel and the front sub-panel of the receiver, as shown in figure 7-4. It is further illustrated in figure $6-1$. To remove this assembly, it is necessary to remove the entire front panel, in accordance with the following procedure.
(1) Remove the tuning knob and the knob on the tuning LOCK by using the right-angle portion of the Bristol-type socket wrench provided, H202.
(2) Unsolder the leads to the INPUT and OUTPUT meters (M501 and M502, respectively).
(3) Remove the 11 Phillips-head screws on the front panel which are relatively larger than the remaining 24 similar screws (not including the four large panel fasteners in the corners of the panel), and lower the top of the panel onto the bench.
(4) Remove the dual dial-light assembly from the top of the dial-drive assembly.
(5) Remove the drive arm of the flexible coupling between the dial drive and the preselector, by loosening the setscrews in its hub.
(6) Remove the three mounting screws which secure the dial-drive assembly to the preselector.
(7) The procedure for the installation of a new dial-drive unit or the reinstallation of the old one, and replacement of the front panel, etc. is the reverse of the foregoing procedure, except that after the drive assembly, dial lights and front panel have been replaced, steps must be taken to properly align the calibrated tuning dial with the position of the capacitor plates in the preselector. Proceed as follows:
(8) Turn the dial-drive tuning shaft until 225 is indicated on the MEGACYCLES dial.
(9) Turn the driven member of the flexible coupling, attached to the preselector shaft, until the shorter sides of the rotor plates of the ganged capacitors in the preselector are flush with the stator plates,
as viewed from the top. These may be seen by removing the left side shielding covers.
(10) Engage the drive member of the flexible drive with the driven member without disturbing the position of the latter, and tighten the setscrews in the hub of the drive member on the output shaft of the dial-drive mechanism.
g. PRESELECTOR. - Removal of the preselector and the reinstallation of the repaired assembly, or the installation of a replacement assembly, is a relatively simple matter. However, some difficulty may be encountered when an attempt is made to coordinate the performance of the ganged capacitors in the preselector with the indications of the calibrated tuning dial. It is therefore suggested that the receiver be placed on its right side and that the following procedure be followed carefully.
(1) REMOVAL.
(a) Unsolder, at terminal board E301 (see figure 7-13), those leads which run from the preselector to the terminal board. Tag each terminal to indicate which lead (of the original assembly or of a substitute assembly) is to be reconnected to it.
(b) Unsolder, in similar manner, those leads which run to terminal board E206.
(c) Unsolder the two leads which connect the oscillator-multiplier section of the preselector unit to CRYSTAL holder XY201 in the left-hand panel compartment.
(d) At terminals 3 and 4 of i-f transformer T201, unsolder the length of coaxial cable which connects to the preselector.
(e) Take off the left side of the chassis by removing:

1. Three screws entering the side plate from the rear panel.
2. Three screws connecting the side plate to the front-panel subassembly.
3. Four screws entering the side plate from the front panel.
(f) Remove rear-panel connector P101 by removing the four screws which secure it.

CAUTION

When removing the screws in the rails holding the preselector in place, as described in steps (7) and (8) below, care must be taken not to damage the bypass-capacitor terminals on the unit (see figures 7-9 and 7-10) by striking them against other parts of the receiver.
(g) On top of the chassis (see figure 7-4), note the two rails under the insulator plate which hold the preselector in place. Detach both rails from the rear panel and from the front-panel subassembly by remov-

IST R-F $\underset{\text { ZIO4 }}{\text { AMPLIFIER }}$

MIXER Z 106

2ND R-F AMPLIFIER Z105

Figure 7-16. Socket Assemblies from R-F Amplifier Section of Preselector
ing two screws from each rail.
(b) On the bottom of the chassis (see figure 7-13), note two similar rails under the insulator plate which hold the preselector in place. Detach both rails from the rear panel and front-panel assembly, as outlined in step (g). Also remove two screws securing the preselector to the bracket on the power supply chassis.
(i) Turn the tuning control until 325 is indicated on the MEGACYCLES dial; this should put the arms of the flexible coupling in a vertical position.
(j) Remove the three screws which hold the dial-drive assembly to the preselector and withdraw the preselector from the chassis.
(2) REINSTALLATION OF SAME PRESELEC-TOR.-To reinstall the same preselector, reverse the sequence of steps (a) through (j) of preceding subparagraph (1). Be certain that the screws which secure the ganged rotor sections on the capacitor shafts face upward as the preselector is put back in place. This can be checked by removing one of the left side shielding covers.
(3) INSTALLATION OF NEW PRESELECTOR WITH SHAFT LOCK.-To install a new preselector which has a shaft lock clamped to one of the capacitor shafts at the rear of the assembly, proceed as follows:
(a) Take the flexible coupling member off the shaft of the original preselector and place it on the

OSCILLATOR IST DOUBLER ZIOI

Figure 7-17. Socket Assemblies from Amplifier-Oscillator Section of Preselector

Figure 7-18. Capacitor C101 from R-F Amplifier Section of Preselector
tripler section

Figure 7-19. Capacitor C102 from Oscillator-Amplifier Section of Preselector

Figure 7-20. Low-Pass Filter F-304/URR-35C, Cover Removed
shaft of the new unit; do not tighten the setscrews in the coupling hub.
(b) Install the preselector by reversing the sequence of steps (a) through (j) of paragraph $6 \mathrm{~g}(1)$.
(c) Turn the tuning control until 225 is indicated on the MEGACYCLES dial and lock the tuning control.
(d) Rotate the flexible coupling member on the preselector shaft until the two arms of the coupling can be engaged.
(e) Tighten the setscrews in the hub of the flexible coupling member on the preselector shaft and remove the shaft lock from the rear of the preselector. Do not turn the tuning control until this is done, otherwise the equipment may be damaged.
(4) INSTALLATION OF NEW PRESELECTOR WITHOUT SHAFT LOCK.-To install a new preselector which does not have a shaft lock clamped at the rear of the assembly, proceed as follows:
(a) Perform steps (a) through (d) of preceding subparagraph (3).
(b) Remove the left side shielding covers from the preselector and turn the ganged capacitors until the shorter sides of the rotor plates are flush with the stator plates.
(c) With the drive and driven members of the
flexible coupling properly engaged, tighten the setscrews in the hub of the driven member on the preselector shaft.
b. R-F CABLE ASSEMBLIES.-Several r-f cable assemblies are used in Radio Receiver R-482C/ URR-35 and in Low-Pass Filter F-304/URR-35C. Unless subjected to physical abuse or abnormal conditions of operation, these cables should not require repair or replacement. However, in the event that replacement is found necessary, detailed instructions for fabrication of the cable assemblies are included in figures 7-21, 7-22, and 7-23. Fabrication instructions for the external r-f cable used with the receiver appear in figure 3-6.
i. ALIGNMENT TOOL H201.-Alignment tool H201 is made up of a body of white nylon, with a screwdriver tip at one end and a short length of Bristol wrench at the other end; see figure 7-4. The body is four inches long, octagonal in the central section, and cylindrical at each end. In the event of the loss of, or damage to, this tool, caution should be observed in the use of a substitute, since in the alignment procedures contact is made with the tool to parts of the circuit which may be at voltages as high as 180 volts with respect to the chassis. If another alignment tool is not available, repair the damaged tool in accordance with the following procedures.

Paragraph 6i(1)
(1) In the event of damage to the screwdriver end of the alignment tool, a substitute can be made from any piece of hard wood, of approximately the same size as the alignment tool.
(2) If the Bristol-wrench end of the alignment tool is broken, but the length of Bristol wrench is still serviceable, proceed as follows:
(a) Square off the broken end of the nylon body and drill a hole one-eighth inch deep into that end, using a No. 40 twist drill.
(b) Clean off the wrench insert and mark it at a distance of one-eighth inch from one end.
(c) Press the wrench insert into the newly drilled hole in the body. A suggested method of accomplishing this is to place both pieces, end to end, between the jaws of a vise and apply pressure.
(3) If the wrench insert is lost or the nylon body
damaged beyond repair, any of the substitute materials listed in table 7-4 may be used. In all cases, the length of wrench used should be one-eighth inch greater than the depth of the drilled hole.

7. COMPONENT DATA.

a. ELECTRON TUBES.-The full complement of electron tubes for Radio Receiver R-482C/URR-35 is listed in table $1-4$. The rated characteristics of each type appear in table 7-5. Access to the tubes in the receiver and other information pertinent to tube replacement are described in Section 5, paragraph 3c.
b. CRYSTALS.-All pertinent data for Crystal Unit CR-24/U (Y201) and Crystal Unit CR-23/U (Y202), used as frequency-controlling elements in this equipment, are shown in figures $7-24$ and $7-25$, respectively.
c. TRANSFORMERS AND INDUCTORS.-The inductance, d-c resistance, turns ratio, wire size and number of turns, and other miscellaneous information (as applicable) for all transformers, chokes and coils used in this equipment appear in table 7-6.

Figure 7-21. Assembling R-F Cable to Connectors J404 and J407

TABLE 7-4. SUBSTITUTE ALIGNMENT-TOOL FABRICATION

BODY MATERIAL	DRIL NO.	DEPTH OF HOLE (INCHES)	WRENCH INSERT
Original nylon body	40	$1 / 2$	Allen No. 10-12
Original nylon body	38	$1 / 2$	Bristol No. 10-12
Bakelite rod, $1 / 4$ or $5 / 16$ in. diameter	36	$1-1 / 2$	Bristol No. 10-12 or Allen No. 10-12
Wood dowel rod, $5 / 16 \mathrm{in}$. diameter	42	$1-1 / 2$	Bristol No. 10-12 or Allen No. 10-12

TO ASSEMBLE TO PIOI

1. CUT BACK OUTER COVERING FOR $7 / 8^{*}$ FROM END.
2. FLARE END OF BRAID, TIN THE FLARING AND CUT BACK TO $3 / 8^{*}$ FROM END, AS SHOWN.
3. REMOVE DIELECTRIC AT TIP FOR $1 / 8^{*}$ USING CARE NOT TO NICK INNER CONDUCTOR.
4. PUSH DIELECTRIC THRU HOLE INSIDE OF HOOD AND PUSH FLARED END OF BRAID OVER HOLE IN HOOD AND SOLDER BRAID TO HOOD ALL AROUND.
5. SOLDER WIRE TIP TO TERMINAL OF PIOI.
6. BOLT HOOD TO CONNECTOR.

Figure 7-22. Assembling R-F Cable to Connector P101

TO PREPARE FREE END

1. CUT BACK OUTER COVERING TO DISTANCE SHOWN.
2.PICK APART STRANDS OF BRAID, PULL THESE TO ONE SIDE

OF DIELECTRIC AND TWIST TO FORM SINGLE STRAND, AS SHOWN.
3. REMOVE DIELECTRIC TO DISTANCE SHOWN USING CARE NOT TO NICK INNER CONDUCTOR.

TO ASSEMBLE FITTING
I. CUT BACK OUTER COVERING AND COPPER BRAID, AND REMOVE DIELECTRIC AT TIP, TO DISTANCES SHOWN,USING CARE NOT TO NICK INNER CONDUCTOR.
2.SLIDE ITEMS "A" AND "C" OVER CABLE, AS SHOWN.
3. PUSH BACK BRAID, FOLD ENDS OVER PART "A" AND TRIM OFF EXCESS.
4. PUSH DIELECTRIC THRU PART "B"AND "D".
5. SCREW TOGETHER PARTS " B "AND " C " (AFTER INSTALLATION OF PART " B " IN PRESELECTOR).

Figure 7-23. Connecting R-F Cable between Inductance L122 and Transformer T201

1. FREQUENCY RANGE OF CRYSTALS USED $=20.1125$ TO 35.2167 MC .
2. FIRST INTERMEDIATE FREQUENCY OF RECEIVER $=18.6 \mathrm{MC}$.
3. HETERODYNE FREQUENCY RANGE $=241.35$ TO 422.60 MC .
4. METHOD OF MULTIPLICATION = CRYSTAL FREQUENCY $\times 2 \times 2 \times 3$; SEE SCHEMATIC DIAGRAM, FIGURE (2-5)
5. TEMP. CHARACTERISTIC $= \pm 0.005 \%$ DEVIATION BETWEEN - 55•C (-67•F) $A N D+90^{\circ} \mathrm{C}\left(+194^{\circ} \mathrm{F}\right)$.
6. TEMPERATURE OF OPERATION AND CALIBRATION $=-55^{\circ} \mathrm{C}\left(-67^{\circ} \mathrm{F}\right)$ TO $+90^{\circ} \mathrm{C}\left(+194^{\circ} \mathrm{F}\right)$
7. MODE OF OPERATION = 5 TH MODE FOR $25-50 \mathrm{MC}$. 3 3RD MODE FOR $15-25 \mathrm{MC}$.

Figure 7-24. Crystal Unit CR-24/U, Outline and Data

NAVSHIPS 92676
AN/URR-35C

TOP

I. FREQUENCY OF CRYSTAL USED $=16.8250 \mathrm{MC}$.
2. SECOND INTERMEDIATE FREQUENCY OF RECEIVER $=1.775 \mathrm{MC}$.
3. TEMP. CHARACTERISTIC $= \pm 0.005 \%$ DEVIATION BETWEEN $-55^{\circ} \mathrm{C}\left(-67^{\circ} \mathrm{F}\right) \mathrm{AND}+90^{\circ} \mathrm{C}\left(+194^{\circ} \mathrm{F}\right)$.
4. TEMPERATURE OF OPERATION AND CALIBRATION $=-55^{\circ} \mathrm{C}\left(-67^{\circ} \mathrm{F}\right) \mathrm{TO}+90^{\circ} \mathrm{C}\left(+194^{\circ} \mathrm{F}\right)$.

