INSTRUCTION BOOK

 for
R. F. SIGNAL GENERATOR SET AN/URM-25D

TRAD ELECTRONICS CORPORATION ASBURY PARK, NEW JERSEY

DEPARTMENT OF THE NAVY BUREAU OF SHIPS

LIST OF EFFECTIVE PAGES

PAGE NUMBERS	CHANGE IN EFFECT	PAGE NUMBERS	$\underset{\text { EFFECT }}{\text { CHANGE }}$
Title Page	Change 5	$5-085-1$	Original
A	Change 5	$6-0 \& 6-1$	Original
B	Original	6-2 to 6-4	Change 3
C	Change 5	6-5	Original
i \& ii	Original	6-6	Change 3
iii	Change 3	6-7	Original
1-0	Change 1	6-8	Change 3
1-1 to 1-5	Change 3	6-9 to 6-15	Original
1-6	Original	6-16	Change 1
2-1	Change 3	6-17 to 6-19	Original
2-2	Change 1	6-20 \& 6-21	Change 3
2-3	Change 3	6-22 to 6-24	Original
2-4	Original	6-25 \& 6-26	Change 3
2-5 to 2-7	Change 3	6-27	Change 1
2-8 \& 2-9	Original	6-28 \& 6-29	Change 3
2-10 \& 2-11	Change 3	6-30 to 6-34	Original
$3-0$ \& 3-1	Change 1	6-35 \& 6-36	Change 3
4-0	Change 1	7-1	Original
4-1 to 4-4	Change 3	7-2	Change 1
4-5	Original	7-3 to 7-29	Change 3
46	Change 3	i-1	Change 3
4-7	Change 5	i-2	Original
4-8\&4-9	Change 1	i-3	Change 3
4-10 \& 4-11	Original	i-4 \& i-5	Original

```
                                    INSTRUCTION SHEET
PERMANENT CHANGE 5 TO INSTRUCTION BOOK FOR R.F. SIGNAL GENERATOR SET
    AN/URM-25D NAVSHIPS 92134(A)
The purpose of this permanent change is to correct typographical errors.
This permanent change is in effect upon receipt and is applicable to all
equipment. No temporary corrections are superseded by this change.
\begin{tabular}{lll} 
Page & Remove & Insert \\
T.P./A & Ch.3/Ch.3 & Ch.5/Ch.5 \\
B/C & Orig./Ch.3 & Orig./Ch.5 \\
\(4-7 / 4-8\) & Ch.3/Ch.1 & Ch.5/Ch.1
\end{tabular}
```

```
Destroy superseded pages after the complete book has been checked against
```

Destroy superseded pages after the complete book has been checked against
the "List of Effective Pages."
the "List of Effective Pages."
Insert this "Instructions" sheet just behind the front cover.

```

\section*{INSTRUCTIONS}

Change 4 to NAVSHIPS 92134(A)
Approved 11 December 1958
The purpose of this permanent change is to reflect changes made in the equipment manufactured under Contract NObsr 75083 as covered by INSTRUCTION BOOK FOR R. F. SIGNAL GENERATOR AN/URM-25D, NAVSHIPS 92134(A), dated 31 December 1953.

This permanent change is in effect upon receipt and supersedes Change 1, dated 17 March 1955, and Change 2, dated 31 August 1956.
1. Change book pages as follows:
\begin{tabular}{lll} 
Page & Remove & \multicolumn{1}{c}{ Insert } \\
T. P./A & Ch. 2/Ch. 2 & Ch. 4/Ch. 4 \\
B/C & Orig./Ch. 2 & Orig./Ch. 4 \\
1-0A/1-0B* & \(-\cdots-\cdots-\) & Ch. 4/Ch. 4 \\
1-3/1-4 & Ch. 1/Orig. & Ch. 4/Orig. \\
4-1/4-2 & Ch. 2/Orig. & Ch. 4/Ch. 4 \\
4-7/4-8 & Orig./Ch. 1 & Ch. 4/Ch. 1 \\
*Insert supplementary page 1-0A immediately in front of page 1-1.
\end{tabular}
2. Make the following pen and ink corrections:

PAGE .CHANGE IN
PARA. \& LINE OR
NO. EFFECT FIG. \& LOCATION

Add the following note to the figure: "FOR THE EQUIPMENT PROCURED ON CONTRACT NOBSR 75083 ONLY, P1001 IS DELETED AND FIXED ATTENUATOR CN-350/ URM-25D (FIG. 1-1A) IS ADDED.

Add after subparagraph (12): "(13) Fixed Attenuator CN-350/URM-25D (NObsr 75083 only).
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { PAGE } \\
\text { NO. }
\end{gathered}
\] & CHANGE IN EFFECT & PARA. \& LINE OR FIG. \& LOCATION & A ACTION \\
\hline 1-5 & Ch. 2 & Table 1-5 b and \(\underline{c}\) & Add to entries in second column: 'NObsr 75083 Kings Electronics Co. ,Inc. , Tuckahoe, N. Y." \\
\hline 2-6 & Ch. 2 & 5.a 9 & Change " 0.05 " to: "0.25" \\
\hline 4-6 & Orig. & 13. a (3) 2 & Change " 1 K " to: "10K" \\
\hline 6-2 & Orig. & 8. a (1) & Change "Remove" to: "Disconnect" and change "(W101)" to: "(W101-1)" \\
\hline 6-3 & Orig. & 8. b (2) (b) & Change to read: "Insert the power cable (W101-1) into the AC source." \\
\hline & & 11. \({ }^{\text {a }} 1\) & Change "supply receptacle (J104)" to: "cable mounting plate" \\
\hline & & 11.c 4 & Change "receptacle (J104) in its proper position" to: "power cable mounting plate." \\
\hline 6-19 & Orig. & 9. e & Add after subparagraph e: "f. FIXED ATTENUATOR CN-350/URM25D (NObsr 75083 only)." \\
\hline 6-25 & Ch. 2 & 6-24 & \begin{tabular}{l}
Add the following in the lower righthand corner: \\
"10:1 FIXED ATTENUATOR
CN-350/URM-25D \\
(NOBSR 75083 ONLY)
\end{tabular} \\
\hline 6-27 & Ch. 1 & 6-26 bottom & Add the following note to P1001: "(NOT PROCURED ON CONTRACT NOBSR 75083)" \\
\hline \(7-0 \mathrm{~B}\) & Ch. 2 & CR101 4th col. & Add after "1N69": "1N69A (NObsr 75083 only)" \\
\hline & & M101 6th col. & Change "(24)" to: "(24 or 27)" Delete "Trad Dwg No. 107-A-9" \\
\hline & & M101 7th col. Ad & Add after "107-B-670":' (Trad) or 107-A-9 (Kings)" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { PAGE } \\
& \text { NO. }
\end{aligned}
\] & CHANGE IN EFFECT & PARA. \& LINE OR FIG. \& LOCATION & ACTION \\
\hline 7-OF & Ch. 2 & P1101 1st col. & Add aiter "P1001":" (Except for NObsr 75083)" \\
\hline \multirow[t]{3}{*}{7-3} & \multirow[t]{3}{*}{Orig.} & AT101 6th col. & Add after"(25) AT120": "or (27) Attenuator" \\
\hline & & AT101 7th col. & Add after "107-B-672": "(Trad) or 107-B-1000 (Kings)" \\
\hline & & AT101 & ```
Add the following after "AT101":
1st col.: "AT501"
2nd col.: "ATTENUATOR: impedance
    matching network; voltage
    ratio of \(10: 1\) when matched."
3rd col.: "Permits operating 50 -ohm
    output of generator into 70-
    ohm receiver."
6th col.: "(27) AT501"
7th col.: "107-B-740"
8th col.: "AT501"
9th col.: "1"
``` \\
\hline \multirow[t]{2}{*}{7-4} & \multirow[t]{2}{*}{Orig.} & C120 2nd col. 3 & \begin{tabular}{l}
Change ". 520" to: ". 500 (NObsr 75083)" \\
Change ". 250" to: ". 1875 (NObsr 75083)"
\end{tabular} \\
\hline & & C120 6th col. & Add after "(H1-K-12)': "or (27) 318 (H1-K-12)" \\
\hline 7-5 & Orig. & C120 2nd col. 1 & \[
\begin{aligned}
& \text { Change "3-48" to: "3-48NC-2 (NObsr } \\
& 75083 \text {)" }
\end{aligned}
\] \\
\hline 7-5 & Orig. & C120 2nd col. 2 & \begin{tabular}{l}
Change ". -67 " to: ". 032 (NObsr 75083)" \\
Change ". 386" to: ". 375 (NObsr 75083)"
\end{tabular} \\
\hline \multirow[t]{3}{*}{7-20} & \multirow[t]{3}{*}{Orig.} & R130 6th col. & Delete entry. \\
\hline & & R130 4th col. & Make the following entry: "RN20X5000F" \\
\hline & & Column 7 & Delete all entries. \\
\hline \multirow[t]{2}{*}{7-21} & \multirow[t]{2}{*}{Orig.} & Column 4 & \begin{tabular}{l}
Make the following entries: \\
For R152: "RN20X3933F" \\
For R154: "RN20X1543F" \\
For R157: "RV4LAYSA253A"
\end{tabular} \\
\hline & & Columns 6 \& 7 & Delete all entries. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { PAGE } \\
& \text { NO. }
\end{aligned}
\] & CHANGE IN EFFECT & PARA. \& LINE OR FIG. \& LOCATION & ACTION \\
\hline \multirow[t]{8}{*}{7-22} & \multirow[t]{8}{*}{Orig.} & \multirow[t]{8}{*}{Column 4} & Make the following entries: \\
\hline & & & For R169: "RV4LAYSA252A" \\
\hline & & & For R301: "RN20X75ROF" \\
\hline & & & For R302: "RN20X1200F" \\
\hline & & & For R401: "RN20X61R1F" \\
\hline & & & For R402: "RN20X2470F" \\
\hline & & & For R501: "RN20X50ROF" \\
\hline & & & For R701: "RN20X4000F" \\
\hline \multirow[t]{2}{*}{7-24} & \multirow[t]{2}{*}{Orig.} & S103 col. 4 & Change "ST22K" to: "ST52K" \\
\hline & & S103 col. 6 & Change "(6)ST22K" to:"(28) ST52K" \\
\hline \multirow[t]{4}{*}{7-29} & \multirow[t]{4}{*}{Ch. 2} & \multirow[t]{4}{*}{Table 7-6} & Add the following to the table: \\
\hline & & & \begin{tabular}{l}
" 27 CANS Kings Electronics Co. , \\
Inc. Tuckahoe, New York."
\end{tabular} \\
\hline & & & "28 KKE Kulka Electric Mfg. Co., \\
\hline & & & Mount Vernon, New York" \\
\hline
\end{tabular}

PAGE CHANGE IN PARA. \& LINE OR Column 4

S103 col. 4
S103 col. 6
Table 7-6

Make the following entries:
For R169: "RV4LAYSA252A"
For R301: "RN20X75ROF"
For R302: "RN20X1200F"
For R401: "RN20X61R1F"
For R402: "RN20X2470F"
For R501: "RN20X50ROF" For R701: "RN20X4000F"

Change "ST22K" to: "ST52K"
Change "(6)ST22K" to:"(28) ST52K"
Add the following to the table: " 27 CANS Kings Electronics Co., Inc., Tuckahoe, New York." Mount Vernon, New York"
3. Destroy superseded pages after the complete book has been checked against the "List of Effective Pages" and the "List of Pen and Ink Corrections."
4. Remove and destroy Change 2, and then insert this "Instructions" sheet just behind the front cover.

The purpose of this permanent change is to reflect changes made in the equipment manufactured under Contracts Nobsr 71121 and NObsr 71304 and to incorporate changes included in TEMPORARY CORRECTION T-I TO INSTRUCTION BOOK FOR RF SIGNAL GENERATOR AN/URM-25D, NAVSHIPS 92134(A), dated 1 February 1955.

This permanent change is in effect upon receipt and supersedes Temporary Correction \(\mathrm{T}-1\). It also supersedes Change l, dated 18 March 1955, with respect to equipment starting with Serial Number 4700.

Page Remove Insert Page Remove Insert
T.P./A

Orig./Orig.
Ch. \(2 / \mathrm{Ch} .2\)
6-27/6-28
Orig./Orig. Ch.l/Ch.2
B/C
1-5/1-6
Orig./Orig. Orig./Ch.2
6-29/6-30
Orig./Orig. Ch.2/Orig.

2-1/2-2
Orig./Orig. Ch.2/Orig
6-35/6-36
Orig./Orig. Ch.2/Ch.2
Orig./Orig. Ch. 2/Ch.l
* \(7-0 \mathrm{~A}\) thru 7-0F
2-5/2-6 Orig./Orig. Ch.2/Ch.2 7-27/7-28 Orig./Orig. Orig./Ch.2
4-1/4-2 Orig./Orig. Ch.2/Orig. 7-29/7-30 Orig./Orig. Ch.2/Orig.
6-25,6-26 Orig. Ch.2
* Insert supplementary Pages 7-0A through 7-OF immediately in front of Page 7-1. Do not remove Pages 7-3 through 7-26.
2. Destroy superseded pages after the complete book has been checked against the "List of Effective Pages".
3. Remove and destroy the superseded Temporary Correction and then insert this "Instructions" sheet just behind the front cover.

RECORD OF CORRECTIONS MADE
Changes 5, 4, 3, 2, and applicable pages of Change 1 have been inserted in this instruction book.
\begin{tabular}{|c|c|c|}
\hline CHANGE NO. & DATE & SIGNATURE OF OFFICER MAKING CORRECTION \\
\hline 1 & 17 March 1955 & \\
\hline 2 & 31 August 1956 & \\
\hline 3 & 30 Sept. 1958 & \\
\hline 4 & 11 Dec. 1958 & \\
\hline 5 & 1 Sept. 1959 & \\
\hline & & \\
\hline
\end{tabular}

\section*{TABLE OF CONTENTS}
SECTION 1 - GENERAL DESCRIPTION
Paragrapb Page
1. Purposes and Basic Principles (of Operation) 1-1
2. Detailed Description 1-1
3. Equipment Similarities 1-3
4. Electron Tube Complement 1-3
SECTION 2-THEORY OF OPERATION
1. General Description of Circuits 2-1
2. Signal Channel 2-2
3. Internal Modulation 2-4
4. External Modulation 2-5
5. Crystal Calibration 2-6
6. Variable RF Attenuator 2-7
7. Terminating the Signal Generator 2-9
(5:1) Fixed Attenuator CN-223/URM-25D 2-9
9. Test Lead CX-1363/U 2-10
10. Power Supply PP-977/URM-25D 2-10
SECTION 3 - INSTALLATION
1. Unpacking 3-0
2. Installation 3-1
3. Adjustments 3-1
SECTION 4 - OPERATION
1. General 4-0
2. Power Circuit 4-1
. Setting the Meter Zero 4-1
4. Setting Carrier Frequency 4-1
5. Crystal Calibrator 4-1
6. Adjusting Output Voltage 4-2
7. Internal Modulation and Audio Output 4-2
8. External Modulation 4-2
9. Terminating the Signal Generator 4-2
10. Coupling to the Receiver under Test 4-5
11. Use of Antenna Simulator SM-35/URM-25 4-5
12. Use of Variable RF Attenuator 4-6
13. Use of (5:1) Fixed Attenuator CN-223/URM-25D 4-6
14. Use of (10:1) Fixed Attenuator
CN-224/URM-25D \(4-7\)
15. Summary of Operation 4-7
Paragraph Page
16. General Instructions for Use 4-7
a. Details 4-7
b. Receiver Tests 4-7
c. Modulated Operation 4-10
d. Receiver Output 4-10
e. Receiver Overall Sensitivity 4-10
f. Standard Antenna Electrical Constants 4-11
g. Standard Levels 4-11
h. Voltmeter used as an Output Meter 4-11
SECTION 5 - PREVENTIVE MAINTENANCE
1. Routine Maintenance Check Chart 5-0
2. Fuse Failure 5-0
3. Lubrication 5-0
SECTION 6 - CORRECTIVE MAINTENANCE
1. Theory of Localization 6-1
2. Test Equipment for Making Repairs and Trouble Shooting 6-1
3. System Trouble Shooting 6-1
4. Tube Operating Voltages and Currents 6-1
5. Tube Socket Electrical Measurements 6-1
6. Winding Data 6-1
7. Exterior and Interior Views of Units 6-1
8. Removing the Signal Generator and Power Supply from the Cabinet 6-1
9. Removal and Replacement of Parts 6-3
10. Removal of Oscillator Bracket Assembly 6-3
11. Removal of Crystal Calibrator Bracket Assembly 6-3
12. Removal of Audio Compartment Assembly 6-3
13. Removal of Step Attenuator 6-3
14. Replacing RF Oscillator Circuit Compo- nents 6-3
15. Replacing Buffer and Amplifier Circuit Components 6-4
16. Readjustment of Frequency Calibration 6-4
17. Frequency Calibration Procedure 6-5
18. Calibrating the Voltmeter 6-6
19. Calibrating the Step Attenuator (AT101) 6-8

\section*{LIST OF ILLUSTRATIONS}

SECTION 1 - GENERAL DESCRIPTION
Figure Title Page
1-1 \(\quad\)\begin{tabular}{l}
RF Signal Generator Set AN/URM-25D, \\
Complete Equipment
\end{tabular}

SECTION 2 - THEORY OF OPERATION
Figure Title Page
2-1 RF Signal Generator SG-85/URM-25D, Functional Block Diagram 2-1

\section*{LIST OF ILLUSTRATIONS (Cont)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Figur & Title & Pag & Figure & Title & Page \\
\hline 2-2 & Simplified Schematic Diagram of the RF & \multirow[b]{2}{*}{2-} & \multicolumn{3}{|c|}{SECTION 6 - CORRECTIVE MAINTENANC} \\
\hline \multirow[t]{2}{*}{2-3} & & & 6-1 & & -0 \\
\hline & Simplified Schematic Diagram fer Stage & & \multirow[t]{2}{*}{6-2} & \multicolumn{2}{|l|}{} \\
\hline 2-4 & Simplified Schematic Diagram of the Output Amplifier Stage & 2-3 & & nal Generator SG-85 URM-25D from Cabinet & 6-2 \\
\hline 2-5 & Simplified Schematic Diagram of the Modulation Oscillator & \multirow[t]{2}{*}{2-5} & \multirow[t]{2}{*}{6-3} & Rear Bottom View for Removal of Power Supply PP-977/URM-25D from Cabi- & \\
\hline \multirow[t]{2}{*}{2-6} & \multirow[t]{2}{*}{Simplified Schermatic Diagram of the Modulation Cathode Follower and Crystal Rectifier} & & & net & 6-2 \\
\hline & & \multirow[t]{2}{*}{2-6} & \multirow[t]{2}{*}{6} & \multirow[t]{2}{*}{RF Signal Generator SG-85/URM-25D and Power Supply PP-977/URM-25D Connected Outside Cabinet for Testing} & \\
\hline \multirow[t]{2}{*}{2-7} & \multirow[t]{2}{*}{Simplified Schematic Diagram of the Vacuum Tube Voltmeter} & & & & 6-4 \\
\hline & & \multirow[t]{2}{*}{2-7} & \multirow[t]{2}{*}{6-5} & \multirow[t]{2}{*}{Side View of Buffer-Amplifier Unit
with Tubes in Position} & \\
\hline \multirow[t]{2}{*}{2-8} & \multirow[t]{2}{*}{Simplified Schematic Diagram of the Step Attenuator} & & & & 6 \\
\hline & & \multirow[t]{2}{*}{2-8} & \multirow[t]{2}{*}{\(6-\)} & Rear View of Buffer - Amplifier Unit & \\
\hline \multirow[t]{2}{*}{2-9} & \multirow[t]{2}{*}{Simplified Schematic Diagram of the Crystal Calibrator} & & & with Tubes Removed & 6 \\
\hline & & \multirow[t]{2}{*}{2-9} & 6-7 & Bottom View of Buffer - Amplifier Unit & \\
\hline 2-10 & Schematic Diagram of the (5:1) Fixed Attenuator CN-223/URM-25D & & 6-8 & Top and Bottom Views of Carrier Oscillator Bracket & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 2-11 \\
& 2-12
\end{aligned}
\]} & Test Lead CX-1363/U & \multirow[t]{2}{*}{2-10} & \multirow[t]{2}{*}{6-9} & \multirow[t]{2}{*}{Top and Bottom Views of Crystal Calibrator Bracket} & \\
\hline & Simplified Schematic Diagram of the Power Supply PP-977/URM-25D & & & & 6-9 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 2-13 \\
& 2-14
\end{aligned}
\]} & Schematic Diagram of Voltage Regulator & \[
\begin{aligned}
& 2-11 \\
& 2-11
\end{aligned}
\] & 6-11 & \begin{tabular}{l}
Rear View of Oscillator Compartment \\
Rear View of Turret Selector Switch
\end{tabular} & \\
\hline & Schematic Diagram of 115 V -AG Power Source & 2- & 6-12 & Method for Calibrating the RF Signal Generator Set AN/URM-25D at Frequencies Below 100 Kilocycles & \(6-10\)
\(6-10\) \\
\hline 3-1 & RF Signal Generator Set AN/URM-25D, Packaging Diagram & \multirow[t]{2}{*}{3-0} & 6-13 & Bottom View of Signal Generator SG-85/
URM-25D & 6-11 \\
\hline \multirow[t]{3}{*}{3-2} & \multirow[t]{2}{*}{RF Signal Generator Set AN/URM-25D, Outline Dimension Drawing} & & -14 & Percentage Modulation Chart & 20 \\
\hline & & \multirow[t]{2}{*}{3-0} & 6-15 & Signal Generator Voltage and Resistance Chart & 6-21 \\
\hline & SECTION 4-OPERATION & & 6-16 & Rear View of Audio and Metering Unit & 6-22 \\
\hline 4-1 & RF: Signal Generator SG-85/URM-25D & & \multirow[t]{2}{*}{6-17} & \multirow[t]{2}{*}{Interior View of Audio and Metering Unit Showing Terminal Board and Position of Resistors} & \\
\hline \multirow[t]{2}{*}{4} & \multirow[t]{2}{*}{Diagram Showing Vernier Reading of Frequency Scale} & 4-0 & & & \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 4-2 \\
& 4-3
\end{aligned}
\]} & \multirow[t]{2}{*}{6-18} & \multirow[b]{2}{*}{\begin{tabular}{l}
Top View of Signal Generator SG-85/ \\
URM-25D
\end{tabular}} & 6-22 \\
\hline \[
\begin{aligned}
& 4-3 \\
& 4-4
\end{aligned}
\] & Impedance Adapter MX-1487/URM-25D & & & & 6-22 \\
\hline 4-4 & Equivalent Circuit of RF OUTPUT XMULT (J102) with Impedance Adapter MX-1487/URM-25D Added & 4- & 6-19 & Rear View of Signal Generator SG-85 URM-25D & \(6-22\)
\(6-23\) \\
\hline 4-5 & Method of Inserting Impedance Adapter MX-1487/URM-25D at J102 & \multirow[t]{2}{*}{} & 6-20 & Top and Bottom Interior Views of Step Attenuator AT101 & 6-23 \\
\hline \multirow[t]{2}{*}{4-6} & \multirow[t]{2}{*}{Equivalent Circuit of RF OUTPUT XMULT (J102) with Series Matching Resistor Added} & & 6-21 & Top and Bottom Views of the Power Supply PP-977/URM-25D & 6-24 \\
\hline & & 4-3 & 6-22 & Interior View of (5:1) Fixed Attenuator CN-223/URM-25D & 6-24 \\
\hline 4-7 & Equivalent Circuit of RF OUTPUT XMULT (J102) with Shunt Resistor Added & \multirow[t]{2}{*}{4-4} & 6-23 & Interior View of Antenna Simulator SM35 URM- 25 & 6-24 \\
\hline 4-8 & \multirow[t]{2}{*}{Schematic Diagram of the Antenna Simulator SM-35/URM-25 with Input Impedance Frequency Curve} & & 6-24 & RF Signal Generator Set AN/URM-25D, Overall Schematic Diagram 6-25, & \\
\hline & & 4-5 & 6-25 & Interior View of Impedance Adapter & \\
\hline \multirow[t]{2}{*}{4-9} & \multirow[t]{2}{*}{Simplified Procedure for Operating the RF Signal Generator Set AN/URM-25D} & \multirow[b]{2}{*}{\(4-8\)} & \multirow[b]{2}{*}{6-26} & MX-1487/URM-25D & 6-27 \\
\hline & & & & RF Connectors and Cable Assemblies & 6-27 \\
\hline
\end{tabular}

\section*{LIST OF TABLES}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Table} & SECTION 1 - GENERAL DESCRIPTION & & \multicolumn{3}{|c|}{SECTION 6 - CORRECTIVE MAINTENANCE} \\
\hline & Title & Page & Table & Title & Page \\
\hline 1-1 & Equipment Supplied & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1-3 \\
& 1-3
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 6-1 \\
& 6-2 \\
& 6-3
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Frequency Calibration Data \\
Trouble Symptom Chart \\
Chart of General Test Procedure for
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 6-11 \\
& 6-12
\end{aligned}
\]} \\
\hline 1-2 & Shipping Data & & & & \\
\hline 1-3 & Basic Differences in AN/URM-25 Series Equipments & 1-4 & \multirow[t]{2}{*}{6-4} & Chart of General Test Procedure for Localizing Trouble Chart of Suggested Test for Locating the & 6-13 \\
\hline 1-4 & Electron Tube Complement & 1-5 & & Chart of Suggested Test for Locating the Specific Trouble & 6-14 \\
\hline \multirow[t]{3}{*}{1-5} & \multirow[t]{3}{*}{Reference Data} & \multirow[t]{4}{*}{1-5} & 6-5 & Tube Operating Voltages and Currents & 6-28 \\
\hline & & & 6-6 & Rated Tube Characteristics & 6-29 \\
\hline & & & 6-7 & Winding Data & 6-30 \\
\hline & SECTION 4 - OPERATION & & \multirow[t]{2}{*}{6-8} & \multirow[t]{2}{*}{Cross Reference Between Symbol Number and Figure Location} & \multirow[t]{3}{*}{6-35} \\
\hline 4-1 & References for Correctly Terminating the Generator at J102 & 4-4 & & & \\
\hline 4-2 & Methods for Correctly Terminating the Signal Generator at J102 & \multirow[t]{2}{*}{4-4} & & SECTION 7 - PARTS LIST & \\
\hline 4-3 & Operational Summary of Front Panel Controls & & 7-1 & Weights and Dimensions of Spare Parts Boxes & 7-1 \\
\hline & & 4-9 & 7-2 & Shipping Weights and Dimensions of Spare Parts Boxes & 7-1 \\
\hline \multicolumn{3}{|c|}{\multirow[t]{2}{*}{SECTION 5 - PREVENTIVE MAINTENANCE}} & 7-3 & List of Major Units & 7-2 \\
\hline & & & 7-4 & Combined Parts and Spare Parts List & 7-3 \\
\hline 5-1 & Routine Check Chart & 5-0 & 7-5 & List of Manufacturers & 7-28 \\
\hline 5-2 & Symptoms of Fuse Failure & 5-1 & 7-6 & Applicable Color Codes and Miscellane- & \\
\hline 5-3 & Fuse Locations & 5-1 & & ous Data & 29 \\
\hline
\end{tabular}
\(\stackrel{\rightharpoonup}{\circ}\)

\section*{SECTION I}

\section*{GENERAL DESCRIPTION}

\section*{1. PURPOSE AND BASIC PRINCIPLES (OF OPERATION).}
a. The RF Signal Generator Set AN/URM-25D is a test equipment intended primarily for bench testing of electronic equipment. Radio frequency signals, either modulated or unmodulated, can be generated by this Signal Generator Set over a continuous range of frequencies from 10 to 50,000 kilocycles.
b. All units, including the power supply, are incorporated in a single, portable cabinet (figure 1-1). The units supplied, with their corresponding weights, are shown in Table 1-1.
c. The AN/URM-25D operates from a source potential of 103 to 126 volts, 50 to 1000 cycles, single-phase ac. The equipment is so constructed and shielded that a known radio frequency voltage is obtainable at its output terminals in varying strength as indicated by a meter and associated multiplier. The unit includes a self-contained 1 -mc crystal calibrator that is capable of establishing an |accuracy within \(\pm 0.25 \%\) at frequencies above 10 mc .
\(d\). The complete equipment consists of the following units:
(1) RF Signal Generator SG-85/URM-25D
(2) Power Supply PP-977/URM-25D
(3) (5:1) Fixed Attenuator CN-223/URM-25D
(4) (10:1) Fixed Attenuator CN-224/URM-25D
(5) Impedance Adapter MX-1487/URM-25D
(6) Test Lead CX-1363/U
(7) Antenna Simulator SM-35/URM-25
(8) Output RF Cable Assembly CG-409/U (\(3^{\prime} 11^{\prime \prime}\))
(9) Output RF Cable Assembly CG-409/U (\(0^{\prime} 5^{\prime \prime}\)) - qty 2
(10) Connector, Adapter
(11) Coaxial Adapter UG-201A/U
(12) Connector, Adapter UG-684A/U

\section*{2. DETALLED DESCRIPTION.}
a. The 10 kc to \(50,000 \mathrm{kc}\) frequency range of the RF Signal Generator Set AN/URM-25D is covered in eight bands. Band selection is accomplished by rotating a turret containing RF oscillator coils. The control of the band selector is located on the front panel. Within each band the frequency is varied by means of a straight line frequency capacitor. The frequency generated can be read from a main frequency scale within an accuracy of \(\pm 0.5 \%\).
b. A 1 -me crystal calibrator incorporated in the signal generator will, when properly used, increase the RF carrier frequency accuracy from \(\pm 0.5 \%\) to \(\pm 0.25 \%\) at frequencies from \(10-\mathrm{mc}\) to \(50-\mathrm{mc}\).
c. The RF output for the entire frequency range is continuously variable from 0.1 to 100,000 microvolts at
the RF OUTPUT X-MULT jack (J102) when properly terminated. Approximately 2 volts open circuit is available at the RF OUTPUT X-200K jack (J101). This voltage is measured by a meter located on the front panel. The voltage at the RF OUTPUT X-MULT jack (J102) is varied by the RF MULTIPLIER switch and the MICROVOLT control, whereas the voltage at the RF OUTPUT X-200K jack (J101) is varied only by the MICROVOLT control. The RF MULTIPLIER is a sixposition step attenuator. The RF voltage at J 102 is determined by multiplying the meter reading by the MULTIPLIER factor on the front panel.
d. An audio voltage of 400 or 1000 cycles, adjustable from 0 to approximately 3 volts by means of the \(\%\) MOD. AUDIOOUT - XTALCALOUT control, is available at the AUDIOOUT - XTALCALOUT - EXTMODIN jack (J105). This audio voltage is used mainly to modulate the RF carrier. Modulation is adjusted by the \(\%\) MOD - AUDIOOUT - XTALCALOUT control from 0 to 50 percent. Percentage modulation is read directly on the lower scale of the same meter used to measure the RF voltage. Provision is also made for external modulation from 100 to 15,000 cycles per second when an external audio oscillator is used.
\(e\). The RF oscillator (V101) with the crystal calibrator (V105) is completely enclosed in a shielded compartment located on the left side of the signal generator unit. The oscillator, of conventional Hartley type, makes use of a 6AH6 pentode tube connected as a triode. A rotary turret selector switch, containing eight coils and eight trimmer capacitors, and a main tuning capacitor are provided to generate oscillations over a frequency range from 10 kc to 50 mc . The rotary turret selector switch serves the following two functions:
(1) Selects the correct oscillator coil and trimmer capacitor.
(2) Selects proper grid leak resistance and blocking capacitance combination, and the proper cathode resistor.
\(f\). The buffer stage (V102) is an untuned RF amplifier inserted electrically between the RF oscillator and the output amplifier stage. It is enclosed in a shielded comparment together with the output amplifier. It uses a 6AH6 pentode tube and serves the dual function of amplifying the RF signal and isolating the RF oscillator from changing load conditions. Its effect is to make the oscillator independent of the setting of either the MICROVOLTS control (R119) or the RF MULTIPLIER (AT101 Step Attenuator), and of any load that may be presented to the output of the signal generator. (See figure 6-25).
\(g\). The output amplifier (V103), utilizing a type 6AG7 tube, amplifies the carrier output signal of the buffer stage. The signal is then applied to a VTVM (V104) circuit and the signal strength is indicated on a meter (M101).