Figure 7-25. Crystal Unit CR-23/U, Outline and Dafa

TABLE 7-5. TUBE CHARACTERISTICS

TUBE TYPE	FILAMENT VOLTAGE (V)	FILAMENT CURRENT (A)	PLATE VOLTAGE (V)	GRID BIAS (V)	SCREEN VOLTAGE (V)	PLATE CURRENT (MA)	sCreen CURRENT (MA)	A-C PLATE RES. (ОНMS)	voltAGE AMPL. FACTOR (MU)	NORMAL TRANSCONDUCT. (MICROMHOS)
OA2WA	\cdots	\ldots	150	\ldots	\ldots	5-30	\ldots	\ldots	\cdots
OB2WA	\ldots	108	\cdots	\ldots	5-30	\cdots	\ldots	.
6AK6	6.3	0.15	180	-9	180	15	2.5	200K	\ldots	2300
$\begin{aligned} & 5654 / \\ & \text { 6AK5W } \end{aligned}$	6.3	0.175	180	-2	120	7.7	2.4	690K	\ldots	5100
5670	6.3	0.3	150	-2	\cdots	8.2*	\ldots	6370	35	5500
			MAX. PEAK INVERSE PLATE VOLTAGE (V)	A-C VOLTS PER PLATE (V)	D-C OUTPUT CURRENT PER PLATE (MA)	peak CURRENT PER PLATE (MA)				
5726/ 6AL5w	6.3	0.3	330	117	9	54				
5931	5	3	1550	550	225	675				

* Plate current per section.
TABLE 7-6. WINDING DATA

DESIGNATION SYMbOL	Part no.	diAgram	winding	WIRE SIZE	turns	$\begin{gathered} \text { D-C } \\ \begin{array}{c} \text { RESIIT. } \\ \text { (OHMS) } \end{array} \end{gathered}$	inductance	HIPOT A-C volts	remarks
L101	$\begin{gathered} \text { RAQA } \\ \text { AG-4667 } \end{gathered}$		90° elbow	$\begin{aligned} & \text { 3/16" O.D. } \text { tube; }_{\text {tube; } 0.000 "^{\prime \prime}} \text { silver plate } \\ & 0.025^{\prime \prime} \text { wall } \\ & \text { round copper } \end{aligned}$	$\begin{aligned} & \text { S.D. seamless } \\ & 1 / 4 \end{aligned}$				
L114	$\begin{gathered} \text { RAQA } \\ \text { LL-0053 } \end{gathered}$	$14 e^{\circ}$	Single-layer solenoid	$\text { \# } 20 \text { bare }$ tinned	14, tapped 5-11/16 turns from mtg end		1.4 uh		Wound $\mathbf{0 . 8 0 0}{ }^{\prime \prime} \mathrm{lg}$ on $7 / 16^{\prime \prime}$ D. ceramic form; powdered iron slug
L115	$\begin{gathered} \text { RAQA } \\ \text { LW-0100 } \end{gathered}$		Grid Plate	$\begin{aligned} & \text { \#20 bare } \\ & \text { tinned } \\ & \text { \#20 bare } \\ & \text { tinned } \end{aligned}$	6, tapped at 2-7/8 turns 5-3/8				Both windings wound 8 turns/in. on 7/8" . mica-filled bakelite form; powdered iron slug
L116	$\begin{aligned} & \text { RAQA } \\ & \text { LW-0101 } \end{aligned}$	E	Single-layer solenoid	$\begin{aligned} & \text { \#20 bare } \\ & \text { tinned } \end{aligned}$	9, tapped 5 turns from mtg end	0.01	0.58 uh at 100 ma dc		Wound 14 turns/in. on $7 / 16^{\prime \prime}$ D. mica-filled bakelite form
L117	$\begin{gathered} \text { RAQA } \\ \text { LW-0102 } \end{gathered}$		Single-layer solenoid	$\begin{aligned} & \text { \#20 bare } \\ & \text { tinned } \end{aligned}$	3 C.t.	0.007	$\begin{aligned} & 0.09 \text { uh at } \\ & 25 \text { and } 50 \\ & \text { mc, and } \\ & 100 \mathrm{ma} \mathrm{dc} \end{aligned}$		Wound 5 turns/in. on $7 / 16^{\prime \prime}$ D. mica-filled bakelite form; brass slug

TABLE 7-6. WINDING DATA (Cont)

DESIGNATION SYMBOL	PART NO.	DIAGRAM	WINDING	WIRE SIZE	TURNS	D-C RESIST. (OHMS)	INDUCTANCE	HIPOT A-C volts	REMARKS
L118	$\begin{gathered} \text { RAQA } \\ \text { JW-0705 } \end{gathered}$	-	Concentric	$\begin{aligned} & \text { Coaxial cable } \\ & 0.140^{\prime \prime} \mathrm{O} . \mathrm{D} . \\ & \times 3-3 / 16^{\prime \prime} \mathrm{Ig} \end{aligned}$					0.0002" silver plate
L122	$\begin{gathered} \text { RAQA } \\ \text { LR-0034 } \end{gathered}$		Pri. Sec.	\# 26 bare tinned \# 26 baie tinned	$\begin{gathered} 7-1 / 4 \\ 5 / 6 \end{gathered}$				Both windings wound 28 turns/in. on 7/8" D. bakelite form; powdered iron slug
L123	$\begin{gathered} \text { RAQA } \\ \text { LC-0219 } \end{gathered}$		Single-layer solenoid	\# 30 E	27	0.133	1.2 uh		Q: $\mathbf{8 0}$ at $\mathbf{2 5 ~ m c}$ Close-wound on 5/32" D. bakelite form
$\begin{array}{\|c\|} \text { L202 } \\ \text { through } \\ \text { L206 } \end{array}$	$\begin{aligned} & \text { RAQA } \\ & \text { LC-0224 } \end{aligned}$		Single-layer solenoid	\#30 E	45	0.255	3 uh		Q: $\mathbf{5 0}$ at $\mathbf{2 5 ~ m c}$ Close-wound on 13/64" D. phenolic form

TABLE 7-6. WINDING DATA (Cont)

DESIG- NATION SYMBOL	PART NO.	DIAGRAM	WINDING	WIRE SIZE	TURNS	$\begin{aligned} & \text { DEC } \\ & \text { RESIST. } \\ & \text { (OHMS) } \end{aligned}$	INDUCTANCE	HIPOT A-C VOLTS	REMARKS
L301	$\begin{gathered} \text { RAQA } \\ \text { LC-0221 } \end{gathered}$	$\mid \sqrt{8}$	Single	\#31 E	5700, tapped at 11.4% of total	350	$\begin{aligned} & 12 \mathrm{~h} \text { at } \\ & 145 \mathrm{ma} \mathrm{dc} \\ & \text { and } 10 \mathrm{v} \\ & \text { rms, } 60 \mathrm{cps} \end{aligned}$	$\begin{gathered} 1600 \\ \text { rms } \end{gathered}$	
$\begin{aligned} & \mathrm{L} 401 \\ & \mathrm{~L} 402 \end{aligned}$	$\begin{gathered} \mathrm{RAQA} \\ \mathrm{LC}-0220 \end{gathered}$		Single universal, 3 pies	\#22 DCC	$\begin{gathered} 240(80 \\ \text { per pie) } \end{gathered}$	1.12	$\begin{aligned} & 1.26 \mathrm{mh} \text { at } \\ & 1.5 \mathrm{amp} \mathrm{dc} \end{aligned}$		Q: 25 at 225 kc Wound on $5 / 8^{\prime \prime}$ D. x $1-11 / 16^{\prime \prime} \mathrm{lg}$ phenolic tube, with $1^{\prime \prime} 1 g$ iron core cemented inside 9/32" from free end; each pie $1 / 4^{\prime \prime}$ wd x 1-1/2" D. Distributed cap: 4 uuf
$\begin{aligned} & \text { L403 } \\ & \text { L404 } \\ & \text { L407 } \\ & \text { L408 } \end{aligned}$	$\begin{gathered} \text { RAQA } \\ \text { LC-0222 } \end{gathered}$		Single-layer solenoid	\#22 E	7-1/2	0.013	$\begin{aligned} & 0.339 \mathrm{uh} \\ & \text { at } 10 \mathrm{and} \\ & 20 \mathrm{mc} \text {, and } \\ & 2 \mathrm{amp} \mathrm{dc} \end{aligned}$		Q:100 at 14 mc Wound $1 / 2^{\prime \prime} 1 \mathrm{~g}$ on 3/8" D. phenolic form
$\begin{aligned} & L 405 \\ & \hline \end{aligned}$	$\begin{gathered} \text { RAQA } \\ \text { LC-0223 } \end{gathered}$	\|le	Single universal, 3 pies	\# 26 DCC	$\begin{gathered} 210(70 \\ \text { per pie }) \end{gathered}$	1.96	$\begin{gathered} 1.08 \mathrm{mh} \text { at } \\ 300 \mathrm{ma} \mathrm{dc} \end{gathered}$	$\begin{aligned} & 100 \\ & \text { rms } \end{aligned}$	Wound on 5/8" D. x $1-11 / 16^{\prime \prime} \mathrm{lg}$ phenolic tube, with $1^{\prime \prime} \mathrm{lg}$ iron core cemented inside 9/32" from free end; each pie $1 / 4^{\prime \prime}$ wd x $1^{\prime \prime}$ D.
T201	$\begin{gathered} \text { RAQA } \\ \text { LR-0035 } \end{gathered}$		Pri. Sec.	$\begin{aligned} & \text { \#28 bare } \\ & \text { tinned } \\ & \text { \#28 bare } \\ & \text { tinned } \end{aligned}$	2 8		Resonant at 18.6 mc with 100 uuf		Both windings wound 28 turns/in. on 3/8" D. form and spaced equivalent of 1 turn Powdered iron slug in sec.

DESIGNATION SYMBOL	Part mo.	diagram	winoing	WIRE SIIE	TURNS	$\begin{gathered} \text { D-C } \\ \text { RESSIST. } \\ \text { (OWMS) } \end{gathered}$	inductance	mipot A-C vots	remarks	
T202	$\begin{gathered} \text { RAQA } \\ \text { LR-0036 } \end{gathered}$		Pri. Sec.	\#28 bare tinned \# 28 bare tinned	9 9		Resonant at 18.6 mc with 100 uuf Resonant at 18.6 mc with 100 uuf		Top 7 turns wound 28 turns/in; 2 bottom turns wound in space equal to 8 turns at same rate Bottom 7 turns wound 28 turns/in; 2 top turns wound in space equal to 7 turns at same rate Windings spaced equivalent of 9 turns at 28 turns/in. on 3/8" \mathbf{D}. form; 2 powdered iron slugs	
T203	$\begin{gathered} \text { RAQA } \\ \text { LR-0037 } \end{gathered}$		Single-layer solenoid	\# 28 bare tinned	8, tapped 2 turns from bottom		Resonant at 16.825 mc with 100 uuf		Wound 28 turns/in. on 3/8" D . form; powdered iron slug; 2200 -ohm res. between bottom of coil and term. 4	
$\begin{aligned} & \text { T204 } \\ & \text { T206 } \\ & \text { T208 } \end{aligned}$	$\begin{gathered} \text { RAQA } \\ \text { LR-0038 } \end{gathered}$		2 universal, 1 pie each	7/44 D.S. Litz	$\begin{aligned} & 76 \text { (each } \\ & \text { winding) } \end{aligned}$		Each winding resonant at 1.775 mc with 100 uuf		Both windings wound on $3 / 8^{\prime \prime} \mathrm{D}$. form and spaced $0.255^{\prime \prime}$; each winding $1 / 4^{\prime \prime}$ wd \times 1/2" D; 2 powdered iron slugs Pri. shunted with 12,000 -ohm resistor	
$\begin{aligned} & \text { T205 } \\ & \text { T207 } \end{aligned}$	$\begin{aligned} & \text { RAQA } \\ & \text { LR-0039 } \end{aligned}$	$\frac{1}{T} \\|_{3}^{\text {Pni. }}$	2 universal, 1 pie each	7/44 D.S. Litz	$\begin{aligned} & 76 \text { (each } \\ & \text { winding) } \end{aligned}$		Each winding resonant at 1.775 mc with 100 uuf		Both windings wound on $3 / 8^{\prime \prime} \mathrm{D}$. form and spaced $0.315^{\prime \prime}$; each winding $1 / 4^{\prime \prime}$ wd x 1/2" D; 2 powdered iron slugs	

TABLE 7-6. WINDING DATA (Cont)

DESIGNATION SYMBOL	PART NO.	DIAGRAM	WINDING	WIRE SIZE	TURNS	$\begin{gathered} \text { D-C } \\ \text { RESIST. } \\ \text { (OHMS) } \end{gathered}$	INDUCTANCE	HIPOT A-C votts	TEMARKS
T209	$\begin{aligned} & \mathrm{RAQA} \\ & \mathrm{LO}-0140 \end{aligned}$		Pri. Sec.	\#40 E \# 29 E	$\begin{aligned} & 2600 \\ & 210 \text { C.T. } \end{aligned}$	$\begin{array}{r} 710 \\ 5.3 \end{array}$			Impedance ratio 10,000:60.
T210	$\begin{gathered} \text { RAQA } \\ \text { LR-0040 } \end{gathered}$		Single universal, 1 pie	\#35 Formvar	125		Resonant at 1.775 mc with 10 uuf		Wound $1 / 4^{\prime \prime}$ wd x $1 / 2^{\prime \prime}$ D. on $3 / 8^{\prime \prime}$ D. form; powdered iron slug 1000 -ohm resistor between top of coil and term. 1
T301	$\begin{gathered} \text { RAQA } \\ \text { LP-0246 } \end{gathered}$		Pri. Sec. \# 1 Sec. \# 2 Sec. \# 3 Sec. \#4	\# 22 E \# 17 E 2-\#19 E \# 30 E \#24 E	334 between term. 1 and 4; tapped at 283 turns (term. 2) and 310 turns (term. 3) $\begin{gathered} 14-1 / 2 \\ 18 \\ 1320 \text { С.T. } \\ 18 \text { С.T. } \end{gathered}$	2.38 between term. 1 and 2 2.48 between term. 1 and 3 2.60 between term. 1 and 4 0.055 0.055 85 0.32		2000 V rms between sec. \#1 and \# 3 1200 V rms between all other windings and/ or ground	$105 / 115 / 125 \mathrm{v}, 50 / 60$ cps, 1 ph. 5 v at 3.0 amp 6.3 v at 4.1 amp 470 v C.T. at 145 ma 6.3 v C.T. at 0.6 amp

This page purposely left blank.

SECTION 8

PARTS AND SPARE PARTS LISTS
(AND MISCELLANEOUS TABLES)

TABLE 8-1. LIST OF MAJOR UNITS

SYMBOL GROUP	QUANTITY	NAME OF MAJOR UNIT	DESIGNATION	STANDARD NAVY STOCK NUMBER
$101-599$	1	Receiver, Radio, including	R-482C/URR-35	F16-Q123947-0100
$101-199$	1	Amplifier-Converter (Preselector)		
$201-299$	1	IF/AF Section		
$301-399$	1	Power Supply Section		
$401-499$	1	Filter, Low-Pass		
$501-599$	1	Front Panel Section and Cabinet		

NAVSHIPS 92676
AN/URR-35C

NAVSHIPS 92676

－	\forall		오			∞		๓
$\begin{aligned} & \text { N } \\ & \text { I } \end{aligned}$			 			$\begin{aligned} & \text { ö } \\ & \text { రै } \\ & \text { o్ర } \\ & \text { ou } \end{aligned}$		
	区 ల్ల U U					$\begin{aligned} & \text { む̈ } \\ & \text { N్ర } \\ & \text { U్ర } \end{aligned}$		
			装					
	 \rightarrow 웅 뿡 응ㅇํ 㻤 U定認皆 むらす。 是 			วums）：DกяLD．			\ddot{U} H U 胃 気 	ర゙心 氛会家论
						∞ ∞ 0 0 0 0 0		
$\begin{aligned} & \text { N } \\ & \text { U } \end{aligned}$	O	$\begin{aligned} & \text { ザ } \\ & \text { U } \end{aligned}$	－	O	E	$\stackrel{\circ}{0}$	oi	$\frac{0}{\square}$

IINN NI S3WII s0 ${ }^{\circ} \mathrm{ON}$						N	\rightarrow	N	－		
$\begin{array}{r} \text { QBA10ANI } \\ \text { 'OISBg } \\ \text { 109WAS } \\ \text { IIV } \end{array}$						$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\rightharpoonup}{-}$	$\begin{aligned} & \infty \\ & \underset{\sim}{0} \\ & \text { n } \\ & \vec{U} \end{aligned}$	$\stackrel{9}{\square}$		
＇ON ＇OMD ONV 18Vd 9yOg －GNV 1חV8						$\begin{aligned} & \text { 弋్ర } \\ & \text { U } \\ & 0 \end{aligned}$	$\begin{aligned} & 3 \\ & \text { n } \\ & \text { O} \\ & \text { N } \\ & 0 \end{aligned}$		Q O I U		
$\begin{aligned} & z \\ & 0 \\ & \hline \mathbf{y} \\ & \frac{2}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \text { 틀 } \\ & \text { 号 } \\ & \text { 吅 } \\ & \text { 듣 } \end{aligned}$		ssed-乏q DDV sư puz	ssed-Kq әfe\|d sư puz	Mixer plate by－pass		Mixer plate tank				
		苟。 皆 			：DI\＆LDG＇THId 	우울 氙号号豆 은응 匀会荡范 氮灾思 융․ 気玉白っ 花			 U్రైర్య 㠰름ロ官 4．© 은웅 		
											．
	$\vec{\Xi}$	$\underset{\sim}{0}$	$\stackrel{\cong}{0}$	$\stackrel{H}{J}$	$\stackrel{\sim}{0}$	$\stackrel{0}{0}$	$\stackrel{F}{\square}$	$\stackrel{\infty}{\vec{v}}$	$\underset{\sim}{7}$	స్తి	

Oscillator tank
balancing
1st doubler grid
test point filter
1st doubler plate
by-pass
2nd doubler grid
test point filter
2nd doubler holding
bias by-pass
2nd doubler grid
tank balancing
2nd doubler plate
2nd doubler plate
2nd doubler coupling
2nd doubler coupling
Tripler grid bias
test point filter
Tripler holding bias
test point filter

PARTS LIST

SYMBOL DESIGNATION	STANDARD NAVY STOCK No.	NAME OF PART AND DESCRIPTION	FUNCTION	MFGR. MFGR'S. DESIG.			ㅇ․․ 気 은른
C201	N16-C-19239-6981	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 350 v dc; 2×2000 uff $+30 \%-20 \%$; uninsulated; dim. data, 0.250 in . dia $\times 1.187 \mathrm{in} . \mathrm{lg}$; schematic diagram no. 9-R, Ref Dwg Group 1; two radial wire lead terminals; one no. $4-40$ thd $\times 5 / 16 \mathrm{in} . \mathrm{lg} \mathrm{mtg}$ stud and ground term on bottom; c/o C201A and C201B; CFT dwg A1003706-1		CASU CST	CC-402B	C201, C202	4
C201A		CAPACITOR, FIXED, CERAMIC DIELECTRIC: p/o C201	1st IF AGC by-pass				
C201B		Not used					
C202		CAPACITOR, FIXED, CERAMIC DIELECTRIC: (same as C201) c/o C202A and C202B					
C202A		CAPACITOR, FIXED, CERAMIC DIELECTRIC: p/o C202	$\begin{aligned} & \text { 1st IF screen } \\ & \text { by-pass } \end{aligned}$				
C202B		CAPACITOR, FIXED, CERAMIC DIELECTRIC: p/o C202	1st IF plate by-pass				
C203		Not used					
C204		Not used					
C205	N16-C-19073-8581	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 350 v dc; 7500 uuf $\mathrm{p} / \mathrm{m} 20 \%$; uninsulated; dim. data, 0.312 in . dia $\times 1.187 \mathrm{in} . \mathrm{lg}$; schematic diagram no. 2-R, Ref Dwg Group Q; one radial wire lead term; one no. 4-40 thd x $5 / 16 \mathrm{in}$. lg mtg stud and ground term on bottom	2nd oscillator plate by-pass	$\begin{aligned} & \text { CASU } \\ & \text { CS- } 4 \end{aligned}$	CC-752	$\begin{aligned} & \text { C205, C209, } \\ & \text { C211, C215, } \\ & \text { C211, C218, } \\ & \text { C219, C222, } \\ & \text { C244, C229, } \\ & \text { C246, } \end{aligned}$	
C206		Not used					
C207		CAPACITOR, FIXED, CERAMIC DIELECTRIC: (same as $\mathrm{C108}$)	J201 decoupling				
C208	For replacement use SNSN N16-C-30109-3806	CAPACITOR, FIXED, MICA DIELECTRIC: 500 v dc; 470 uuf $\mathrm{p} / \mathrm{m} 10 \%$; style no. $8-\mathrm{B}$, Ref Dwg Group 1; plastic case; dim. data, Ref Dwg Group 1, D - 7/32 in., H - 15/32 in., W - $51 / 64$ in.; schematic diagram no. 1-R, Ref Dwg Group 1, type CM20B471K per JAN-C-5	Oscillatorling mixer coup-		CM208471K	C208, C230	2
C209		CAPACITOR, FIXED, CERAMIC DIELECTRIC: (same as C205)					

				 鹵 	 on M M くらずすこ 间运 					 囟 	 風	 容高别 1． 准言䫆 葠家家家 ర్రు ơ
으	चु	N్స్		$\begin{aligned} & \text { ఱ } \\ & \text { స్ర } \end{aligned}$	留	ジ તુ	蔦	$\begin{aligned} & \text { Uు } \\ & \hline \end{aligned}$	స్ర	$\begin{aligned} & \infty \\ & \text { స్ర } \end{aligned}$	$\begin{aligned} & \text { Əै } \\ & \text { సิ } \end{aligned}$	ก్ర్ర

		$\begin{aligned} & \text { \# } \\ & \text { \# } \\ & 0 \\ & \text { o } \\ & \overrightarrow{4} \end{aligned}$						$\begin{aligned} & \text { AF output cathode } \\ & \text { by-pass } \end{aligned}$	$\begin{aligned} & \text { む } \\ & \text { を } \\ & \text { " } \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { む } \\ & \text { \# } \\ & \text { o } \\ & \text { 豆 } \end{aligned}$				
ต		\rightarrow 을… 웅늑 出灾諗 运家侖合 	蔦				 ヘ⿵ ఱio zo 䍐り権 匋芯砍砍云公 閶号含品 人 							

ल్ల్ర

๗్స్
C235A
C235B
๗్0
た్ఞ
む్
ひ̃

꺼
స్ગ స్ べ

IIN SヨWII JO ${ }^{\circ} \mathrm{ON}$					N	N			＊		－
$\begin{array}{r} \text { OBA10ANI } \\ \text { '9ISEA } \\ \text { 109WAS } \\ 11 \forall \end{array}$											
＇ON ＇OMD ONV 18Vd 98O： －GNV 1חシ8											$\begin{aligned} & \text { ơ } \\ & \text { O} \\ & \text { B } \\ & \hline \end{aligned}$
			AGC amp B+ by-pass	$105 \text { volt by-pass }$	$\stackrel{\text { 岕 }}{\underset{\sim}{4}}$	$\begin{aligned} & \text { 岕 } \\ & \text { 号 } \end{aligned}$	$\begin{aligned} & \stackrel{\text { む }}{\overrightarrow{[}} \\ & \hline \end{aligned}$	Blower motor phasing	$\begin{aligned} & \text { \# } \\ & \text { む } \\ & \text { © } \\ & \ddot{7} \\ & \text { U } \end{aligned}$		
$\begin{aligned} & \text { NAME OF PART AND } \\ & \text { DESCRIPTION } \end{aligned}$	む $\stackrel{\stackrel{0}{\text { E }}}{\stackrel{\text { E }}{\text { © }}}$ \ddot{U} 毕 号 图 高 U 是 号 另 ム． ష্র UU	关	：DI甘LDG＇TGIG DIWV\＆GЬ	：DIMLDG＇TGId			๙	$\stackrel{\rightharpoonup}{\text { E }}$ \ddot{i} R 1 国 \square 号 $\stackrel{4}{4}$ 0 各 品 ロ～ \＆ రై ๔ ల \＆ U g		 \ddot{U} 㠫 U 谷 － 品 $\stackrel{4}{4}$ 0 号 คٌ O 등岂 \＆ U ๗	
					N16－C－19892－7801				$6096-\text { ILE9ち-D-9IN }$		0 0 0 0 0 0 0 \vdots 0 0 0 0 Z Z
	だ	ボ	$\begin{aligned} & \text { n } \\ & \text { N } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { ๗ } \\ & \text { ปู } \end{aligned}$	ర్ల్ర	$\begin{aligned} & \text { N్ర } \\ & \text { ల్ర } \end{aligned}$	O్ర	$\begin{aligned} & \text { ず } \\ & \text { O゙ } \end{aligned}$	$\stackrel{\rightharpoonup}{\mathbf{O}}$	$\begin{aligned} & \text { N్ } \\ & \text { OW } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { ஜ̈ } \\ & \text { Ü } \end{aligned}$

∞	\sim	－	
			$\begin{aligned} & \text { d } \\ & \text { 思思 } \end{aligned}$
尔	＋	8 4 \vdots ¢	

C404		CAPACITOR，FIXED，MICA DIELECTRIC：（same as C403）	AC line filter
C405		CAPACITOR，FIXED，PAPER DIELECTRIC：（same as C401）	AC line filter
C406		CAPACITOR，FIXED，PAPER DIELECTRIC：（same as C401）	AC line filter
C407		こAPACITOR，FIXED，MICA DIELECTRIC：（same as C403）	AC line filter
C408		CAPACITOR，FIXED，MICA DIELECTRIC：（same as C403）	AC line filter
E101	N16－S－34518－5501	SHIELD，ELECTRON TUBE：accommodates two RMA tube envelopes style T5 $1 / 2$ ，straight cylinder shape with flared end，open top；brass，nickel plated； over－all dim． $2.36 \mathrm{in} .1 \mathrm{~g} \times 0.870 \mathrm{in}$ ．w x $2.093 \mathrm{in} . \mathrm{h}$ ； mounts on tubes and in surrounding chassis frame； CNA part SB：2354；CFT A1000421	Shield for V101 and V102
E102		Not used	
E103		SHIELD，ELECTRON TUBE：（same as E101）	Shield for V103 and V104
E104		Not used	
E105	N 16－S－34532－8760	SHIELD，ELECTRON TUBE：accommodates RMA tube envelope style $T 61 / 2$ ，straight cylinder shape， open top；brass，nickel plated；over－all dim． $11 / 2 \mathrm{in}$ ． $\lg \times 1.065 \mathrm{in}$ ．dia；mounts on shock shield base；type TS103U01 per JAN－S－28A	Shield for V105
E106		SHIELD，ELECTRON TUBE：（same as E105）	Shield for V106
E107		SHIELD，ELECTRON TUBE：（same as E105）	Shield for V107
E108		SHIELD，ELECTRON TUBE：（same as E101）	Shield for V108 and V109
E109		Not used	
E110	N17－B－86841－9336	BRUSH ELECTRICAL CONTACT：no． 34 （ 0.006 in ．） G and S ga hard beryllium copper，heat treated；silver plated； $0.455 \mathrm{in} . \lg \times 0.312 \mathrm{in}$ ．wd；one end tapered； one no． 31 （ 0.120 in ．）drill hole $5 / 32 \mathrm{in}$ ．from wider end；CFT dwg FRB5231－1	
$\begin{gathered} \text { E111 } \\ \text { E111A } \end{gathered}$	Assemble from Component parts Fabricate locally from bulk material under SNSN G9330－221－2988	INSULATOR SET：c／o E111A and E111B INSULATOR，BUSHING：brown molded phenolic； ground finish；rd shank； $13 / 32 \mathrm{in} . \lg \times 5 / 16 \mathrm{in}$ ．OD x 0.101 in ．ID；p／o E111	Y201 crystal oscillator lead feedthrough

SYMBOL DESIGNATION	STANDARD NAVY STOCK NO.	NAME OF PART AND DESCRIPTION	FUNCTION	MFGR. AND MFGR'S. DESIG.			
E111B	Fabricate locally from bulk material under SNSN G9330-221-2988	INSULATOR, BUSHING: brown molded phenolic; ground finish; rd shank; $0.118 \mathrm{in} . \lg x 5 / 16 \mathrm{in}$. OD x 0.101 in . ID; CFT dwg A1001093; p/o E111			WL-0245	$\begin{aligned} & \text { E111B, R112B, } \\ & \text { E113A, E113B, } \\ & \text { E114A, E114B } \end{aligned}$	6
E112	Assemble from Component parts	INSULATOR SET: c/o E112A, E112B	Y201 lead feedthrough				
E112A		INSULATOR, BUSHING: (same as E111A); p/o E112					
E112B		INSULATOR, BUSHING: (same as E111B); p/o E112					
E113	Assemble from Component parts	INSULATOR SET: c/o E113A, E113B	2nd doubler grid testpoint feedthrough				
E113A		INSULATOR, BUSHING: (same as E111B); p/o E113					
E113B		INSULATOR, BUSHING: (same as E111B); p/o E113					
E1 14	Assemble from Component parts	INSULATOR SET: c/o E114A, E114B	1st doubler B + feedthrough				
E114A		INSULATOR, BUSHING: (same as E111B); p/o E114					
E114B		INSULATOR, BUSHING: (same as E111B); p/o E114					
E115	Low Failure itemif required requisition from ESO referencing NavShips 900,180A	INSULATOR, PLATE: acrylic heat resistant, MIL-P5415, transparent, clear sheet, finish A; dim., Ref Dwg Group 9, item 185, J-1.750 in., K - 1-17/32 in., $\mathrm{L}-12-1 / 8 \mathrm{in}$., $\mathrm{M}-5 / 32 \mathrm{in}$. \& countersink 82 deg x $9 / 32 \mathrm{in}$. dia, $\mathrm{N}-5 / 16 \mathrm{in}$., O-10-47/64 in., T $0.080 \mathrm{in} ., \mathrm{W}-2-1 / 4 \mathrm{in}$.	Top cover for preselector		AC-115	E115	1
E116	Low Failure item if required requisition from ESO referencing N avShips 900, 180A	INSULATOR, PLATE: acrylic heat resistant, MIL-P5425, transparent, clear sheet, finish A; dim., Ref Dwg Group 9, item 185, J - $1.750 \mathrm{in} ., \mathrm{K}-1-17 / 32 \mathrm{in}$., L-12-1/8 in., M - 5/32 in. \& countersink $82 \mathrm{deg} x$ $9 / 32 \mathrm{in}$. dia, $\mathrm{N}-5 / 16 \mathrm{in}$., $\mathrm{P}-10-7 / 8 \mathrm{in}$., $\mathrm{T}-0.080$ in., W-2-1/4 in.	3ottom cover for preselector		AC-1419	E116	1
E201	Shop manufacture	TERMINAL BOARD: glass cloth laminated thermosetting plastic; 8 solder post term; 3-13/16 in. $1 \mathrm{~g} x$ $3 / 4 \mathrm{in}$. wd x $3 / 32 \mathrm{in}$. thk; two 0.169 in . dia mtg holes $21 / 2 \mathrm{in}$. c to c; marked E201 and ckt symbols; CNA part SB:2271; CFT dwg A1001281	Terminal board		vT-0331	E201	1