\section*{AN/URM-25D}
b. Modulation is accomplished by introducing the audio voltage from the modulation oscillator (V106) or from an external source to the cathode follower (V107) and then to the grid of the output tube (V103). Due to the nature of the circuit, the amplitude of this audio voltage is directly correlated to the degree of modulation and adjustable by means of the \%MOD - AUDIOOUTXTAL CAL OUT control (R165). A portion of the audio voltage from the cathode follower (V107) is rectified and fed to the metering circuit for indication of \(\%\) Modulation on M101.
i. The modulation oscillator is contained in the audio compartment and is a standard Wien-bridge oscillator, utilizing a type 5814 dual triode (V106). It is capable of generating an audio signal of ether 400 or 1000 cycles, depending upon the position of the MOD-XTAL \& METER SELECTOR switch (S102). When this switch is in the 400 or 1000 -cycle position, the corresponding audio signal is applied to the cathode follower (V107) via \(\%_{0}\) MOD-AUDIOOUT-XTALCALOUT (R165) and then to the grid of V103. In either position of S 102 the audio voltage will also be available at EXT MOD IN jack (J105) for external applications. The audio voltage at J105 can be varied by \%MOD. AUDIOOUTXTAL CAL OUT control (R165). The impedance at \(J 105\) is high, and the audio voltage available will be proportional to the \(\%\) Modulation reading on M101 when fed to a high impedance load. When a low impedance load is connected at J105, the audio output at J105 will decrease, but the meter reading will still be proportional to the audio output voltage. The maximum available open circuit audio voltage at J105 will be approximately 3 volts without overloading the meter (M101). The operational procedure for obtaining audio output is discussed in Section 4, OPERATION. The complete circuit will be found in figure 6-24. Besides functioning as an internal audio source, the modulation oscillator also serves as an amplifier for the audio beat of the crystal calibrator (V105).
j. The vacuum tube voltmeter (V104) in the bufferamplifier compartment utilizes a double diode 5726 which is used to determine the outpur voltage of the RF signal. This voltage is measured by the meter (M101) when switch \(S_{102}\) is in the carrier position. The voltage indicated will be approximately equal to the peak value of the applied volzage. This voltage is read on the upper scale of M101, which is calibrated from 0 to 10 microvolts, to indicate the RMS effective value.
\(k\). The RF attenuator controls consist of step attenuator AT101 and potentiometer MICROVOLTS control (R119). Both controls vary the carrier voltage applied to the X MULT RF OUTPUT jack (J102), but only the MICROVOLTS control (R119) affects the voltage at the X200,000 RF OUTPUT jack (101). The value of the voltage at the X MULT RF OUTPUT jack (J102) is determined by multiplying the meter (M101) reading by the indicated position of the RF MUITTIPLIER (E118). The encire circuit is effecrively resistive so that the attenuation introduced is substantially independent of frequency within the limits of the instrument. The
output impedance of the attenuator system as taken from the X MULT RF jack (J102) is constant at 50 ohms for any position of the attenuator RF MULTIPLIER (E118). The attenuator (AT101) and associated circuit are shown schematically in figure \(2-8\).
l. The crystal calibrator (V105), incorporated in the RF oscillator compartment, provides crystal check points from 10 mc to 50 mc for purposes of interpolative calibration of the signal generator in this frequency range. The frequency accuracy of the crystal check points, at room temperature and at the moment of checking, is within \(0.005 \%\). The overall frequency accuracy of the equipment (10 mc to 50 mc), when checked against the crystal calibrator and including all variations of operating conditions, is within \(\pm 0.25 \%\). No provision is made for integral calibration below 10 mc where the accuracy is that of the direct reading frequency scale (\(\pm 0.5 \%\)).
m. A CG-409/U (\(3^{\prime} 11^{\prime \prime}\)) coaxial output cable assembly (W104), consisting of a three-foot eleven-inch length of RG-58A/U cable and terminated at each end with a type UG-88/U connector, is supplied with the signal generator. This cable is intended for use with the X MULT RF OUTPUT jack (J102). It has a characteristic impedance of 50 ohms.
n. The (5:1) Fixed Attenuator CN-223/URM-25D consists of a two-section rectangular aluminum case approximately \(2^{\prime \prime}\) long \(\times 1^{\prime \prime}\) high \(\times 11 / 4^{\prime \prime}\) wide. It contains two 75 ohm resistors and one 121 ohm resistor, in a pi-network providing a voltage attenuation of 5 to 1 when terminated in 50 ohms. A BNC type connector is provided at each end to fit W104 output cable CG-409/U (\(3^{\prime} 11^{\prime \prime}\)), W105 and W106 output cables CG-409/U (\(\left.0^{\prime} 5^{\prime \prime}\right)\). These cables are used as required to make the necessary connections.
o. The (10:1) Fixed Attenuator CN-224/URM-25D is physically identical to the (5:1) Fixed Attenuator \(\mathrm{CN}-223\) /URM-25D. It consists of two 61.9 -ohm resistors (\(\mathrm{R} 401, \mathrm{R} 403\)) and one 249 -ohm resistor (R 402) connected in a pi-network to give an equivalent resistance of 50 ohms when properly terminated. This unit is the same in principle as the 5:1 attenuator but introduces a voltage attenuation of \(10: 1\) instead of \(5: 1\) when terminated in 50 ohms.
p. Antenna Simulator SM-35/URM-25 is contained in an aluminum case of the same type and physical dimensions as the impedance adapter and fixed attenuator units. One BNC type connector is provided at each end for connecting to any one of output cables W104, W105, or W106. The circuit consists of a 200 micromicrofarad capacitor (C701) in series with a series-parallel arrangement consisting of a 390 -micromicrofarad capacitor (C702), a 402 -ohm resistor (R701), and a 20 -microhenry inductor (L701). At frequencies above 2.5 megacycles, the antenna simulator unit acts as a pure resistance of from 220 ohms to 400 ohms. Below 2.5 megacycles, the circuir acts as a capacitance of 200 micromicrofarads in series with an inductance of 200 microhenries and a resistance of 15 ohms. This simulator is identical to the RMA standard dummy load.

AN/URM-25D GENERAL DESCRIPTION
q. The Test Lead CX-1363/U should be used for making interstage receiver measurements. It consists of a 0.1 microfarad capacitor (\(C 601\)) in parallel with a 510 micromicrofarad capacitor (C602) enclosed in an aluminum case similar to the antenna simulator and fixed attenuator units. One end of this case is terminated in a
| BNC connector. Two \(16^{\prime \prime}\)-long clip leads extend from the other end. The capacitor network is in series with the red lead, whereas the black lead is grounded to the case.
qA. Fixed Attenuator CN-350/URM-25D (furnished only on Contract NObsr 75083) is contained in an aluminum case of the sametype and dimensions as that used with the impedance adapter. The attenuator permits operating this 50 -ohm signal generator into the 70 -ohm impedance of a Navy receiver. The attenuator network consists of a pi attenuator designed to reflect proper impedance to both the signal generator and the receiver under test. The characteristics of the attenuator matching device require that aloss of 20 db in signalintensity be allowed for in measurement.
r. The Power Supply is an integral part of the RF Signal Generator Set AN/URM-25D. It is contained in a separate sub-chassis located to the rear of the RF signal generator unit \(S G-85 /\) URM-25D. It employs a full
wave rectifier type 6 X 4 WA tube (V201). The interconnecting power cable (W102) is a two-conductor cable with a two-prong connector (P101) on one end. (See figure 6-4.) The other end of its cable is soldered to the a-c input fuses (F101, F102) located on the front panel of the signal generator. When the connector (P101) is plugged into the power supply input power receptacle (J201), this cable assembly (W102) transfers ac power from the front panel to the rectifier sub-chassis. This
interconnecting cabie is connected in place and need not be installed prior to using the signal generator. A type 0 A2 (V108) regulator tube located in the audio compartment is used for maintaining a regulated 150 -volt dc output to V101 and V103. (See figure 2-13). The principal electrical features of the rectifier power unit are shown in figure 2-12.
s. The power transformer (T201) has a 450 -volt center-tapped high-voltage secondary and a 6.5 -volt filament secondary. It is designed to permit satisfactory operation from a 115 V (\(\pm 10 \%\)) single-phase ac source of from 50 to 1000 cycles per second. Each side of the input ac line is fused (F101, F102). An RF filter network, consisting of two 1000 micromicrofarad capacitors (C168, C169) and two RF chokes (L122, L123) enclosed in a metal shield, is mounted on the rear of the front panel of the RF Signal Gener ator SG-85/URM-25D (see figure 6-13). This network by-passes stray RF currents from the power line.

\section*{3. EQUIPMENT SIMILARITIES.}
a. The AN/URM-25D, though similar in operation to previous models, incorporates basically different mechanical and electrical designs.
b. The frequency range 10 to \(50,000 \mathrm{kc}\) is divided differently (see table 1-5).
c. The output impedance of the Signal Generator Set \(\mathrm{AN} / \mathrm{URM}-25 \mathrm{D}\) is 50 ohms instead of 53.5 ohms used previously.

\section*{4. ELECTRON TUBE COMPLEMENT.}

The quantities and types of electron tubes used with the AN/URM-25D are listed in table 1-4.

TABLE 1-1. EQUIPMENT SUPPLIED
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline QUANTITY PER & \multirow[b]{2}{*}{NAME OF UNIT} & NAVY TYPE & \multicolumn{3}{|l|}{OVERALL DIMENSIONS (INCHES)} & \multirow[b]{2}{*}{VOLUME (CU. IN.)} & \multirow[b]{2}{*}{\begin{tabular}{l}
WEIGHT \\
(LBS.)
\end{tabular}} \\
\hline EQUIPMENT & & designation & HEIGHT & WIDTH & DEPTH & & \\
\hline 1 & RF Signal Generator Set & AN/URM-25D & 11-1/4 & 14 & \(10-3 / 4\) & 1627 & 37 \\
\hline 1 & a. RF Signal Generator & SG-85/URM-25D & & & & & \\
\hline 1 & b. Power Supply & PP-977/URM-25D & & & & & \\
\hline 1 & c. (5:1) Fixed Attenuator & CN-223/URM-25D & & & & & \\
\hline 1 & d. (10:1) Fixed Attenuator & CN-224/URM-25D & & & & & \\
\hline 1 & e. Impedance Adapter & MX-1487/URM-25D & & & & & \\
\hline 1 & f. Test Lead & CX-1363/U & & & & & \\
\hline 1 & g. Antenna Simulator & SM-35/URM-25 & & & & & \\
\hline 1 & h. Output RF Cable Assembly & CG-409/U (3'11') & & & & & \\
\hline 2 & i. Output RF Cable Assembly & CG-409/U (0.5'') & & & & & \\
\hline 1 & j. Connector, Adapter & & & & & & \\
\hline 1 & k. Coaxial Adapter (sym P801) & UG-201A/U & & & & & \\
\hline 1 & 1. Connector Adapter & UG-684A/U & & & & & \\
\hline 1 & m. (10:1) Fixed Attenuator & CN-350/URM-25D & & & & & \\
\hline
\end{tabular}

TABLE 1-2. SHIPPING DATA
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{NUMBER OF BOXES} & \multirow[b]{2}{*}{NAME} & \multirow[b]{2}{*}{designation} & \multicolumn{3}{|l|}{OVERALL DIMENSIONS (INCHES)} & \multirow[b]{2}{*}{\begin{tabular}{l}
volume \\
(CU. IN.)
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
WEIGHT \\
(LBS.)
\end{tabular}} \\
\hline & & & HEIGHT & WIDTH & DEPTH & & \\
\hline 1 & RF Signal Generator and Equipment Spares & AN/URM-25D & 13 & 21 & 12. 5 & 3412.5 & 44. \\
\hline
\end{tabular}

TABLE 1-4. ELECTRON TUBE COMPLEMENT
\begin{tabular}{|c|r|l|l|l|}
\hline \begin{tabular}{c}
REQUIRED \\
NUMEER
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{l}
TYPE \\
TUBE
\end{tabular}} & \begin{tabular}{c}
SYMBOL \\
DESIG.
\end{tabular} & \multicolumn{1}{|c|}{ function } & \multicolumn{1}{c|}{ LOCATION } \\
\hline 1 & 6AH6 & V101 & Carrier Oscillator & Carrier Oscillator Compartment \\
1 & 6AH6 & V102 & Buffer Stage & Buffer-Amplifier Compartment \\
1 & 6AG7 & V103 & Output Amplifier & Buffer-Amplifier Compartment \\
1 & \(5726 / 6 A L 5 W\) & V104 & Carrier Voltmeter & Buffer-Amplifier Compartment \\
& 6097 & & & \\
1 & \(5750 / 6 B E 6 W\) & V105 & Crystal Calibrator & Carrier Oscillator Compartment \\
1 & \(5814 A\) & V106 & Modulation Oscillator & Audio Compartment \\
1 & 6AH6 & V107 & Modulation Cathode Follower & Audio Compartment \\
1 & OA2WA & V108 & Voltage Stabilizer & Audio Compartment \\
1 & 6X4WA & V201 & B+Rectifier & Power Supply PP-977/URM-25D \\
\hline
\end{tabular}

TABLE 1-5. REFERENCE DATA
a. Nomenclature
b. Contract
c. Contractor
d. Cognizant Naval Inspector
e. Number of Packages Involved Per Complete Shipment
f. Total Cubical Contents
g. Total Weight
b. Frequency Range
i. Tuning Bands and Range of Each Band
(1) Band A
(2) Band B
(3) Band C
(4) Band D
(5) Band E
(6) Band F
(7) Band G
(8) Band H
j. Types of Amplitude Modulation
(1) Internal Modulation Frequencies
(2) External Modulation Frequency
k. Output Voltage (RF)

RF Signal Generator Set AN/URM-25D
NObsr 75306(FBM)
Trad Electronics Corporation, Asbury Park, New Jersey
Inspector of Naval Materials, Newark, New Jersey

1
See Table 1-1
See Table 1-1
10 to \(50,000 \mathrm{kc} \pm 0.5 \%\)
10 to \(50 \mathrm{mc} \pm 0.25 \%\) when calibrated against integral crystal.

10 to 30 kc
30 to 95 kc
95 to 300 kc
300 to 950 kc
.95 to 3.0 mc
3 to 9.5 mc
9.5 to 30 mc

30 to 50 mc
0 to \(50 \%\) with indicated accuracy within \(10 \%\)
a. 400 cycles per second \(\pm 5 \%\)
b. 1000 cycles per second \(\pm 5 \%\)

1000 to 15,000 cycles per second
a. 0.1 to 100,000 microvolts \(\pm 10 \%\) when terminated by 50 -ohm external load
b. 2 voits adjustable across a high load impedance

NAVSHIPS 92134(A)
AN/URM-25D
Table 1-5
GENERAL DESCRIPTION
TABLE 1-5. REFERENCE DATA (Continued)
I. Output Voltage (Audio)
(1) Frequency
(2) Voltage
(3) Adjustment
(4) Calibration
m. Output Impedance
n. Power Supply PP-977/URM-25D
(1) Power Source Requirements
(2) Power Consumption of Equipment

400 or 1090 cycles
0 to approximately 3 volts adjustable, across an output impedance of approximately 15,000 ohms.
Voltage varied by front panel control
Proportional to reading of \(\%\) Modulation
a. 50 ohms at RF OUTPUT X-MULT jack (J102)
b. 500 ohms at RF OUTPUT X-200K jack (J101)
c. 15,000 ohms at EXT MOD IN-AUDIO OUT-XTAL CAL OUT jack (J105) for crystal calibration monitoring - 33,000 ohms for external modulation input
11) volts \(\pm 10 \%, 50\) to 1000 cycles per second, single-phase
Approximately 48 watts

\section*{SECTION \\ 2}

\section*{THEORY OF OPERATION}

\section*{1. GENERAL DESCRIPTION OF CIRCUITS} (See figure 2-1.)
a. The purpose of this section is to give the Electronic Technician a better understanding of the RF Signal Generator Set AN/URM-25D so that he can better apply himself to the operation and maintenance problems that may arise.
b. The functional principle of the AN/URM-25D is similar to that of a radio frequency transmitter. This association will become more apparent as the technician reads and studies this section. An RF oscillator (par. 2b) generates a variable RF signal which is applied via the buffer stage (par. 2c), to the control grid of the output amplifier stage (par. 2d). A modulation oscillator (par. \(3 \mathrm{~b})\) generates an audio voltage (400 or 1,000 cycles) which is also applied to the control grid of the output stage to grid modulate the RF signal. The modulated signal is then taken from the output stage and fed to a step attenuator circuit (par. 9) where the desired output amplitude is selected. A vacuum tube voltmeter is provided for measuring the carrier output. Provision is also made for external modulation. The output of the modulation oscillator is available at the EXTMODINAUDIOOUT - XTALCALOUT jack (J105). A crystal calibrating circuit is also provided to calibrate the RF frequency from 10 mc to 50 mc . When this calibrator is
used, the frequency error can be made less than \(0.25 \%\) | at these frequencies.
c. A detailed analysis of the principal circuit assemblies is covered in this section under the following headings and paragraphs.
(1) Signal Channel Par. 2
(2) Carrier Oscillator

Par. 2b
(3) Buffer Stage

Par. 2c
(4) Output Amplifier
(5) Vacuum Tube Voltmeter

Par. 2d
(6) Signal Output Circuit

Par. 2e
(7) Internal Modulation

Par. \(2 f\)
(8) Modulation Oscillator

Par. 3
Par. 3b
(9) Cathode Follower Stage

Par. 3 c
(10) Modulation Metering
(11) External Modulation

Par. 3d
Par. 4
Par. \(4 b\)
(13) Crystal Calibration Par. 5a
(14) Crystal Calibrator Par. 5b
(15) Beat Amplifier Par. \(5 c\)
(16) Variable RF Attenuator Par. 6
(17) Terminating the Signal Generator Par. 7
(18) (5:1) Fixed Attenuator

CN-223/URM-25D Par. 8
(19) Test Lead CX-1363/U Par. 9
(20) Power Supply PP-977/URM-25D Par. 10

* JOS CORNECTICN DEPENDS

ON SWITCH SIOZ POSITION
Figure 2-1. RF Signal Generator SG-85/URM-25D, Functional Block Diagram

\section*{2. SIGNAL CHANNEL.}

\section*{a. GENERAL.}

The primary purpose of the signal channel is to generate a stable test carrier, calibrated in frequency and output amplitude and capable of sustaining audio amplitude modulation while remaining practically free from incidental frequency modulation.

\section*{b. CARRIER OSCILLATOR (See figure 2-2).}

The carrier oscillator uses a triode conrescted pentode, type 6AH6, (V101). Variable capacitor (C123), 479 uuf, is the main tuning device and is used on all bands. Because of the relatively wide frequency range over which the oscillator must perform, the combination of coil, grid leak resistor, grid blocking capacitor, and isolating resistor selected for optimum conditions of frequency stability and coverage for each band, is switched by means of a specially designed rotary turret (Fig. 6-11). High frequencies generated in Band H present special problems. For instance, the band coverage has been shortened by use of a series padder capacitor (C 118) in order to maintain a relatively high circuit impedance over the whole band. For the purposes of explanation, the turret will be considered to be positioned at band
"C". R105-1, C105-1 furnish automatic grid bias. Trimmer capacitor (C106) in conjunction with tuning slug adjustment of coil inductance are used in setting range of band covered by the main tuning capacitor (C123). R106 functions to stabilize the oscillator by isolating the tuning circuit from the tube, the parameters of which vary with changes in temperature, heater voltages, etc. The oscillator plate is maintained at rf ground potential at all frequencies generated with bypass capacitors (C120) and (C121) effective at high and low frequencies respectively. The plate voltage is supplied from a regulated +150 V source, voltage regulator tube type OA2, (V108), and is varied by the SET CARRIER TO 10 control (R173) located on the front panel. The plate lead enters the oscillator compartment via the feed-through capacitor (C127) which is a part of a low-pass filter composed also of L109 and C125. This r-f filter is used to prevent rf from appearing outside of the oscillator compartment. A similar arrangement composed of C128, L110, and C126 is used to filter the filament supply. Output coupling capacitor (C 119) has a very small capacity to isolate and minimize the effect of external shunt capacitance and its variations of the succeeding buffer stage and associated wiring.

Figure 2-2. Simplified Schematic Diagram of the RF Oscillator
c. BUFFER STAGE (See figure 2-3).

The carrier signal is coupled by C119 and resistor R114 to the grid of a pentode, type 6AH6, (V102). The main purpose of the buffer stage is to isolate the oscillator stage from the effect of output loading and from modulating voltages. The operating point of the tube is established by the un-bypassed cathode bias resistor (R115). The screen is bypassed to ground with capacitor C129, .25 uf , and its voltage is supplied via resistor R117. The signal output of this stage is coupled to the OUTPUT amplifier (V103) by means of a frequency compensating network, (L111, R116) and (L112, R118), that is
basically an M-derived filter, and also by the series compensating circuit (L113 and R120) following the variable resistor (R119). This type of compensating is necessary because of the extreme frequency range (10 kc to 50 mc) of the pass band required. C130 is primarily a d-c blocking capacitor. The coupling capacitor (C131) is of a minimum value compatible with the coupling of carrier voltages, in order to prevent bypassing of higher audio frequencies when the grid of the succeeding stage (V103) is modulated. The variable resistor (R119) marked MICROVOLTS is the gain control and is located on the front panel. The series combination of R121 and

Figure 2-3. Simplified Schematic Diagram of the Buffer Stage

R122 provides grid return for the OUTPUT stage (V103), R122 being used to introduce modulating voltage into the grid circuit of that stage.

\section*{d. OUTPUT AMPLIFIER (See figure 2-4).}

The output amplifier uses a power pentode type 6AG7, (V103). Bias for this stage, operating Class A, is obtained by the voltage drop across cathode resistor (R123). In order to bypass this resistor properly at all signal frequencies generated, capacitors C132, 25 uf, and C133, .022 uf, are used in parallel combination. The signal to be amplified, which may be modulated by an internally or externally generated audio frequency, appears at the grid (pin 4) of the tube (V103). The plate output circuit contains three major branches; first, the plate voltage is shunt-fed through the r-f chokes L116, L117, and L118 (Fig. 2-4). Next there is a series compensating network consisting of L114, L115, and its damping resistor (R124). C135 is simply a coupling capacitor. The 499 ohm resistor (R130) and the 55.56 ohm input impedance of step attenuator (AT101) in
series form the actual load for the output stage. Due to the fact that low frequencies generated by the signal channel are definitely in the audio region, the plate load impedance, when operating at these frequencies, must be kept high in order to develop sufficient output signal voltage. However, when the generated frequencies are above 300 kc (output/range switch [S101] in the 300 \(\mathrm{kc}-50 \mathrm{mc}\) position), and when the generator is modulated by frequencies as high as 15 kc , it is desirable to prevent the audio voltage from appearing in the output. This is accomplished by shorting out the inductances (L117) and (L118), representing plate load impedance needed for low frequency operation. Additional isolation of the output from audio frequency variations is achieved by switching in the series capacitor (C136). This capacitor has very low reactance to high frequencies but high reactance in the audio frequency range. It is shorted when the output/range switch (S101) is in the \(10 \mathrm{kc}-300 \mathrm{kc}\) position. The switching described above is accomplished automatically, since the contacts are part of the output/range switch (S101).

Figure 2-4. Simplified Schematic Diagram of the Outpuf Amplifier Stage
CHANGE 3
e. VACUUM TUBE VOLTMETER (See figure 2-7).

The VTVM circuit uses a double diode type 5726 (V104), which, together with carrier meter (M101) and associated circuitry, enables the operator to maintain the correct input to the step attenuator (AT101) at all frequencies generated. The first diode (pins 1 and 7) is arranged to rectify the negative signal peaks. The second diode (pins 2 and 5) is connected inversely and serves to cancel the residual potential of the peak reading diode, as well as providing a convenient way to zero adjust carrier meter (M101). The rectified voltage appearing across capacitors C138 and C139 will approach the peak amplitude of the output signal voltage. This voltage also appears across the resistors R128, R144, and R172 in series, and the proportional d-c current resulting is read on carrier meter (M101). Optimum values of capacity are maintained over the frequency range by switching capacitor C139 in parallel with C138 when the output/ range switch (\(\$ 101\)) is in the \(10 \mathrm{kc}-300 \mathrm{kc}\) position. The no-signal current through the first diode is cancelled out by inserting the cathode of the second diode at the junction of R128 and R144. The plate of this diode is returned to ground through R126 and potentiometer R127 (CARRIER METER ZERO). The arm of R127 is connected to R125 and then to B plus. This forms a voltage divider allowing the positive voltage to bias the second diode and thus zero position the cartier meter (M101). This method offers better zero stability than a direct biasing of the rectifying diode.

\section*{\(f\). SIGNAL OUTPUT CIRCUIT \\ (See figures 2-4 and 2-8).}

There are two r-f output jacks located on the front panel. The jack (J101) marked X-200K OPEN CIRCUIT provides connections to a high level signal voltage source having internal impedance of 500 ohms (approx.) and output voltage up to 2 volts (open circuit). Jack (J102) marked X-MULT is the low level signal source with a constant 50 ohms internal impedance for all positions of R.F. OUTPUT X-MULT control (AT101). The output signal level available from this jack is adjustable from 100,000 microvolts to 0.1 microvolt when terminated by 50 ohms impedance. The metered signal voltage from the output amplifier (V103) appears across the 500 ohm precision resistor (R 130) and the step attenuator (AT101). The output voltage source desired may be selected by positioning the output/range switch to the X-MULT or \(\mathrm{X}-200 \mathrm{~K}\) setting on either the \(10 \mathrm{kc}-300 \mathrm{kc}\) or the \(300 \mathrm{kc}-50 \mathrm{mc}\) position of this switch. When the output/range switch (S 101) is in an \(\mathrm{X}-200 \mathrm{~K}\) position, the r-f output jack (J101) and series resistor (R129) are connected to the output circuit. The series resistor (R129) increases the internal resistance of the source but serves to isolate it from capacitive loading by the output jack (J101). When taking the signal from R-F OUTPUT X-MULT jack (J102) through the step attenuator (AT101) it is better to place the output/range switch (S101) in the X-MULT position of the required frequency range, thus removing resistor R129 from the output circuit and switching it to ground. This procedure maintains mini-
mum output distortion by removing any additional loading of the output circuit. The R.F. MULTIPLIER control is a step attenuator (AT101) providing 100 db . attenuation and is arranged to present a constant input (P103) and output (J102) impedance regardless of the position of the arm. Its output impedance is 50 ohms, available at the R.F. OUTPUT X-MULT jack (J102).

\section*{3. INTERNAL MODULATION.}

\section*{a. GENERAL}

There are two internal modulation frequencies available. The desired frequency may be selected by turning MOD-XTAL \& METER SELECTOR (S102) switch to 400 or 1000 cycles position. Meter M101 is scaled to read percentage of modulation in either of these positions.

\section*{b. MODULATION OSCILLATOR (See figure 2-5).}

The basic circuit used during operation with internal modulation of the carrier signal is a resistance-capacitance tuned oscillator using a twin-triode, type 5814 (V106). The first half (pins 6, 7, and 8) of this tube is the input amplifier, and the second half (pins 1, 2, and 3) is the output amplifier. In this type of oscillator the frequency is determined by a network composed of resistors and capacitors which is placed in the positive feedback path. The combination of C160, R152 and C161, R153 is the 400 cycle frequency determining network. For 1000 cycle operation, R154 and R155 are switched into the circuit, replacing resistors R152 and R153. Negative feedback necessary to obtain good waveform in the oscillator output is supplied via resistors R156, R158, and R159, and the variable feedback control (R157). Capacitor C162 is a d-c blocking capacitor in the feedback path. The signal from the first amplifier appears across its plate load resistor (R 160) and is capacity coupled (C164) to the grid of the second amplifier. This grid is returned to ground through resistor R163. The audio voltage output of the MODULATION OSCILLATOR is developed across the plate load resistor (R161) of the second amplifier and is coupled through capacitor C163 to the series network of isolating resistor (R164) and the gain control, marked \% MODULATION. This control varies the degree of modulation of the r-f signal as indicated by the lower scale on meter M101. The audio voltage appearing at the arm of the gain control is connected through switch S102D to the AUDIO OUT jack (J105), where it is available for test purposes. The same audio voltage is coupled via capacitor C165 to the control grid of the CATHODE FOLLOWER tube (V107).

\section*{c. CATHODE FOLLOWER STAGE (See figure 2-6).}

The audio voltage generated by the MODULATION OSCILLATOR appears at the grid of the CATHODE FOLLOWER which utilizes a triode connected pentode, type 6AH6 (V107). The purpose of this stage is to isolate the MODULATION OSCILLATOR from varying load and to act as a low impedance source of the modulation voltage coupled to the grid circuit of the OUTPUT AMPLIFIER (V103) in the SIGNAL CHANNEL. The grid of the cathode follower stage is returned through resistor R166 to the junction of cathode load
resistors (R167 and R168). The plate is connected directly to the plus supply. Capacitor C166 couples the audio modulating voltage appearing across cathode resistors R167 and R168, via an r-f filter C147, R142, C142, to the grid circuit of the OUTPUT AMPLIFIER (V103), where the audio modulation voltage is developed across R122. The same audio voltage is coupled by capacitor C167 to the MODULATION METERING circuit, where it is measured.
d. MODULATION METERING (See figure 2-6).

The proportion of the known r-f voltage and modulating audio actually appearing at the grid (pin 4) of the OUTPUT AMPLIFIER (V103) determines the degree of modulation. The function of the modulation metering citcuit is to indicate the degree of modulation as a percentage through measuring the amplitude of the audio voltage. The circuit consists of a bridge-type rectifier producing a current through M101 proportional to the audio voltage output of the CATHODE FOLLOWER STAGE. The voltage is capacity coupled to two crystal diodes, type 1N69 (CR101, CR102), which are used in conjunction with bridge resistors (R170 and R171) to rectify the modulation voltage. \% MODULATION METER (M101) is calibrated by a series variable resistor (R169).

\section*{4. EXTERNAL MODULATION.}

\section*{a. GENERAL.}

In the event that carrier modulating frequencies other than 400 or 100 cycles are required, provision is made to connect the signal generator to an external source of audio voltage. This is accomplished by a switching
arrangement whereby the function of jack J105 is changed to accept the external modulation signal and the EXT MOD IN marking on the front panel applies.

\section*{b. SWITCHING (See figure 2-6).}

There are no additional tubes involved when the signal generator is functioning with EXTERNAL MODULATION. The major circuit changes are made by the sections of the MOD-XTAL \& METER SELECTOR switch (S102), when it is turned to the EXT position as follows:
(1) Section S102D EXT connects the EXT MOD IN jack (J105) and the external audio signal through the r-f decoupling filter (L124, C170) across the parallel combination of fixed resistor R164 and gain control (\% MOD) R165. The signal is then coupled from the arm of R165 through coupling capacitor (C165) to the grid of the CATHODE FOLLOWER stage (V107), which then functions as explained in paragraph \(3 c\) of this section.
(2) Section S102B EXT grounds the output of the second amplifier of the MODULATION OSCILLATOR (V106) at the junction of coupling capacitor (C163) and isolating resistor (R164). This also places R164 in parallel with variable resistor (\% MOD.) R165, making the input resistance for external modulating voltages at Jlos equal to 33 K ohms (approx.).
(3) Section S102A EXT completely disables the MODULATION OSCILLATOR (V106) by directly grounding the grid of the first amplifier.
(4) Section S102C EXT completes the switching of the EXTERNAL MODULATION function by connect-

Figure 2-5. Simplified Schematic Diagram of the Madulation Oscillator

Figure 2-6. Simplified Schematic Diagram of the Modulation Cathode Follower and Crystal Rectifier
ing the audio modulation output of the CATHODE FOLLOWER stage (V107) to the grid circuit (R121, R122) of the modulated OUTPUT AMPLIFIER (V103) in the SIGNAL CHANNEL.
(5) The OUTPUT METERING (M101) circuit performs the same function during the external modulation that is does when internal modulation is being used. See paragraph \(3 d\) of this section.

\section*{5. CRYSTAL CALIBRATION.}

\section*{a. GENERAL}

The purpose of the CRYSTAL CALIBRATION function of the signal generator is to provide a means by which the operator can by the use of a vernier dial control, interpolate the frequency of signals between dial divisions (Section 4, par. 4). It is of greatest use in the higher frequency range. The frequency of the crystal oscillator has been adjusted by comparison with a frequency standard. The accuracy of the signal oscillator \(\mid\) frequency, when determined in this manner, is 0.25 percent.

\section*{b. CRYSTAL CALIBRATOR (See figure 2-9).}

The CRYSTAL CALIBRATOR is located in the oscillator compartment of the signal generator. It uses a type 5750 (V105) performing the dual functions of a triode
crystal oscillator and a mixer stage. The stage is supplied operating d-c voltage only when the MOD-XTAL \& METER SELECTOR (S102) is in the XTAL position. In the crystal oscillator portion of V105 the No. 2 grid (pin 6) acts as the plate of a triode, with the No. 1 grid (pin 1) and the cathode (pin 2) forming the remainder of the triode. The crystal oscillator circuit is a grounded plate type. The positive operating voltage is supplied to the No. 2 grid via R145, which is kept at r-f ground potential by capacitor C 155 . The common cathode reactance, resulting from the combination of capacitor C156 and coil L121, provides the grid-plate circuit feedback necessary to sustain oscillation. The frequency of oscillation is controlled by the quartz crystal Y101, with slight correction enabled, when necessary, by the variable capacitor (C158). The control grid is returned to ground by resistor R147. A small fraction of the r-f signal from the CARRIER OSCILLATOR is taken from the output coupling capacitor (C119) by a high resistance voltage divider (R 176 and R148) and injected into the mixer grid (pin 7) of the tube V105. The plate (pin 5) current is modulated by both the frequency from the \(1-\mathrm{mc}\) crystal oscillator, and the frequency injected from the CARRIER OSCILLATOR (V101). This mixing of the two signals and their harmonics results in sum and difference beat notes. The audio frequency difference is selected in the plate circuit through bypassing the

Figure 2-7. Simplified Schematic Diagram of the Vacuum Tube Voltmeter
radio frequency components to ground. Capacitor C152 performs this function. Resistor R146 is the plate load impedance. The audio beat note is coupled via the lowpass filter (R150, C154) through coupling capacitor (C159) to the grid circuit of the BEAT AMPLIFIER (V106).

\section*{c. BEAT AMPLIFIER.}

When the MOD.XTAL \& METER SELECTOR (S102) is placed in XTAL position, the function of the twin-triode tube (V106) is switched from its alternate function as a MODULATION OSCILLATOR to that of a two-stage beat amplifier. The audio beat output voltage from the CRYSTAL CALIBRATOR (V105) stage is applied through XTAL contact of switch (S102A) to the grid (pin 7) of the first amplifier section (pins 6, 7 , and 8) of the stage. The grid is returned to ground by R151. Cathode bias is developed across resistor R158. Resistor R159, formerly used in the negative feedback path of the oscillator circuit, is shorted by the XTAL contact of S102B. The output of the first amplifier is coupled by C164 to the grid (pin 2) of the second amplifier. The grid is returned to ground through R163. Bias is furnished by the voltage drop across the cathode resistor (R162). The output signal of the BEAT AMPLIFIER stage is developed across the plate load resistor (R161) and after the coupling capacitor (C163), it appears across the series combination of resistor R164 and the gain control (R165) in its XTAL CAL OUT
function. The arm of the gain control (R165) is connected to a coupling capacitor (C165) which introduces the signal at the grid of the CATHODE FOLLOWER stage.

\section*{d. CATHODE FOLLOWER.}

The cathode follower stage (V107) performs basically as described in paragraph \(3 c\) of this section. However, the signal output is routed differently. The audio beat signal is coupled from the cathode via capacitor C166 through the XTAL contact of switch (S102D) to jack (J105) acting in its XTAL CAL. OUT function. This connection facilitates monitoring of the audio beat frequencies with headphones or other indicating device.

\section*{6. VARIABLE RF ATTENUATOR}
(See figure 2-8).
a. The RF attenuator circuit consists of step attenuator AT101 and potentiometer MICROVOLTS control (R119). Both controls vary the carrier voltage applied to the X MULT RF OUTPUT jack (J102) but only the MICROVOLTS control (R119) affects the voltage at the X-200,000 RF OUTPUT jack (J101). The value of the voltage at the X MULT RF OUTPUT jack (J102) is determined by multiplying the meter (M101) reading by the indicated position of the RF MULTIPLIER (E118). The entire circuit is effectively resistive so that the attenuation introduced is substantially independent of frequency within the limits of the instrument. The

NAVSHIPS \(92134(A)\)
AN/URM-25D THEORY OF OPERATION

Figure 2-8. Simplified Schematic Diagram of the Step Attenuator
output impedance of the attenuator system as taken from the X MULT RF OUTPUT jack (J 102) is constant at 50 ohms for any position of the attenuator RF MULTIPLIER (E118). The attenuator (AT101) and associated circuit are shown schematically in figure 2-8.
b. The X-200,000 RF OUTPUT jack (J101) voltage is taken from the output amplifier stage (V103) and is not attenuated by the step attenuator (AT101). The voltage developed across this jack depends upon the setting of the carrier control (R173) and MICROVOLTS control (R119) and its output impedance is constant at 500 ohms.
c. Whenever the frequency of the signal generator is changed, reset the X-200,000 RF OUTPUT jack (1101) voltage for a meter reading of " 10 ", by rotating the MICROVOLTS control (R119) fully clockwise and then rotating the carrier control (R 173) in a clockwise direction until the meter reads " 10 ", this represents two volts open circuit output from J101.
d. The step attenuator (AT101) attenuates the output from the X MULT RF OUTPUT jack (J102) in steps of ten as indicated on the front panel by RF MULTIPLIER knob (E118). The voltage at J10l will not be affected by the position of this knob.
\(\epsilon\). The useful output voltage from the X MULT RF OUTPUT jack (J102) is always based on terminating this jack in its characteristic impedance (50 ohms); thus, when the output from J102 is fed to a receiver under test, with the impedance properly matched, the reading on the signal generator meter will indicate the input voltage to the receiver under test. This is discussed more fully
in section 2 paragraph 7, TERMINATING THE SIGNAL GENERATOR.
\(f\). When the voltage from V103 is set at " 10 " on the meter, the maximum output from the X MULT RF OUTPUT jack (J102), when correctly terminated (50 ohms) will be 0.1 volts while open circuit voltage at J 101 will be 2 volts. Adjustments in steps of 10 are obtained for each step of the attenuator (AT101), at the output from the X MULT RF OUTPUT jack (J102) by rotating R119. The output voltage from this jack is determined in microvolts by multiplying the meter (M101) reading by the corresponding position of the RF MULTIPLIER knob (E118). Since the accuracy of all meters is expressed in terms of percentage error for full scale deflection, the technician should avoid using the meter calibrations below "2". Use the (5:1) Fixed Attenuator CN-223/URM-25D whenever a meter voltage indication in this range is required. This attenuator is discussed more fully in paragraph 8 of this section.
g. For any particular carrier frequency, once the cartier control (R 173) has been rotated to give the required " 10 " meter indication, its setting should never be changed. The output from each attenuated step and from the X-200,000 RF OUTPUT jack (J101) is varied by adjusting the MICROVOLTS control (R119). Whenever the generator frequency is changed, however, the carrier control must be reset to give the required " 10 " meter indication. This adjustment is made only after R119 has again been rotated to the fully clockwise position.
h. When R173 and R119 have been adjusted to introduce a two volt signal (M101 reads " 10 " and J101
unterminated) to the step attenuator (AT101), the series voltage dropping resistor (R 130) reduces this voltage to 0.2 volts. The maximum output voltage available from the X MULT RF OUTPUT jack (J102) when this jack is terminated in 50 ohms, will, therefore, be 0.1 volts. This will also be the maximum input voltage from this jack to a properly matched receiver under test. (See Section 2, par. 7). It is this voltage, under terminated conditions, that is actually indicated on M101. The MICROVOLTS control (R119) provides smooth control of the voltage applied to the step attenuator.
i. The step attenuator (AT101) is a six section ladder resistance network and its output is attenuated in six steps. With the MICROVOLTS control (R119) and the attenuator (AT101) in combination, any desired voltage between zero and 100,000 microvolts can be obtained at the X MULT RF OUTPUT jack (102) when the jack is terminated in its characteristic impedance (50 ohms). The input voltage to the receiver under test is thus determined by multiplying the meter (M101) reading (upper scale) by the decimal multiplier indicated by the position of the RF MULTIPLIER knob (E118). The lowest calibrated output voltage is 0.1 microvolts.

\section*{7. TERMINATING THE SIGNAL GENERATOR.}
a. The termination principles herein discussed are based on the assumption that the load is essentially resistive in nature. This is true for most applications for which this equipment is used in the field. In cases where
the load is not resistive, it will be necessary for the technician to interpret these principles with respect to the nature of the load.
b. Cable W104 has a capacitance of \(29 \mathrm{mmf} / \mathrm{ft}\) or a total capacitance of 113.5 micromicrofarads for the entire length. The resultant reactance would have no appreciable effect on the output of J102 at frequencies below 1 mc and, therefore, standing waves do not introduce a termination problem at these frequencies.
c. At frequencies greater than one megacycle, the decrease in cable reactance begins to introduce a pronounced shunting effect on the 50 ohm generator terminal (J102) impedance and it becomes necessary to correctly terminate the receiving end of W 104 in order to eliminate standing waves. There is no need to terminate the signal generator end of the cable since its characteristic impedance of 50 ohms is the same as the characteristic impedance across J102.

\section*{8. (5:1) FIXED ATTENUATOR CN-223/URM-25D} (See figure 2-10)
a. The schematic diagram of the \(5: 1\) fixed attenuator is shown in figure 2-10. This attenuator is designed to be used when the input impedance of the receiver under test is 50 ohms, and consists of three resistors (R301, R302, R303) connected in a pi-network to give an equivalent resistance of 50 ohms when properly terminated in 50 ohms. It can readily be calculated that the output terminal voltage of this attenuator unit will be

Figure 2-9. Simplified Schematic Diagram of the Crystal Calibrator

Figure 2-10. Schematic Diagram of the (5:1) Fixed Attenuator CN-223/URM-25D
one-fifth its input voltage when the CN-223/URM-25D is properly terminated in 50 ohms . It therefore follows that the voltage output from the fixed attenuator will be one fifth the voltage indicated by M101.
b. The 5:1 fixed attenuator is designed for a 50 ohm terminating impedance and should be used in conjunction with the X-MULT RF OUTPUT jack (J102), never with the X-200,000 RF OUTPUT jack (J101).
c. A (10:1) fixed attenuator CN-224/URM-25D, similar in construction to the \(5: 1\) fixed attenuator, is provided to check the step attenuator positions.

\section*{9. TEST LEAD CX.1363/U}
(See figure 2-1).
a. The capacitur network is inserted to protect the step attenuator (AT101) of the signal generator from accidental test probing at points of \(B+\) potential and should always be used when making interstage receiver tests.
b. The reactance of the test lead capacitors should not normally affect the accuracy of the meter (M101) voltage indication since, in most cases, the impedance at receiver interstage measurement points will be high. It must be
realized, however, that when the CX-1363/U is used at test points of low impedance (below 400 ohms) the meter indication can no longer be depended upon to reflect the actual signal voltage applied.

\section*{10. POWER SUPPLY PP-977/URM-25D \\ (See figure 2-12).}
a. The plate supply voltage derived from the high voltage secondary and rectifier tubes (points "PQ" on figure 2-12) is approximately 220 volts \(D C\) and must be reduced to the required 150 volts DC regulated supply for tubes V101 and V103. This voltage drop is achieved by the DC series dropping resistor (R201). A pi filter network consisting of a choke (L201) and three 4 microfarad capacitors (C201, C202, C203) is provided as a ripple filter. The two capacitors (C202, C203) are connected in parallel to increase the effective capacitance. A single 8 microfarad capacitor would introduce a problem of physical location. An additional 0.15 microfarad capicitor (C204) is inserted in parallel with L201 to form a 120 cycle resonant filter. This resonant filter lowers the 120 cycle power supply hum level.
b. In a regulator tube such as the OA2 (V108), the voltage across the tube (150 vDC) remains constant over a fairly wide range of current (5 to 30 ma) through the tube. This property exists because the degree of ionization of the gas in the tube varies with the amount of current that the tube conducts. When a large current is passed, the gas is highly ionized and the internal impedance of the tube is low. When a small current is passed, the gas is ionized to a lesser degree and the internal impedance is high. Over the operating range of the tube, the product (\(\mathrm{I} \times \mathrm{R}\)) of the current through the tube and the internal impedance of the tube is prac-

Figure 2-11. Test Lead CX-1363/U

THEORY OF OPERATION

Figure 2-12. Simplified Schematic Diagram of the Power Supply PP-977/URM-25D
tically constant. If the supply voltage (points "PQ" on figure 2-12) drops, the voltage across the glow tube (V108) would tend to drop. However, the gas in the glow tube deionizes slightly and less current passes through the tube. The current passing through the series DC dropping resistor (R201) is also decreased by the amount of this current decrease in the glow tube. This would develop sufficiently smaller voltage drops across the series \(D C\) resistor to maintain the required stable 150 volts drop across the glow tube. A rise in supply voltage is similarly compensated for.

c. The regulator tube (\(\mathrm{V}_{1} 108\)) also provides for a stable output voltage when the load impedance varies. If the load increased, more current would fow through the dropping resistor (R201). This would tend to drop the 150 vDC output voltage across the tube. Instead this voltage drop tendency slightly deionizes the glow tube resulting in an increase in its internal impedance. This increase in glow tube impedance, relative to the DC impedance of the series dropping resistor, again raises the power unit output voltage to the required 150 vDC .
d. The 6.5 volt filament supply (one side B-) and the 150 VDC output and 220 VDC output are connected to the power unit output receptacle (J202). These voltages are transferred to the signal generator subchassis through power cable W103. The B- lead from J 202 is not grounded to the power supply chassis but is carried to a single ground point in the audio compartment. The power supply chassis, however, is grounded to the other units of the signal generator. The reason for this separate B-ground is to eiminate RF leakage due to ground voltage gradients. Whenever a voltage measurement is made from the signal generator, it should, therefore, be made between the test voltage point and B-, not to the chassis.

Figure 2-14. Sehematic Diagram of 115V-AC Power Source

\section*{SECTION 3}

\section*{INSTALLATION}

SIGNAL GENERATOR SET AN/URM-250

Figure 3-1. RF Signal Generator Set AN/URM-25D, Packaging Diagram

\section*{1. UNPACKING.}
a. The AN/URM-25D is packed in a V3C board box together with a set of equipment spares. Electron tubes are shipped in place. The Signal Generator with accessories and the set of spares are individually enclosed in separate, specially cushioned cardboard cartons. Great care should be exercised in removing these items (figure 3-1).
b. The location of the accessories in the signal generator carton is as follows (See Section 1, figure 1-1):
(1) Antenna Simulator SM-35/URM-25, (5:1) Fixed Attenuator CN-223/URM-25D, (10:1) Fixed Attenuator CN-224/URM-25D, Impedance Adapter MX. 1487 URM-25D, Test Lead CX-1363/U, Coaxial Adapter UG-201A/U (P801), and instruction book will be found on the inside of the panel cover. An aluminum plate with ferrule clips is provided for mounting these units.
(2) Output cables W104, W105, W106 are also 1 mounted on this aluminum plate.
c. Dimensions of the signal generator are shown in Figure 3-2.

Figure 3-2. RF Signal Generator Set AN/URM-25D Outline Dimension Drawing

\section*{2. INSTALLATION.}
a. The AN-URM-25D is a portable signal generator and does not require permanent installation.
\(b\). The equipment is intended to be operated with the panel in the vertical position. Rubber supporting feet are provided for the cabinet. These feet protect the finished surface and serve to insulate the cabinet from a grounded desk. This insulation precaution, however, is not normally required.
c. The following preliminary settings and checks are required prior to placing the equipment in operation (Figure 4-1).
(1) Turn POWER switch (S103) to OFF position.
(2) Turn Carrier control (E114) and AUDIO OUTPUT control (E115) to the fully counterclockwise positions.
(3) Insert end of power cable W101-1 into the power source of 115 volt AC.
3. ADJUSTMENTS.
a. All operating adjustments are described in Section 4-OPERATION.

NAVSHIPS 92134(A)
AN/URM-25D

\section*{SECTION 4}

\section*{OPERATION}

\section*{1. GENERAL.}
\(a\). It is the purpose of the OPERATION section to instruct personnel in the proper use of the AN/URM25D as a test instrument. To be thoroughly familiar with the method of operation, it is suggested that both Section 2 THEORY OF OPERATION and this section be read and studied.
b. In the development of this section, an attempt has been made to present each step in the logical sequence necessary to place the equipment in operation. If these steps are carefully adhered to, the operator will not only avoid damaging the signal generator but will be assured of a correct interpretation of the data as prescribed by the instrument. Table 4-3 is an operational summary of all front panel controls.
c. The essential details of operation and the necessary precautions to be taken are covered in this section under the following headings and paragraphs:
(1) Power Circuit 2
\begin{tabular}{|c|c|c|}
\hline & Setting the Meter Zero & Par. \\
\hline (3) & Setting Carrier Frequency & Par. \\
\hline (4) & Crystal Calibrator & Par. \\
\hline (5) & Adjusting Output Voltage & Par. \\
\hline (6) & Internal Modulation & Par. \\
\hline (7) & External Modulation & Par. \\
\hline (8) & Terminating the Signal Generator & Par. \\
\hline (9) & Coupling to the Receiver Under Test & Pa \\
\hline (10) & Use of Antenna Simulator SM-35/URM-25 & Par. \\
\hline (11) & Use of Variable RF Attenuator & Par. 12 \\
\hline (12) & Use of (5:1) Fixed Attenuator CN-233/URM-25D & Par. 13 \\
\hline (13) & Use of (10:1) Fixed Attenuator CN-224/URM-25D & Par. 14 \\
\hline (14) & Summary of Operation & Par. 15 \\
\hline (15) & General Instructions for Use & Par. \\
\hline
\end{tabular}

Figure 4-1. RF Signal Generator SG/URM-25D

\section*{2. POWER CIRCUIT.}
a. The carrier control knob (E114) and audio output control knob (E115) should be turned fully counterclockwise before turning the POWER switch (S103) to the ON position.
b. Plug the power cable (W101-1) into the 115 AC source.
c. Turn the POWER switch (S103) to the ON position. Line voltage is now applied through the interconnecting power cable (W102) to the primary of the power transformer (T201). This is shown schematically in figure 6-24.
d. No other power switches are provided and the signal generator is now in operating condition. A minimum 15 -minute warm-up periodshould then be allowed prior tosetting the generator for use. This period permits the instrument to reach a stable operating state.

\section*{3. SETIING THE METER ZERO.}
a. (1) Set the carrier control (E114) and the audio output control (E115) fully counterclockwise.
(2) Plug power cable (w101-1) into 115 volt AC power source.
(3) Turn the POWER switch (S103) to ON. Allow a 15 -minute warm-up period.
(4) The meter (M101) should read zero in CW position of MOD-XTAL \& METER SELECTOR.
b. If the meter does not read zero, adjust it by turning CARRIER METER ZERO control (under the cover E112), using a screwdriver.

\section*{4. SETIING CARRIER FREQUENCY.}
a. Whenever setting the frequency of the signal generator, be sure that the MOD-XTAL \& METER SELECTOR knob (E117) is set to the CW position and the carrier control (E114) is turned fully counterclockwise. The carrier range knob (E113) should be set to the XMULT position of the corresponding frequelicy range.
b. The desired frequency is selected by setting the frequency band switch (E119) and turning the main frequency tuning dial (N102). The frequency is then read from the frequency scale (N103). If greater accuracy is required, this reading may beinterpolated by utilizing the index scale of N103, and the reading indicated on the tuning diai (N102) (see par. 5c).
c. Eight frequency bands are available and can be selected by E119. A scale mask (0103) is linked to this switch so that only the band scale selected will be made visible.
d. The index scale calibrated from 0 to 1000 is located at the bot tom of the frequency scale dial and is visible in all positions of the frequency band switch (E119).
e. The main tuning dial (N102) is calibrated from 0 to 100 . One complete revolution of this dial will move the frequency scale (N103) 100 divisions on the index scale. The indexscale (N104) and tuning dial interpolation are discussed in paragraph 5 c of this section.
f. The following procedure should be used for selecting the operating frequency of the signal generator.
(1) Turn the carrier control (E114) to the fully counterclockwise position.
(2) Set the frequency band switch (E119) to the desired frequency band.
(3) Turn main tuning dial (N102) until the desired value on the frequency scale (N 103) coincides with the hair-line indicator.
b. A double hairline is provided for eliminating parallax errors. The operator should read the frequency on a straight Line of vision so that both hairlines appear to merge as a single line.

\section*{5. CRYSTAL CALIBRATOR.}
a. GENERAL. An integral crystal calibrator (V105) is provided for checking frequency between 10 and 50 mc with an accuracy of \(\pm 0.25 \%\).

\section*{b. PROCEDURE.}
(1) Set MOD-XTAL \& METER SELECTOR to XTAL position, MICROVOLTS control fully clockwise. Adjust carrier control until meter reads " 10 ".
(2) Connect a pair of headphones to XTAL CAI OUT jack, using cable W105 and Connector Adapter UG-684A/U. Use XTALCAL OUT control as a volume control, if necessary.
(3) For frequencies higher than 12 mc of the 9.5 30 mc band and 32 mc of the \(30-50 \mathrm{mc}\) band, select the nearest megacycle (zero or null) beats on either side of the desired frequency and record the vernier dial readings at the se points. The differ ence between the se readings represents the vernier difference for a one me spread. The vernier setting for the desired frequency may be determined by interpolation. See paragraph \(5 \mathrm{c}(1)\) for an example of frequency interpolation.
(4) For frequencies between 10 and 12 mc of the \(9.5-30 \mathrm{mc}\) band and between 30 and 32 of the \(30-50 \mathrm{mc}\) band, set to the desiredfrequency on the frequency scale (see par. 4f) and record the vernier reading. Set to the nearest even megacycle frequencies on either side of the desired frequency and record the vernier readings. Calculate the proportional difference of the desiredfrequency reading to the difference representing a one megacycle spread. Select the megacycle (zero or null) beat nearest to each of the two even megacycle graduations and record the vernier readings. The vernier setting of the desiredfrequency is calculated by applying the proportional difference of the direct reading to the vernier difference of the megacycle beat readings. See paragraph \(5 c(3)\) for an example.

\section*{c. EXA MPLES OF FREQUENCY INTERPOLATION (See figure 4-2).}
(1) Assume a desired frequency of 24.2 mc .
(2) Select the zero beat closest to 24 mc . This might indicate slightly less than 670 on the index scale and 68.5 on the vernier scale (N101 and N102). The vernier reading for 24 me is thus 668. 5.
(3) Rotate the tuning dial until the zero beat nearest 25 mc is obtained. This might indicate a vernier reading of 704. 1.

Figure 4-2. Diagram Showing Vernier Reading of Frequency Scale
(4) The vernier difference for one mc is therefure 704. \(1-668.5=35.6\). Since 24.2 represents 0.2 mc from the lower check point, the vernier setting for 24.2 is \(0.2 \times 35.6+668.5=675.6\).
(5) Assume a desired frequency of 10.3 mc .
(6) Record the vernier readings of frequency scale settings of \(10 \mathrm{mc}, 10.3 \mathrm{mc}\) and 11 mc , which might be \(86.3,110.1\) and 156.2 respectively. The proportional difference of the 10.3 mc reading to the difference representing one mc is (110.1-86.3) \(+(156.2-86.3)=\) 0.3405 . That is, the setting for 10.3 mc is 0.3405 of the scale difference between 10 mc and 11 mc .
(7) Select and record the vernier readings of the zero beats representing 10 mc and 11 mc . These might be 85.7 and 155.6. The corrected vernier setting for 10.3 mc is then \(85.7+0.3405(155.6-85.7)=109.5\).

\section*{6. ADJUSting output voltage.}
a. PRELIMINARY SETTINGS. Before the output voltage is adjusted the signal gene rator controls should be set in the following positions:
(1) Carrier control and audio output control fully counterclock wise.
(2) Plug power cable into the power receptacle.
(3) Turn POWER switch to the ON position. Allow 15 minute warm-up periods.
(4) Set MOD-XTAL \& METER SELECTOR knob to CW position.
(5) Carrier range knob to the appropriate position.
(6) MCROVOLTS control fully clockwise.
(7) Use frequency band switch to select desired frequency range, and set exact frequency desired on
main tuning dial. If extreme accuracy is required, follow procedures described in par. 5.
(8) Make sure meter reads zero. If not, use CARRIER METER ZERO control to zero meter. (See par. 3-SETTING THE METER ZERO).
b. ADJUSTMENTS.
(1) Advance the carrier control in a clockwise direction until meter reads " 10 " on the upper MICROVOLTS scale. When using the X-MULT RF OUTPUT, select the attenuation range with the RF MULTIPLIER knob and adjust the MICROVOLTS control for the desired output voltage. This voltage is determined in microvolts by multiplying the meter reading by the indicated position of E118 when the generator output cable is terminated in its characteristic impedance of 50 ohms .
(2) When changing the frequency, readjust the carrier control (E114) for a meter reading " 10 " with the MICROVOLTS control (E116) returned to the fully clockwise position. Select the desired output voltage by rotating the MICROVOLTS control. Do notuse the carrier control for this purpose.
(3) To avoid leakage, all jacks not in use should be covered by caps.
7. INTERNAL MODULATION AND AIJDIO output.
a. INTERNAL MODULATION.
(1) Follow the procedure described in paragraph 6.
(2) Set audio output control (E115) fully counterclockwise.
(3) Set MOD-XTAL \& METER SELECTOR knob (E117) to the 400 or 1000 cycle position as required.
(4) Adjust audio output control (E115) until the meter reads the desired percentage of modulation.
b. AUDIO OUTPUT (400 or 1000 cycles).
(1) Follow steps for internal modulation; except step (1).
(2) Audio voltage proportional to reading on M101 is available at EXT MODIN jack (J105). When the meter reads " 50 ", approximately 2.5 volts open circuit are available.

\section*{8. EXtERNAL MDDULATION.}
a. Follow the procedure described in paragiaph 6.
b. Set MOD-XTAL \& METERSELECTOR knob (117) to EXT position.
c. Connect an external audio frequency source, using an accessory cable, to the EXT MOD IN jack (J105).
d. Adjust audio output control (E115) for desired percentage of modulation on generator meter (M101). Do not modulate with frequencies above 1000 cycles for frequencies below 300 kc .

\section*{9. terminating the signal generator.}
a. When the 50 ohm cable assembly (W104) is plugged into the X-MULT RF OUTPUT jack (J102) and terminated properly (50 ohms), no standing waves will be present. An impedance adapter MX-1487 URM-25D consisting of a 50 ohm composition resistor (R501), contained in a rectangular aluminum case (figure 4-3)

Figure 4-3. Impedance Adapter MX-1487/URM-25D
is supplied with the equipment. This unit has one UG1094 / U connector at each end and is inserted between the receiver under test and the receiver end of cable W 104 when the receiver load impedance is at least ten times the generator output impedance (e.g. approximately 500 ohms).

Figure 4-4. Equivalent Circuit of RF OUTPUT X-MULT (J102) with Impedance Adapter MX-1487/URM-25D added
b. It is apparent from figure \(4-4\) that the voltage appearing across this terminating resistor at points "OP" will be one half the open circuit voltage across the generator output at J 102 , represented by points

Figure 4-5. Method of Inserting Impedance Adapter MX-1487/URM-25D at J102

Figure 4-7. Equivalent Circuit of RF OUTPUT X-MULT (J102) with Shunt Resistor Added
d. If the load impedance is considerably less than 500 ohms, but more than 50 ohms, the impedance adapter is replaced by a non-inductive composition resistor which
shunts the load (figure 4-7). The equivalent impedance of the shunt and load should equal the generator impedance (50 ohms). The receiver input voltage will then be equal to the meter indication. For example, if the receiver input impedance (\(Z\)) is 120 ohms, select the correct shunt resistor (\(R\)) as foilows:
\[
R=\frac{50 \times Z}{Z-50}-\frac{50 \times 120}{120-50}=\frac{6000}{70}: R=85.07 \text { ohms }
\]

It is apparent that the meter (M101) indication will be the same as the actual input voltage to the receiver. If an accurate voltage indication is required, it will be necessary to file down a standard resistor until the desired value is obtained. Use the Resistance Bridge ZM-4 U or equivalent to determine when this value has been reached.
\(e\). Tables 4-1 and 4-2 show the most desirable type of termination for any particular load impedance.