－	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\rightarrow
N	¢	H	遃	发	鿮	－	\％
$\begin{aligned} & \text { N్ల్ల } \\ & \text { 1 } \\ & \hline \end{aligned}$	n ¢ － －	¢0 \％ －	\％ \％ － －	W \％ ＋ －	¢0 ¢ ¢ －	¢ \％ i S	∞ 0 \％ － －

$\begin{aligned} & \text { व్w } \\ & \text { o } \\ & \text { d } \\ & \text { E } \\ & \text { E } \\ & \dot{H} \end{aligned}$		$\begin{aligned} & \text { g } \\ & \text { g } \\ & \text { o } \\ & \text { む̈ } \\ & \text { E } \\ & E \\ & 0 \end{aligned}$				$\begin{aligned} & \text { 믕 } \\ & \text { o } \\ & \text { む } \\ & \text { ㅌ } \\ & \text { H } \\ & \text { H} \end{aligned}$	$\begin{aligned} & \text { ou } \\ & \text { o } \\ & \text { ब } \\ & \text { E } \\ & \text { } \\ & \dot{H} \end{aligned}$	
$\begin{aligned} & \text { N } \\ & \text { NTM } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { Nin } \end{aligned}$	$\begin{aligned} & \text { ƠO } \\ & \text { Nat } \end{aligned}$	$\begin{aligned} & \text { గٌ } \\ & \text { Nin } \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { Nin } \end{aligned}$	N	$\begin{aligned} & \hline \infty \\ & \text { N్స్ञ } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N్M } \end{aligned}$	$\begin{array}{ll} \text { 읖 } \\ \text { ल⿱⿰习习⿱⿴囗十丌 } \end{array}$

\rightarrow	\cdots	－	N	\cdots	\cdots	－	N	\sim
－	$\begin{aligned} & \text { No } \\ & \text { 箇 } \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \text { 箇 } \end{aligned}$		－	\％	第		
¢ O － －	セ̛1 O － S	～ֻ\％	O O ¢ h		N N ¢ Ód		$\begin{aligned} & \text { 行 } \\ & \text { N } \\ & \text { じ } \end{aligned}$	W゙ N ¢ －

	$\begin{aligned} & \text { व్ㅐ } \\ & \text { on } \\ & \text { む } \\ & \text { E } \\ & \text { H } \end{aligned}$	$\begin{aligned} & \text { 민 } \\ & \text { g } \\ & \text { む } \\ & \text { E } \\ & \text { H } \end{aligned}$				En E N N U U U U						
			N16－S－34607－6039				\circ 0 0					
$\begin{aligned} & \text { O- } \\ & \text { 等 } \end{aligned}$	$\begin{aligned} & \text { N్ర } \\ & \text { N} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { Ü } \\ & \text { 管 } \end{aligned}$	$\begin{aligned} & \text { セo } \\ & \text { 箅 } \end{aligned}$	$\begin{aligned} & \vec{O} \\ & \text { 䓒 } \end{aligned}$	$\begin{aligned} & \vec{\circ} \\ & \text { 苗 } \end{aligned}$	$\begin{aligned} & \text { N్ } \\ & \text { 第 } \end{aligned}$	$\begin{aligned} & \text { 00 } \\ & \text { 岂 } \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { م } \end{aligned}$	$\begin{aligned} & \text { గo } \\ & \text { 苗 } \end{aligned}$	$\begin{aligned} & \mathscr{C} \\ & 0 \\ & \mathbf{0} \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { 苗 } \end{aligned}$

$\begin{array}{r} \text { IINก NI } \\ \text { SヨWII } \\ \pm 0^{\circ} \mathrm{ON} \end{array}$		\cdots			～		\rightarrow	\cdots	\cdots	N		\cdots
$\begin{array}{r} \text { OBA10ANI } \\ \text { 'OISヨG } \\ \text { 108WAS } \\ 11 V \end{array}$					N 플 － －		문	N్꾸	$\begin{aligned} & \text { No } \\ & \text { Nin } \end{aligned}$			\％
ON －9MO ONV 1甘Vd 9yOg －GNV Inシ		응 0 屈					$\begin{aligned} & \text { \& } \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { D } \\ & \stackrel{4}{4} \\ & \dot{4} \end{aligned}$				$\begin{aligned} & \infty \\ & \stackrel{\infty}{8} \\ & \stackrel{1}{4} \end{aligned}$
		区̛								$\begin{aligned} & \text { F } \\ & \text { U } \end{aligned}$		80咢
$\begin{aligned} & z \\ & \frac{0}{6} \\ & \frac{z}{2} \\ & 3 \end{aligned}$		$\begin{aligned} & \text { D } \\ & \text { O} \\ & \text { O } \\ & \text { U } \end{aligned}$	U 0 0 0 0		高范 … 佶点 							
								 际穹 图등에 家志慁 気苞志 空过葸			（IOSI SE әures）：LNADSSGGNVDNI＇dWV＇T	
										90L8-gct-0ฤて9D		00I6-\&zz-0ฤて9D
	$\begin{aligned} & \infty \\ & \text { ~ } \\ & \text { N } \end{aligned}$	－	$\begin{aligned} & \text { N} \\ & \text { N } \end{aligned}$	管	$\begin{aligned} & \text { ت} \\ & \text { 出 } \end{aligned}$	N	－	ㅇㅡㅐ	芷	O	ก	\％

\sim		＊				－		－
⿹ㅡㄱ － －						－		守
		$\begin{aligned} & \text { ©. } \\ & \text { W. } \\ & \text { 范 } \end{aligned}$						$\begin{aligned} & \text { H } \\ & \text { O} \\ & \stackrel{1}{幺} \end{aligned}$
								$\begin{aligned} & \text { 若 } \\ & \text { 士 } \\ & 00 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
								문 bi g i ๓ 디s药 눈 食纽荌
								N్
$\stackrel{\rightharpoonup}{\square}$	－	్ㅐㄱ	\％	प्ष్ర	商	－		守

$\begin{aligned} & \text { IIN N NI } \\ & \text { SヨWII } \\ & \text { IO } \end{aligned}$	\square		\rightarrow	\rightarrow		\rightarrow	\cdots	\cdots			
$\begin{array}{r} \text { Qヨ^10ANI } \\ \text { 'OISEG } \\ \text { 109WAS } \\ \text { IFV } \end{array}$	$\underset{\sim}{\text { O}}$			$\begin{aligned} & \text { ® } \\ & \text { O̦ } \end{aligned}$		$\underset{\substack{\text { S } \\ \hline \\ \hline}}{ }$	$\stackrel{-1}{\sim}$	$\begin{aligned} & \overrightarrow{0} \\ & \hline \end{aligned}$			
			$\begin{aligned} & \text { H゙ } \\ & \text { O } \\ & \text { i } \\ & \text { 炭 } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { (1) } \\ & \text { 范 } \end{aligned}$				$\begin{aligned} & \boxed{\circ} \\ & \hline 1 \\ & \hline 1 \\ & \hline 4 \end{aligned}$			
							드윢				
$\begin{aligned} & z \\ & 0 \\ & \hline \mathbf{y} \\ & \mathbf{y} \\ & \mathbf{z} \end{aligned}$			Antenna connection								
		$\begin{aligned} & \ddot{0} \\ & \underset{y}{0} \\ & \stackrel{0}{0} \\ & \underset{z}{2} \end{aligned}$	 \rightarrow 㗈品 U 甸 ∞ 芯 जウ जั U－․․ 品苞客鬲品 등영 发 헝 认 旦农完范						INDUCTOR：（integral with C101A）		
				$\text { I } \ell ठ-\nabla 6 โ \varepsilon L-D-L I N$		078S－80I $\varepsilon L-D-L I N$	若 $\overrightarrow{\mathrm{B}}^{\circ}$ 进丳 은 옥 号				
	N্ণ	舭	守	号	¢	宕	－	$\xrightarrow{-7}$		$\stackrel{0}{7}$	$\underset{y}{\text { U }}$

$\begin{array}{r} \text { IINก NI } \\ \text { S } 3 \text { OWII } \\ \hline{ }^{\circ} \mathrm{ON} \end{array}$	\rightarrow	\cdots	\rightarrow	\rightarrow	∞			\cdots
$\begin{array}{r} \text { QBA10ANI } \\ \text { 'OISBG } \\ \text { 109WAS } \\ \text { IIV } \end{array}$	$\begin{aligned} & 6 \\ & -7 \end{aligned}$	$\underset{7}{7}$	$\begin{aligned} & \mathbb{4} \\ & \overrightarrow{7} \end{aligned}$	$\underset{-}{\infty}$				N్ㅓㄱ
－OMD ONV 14Vd 980＇ －aNV Inv	$\begin{aligned} & \overrightarrow{0} \\ & \text { on } \\ & \text { i } \end{aligned}$	$\begin{aligned} & \text { No } \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$	O O 1 I	$\begin{aligned} & \text { ®o } \\ & \text { O } \\ & \text { ì } \end{aligned}$				
$\begin{aligned} & z \\ & \frac{0}{y} \\ & \frac{z}{3} \\ & 3 \end{aligned}$								
	犃药幾言 곸응 ジロの莫苞N 准 	 ※ ज ज 	 \times ㅎ．⿹ㅕㄱ오웅高察定家 กத $\bar{Z}^{\circ} \circ$ ． 要管的。 훅뭉우웅 O．	தit형 억으응 \cdots 으․ 方家皆 $\stackrel{\text { ® }}{\sim}$ ले 두륭 面方웅 品品志家 思웅유융 ले 风． 응융훈		(6IIT Se aures) :		
	$\begin{aligned} & 0 \\ & \underset{A}{7} \end{aligned}$	ت	$\begin{aligned} & \mathbb{y} \\ & \underset{y}{2} \end{aligned}$	寻	$\underset{\exists}{7}$	స్షి	$\stackrel{-}{\mathrm{N}}$	$\underset{\text { N్ㅡㄱ }}{ }$

$\underset{\sim}{ }$		$\begin{aligned} & \text { T్ర } \\ & \text { Man } \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { O} \\ & \\ & \underset{\sim}{\mathrm{O}} \end{aligned}$	
N O U－		N్ర్ర	Now Un U－	N్ O U－

							$\begin{aligned} & \text { む } \\ & \text { 己 } \\ & \text { 罟 } \end{aligned}$	$\begin{aligned} & \text { む } \\ & \text { 空 } \end{aligned}$		$\begin{aligned} & \text { む } \\ & \text { B } \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { む } \\ & \text { d } \\ & \stackrel{0}{\rightrightarrows} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { む } \\ & \text { d } \\ & 0 \\ & \pm \\ & 0 \\ & 0 \end{aligned}$
		$\begin{aligned} & \text { वै } \\ & \text { O. } \\ & \ddot{3} \\ & \stackrel{\rightharpoonup}{Z} \end{aligned}$		(zoz' se awrs) : XDNGחฤgyલ OIGvy 'TIOD			（zOZT SE әurs）：：	 $\cdots{ }^{n-1}$ دल के 을 응 部苞न 	 贰说 亿呈3 3－ ๓둘 © 	REACTOR: (same as L401	跃领 言 $\stackrel{3}{3}$ ジo Un m甾苟 \times E家边 	
	N16－C－72793－6430							N16－R－29693－5271				
d N	N్స్త	T్త	N్స్	Ø్స్ష	চ্ড্র	H్రిం	$\begin{aligned} & \text { H్N } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ت} \\ & \text { M్S } \end{aligned}$	ت্ড	べ	$\underset{\substack{0 \\ \hline \\ \hline}}{ }$	＋

NAVSHIPS 92676
AN/URR-35C
PARTS LIST

SYMBOL DESIGNATION	STANDARD NAVY STOCK NO.	NAME OF PART AND DESCRIPTION	FUNCTION	MFGR. AND MFGR'S. DESIG.			
L405	N16-C-74411-7351	REACTOR: filter choke; 1 section; 3 pie wound; 1.08 $\mathrm{mh} \mathrm{p} / \mathrm{m} \mathrm{10} \mathrm{\%} \mathrm{at} 300 \mathrm{ma}$ DC; 1.96 ohms DC resistance; 100 v RMS test; open frame; 3 pie w/ 70 turns no. 26 AWG DC wire each pie; 1-11/16 in. $\lg \times 1 \mathrm{in}$. dia; 2 mtg feet each w/ no. 6-32 tapped holes $15 / 16 \mathrm{in}$. c to $\mathrm{c} ; 2$ solder lug term; Q max impregnated	Audio output filter		LC-0223	L405, L406	2
L406		REACTOR: (same as L405)	Audio output filter				
L407		COIL, RADIO FREQUENCY: (same as L403)	AC line filter				
L408		COIL, RADIO FREQUENCY: (same as L403)	AC line filter				
M501	N17-M-19255-1051	AMMETER: DC type; range 0 to 1.0 ma ; rd, plastic flush mtd case; 2.21 in . max dia bbl, 1.60 in . d max behind fi; 2% accuracy for full scale reading; D'Arsonval movement; approx 105 ohms resistance; calibrated for nonmagnetic panel; 50 scale divisions, black numerals on white background; self contained; three mtg holes 0.125 in . dia spaced 120 deg apart on 1.22 in. rad; two stud term $0.69 \mathrm{in} . \lg \times 1 / 4-28$ thd; type MR25W001DCMA per MIL-M-6A	Input meter		M-0045	M501	1
M502	N17-M-22724-6701	METER, AUDIO LEVEL: AC rect type; range -10 to 0 to +20 db ; rd, plastic flush mtg case; 2.21 in . max dia bbl, 1.6 in . max d behind fl, 2.695 in . dia, rd fl; 5% accuracy for full scale reading; D'Arsonval movement; 0 level is 1.9 v ; calibrated for nonmagnetic panel; 30 scale divisions, black numerals on white background; self contained; three mtg holes 0.125 in . dia spaced 120 deg apart on 1.22 in . rad; two stud term 0.69 in . $\lg \times 1 / 4-28$ thd; for use across 600 ohm source, reference level 6 mw expanded scale, aluminum shield; CNA part/dwg H344-1; Navy Type No. CV-22427	Output meter		M-0046	M502	1
0101	N16-D-900151-109	DRIVE, CAPACITOR: c/o spur gear on shaft in sandcast aluminum frame; gear 1.041 in . OD x 1 in . pitch dia; 48 diametrical pitch; 0.187 in . thk; 20 deg pressure angle; hub ss, bearing bronze; ss shaft $1 / 4 \mathrm{in}$. dia $x 1 \mathrm{in} . \lg ; 3 \frac{1}{4} \mathrm{in}$. $\lg \times 1-1 / 32 \mathrm{in}$. w x $1-9 / 16 \mathrm{in}$. ho o/a; three 0.189 in . dia mtg holes located in line 0.500 in . and 2.88 in . c to c ; CNA part SB:2386; CFT dwg B1001156	Synchronizing		VG-2953	0101	1
0102	G3110-100-6208	BALL, BEARING: locking; spherical; $1 / 8 \mathrm{in}$. dia; type 440, grade 1; ss; CFT dwg A1000244	Inductance trimmer locking		BG-1650	0102	1