TABLE 4-1. REFERENCES FOR CORRECTLY TERMINATING THE GENERATOR AT JIO2
\begin{tabular}{|llll|}
\hline \multicolumn{1}{|c|}{ LOAD IMPEDANCE } & \multicolumn{1}{c|}{ METHOD } & FIGURES & PARAGRAPH \\
\hline Less than 50 ohms & Series Resistor & \(4-6\) & \(9 c\) \\
50 ohms to approximately & Parallel Resistor & \(4-7\) & \(9 d\) \\
500 ohms & & & \\
500 ohms or greater & Impedance Adapter & \(4-3 ; 4-4 ;\) & \(4-5\) \\
\hline
\end{tabular}

TABLE 4-2. METHODS FOR CORRECTLY TERMINATING THE SIGNAL GENERATOR AT JIO2
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { TYPE } \\
& \text { OF } \\
& \text { INPUT }
\end{aligned}
\] & \begin{tabular}{l}
LOAO \\
IMPEDANCE
\end{tabular} & CIRCUIT & ACCESSORY RESISTOR & \[
\begin{gathered}
\text { VOLTAGE } \\
\text { APPLIED TO } \\
\text { LOAD IS: }
\end{gathered}
\] \\
\hline \(I\) & ```
LESS THAN
 50 OHMS
 Z
``` &  & \(R_{1}=50-z_{1}\) & \(V_{\text {INOICATED }} \times \frac{z_{1}}{50}\) \\
\hline II & FROM 50 OHMS TO APPROXIMATELY 500 OHMS \(z_{2}\) &  & \(R_{2}=\frac{50 z_{2}}{z_{2}-50}\) & Vindicateo \\
\hline III & ```
500 OHMS
OR MORE
    z
``` &  & IMPEDANCE ADAPTER & Vinoicated \\
\hline
\end{tabular}

\section*{10. COUPIING THE RECEIVER UNDER TEST.}
a. X-MULT RF OUTPUT JACK (J102).-For best results, the terminations principles outlined in Tables \(4-1\) and 4-2 should be followed when using the 50 ohm output from J102. Cables W 104, W 105 and W 106 are provided for making the necessary connections between units and should be used as required. Coaxial adapter UG-201A. \(U\) is also supplied for use in adapting the BNC connectors on the signal generator cables to a type N connector found on many receivers.
(1) At Low RF levels it may be necessary to orient the ground connections to obrain best results. For this purpose ground terminal E120 should be used.
(2) Table 4-2 lists the correct methods for terminating the signal generator at \(\int 102\). These methods apply to loads which are fundamentally resistive in nature. The application principles are discussed in Section 2 , par. 7
b. X-200,000 RF OUTPUT JACK (J10i)...The impedance at this jack is a resistance of approximately 500 ohms shunted by the capacitance of the jack (approximately 4 mmf). Below 8 mc this jack shunt reactance has no appreciable effect on the voltage obtainable from 1101 . At 40 mc , however, the reactance due to the shunt capacitance is only 1000 ohms, and a \(30 \%\) attenuation of signal voltage will be present at this frequency. In any event, a maximum 2 volts across a high impedance load should be avallable at Jlol for all frequencies. It is reemphasized at this point that the termination methods outined in Table 4--2 do not apply to this jack since the impedance at 1101 is 500 ohms. When using the \(X-200,000 \mathrm{RE}\) OUTPUT, the output voltage in microvolts is determined by multiplying the meter (M101) reading by 200,000 . This will be the actual voltage across a high impedance ioad.
\[
\begin{aligned}
& \text { Caurlon } \\
& \text { Care must be taken to prevent the introduction } \\
& \text { of voltages back into the atrenuators or } \\
& \text { impedance adapter from the circuit under test. } \\
& \text { Currents greater than } 20 \text { miliampere may } \\
& \text { burn out the resistances incorporated within } \\
& \text { these unirs. Always insert the Test Lead } \\
& \text { CX-1363/U whenever making pointotopoint } \\
& \text { measirenents in a receiver. This precaution } \\
& \text { is not necessary when using the antenna simu. } \\
& \text { lator, which contains a series capacitor. }
\end{aligned}
\]

\section*{11. USE OF ANTENNA SIMULATOR SM-35/URM-25 (Seefigure 4-8).}
a. The Antenna Simulator SM-35/URM-25 is used when making overall measurements or tests on a receiver designed for use with a standard antenna (par. \(16 f\) of this section). The antenna simulator merely approximates the conditions that would exist had the signal been applied to the antenna circuit of the receiver and, therefore, the significant voltage is the input voltage to the simulator and not the input voltage to the receiver.

figure 4-8. Schematic Diagram of the Antenna Simulator SM-35/URM-25 with Input Impedance Frequency Curve
b. Connect the output cable (W104) to the X-MULT RF OUTPUT jack (J102) and terminate this cable with the Impedance Adapter MX-1487/URM-25D. Connect the antenna simulator to the impedance adapter with cable W 105 and to the receiver under test with cable W 106.
c. It can be seen from figure \(4-8\) that the minimum impedance of the antenna simulator will be approximately 220 ohms at 2 mc . This impedance becomes much higher at lower frequencies and approaches 400 ohms at higher frequencies. In using the meter (M101) of the signal generator it should be realized that a 20 percent maximum error may be introduced at 2 megacycles. If greater meter accuracy is required when using the antenna simulator, the actual impedance of this unit should be calculated from figure 4-8 at the frequency, selected.
d. From the impedance curve (figure 4-8), it can be seen that the minimum impedance of the antenna simulator will be approximately 220 ohms. When using this unit, first connect one end of the Impedance Adapter MX-1487/URM-25D to the output cable (W104) and plug the other end of W104 into J102 on the signal generator. Using the auxiliary cable (W105), connect the antenna simulator to the impedance adapter. If necessary, the second auxiliary cable (W106) may then be used to connect the antenna simulator to the receiver under test.
e. In using the antenna simulator, it should be realized that the significant voltage is the input and not output voltage of the antenna simulator. The reason for this is that the antenna simulator approximates a standard antenna which forms a part of the overall sensitivity measurement of a receiver designed for use with it. For example, if the output frequency of the signal generator
is 20 mc , it can be seen from figure \(4-8\) that the series impedance of the antenna simulator will be approximately 400 ohms resistive. Make the necessary connections as indicated in paragraph 9 of this section. A meter indication of 10,000 microvolts represents an input voltage of 10,000 microvolts to the antenna simulator.
\(f\). For accurate receiver output voltage indication it should be remembered that the total load impedance represented by the antenna simulator in series with the load of the instrument under test should be at least 500 ohms. From figure \(4-8\) it is apparent that the accuracy will be sufficiently good at frequencies above 5 mc . Below 5 mc , the impedance falls off to approximately 220 ohms and the receiver input load should be sufficiently high (approximately 280 ohms or greater) to maintain the accuracy.

\section*{12. USE OF VARIABLE RF ATTENUATOR.}
a. Whenever the frequency of the signal generator is changed, reset the X-200,000 RF OUTPUT jack (J 101) voltage by rotating the MICROVOLTS control (R119) fully clockwise and then rotating the carrier control (R 173) in a clockwise direction until the meter reads " 10 ". This represents two volts open circuit output from J101.
b. The step attenuator (AT101) attenuates the output from the X-MULT RF OUTPUT jack (102) in steps of ten as indicated on the front panel by RF MULTIPLIER knob (E118). The voltage at J101 will not be affected by the position of this knob.
c. The useful output voltage from the X-MULT RF OUTPUT jack (J 102) is always based on terminating this pack in its characteristic impedance (50 ohms) ; thus, when the output from J 102 is fed to a receiver under test, with the impedance properly matched, the reading on the signal generator meter will indicate the input voltage to the receiver under test. This is discussed more fully in paragraph 9.
d. When the voltage from V103 is set at " 10 " on the meter, the maximum output from the X-MULT RF OUTPUT jack (J102), when correctly terminated (50 ohms), will be 0.1 volts, while open circuit voltage at Jlol will be 2 volts. Adjustments in steps of 10 are obtained for each step of the attenuator (AT101) at the output from the X-MULT RF OUTPUT jack (J102) by rotating R119. The output voltage from this jack-is determined in microvolts by multiplying the meter (M101) reading by the corresponding position of the RF MULTIPLIER knob (E118). Since the accuracy of all meters is expressed in terms of percentage error for full scale deflection, the technician should avoid using the meter calibrations below " 2 ". Use the (\(5: 1\)) Fixed Attenuator CN-223/URM-25D whenever a meter voltage indication in this range is required. This attenuator is discussed more fully in paragraph 13 of this section.
\(e\). For any particular carrier frequency, once the carrier control (R 173) has been rotated to give the required " 10 " meter indication, its setting should never be changed. The output from each attenuated step and from the X-200,000 RF OUTPUT jack (J101) is varied
by adjusting the MICROVOLTS control (R119). Whenever the generator frequency is changed, however, the carrier control must be reset to give the required " 10 " meter indication. This adjustment is made only after R119 has again been rotated to the fully clockwise position.
\(f\). When R173 and R119 have been adjusted to introduce a two volt signal (M101 reads "10" and J101 unterminated) to the step attenuator (AT101), the series voltage dropping resistor (R130) reduces this voltage to 0.2 volts. The maximum output voltage available from the X-MULT RF OUTPUT jack (J102) when this jack is terminated in 50 ohms, will, therefore, be 0.1 volts. This will also be the maximum input voltage from this jack to a properly matched receiver under test. It is this voltage, under terminated conditions, that is actually indicated on M101. The MICROVOLTS control (\(R 119\)) provides smooth control of the voltage applied to the step attenuator.
\(g\). The step attenuator (AT101) is a six section ladder resistance network and its output is attenuated in six steps. With the MICROVOLTS control (R119) and the attenuator (AT101) in combination, any desired voltage between zero and 100,000 microvolts can be obtained at the X-MULT RF OUTPUT jack (J102) when the jack is terminated in its characteristic impedance (50 ohms). The input voltage to the receiver under test is thus determined by multiplying the meter (M101) reading (upper scale) by the decimal multiplier indicated by the position of the RF MULTIPLIER knob (E118). The lowest calibrated output voltage is 0.1 microvolts.

\section*{13. USE OF (5:1) FIKED ATTENUATOR CN-223/URM-25D.}
a. The (5:1) Fixed Attenuator CN-223/URM-25D attenuates the output at J 102 in a ratio of \(5: 1\) when terminated in 50 ohms. It is very useful when using the meter (M101) at output levels below " 2 " where the instrument accuracy falls off. This applies to microvolt ranges below \(20,000 \mathrm{mv}, 2000 \mathrm{mv}, 20 \mathrm{mv}, 2 \mathrm{mv}\), or 0.2 mv as selected by the RF MULTIPLIER knob (E118) and MICROVOLTS control (E116). In these cases, insert the (5:1) fixed attenuator at the X-MULT RF OUTPUT jack (J102) and terminate it as outlined in Table 4-2 for the required 50 ohms. The terminated output voltage is \(1 / 5\) the voltage indicated by M101. The actual load voltage, however, will be \(1 / 5\) the meter indication only when the load impedance is exactly 50 ohms or greater than 500 ohms. For example, if a signal generator output of 20,000 microvolts into a 600 ohm load is desired, insert the fixed attenuator as follows:
(1) Connect the fixed attenuator to J102 using cable W104.
(2) Terminate the (5:1) fixed attenuator with the impedance adapter.
(3) Set the RF MULTIPLIER knob (E118) to X10K.
(4) Set MICROVOLTS control (E116) and carrier control (E114) for " 10 " meter reading.
(5) The input to the load will be 20,000 microvolts.
b. If the load impedance is less than 50 ohms, it can be seen from Table 4-2 that the impedance adapter cannot be used, but the output from the (\(5: 1\)) fixed attenuator must be fed to the load in series with the necessary resistor. The actual load voltage will then be something less that \(1 / 5\) the meter indication. For example, if a voltage of approximately 1200 microvolts with a load of 40 ohms is desired, insert a 10 ohm noninductive resistor in series with the load and (5:1) fixed attenuator. The meter setting should be:
\[
M=\frac{50}{Z} \times E \text { load } \times 5=\frac{50}{40} \times 1200 \times 5=
\]
\(150 \times 50=\) approximately 7500 microvolts.
c. Although this unit was designed primarily for use with a load impedance of 50 ohms, it may also be used when the receiver under test presents an impedance other than 50 ohms. In such case, it will be necessary to apply the terminating principles as outlined in paragraph 9 and in Tables \(4-1\) and \(4-2\) of this section. For example:
(1) If the load impedance is 1000 ohms, connect one end of W104 to J102 on the signal generator. Connect the other end of W 104 to the fixed attenuator and terminate the fixed attenuator with the impedance adapter. The assembly is then connected to the load. A meter indication of 10,000 microvolts now reflects an actual load input voltage of 2000 microvolts.
(2) If the load impedance is 30 ohms do not use the impedance adapter. Insert a 20 ohm non-inductive resistor in series with the output of the fixed attenuator and then connect the 30 ohm load. A meter indication of 10,000 microvolts now represents an actual load voltage as follows:
\[
\begin{aligned}
& \text { E load }=\frac{Z}{50} \times \frac{M}{5}=\frac{30}{50} \times \frac{10,000}{5} \\
& \text { E load }=\frac{60,000}{50}=1200 \text { microvolts }
\end{aligned}
\]
d. A coaxial adapter UG-201A/U is also provided with the equipment to allow for adapting the output cables type BNC connectors (i.e. UG-88/U) to a type N connector found on many receivers.

\section*{14. USE OF (10:1) FIXED ATTENUATOR CN-224/URM-25D.}
a. The (10:1) Fixed Attenuator CN-224/URM-25D attenuates the output at J102 in a ratio \(10: 1\) when terminated in 50 ohms. This unit can be used when a high degree of voltage accuracy is desired for low level outputs on \(30-50 \mathrm{mc}\) band. There is no need for using the \(10: 1\) attenuator on other bands or steps higher than X1 on the RF MULTIPLIER.

Example (1) - Selecting an accurate output of 0.8 microvolts at 30 mc into a load of 500 ohms or greater.
(a) Set signal generator at 30 mc and RF MULTIPLIER at X 1 range.
(b) Adjust MICROVOLTS control (E116) for reading of " 8 " on M101.
(c) Insert the 10:1 fixed attenuator at J102.
(d) Terminate 10:1 fixed attenuator with Impedance Adapter MX-1487/URM-25D.
(e) Feed the output from the impedance adapter to the receiver under test.
(f) Input voltage to receiver is now 0.8 microvolts.

\section*{14A. USE OF (10:1) FIXED ATTENUATOR CN-350/URM-25D (Furnished on Contract NObsr-75083 only).}

Fixed Attenuator CN-350/URM-25D is an impedance matching network that permits operating R.F. Signal Generator AN/URM-25D (50 -ohm output) into the 70 -ohm impedance of a Navy receiver.

\section*{15. SUMMARY OF OPERATION.}

In using the AN/URM-25D as a test oscillator, it will not always be necessary to apply all the procedures outlined in this section. The technician will determine by use, the precision requirements of the equipment under test. Figure \(4-9\) is a simplified procedure summary for the operation of the signal generator. An operational summary of the front panel controls is given in Table 4-3.

\section*{16. GENERAL INSTRUCTIONS FOR USE.}
a. DETAILS.-For additional details of proper signal testing techniques, the technician is referred to the basic equipment instruction book and also standard commercial texts. However, since most commercial test procedures refer to original broadcast type receivers which differ in principle and test values from standard Naval equipments, certain details of Naval values and methods are included herein.

\section*{CAUTION}

Always use the Test Lead CX-1363/U when making point-to-point tests on a receiver. Failure to do so may result in burning out a resistor in the step attenuator (AT101) or in one of the accessory units.

\section*{b. RECEIVER TESTS.}
(1) GENERAL.-The presence of incidental frequency modulation in an \(A \mathrm{M}\) signal generator may intro-

\section*{CHANGE 5}
duce asymmetry in the apparent selectivity curve of the receiver being tested. This is particularly true for a very sharply-tuned circuit. The effects of frequency modulation have been kept at a minimum in the RF Signal Generator Set AN/URM-25D and should introduce no problem in receiver testing. For best results, however, the technician should perform all of the following receiver tests (except audio response) by using the unmodulated carrier signal. In order to eliminate the need for modulation, insert a high impedance DC voltmeter such as Multimeter ME-25/U or equal across the load of the second detector of the receiver. Adjustments can then be made with the meter response giving the necessary indication.
(2) SENSITIVITY.-At high radio frequencies, antenna characteristic cannot easily be reproduced, and considerable care must be taken in making receiver sensitivity tests. The voltage available at the signal generator unit output jack (J 102) is always known, but it is not known at the receiver input terminals a few feet away. This latter voltage is proportional to the signal generator output voltage, but it may be larger or smaller due
to the characteristics and the termination of the "transmission line" between the instruments.
(3) SELECTIVITY.-The selectivity of a radio receiver is that characteristic which determines the extent to which the receiver is capable of distinguishing between the desired signal and disturbances of other frequencies. Selectivity is expressed in the form of a curve that gives the signal strength to produce a given receiver output at various frequencies, with the response at resonance taken as the reference. This selectivity curve is normally obtained by disabling the automatic volume control system of the receiver, setting the signal generator to the desired frequency, tuning the receiver to this frequency, and modulating the carrier signal 30 percent at 400 cycles. The carrier frequency output of the signal is then varied in steps from the frequency to which the receiver is tuned, adjusting the signal generator voltage as necessary to maintain a controlled receiver output. The unmodulated carrier method as described in paragraph 16 b (1) of this section can also be used. Unless otherwise specified, the normal output is usually taken as 6 milliwatts into 600 ohms .

Figure 4-9. Simplified Procedure for Operating the RF
Signal Generator Set AN/URM-25D

TABLE 4-3. OPERATIONAL SUMMARY OF FRONT PANEL CONTROLS (See figure 4-1)
\begin{tabular}{|c|c|c|}
\hline SYMBOL & PANEL CONTROL & FUNCTION \\
\hline E113 & Carrier range switch. & a. Selects carrier range: 10 to 300 kc (modulating frequencies 100 to 1000 cps) or 300 kc to 50 mc (modulating frequencies 100 to \(15,000 \mathrm{cps}\)). \\
\hline E114 & Carrier control. & Regulates level of carrier. \\
\hline \multirow[t]{2}{*}{E115} & \multirow[t]{2}{*}{\% MOD, AUDIO OUT, XTAL CAL OUT.} & a. Adjusts modulation percentage for internal and external modulation. \\
\hline & & \begin{tabular}{l}
b. Adjusts output level of internally generated 400 or 1000 cps signal. \\
c. Adjusts level of crystal beat note at XTAL CAL OUT jack.
\end{tabular} \\
\hline E116 & MICROVOLTS control. & Adjusts output of signal generator. \\
\hline \multirow[t]{2}{*}{E117} & \multirow[t]{2}{*}{MOD-XTAL \& METER SELECTOR.} & a. Select one of the following modes of operation: CW, External modulation, Internal modulation 400 cps , Internal modulation 1000 cps . A fifth position, XTAL, is used for accurate frequency calibration with integral crystal. \\
\hline & & b. Switches meter for reading carrier output in XTAL and CW positions; for reading \(\%\) modulation in EXT., 400 cps and 1000 cps . \\
\hline E118 & RF MULTIPLIER switch. & Selects desired RF output level, which is the product of meter reading and RF MULTIPLIER Factor. \\
\hline E119 & Frequency Band Switch. & Selects desired frequency band. \\
\hline E120 & Ground terminal. & Used when necessary as orienting ground with equipment under test. \\
\hline F101 & Fuses (one-amp). & Protect power circuit. \\
\hline F102 & Fuses (one-amp). & Protect power circuit. \\
\hline 1101 & Pilot Lamp. & Lights when generator set is operating. \\
\hline J101 & RF OUTPUT X-200K jack. & Approximately 500 -ohm, two volt open circuit RF output. \\
\hline J 102 & RF OUTPUT X-MULT jack. & \(50-\mathrm{ohm}\) step attenuator output. \\
\hline J105 & EXTMODIN - AUDIOOUT - XTAL CAL OUT jack. & \begin{tabular}{l}
a. Input for external modulation generator. \\
b. Output for internally generated audio signals. \\
c. Output for crystal beat note (headset).
\end{tabular} \\
\hline M101 & Meter. & Indicates microvolts output (upper scale), and percentage of modulation (lower scale). \\
\hline N102 & Main tuning dial. & Selects desired frequency. \\
\hline N103 & Frequency scale. & Indicates output frequency. \\
\hline O103 & Dial mask. & Makes visible only frequency band selected. \\
\hline R127 & CARRIER METER ZERO control. & Screwdriver adjustment for zeroing carrier meter. \\
\hline S103 & POWER switch. & ON-OFF switch for application of power. \\
\hline
\end{tabular}

\section*{Note}

All reference to symbol designations in this section apply to the front panel diagram Figure 4-1 unless ntherwise noted. Primary reference is made to the symbol desigr tion of the front panel knob (e.g. E114) applicable to the sp cific circuit element (e.g. R172). The association between the knob and circuit part is shown on Figure \(4-1\) by indicating the corresponding circuit element designation following the knob symbol (e.g. E114 (R172)).
(4) AUDIO RESPONSE.-The audio response of a receiver shows the manner in which the electrical output at a dummy load depends upon the modulation frequency. In making this test connect an audio oscillator, such as the Navy Model LAJ Series, to the EXT MOD IN jack (J105). Set the MOD XTAL \& METER SELECTOR knob (E117) to EXT position. Set the signal generator to the desired carrier frequency and tune the receiver under test to the signal. Adjust the signal generator until a convenient output is obtained. Observe the variation in receiver output as the modulation frequency of the signal generator is varied from 400 cycles, while keeping the degree of modulation constant at 30 percent. The results of an audio response test are expressed in the form of a curve with the ratio of actual output to 400 cycles output plotted vertically, and each corresponding audio frequency plotted horizontally. In making this test, care must be taken to avoid applying so great a signal to the receiver as to overload the output. In the event that the noise and hum level in the receiver output is appreciable it will be necessary to supply a strong enough signal from the generator to override this interfering effect.
(5) MEASURING RECEIVER GAIN PER STAGE.-The RF Signal Generator Set AN/URM-25D is also a useful device for measuring the gain of any particular receiver stage. This is accomplished by applying a signal to the input and output points of the stage in question and recording the signal voltage required, in either case, to give the same receiver output. The gain in db is then calculated by applying the formula:
\[
\text { GAIN }(\mathrm{db})=20 \log \frac{\text { Vout. }}{\text { Vin }}
\]
(6) RECEIVER ALIGNMENT.-The alignment of the intermediate frequency amplifier system of a simple receiver is usually carried out by setting up the signal generator at the proper frequency and working step by step backward through the IF circuits from the second detector to the first detector.

\section*{CAUTION}

Consult the particular receiver's instruction book for details of the method applicable to that receiver. This is particularly important for wide band RF amplifiers where over coupled, regenerative or stagger tuning is used. Be sure the aligning frequency is correct. Check with a heterodyne frequency meter such as Navy Model LM or LR series to obtain greater frequency accuracy than obtainable with the signal generator below 1 mc . Above 1 mc , the crystal calibrator in the AN/URM-25D can be used to obtain an accuracy within \(0.05 \%\).

Always apply the signal generator to the grid immediately preceding the circuit under adjustment and adjust the trimmers (or variable inductances) for maximum output. In carrying out this procedure, it will of course be necessary to reduce the output of the signal generator
each time the signal is applied to the grid of a tube at lower power level. The next step is to align the radio frequency and oscillator circuits of the receiver. This is accomplished by setting the receiver dial near the high end of the band in question and applying a signal of the proper frequency from the generator to the antenna input terminals of the receiver. First adjust the RF stage shunt trimmer capacitors (or iron core inductances) for maximum receiver output, and then adjust the oscillator shunt trimmer until the receiver output is maximum. The receiver dial and signal generator are then set at the low frequency end of the receiver dial, and the oscillator series padder capacitor is adjusted for maximum output. Recheck the high frequency end of the band and repeat the above procedure as necessary.
(7) RECEIVER ALIGNMENT ABOVE 50 MEGA. CYCLES.-The RF Signal Generator Set AN/URM-25D can also be used for aligning receivers above 50 mc by using the second harmonic of the frequency selected. Although harmonic distortion has been kept below \(10 \%\), this still allows some second harmonics to be introduced at the X-MULT RF OUTPUT jack (J102). It must be realized that when the second harmonic is used, the signal generator meter can no longer be used as an indication of output.
c. MODULATED OPERATION.-In using the equipment with modulated output, it should be realized that three waves are emitted, one at the carrier frequency and at two "side bands". While either pure or modulated CW signals can be obtained from the signal generator, considerable discretion must be used in employing the modulated method of receiver testing, based on the selectivity of the receiver and the frequency of test, since the carrier and both side bands must be received in true proportion in order to obtain accurate measurements.
d. RECEIVER OUTPUT.-In aligning or testing a receiver, a voltmeter or output meter should be connected across the output terminals, in parallel with the proper resistance output load.
e. RECEIVER OVERALL SENSITIVITY.--Some radio receivers have an excess of sensitivity, such that at certain frequencies if the sensitivity, volume or gain control are advanced too far the inherent noise level is sufficient to saturate the detector or audio tubes. Accordingly, all receivers are measured and rated for both CW and MCW sensitivity on the basis of the sensitivity, volume, or gain control being adjusted so that not more than 60 microwatts of noise is present in the output with no input signal impressed. When measuring receiver overall sensitivities obtainable on the first step of the attenuator, it should be remembered that the output of the signal generator may not be attenuated equally at all frequencies to an absolute value of zero when the RF MULTIPLIER knob (E118) is set at X.I and the MICROVOLTS control (Ei16) is set fully counterclockwise. The effects of stray or leakage disturbances caused by circulating currents in the case, or between panel and case, may be minimized by properly orientating the signal generator and
using the (10:1) Fixed Attenuator CN-224/URM-25D. (See Section 4, par. 14). Proper orientation of the generator with respect to the receiver will also limit the presence of undesired stray voltages. These stray effects can be ascertained by comparing the output of the receiver with the signal generator turned ON and OFF.
\(f\). STANDARD ANTENNA ELECTRICAL CON-STANTS.-A standard antenna at low frequencies (below 1600 kilocycles) has essentially the same inpedances as a series circuit of 20 microhenries, 200 micromicrofarads, and 25 ohms. The resonant frequency is about 2500 kilocycles. The high frequency impedance is approximately 400 ohms resistive. The Antenna Simulator SM-35/URM-25 closely approximates the standard antenna (See section 4, par. 11).
g. STANDARD LEVELS.-Standard levels are as follows:
(1) Standard output level of reference-6 milliwatts.
(2) Standard noise level-60 microwatts.
(3) Standard output load-600 ohms for low impedance output, or 20,000 ohms for high impedance
output, unless special impedances are provided in the receivers and noted in their instruction book.
b. VOLTMETER USED AS AN OUTPUT METER.-In making measurements when a voltmeter is used as an output meter, the following approximate wattages correspond to the voltages at the load impedances noted:
(1) 1.9 volts at 600 ohms 11.0 volts at 20,000 ohms 6 milliwatts
(2) 0.19 volts at 600 ohms 1.1 volts at 20,000 ohms 60 microwatts
(3) .77 volts at 600 ohms 4.5 volts at 20,000 ohms 1 milliwatt
(4) For receivers provided with output meters having a zero level of 6 milliwatts - minus 20 decibels equal 60 microwatts.
(5) For receivers provided with output meters having a zero level of 60 microwatts - plus 20 decibels equal to 6 milliwatts.

\section*{SECTION 5}

\section*{PREVENTIVE MAINTENANCE}

\section*{1. ROUTINE MAINTENANCE CHECK CHART.}

The construction of the RF Signal Generator Set AN/URM-25D is such that preventive maintenance measures will be limited. Periodic testing of the equipment to determine if it is in proper working order should be performed in accordance with the step-bystep procedure given in Table 5-1 ROUTINE CHECK CHART. If the signal generator is used frequently (several times a week), these charts should be made prior to use. Otherwise they should be made weekly. All symbol designations given in Table 5-1 refer to Front Panel Diagram, Figure 4-1 in Section 4 OPERATION unless otherwise specified.

\section*{Note}

THE ATTENTION OF MAINTENANCE PERSONNEL IS INVITED TO THE REQUIREMENTS OF CHAPTER 67 OF THE bUREAU OF SHIPS MANUAL OF THE LATEST ISSUE.

\section*{2. FUSE FAILURE.}

Symptoms of fuse failure and fuse location are given in Tables 5-2 and 5-3.

\section*{CAUTION}

Never replace a fuse with one of higher rating unless continued operation of the equipment is more important than probable damage. If a fuse burns out immediately after replacement, do not replace it a second time until the cause has been corrected.

\section*{3. LUBRICATION.}

All gears and moving shafts should be lubricated periodically with Aero Lubriplate manufactured by Fish Bros., Newark, N.J.

TABLE 5-1. ROUTINE CHECK CHART
\begin{tabular}{|c|c|c|}
\hline What to check & How to check & Precautions and remarks \\
\hline 1. Installation. & \begin{tabular}{l}
Before connecting the power cable (W101) to the signal generator, make sure the equipment is properly set up in accordance with instructions given in Section 3-INSTALIATION. \\
a. POWER switch (S103) in OFF position. \\
b. Carrier control (114) fully counterclockwise. \\
c. Audio output control (E115) fully counterclockwise: \\
d. MICROVOLTS control (E116) fully clockwise.
\end{tabular} & See that all the cables and wires are in good condition and that electrical connections are properly made. \\
\hline 2. Power Supply. & \begin{tabular}{l}
Set controls as follows: \\
a. Carrier control (E114) fully counterclockwise. \\
b. Audio output control (E115) fully counterclockwise. \\
c. POWER switch (S103) to ON position.
\end{tabular} & The indicator lamp (1101) and frequency scale lamps (E121 and E122) should light. If they do not, check front panel fuses (see Table 5-3) and lamps. \\
\hline 3. Meter Check. & \begin{tabular}{l}
a. Set carrier control (E114) fully counterclockwise. \\
b. Throw POWER switch (S103) to ON position.
\end{tabular} & If the meter does not read zero in the CARRIER position, R127 requires adjustment. (See Section 4, figure 4-1. \\
\hline
\end{tabular}

TABLE 5-1. ROUTINE CHECK CHART (Continued)
\begin{tabular}{|c|c|c|}
\hline WHAT TO CHECK & How to cheek & precautions and remarks \\
\hline & \begin{tabular}{l}
c. Allow 15 minutes warm up period. \\
d. Set MOD XTAL \& METER SELECTOR knob E117 to CARRIER position. \\
e. Meter should read zero.
\end{tabular} & \\
\hline 4. Carrier Frequency. & \begin{tabular}{l}
Set controls and switches as follows: \\
a. Carrier control (E114) to full counterclockwise position. \\
b. MICROVOLTS control (E116) to full clockwise position. \\
c. MOD XTAL \& METER SELECTOR knob (E117) to CARRIER. \\
d. Carrier range knob (E113) to corresponding band position. \\
e. POWER switch (S103) to ON.
\end{tabular} & \begin{tabular}{l}
a. Meter (M101) shauld move up-scale as carrier control (E114) is rotated in a clockwise direction. \\
b. Meter pointer should read " 10 " in all positions of the frequency band switch (E119), when the carrier control is advanced in a clockwise direction.
\end{tabular} \\
\hline 5. Modulation Frequency. & \begin{tabular}{l}
Set controls and switches as follows: \\
a. Carrier control (E114) fully counterclockwise. \\
b. Audio output control (E115) fully counterclockwise. \\
c. MOD XTAL \& METER SELECTOR knob (E117) to 400 cycles. \\
d. Carrier range knob (E113) to corresponding band position. \\
e. POWER switch (S103) to ON.
\end{tabular} & a. When audio output control (E115) is rotated clockwise, the meter should reach at least \(50 \%\) modulation. \\
\hline
\end{tabular}

TABLE 5-2. SYMPTOMS OF FUSE FAILURE
\begin{tabular}{|c|c|c|c|c|c|}
\hline INDICATOR (1101) AND SCALE (E121 AND E122) LAMPS OF SIGNAL GENERATOR & ALI ELECTRON TUBES & METER MIO1 & OPEN FUSE & VALUE (AMPS) & COMMENTS \\
\hline None light & Filaments off & No reading & F101 & 1 & \multirow[t]{2}{*}{Check also power supply, cables, connectors, etc. and the POWER switch (S103).} \\
\hline None light & Filaments off & No reading & F102 & 1 & \\
\hline
\end{tabular}

TABLE 5-3. FUSE LOCATIONS
\begin{tabular}{|c|c|c|c|c|}
\hline SYMbois & \multicolumn{1}{c|}{ Locations } & protects & AMPS & volis \\
\hline \begin{tabular}{c}
F101 \\
F102
\end{tabular} & \begin{tabular}{c}
1. Physically located in signal generator front panel fuse- \\
holders (XF101) and (XF102). See figure 4-1. \\
2. Electrically located in primary of power transformer \\
T201. See figure 6-24.
\end{tabular} & \begin{tabular}{l}
Primary of power \\
transformer (T201).
\end{tabular} & 1.0 & 250 \\
\hline
\end{tabular}
ORIGINAL

\section*{FAILURE REPORTS}

AFAILURE REPORT must be filled out for the failure of any part of the equipment whether caused by defective or worn parts, improper operation, or external influences. It should be made on Failure Report, form NAVSHIPS 383, which has been designed to simplify this requirement. The card must be filled out and forwarded to BUSHIPS. Full instructions are to be found on each card.

Use great care in filling the card out to make certain it carries adequate information. For example under "Circuit Symbol" use the proper circuit identification taken from the schematic drawings, such as \(T-803\), in the case of a transformer, or \(\mathrm{R}-207\), for a resistor. Do not substitute brevity for clarity. Use the back of the card to completely describe the cause of failure and attach an extra piece of paper if necessary.

The purpose of this report is to inform BUSHIPS of the cause and rate of failures. The information is used by the Bureau in the design of future equipment and in the maintenance of adequate supplies to keep the present equipment going. The cards you send in, together with those from hundreds of other ships, furnish a store of information permitting the Bureau to keep in touch with the performance of the equipment of your ship and all other ships of the Navy.

This report is not a requisition. You must request the replacement of parts through your Officer-in-Charge in the usual manner.

Make certain you have a supply of Failure Report cards and envelopes on board. They may be obtained from the nearest District Printing and Publication Office.

Figure 6-1. Failure Report

\section*{SECTION 6}

\section*{CORRECTIVE MAINTENANCE}

\section*{1. THEORY OF LOCALIZATION.}
a. The first step in maintenance or repair is to determine definitely that a defective condition exists. If the equipment is not operated correctly, certain indications of trouble might be presented when there is actually nothing wrong with the equipment. The technician should be thoroughly familiar with Section 4, OPERATION, of this book before attempting to analyze the indicated defect.
b. After a positive determination is made that the generator is defective, the first step in trouble shooting is to localize the trouble, that is, decide which circuit of the complete system is not functioning as it should. Once the analysis has been narrowed down to the defective circuit, it becomes a relatively simple process of making voltage and resistance checks to locate the faulty circuit part (eg. resistor, capacitor, etc).
c. The chief parts of the signal generator which are subject to wear or deterioration are electronic tubes and switches. In addition the carrier oscillator inductances may vary slightly and require recalibration as a result of aging or excessive temperature variations. (See Table 6-1 - FREQUENCY CALIBRATION DATA).

\section*{2. TEST EQUIPMENT FOR MAKING REPAIRS AND TROUBLE SHOOTING.}

The technician may find a wide variation of applicable test equipment to use in making repairs or for trouble shooting on the RF Signal Generator Set AN/URM-25D. However, to achieve the best results in accordance with the characteristic of the signal generator, the following test equipments or their equivalents are recommended for use:
a. Navy Model LM Series Crystal Calibrated Frequency Indicating Equipment.
b. Navy Model LR Series Combined Heterodyne Frequency Meter and Crystal Controlled Calibration Equipment.
c. Signal Generator TS-535/U.
d. Resistance Bridge ZM-4/U.
e. Multimeter ME-25/U Series.
f. Oscilloscope OS-8/U, Navy Model OBL or OBT Series Cathode Ray Oscilloscope.
\(g\). Multimeter AN/PSM-4, TS-352/U, Navy Model OE Series Receiver Analyzing Equipment.

\section*{3. SYSTEM TROUBLE SHOOTING.}
a. In employing any systematic method for trouble shooting, the methods and procedures followed by the technician will vary greatly. Any method employed is satisfactory as long as it will produce accurate results with the greatest expediency.
b. To assist the electronics technician in applying him-
self to the maintenance problems of the RF Signal Generator Set AN/URM-25D, a trouble symptoms chart and two trouble shooting tables are listed in this section. The first, Table 6-2 - TROUBLE SYMPTOM CHART is a listing of some common trouble symptoms with suggested checks for locating the defect; the second, Table 6-3GENERAL TEST PROCEDURES FOR LOCALIZING TROUBLE, is a systematic procedure for determining the unit or component which is the source of trouble; the third, Table 6-4-SUGGESTED TESTS FOR LOCATING THE SPECIFIC TROUBLE gives some hints that may be applied in finding the specific part that may be defective.

\section*{4. TUBE OPERATING VOLTAGES AND CURRENTS.}

Electron tube operating voltages and currents under normal operating conditions are given in Table 6-5 TUBE OPERATING VOLTAGES AND CURRENTS, located near the end of this section.

\section*{5. TUBE SOCKET ELECTRICAL MEASUREMENTS.}
a. As a further aid in maintenance work, figure 6-15 SIGNAL GENERATOR VOLTAGE AND RESISTANCE CHART will be found near the end of this section. This chart lists diagramatically the voltage and resistances measured from all tube socket connections to ground.
\(b\). As is indicated by the footnotes to this chart, all measurements were made with a 20,000 ohms per volt DC meter, Navy Model OE Series, and a 1000 ohm per volt AC meter such as Multimeter AN/PSM-4, TS-352/U Series or equivalent.

\section*{6. WINDING DATA.}

Complete winding data for all wire-wound units (except resistors) in the AN/URM-25D is given in Table \(6 \rightarrow 7\) WINDING DATA.

\section*{7. EXTERIOR AND INTERIOR VIEWS OF UNITS.}

To assist the technician doing maintenance work in locating the positions of the various coils, capacitors, resistors, switches, etc., comprising the signal generator, there will be found in this section additional photographic illustrations. They show every part of the RF Signal Generator Set AN/URM-25D with the-corresponding symbol designation indicated. These will facilitate the easy and quick identification of all parts. Table 6-8-CROSS REFERENCE BETWEEN SYMBOL NUMBER AND FIGURE LOCATION gives the figure in which these parts are identified.

\section*{8. REMOVING THE SIGNAL GENERATOR AND POWER SUPPLY FROM THE CABINET.}
a. REMOVING THE RF SIGNAL GENERATOR SG-85/URM-25D - Since this is a precision instrument,

Figure 6-2. Front Panel View for Removal of RF Signal Generator SG-85/URM-25D from Cabinet
great care should be taken in removing the RF Signal Generator from the cabinet to make repairs. Before attempting to disassemble the unit, be sure that the equipment is disconnected from the power source. Adhere carefully to the following procedure:
| (1) Disconnect the power cable (W101-1).
(2) Loosen the twelve captive screws (x) located around the outer edge of the panel (figure 6-2).
(3) Gently pull the generator chassis about eight inches from the cabinet, using the lifting handles provided on the front panel. The generator unit cannot be completely removed since the interconnecting power cable (W102) and output power cable (W103) are still connected to the power supply sub-chassis.
(4) Remove the output power supply connector (P102) and the AC input connector (P101) from the power supply sub-chassis. The generator sub-assembly can now be removed. The power supply sub-chassis will remain in the cabinet.

\section*{b. REMOVING THE POWER SUPPLY PP-977/ URM-25D.}
(1) To remove the power supply, take out the four binding head screws (Y) located on the bottom of the
cabinet. There are also four screws on the rear of the cabinet which must be removed (figure 6-3).

Figure 6-3. Rear Bottom View for Removal of Power Supply PP-977/URM-25D from Cabinet
(2) With the signal generator and power supply sub-assemblies removed from the cabinet, the equipment can again be connected for use and testing by applying the following procedure (figure 6-4):
(a) Insert interconnecting power cable plug (P101) into the power supply input receptacle (J201) and P102 into J202.
(b) Insert the power cable (W101-1) into the \(A C\) source.

\section*{WARNING}

Voltages up to 450 v will be exposed when the signal generator is being tested outside the cabinet. Exercise great care in handling the instrument under these conditions.

\section*{9. REMOVAL AND REPLACEMENT OF PARTS.}
a. Whenever repairs are made involving the removal or replacement of any component part, the part removed should be marked or tagged for identification and its exact position in the equipment carefully noted and recorded so that when the same or new part is replaced the equipment will be precisely as before. This precaution is particularly necessary when RF components, such as coils and capacitors, are replaced. The location of these parts with respect to associated components will play an important role in the performance of the equipment.
b. Whenever any parts are replaced by new ones always use the identical type listed and described in Section 7, PARTS LIST, Table 7-4. If such parts cannot be obtained, substitute only similar parts with equivalent electrical and mechanical characteristics. If precision parts are not available and it is absolutely necessary to use the equipment, a temporary substitute of approximate value may be inserted. This is not recommended as a normal procedure and the exact replacement should be ordered. The unsatisfactory substitute should be removed as soon as the exact replacement is received.

\section*{10. REMOVAL OF OSCILLATOR BRACKET ASSEMBLY.}
a. Remove two screws on the right side of the signal generator when viewed from the rear of the unit. Remove the small nut holding the bus bar on the edge of the bracket.
b. Slowly pull out the oscillator bracket assembly so as not to break any leads or connections which are soldered to other parts of the oscillator compartment.
c. Make a note of all connections before unsoldering. Replace defective parts, resolder all connections, and mount the bracket assembly in place with the two screws and nut.

\section*{11. REMOVAL OF CRYSTAL CALIBRATOR BRACKET ASSEMBLY.}
a. Partially remove the power cable mounting plate, then remove two screws from the bottom of the signal
generator which hold the crystal calibrator bracket assembly in place.
b. Remove the bracket assembly slowly to prevent damaging any parts or lead connections.
c. Make a note of all connections before unsoldering. Replace defective parts, resolder all connections and mount the bracket assembly in place with the two screws. Replace the power cable mounting plate.

\section*{12. REMOVAL OF AUDIO COMPARTMENT ASSEMBLY.}
a. Remove the three knobs titled as follows:
(1) SET CARRIER TO 10
(2) \(\%\) MOD - AUDIOOUT - XTALCALOUT
(3) MOD-XTAL \& METER SELECTOR
b. Remove the cover from the EXT MOD IN-AUDIO OUT-XTAL CAL OUT jack.
c. Disconnect the two leads from the rear of the meter (M101).
d. Remove four screws on the front panel which will permit removal of the audio compartment assembly.
\(e\). Note all connections before unsoldering. Replace defective parts and resolder all connections properly.
\(f\). If the meter is to be replaced, remove three screws on the front panel, then remove the meter. Mount a new meter in place with the three screws.
g. Re-mount the audio compartment assembly with the four screws. Connect the two leads to the rear of the meter.
h. Replace the cap and all knobs in their proper position.

\section*{13. REMOVAL OF STEP ATTENUATOR.}
a. Remove the RF MULTIPLIER knob and the cap from the RF OUTPUT X-MULT jack. Remove the four screws positioned around the jack on the front panel.
b. Disconnect the lead which is connected to the buffer-amplifier compartment and remove the step attenuator.

\section*{Note}

Note the position of the gear teeth before removing the step attenuator.
c. Replace any defective resistors or gears if damaged.
\(d\). Mount the step attenuator in place, and position the gear teeth properly. Replace the four screws, the knob, and cap.

\section*{14. REPLACING RF OSCILLATOR CIRCUIT COMPONENTS.}
a. The RF oscillator frequency determining components L101 through L108 and C101-1 through C118 should not normally be replaced in the field unless the necessary calibrating instruments are available. These instruments include RF heterodyne frequency meters that cover from 10 kc to 50 mc with an accuracy of at least \(0.05 \%\) (e.g. Navy Model LR and Signal Generator TS-535/U).
b. Changing the oscillator tube should not normally

Figure 6-4. RF Signal Generator SG-85/URM-25D and Power Supply PP-977/URM-25D Connected Outside Cabinet for Testing
cause error in calibration. However, when replacing the oscillator tube, the signal generator should be recalibrated as soon as the necessary test equipment is available (e.g. Navy Model LR and Signal Generator TS.535/U).

\section*{15. REPLACING BUFFER AND AMPLIFIER CIRCUIT COMPONENTS}
(See figures 6-5, 6-6, and 6-7).
The buffer amplifier compartment is located between the carrier oscillator and audio compartments. It contains the buffer stage (V102), output amplifier stage (V103), and V'TVM (V104) circuits, in addition to the MICROVOLTS control ((R119), carrier range switch (S 101), and the meter zero control (R127). It is sometimes necessary to remove this unit when making repairs. This removal should be accomplished in the following manner.
a. Remove the buffer-amplifier and oscillator compartment cover plate.
b. Remove carrier range switch knob (E113) and MICROVOLTS control knob (E116) located on the front panel of the signal generator.
c. When necessary, label all leads before unsoldering.
d. Remove the mounting nuts which attach the bufferamplifier unit inside the compartment.
\(e\). The buffer-amplifier can now be removed.

\section*{16. READJUSTMENY OF FREQUENCY CALIBRATION}
(See figure 6-12).
a. WHEN TO CALIBRATE. The signal generator should be recalibrated whenever oscillator coils or capacitors are replaced and whenever it is suspected that the frequency error is in excess of \(\pm 1 \%\). This recalibration is accomplished by adjusting the applicable coils and trimmers as discussed in paragraph 17 of this section.
b. LIMITATIONS OF CRYSTAL CALIBRATOR (V105) FOR FREQUENCY RECALIBRATION. The use of the integral crystal calibrator for interpolative calibration was discussed in Section 4, par. 5. When used in this manner, the accuracy of the signal generator is increased from the rated \(\pm 0.5 \%\) to \(\pm 0.25 \%\) at frequencies above 10 mc . Since the crystal calibrator operates on the harmonic generation principle, it is limited as a recalibrating device when some circuit defect or replace-

Figure 6-5. Side View of Buffer-Amplifier Unit with rubes in Position
ment introduces a frequency error greater than \(1 \%\). For example; if for some reason, the frequency error at 50 mc is \(-2 \%\), the frequency scale will read 50 mc when the actual frequency is 51 mc . Since zero beats occur at both 50 mc and 51 mc (1 mc apart), it will be difficult to determine which point corresponds to 50 mc . Similarly, at lower frequencies, (down to 1 mc), the combination of signal generator and crystal calibrator harmonics may introduce beats at intervals closer thar1 1 mc . Since the accuracy of the signal generator is better than \(\pm 0.5 \%\). there will be no problem in determining the applicable beat for interpolative calibration. When recalibrating the instrument because of errors greater than \(1 \%\), however, the instruments recommended in the following paragraph should be used to avoid any possible confusion.

\section*{c. RECOMMENDED TEST EQUIPMENT FOR RECAIIBRATING.}
(1) Navy Model LR Frequency Meter.
(2) Set of earphones for monitoring zero beat.

\section*{Note}

Figure 6-11 shows the locations of the trimmers and inductances that may require readjustment. Make sure that only the parts relevant to the frequency band being calibrated are adjusted. Follow the calibration procedure and do not turn screws indiscriminately.

\section*{17. FREQUENCY CALIBRATION PROCEDURE}
(See figure 6-12 and Table 6-1).
a. GENERAL.
(1) When the frequency error of the signal generator is in excess of \(1 \%\), it will be necessary to recalibrate the instrument. In making the necessary adjustments, the RF Signal Generator SG-85/URM-25D must first be removed from the cabinet. Interconnecting cables are of sufficient length so as not to require the removal of the Power Supply PP-977/URM-25D sub-chassis. Follow the procedure outlined in Section 6, par. 6, for removing the signal generator unit.
(2) Over the frequency range covered by Bands A through H (10 kc through 50 mc), each oscillator coil has connected across it a trimmer capacitor for adjusting the total capacitance associated with it. Each corresponding coil also has a movable dust iron slug by means of which the inductance of that coil can be adjusted to the required value.

Figure 6-6. Rear View of Buffer - Amplifier Unit with Tubes Removed

\section*{CORRECTIVE MAINTENANCE}

Figure 6-7. Boffom View of Buffer - Amplifier Unit
(3) In using the heterodyne frequency meters referred to in paragraph 16 of this section, connect the output test cable (W104) to the heterodyne frequency meter. Plug a pair of earphones into the audio output of the frequency meter. Make the necessary capacitance and inductance adjustments while listening for a zero beat on the earphones.
(4) For calibrating frequency ranges below 100 kc, use the Signal Generator TS-535/U. Feed the output from the RF Signal Generator Set AN/URM-25D and Signal Generator TS-535/U to the horizontal and vertical inputs, respectively, of the oscilloscope, such as Oscilloscope OS-8/U, Navy Models OBL or OBT series (See figure 6-12). Adjust the frequency of the RF Signal Generator Set AN/URM-25D to the same frequency as the Signal Generator TS-535/U as indicated by a zero-shaped Lissajou pattern. Be sure to calibrate the Signal Generator TS-535/U according to its instruction book before using it as a standard in this procedure.

\section*{b. FREQUENCY CALIBRATION CHART. Table} \(6-1\) is a chart for calibrating frequency and the necessary adjustment to be made on all bands. When calibrating frequency, follow the points and procedures therein contained.
c. CALIBRATION PROCEDURE (See figure 6-12 and Table 6-1)
(1) To make the necessary RF trimmer and coil adjustments, it will be necessary to remove the top shield plate from the carrier oscillator compartment side of the casting which provides access to the trimmer condenser. It is also necessary to remove the screw plug from the casting to provide access to the oscillator coil. Identification of the appropriate coil and condenser is not necessary, since the correct components are automatically aligned with the access holes for each frequency band.
(2) The recalibration process consists of (a) adjusting the inductance for frequency calibration at the lowfrequency end of the range, (b) adjusting the corresponding trimmer capacitor for a calibration point at the high end of the range, (c) rechecking the low end plus coil adjustment if necessary, (d) rechecking the high end if adjustment in step \(c\) is required, and (e) checking the center portion of range selected.
(3) After the adjustment has been made, replace the plate and plug and recheck calibrations. If the calibrations have been changed when this plate is replaced, readjust the applicable trimmer or core to compensate for this effect.

\section*{CAUTION}

After the necessary adjustments have been made, on the upper and lower ends of the band being calibrated, the corresponding calibrations should be correct throughout the frequency range. If not, the main tuning capacitor (C123) may be defective. One common way that this varible capacitor becomes defective is through "plate bending." Never bend the plates of the main tuning capacitor (C123) in attempting to make an adjustment.

\section*{18. CALIBRATING THE VOLTMETER}

\section*{(See figure 6-16 and 6-17)}
a. General. In the course of operating the equipment it may be discovered that the meter (M101) does not indicate what it should. This can readily be determined by applying the procedures outlined in Section 5, Table 5-1-ROUTINE CHECK CHART, and by making the necessary adjustments outlined in this paragraph. The RF output should be checked and recalibrated, if necessary, whenever any component parts are replaced in the VTVM (V104) circuitry, following the procedure outlined in subparagraph \(c\). of this paragraph.

\section*{Note}

All voltmeter adjustments (\(\mathrm{I}_{1 .} 69\) and R172) are of the screwdriver type and are located in the audio compartment. Figure 6-16 identifies these controls.

Figure 6-8. Top and Bottom Views of Carrier Oscillator Bracket
b. ZERO ADJUSTMENT.-If the meter (M101) does not read zero in the carrier position of the MODXTAL \& METER SELECTOR switch (S102), when the carrier control (R173) and audio output control (R165) are set fully counterclockwise, make this adjustment:
(1) Set carrier control (R173) and audio output control (R165) to the fully counterclockwise positions (zero carrier and zero modulation).
(2) Set the MOD-XTAL \& METER SELECTOR switch (S102) to the carrier position. The output from (V103) is now applied to the cathode of the VTVM tube (V104A). Since the carrier control (R173) was set for zero signal output (fully counterclockwise), there should be no voltage applied to the cathode of the tube (V104A), and the meter (M101) should still indicate zero. However, if a reading other than zero is reflected by the meter, adjust the CARRIER METER ZERO control (R127) until a zero meter reading is obtained. This adjustment compensates for the contact potential that may be present across the VTVM (V104).
(3) Set the MOD-XTAL \& METER SELECTOR switch (S102) to the \% MOD position. The output from (V107) is now applied to the crystal unit (CR101, CR102). Since the \% MODULATION control (R165) was set to the fully counterclockwise position, there should be no voltage applied to the crystal unit.

\section*{c. RF OUTPUT VOLTAGE CALIBRATION (upp:} meter scale). RF output voltage calibration should be done only with the help of an RF power measuring set (bolometer). In case such an instrument is not available, an approximate method is given below.
(1) Turn the MICROVOLTS control (R119) to the fully clockwise position.
(2) Set the carrier control (R173) to the fully counterclockwise position
(3) Set MOD-XTAL \& METER SELECTOR switch (S102) to the carrier position.
(4) Set frequency at 100 kc .
(5) Place an electronic voltmeter, such as Multimerer ME-25/U or equal, between one center contact of the X-200,000 RE OUTPUT jack (J101) and ground.
(6) Rotate the carrier control (R173) in a clockwise direction until 2.0 volts are indicated on the test meter. The signal generator meter (M101) should read " 10 " on the upper scale. This represents 2.0 volts output when the \(X-200,000\) RF OUTPUT jack (J101) is open circuited.
(7) Adjust the RF sensitivity control (R172) until the signal generator meter (M101) reads "10" on the upper scale when the test meter reads 2.0 volts.
d. PERCENTAGE MODULATION CALIBRA. TION (lower meter scale) - (See figure 6-14).
(1) Set carrier frequency at 100 kc .
(2) Set MOD-XTAL \& METER SELECTOR switch (S102) to the \% MOD. position (400 cycles per second).
(3) Set carrier range switch (S101) to the " 10 " \(\mathrm{kc}-300 \mathrm{kc}\) position.
(4) Feed the output from the X-MULT RF OUT. PUT jack (J 102) to the vertical input of a test oscilloscope.
(5) Place a graduated celluloid screen over the face of the oscilloscope.
(6) With the RF MULTIPLIER knob (E118) and MICROVOLTS control (R119), adjust the modulated signal amplitude to cover approximately 75 percent of the oscilloscope face.
(7) Adjust the audio output control (R165) on the front panel until 50 percent modulation is indicated on the oscilloscope, figure 6-14.
(8) Adjust the sensitivity control (R169) until the meter (M101) also indicates 50 percent on the modulation scale (lower scale).
(9) Adjust the audio output control (R165) on the front panel until 30 percent modulation is indicated on the oscilloscope.
(10) Check the reading of the meter.
(11) If necessary readjust R169 until 30 percent and 50 percent readings are both as accurate as possible, favoring the 30 percent adjustment since this value is used most often.
19. CALIBRATING THE STEP ATTENUATOR (AT101).
a. The voltage attenuation of the step attenuator (AT101) should be checked whenever a resistor in this unit is replaced. Use the (10:1) Fixed Attentuator CN-224/URM-25D and a radio receiver such as Navy Model RBA Series or equivalent for making this check as follows:
(1) Set the RF Signal Generator Set AN/URM-25D for 100 kc carrier frequency with \(30 \%\) modulation at 400 cycles.
(2) Connect the (10:1) Fixed Attentuator CN-224/URM-25D to 1102 and terminate it with the Impedance Adapter MX-1487/URM-25D.
(3) Connect the impedance adapter output to the RBA (or equivalent) receiver.
(4) Adjust the output of the signal generator for a reading of " 10 " on M101.
(5) Set the RF MULTIPLIER knob (E118) one range above the range in which the resistor was replaced.
(6) Connect a voltmeter such as Multmeter ME. 25/U series or equivalent across the output of the RBA receiver.
(7) Tune the receiver to the frequency (100 kc) of the signal generator and record a reference receiver output as indicated by the multimeter.
(8) Reset she RF MULTTPLIER knob (E118) to the attenuation range in question (next lower range).

Figure 6-9. Top and sotrom Yiews af cryatal calibrator Srackeit
(9) Remove the (10:1) Fixed Attenuator CN-224/URM-25D and connect the signal generator output at J102 to the Impedance Adapter MX-1487/URM-25D.
(10) Advance the MICROVOLTS control (E116) in a clockwise direction for a meter reading of " 10 ."
(11) The receiver output should be within \(\pm 2 \%\) as was indicated in step 7 above. If it is not, the resistor on this range should be replaced.

\section*{Note}

Use a very hot soldering iron when replacing

Figure 6-10. Rear View of Oscillator Compartment
resistors in the step atteneuator (AT101). Apply the iron to the solder surface for a very short period of time. Too long a period of heating may cause the precision resistors to change in value.
\(b\). Whenever it is suspected that the step attentuator ratios are not correct, the procedures outlined in paragraph 19a above may be used as a check. A more complete analysis of step attenuator troubles is given in Table 6-4-CHART OF SUGGESTED TESTS FOR LOCATING THE SPECIFIC TROUBLE, paragraph 6.

Figure 6-11. Rear View of Turret Selector Switch

Figure 6-12. Method for Culibrating the RF Signal Generator Set AN/URM-25D af Frequencies Below 100 Kilocycles

Figure 6-13. Bottom View of Signal Generator SG-85/URM-25D

TABLE 6-1. FREQUENCY CALIBRATION DATA
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{frEquency
RANGE} & \multicolumn{2}{|r|}{LOW END - AdJust induct.} & \multicolumn{2}{|c|}{high end - adjust cap.} \\
\hline & frea. & COIL & freq. & CAP. \\
\hline A & 10 Kc & L101 & 30 Kc & C102 \\
\hline B & 30 Kc & L102 & 90 Kc & C104 \\
\hline C & 100 Kc & L103 & 300 Kc & C106 \\
\hline D & 300 Kc & L104 & 900 Kc & C108 \\
\hline E & 1.0 Mc & L105 & 3.0 Mc & C110 \\
\hline F & 3.0 Mc & L106 & 9.0 Mc & C112 \\
\hline G & 10, Mc & L107 & 30 Mc & C114 \\
\hline H & 30 Mc & 1108 & 50 Mc & C116 \\
\hline
\end{tabular}

ORIGINAL

TABLE 6-2. TROUBLE SYMPTOM CHART

TABLE 6-3. CHART OF GENERAL TEST PROCEDURE FOR LOCALIZING TROURLE
Note: The CARRIER (R173) and \% MOD, AUDIO OUT, XTAL CAL OUT (R165) controls should always be surned fully counterclockwise before turning power on.
\begin{tabular}{|c|c|}
\hline LOCALIZATION AND TYPE of trouble & suggested method for locallzing trouble \\
\hline \begin{tabular}{l}
POWER SUPPLY. \\
(See par. 11 of this table for additional check.)
\end{tabular} & 1. Make sure the indicating lamp (1101) or scale lamps (E121 and E122) have been made to light, as evidence that the 115 -volt supply mains, fuses, and at least a part of the power supply system is in working order. If none of these lamps light, see Table 6-4, par. 7 on POWER SUPPLY. \\
\hline VTVM & \begin{tabular}{l}
2. Set the signal generator controls in the following position: \\
a. POWER switch (S103) OEF. \\
b. MOD-XTAL \& METER SELECTOR switch (S102) at CW. \\
c. Carrier range switch (S 101) at applicable range. \\
d. Carrier control (R173) in extreme counterclockwise position. \\
e. \% MOD - AUDIOOUT - XTALCALOUT control (R165) in extreme counterclockwise position. \\
\(f\). Frequency band switch (E119) set for any one of eight ranges.
\end{tabular} \\
\hline VTVM & 3. Turn the POWER switch (S 103) ON. The meter needle should be at the first line on the left. If it can not be zero set see Table 6-4, par. 1 on VTVM circuit trouble. \\
\hline \begin{tabular}{l}
CARRIER \\
OSCILLATOR, VTVM, BUFFER and OUTPUT AMPLIFIER
\end{tabular} & \begin{tabular}{l}
4. Advance the carrier control (R 173) slowly in a clockwise direction. The meter needle should move up scale correspondingly. If it does, the VTVM, carrier oscillator (at least one range), power supply, buffer and output amplifier are functioning. \\
5. Set the frequency band switch (E119) successively for each range to see if operation (as in par. 3 above) is obtained for all ranges. If it is, the carrier oscillator and buffer and output amplifier are probably functioning. Operation on some bands and not on others probably indicates a defect in the carrier oscillator (see Table 6-4, par. 4 on CARRIER OSCILLATOR); since the buffer and output amplifiers are untuned and should respond at all frequencies if they respond at one. \\
6. If, in par. 4 and 5 above, the meter does not move up scale, turn the MOD. XTAL \& METER SELECTOR switch (\(\$ 102\)) to the 400 cycle position. Slowly advance the \% MOD-AUDIO OUT-XTAL CAL OUT control (R165) in a clockwise direction. If the meter now moves up scale, it indicates that there is trouble in the carrier oscillator, VTVM, or buffer and output amplifier circuits (see Table 6-4 Sections on CARRIER OSCILLATOR, VTVM, BUFFER and OUTPUT AMPLIFIER.) This also indicates that the modulation oscillator and modulation crystal voltmeter circuits are functioning.
\end{tabular} \\
\hline MODULATION OSCILLATOR & \begin{tabular}{l}
7. If the meter responds to the tests in par. 4 , but not in par. 5 above, the trouble is in the modulation oscillator or modulation crystal voltmeter. \\
8. With the MOD-XTAL \& METER SELECTOR switch (S102) at EXT position, carrier range switch (\(\$ 101\)) at applicable range, apply an external-audio signal (1000 cycles) to the EXT MOD IN-AUDIO CUT-XTAL CAL OUT jack (J105). Slowly advance the \% MOD-AUDIO OUT-XTAL CAL OU'T control (R165) in a clockwise direction. If the meter now moves up scale, it indicates that the trouble is in the modulation oscillator.
\end{tabular} \\
\hline
\end{tabular}

TABLE 6-3. CHART OF GENERAL TEST PROCEDURE FOR LOCALIZING TROUBLE (Continued)
\begin{tabular}{|c|c|}
\hline localization and type of trouble & SUGgested method for localizing trouble \\
\hline \begin{tabular}{l}
MODULATION CRYSTAL \\
VOLTMETER
\end{tabular} & 9. If the meter still does not respond to the \% MOD-AUDIO OUT-XTAL CAL OUT control (R165), feed the output signal from the X-200K RF OUTPUT jack (J101) to a test oscilloscope. Set the carrier frequency at 100 kc . Place the MOD-XTAL \& METER SELECTOR switch (S102) in the CW position. Advance the carrier control (R173) in a clockwise direction until a reading of " 10 " is obtained on the upper meter scale. With the external modulation applied as in par. 8 above, the modulated pattern should appear on the oscilloscope (figure 6-12). If it does, the trouble was in the modulation crystal voltmeter. \\
\hline STEP ATTENUATOR (AT101) OR OUTPUT CABLES & 10. If the meter responds to the above tests in a satisfactory manner, but there is still no output voltage at the end of output cable (W104), the trouble is in the attenuator (AT101) or output test cable (see Table 6-4, par. 6 and par. 10) \\
\hline POWER SUPPLY & 11. If no meter response or output voltage is obtained from the foregoing tests, the trouble is probably in the power supply (see Table 6-4, par. 7). \\
\hline \[
\begin{aligned}
& \text { CRYSTAL } \\
& \text { CALIBRATOR }
\end{aligned}
\] & \begin{tabular}{l}
12. Turn MOD-XTAL \& METER SELECTOR switch (S102) to XTAL position. Connect a set of earphones to EXT MOD IN-AUDIO OUT-XTAL CAL OUT jack (J105) using 5" cable (W105) and Connector Adapter UG-201/U. Tune signal generator to some even multiple of 1 mc and listen for zero beat. \\
13. If it is determined, from previous steps, that RF output is present at J101 and if no zero beat is heard at J 105 , then the crystal calibrator circuit (V105) is defective. (See Table 6-4, par. 11).
\end{tabular} \\
\hline
\end{tabular}

\section*{TABLE 6-4. CHART OF SUGGESTED TESTS FOR LOCATING THE SPECIFIC TROUBLE}

Note: The carrier control (R173) and \% MOD-AUDIOOUT - XTALCALOUT control (R165) should always be turned fully counterclockwise before turning power on.
\begin{tabular}{|c|c|}
\hline location and type of trouble & SUGGESTED METHOD FOR LOCALIIING TROUBLE \\
\hline 1. VTVM CIRCUIT (V104). a. INOPERATIVE. & Measure the circuit associated with V104, according to figure 6-15, "SIGNAL GENERATOR VOLTAGE AND RESISTANCE CHART", until defect is located. \\
\hline b. METER (M101) ZERO ADJUSTMENT. & \begin{tabular}{l}
(1) The inability to zero set the meter can only be observed when S 102 is in the CW or XTAL position. \\
(2) If the meter cannot be zero adjusted (carrier control set to maximum counterclockwise position, power on) by means of the CARRIER METER ZERO (R127). \\
(a) Replace 5726 (V104) tube. \\
(b) Check DC voltage on R127 and R125. \\
(c) Make checks suggested in 1 (a) above.
\end{tabular} \\
\hline
\end{tabular}

TABLE 6-4. CHART OF SUGGESTED TESTS FOR LOCATING THE SPECIFIC TROUBLE (Continued)
\begin{tabular}{|c|c|}
\hline LOCATION AND TYPE OF TROUBLE & SUGGESted method for localizing trouble \\
\hline 2. MODULATION CRYSTAL VOLTMETER INOPERATIVE. & \begin{tabular}{l}
a. The modulation crystal voltmeter (CR101 and CR102) rectifies the modulation signal which is obtained from the output of V107 and read on the lower scale of the meter (M101) when S 102 is in the MOD position. If it is determined that this circuit is defective, replace CR101 and CR102. \\
Note \\
No zero set is necessary since germanium diodes do not have contact potential. \\
b. If replacing CR101 and CR102 does not remedy the trouble, make continuity checks throughout the circuit.
\end{tabular} \\
\hline 3. BUFFER AND OUTPUT AMPLIFIER STAGES INOPERATIVE (V102, V103). & \begin{tabular}{l}
a. If preliminary tests have indicated that the buffer and output amplifier stages are inoperative, and proceed with the following tests. \\
b. Test DC voltages with the tubes (V102 and V 103) in their respective sockets; M101 set for " 10 " and carrier frequency set to 100 kc . \\
V102 \\
Heater - 6.3v AC \\
Plate Voltage -+215 v DC \\
Cathode Voltage \(-+2 v\) DC \\
Control Grid Voltage - 0 \\
Screen Grid Voltage -+150 v DC \\
Suppressor Grid Voltage - 0 \\
V103 \\
Heater - 6.3 v AC \\
Plate Voltage -+220 v DC \\
Cathode Voltage -+5.2 v DC \\
Control Grid Voltage - 0 \\
Screen Grid Voltage -+150 v DC \\
Suppressor Grid Voltage - 0 \\
DC measurements made from socket terminals to chassis with a 20,000 ohms per volt voltmeter. \\
c. If the voltages are correct, but the buffer-output amplifiers are still inoperative, make a circuit continuity test with an ohmmeter until the defect is located. \\
Note \\
Check the tubes with a tube checker even though voltage checks are correct. Change in tube characteristic (e.g. transconductance etc.) may not be shown in voltage checks but may actually be the source of trouble.
\end{tabular} \\
\hline \begin{tabular}{l}
4. CARRIER OSCILLATOR (V101). \\
a. INOPERATIVE.
\end{tabular} & \begin{tabular}{l}
(1) If preliminary tests have indicated that the carrier oscillator is inoperative in all ranges, remove the signal generator from its cabinet and proceed with the following tests: \\
(a) Set the POWER switch (S 103) in ON position and the frequency to 100 kc with the carrier oscillator tube (V101) in its socket, and test the tube voltages. \\
Heater Voltage: 6.3 v AC \\
Plate Voltage: Varies between 0 and 150 v DC depending on setting of carrier control (R173). (Checking this may or may not cause circuit to stop oscillating.) Grid Voltage: 0 to -0.5 v DC (Varies with rotation of carrier control (R173).
\end{tabular} \\
\hline
\end{tabular}

TABLE 6-4. CHART OF SUGGESTED TESTS FOR LOCATING THE SPECIFIC TROUBLE (Continued)

TABLE 6-4. CHART OF SUGGESTED TESTS FOR LOCATING THE SPECIFIC TROUBLE (Continued)
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
LOCATION AND TYPE \\
OF TROUBLE
\end{tabular} & \multicolumn{1}{c|}{ SUGGESTED METHOD FOR LOCALIING TROUBLE }
\end{tabular}

\section*{c. ERRATIC OPERATION OR PRESENCE OF AMPLITUDE DIS. TORTION.}
6. STEP ATTENUATOR (AT101).