NAVSHIPS 92676

\sim	∞	-	∞	\cdots	-	-
to O oid on		İ		\%్ర్ర	\%్ర్ల	\% \%
$\begin{aligned} & \text { ్ల్ } \\ & \text { స్ర } \\ & \text { ర } \end{aligned}$		$\begin{aligned} & \text { 퉁 } \\ & \text { b } \end{aligned}$		O O ¢	- ¢ ¢	
		$\begin{aligned} & \text { un } \\ & \text { 笑忽 } \end{aligned}$				

0103	N16-G-432816-277	GEAR, SPUR: split gear; spring-loaded non-backlash type; 13/32 in. thk incl hub; aluminum gear, 96 teeth; 48 diametrical pitch; 20 deg pressure angle; 2 in . pitch dia; two no. 6-32 radial set screw holes 90 deg apart; CNA part SB:2385; CFT dwg A1000553	Capacitor drive
0104		GEAR SPUR: (same as 0103)	Capacitor drive
0105	N17-S-38251-1015	SHIELD, ELECTRICAL CONNECTOR: brass, silver plated; rectangular shape; $1 \mathrm{in} . \lg \times 1 \mathrm{in}$. wd x $1 / 2$ in . h; four no. 18 drill mtg holes 0.718 in . x 0.718 in . c to c ; CFT dwg FRB9102-1	Shield for P101
0201	N16-C-301129-741	CLAMP, ELECTRICAL: ss; one strap type fastening device; 2.275 in . dia w/strap open, 1.425 in . dia w/ strap closed; dim. 1-3/8 in. ID, 15/16 in. h; one mtg hole for no. 10 screw in mtg bracket; CFT dwg A1000640-3	Tube clamp
0202	N16-M-60906-8018	RETAINER, CAPACITOR: "U" shaped spade bracket; $2-3 / 4 \mathrm{in}$. $\mathrm{lg} \times 49 / 64 \mathrm{in}$. wd x $1-5 / 8 \mathrm{in}$. h; two no. 6-32 thd mtg studs $1-9 / 16 \mathrm{in}$. c to c; type CPOGSA6 per JAN-C-25	Capacitor mounting
0203	Shop manufacture	CLIP, ELECTRICAL: beryllium copper, nickel plated; $1-3 / 32 \mathrm{in} .1 \mathrm{~g} \times 5 / 16 \mathrm{in}$. w x 0.020 in . thk; $3 / 64 \mathrm{in}$. radius of form; two 0.136 in . drill mtg holes $5 / 16 \mathrm{in}$. c to c	Bristol key mounting
O204		SHIELD, ELECTRICAL CONNECTOR: (same as 0105)	Shield for P201
0301		RETAINER, CAPACITOR: (same as 0202)	Capacitor mtg
O302		RETAINER, CAPACITOR: (same as 0202)	Capacitor mtg
O303	N16-C-300799-482	CLAMP, ELECTRICAL: ss; one strap type fastening device; 2.5745 in . dia w/strap open; 1.775 in . dia w/ strap closed; 1.625 in . ID, $5 / 8 \mathrm{in} . \mathrm{h}$; one mtg hole for no. 10 screw in mtg bracket; CFT dwg A1000640-2	Tube clamp for V301
O304		Not used	
O305		Not used	
O306		Not used	
0307		Not used	
O308	G3110-155-9639	BALL, BEARING: single row radial; double shield; $1 / 4 \mathrm{in}$. bore, $3 / 4 \mathrm{in}$. OD, $9 / 32 \mathrm{in}$. w; 6 balls $5 / 32 \mathrm{in}$. dia; p/o BL301A	Front bearing for BL301

LINก NI S3WII $10^{\circ} \mathrm{ON}$	\cdots	N				N		\cdots	\cdots	\cdots	\cdots	\cdots
$\begin{array}{r} \text { 0BA10ANI } \\ \text { 'OISミA } \\ \text { 109WAS } \\ 117 \end{array}$	O్ర	$\begin{aligned} & \text { O} \\ & \text { U } \\ & \text { O} \\ & \text { Ö } \end{aligned}$				$\begin{aligned} & \text { B } \\ & \text { O} \\ & \text { io } \\ & \text { ơ } \end{aligned}$		$\begin{aligned} & \overrightarrow{0} \\ & 0 \end{aligned}$	N్ర	$\begin{aligned} & \circ \\ & \hline 00 \end{aligned}$	$\begin{aligned} & \mathbb{1} \\ & \text { ó } \\ & \text { io } \end{aligned}$	$\begin{aligned} & \text { M } \\ & \text { O } \\ & 0 \end{aligned}$
＇ON ＇פMO ONV 1甘Vd 9 O8 －GNV 1חV：						$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & \text { 虏 } \end{aligned}$		$\begin{aligned} & \text { §o } \\ & \text { § } \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { Ø } \\ & \text { N } \\ & \text { ஸ் } \end{aligned}$	$\begin{aligned} & \text { İ } \\ & \text { O} \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { 毋 } \\ & \text { N } \\ & \text { む } \end{aligned}$	$\begin{aligned} & \text { H. } \\ & \text { N } \\ & \text { ஸ̀ } \end{aligned}$
	密会侖											
FUNCTION					Shield for J407	$\begin{aligned} & \text { O} \\ & \text { 4 } \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \widetilde{N}_{1} \\ & \mathbf{L}_{1} \\ & 3 \end{aligned}$	O B ¿ 0 0 0 0 0				
			$\stackrel{\square}{\circ}$ H U U 号 鳬 自 合		$\stackrel{9}{\sigma}$				ذ̊ สั 玉ี ヨ ३० 刃． 등릉 듕휸 वัO $\times \infty$ 을․․ స్ 究的的 品会总茄 40 a a 㟔菲令		s．ㄹ ©0 帚感 ○品年 కల ల్ల －No 合宫范 ら』 』 深家 ర゙ 弱管め 号示×8 O	8 동 헐 를 ज ○ず 寻这 옹 安㤐 ～ A 등 がに 『 ज ज 号見首首
	O	$\begin{aligned} & \text { Ơ } \\ & \text { O } \end{aligned}$	ণ্ণ ণ	$\begin{aligned} & \text { O} \\ & \text { Ó } \end{aligned}$	$\begin{aligned} & \text { t } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { ®O } \\ & \text { Ot } \end{aligned}$	$\begin{aligned} & \text { Øo } \\ & \text { Ó } \end{aligned}$	$\begin{aligned} & 7 \\ & 0 \\ & 0 \end{aligned}$	Noㅇ	$\begin{aligned} & \text { 厄i̛ } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { 氏゙ } \\ & \text { 厄̈ } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { M } \\ & \text { \% } \\ & \text { on } \end{aligned}$

N		\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
$\begin{aligned} & \text { 잉 } \\ & 0 \\ & 0 \\ & \text { di } \\ & 0 \end{aligned}$		$\begin{aligned} & \vec{O} \\ & \text { an } \end{aligned}$	$\begin{aligned} & \text { ®̈ } \\ & \text { nin } \end{aligned}$	$\begin{aligned} & \text { N్ల్ల } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { む } \\ & \text { © } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { M } \\ & \text { N్ల } \\ & \text { M } \end{aligned}$	$\begin{aligned} & \vec{\circ} \\ & \text { a } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { O } \\ & \text { 1 } \end{aligned}$
N్N N్ §		\＃ N O i U	$\begin{aligned} & \text { n } \\ & \text { N్ } \\ & \stackrel{1}{2} \end{aligned}$		$\begin{aligned} & \text { II } \\ & \text { O} \\ & \sum_{幺}^{1} \end{aligned}$	$\begin{aligned} & \text { B⿸户⿵冂卄} \\ & \text { O } \\ & \text { ~ } \end{aligned}$		$\begin{aligned} & \text { © } \\ & \text { © } \\ & \text { O } \\ & \text { 药 } \end{aligned}$
$\begin{aligned} & \text { Z్ } \\ & \text { ñ } \\ & \text { Mow } \end{aligned}$					$\frac{\square}{3}$	zo		
$\begin{aligned} & \text { む } \\ & \pm \\ & \vec{a} \\ & \stackrel{0}{0} \\ & \text { a } \end{aligned}$				$\begin{aligned} & \text { ㄷ } \\ & \text { IU } \\ & 0 \\ & \text { I } \\ & 0 \\ & 0 \\ & \text { § } \\ & 0 \\ & \text { E } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				
n \vdots 			N17-C-73487-7175	च082－0LもEL－D－LIN				
$\begin{aligned} & \text { I' } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 앙 } \\ & 0 \end{aligned}$	$\begin{aligned} & \overrightarrow{0} \\ & 0 \end{aligned}$	ت̈	N్ల్ల	$\begin{aligned} & \text { むు } \\ & \text { స్ల } \\ & \end{aligned}$	$\begin{aligned} & \text { M్ర్ల } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { a } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { ~ } \end{aligned}$

NAVSHIPS 92676
AN/URR-35C
PARTS LIST

SYMBOL DESIGNATION	STANDARD NAVY STOCK NO.	NAME OF PART AND DESCRIPTION	FUNCTION	MFGR. AND MFGR'S. DESIG.	$\begin{aligned} & 160 \\ & 2 \pi 3 \\ & 200 \\ & 2020 \\ & 20<2 \end{aligned}$		
P403		Not used					
P404	N17-C-71412-8748	CONNECTOR, PLUG, ELECTRICAL: coax; one rd male contact; straight; metal body; 1-7/8 in. $\lg \mathrm{x}$ 13/16 in. dia; type UG-21D/U per JAN-C-71	Antenna input		SM-0188	P404	1
R101	N16-R-50633-785	RESISTOR, FIXED, COMPOSITION: body style no. 14 , Ref Dwg Group 2; 100,000 ohms $\pm 10 \%$; $1 / 2 \mathrm{w}$; resistance temp characteristic F; body dim., Ref Dwg Group 2; A - $0.416 \mathrm{in} ., \mathrm{B}-0.161 \mathrm{in}$.; uninsulated; type RC20GF104K per MIL-R-11A	1st RF AGC filter		RC20GF104K	R101, R105, R115, R118, R121, R210, R245, R254, R262, R263, R264	11
R102	N16-R-50372-833	RESISTOR, FIXED, COMPOSITION: body style no. 14, Ref Dwg Group 2; 22,000 ohms $\pm 10 \%$; $1 / 2 \mathrm{w}$; resistance temp characteristic F; body dim., Ref Dwg Group 2, A - $0.416 \mathrm{in} ., \mathrm{B}-0.161 \mathrm{in} . ;$ uninsulated; type RC20GF223K per MIL-R-11A; p/o Z104	1st RF screen dropping		RC20GF223K	R102, R103, R106, R107, R122, R123, R209	7
R103		RESISTOR, FIXED, COMPOSITION: (same as R102) p/o Z104	1st RF screen dropping				
R104	N 16-R-50166-512	RESISTORS, FIXED, COMPOSITION: body style no. 14, Ref Dwg Group 2; 5600 ohms $\pm 10 \%$; 2 w; resistance temp characteristic F; body dim., Ref Dwg Group 2, A $-0.728 \mathrm{in} ., \mathrm{B}-0.336 \mathrm{in} . ;$ uninsulated; type RC42GF562K per MIL-R-11A	1st RF plate voltage dropping		RC42GF562K	R104, R108	2
R105		RESISTOR, FIXED, COMPOSITION: (same as R101)	2nd RF AGC				
R106		RESISTOR, FIXED, COMPOSITION: (same as R102) p/o Z105	2nd RF screen dropping				
R107		RESISTOR, FIXED, COMPOSITION: (same as R102) p/o Z105	2nd RF screen dropping				
R108		RESISTOR, FIXED, COMPOSITION: (same as R104)	2nd RF plate dropping				
R109	N16-R-50822-761	RESISTOR, FIXED, COMPOSITION: body style no. 14 , Ref Dwg Group 2; 470,000 ohms $\pm 10 \% ; 1 / 2 \mathrm{w}$; resistance temp characteristic F; body dim., Ref Dwg Group 2, A - 0.416 in ., B - 0.161 in .; uninsulated; type RC20GF474K per MIL-R-11A	Mixer grid leak		$\begin{aligned} & \text { RC20GF } \\ & 474 \mathrm{~K} \end{aligned}$	$\begin{aligned} & \text { R109, R230, } \\ & \text { R236, R258 } \end{aligned}$	4
R110	N16-R-50479-440	RESISTOR, FIXED, COMPOSITION: body style no. 14 , Ref Dwg Group $2 ; 47,000$ ohms $\pm 10 \% ; 1 / 2 \mathrm{w}$; resistance temp characteristic F; body dim., Ref Dwg Group 2, A - 0.416 in ., B - 0.161 in .; uninsulated; type RC20GF473K per MIL-R-11A	Mixer plate dropping		$\begin{gathered} \text { RC-20GF } \\ 473 \mathrm{~K} \end{gathered}$	$\begin{aligned} & \mathrm{R} 110, \mathrm{R} 227, \\ & \mathrm{R} 234, \mathrm{R} 235 \end{aligned}$	4