Note: Use multimeter ME-25/U Series or equivalent for tests in Items a, b and c. below.
a. NO OUTPUT ON ALL STEPS.
(1) If the locking device on the degeneration resistor (R157) is loosened, mechanical vibration may cause a variation of resistance and hence degeneration. This may result in erratic operation or amplitude distortion. Check this control and tighten the locknut.
(1) If there is output from J 101 but no output from J 102 in all steps of AT101, the 500 ohms resistor (R130) may be burned out, or the coaxial cable of the attenuator may be open.
(2) The following indirect check of R130 and the coaxial cable may be made from RF OUTPUT-X-200K- OPEN CIRCUIT jack J101 to ground; without removing the signal generator from its case.
(a) Turn power switch S103 off.
(b) Place the output/range switch S101 to X 200 K position.
(c) Set the RF MULTIPLIER (AT101) to the X10K step.
(d) Under the above conditions the normal resistance from 1101 to ground is 655 ohms.
(3) The resistance of the 500 ohm resistor R130 (see fig. 6-6) may be measured, without unsoldering, by placing the ohmmeter test leads directly across it.
(4) Continuity of the coaxial cable leading to AT101 may be determined by disconnecting it at jack J 103 and measuring the resistance from the center pin of the BNC plug (UG-88/U) to ground. The resistance should be 55.5 ohms.

TABLE 6-4. CHART OF SUGGESTED TESTS FOR LOCATING THE SPECIFIC TROUBLE (Continued)
\begin{tabular}{|c|c|}
\hline location and type of trouble & SUGGEStED MEthod for localizing trouble \\
\hline b. NO OUTPUT ON ONE OR MORE, BUT NOT ALL STEPS. & \begin{tabular}{l}
(1) One of the step attenuator series resistors (R132, R134, R136, R138, R140) is burned out. This may be determined without removing the signal generator from its case as follows: \\
(a) Place the output/range switch (S101) to X-MULT position. \\
(b) Make sure POWER switch (S103) is turned off. \\
(c) Make connection to RF OUTPUT X-MULT jack J102. Use a short length of coaxial cable and a BNC plug type UG-88/U for this connection. \\
(d) If one of the series resistors R134, R136, R138 and R140 is open the reading obtained to ground on two successive positions will be 55 ohms instead of the normal 50 ohms. For example, if series resistor R138 is open; the readings obtained on steps X 10 and X 1 will be 55 ohms. If the series resistor R132 is open, the readings on X10K and X1K will be 61.8 and 55 ohms respectively.
\end{tabular} \\
\hline \begin{tabular}{l}
c. APPROXIMATELY 2:1 \\
INSTEAD OF 10:1 \\
ATTENUATION \\
BETWEEN TWO \\
SUCCESSIVE STEPS.
\end{tabular} & \begin{tabular}{l}
(1) One of the step attenuator shunt resistors (R133, R135, R137 and R139) is probably burned out. \\
(2) Check the resistance at J102 to ground, if one of the above shunt resistors is open a reading of 275 ohms to ground at any of the respective positions: \(\mathrm{X} 1 \mathrm{~K}, \mathrm{X} 100, \mathrm{X} 10, \mathrm{X}_{1}\) will indicate that defective resistor (See fig. 2-8). \\
(3) If one of the shunt resistors R131 or R141 is open the readings obtained at the X 10 K or 0.1 positions, respectively, will be 550 ohms.
\end{tabular} \\
\hline d. REPLACING STEP ATTENUATOR RESISTORS. & \begin{tabular}{l}
(1) Recalibrate step attenuator ratios for range in which resistor was replaced, using (10:1) Fixed Attenuator CN-224/URM-25D and a radio receiver such as Navy Model RBA series or equivalent. Follow the procedure outlined in Section 6, par. 17. \\
CAUTION \\
Resistance measurements at J 102 should be made with a resistance bridge such as Resistance Bridge ZM-4/U, or equivalent, to avoid burning out one of the step attenuator resistors. If the electronics technician uses an ordinary ohmmeter, great care must be exercised to see that this ohmmeter does not place a current in excess of 20 milliamperes through the attenuator circuit while testing. Any repairs to the attenuator should be made by qualified technicians.
\end{tabular} \\
\hline \begin{tabular}{l}
7. POWER SUPPLY PP-977/URM-25D \\
a. INOPERATIVE.
\end{tabular} & \begin{tabular}{l}
(1) Check line fuses F101 and F102. \\
(2) With an ohmmeter check interconnecting cables W102 and W103 for continuity. \\
(3) Check power transformer (T201). \\
(4) If no \(\mathrm{B}+\), check rectifier tube V201, filter choke L201 and series resistor R201.
\end{tabular} \\
\hline b. OVERHEATING. & \begin{tabular}{l}
(1) Check for short circuited turns on T201. \\
(2) Check for partial breakdown of C201, C202, and C203. It is sometimes best to replace one or all of these capacitors, if it is suspected that one of them is defective. A voltage or ohmmeter check will not always identify this trouble.
\end{tabular} \\
\hline
\end{tabular}
tABLE 6-4. CHART OF SUGGESTED TESTS FOR LOCATING THE SPECIFIC TROUBLE (Continued)
\begin{tabular}{|c|c|}
\hline LOCATION AND TYPE of trouble & SUGGESTED MEthod for localizing trouble \\
\hline c. LOSS OF REGULATION. & \begin{tabular}{l}
(1) Check with a variac or variable voltage source. Change the line voltage from 103 v to 126 v AC. The +150 v DC output should not change. This does not apply to the unregulated +220 v DC supply. \\
(2) Replace regulator tube (V 108) if the \(\mathrm{B}+\) does not remain steady at 150v DC.
\end{tabular} \\
\hline 8. HUM MODULATION. & \begin{tabular}{l}
a. Listen for power line hum (impressed on carrier frequency) or check output on scope. \\
b. Check for unshielded leads between signal generator and receiver. All leads between these units should be shielded. \\
c. Check for mechanical vibrations of T201. Tightly secure the transformer mounting. \\
d. Change the oscillator tube (V101).
\end{tabular} \\
\hline \begin{tabular}{l}
9. ACCESSORY UNITS. \\
a. IMPEDANCE ADAPTER MX-1487/URM-25D. \\
b. ANTENNA SIMULATOR SM-35/URM-25. \\
c. (5:1) FIXED ATTENUATOR CN-223/URM-25D. \\
d. (10:1) FIXED ATTENUATOR CN-224/URM-25D. \\
e. TEST LEAD CX-1363/U.
\end{tabular} & \begin{tabular}{l}
If it is suspected that any one of these accessory units is defective, a simple continuity check will readily indicate the source of trouble. \\
CAUTION \\
When making a resistance check on the Impedance Adapter MX-1487/ URM-25D be sure the lowest ohmmeter resistance range is used. Ohmmeters with internal batteries larger than 1.5 v may burn out the resistor in the impedance adapter. Where greater accuracy is desired, resistance measurements should be made with the Resistance Bridge ZM-4/U or equivalent.
\end{tabular} \\
\hline 10. OUTPUT CABLES. & Check leakage resistance with a megger (high resistance ohmmeter). \\
\hline 11. CRYSTAL CALIBRATOR (V105). & \begin{tabular}{l}
If the check in Table 6-3 under CRYSTAL CALIBRATOR indicates that this unit is defective, the following tests should be made to localize the trouble. \\
Note \\
The output beat of the crystal calibrator is amplified by both sections of the beat note amplifier (V106) and the cathode follower (V107). Make sure that this stage is functioning (Table 6-3, under MODULATION OSCILLATOR) before deciding that the V105 circuit is defective. \\
(1) Replace crystal (Y101), then tube V105 if available. These parts are the most common source of trouble in the crystal calibrator. \\
(2) If a substitute tube and crystal are not available, check V105 in a tube checker. \\
(3) Make circuit continuity and voltage tests. Figure 6-15 indicates the normal socket to ground voltages and resistances for V105. The following readings from socket pins to ground indicate that either the tube V105 or crystal Y101 is defective. Measurements should be made with a 20,000 ohm/DC and \(1000 \mathrm{ohm} / \mathrm{VAC}\) meter.
\end{tabular} \\
\hline
\end{tabular}

TABLE 6-4. CHART OF SUGGESTED TESTS FOR LOCATING THE SPECIFIC TROUBLE (Continued)

Figure 6-14. Percentage Modulation Chart

NOTES:
readings made with signal generator set in following operating conditions:
1. BAND "C" OPERATION (.95-300 KC)
2. SIO2 SWITCH IN CRYSTAL OR CW POSITION
3. CAUTION: DO NOT MEASURE RESISTANCE FROM PINS 5 OR 7 TO GROUND WITH SIOR IN CRYSTAL OR CW POSITION, HOWEVER, VOLTAGE READINGS WERE TAKEN WITH SIO2 IN CW POSITION, MIOI SET TO IO MV. AND frequency set to 10 kc
4. SIOZ IN CRYSTAL POSITION
5. SIO2 IN 1000 CYCLE POSITION
resistance and voltage measurements made getween test point and ground.
ALL DC READINGS TAKEN WITH A 20,000 OHMSIVOLT METER.
ALL AC READINGS TAKEN WITH A 1,000 OHMS / VOLT METER.

Figure 6-15. Signal Generator Voltage and Resistance Chaft

Figure 6-16. Rear View of Audio and Metering Unit

Figure 6-17. Interior View of Audio and Metering Unit Showing Terminal Board and Position of Resistors

Figure 6-18. Top View of Signal Generator SG-85/URM-25D

Figure 6-19. Rear View of Signal Generator SG-85/URM-25D

figure 6-20. Top and Bottom Interior Views of Step Attenuator AT101

Figure 6-21. Top and Bottom Views of the Power Supply PP-977/URM-25D

Figure 6-22. Interior View of (5:1) Fixed Attenuator CN-223/URM-25D

Figure 6-23. Interior View of Antenna Simulator SM-35/URM-25

\section*{CORRECTIVE MAINTENANCE}

Figure 6-25. Interior View of
Impedance Adapter MX-1487/URM-25D

Figure 6-26. RF Connectors and Cable Assemblies
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline SYMBOL NUMBER & TUBE TYPE & FUNCTION & \begin{tabular}{l}
PLATE P \\
(E)
\end{tabular} & \begin{tabular}{l}
PLATE \\
(MA)
\end{tabular} & \begin{tabular}{l}
SCREEN \\
(E)
\end{tabular} & \begin{tabular}{l}
screen \\
(MA)
\end{tabular} & \begin{tabular}{l}
SUPPRESSOR \\
(E)
\end{tabular} & \begin{tabular}{l}
CATHODE \\
(E)
\end{tabular} & \begin{tabular}{l}
GRID \\
(E)
\end{tabular} & heater vac \\
\hline V10i & 6AH6 & Carrier Oscillator & 0 to 150 & 0 to 10 & Connected to Plate & ... & 0 & \[
\begin{gathered}
\text { Approx. } \\
10
\end{gathered}
\] & Approx.
\[
-0.5^{1}
\] & 6.3 \\
\hline V102 & 6AH6 & Buffer Amplifier & 215 & 10 & 150 & 2.1 & 0 & 2.0 & -0. & 6.3 \\
\hline V103 & \(6 \mathrm{AG7}\) & Output Amplifier & 220 & 17 & 150 & 2 & 0 & 5.2 & 0 & 6.3 \\
\hline V104A & \[
\begin{gathered}
\text { 5726/6ALSW/ } \\
6097
\end{gathered}
\] & \begin{tabular}{l}
VTVM \\
Compensator
\end{tabular} & \[
\begin{gathered}
\text { Pin } 2^{2} \\
0 \text { to }-1.0
\end{gathered}
\] & 0 to \(0.01^{2}\) & \(\ldots\) & \(\ldots\) & \(\ldots\) & \[
\begin{gathered}
\text { Pin } 1^{2} \\
0 \text { to } 0.2
\end{gathered}
\] & \(\ldots\) & 6.3 \\
\hline V104B & \[
\begin{gathered}
\text { 5726/6AL5W/ } \\
6097
\end{gathered}
\] & VTVM Rectifier & \[
\begin{gathered}
\text { Pin } 7^{2} \\
0 \text { to }-2.0
\end{gathered}
\] & 0 to 0.2 & \(\ldots\) & & & \[
\begin{gathered}
\text { Pin } 5^{2} \\
0 \text { to }-1.0
\end{gathered}
\] & \(\ldots\) & 6.3 \\
\hline V105 & 5750/6BE6W & Crystal Calibrator & 1253 & 0.53 & \(95^{3}\) & \(3.0{ }^{3}\) & \(0.1^{3}\) & \(.1^{3}\) & \(-8^{3}\) & 6.3 \\
\hline V106A & 5814A & Modulation Oscillator & \[
\operatorname{Pin} 1^{4}
\]
\[
108
\] & \(2.4{ }^{4}\) & & ... & & \[
\begin{gathered}
\text { Pin } 3^{4} \\
2.4
\end{gathered}
\] & \[
\begin{gathered}
\text { Pin } 2 \\
0
\end{gathered}
\] & 6.3 \\
\hline V106B & 5814A & Modulation Oscillator & \[
\begin{gathered}
\text { Pin } 6^{4} \\
163
\end{gathered}
\] & 0.554 & ... & \(\ldots\) & \(\ldots\) & \[
\begin{gathered}
\text { Pin } 8^{4} \\
10.5
\end{gathered}
\] & \[
\begin{gathered}
\text { Pin } 7 \\
0
\end{gathered}
\] & 6.3 \\
\hline V107 & 6AH6 & Modulation Amplifier & 220 & 3.0 & 220 & 0.3 & 220 & 75 & 0 & 6.3 \\
\hline V108 & OA2WA & \[
\begin{aligned}
& \mathrm{B}+ \\
& \text { Regulator }
\end{aligned}
\] & 150 & 20 to 10 & & \(\ldots\) & \(\ldots\) & 0 & & \(\ldots\) \\
\hline V201 & 6X4WA & Rectifier & 225 V AC & & \(\ldots\) & \(\ldots\) & \(\ldots\) & 240 & & 6.3 \\
\hline
\end{tabular}

\(\varepsilon \exists \supseteq \mathrm{NVHO}\)
(1) Band "C" operation.
(2) S102 switch in "CW" position.
(3) S102 switch in "Crystal" position.
(4) S102 switch in 400 or 1000 cycle position.

rated germanium crystal diode characteristics
\begin{tabular}{|c|c|c|c|c|c|}
\hline TYPE & MAX. INVERSE VOLTS & PEAK RECTIFIED MA. & MAX. SURGE MA. & \begin{tabular}{c}
MAX REVERSE \\
U-Amp.
\end{tabular} & MAX AVERAGE MA. \\
\hline 1N69A & 60 & 150 & 500 & \(800 @ 50 \mathrm{~V}\) & 40 \\
\hline
\end{tabular}

\footnotetext{

}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\frac{\Omega}{\sum}
\] & \begin{tabular}{l}
DESIG- \\
NATION SYMBOL
\end{tabular} & frad maf. a eng. part no. & diagram & Winding & Wire SIze & TURNS & DC RESISTANCE IN онMS & REMARK5 & \\
\hline & L105 & 107.B-636 & & Universal wound 1 pie & \begin{tabular}{l}
\#36 \\
Double Strand \\
Enameled
\end{tabular} & \[
\begin{aligned}
& 52 \\
& \text { Tap at } \\
& 24 \text { turns }
\end{aligned}
\] & \(3.4 \pm 10 \%\) & \begin{tabular}{l}
Inductance: \\
57.1 uh; \\
Impregnated
\end{tabular} & \begin{tabular}{l}
\(\frac{2}{2}\) \\
\(\frac{2}{2}\) \\
\(\frac{1}{2}\) \\
2 \\
2 \\
2 \\
\hline
\end{tabular} \\
\hline & L106 & 107. - 637 & & Single Layer & \#30 Enameied & 20
Tap at 10 turns & \(0.03 \pm 10 \%\) & \begin{tabular}{l}
Inductance: \\
5.79 uh; \\
Impregnated
\end{tabular} & \\
\hline & 3107 & 107-B-638 & & \[
\begin{aligned}
& \text { Single } \\
& \text { Layer }
\end{aligned}
\] & \begin{tabular}{l}
\(1 / 16\) wide \\
0.005 THK \\
Copper \\
Silver \\
Plated
\end{tabular} & \begin{tabular}{l}
6 \\
Tap at 3 turns
\end{tabular} & 0.04 \(\pm 20 \%\) & Inductance: 0.579 wh ; Impregnated & \[
\stackrel{\rightharpoonup}{\boldsymbol{E}}
\] \\
\hline & 1108 & 107.8.639 & & \[
\begin{aligned}
& \text { Single } \\
& \text { Layer }
\end{aligned}
\] & \begin{tabular}{l}
3/32 wide 0.005 THK \\
Copper \\
Silver \\
Plated
\end{tabular} & Tapat 2 turns & 0.014 \(\pm 20 \%\) & \begin{tabular}{l}
Inductance: \\
0.237 uh ; \\
Impregnated
\end{tabular} & \\
\hline
\end{tabular}

TABLE 6-8. CROSS REFERENCE BETWEEN SYMBOL NUMBER AND FIGURE LOCATION
\begin{tabular}{|c|c|c|c|c|c|}
\hline symbol no. & figure no. & symbol no. & figure no. & symbol no. & figure no. \\
\hline AT101 & 6-13 & C156 & 6-9 & L102 & 6-11 \\
\hline C101-1 & 6-24 & C157 & 6-9 & L103 & 6-11 \\
\hline C 102 & 6-24 & C158 & 6-9 & L104 & 6-11 \\
\hline C103-1 & 6-24 & C159 & 2-5 & L105 & 6-11 \\
\hline C104 & \(6-24\) & C160 & 2-5 & L106 & 6-24 \\
\hline C105-1 & 6-18 & C161 & 2-5 & L107 & 6-24 \\
\hline C106 & 6-11 & C162 & 2-5 & L108 & 6-24 \\
\hline C107-1 & 6-11 & C163 & 2-5 & L109 & 2-2 \\
\hline C108 & 6-11 & C164 & 2-5 & L110 & 2-2 \\
\hline C109-1 & 6-11 & C165 & 2-6 & L111 & 6-7 \\
\hline C110 & 6-11 & C166 & 2-6 & L112 & \(2-3\)
\(6-7\) \\
\hline C111 & 6-24 & C 167 & 6-24 & L113 & 6-7 \\
\hline C112 & 6-24 & C168 & 6-24 & L115 & 6-6 \\
\hline C113 & 6-24 & C169 & 6-24 & L116 & 6-7 \\
\hline C114 & 6-24 & C170 & 2-6 & L117 & 6-5 \\
\hline C115 & 6-24 & C201 & 6-21 & L118 & 6-5 \\
\hline C116 & 6-24 & C202 & 6-21 & L119 & 6-24 \\
\hline C117 & 6-24 & C203 & 6-21 & L120 & 6-24 \\
\hline C 118 & 6-24 & C204 & 6-21 & L121 & \(6-9\) \\
\hline C119 & 6-10 & C601 & 2-11 & L122 & 6-24 \\
\hline C120 & \(6-8\) & C602 & 2-11 & L123 & 6-24 \\
\hline C121 & 6-8 & C701 & 6-23 & L124 & 2-6 \\
\hline C122 & 6-8 & C702 & 6-23 & L201 & 6-21 \\
\hline C123 & 6-10 & CR101 & 2-6 & L701 & 6-23 \\
\hline C124 & 6-8 & CR102 & 2-6 & M101 & 4-1 \\
\hline C125 & 6-24 & E112 & 4-1 & N102 & 4-1 \\
\hline C126 & 2-2 & E113 & 4-1 & N103 & 4-1 \\
\hline C127 & 2-2 & E114 & 4-1 & N104 & 4-1 \\
\hline C128 & 2-2 & E115 & 4-1 & O103 & 4-1 \\
\hline C129 & 6-5 & E116 & 4-1 & P101 & 6-13 \\
\hline C130 & \(6-7\) & E117 & 4-1 & P102 & 6-13 \\
\hline C131 & 6-7 & E118 & 4-1 & P103 & 2-8 \\
\hline C132 & 6-7 & E119 & 4-1 & P104 & 6-26 \\
\hline C133 & 6-7 & E120 & 4-1 & P105 & 6-26 \\
\hline C134 & 6-5 & F101 & 4-1 & P106 & 6-26 \\
\hline C135 & 2-4 & F102 & 4-1 & P107 & 6-26 \\
\hline C136 & 2-4 & F104 & 1-1 & P108 & 1-1 \\
\hline C137 & 6-24 & F103 & 1-1 & P109 & 1-1 \\
\hline C128 & 6-24 & H101 & 6-2 & P110 & 1-1 \\
\hline C139 & 6-5 & I101 & 4-1 & P801 & 1-1 \\
\hline C140 & 6-5 & J101 & 4-1 & P1001 & 6-26 \\
\hline C141 & 6-24 & J102 & 4-1 & R101-1 & 6-24 \\
\hline C142 & 6-24 & J103 & 2-8 & R102 & 6-24 \\
\hline C143 & 6-24 & J105 & 4-1 & R103-1 & 6-24 \\
\hline C144 & 6-24 & J201 & 6-21 & R104 & 6-24 \\
\hline C145 & 6-24 & J202 & 6-21 & R105-1 & 2-2 \\
\hline C146 & 6-24 & J301 & 6-22 & R106 & 2-2 \\
\hline C147 & 6-24 & J302 & 6-22 & R107-1 & 6-24 \\
\hline C148 & 6-24 & J401 & 6-24 & R108 & 6-24 \\
\hline C149 & 6-24 & J402 & 6-24 & R109-1 & 6-24 \\
\hline C150 & 6-24 & J501 & 6-25 & R110-1 & 6-24 \\
\hline C151 & 2-9 & J502 & 6-25 & R111 & 6-24 \\
\hline C152 & 2-9 & J601 & 6-24 & R112 & 6-24 \\
\hline C153 & 2-9 & J701 & 6-23 & R113 & 6-24 \\
\hline C154 & 2-9 & J702 & \(6-23\) & R114 & 6-7 \\
\hline C155 & 6-9 & L101 & 6-11 & R115 & 6-7 \\
\hline
\end{tabular}

CHANGE 3
6-35

NAVSHIPS 92134(A)
AN/URM-25D CORRECTIVE MAINTENANCE

TABLE 6-8. CROSS REFERENCE BETWEEN SYMBOL NUMBER AND FIGURE LOCATION (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline symbol no. & figure no. & symbot no. & figure no. & symbol no. & figure no. \\
\hline R116 & 6-7 & R151 & 2-5 & S101 & 4-1 \\
\hline R117 & 6-7 & R152 & 2-5 & S102 & 6-16 \\
\hline R118 & 6-7 & R153 & 2-5 & S103 & 6-13 \\
\hline R119 & 6-7 & R154 & 2-5 & T201 & 6-21 \\
\hline R120 & 6-7 & R155 & 2-5 & TB101 & 6-16 \\
\hline R121 & 6-7 & R156 & 2-5 & V101 & 6-19 \\
\hline R122 & 2-3 & R157 & 6-13 & V102 & 6-19 \\
\hline R123 & 6-7 & R158 & 2-5 & V103 & 6-19 \\
\hline R124 & 2-4 & R159 & 2-5 & V104 & 6-19 \\
\hline R125 & 2-7 & R160 & 2-5 & V105 & 6-19 \\
\hline R126 & 6-24 & R161 & 2-5 & V106 & 6-19 \\
\hline R127 & 4-1 & R162 & 2-5 & V107 & 6-19 \\
\hline R128 & 2-7 & R163 & 2-5 & V108 & 6-19 \\
\hline R129 & 2-7 & R164 & 2-5 & V201 & 6-21 \\
\hline R130 & 6-6 & R165 & 6-17 & W101-1 & 1-1 \\
\hline R131 & 6-20 & R166 & 2-6 & W102 & 6-19 \\
\hline R132 & 6-20 & R167 & 2-6 & W103 & 6-19 \\
\hline R133 & \(6-20\) & R168 & 2-6 & W104 & 1-1 \\
\hline R134 & \(6-20\) & R169 & 6-13 & W105 & 1-1 \\
\hline R135 & 6-20 & R170 & 2-6 & W106 & 1-1 \\
\hline R136 & 6-20 & R171 & 2-6 & W106 & 1-1 \\
\hline R137 & 6-20 & R172 & 6-13 & WF108 & \({ }_{6-13}\) \\
\hline R138 & 6-20 & R173 & 6-17 & XF101 & 6-13 \\
\hline R139 & 6-20 & R174 & 6-24 & XF102 & 6-13 \\
\hline R140 & 6-20 & R175 & 6-24 & XI101 & \(6-13\) \\
\hline R141 & 6-10 & R176 & 6-9 & XV101 & 6-8 \\
\hline R142 & 6-24 & R201 & 6-21 & XV102 & 6-6 \\
\hline R143 & 6-24 & R301 & 6-22 & XV103 & 6-6 \\
\hline R144 & 2-7 & R302 & 6-22 & XV104 & 6-6 \\
\hline R145 & 6-9 & R303 & 6-22 & XV105 & 6-9 \\
\hline R146 & 6-9 & R401 & 6-24 & XV106 & 6-17 \\
\hline R147 & 6-9 & R402 & 6-24 & XY101 & \(6 \rightarrow 9\) \\
\hline R148
R149 & 6--9 & R403 & \(6-24\) & Y101 & 6-19 \\
\hline R150 & 2-9 & R701 & 6-23 & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PARTS} \\
\hline SYMBOL DESIG. & name of part and description & function & JAN. AND (NAVY TYPE) NO. & STANDARD NAVY AND (SIGNAL CORP.) STOCK NO & MFR. MFR'S DESIGNATION & CON. tRACTOR drawing PARI NO & \[
\begin{gathered}
\text { AIL } \\
\text { SYMBOL } \\
\text { DESIG. } \\
\text { INVOIVED }
\end{gathered}
\] & \begin{tabular}{l}
QUAN. \\
PER \\
EQUIP.
\end{tabular} \\
\hline \multicolumn{9}{|c|}{Crystal Units} \\
\hline Criot & CRYSTAL UNIT, RECTIFYING: germanium crystal; 7/8 in \(\mathrm{Ig} ; 1 / 4\) in diam; 2 axial wire leads; MIL-E-1/142C & Audio voltage rectifier & 1N69 & N16-T051769 & & & CR101,102 & 2 \\
\hline \multicolumn{9}{|c|}{Fuses} \\
\hline F101 & FUSE, cartridge: 1 amp ; open in one hour at \(135 \%\) load; rated continuous at \(110 \%\) load; 250 V ; one time; glass body; ferrule term; \(11 / 4^{\prime \prime} \lg \times 1 / 4^{\prime \prime}\) diam o/a; term. \(5 / 16^{\prime \prime} \mathrm{lg}\) \(x 1 / 4^{\prime \prime}\) diam; slow blowing & Line fuse & \begin{tabular}{l}
FO2G1R00B \\
MIL-F-15160C
\end{tabular} & N17-F-14310-380 & & & \[
\begin{aligned}
& \text { F101,102, } \\
& \text { 103,104 }
\end{aligned}
\] & 4 \\
\hline \multicolumn{9}{|c|}{Connectors (Jack and Receptacles)} \\
\hline \[
J 103
\]
\[
\mathrm{J} 104
\] & \begin{tabular}{l}
CONNECTOR, receptacle: 1 round coaxial female contact; straight \\
Deleted
\end{tabular} & Connector for step attenuator AT101 & UG-1094/U & N17-C073108-5259 & & & \[
\begin{aligned}
& \mathrm{J} 103,301 \\
& 302,401, \\
& 402,501, \\
& 502,601, \\
& 701,702
\end{aligned}
\] & 10 \\
\hline \multicolumn{9}{|c|}{Meters} \\
\hline M101 & METER, multiscale: DC; range 0 to 100 micro-amps; hermetically sealed round metal llush mtg case; 2.3/16" batrel diam \(\times 13 / 8^{\prime \prime}\) deep behind panel; 2-1/16" diam flange & RF Output and percent modulation meter & & N17-M034601-1276 & \[
\left.\begin{gathered}
\text { (24) } \\
\text { T1 321 } \\
\text { Trad } \\
\text { Dwg No. } \\
107-A-9
\end{gathered} \right\rvert\,
\] & 07-B-670 & M101 & 1 \\
\hline \multicolumn{9}{|c|}{Connectors, Plugs} \\
\hline P801 & CONNECTOR, adapter: male one end, female other end; coax male type N at one end, coax female type BNC other end; straight type; adapts female type N to male type BNC connector; \(3 / 4^{\prime \prime}\) diam \(\times 1.9 / 16^{\prime \prime} \lg 0 / \mathrm{a}\); 52 ohms impedance; cylindrical brass silver pl ; molded polystyrene insert & Coaxial adapter & AN type UG-201A/U & For replacement use N5935.258-1763 & & & P801 & 1 \\
\hline \multicolumn{9}{|c|}{Resistors} \\
\hline R101-1 & RESISTOR, fixed: composition; \(220 \mathrm{~K} \pm 10 \% ; 1 / 2 \mathrm{~W}\); MLL-R-11/2 & Band A, V101 grid leak resistor & RC20GF224K & For replacement use N5905-192-0667 & & & R101-1 & 1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PARTS} \\
\hline symsol DESIG. & name of part and DESCRIPTION & FUNCTION & SAN. AND (NAVY TYPE) NO. & STANDARD NAVY AND (SIGNAL CORP.) srock no. & MFR. MFR'S DESIGNATION & CONTRACIOR DRAWING PART NO. & ALL SYMBOL DESIG. INVOIVED & \[
\begin{aligned}
& \text { QUAN. } \\
& \text { PER } \\
& \text { EQUIP. }
\end{aligned}
\] \\
\hline \multicolumn{9}{|c|}{Resistors (cont)} \\
\hline R120 & RESISTOR, fixed: composition; 510 ohms \(\pm 5 \% ; 1 / 2 \mathrm{~W}\); MIL-R-11/2 & L113 damping resistor & RC20GF511J & N16-R049786-0438 & & & R120 & 1 \\
\hline R121 & RESISTOR, fixed: composition; \(51 \mathrm{~K} \pm 5 \% ; 1 / 2 \mathrm{~W}\); MIL-R-11/2 & p/o V103 grid resistor & RC20GF513J & N16-R050497-0419 & & & R121 & 1 \\
\hline R122 & RESISTOR, fixed: composition; \(10 \mathrm{~K} \pm 5 \% ; 1 / 2 \mathrm{~W}\); MLL-R-11/2 & p/o V103 grid resistor & RC20GF103J & N16-R050281-0725 & & & \[
\begin{aligned}
& \text { R122,128, } \\
& 142
\end{aligned}
\] & 3 \\
\hline R123 & RESISTOR, fixed: composition; \(2 \neq 0\) ohms \(\pm 5 \% ; 1 / 2 \mathrm{~W}\); MLL-R-11/2 & V103 cathode resistor & RC20GF271] & N16-R049687-0321 & & & R123 & 1 \\
\hline R124 & RESISTOR, fixed: composition; 1500 ohms \(\pm 10 \% ; 1 / 2 \mathrm{~W}\); MIL-R-11/2 & L115 damping resistor & RC20GF152K & For replacement use N5905-279-1757 & & & R124 & 1 \\
\hline R125 & RESISTOR, fixed: composition; \(470 \mathrm{~K} \pm 10 \% ; 1 / 2 \mathrm{~W}\); MIL-R-11/2 & p/o V104 biasing system & RC20GF474K & For replacement use N5905-279-2515 & & & \[
\begin{aligned}
& \text { R125,151, } \\
& 166
\end{aligned}
\] & 3 \\
\hline R126 & RESISTOR, fixed: composition; \(15 \mathrm{~K} \pm 5 \% ; 1 / 2 \mathrm{~W}\); MLL-R-11/2 & \(\mathrm{p} / \mathrm{o}\) V104 biasing system & RC20GF153J & N16-R050335-0438 & & & \[
\begin{aligned}
& \text { R126,170, } \\
& 171
\end{aligned}
\] & 3 \\
\hline R128 & Same as R122 & p/o V104 load resistor & & & & & & \\
\hline R129 & RESISTOR, fixed: composition; 100 ohms \(\pm 10 \%\); \(1 / 2 \mathrm{~W}\); MIL-R-11/2 & J101 separating resistor & RC20GF101K & For replacement use N5905-190-8889 & & & R129 & 1 \\
\hline R142 & Same as R122 & Modulation input RF filter resistor & & & & & & \\
\hline R143 & RESISTOR, fixed: composition; 270 ohms \(\pm 10 \% ; 1 / 2 / 2 W\); MIL-R-11/2 & V103 screen voltage RF filter resistor & RC20GF271K & For replacement use N5905-171-2006 & & & R143 & 1 \\
\hline R144 & Same as R113 & V104 output RF filter resistor & & & & & & \\
\hline R145 & RESISTOR, fixed: composition; \(27 \mathrm{~K} \pm 10 \% ; 1 / 2 \mathrm{~W}\); MIL-R-11/2 & V105 screen grid resistor & RC20GF273K & For replacement use N5905-195-9482 & & & R145 & 1 \\
\hline R146 & Same as R114 & V10s plate resistor & & & & & & \\
\hline R147 & RESISTOR, fixed: composition; \(270 \mathrm{~K} \pm 10 \% ; 1 / 2 \mathrm{~W}\); MIL-R-11/2 & V105 first grid resistor & RC20GF274K & For replacement use N5905-190-8865 & & & R147,148 & 2 \\
\hline
\end{tabular}