N	เ	N	15	\cdots	ω
$\begin{aligned} & \underset{\sim}{9} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{7} \end{aligned}$		$\begin{aligned} & \text { N్ } \\ & \text { ~~ } \\ & \text { n } \\ & \underset{\sim}{7} \end{aligned}$		$\begin{aligned} & \text { g } \\ & \underset{\sim y}{4} \end{aligned}$	
			$\begin{aligned} & \text { צ } \\ & \text { ल } \\ & \text { Ha } \\ & \text { O } \\ & \text { o } \\ & \text { U } \end{aligned}$		

											Tripler screen dropping	Tripler screen dropping
						(tity se awes) :NOLLISOdWOD 'arxid 'yarsisay						
$\underset{\sim}{z}$	$\underset{\sim}{\sim}$	$\stackrel{\text { ® }}{\text { ® }}$	$\underset{\sim}{\ddot{a}}$	$\stackrel{\cap}{\vec{x}}$	$\stackrel{0}{\square}$	$\stackrel{F}{3}$	$\stackrel{\otimes}{\ddot{\sim}}$	$\stackrel{\otimes}{\underset{\sim}{4}}$	플	تِد	N్జ్ల	式

SYMBOL DESIGNATION	STANDARD NAVY STOCK NO.	NAME OF PART AND DESCRIPTION	FUNCTION	MFGR. AND MFGR'S. DESIG.			
R124	N16-R-50067-233	RESISTOR, FIXED, COMPOSITION: body style no. 14 , Ref Dwg Group 2; 3300 ohms $\pm 10 \%$; 1 w ; resistance temp characteristic F; body dim., Ref Dwg 2, A -0.760 in ., B -0.264 in .; uninsulated; type RC30GF332K per MIL-R-11A	Tripler plate dropping		RC30GF33 2 K	R124	1
R125		RESISTOR, FIXED, COMPOSITION: (same as R113)	1st doubler plate resistor				
R126	N16-R-49769-799	RESISTOR, FIXED, COMPOSITION: body style no. 1 r , Ref Dwg Group 2; 470 ohms $\pm 10 \%$; $1 / 2 \mathrm{w}$; resistance temp characteristic F; body dim., Ref Dwg 2, A - 0.416 in ., B - 0.161 in .; uninsulated; type RC20GF471K per MIL-R-11A; p/o Z104	1st RF screen dropping resistor		RC20GF471K	R126, R127	2
R127		RESISTOR, FIXED, COMPOSITION: (same as R126) p/o Z105	2nd RF screen decoupling				
R128	N16-R-49427-730	RESISTOR, FIXED, COMPOSITION: body style no. 14, Ref Dwg Group $2 ; 47$ ohms $\pm 10 \%$; $1 / 2$ w; resistance temp characteristic F; body dim., Ref Dwg Group 2, A - $0.416 \mathrm{in} .$, B - 0.161 in .; uninsulated; type RC20GF470K per MIL-R-11A	18.6 mc input termination		RC20GF470K	R128, R207	2
R129		RESISTOR, FIXED, COMPOSITION: (same as R112) p/o Z101	Parasitic suppressor				
R201	N16-R-50129-815	RESISTOR, FIXED, COMPOSITION: body style no. 14 , Ref Dwg Group 2; 4700 ohms $\pm 10 \%$; $1 / 2 \mathrm{w}$; resistance temp characteristic F; body dim., Ref Dwg Group 2, A - 0.416 in ., B - 0.161 in .; uninsulated; type RC20GF472K per MIL-R-11A	1st IF AGC decoupling		RC20GF 472K	R201, R206, R212, R213, R239, R261	6
R202		Not used					
R203		Not used					
R204		Not used					
R205	N16-R-50282-725	RESISTOR, FIXED, COMPOSITION: body style no. 14 , Ref Dwg Group $2 ; 10,000$ ohms $\pm 10 \%$; $1 / 2 \mathrm{w}$; resistance temp characteristic F; body dim., Ref Dwg Group 2, A - 0.416 in ., B - 0.161 in .; uninsulated; type RC20GF103K per MIL-R-11A	1st RF screen dropping		RC20GF 103 K	$\begin{aligned} & \text { R205, R214, } \\ & \text { R243 } \end{aligned}$	3
R206		RESISTOR, FIXED, COMPOSITION: (same as R201)	1st IF plate dropping				
R207		RESISTOR, FIXED, COMPOSITION: (same as R128)	J201 load				
R208		Not used					

～	N	\rightarrow	N	\cdots
$\begin{aligned} & \text { n } \\ & \text { ñ } \\ & \text { Ï } \\ & \text { N } \end{aligned}$		$\begin{aligned} & \infty \\ & \text { స్ } \end{aligned}$		－

					suịddorp uәə⿰冫欠								suḷddorp uəəıכs sil pıe		
(zoty se ambs) :NOLLISOdWOD 'đGXIA 'YOISISaty								(9IZษ se әures) :NOLLISOdWOO 'đశXLH 'qOLSISE4						（0ZZy se әurs）：NOLLISOdWOD＇đオXLH＇qOLSISGY	
$\begin{aligned} & \text { Oìn } \\ & \text { Nun } \end{aligned}$	$\begin{aligned} & \text { 을 } \\ & \text { ભ } \end{aligned}$	ت	$\begin{aligned} & \text { N } \\ & \text { ल̃ } \end{aligned}$	M	坔	ヘ	$\begin{aligned} & \text { ๗్ల } \\ & \text { స్ } \end{aligned}$	크쓸		$\begin{aligned} & \text { స్ } \\ & \text { స్ } \end{aligned}$	N్స్య	్ㅡㅆ	N్ㄲ	N్స్	N్ત゙

N

$\begin{aligned} & \text { Z్ } \\ & \text { O } \\ & \text { O} \\ & \text { す } \\ & \text { U } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { む } \\ & \stackrel{y}{5} \\ & \frac{1}{3} \\ & \text { m } \end{aligned}$				$\begin{aligned} & \text { む } \\ & \text { E } \\ & \text { U } \\ & 0 \end{aligned}$			Silencer plate divider					
			（cozy se aurs）：NOLLISOdWOD＇actily＇qOLSIS＇					(ヵIty se awrs) :NOLLISOdWOO 'daxis 'qolsissty				领	(ozit se aurs) :NOLLISOdWOD ‘đaxid 'qoLsISg t
$\begin{aligned} & \text { Oㅏㅜ } \\ & \end{aligned}$			発		$\begin{aligned} & \text { N్N゙ } \\ & \text { Nun } \end{aligned}$	$\begin{aligned} & \text { H/N } \\ & \text { Nun } \end{aligned}$	든	~~N	$\begin{aligned} & \text { ơ } \\ & \text { व్c } \end{aligned}$	\％	た్ఞ్	N్0	篤

8 Section	NAVSHIPS 92676 AN／URR－35C											PARTS LIST		
$\begin{array}{r} \text { IIN } \mathrm{NI} \\ \text { SJWII } \\ \pm 0^{\circ} \mathrm{ON} \end{array}$	\cdots		N	．	\rightarrow		\cdots							
$\begin{array}{r} \text { OBA10ANI } \\ \text { 'OISEG } \\ \text { 109WAS } \\ 11 V \end{array}$	ก				$\begin{aligned} & \text { ®్ } \\ & \text { Nu } \end{aligned}$		$\begin{aligned} & \text { セ్ర } \\ & \text { జ్ } \end{aligned}$					．		
ON －OMD ONV 18Vd 9yOt －aNV In＊							気							
$\begin{aligned} & z \\ & 0 \\ & \frac{1}{6} \\ & \frac{z}{1} \end{aligned}$												$\underset{\text { suppressor }}{\text { 2nd mixer grid parasic }}$	IOSserddns ontsered puns si puz	3rd IF grid parasitic suppressor
						$\begin{aligned} & \text { ö } \\ & \text { 巻 } \\ & \stackrel{0}{4} \end{aligned}$	(IOZy se aurss) :NOLLISOdWOD 'đสXLH 'qOLSISG్ర					(ZITY se əurss) :NOLLISOdWOO 'đGXLH 'qOLSISAY		
					$\begin{aligned} & \overrightarrow{0} \\ & \vdots \\ & 0 \\ & \hline \\ & \vdots \\ & \vdots \\ & \vdots \\ & 0 \\ & \mathbf{z} \end{aligned}$							．	，	
		$\begin{aligned} & \text { ® } \\ & \text { H్జ } \end{aligned}$	苟	～	骨	\％	$\begin{aligned} & \overrightarrow{0} \\ & \text { लू } \end{aligned}$	ఝ్బ	$\begin{aligned} & \text { ஜ్ర్జ } \\ & \text { 世4 } \end{aligned}$	\％	\％		H	$\begin{aligned} & \infty \\ & \stackrel{0}{4} \end{aligned}$

－	∞	∞	\rightarrow	\cdots	∞	\cdots
$\begin{aligned} & \text { Tె0 } \\ & \text { Mn } \end{aligned}$			－	N		N్ర్ర
					$\begin{aligned} & \stackrel{\omega}{0} \\ & \text { X } \\ & \hline \end{aligned}$	ザ

	$\begin{aligned} & \text { む. } \\ & \text { む. } \\ & \text { థ } \end{aligned}$										O \＃ 0 0 0 0 0 0 0 0 0 0	$\begin{aligned} & \ddot{H} \\ & \text { 只 } \\ & \text { Z } \\ & \text { OU } \\ & \text { 4 } \end{aligned}$		
					（LGZY Se ames）：NOLLISOdWOD＇đGXIA＇qOLSISg		(LOEY se aurs) :NOLLISOdWOO 'đהXIH 'qOLSISAt		（LOEY SE aures）：NOLLISOdWOD＇GAXIH＇qOLSISEY	 는 흔 葡莡 『 が 资荡 	우우웅 ப゙ \ddagger － $0 \times$ 荘 恄式空 8 むむ 逆名解 㡙家安 采 3 す。 \rightarrow N～잉 		（IOZS SE awes）：	
で	N్ల్ల్య			$\begin{aligned} & \text { ®o } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { 甲o } \\ & \text { ỡ } \end{aligned}$	$\begin{aligned} & \text { Wo } \\ & \text { Mun } \end{aligned}$	$\begin{aligned} & \text { o్ల్జ } \\ & \text { O} \end{aligned}$	ిo్ల్జ	O	解	Nơ	ત్స్ర	\％్ర్ర్ర	\％

NAVSHIPS 92676
AN／URR－35C

IINN NI SヨWII JO ${ }^{\circ} \mathrm{ON}$	\cdots	\rightarrow	\rightarrow	\cdots	\cdots	∞	～
$\begin{array}{r} \text { QヨA10ANI } \\ \text { 'OISBG } \\ \text { 108WAS } \\ 11 \forall \end{array}$	ö	$\begin{aligned} & \text { No } \\ & \text { OR } \end{aligned}$	－	N్N్స	N్స్		$\begin{aligned} & \text { N } \\ & \text { N} \\ & \text { N. } \\ & \text { No } \\ & \text { NH } \end{aligned}$
＇OMA ONV 18Vd 9УOg －GNV 1חマヌ	$\begin{aligned} & \text { 毋 } \\ & \text { O } \\ & \text { i } \end{aligned}$	$\begin{aligned} & \text { థ్D } \\ & \text { O} \\ & \dot{4} \end{aligned}$					
$\begin{aligned} & z \\ & \frac{0}{6} \\ & \frac{z}{2} \\ & 3 \end{aligned}$							
NAME OF PART AND DESCRIPTION							
					$\begin{aligned} & \text { Hy } \\ & \text { N } \\ & \text { ó } \\ & 0 \\ & \text { ó } \\ & \text { ర } \\ & 0 \\ & \text { z } \end{aligned}$		
	ت゙	$\begin{aligned} & \text { N } \\ & \text { in } \end{aligned}$	－	\％	\％	＋	苍

－	\cdots	\rightarrow	\bigcirc	เ
－	$\begin{aligned} & \mathrm{O} \\ & \underset{H}{2} \end{aligned}$	苞	О్రీఠioisit Mラクプ ర్రొoonis MTMN	
O O i	앙 ＋ n	¢ O d din		응 0 U ¢

			$\begin{aligned} & \vec{Z} \\ & \text { 吕 } \\ & \text { 採 } \end{aligned}$							$\begin{aligned} & \stackrel{\rightharpoonup}{x} \\ & \stackrel{1}{\Sigma} \end{aligned}$	
	：KDNA OOçuct	FREQUENCY：		 品豖家 			$\begin{aligned} & \text { む } \\ & \stackrel{2}{\circ} \\ & \hline \text { in } \\ & \stackrel{2}{3} \end{aligned}$				
		giclagaw									ELECTRON TUBE: (same as V105)
										$\begin{aligned} & \text { 우 } \\ & \stackrel{0}{7} \\ & \dot{H} \\ & \vdots \\ & \mathbf{Z} \end{aligned}$	
$\underset{\substack{\text { Hin }}}{ }$	N్స్ట	$\begin{aligned} & \infty \\ & \stackrel{N}{H} \\ & \hline \end{aligned}$	－	$\underset{\underset{H}{\mathrm{~N}}}{\substack{0 \\ \hline}}$	－	$\stackrel{-}{7}$	$\stackrel{\text { N }}{\sim}$	$\stackrel{\text { O}}{\square}$	$\stackrel{\text { U }}{\text { ¢ }}$	$\stackrel{\circ}{\square}$	$\stackrel{\circ}{\square}$
ORIGINAL											