table 7-4A. SUPPLEmentary Combined parts and spare parts list (Cont.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PARTS} \\
\hline SYMBOL desig. & name of part and description & function & \[
\begin{aligned}
& \text { JAN AND } \\
& \text { (NAVY TYPE) } \\
& \text { No. }
\end{aligned}
\] & standard navy AND (SIGNAL CORP.) stock No. & MFR. \& MFR'S DESIG-
NATION & \begin{tabular}{l}
CON-
TRACTOR drawing \\
part no
\end{tabular} & & QUAN.
PER
SOUP \\
\hline \multicolumn{9}{|c|}{Electron Tubes} \\
\hline V104 & ELECTRON TUBE: double diode; MIL-E-1B & Carrier volt meter & 5726/6AL5W & N \(16 . \mathrm{T} 075726\) & & & V104 & 1 \\
\hline Vios & flectron tube; pentagrid, MIL-E-1B & Xtal calibrator & 5750/6BE6W & N16-T075750 & & & V105 & 1 \\
\hline V106 & ELECTRON TUBE: double triode; MIL-E.IB & Modulation oscillator & 5814A & N16-T075814-000 & & & Viow & 1 \\
\hline Vhos & ELECTRON TUBE: voltage regulator; MIL-E.IB & Voltage stabilizer & OALWA & N16-T052001-6003 & & & V108 & 1 \\
\hline \(V_{201}\) & ELECTRON TUBE: full-wave high-vacuum rectifier: MIL-E-1B & Power supply rectifier & \(6^{6} \mathrm{X}\) ¢WA & N16.T056840-0060 & & & V201 & 1 \\
\hline \multicolumn{9}{|c|}{Sockets} \\
\hline XF101
XF102 & \begin{tabular}{l}
FUSE HOLDER: extractor post type; for single 3AG cartridge fuse: black bakelite; 250 W at 15 amp; \(2-9 / 64^{\prime \prime}\) \(\lg \times 11 / 16^{\prime \prime}\) diam \(0 / 2 ; 1 / 2^{\prime \prime}-24 \times 1 / 2^{\prime \prime} \lg\) thd bakelice body for panel hole mtg; \(3 / 32^{\prime \prime}\) hole drilled through cap \\
Same as XFiol
\end{tabular} & \begin{tabular}{l}
Holder for fuse Flol \\
Holder for fuse F102
\end{tabular} & & N17.F074267-5075 & \[
\begin{gathered}
(3) \\
\text { HKP. } \\
\text { HRW E }
\end{gathered}
\] & & XF101,102 & 2 \\
\hline \multicolumn{9}{|c|}{Accessories} \\
\hline \(W^{\prime} 101-1\) & CABLE ASSEMBLY, POWFR, ELECTRICAL: SJ cable, 3 conductor, stranded No. 18 AWG, rubber insulation, cotwon warp, rubber jacket, 6 ft lg o/a: ©ype UP-12t/M connector plug at one end & AC line cable & & Assemble from Component parts & & 142-B-25 & W101-1 & 1 \\
\hline \(W_{108}\) & CABLE, POWER, ELECTRICAL: type SJ: 3 conductor, stranded No. 18 AWG; rubber insulation; cotoon warp; rubber jacket & p/o W \({ }^{\text {101-1 }}\) & & G6145-299-6256 & & & W108 & 6 fl \\
\hline P110 & CONNFCTOR, PLUG: 3 contacts, male; 2 flat contacts; 1 U-shape contact: polarized; grounded; straight type; \(11 / 2^{\prime \prime} \lg . \times 23 / 32^{\prime \prime}\) wide \(\times 1-17 / 32^{\prime \prime}\) high overall, excluding protruding conracts; \(10 \mathrm{amps}, 250 \mathrm{v}\); rectangular body, steel, cadmium plated: glass-filled alkyd resin insert: \(0.45^{\prime \prime}\) dia. max. cable opening; 3rd blade removable & \(p / 0 W_{101-1}\) & UP-121/M & \(\mathrm{N} 17 . \mathrm{COH1464} 8688\) & & & P110 & 1 \\
\hline P1001 & CONNFCTOR, ADAPTER: straight type; BNC type w mate with plug UG-88/U one end; other end to mate with type 40120 receptacle in accordance with U.S. Naval Research Laboratories Dwg RA49F215; \(17 / \mathbf{8}^{\prime \prime} \lg \times 3 / 4^{\prime \prime}\) diam o/a; cylindrical shaped body; brass, silver pl: molded Tefon insert & Adapter from type type UG-88/U BNC. plug to type 49120 & & Low failure item. If required, requisition from FSO referencing NAVSHIPS 900, 180A & & & P10x1 & 1 \\
\hline
\end{tabular}

\section*{SECTION \\ 7}

\section*{PARTS LIST}
\begin{tabular}{ll}
Table 7-1 & Weights and Dimensions of Spare Parts Boxes \\
Table 7-2 & Shipping Weights and Dimensions of Spare Parts Boxes \\
Table 7-3 & List of Major Units \\
Table 7-4 & Combined Parts and Spare Parts List \\
Table 7-5 & Cross Reference Parts List \\
Table 7-6 & List of Manufacturers \\
Table 7-7 & Applicable Color Codes and Miscellaneous Data
\end{tabular}

TABLE 7-1. WEIGHTS AND DIMENSIONS OF SPARE PARTS BOXES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{EQUIPMENT SPARES} & \multicolumn{5}{|c|}{Stock spares} \\
\hline activity & \multicolumn{3}{|l|}{OVERALL DIMENSIONS (INCHES)} & \multirow[t]{2}{*}{volume (CU IN)} & \multirow[t]{2}{*}{WEIGHT (LBS)} & \multicolumn{3}{|c|}{OVERALL DIMENSIONS (INCHES)} & \multirow[t]{2}{*}{volume (CU IN)} & \multirow[t]{2}{*}{\begin{tabular}{l}
WEIGHT \\
(LBS)
\end{tabular}} \\
\hline & HEIGHT & WIDTH & DEPTH & & & height & WIDTH & DEPTH & & \\
\hline BUSHIPS & 9 & 8 & 3 & 216 & 2 & * & * & * & * & * \\
\hline MARINE CORPS & & & & & & * & * & * & * & * \\
\hline
\end{tabular}

\footnotetext{
* Shipped in bulk quantities
}

TABLE 7-2. SHIPPING WEIGHTS AND DIMENSIONS OF SPARE PARTS BOXES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{EQUIPMENT SPARES} & \multicolumn{5}{|c|}{STOCK SPARES} \\
\hline \multirow[t]{2}{*}{ACIIVITY} & \multicolumn{3}{|l|}{OVERALL DIMENSIONS (INCHES)} & \multirow[t]{2}{*}{volume (CU IN)} & \multirow[t]{2}{*}{WEIGHY (LBS)} & \multicolumn{3}{|c|}{OVERALL DIMENSIONS (INCHES)} & \multirow[t]{2}{*}{VOLUME (CU IN)} & \multirow[t]{2}{*}{\begin{tabular}{l}
WEIGHT \\
(LBS)
\end{tabular}} \\
\hline & HEIGHT & WIDTH & DEPTH & & & HEIGHT & WIDTH & DEPTH & & \\
\hline BUSHIPS & 9 & 8 & 3 & 216 & 2 & * & * & * & * & * \\
\hline MARINE CORPS & & & & & & * & * & * & * & * \\
\hline
\end{tabular}
* Weight and dimensions determined as shipped

TABLE 7-3. LIST OF MAJOR UNITS
\begin{tabular}{|c|c|c|c|}
\hline SYMBOL GROUP & QUANTITY & NAME OF MAJOR UNIT & NAVY TYPE OR A-N DESIGNATION \\
\hline 101 to 199 & 1 & RF Signal Generator & SG-85/URM-25D \\
\hline 201 to 299 & 1 & Power Supply & PP-977/URM-25D \\
\hline 301 to 399 & 1 & (5:1) Fixed Attenuator & CN-223/URM-25D \\
\hline 401 to 499 & 1 & (10:1) Fixed Attenuator & CN-224/URM-25D \\
\hline 501 to 599 & 1 & Impedance Adapter & MX-1487/URM-25D \\
\hline 601 to 699 & 1 & Test Lead & CX-1363/U \\
\hline 701 to 799 & 1 & Antenna Simulator & SM-35/URM-25 \\
\hline P801 & 1 & Coaxial Adapter & UG-201A/U \\
\hline W104 & 1 & Output RF Cable & CG-409/U (3'11) \\
\hline W105, W106 & 2 & Output RF Cable & CG-409/U (0'5") \\
\hline P901 & 1 & Connector, Adapter & UG-684A/U \\
\hline P1001 & 1 & Connector, Adapter & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PARTS} \\
\hline symbol DESIG. & name of part and DESCRIPTION & function & JAN. AND (NAVY TYPE) NO. & STANDARD NAVY AND (SIGNAL CORP. STOCK NO & mfgr. 2 MFGR'S DESIG. nation & & & \begin{tabular}{l}
ouan \\
PER \\
Equip
\end{tabular} \\
\hline \multicolumn{9}{|c|}{Attenuator} \\
\hline AT101 & ATTENUATOR, step: unbalanced ladder network; output 50 ohms; aluminum case; 12 sides: \(25 / 8^{\prime \prime}\) across flats \(\times 2 / 1 / 6^{\prime \prime}\) thick o/a excl connector and shaft; gear driven shaft; 6 steps, 20 db per step; RF coaxial cable (RG-55/U) input, BNC connector output;four No. \(4-40 \mathrm{mtg}\) holes \(90^{\circ}\) apart on \(13 / 4^{\prime \prime}\) diam. & \begin{tabular}{l}
Output Voltage \\
Attenuator
\end{tabular} & & & \[
\begin{aligned}
& \text { AT120 } \\
& \text { AT }
\end{aligned}
\] & 107-B-672 & AT101 & 1 \\
\hline \multicolumn{9}{|c|}{Capacitors} \\
\hline C101-1 & CAPACITOR, fixed: mica dielectric; single section; 10 uuf \(\pm 10 \%\); 300 vdcw; Spec. MIL-C-5/1. & V101 grid blocking capacitor, band A & CM15B100K & & & & \[
\begin{aligned}
& \text { C101-1, } \\
& 103-1,117
\end{aligned}
\] & 3 \\
\hline C102 & CAPACITOR, variable: ceramic dielectric; rotary type; single section; 3.0 uuf to 12.0 uuf; 500 vdcw ; Spec. MIL-\(\mathrm{C}-81\). & Carrier oscillator band A trimmer & CV11A120 & & & & C102, 104 106, 108, 110, 112, 114, 116 & 8 \\
\hline C103-1 & Same as C101-1. & V101 grid blocking capacitor band B & & & & & & \\
\hline C104 & Same as C102. & Carrier oscillator band B trimmer & & & & & & \\
\hline C105-1 & CAPACITOR, fixed: mica dielectric; single section; 18 uuf \(\pm 10 \%\); 300 vdcw; Spec. MIL-C-S/1. & V101 grid blocking capacitor band C & CM15B180K & & & & C105-1 & 1 \\
\hline C106 & Same as C102. & Carrier oscillator band C trimmer & & & & & & \\
\hline C107-1 & CAPACITOR, fixed: mica dielectric; single section; 36 uuf \(\pm 10 \% ; 300\) vdcw; Spec. MIL-C. \(5 / 1\). & V101 grid blocking capacitor band D & CM15B360K & & & & \[
\begin{aligned}
& \text { C107-1, } \\
& \text { 109-1 }
\end{aligned}
\] & 2 \\
\hline C108 & Same as C102. & Carrier oscillator band D trimmer & & & & & & \\
\hline
\end{tabular}
table 7-4. COMBINED PARTS AND SPARE PARTS LIST (Continued)

3－48 thd axial screw term． \(1 / 33^{\prime \prime}\) lg；one axial wire term． ．067＂dia \(\times .386^{\prime \prime} \mathrm{lg}\) ；uninsulated；baked enamel coating． CAPACITOR，fixed：paper dielectric； 0.25 uf \(+\mathbf{2 0} \%-10 \%\) ； 400 vdcw ；characteristic \(\operatorname{ltr} F\) ；hermerically sealed（glass to metal）tubular；wax impregnated；internally grounded； uninsulated； 400 im ．diam \(x \mathrm{I}^{3 / 8^{\prime \prime}} \mathrm{lg}\) excl mtg bshg and term．； \(5 / 16^{\prime \prime}-24\) thd \(x 1 / 32^{\prime \prime} \lg\) mtg bshg w／hex nut and lock－ washer；one axial wire lead．
C122 CAPACITOR，fixed：ceramic dielectric；feed－through type； 1000 uuf \(\pm 20 \%\) ； 500 vdcw ；power factor \(2.5 \%\) ；special temp coeff； \(5 / 8 \mathrm{lg} \times 5 / 16^{\prime \prime}\) diam； 2 axial wire feads each terminated in a \(1 / s^{\prime \prime} \lg\) loop；one No． \(12-28 \times 1 / 32^{\prime \prime}\) Ig axial screw for mig；uninsulated．
CAPACITOR，variable；air dielectric；plate meshing type； single section； 12 uuf to 479 uuf； \(39 / 6^{\prime \prime} \lg \times 29 / 32^{\prime \prime}\) wd \(x\)
 plated plates； \(180^{\circ}\) counterclockwise rotation．
Same as C122．
CAPACITOR，fixed：ceramic dielectic；stand－off type； 1000 uuf \(\pm 20 \%\) ； 500 vdcw；power factor 2．5\％＠ 1 KC ； special temp．coeff； \(1 / 64\) Ig \(\times\)／16＂diam；one \(/ 4-28\) thd axial screw term． \(3 / 8\)＂lg；one axial post term；internally grounded；insulated．

Same as \(\mathrm{Cl}_{2} 25\)

CAPACITOR，fixed：ceramic dielectric；feed－through type； 1000 uuf \(\pm 20 \%\) ； 500 vdcw ；power factor \(2.5 \%\)＠ 1 KC ； special temp coeff； \(3 / 4^{\prime \prime} \lg \times 5 / 10^{\prime \prime}\) diam； 2 axial wire leads each terminated in \(1 / 8^{\prime \prime} \lg\) loop；one \(1 / 4 " 28 \times 7 / 32^{\prime \prime} \lg\) axial screw for mtg；insulated．
Same as C127．

Same as C121．
CAPACITOR，fixed：paper dielectric； 0.01 uf \(\pm 20 \%\) ； 300 vdcw；Spec．MIL－C－91／2．

Ci31 CAPACITOR，fixed：mica dielectric； 150 uuf \(\pm 10 \%\) ； 300 vdcw；Spec．MLL－C－5／1．
C132．CAPACITOR，fixed：electrolytic； 25 uf； 25 vdcw ；her－ metically sealed in tubular aluminum case；3／4＂diam \(x\) \(15 /\)＂\(^{\prime \prime} \lg : 2\) axial solder lug term．

C133
V101 plate circuit
bypass capacitor

V101 plate circuit
bypass capacitor
（feed thru）
Main Tuning
Capacitor
V101 heater
bypass capacitor
V101 B＋RF
filter capacitor

V101 heater filter
capacitor
V101 B＋RF
filter capacitor cathode RF
bypass
（feed－thru）
V101 heater RF
filter capacitor
（feed－thru）
V102 screen bypass
V102 output coupling
capacitor
V103 input coupling
capacitor
V103 cathode bypass
\begin{tabular}{|c|c|c|}
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \underset{\sim}{\sim} \underset{\sim}{N} \\
& \underset{\sim}{6}
\end{aligned}
\]} & & \[
\stackrel{\sim}{\sim} \underset{O}{0}
\] & \[
\stackrel{\pi}{\approx}
\] & & & \\
\hline & － & & جֵ & & \[
\begin{aligned}
& \text { V } \\
& \dot{1} \\
& \text { in } \\
& \tilde{N}
\end{aligned}
\] & － & 合 \\
\hline － & \(\underset{\sim}{\sim}\) & & & & \[
\frac{n}{N}
\] & \[
\begin{aligned}
& \boxed{0} \\
& \text { N } \\
& \text { ה }
\end{aligned}
\] & \[
\begin{array}{r}
\text { AN } \\
\text { N } \\
\text { N }
\end{array}
\] \\
\hline \(N\) & － & －\(\quad\)－ & \(\bigcirc\) & \(=\) & － & A & \(\omega\) \\
\hline
\end{tabular}
TABLE 7-4. COMBINED PARTS AND SPARE PARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PARTS} \\
\hline symbol DESIG. & name of part and DESCRIPTION & function & JAN. AND (NAVY TYPE) NO. & standard navy AND (SIGNAL CORP. sTOCK NO. & MFGR. \& MFGR'S DESIGNATION & CON-
TRACIOR drawing part no. & & QUAN PER EQUIP. \\
\hline \multicolumn{9}{|c|}{Capacitors (cont)} \\
\hline C 134 & CAPACITOR, fixed: paper dielectric; 0.1 uf \(\pm 20 \%\); 400 vdiw; characteristic Itr F; hermetically sealed (glass to metal) tubular; wax impregnated; internally grounded; uninsulated; \(.400^{\prime \prime}\) diam \(\times 3 / 4^{\prime \prime} \lg\) excl mtg bshg and term.; K/6"-24 thd \(x 1 / 32 " \lg \mathrm{mtg}\) bshg \(\mathrm{w} / \mathrm{hex}\) nut and lockwasher: one axial wire lead. & V103 screen bypass & & & \[
\begin{aligned}
& (14) \\
& \text { XG-1816. } \\
& \mathrm{N}
\end{aligned}
\] & \[
\begin{aligned}
& 107-\mathrm{A}- \\
& 659-1
\end{aligned}
\] & C134 & 1 \\
\hline C135 & CAPACITOR, fixed: mica dielectric; 10,000 uuf \(\pm 5 \%\); 300 vd w ; Spec. MIL-C-5/5. & V103 output coupling capacitor & CM35D103J & & & & C135 & 1 \\
\hline Ci36 & CAPACITOR, fixed: mica dielectric; 510 uuf \(\pm 5 \% ; 300\) vdew; Spec. MIL-C-5/1. & V103 RF output coupling capacitor & CM15B511J & & & & C136 & 1 \\
\hline C137 & Same as C125. & VTVM (V104) output decoupling capacitor & & & & & & \\
\hline C138 & Same as \(\mathrm{Cl}_{12} 5\) & VTVM (V104) & & & & & & \\
\hline C139 & Same as C133. & VTVM (V104) & & & & & & \\
\hline C140 & Same as C121. & \[
\begin{aligned}
& \text { V102 and V103 } \\
& \text { B+ bypass }
\end{aligned}
\] & & & & & & \\
\hline C141 & Same as C12S. & \begin{tabular}{l}
V102 and V103 \\
B+RFfiter \\
capacitor
\end{tabular} & & & & & & \\
\hline \(\mathrm{C}_{142}\) & Same as C125. & Modulation input RF filter capacitor & & & & & & \\
\hline \(\mathrm{Cl}_{143}\) & Same as \(\mathrm{C}_{125}\). & V102 and V103 and V104 heater RF filter capacitor & & & & & & \\
\hline C144 & Same as C125. & V103 screen voltage RF filter capacitor & & & & & & \\
\hline \(\mathrm{Cl}_{4} 4\) & Same as C125. & VTVM (V104) output RF filter capacitor & & & & & & \\
\hline C146 & Same as C127. & \begin{tabular}{l}
\(\mathrm{V}_{102}\) and V103 \\
B+ RF filter capacitor (feed-thru)
\end{tabular} & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{10}{*}{} & \(\mathrm{Cl}_{14}\) & Same as C 127. & Modulation input RF filter capacitor (feed•thru) \\
\hline & \(\mathrm{Cl}_{148}\) & Same as C127. & V102, V103 and V104 heater RF filter capacitor (feed-thru) \\
\hline & C149 & Same as Cl 127. & V103 screen voltage RF filter capacitor (feed-thru) \\
\hline & C150 & Same as C127. & VTVM (V104) output RF filter capacitor (feed-thru) \\
\hline & Cl 51 & Same as \(\mathrm{Cl}_{125}\). & V105 B+RF filter capacitor \\
\hline & C 152 & Same as C125. & V105 output RF filter capacitor \\
\hline & C 153 & Same as Cl 27. & V105 B+RF filter capacitor (feed-thru) \\
\hline & C 154 & Same as Ci27. & Vios output RF filter capacitor (feed thru) \\
\hline & C155 & Same as C130. & V105 screen bypass \\
\hline & Cis6 & CAPACITOR, fixed: mica dielectric; 270 uuf, \(\pm 10 \% ; 500\) vdcw; Spec. MIL-C-5/1. & \(V 105\) feed back capacitor \\
\hline & C 157 & CAPACITOR, fixed: ceramic dielectric; 12 uuf \(\pm 2 \% ; 500\) vdcw; Spec. JAN-C-20A. & V105 grid capacitor \\
\hline & C 158 & CAPACITOR, variable: ceramic dielectric; rotary type: single section; 6 uuf to 25 uuf; 500 vdcw ; Spec. JAN-C-81. & V105 frequency adjusting capacitor \\
\hline & C159 & Same as Ci30. & V105 output coupling capacitor \\
\hline & C 160 & CAPACITOR, fixed: mica dielectric; 1000 uuf \(\pm 2 \%: 500\) vdcw; Spec. MIL-C. \(5 / 1\). & V106 bridge capacitor \\
\hline & \(\mathrm{Cl} \mathrm{Cl}_{1}\) & Same as Cl 160. & V106 bridge capacitor \\
\hline & C162 & CAPACITOR, fixed: paper dielectric; 0.1 uf \(\pm 20 \%\); 400 vdcw; Spec. MIL-C-91/7. & V106 output coupling capacitor \\
\hline & C163 & Same as C162. & Vio6 output coupling capacitor \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PARTS} \\
\hline SYMBOL DESIG. & name of part and DESCRIPTION & function & JAN. AND (NAVY TYPE) NO. & STANDARD NAVY AND (SIGNAL CORP. STOCK NO. & MFGR. 2 MFGR'S DESIGNATION & & & \begin{tabular}{l}
QUAN
PER
EQUP \\
EQUIP
\end{tabular} \\
\hline \multicolumn{9}{|c|}{Capacitors (cont)} \\
\hline C164 & Same as \(\mathrm{Cl}_{130}\). & V106 coupling capacitor & & & & & & \\
\hline Cl 65 & Same as C130. & V107 input capacitor & & & & & & \\
\hline C166 & CAPACITOR, fixed: paper dielectric; 0.2 uf \(\pm 20 \%\) : 120 vdcw; Spec. MLL-C-91/7. & V107 output coupling capacitor & CN43EY204M & & & & C166, 167 & 2 \\
\hline C167 & Same as Cl g6. & V107 output coupling capacitor & & & & & & \\
\hline C168 & Same as C122. & Line filter capacitor & & & & & & \\
\hline C169 & Same as C122. & Line filter capacitor & & & & & & \\
\hline C170 & CAPACITOR, fixed: mica dielectric; 1000 uuf \(\pm 10 \%\); 500 vdcw; Spec. MIL-C-5/4. & J105 RF filter capacitor & CM30B102K & & & & C170 & 1 \\
\hline C201 & CAPACITOR, fixed: paper dielectric; 4 uf \(\pm 10 \%\); 600 vdcw; Spec. MIL-C-25A. & Power supply filter capacitor & \[
\begin{aligned}
& \mathrm{CP}_{40 \mathrm{C} 2 \mathrm{FF}} \\
& 405 \mathrm{~K}
\end{aligned}
\] & & & & \[
\begin{aligned}
& \text { C201, 202, } \\
& 203
\end{aligned}
\] & 3 \\
\hline C202 & Same as C201. & Power supply filter capacitor & & & & & & \\
\hline C203 & Same as C201. & Power supply filter capacitor & & & & & & \\
\hline C204 & CAPACITOR, fixed: paper dielectric; 0.15 uf \(\pm 10 \% ; 400\) vdew; characteristic lir F; hermetically sealed (glass to metal) tubular; wax impregnated; insulating sleeve; . \(400^{\prime \prime}\) diam \(\times 1 / 1 /{ }_{6}^{\prime \prime}\) lg; 2 axial wire leads. & L201 resonating capacitor & & & \[
\begin{aligned}
& \text { (14) } \\
& \text { XFS-1856 }
\end{aligned}
\] & 107-A-311 & C204 & 1 \\
\hline C601 & CAPACITOR, fixed: paper dielectric; 0.1 uf \(+20 \%\) \(-10 \%\); 400 vdcw ; characteristic ltr F ; hermetically sealed (glass to metal) tubular; wax impregnated; insulating sleeve; \(.400^{\prime \prime}\) diam \(\times 13 / \beta^{\prime \prime} 1 \mathrm{lg} ; 2\) axial wire leads. & p/o Test lead CX-363/U & & & \begin{tabular}{l}
(14) \\
XFS-1816
\end{tabular} & 107-A-295 & C601 & 1 \\
\hline C 602 & CAPACITOR, fixed: mica dielectric; 510 uuf \(\pm 5 \% ; 500\) vdew: Spec. MIL-C-5/2. & p/o Test lead CX-1363/U & CM20B51IJ & & & & C602 & 1 \\
\hline
\end{tabular}

\section*{Panel Knobs and Miscellaneous Electrical Accessories}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline E101 & SHIELD, electron tube: copper, nickel pl; cylindrical; open top; twist lock med to socket saddle; \(13 / 4^{\prime \prime} \lg \mathbf{x} \cdot 810^{\prime \prime}\) diam x \(930^{\prime \prime}\) diam of flange piece; w/compression spring; JAN-S-28A. & Tube shield for V101 & TS102U02 & & & & \[
\begin{aligned}
& \text { E101, 102, } \\
& 105,107
\end{aligned}
\] & 4 \\
\hline E102 & Same as E101. & Tube shield for V102 & & & & & & \\
\hline E103 & Not used. & & & & & & & \\
\hline E104 & SHIELD, electron tube: copper, nickel pl; cylindrical; open top; twist lock mod to socket saddle; \(13 / 8^{\prime \prime} \lg \times .810^{\prime \prime}\) diam x.930" diam of flange piece; w/compression spring; JAN-S-28A. & Tube shield for V104 & TSi02U01 & & & & E104 & 1 \\
\hline E105 & Same as E101. & Tube shield for V105 & & & & & & \\
\hline E106 & SHIELD, electron tube: copper, nickel pl; cylindrical; open top; twist lock motd to socket saddle; \(15 / 16^{11} \mathrm{lg} \mathbf{x}\) \(.950^{\prime \prime}\) diam x \(1.065^{\prime \prime}\) diam of flange piece; w/compression spring; JAN-S-28A. & Tube shield for Vior & TS103U02 & & & & E106 & 1 \\
\hline E107 & Same as El01. & Tube shield for V107 & & & & & & \\
\hline E108 & SHIELD, electron tube: copper, nickel pl ; cylindrical; open top; twist lock mid to socket saddle: \(2 \frac{1}{4}\) " \(\lg \mathrm{x}\) \(.810^{\prime \prime}\) diam x \(.930^{\prime \prime}\) diam of flange piece; w/compression spring; JAN-S-28A. & Tube shield for V108 & TS102U03 & & & & F108, 201 & 2 \\
\hline E109 & CAP: for BNC connectors; brass silver pl; round; approx \(5 / 8^{\prime \prime} \lg \times 9 / 16^{\prime \prime}\) diam; twist lock mtg; approx \(2^{\prime \prime} \lg\) chain for securing to panel; Navy Dwg REA49050. & Protective cap for J101 & \begin{tabular}{l}
Army-Navy \\
Type CW 123 \\
A/U
\end{tabular} & & & & \[
\begin{aligned}
& \text { E109, } 110 \\
& 111
\end{aligned}
\] & 3 \\
\hline E110 & Same as E109. & Protective cap for J102 & & & & & & \\
\hline
\end{tabular}
TABLE 7-4. COMBINED PARTS AND SPARE PARTS LIST (Continued)
PARTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PARTS} \\
\hline SYMbOL
DESIG. & name of part and DESCRIPTION & FUNCTION & \[
\begin{aligned}
& \text { JAN. AND } \\
& \text { (NAVY TYPE) } \\
& \text { NO. }
\end{aligned}
\] & STANDARD NAVY AND (SIGNAL CORP. STOCK NO. & MFGR. MFGR'S DESIGNATION & CON-
TRACIOR drawing part No & & \[
\begin{array}{|l|l}
\text { QUAN. } \\
\text { PEERIP. } \\
\text { EQUP. }
\end{array}
\] \\
\hline
\end{tabular}
Panel Knobs and Miscellaneous Electrical Accessories (cont)

\begin{tabular}{|c|c|}
\hline F101 & FUSE, cartridge: 1 amp; open in one hr at \(135 \%\) load; rated continuous at \(110 \%\) load; 250 V ; one time; glass body; ferrule term.; \(11 / 4^{\prime \prime} \lg \times 1 / 4^{\prime \prime}\) diam o/a; term. K \(\%_{6}{ }^{\prime \prime} \lg\) \(\mathrm{x} 1 / 4^{\prime \prime}\) diam; slow blowing; MIL-F-15160C; MS90078. \\
\hline F102 & Same as Fior. \\
\hline F103 & Same as Fiot. \\
\hline F104 & Same as Fior. \\
\hline
\end{tabular}