SYMBOL DESIGNATION	STANDARD NAVY STOCK NO.	NAME OF PART AND DESCRIPTION	FUNCTION	MFGR. AND MFGR'S. DESIG.			
V107		ELECTRON TUBE: (same as V105)	2nd doubler				
V108		ELECTRON TUBE: (same as V101)	Tripler				
V109		ELECTRON TUBE: (same as V101)	Tripler				
V201		ELECTRON TUBE: (same as V101)	1st IF amp				
V202		Not used					
V203		ELECTRON TUBE: (same as V105)	2nd osc and mixer				
V204		ELECTRON TUBE: (same as V101)	2nd IF amp				
V205		ELECTRON TUBE: (same as V101)	3 rd IF amp				
V206	N16-T-75726	ELECTRON TUBE: miniature twin diode; type 5726 per JAN-1A	AF detector noise limiter diode		$\begin{aligned} & \text { EG-5726/ } \\ & \text { 6AL5W } \end{aligned}$	$\begin{aligned} & \text { V206, } \\ & \text { V208 } \end{aligned}$	2
V207		ELECTRON TUBE: (same as V101)	AGC silencer amp				
V208		ELECTRON TUBE: (same as V206) ELECTRON TUBE: (same as V105)	1st \& 2nd IF amp				
V210	N16-T-56192-85	ELECTRON TUBE: miniature pentode amplifier; type 6AK6WA per JAN-1A	AF output		EG-6AK6	V210	1
V301	N16-T-75931	ELECTRON TUBE: full wave rectifler; type 5931 per JAN-1A	Rectifier		EG-5391	V301	1
V302	N16-T-52001-8	ELECTRON TUBE: miniature type voltage regulator; type OB2WA per JAN-1A	Voltage regulator		EG-OB2WA	V302	1
V303	N16-T-52001-3	ELECTRON TUBE: miniature type voltage regulator; type OA2WA per JAN-1A	Voltage regulator		EG-OA2WA	V303	1
XC237	N16-S-63462-8201	SOCKET, ELECTRON TUBE: octal; ceramic body; $11 / 4 \mathrm{in}$. dia $\times 7 / 8 \mathrm{in}$. h; ss mtg plate w/ two no. 6-32 tapped holes $1-5 / 8 \mathrm{in}$. c to c ; CFT dwg A1000641	Receptacle for C237	CPH 49-816 (300)	ST-800AJ	$\begin{aligned} & \text { XC237, } \\ & \text { XV301, } \end{aligned}$	2
XF201	N17-F-74267-5075	FUSEHOLDER: extractor post type; $280 \mathrm{v}, 15 \mathrm{amp}$, max rating; accomodates 1 cartridge type fuse, ferrule term, dim. $11 / 4 \mathrm{in}$. $\lg \times 1 / 4 \mathrm{in}$. dia; over-all dim. 2-9/64 in. $\lg x 11 / 16 \mathrm{in}$. dia; 2 solder lug term	Holder for F201	CFA HKP	SF-0236	$\begin{aligned} & \text { XF201, } \\ & \text { XF202 } \end{aligned}$	2

8 Section	NAVSHIPS 92676 AN／URR－35C																		PARTS LIST N
$\begin{aligned} & 1 \mathrm{~N} N \mathrm{~N} \mathrm{NI} \\ & \text { S3WII } \\ & 10^{\circ} \mathrm{ON} \end{aligned}$	N																		
$\begin{array}{r} \text { OBA10ANI } \\ \text { 'OISBG } \\ \text { 10'WAS } \\ \text { ITV } \end{array}$	$\begin{aligned} & 0.0 \\ & 0 \\ & \underset{x}{\circ} \\ & \text { N } \end{aligned}$																		$\begin{aligned} & \text { థid } \\ & \stackrel{\sim}{x} \end{aligned}$
＇OMD ONV 18Vd פyO： －aNV Inv：																			\＃ $\underset{4}{4}$ U
2 0 2 2 3					Receptacle for V201														
			 ฐ $\stackrel{\text { ® }}{\text { § }}$ 卧 	 ฐ 葑 関 Z 学 号 甸 				（toinx se aurs）：			（toInX se ourss）：：agnil nosLogta＇LayDOS			合					
	H																		
	\％	$\begin{aligned} & \text { N } \\ & 0, \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{7} \\ & \hline \times \end{aligned}$	$\begin{aligned} & \text { og } \\ & \stackrel{y}{x} \end{aligned}$			$\begin{aligned} & \text { O} \\ & \text { N } \\ & \text { N } \end{aligned}$		$\begin{aligned} & \text { గ్ర } \\ & \text { त्र } \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{7} \\ & \end{aligned}$		$\begin{aligned} & \underset{\sim}{\circ} \\ & \text { N} \\ & \hline \end{aligned}$	－	$\begin{aligned} & \text { O} \\ & \underset{x}{\text { N }} \end{aligned}$	$\begin{aligned} & \text { O-0 } \\ & \text { Nox } \end{aligned}$		$\begin{aligned} & \text { 厄్ల } \\ & \text { Nx } \end{aligned}$	－	4 N్， N

\cdots	N	\cdots	－	\cdots	7	\cdots	\cdots	4
䒽	U N N		ત̈స్ㄲ	$\underset{\sim}{\text { Noָ }}$	$\begin{aligned} & \vec{O} \\ & \stackrel{N}{2} \end{aligned}$	N	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { U } \\ & \text { N } \end{aligned}$
4 		$\begin{aligned} & \text { of } \\ & \stackrel{1}{0} \\ & \dot{1} \\ & \text { 范 } \end{aligned}$				O ¢ ¢ ¢	® N ஸ゙	H

俭名

XY201B	N17－C－812323－101	CLIP，ELECTRICAL：＂U＂shaped；no． 30 （0．010） B and S GA beryllium copper，nickel plated； 0.406 in ． $\lg \times 9 / 16 \mathrm{in}$ ．w x $0.440 \mathrm{in} . \mathrm{h}$ ；for grounding；CFT dwg FRB11109－1	Y201 grounding
XY201C	N17－I－49498－7025	INSULATOR，BUSHING：natural mica filled molded phenolic type MTS－E3 per MIL－P－14B； $0.437 \mathrm{in} . \mathrm{lg} x$ $1 / 2 \mathrm{in}$ ．dia；one no． 30 （ 0.128 ）drill hole through center， one 0.250 in ．w x 0.031 in ．deep groove in center on top；CFT dwg FRP11108－1	Insulator for XY201
XY202	N16－S－54287－5051	SOCKET，CRYSTAL： 2 contact holes for 0.050 in ． dia pins 0.406 in ．c to c ；beryllium copper contact silver plated；oval shape； $55 / 64 \mathrm{in} . \mathrm{lg} \times 3 / 8 \mathrm{in}$ ．w x $3 / 8 \mathrm{in} . \mathrm{h}$ ；steatite body；one 0.125 in ．dia mtg hole in center；CNA dwg S173－1	Receptacle for Y 202
Y201＊＊＊	N16－C－97791－4891	CRYSTAL UNIT：QUARTZ：5th mode AN type CR－24／U（NOT FURNISHED）	Oscillator control
Y202	N16－C－97791－4891	CRYSTAL UNIT，QUARTZ：one crystal plate； 16.8250 mc nominal frequency；HC－6U holder；oval shape； $1.031 \mathrm{in} . \lg \times 0.750 \mathrm{in} . \mathrm{w} \times 0.345 \mathrm{in} . \mathrm{h}$ ； $\pm 0.005 \%$ tolerance from -55° to $90^{\circ} \mathrm{C}$ ；type CR－23／U per MIL－C－3098	2nd oscillator
Z101	Assembled from component parts	RECEIVER SUBASSEMBLY：c／o RF coil L123， capacitors C137，C155，C160，resistors R111，R112， R114，R115，R116，R129 and XV106；2－15／32 in． $1 \mathrm{~g} x$ $1-3 / 8 \mathrm{in}$ ．w x $11 / 2 \mathrm{in}$ ．h over－all；four open slots 0.130 in ． w in ends for mtg screws $7 / 16 \mathrm{in} . \times 2-5 / 16$ in． c to $\mathrm{c} ;$ CNA part／dwg SB：2240	Oscillator and 1st RF doubler socket plate
Z102	Assembled from component parts	RECEIVER SUBASSEMBLY：c／o capacitor C157 and tube socket XV107；2－7／32 in． $\lg \times 13 / 16 \mathrm{in}$ ．w $\times 11 / 4$ in ． h ；four open slots 0.130 in ． w in ends $7 / 16 \mathrm{in}$ ． $\mathrm{x} 2-5 / 16 \mathrm{in}$ ． c to c ；CNA part SB：2250；CFT dwg A1000440	2nd RF doubler socket plate
Z103	N16－T－98501－1004	RECEIVER SUBASSEMBLY：c／o capacitors C133， C134，C139，resistors R122，R123，sockets XV108， XV109； $21 / 2 \mathrm{in}$ ． $\lg \times 11 / 4 \mathrm{in}$ ．w x $31 / 4 \mathrm{in}$ ．h；four open slots（ 0.130 in ．w）in ends for mtg screws 2－3／8 in．x 1 in ． c to c ；CNA part SB：2249；CFT dwg A10004 16－1	RF tripler socket plate \＆shield
Z104	Assembled from component parts	RECEIVER SUBASSEMBLY：c／o capacitors C103， C105，C150，resistors R102，R103，R126，and tube sockets XV101，XV102； $21 / 2 \mathrm{in}$ ． $\lg \times 11 / 4 \mathrm{in}$ ．w x $21 / 4 \mathrm{in}$ ． h ；four open mtg slots in ends $7 / 16 \mathrm{in} . \times 2-5 / 16 \mathrm{in}$ ． c to c ；CNA part SB：2253；CFT dwg B1000376	1st RF amplifier socket plate

SYMBOL DESIGNATION	STANDARD NAVY STOCK NO.	NAME OF PART AND DESCRIPTION	FUNCTION	MFGR. AND MFGR'S. DESIG.			
Z105	Assembled from component parts	RECEIVER SUBASSEMBLY: c/o capacitors C106, C107, C152, resistors R106, R107, R127, tube sockets XV103, XV104; $2 \frac{1}{2} \mathrm{in}$. $\lg \times 1 \frac{1}{4} \mathrm{in}$. w $\times 2 \frac{1}{4} \mathrm{in}$. h ; four open mtg slots in ends $7 / 16 \mathrm{in}$. x 2-5/16 in. c to c; same as Z104 except for stamping; CNA part SB:2253-2	2nd RF amplifier socket plate		VG-2955	Z105	1
Z106	Assembled from component parts	RECEIVER SUBASSEMBLY: c/o capacitors C153, C119, and socket XV105; $2 \frac{1}{2} \mathrm{in} . \lg \times 1-1 / 8 \mathrm{in}$. w x $1-1 / 8 \mathrm{in} . \mathrm{h}$; four open mtg slots in ends $11 / 16 \mathrm{in} . \mathrm{x}$ 2-5/16 in. c to c; CNA part SB:2247; CFT dwg A1000418	Mixer socket plate		VG-2956	Z106	1
Z107	N16-S-39230-4329	AMPLIFIER-CONVERTER: frequency range 225-400 mc ; incl RF amplifier stage (Z107A) and oscillatormultiplier stage (Z107B); rectangular metal box $11-3 / 4 \mathrm{in} . \lg \times 4-7 / 8 \mathrm{in}$. w $x 6 \mathrm{in} . \mathrm{h}$; CNA part/dwg SB:2251	Preselector assembly		VG-2929	Z107	1
Z107A	For reference only	AMPLIFIER-CONVERTER: p/o Z107			VG-2950		
Z107B	For reference only	AMPLIFIER-CONVERTER: $\mathrm{p} / \mathrm{o} \mathrm{Z} 107$			VG-2951		

TABLE 8-3.
MAINTENANCE PARTS KIT

KEY DESIGNATION	QUANTITY
C105	5
C116	1
C118	2
C161	1
C201	2
C401	2
E110	2
L301	1
T201	1
T202	1
T204	1
T205	1
T209	1
T301	1

Cross Reference Parts List

TABLE 8-4. CROSS REFERENCE PARTS LIST

JAN DESIGNATION	KEY SYMBOL
CB11PX330K	C103
CC21CJ030C	C210
CC21CK010C	C108
CC21CK1R5C	C110
CC21SH050C	C126
CC21SH150K	C121
CC21UJ470J	C129
CC26SL101K	C224
CE52C700M	C237
CM20B221K	C220
CM20B471K	C208
CM20C151J	C117
CM20D201J	C159
CM35B103K	C213
CM35B152K	C234
CM35B472K	C227
CP06SA6	0202
CP61B1EF105V	C302
CP61B6EF504X	C228
CR-23/U	Y202
CR-24/U	Y201
JAN-0A2WA	V303
JAN-0B2WA	V302
JAN-6AK6WA	V210
JAN-5654/6AK5W	V101
JAN-5670	V105
JAN-5726	V206
JAN-5931	V301
MR25W001DCMA	M501
RA20A1RD500AK	R501
RC20GF100K	R112
RC20GF101K	R241
RC20GF102K	R225
RC20GF103K	R205
RC20GF104K	R101
RC20GF105K	R228
RC20GF122K	R216
RC20GF 151J	R111
RC20GF152K	R119
RC20GF 153 K	R114
RC20GF154K	R257
RC20GF155K	R251
RC20GF185K	R238
RC20GF221K	R221
RC20GF222K	R211
RC20GF223K	R102
RC20GF331K	R259
RC20GF332K	R220
RC20GF333K	R249
RC20GF334K	R246
RC20GF470K	R128

JAN DESIGNATION	KEY SYMBOL
RC20GF471K	R126
RC20GF472K	R201
RC20GF473K	R110
RC20GF474K	R109
RC20GF683K	R120
RC20GF684K	R237
RC30GF222K	R113
RC30GF332K	R124
RC30GF681K	R265
RC42GF102K	R302
RC42GF122K	R307
RC42GF220K	R301
RC42GF330K	R244
RC42GF562K	R104
RV4ATSA253A	R247
RV4ATSA502A	R218
RV4ATSA504C	R255
RV4ATSC102C	R502
ST42D	S201
ST52K	S502
TS102CO1	XV101
TS102UO1	E218
TS102UO2	E227
TS102UO3	E304
TS103CO1	XV106
TS103UO1	E105
UG-21D/U	P404
UG-58A/U	J404
UG-177/U	0401
UG-347A/U	P101
AN 3102A-14S-2P	J402
AN 3102A-14S-7P	J401
STANDARD NAVY STOCK NO.	KEY SYMBOL
G-3110-100-6208	0102
G-3110-155-9601	0309
G-3110-155-9639	0308
G-5920-280-4466	F201
G-6240-155-8706	I501
G-6240-223-9100	1503
N16-C-15368-5888	C108
N16-C-15400-5867	C110
N16-C-15528-5533	C210
N16-C-15625-4061	C126
N16-C-15923-1462	C161
N16-C-15997-5682	C121
N16-C-16051-3074	C118
N16-C-16533-1248	C129
N16-C-17085-7060	C224
N16-C-18657-8640	C116

STANDARD NAVY STOCK NO.	KEY SYMBOL
N16-C-18659-4509	C105
N16-C-19073-8581	C205
N16-C-19239-6981	C201
N16-C-19892-7801	C301
N16-C-22137-2611	C237
N16-C-27186-4675	C103
N16-C-28975-1601	C117
N16-C-29265-3006	C159
N16-C-29375-8076	C220
N16-C-29660-8801	C119
N16-C-30167-1867	C133
N16-C-30167-1876	C153
N16-C-31090-3800	C403
N16-C-33622-5222	C213
N16-C-46371-9609	C401
N16-C-71585-4777	L118
N16-C-72730-3773	L403
N16-C-72749-4693	L116
N16-C-72793-6430	L123
N16-C-72909-4533	L202
N16-C-74411-7351	L405
N16-C-74458-4712	L401
N16-C-76358-3376	L114
N16-C-76480-2514	T203
N16-C-76515-7826	L117
N16-R-49624-433	N16-R-49661-818
N16-R-49706-761	N16-R-49769-799

8-44

$\begin{aligned} & \hline \text { STANDARD NAVY } \\ & \text { STOCK NO. } \\ & \hline \end{aligned}$	KEY SYMBOL
N16-R-49842-238	R265
N16-R-49922-730	R225
N16-R-49923-533	R302
N16-R-49940-816	R216
N16-R-49941-511	R307
N16-R-49967-760	R119
N16-R-50012-816	R211
N16-R-50013-238	R113
N16-R-50066-816	R220
N16-R-50067-233	R124
N16-R-50129-815	R201
N16-R-50166-512	R104
N16-R-50282-725	R205
N16-R-50336-815	R114
N16-R-50372-833	R102
N16-R-50417-823	R249
N16-R-50479-440	R110
N16-R-50552-818	R120
N16-R-50633-785	R101
N16-R-50678-818	R257
N16-R-50759-818	R246
N16-R-50822-761	R109
N16-R-50894-813	R237
N16-R-50975-725	R228
N16-R-51020-818	R251
N16-R-51038-818	R238
N16-R087519-4918	R218
N16-R087749-4836	R247
N16-R-89956-7015	R501
N16-S-32841-1004	L101
N16-S-34518-5501	E101
N16-S-34520-3862	E218
N16-S-34532-8760	E105
N16-S-34557-8351	E227
N16-S-34607-6039	E304
N16-S-39230-4329	Z107
N16-S-54287-5051	XY-202
N16-S-62603-6700	XV101
N16-S-63462-8201	XC237
N16-S-64063-6714	XV106
N16-S-64063-6734	XV105
N16-T-52001-3	V303
N16-T-52001-8	V302
N16-T-56192-85	V210
N16-T-75654	V101
N16-T-75670	V105
N16-T-75726	V206
N16-T-75931	V301
N16-T-98077-2726	C102
N16-T-98077-2751	C101

STANDARD NAVY STOCK NO.	$\begin{gathered} \text { KEY } \\ \text { SYMBOL } \\ \hline \end{gathered}$
N16-T-98501-1004	Z103
N16-T-751468-732	H201
N17-B-21189-6949	BL301
N17-B-86841-9336	E110
N17-C-70328-1515	P401
N17-C-70334-5473	P402
N17-C-71412-8748	P404
N17-C-72604-1522	J401
N17-C-72610-5434	J402
N17-C-73108-2878	J101
N17-C-73108-5840	J407
N17-C-73108-5906	J404
N17-C-73194-4231	J405
N17-C-73408-7081	P101
N17-C-73470-2804	P302
N17-C-73487-7175	P301
N17-C073498-5937	J301
N17-C-77415-7611	E505
N17-C-77417-8070	E507
N17-C-98378-2225	0503
N17-C-781366-251	0405
N17-C-794001-133	0504
N17-C-804081-101	XY201A
N17-C-812323-101	XY201B
N17-F-74267-5075	XF201
N17-I-49498-7025	XY-201C
N17-L-51624-6963	XI501
N17-L-63201-6626	H203
N17-L-76737-2361	XI503
N17-L-250181-506	XI503B
N17-M-19255-1051	M501
N17-M-22724-6701	M502
N17-M054310-6251	BL301A
N17-M-75387-1823	A501
N17-S-38251-1015	O105
N17-S-59261-8262	S203
N17-S-69903-9979	S301
N17-S-71894-1544	S201
N17-S-72828-2605	S502
N17-S-250051-153	O401
N17-T-28244-4401	E213
N17-T-65494-3101	T209
N17-T-67775-9755	T204
N17-T-67775-9761	T205
N17-T-68163-6391	T201
N17-T-68163-6393	T202
N17-T-68163-6981	L122
N17-T074016-6329	T301
N17-T-82216-1516	L115

TABLE 8-6. LIST OF MANUFACTURERS

INDEX

SUBJECT A	FIGURE OR (T) TABLE	PAGE
Adjustments, Initial-		
General..		3-4
Crystal-Controlled Tuning		3-5
Manual Tuning .		3-5
Noise Limiter.....................................	.	3-5
Silencer		3-9
AGC-Silencer Amplifier. .	2-9	2-11
AGC-Silencer Diode.................................	2-9	2-12
Alignment-		
AGC Transformer T210..........................		7-10
Equipment Required for.	,	$7-7$
I-F Section .	7-3	7-8
Preparation of Receiver for....................		7.7
Preselector .	7.7	7-11
Preselector (crystals not available).............	$7-14$
Alignment Loading Tool............................	7-4, 7-5	7-9
Alignment Tool	$7-4$	7.23
Substitute Fabrication.	(T) $7-4$	7.25
Antenna ..	(T) 1.2	1.5
Input .	2-4	2-1
Transmission Line .	(T) 1-2, 3-5	1-5, 3-3
Associated Equipment-		
Antenna . ..	(T) 1-2	$1-5$
Antenna Transmission Line	(T) 1-2	$1-5$
Crystals ..	7-24, 7-25	1-5, 7-24
Phones and Audio Output......................	(T) 1-2	$1-5$
Audio Amplifier Stages	2-10	2-13
Audio Frequency Detector.........................	2-8	2-10
Audio-Frequency Response Characteristic	$7-12$	7-15
Audio-Frequency Stages............................	2-10	2-13
Audio Output. .	*..............	1-5
B		
Bands, Tuning .	.	1.5
Bearings, Blower Motor,	7-15	$7-15$
Bench Test Set-up, I-F Alignment.	7-3	$7-8$
Bench Test Set-up, R-F Alignment.	$7-7$	$7-11$
Bias Voltage Supply.................................	2-11	$2-15$
Block Diagram ..	2-1	2-1
Blower BL301..	2-11, 7-15	2-16, 7-15
Blower Motor Bearings. .	7-15	$7-15$
C		
Cabinei..	1-2, 1-3	1-1
Capacitors-		
C101 (R-F Amplifier Section)....................	2-2, 2-3, 7-18	2-1
C102 (Oscillator-Multiplier Section)............	2-2, 2-3, 7-19	2-5

SUBJECT

Chassis Assembly
Check Charts-
Maintenance
Operational.
Check of Transformer Connections.
Circuit Components
Component Data-
Electron Tubes
Crystals, CR-24/U and CR-23/U
Transformers and Inductors.
Connections, External
Connector Plugs, External Connections
Contract Data
Contractor.
Controls, Operating
Corrections, Record of
Corrective Maintenance
Crystals-
CR-24/U.
CR-23/U
Crystal-Controlled Tuning Adjustment
CRYSTAL Indicator Lamp.
D
De-energizing Receiver
Description of Major Components
Dial-Drive Assembly
E
Effective Pages, List of.
Electron Tube Complement
Electron Tubes, Replacement of
Emergency Maintenance
Equipment Arrangement

Equipment Required but Not Supplied
Equipment Supplied

F

Failure Reports.

Filter, Low-Pass F-304/URR-35C.
First Doubler Circuit.
First Intermediate-Frequency Amplifier.
First R-F Amplifier Circuit
Frequencies, Intermediate,
7-24
1-5, 7-24
(T) 6-1 6-1
(T) 5-1 5-1
(T) TABLE PAGE
$1.4 \quad 1.2$

3-2
-

7-25
1-5, 7-24
(T) 7.5

7-24, 7-25 $\quad 7-24$
(T) 7-6 7-24

1-3, 3-5 3-3
1-1, (T) 3-1 3-3
.................... 1-5
..................... 1-5
4 4-1 $\quad 4-1$
................... C
-

Frequency Range

Fuses.
4-1
Replacement of
2-11 \quad 2-16
$1-3,3-8,7-21 \quad 1-4,2-13,2-15$
2-5 2-5
2-7 2-8

- 2-4 2-4

1-1 1-1
(T) $1.2 \quad 1.6$
(T) 1-1 $1-1$
(T) 1-4 1.7

2-2, 7-5 5-1
3-5, 4-3
4-1 4-1
SUBJECT (T) TABLE PAGE
2-7
2-7 2-8 2-8
Second Mixer
$2-7$
$2-7$ 2-8 2-8
Second Oscillator
Second Oscillator 2-7 2-10
IF/AF Gain Measurement $7-7$
IF/AF Section. 1-4 1-3
IF and AF Test Data (T) 7-2 $7-3$
I-F Gain Adjustment $7-4$ 7-10
I-F Selectivity Characteristic $7-6$ 7-10
Impedances, $1-5$
Inductance Trimmers 7-8 1-2, 7-11
Initial Adjustment3.4
Input Meter-
Calibration (T) 4-1 4-4
Circuit $2-7$ 2-10
Operation of 4-1 4-1, 4-4
Inspection of Equipment 3-1
Installation-
Procedure 3-1
Record v
L
Location of Equipment 3-2
Relay Rack Mounting. 3-3
Table or Bench Mounting 3-3
3-10
Low-Pass Filter F-304/URR-35C - see Filter, Low-Pass
Lubrication-
Dial Drive Mechanism $6-1$ 6-1
Guide Rails and Alignment Pins 6-1
M
Maintenance, Corrective 7-0
Maintenance, Emergency. 5-1
Maintenance, Operator's 5-1
Maintenance, Preventive 6-1
Major Units 1-1, 8-1
(T) 8-1
Manual Tuning3-5, 4-3
Mixer Circuit 2-4 2-5
Modes of Operation-Manual Tuning3-5, 4-3
Crystal-Controlled Tuning 3-5, 4-3
N
Naval Inspector 1-5
Noise Limiter-
Adjustment of
Circuit. 2-8 3-5, 4-4 2-10
0
Operation-
Modes of 4-3
Method of 4-3
Operational Controls-
Location 4-1 4-1
Functions 4-1 4-1
Operator's Maintenance 5-1

SUBJECT	FIGURE OR (T) TABLE	PAGE
Oscillator-First Doubler Circuit .	2-5, 2-6	2-5
Oscillator-Multiplier Section-		
Oscillator-First Doubler,	2-5, 2-6	2-5
Second Doubler	2-5	2-7
Tripler	2-5	2-7
Outline Drawings (see List of Illustrations)......	3-7 to 3-10	
Outputs-		
Audio Channel .		1-5
Phone Jack....................................		1-5
OUTPUT Meter-		
Circuit	2-10	2-13
Operation of	4-1	4-1
Over-all Sensitivity Test of Receiver	7.7
P		
Phones	(T) 1-2	1-5
Plate and Screen Supply.	2-11	2-16
Power Requirements.		1-5
Power Supply-		
Circuit	2-11	2-16
Description......................................	1-4	1-3
Power Transformer		3-2
Preparation for Use		3-1
Preselector-		
Circuit	2-4, 2-5	2-1
Description .	1-4, 2-2, 2-3	1-2
Gain Measurement and Alignment	7-11, 7-14
Maintenance and Repair	7-18
Preventive Maintenance .	.	6-1
Promulgating Letter..............................	B
R		
Receiver Stability...................................		1-5
Receiver, Type of..................................		1-5
Reception, Type of................................	$1-5$
Reference Data	1-5
R-F Cable Assemblies	7-21 to 7-23	7-23
Relay-Rack Mounting..............................	3-4	3-3
Brackets.	1-1, 3-9	3-3
Removal of Chassis	3-2	3-1
Repair and Replacement of Parts	7-15
Resistance and Voltage Measurements	7-1, 7-2	7.5
Retropicalization		6-1
R-F Amplifier Section-		
Antenna Input .	2-4	2-1
First R-F Amplifier..............................	2-4	2-4
Mixer.	2-4	2-5
Second R-F Amplifier.	2-4	2-4
Tuning Capacitor Assembly.	2-4	2-1
Routine Maintenance Check Chart.	(T) 6-1	6-1
Routine Operational Check Chart	(T) 5-1	5-1
S		
Schematic Diagrams-		
Over-all...	7-26	7-35

SUBJECT	FIGURE OR (T) TABLE	PAGE
Simplified (See List of Illustrations)		
Second and Third Intermediate-Frequency Amplifiers	s $2-7$	2-10
Second Doubler Circuit.	2-5	2-7
Second Mixer	2-7	2-8
Second Oscillator	2-7	2-8
Second R-F Amplifier,	2-4	2-4
Sensitivity Check of Receiver.................	7.6
Shipping Data,	(T) 1-3	1.7
Shockmounts.	1-3, 3-10	$3-2$
Silencer-		
Adjustment of...............................	3-9, 4-4
Characteristics		$1-5$
Circuit	2-9	2-11, 2-12
Operation and Controls....................	4-1	4-1, 4-3
T		
Table or Bench Mounting.....................		3-3
Table of Replaceable Parts	(T) 8-2	8-2
Test Jack and Terminal Board Voltage and		
Test Jacks	7-4	7-6
Theory of Operation.		2-1
Thermostat S301................................	2-11	$2-16$
Transformer Connections Check		3-2
Trimmer Inductances L103, L104, L107, L108, and		
L111..................................	$7-8$	2-1, 7-11
Tripler Circuit	2-5	2-7
Trouble in Equipment, Localization of........	(T) $7-1$	7-1
Trouble Shooting.................................	(T) $7-1$	7-0
Tube Complement...............................	(T) 1-4	1.7
Tube Characteristics............................	(T) $7-5$	7-28
Tuning-		
Crystal	3-5, 4-3
Manual.	3-5, 4-3
U		
Unpacking Equipment..........................	(T) 1-3, 3-1	3-1
V		
Voltage and Resistance Measurements........	7-1, 7-2, (T) 7-3	7.5
W		
Weights and Dimensions.	(T) 1-1, (T) 1-3	1-5
Winding Data .	(T) 7-6	$7-29$
Wiring and Components, Access to........... .	-................	7-5
Wiring Diagrams-		
IF/AF Chassis, Power Supply and Low-Pass		
Filter. .	$7-28$	$7-39$
Preselector. .	7-27	7-37

[^0]: * 18.6 - and $1.755-\mathrm{mc}$ input signals modulated 30 percent at 1000 cps and applied to input test point through 0.01 -uf capacitor. (Capacitor not required at J101 and J201.) A-f test signal applied to input test point through 0.1 -uf capacitor.
 ** Output obtained for following receiver conditions: OSC. switch in CRYSTAL position with no crystal installed in holder, ALIGN-REC. switch in REC. position, SILENCER switch in OUT position, N.L. switch in OUT position, A.F. LEVEL control fully clockwise with no audio load connected. Voltages at J204 measured with electronic multimeter (ME-25/U series, Navy Model OBQ series, or equivalent).

[^1]: * Conditions for measurement: Line voltage 115 volts, 60 cps; ALIGN-REC. switch in REC. position; OSC. switch in MANUAL position; SILENCER and N.L. switches in OUT positions; receiver tuned to 300 mc with no signal. All measurements made with electronic multimeter (ME-25/U series, Navy Model OBQ series, or equivalent). Resistance measurements made with power cable disconnected at A.C. POWER receptacle (J401).
 ** Voltage measured between terminals 2 and 3.