Lamp
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Lamp} \\
\hline 1101 & LAMP, neon: \(105-125 \mathrm{~V}\); \(1 / 25 \mathrm{~W}\); bulb T-3, \(1 / 4\), clear; min bay s.c.; burn any position. & Power On-Off indicator & (VO-16) & GE NE-51 & 107-A-686 & I 101 & 1 \\
\hline
\end{tabular}

\section*{Connectors (Jacks and Receptacles)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline J101 & CONNECTOR, receptacle: BNC; Navy Dwg ReB49073. & RF Output X200K, Open Circuit receptacle & UG-290A/U & & & J101, 105 & 2 \\
\hline J102 & CONNECTOR, receptacle: 1 round coaxial female contact; straight. & \begin{tabular}{l}
p/o Step attenuator \\
AT101
\end{tabular} & & & & J102 & 1 \\
\hline J103 & CONNECTOR. receptacle: 1 round coaxial female contact; straight; MS35179 (SIG C). & Connector for step attenuator AT101 & UG-1094/U & & & J103, 301, 302, 401, 402, 501, 502, 601, 701, 702 & 10 \\
\hline \(J 104\) & Ref Desig Cancelled. & & & & & & \\
\hline J105 & Same as J101. & Ext Mod In-Audio Out-Xtal Cal Out receptacle & & & & & \\
\hline J201 & CONNECTOR, receptacle: two flat polarized blades: \({ }^{1 / 3 / 21}\) diam \(\times 1 / 2^{\prime \prime}\) high excl contacts and term.; 730 V RMS; 10 amp ; cylindrical black bakelite body; flange type metal mtg bracket \(\mathrm{w} /\) two \(.152^{\prime \prime}\) diam mtg holes on \(3_{3_{2}^{\prime \prime}} \mathrm{mtg} / \mathrm{C}\); 2 solder lug term. & \(A C\) input receptacle on power supply sub-chassis & & \[
\begin{aligned}
& (17) \\
& \text { P-302-AB }
\end{aligned}
\] & 107.A-312 & J201 & 1 \\
\hline
\end{tabular}
2 solder lug term.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{9}{|c|}{PARTS} \\
\hline & SYMBOL DESIG. & name of part and DESCRIPTION & FUNCTION & JAN. AND (NAVY TYPE) NO. & \(\qquad\) & \begin{tabular}{l}
MFGR. 8 \\
MFGR'S DESIGNATION
\end{tabular} & CONTRACTOR DRAWING PART NO. & \begin{tabular}{l}
ALL \\
SYMBOL DESIG. INVOLVED
\end{tabular} & \[
\begin{aligned}
& \text { QUAN. } \\
& \text { PER } \\
& \text { EQUIP. }
\end{aligned}
\] \\
\hline & \multicolumn{9}{|c|}{Connectors (Jacks and Receptacles) (cont)} \\
\hline & \[
\mathrm{J} 202
\] & CONNECTOR, receptacle: 6 rectangular polarized female contacts, straight; \(l^{\prime \prime} \lg \times 1 / 10^{\prime \prime}\) wd \(\times 1 / 2^{\prime \prime}\) high excl term., rectangular black bakelite body; flange type metal mtg bracket \(w /\) two \(0.152^{\prime \prime}\) diam holes on \(1^{\prime \prime} \mathrm{mtg} / \mathrm{C}\); solder lug term. & Power supply output & & & \[
\begin{aligned}
& (17) \\
& S-306-A B
\end{aligned}
\] & 107-A-313 & J202 & 1 \\
\hline & J301 & Same as J 103. & Connector for (5:1) fixed attenuator CN-223/URM-25D & & & & & & \\
\hline & J302 & Same as J103. & Connector for (5:1) fixed attenuator CN-223/URM-25D & & & & & & \\
\hline & J401 & Same as J103. & Connector for (10:1) fixed attenuator CN-224/URM-25D & & & & & & \\
\hline & J402 & Same as J103. & \[
\begin{aligned}
& \text { Zonnector for (10:1) } \\
& \text { fixed attenuator } \\
& \text { CN-224/URM-25D }
\end{aligned}
\] & & & & & & \\
\hline & J501 & Same as J103. & Connector for impedance adaptor MX-1487/URM-25D & & & & & & \\
\hline & \[
J 502
\] & Same as J 103. & Connector for impedance adaptor MX-1487/URM-25D & & & & & & \\
\hline & J601 & Same as \({ }^{\text {d }} 103\). & \begin{tabular}{l}
Connector for test \\
lead CX-1363/U
\end{tabular} & & & & & & \\
\hline & J701 & Sarne as J103. & Connector for antenna simulator SM-35/URM-25 & & & & & & \\
\hline & J702 & Same as J 103. & Connector for antenna simulator SM-35/URM-25 & & & & & & \\
\hline & \multicolumn{9}{|c|}{Inductors} \\
\hline \[
\begin{aligned}
& n \\
& \underset{Y}{Z} \\
& Z \\
& \vdots \\
& \omega \\
& \omega
\end{aligned}
\] & L101 & COIL, RF: oscillator; single winding; 2 pie universal wound; tapped; \(11 / 0^{\prime \prime}\) max diam \(\times 13 / 8^{\prime \prime} \lg\) excl mtg bshg; 511.5 mh ; ceramic form; adjustable powdered iron core; screw driver adjustment at bottom of coil; \(1 / 4^{\prime \prime}-28 \times 5 / 10^{\prime \prime}\) lg mtg bshg; silicone-fibreglass collars w/one term. on top and two term. on bottom; impregnated. & Band A oscillator coil & & N16.C-76858-2975 & \[
\begin{aligned}
& (25) \\
& 107-\mathrm{B}-632
\end{aligned}
\] & 107-B-632 & L101 & 1 \\
\hline
\end{tabular} top and two term. on bottom; impregnated.
COIL，RF：oscillator；single winding； 1 pie universal wound；tapped \(1^{1 / 6 "}\) max diam \(x 1^{3 / 2}\)＂ g exct mtg bshg： 56.2 mh ；ceramic form；adjustable powdered iron core； crew driver adjustment at bottom of coil； \(1 / 4^{\prime \prime}-28 \times 5 / 16^{\prime \prime}\) lg mtg bshg；silicone－fibreglass collars w／one term．on top and two term．on bottom；impregnated．
COIL，RF：oscillator；single winding； 1 pie universal wound；tapped；＂1／6＂max diam \(\times 11^{3 / 8}\)＂ \(1 g\) excl mtg bshg； 5.7 mh ；ceramic form；adjustable powdered iron core； screwdriver adjustment at bottom of coil； \(1 / 4^{\prime \prime}-28 \times 5 / 6^{\prime \prime}\) Ig bshg；silicone－fibreglass collars w／one term，on top and two term．on bottom；impregnated．
COIL，RF：oscillator：single winding， 1 pie universal wound；tapped； \(11 / \mathbf{g}^{\prime \prime}\) max diam \(\times 13 / \mathbf{g}^{\prime \prime}\) lg excl mtg bshg； .574 mh ；ceramic form adjustable powdered iron core； screwdriver adjustment at bottom of coil； \(1 / 4 "-28 \times 5 / 16^{\prime \prime}\) lg mtg bushing；silicone－fibreglass collars w／one term． on top and two term．on bottom；impregnated．
COIL，RF：oscillator；single winding； 1 pie universal wound；tapped；＂1／16＂max diam x \(13 / 8^{\prime \prime}\)＂ lg excl matg bshg； 57.1 uh；ceramic form；adjustable powdered iron core； screwdriver adjustment at bottom of coil； \(1 / 4 "-28 \times 5 / 6^{\prime \prime}\) lg mitg bushing；silicone－fibreglass collars w／one term． on top and one term．on bottom；impregnated．
COIL，RF：oscillator；single winding；single layer wound； tapped；1／10＂max diam x \(13 / \mathbf{s}^{\prime \prime} \lg\) excl mtg bshg； 5.79 uh； ceramic form；adjustable powdered iron core；screwdriver adjustment at bottom of coil； \(1 / 41-28 \times 5 / 61 \mathrm{lg} \mathrm{mtg}\) bshg； silicone－fibreglass collars \(w / o n e\) term．on top and two term．on bottom；impregnated．
COIL，RF：oscillator；single winding；single layer wound； tapped；＂1／6＂max diam x \(13 / 8^{\prime \prime} \mathrm{lg}\) excl mtg bshg； .576 uh； ceramic form；adjustable powdered iron core；screwdriver adjustment at bottom of coil； \(1 / 4 "-28 \times 3 / 10^{\prime \prime} \mathrm{lg} \mathrm{mtg}\) bshg； sticone－fibreglass collars w／one term．on top and one term．on bottom；impregnated．
COIL，RF：oscillator；single winding：single layer wound； tapped；＂／16＂max．diam x \(13 / 8\)＂lg excl mtg bshg；． 21 uh ； ceramic form；adjustable powdered iron core；screwdriver adjustment on bottom of coil； \(1 / 4-28 \times 5 / 10\) Ig mtg bshg； adjustment on bottom of coil： \(1 / 4-28 \times 3 / 10 \mathrm{lg} \mathrm{mtg}\) bshg；
silicone－fibreglass collars w／one term．on top and one silicone－fibreglass collars w／one
term．on bottom；impregnated：
COIL，RF：choke；single winding； 4 pie；universal wound； \(2.5 \mathrm{mh} ; \pm 5 \% ; \mathrm{l}^{\prime \prime} \mathrm{lg} \times 7 / \mathrm{m}^{\prime \prime}\) max diam；solid phenolic form； two \(1 \frac{1}{2}\)＂ \(\lg\) axial wire leads
Band B oscillator coil
Band C oscillator coil
Band D oscillator coil
Band E osciliator coil
Bio1 heater RF
Band F oscillator coil
Bhake RF filter
Band G oscillator coil
Bascillator coil
Bal
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline － & － & － & \(\cdots\) & \(\cdots\) & \(\cdots\) & － & n & \(N\) \\
\hline \[
\begin{aligned}
& \text { N } \\
& \mathbf{O} \\
& -\mathbf{1}
\end{aligned}
\] & \(\stackrel{\text { N1 }}{2}\) & \(\xrightarrow{ \pm}\) & \[
\stackrel{\because}{\ddot{\omega}}
\] & \[
\stackrel{O}{2}
\] & \[
\underset{a}{\hat{0}}
\] & \[
\stackrel{\infty}{\circ}
\] & \[
\begin{aligned}
& \underset{\sim}{v} \\
& \stackrel{\rightharpoonup}{a} \\
& \underset{\sim}{n}
\end{aligned}
\] & \[
\begin{aligned}
& \text { 을 } \\
& \text { O } \\
& 3
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& \underset{6}{*} \\
& \stackrel{y}{0} \\
& \stackrel{y}{5}
\end{aligned}
\] & & & & & & & \[
\stackrel{\text { が }}{\stackrel{y}{c}}
\] \\
\hline & & & & & & N & & \\
\hline
\end{tabular}

TABLE 7-4. COMBINED PARTS AND SPARE PARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PARTS} \\
\hline SYMBOL desig. & name of part and DESCRIPTION & function & JAN. AND (NAVY TYPE) NO. & STANDARD NAVY AND (SIGNAL CORP.) STOCK NO & MFGR. \& MFGR'S desigNATION & CONTRACTOR drawing PART NO. & All desig. involved & QUAN PER EQUIP \\
\hline \multicolumn{9}{|c|}{Inductors (cont)} \\
\hline L/11 & COIL, RF: choke: single winding: single layer wound; 2.0 uh \(\pm 10 \%\); 1.7 ohms \(\pm 20 \%\) dc resistance; 300 ma ; insulated; molded mica-filled phenolic compound; \(1 / 4^{\prime \prime}\) diam \(\times{ }^{23 / 32^{\prime \prime}} \lg\); two \(1 \frac{1}{2 \prime \prime}\) axial wire leads. & V102 coupling network coil & & & \[
\begin{aligned}
& (16) \\
& \text { Type CLA }
\end{aligned}
\] & \[
\begin{array}{|l}
100 \cdot \mathrm{~B} \\
130-9
\end{array}
\] & L111, 112 & 2 \\
\hline L112 & Same as Lilli. & V102 coupling network coil & & & & & & \\
\hline 1113 & COIL, RF: choke; single winding; single layer wound; .68 uh \(\pm 15 \% ; .44\) ohms \(\pm 30 \%\) dc resistance; 600 ma ; insulated; molded mica-filled phenolic compound; \(1 / 4^{\prime \prime}\) diam \(\times 2{ }^{2} / 2^{\prime \prime} \lg ;\) two \(11 / 2^{\prime \prime} \lg\) axial wire leads. & V102 coupling network coil & & & \[
\begin{aligned}
& (16) \\
& \text { Type CLA }
\end{aligned}
\] & \[
\begin{aligned}
& 100-\mathrm{B} \\
& 130-3
\end{aligned}
\] & L113 & 1 \\
\hline 1114 & COIL, RF: choke; single winding; single layer wound; \(1.5 \mathrm{uh} \pm 10 \% ; 1.2\) ohms \(\pm 20 \%\) dc resistance; 350 ma ; insulated; molded mica-filled phenolic compound; \(1 / 4^{\prime \prime}\) diam \(\times{ }^{23 / 2 \prime \prime} 1 g\); two \(11 / 2^{\prime \prime} \lg\) axial wire leads. & V103 coupling network coil & & & \[
\begin{aligned}
& (16) \\
& \text { Type CLA }^{2}
\end{aligned}
\] & \[
\begin{aligned}
& 100-\mathrm{B}-\mathrm{-} \\
& 130-7
\end{aligned}
\] & L114 & 1 \\
\hline 1115 & COIL, RF: choke; single winding; single layer wound; 1.2 uh \(\pm 10 \% ; .85\) ohms \(\pm 20 \%\) dc resistance; 400 ma ; insulated; molded mica-filled phenolic compound; \(1 / 4^{\prime \prime}\) diam \(\times{ }^{23} 3_{2}\) " lg ; two axial wire leads. & V103 coupling network coil & & & \[
\left|\begin{array}{l}
(16) \\
\text { TypeCLA }
\end{array}\right|
\] & \[
\begin{aligned}
& 100-\mathrm{B}- \\
& 130.6
\end{aligned}
\] & L115 & 1 \\
\hline 1116 & Same as L109. & V103 plate choke & & & & & & \\
\hline 1117 & COIL, RF: choke: single winding: 3 pie universal wound: \(11.5 \mathrm{mh}: \pm 5 \%\); \%" diam \(\times 1^{\prime \prime} \mathrm{Ig}\); powdered iron core: with brass insert for mounting; two collars with term. & V103 plate choke & & & \[
\begin{array}{|l|}
\hline(25) \\
107 \cdot \mathrm{~B}-642
\end{array}
\] & 107-B-642 & L117, 118 & 2 \\
\hline \(\mathrm{L}_{118}\) & Same as L117. & V103 plate choke & & & & & & \\
\hline L119 & COIL, RF: choke; single winding; 2 pie universal wound; 100 uh; \(\pm 5 \%\); Yi" diam \(\times 5 / 3^{\prime \prime} \lg\) : solid phenolic form; two axial wire leads. & V102 and V103 B + RF filter coil & & & \[
\left\lvert\, \begin{array}{l|}
\mathbf{(2 5)} \\
107-\mathrm{B}-644
\end{array}\right.
\] & 107.B.644 & L119, 124 & 2 \\
\hline 1120 & Same as L 110. & V102, V103 and V104 heater RF filter coil & & & & & & \\
\hline L121 & Same as L109. & V105 cathode RF choke & & & & & & \\
\hline 122 & COIL, RF: choke; single winding: single layer wound; 7.0 uh: \(\pm i 0 \%\); .95 ohms \(\pm 10 \%\) dc resistance; 1 amp ; \(1 / 2\) diam \(\times 1^{\prime \prime} \mathrm{lg}\); phenolic core; two axial wire leads. & Line filter choke & & & \[
\begin{gathered}
(19) \\
2.50
\end{gathered}
\] & 107-A-422 & L122, 123 & 2 \\
\hline 1123 & Same as L122. & Line filter choke & & & & & & \\
\hline 1124 & Same as L119. & J105 RF filter choke & & & & & & \\
\hline
\end{tabular}
CHOKE, filter: \(11 \mathrm{~h} \pm 10 \% ; 75 \mathrm{ma} ; 400\) ohms max dc resistance; 750V RMS test; hermetically sealed metal case; \(178{ }^{\prime \prime} \lg \times 1 / 8{ }^{\prime \prime}{ }^{\prime \prime}\) \(x 3 / 3^{\prime \prime} \lg \mathrm{mtg}\) studs on \(11 / 2^{\prime \prime} \times 11 / 2^{\prime \prime} \mathrm{mtg} / \mathrm{c}\); two solder lu term. on bottom of case; Spec. MIL-T-27
L701
COIL, RF: single winding; single layer wound; 20 uh; \(\pm 10 \%\); \(280^{\prime \prime}\) diam \(\times 7 / \mathbf{g}^{\prime \prime}\) lg; powdered iron core form; two axial wire leads.
Power supply filter

p/o antenna
simulator
SM-35/URM-25
\begin{tabular}{|l|l|l}
\((25)\) & \(107-\mathrm{B}-310\) & L201 \\
\(107-\mathrm{B}-310\) & & \\
& & \\
\((25)\) & \(107-\mathrm{B}-\) & L70i \\
\(107-\mathrm{B}\) & \(645-1\) & \\
\(645-1\) & & \\
\hline
\end{tabular}
1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Meters} \\
\hline M101 & METER, multiscale: DC; range 0 to 100 micro-amps; hermetically sealed round metal flush mtg case; type MR26W per Spec. MIL-M-6B. & RF Output and percent modulation meter & & \[
\begin{aligned}
& 107-B-670 \\
& \text { and } \\
& 107-A-9
\end{aligned}
\] & M101 & 1 \\
\hline \multicolumn{7}{|c|}{Scales} \\
\hline N101 & SCALE, vernier: for interpolating frequency tuning dial; arc shape; aluminum; \(90^{\circ} \mathrm{lg}\) on \(13 / 10^{\prime \prime}\) outside radius and \(.885^{\prime \prime}\) inside radius; . \(101^{\prime \prime}\) thick; ten scale divisions; two \(.128^{\prime \prime}\) diam mtg holes spaced \(66^{\circ}\) apart on \(1.031^{\prime \prime}\) radius. & Vernier for tuning dial (N102) & \[
\begin{aligned}
& \text { (25) } \\
& 107-\mathrm{B}- \\
& 124 \mathrm{~B}
\end{aligned}
\] & \[
\begin{array}{|l}
\text { 107-B- } \\
124 \mathrm{~B}
\end{array}
\] & N101 & 1 \\
\hline N102 & DIAL, frequency tuning: etched aluminum dial plate and bakelite knob; round \(1 \frac{1}{4} 4^{\prime \prime}\) diam dial plate \(.0319^{\prime \prime}\) thk; \(1 / 3^{\prime \prime}\) diam knob; brass insert for \(1 / 4^{\prime \prime}\) diam shaft; two No. \(8-32\) setscrews; dial plate marked in 100 equally spaced divisions. & Main tuning & \[
\begin{aligned}
& (25) \\
& 107-B-671
\end{aligned}
\] & 107.B-671 & N102 & 1 \\
\hline N103 & DIAL, frequency scale: round; . \(064^{\prime \prime}\) thk brass; 280 teeth, 48 DP . on \(5.832^{\prime \prime}\) PD; \(1.125^{\prime \prime}\) diam hole in center; backlash spring pin \(.125^{\prime \prime}\) diam projecting \(.093^{\prime \prime}\) from back of dial \(2^{13 / 16^{\prime \prime}}\) from center; eight scales covering \(180^{\circ}\) each in two groups of four, top group in kilocycles, bottom group in megacycles; additional scale marked 0 to 1000 covering \(180^{\circ}\) on bottom section. & Frequency scale & \[
\begin{aligned}
& \text { (25) } \\
& 107-B-652
\end{aligned}
\] & 107-B-652 & N103 & 1 \\
\hline N104 & INDEX, frequency scale: \(003^{\prime \prime}\) thk transparent plastic per JAN-P-15; \(23 / 4^{\prime \prime}\) wd \(\times 61 / 4^{\prime \prime} \lg ; 11 / 2^{\prime \prime}\) diam hole in center: four \(.166^{\prime \prime}\) diam holes on \(2.375^{\prime \prime} \times 5.875^{\prime \prime} \mathrm{mtg} / \mathrm{c} ; .005^{\prime \prime}\) wide black hairline on long axis on both sides. & Frequency scale index & \[
\begin{aligned}
& (25) \\
& 107-B-566
\end{aligned}
\] & 107-B-566 & N104 & 1 \\
\hline N10s & WINDOW, frequency scale: . \(051^{\prime \prime}\) thk transparent plastic per JAN-P-15; \(13 / 4^{\prime \prime}\) wd x \(23 / \mathrm{B}^{\prime \prime}\) Ig; four \(.099^{\prime \prime}\) diam holes on \(1.312^{\prime \prime} \times 1.750^{\prime \prime}\) and \(2.00^{\prime \prime} \mathrm{mtg} / \mathrm{c}\). & Window for frequency scale & \[
\begin{aligned}
& (25) \\
& 107-A-174
\end{aligned}
\] & 107-A-174 & N105, 106 & 2 \\
\hline N106 & Same as Ni05. & Window for frequency scale & & & & \\
\hline
\end{tabular}

1511 SIyvd

TABLE 7-4. COMBINED PARTS AND SPARE PARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PARTS} \\
\hline SYMBOL DESIG. & NAME OF PART AND DESCRIPTION & FUNCIION & JAN. AND (NAVY TYPE) NO. & STANDARD NAVY AND (SIGNAI CORP.) sTOCK NO. & MFGR. 8 MFGR'S DESIG. NAIION & CON. tractor DRAWING PART NO. & All SYMBOL DESIG. involved & \[
\begin{aligned}
& \text { QUAR } \\
& \text { PER } \\
& \text { EQUII }
\end{aligned}
\] \\
\hline
\end{tabular}
Resistors (cont)

\begin{tabular}{|c|c|c|}
\hline R176 & RESISTOR, fixed: comp. \(3.3 \mathrm{meg} \pm 10 \%\); \(1 / 2 \mathrm{~W}\); Spec. MIL-R-11/2. & Xtal, Cal coupling resistor \\
\hline R179 & Same as R129. & V107 series grid resistor \\
\hline R201 & RESISTOR, fixed: wire wound; 3100 ohms \(\pm 5 \%\); 22W; Spec. MIL-R-26. & Power supply series dropping resistor \\
\hline R301 & RESISTOR, fixed: film; 75 ohms \(\pm 1 \% ; 1 / 2 W\); Spec. MIL-R-10509B. & p/o 5:1 fixed attenuator CN-223/URM-25D \\
\hline R302 & RESISTOR, fixed: film; 121 ohms \(\pm 1 \%\); \(1 / 2 \mathrm{~W}\); Spec. MIL-R-10509B. & p/o 5:1 fixed attenuator CN-223/URM-25D \\
\hline R303 & Same as R301. & p/o 5:1 fixed attenuator CN-223/URM-25D \\
\hline R401 & RESISTOR, fixed: film; 61.9 ohms \(\pm 1 \%\); \(1 / 2 \mathrm{~W}\); Spec. MIL-R-10509B. & p/o 10:1 fixed attenuator CN-224/URM-25D \\
\hline R402 & RESISTOR, fixed: film; 249 ohms \(\pm 1 \%\); \(1 / 2 W\); Spec. MIL-R-10509B. & p/o 10:1 fixed attenuator CN-224/URM-25D \\
\hline R-403 & Same as R401. & p/o 10:1 fixed attenuator CN-224/URM.25D \\
\hline R 501 & RESISTOR, fixed: film; 49.9 ohms \(\pm 1 \%\); \(1 / 2 \mathrm{~W}\); Spec. MIL-R-10509B. & \begin{tabular}{l}
\(\mathrm{p} / \mathrm{o}\) impedance \\
adapter \\
MX-1487/URM-25D
\end{tabular} \\
\hline R701 & RESISTOR, fixed: film; 402 obms \(\pm 1 \%\); \(1 / 2\) W; Spec. MIL-R-10509B. & p/o antenna simulator SM-35/URM-25 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
RC20GF335K \\
RW21G312 \\
RN70B75R0F \\
RN70B1210F \\
RN70B61R9F \\
RN70B2490F \\
RN70B49R9F \\
RN70B4020F \\
\hline
\end{tabular}

Switches

TABLE 7-4. COMBINED PARTS AND SPARE PARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PARTS} \\
\hline SYMBOL DESIG. & name of part and DESCRIPTION & Function & JAN. AND (NAVY TYPE) NO. & STANDARD NAVY AND (SIGNAL CORP.) STOCK NO. & MFGR. \& MFGR'S DESIGnation & CON-
TRACTOR drawing part no & \[
\begin{gathered}
\text { ALL } \\
\text { SYMBOL } \\
\text { DESIG. } \\
\text { INVOIVED }
\end{gathered}
\] & QUAN PER EQUIP \\
\hline \multicolumn{9}{|c|}{Switches (Cont)} \\
\hline S103 & \begin{tabular}{l}
SWITCH, toggle: DPST; 5 amps; 125v dc: phenolic body; \\
 normally open; solder lug term; single hole mtg bshg \(15 / 32^{\prime \prime}-32,15 / 32^{\prime \prime} \mathrm{lg}\); Spec. MIL-S-21195.
\end{tabular} & Power Off/On Switch & ST22K & & & & S103 & 1 \\
\hline \multicolumn{9}{|c|}{Transformer} \\
\hline T201 & TRANSFORMER, power: filament and plate type; 115 V , 50/1000 cyc; single ph; two output windings, sec \({ }^{(1-1}\) 6.5 V at \(4.5 \mathrm{amp} ; \mathrm{sec} * 2-450 \mathrm{~V}\) CT at 75 ma ; working voltage to ground, pri 165 V - RMS test 500 V , sec \({ }^{*} 1\) \(10 \mathrm{~V}-\) RMS test 500 V , sec \(\# 2-320 \mathrm{~V}-\) RMS test 900 V ; hermetically sealed rectangular case; \(3^{\prime \prime} \lg x 278^{\prime \prime}\) wd \(x\) \(33 / 4^{\prime \prime}\) high excl term; seven \(1 / 2^{\prime \prime}\) high standoff term; four No. \(8-32 \times 1 / 2^{\prime \prime} \mathrm{lg}\) mitg bolts on \(2^{\prime \prime} \times 23 /{ }^{\prime \prime} \mathrm{mtg} / \mathrm{c}\); Spec. MIL-T-27, Grade 1, Class A, Family 03. & Power Transformer & & & \[
\begin{aligned}
& (25) \\
& 107 \cdot \mathrm{~B}-309
\end{aligned}
\] & 107-B-309 & T201 & 1 \\
\hline \multicolumn{9}{|c|}{Terminal Boards} \\
\hline TB101 & BOARD, terminal: resistor, capacifor, Xtal diode mount ing board; 66 standoff lug term; XXX phenolic rectangular board, \(.093^{\prime \prime}\) thk; \(6^{\prime \prime} / 6^{\prime \prime} \lg x 4^{\prime \prime}\) wd; four \(.128^{\prime \prime}\) diam holes on \(1.750^{\prime \prime} \times 5.125^{\prime \prime} \mathrm{mtg} / \mathrm{c}\). & Audio and metering terminal board & & & \[
\begin{aligned}
& (25) \\
& 107 \cdot C-650
\end{aligned}
\] & 107-C-650 & TB101 & 1 \\
\hline TB102 & BOARD, terminal: 5 feedthrough lug term; XXX phenolic rectangular board, \(.093^{\prime \prime}\) thk; \(15 / 2^{\prime \prime} \lg \times 1 / 46^{\prime \prime}\) wd; two \(104^{\prime \prime}\) diam holes on " \({ }^{3} / 32^{\prime \prime} \mathrm{mtg} / \mathrm{c}\). & RF filters output & & & \[
\begin{array}{|l}
\text { (25) } \\
107-8-651
\end{array}
\] & 107-B-651 & TB102 & 1 \\
\hline TB103 & BOARD, terminal: resistor, capacitor, choke mounting board; 5 feed-through lug term, 4 standoff lug term; XXX phenolic board \(.093^{\prime \prime}\) thk; irregular shape; \(313 / 2^{\prime \prime} \lg x\) \(21 / 8^{\prime \prime}\) wd o/a; two \(128^{\prime \prime}\) diam holes on \(1 / 10^{\prime \prime} \mathrm{mtg} / \mathrm{c}\) & RF bracket terminal board assy & & & \[
\begin{aligned}
& (25) \\
& 107 \cdot B-720
\end{aligned}
\] & 107-B-720 & TB103 & 1 \\
\hline \multicolumn{9}{|c|}{Electron Tubes} \\
\hline \[
\begin{gathered}
V_{101} \\
V_{102} \\
V_{103} \\
V_{104} \\
V_{105}
\end{gathered}
\] & \begin{tabular}{l}
ELECTRON TUBE: R-F pentode; Spec. MIL-E-1. \\
Same as Vioi. \\
ELECTRON TUBE: power pentode; Spec. MLL-E-1. \\
ELECTRON TUBE: double-diode Spec. MIL-E-1. \\
electron tube: pentagrid Spec. MIL-E-1.
\end{tabular} & \begin{tabular}{l}
Carrier oscillator \\
Buffer stage \\
Output amplifier \\
Carrier volt meter \\
Crystal calibrator
\end{tabular} & & & & & \[
\begin{array}{|l}
V_{101,102,} \\
107 \\
V_{103} \\
V_{104} \\
V_{105}
\end{array}
\] & 1 \\
\hline
\end{tabular}
\(\varepsilon\) ヨコNVHつ を シコNVトコ V2 ELECTRON TUBE：double triode Spec．MIL－E－1．
Same as V101．
ELECTRON TUBE：voltage regulator Spec．MIL－E－1．
ELECTRON TUBE：full－wave high－vacuum rectifier
Spec．MIL－E－1．
\begin{tabular}{|l|c|}
\hline \begin{tabular}{l}
Modulation oscillator \\
\begin{tabular}{l}
Modulation cathode \\
follower
\end{tabular} \\
\begin{tabular}{l}
Voltage stabilizer \\
Power supply rectifier
\end{tabular} \\
\hline 6814 A \\
\hline
\end{tabular} & OA2WA \\
\hline
\end{tabular}

Sockets

芯
TABLE 7-4. COMBINED PARTS AND SPARE PARTS LIST (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PARTS} \\
\hline symbol DESIG. & name of part and DESCRIPTION & function & \[
\begin{aligned}
& \text { JAN. AND } \\
& \text { (NAVY IYPE) } \\
& \text { NO. }
\end{aligned}
\] & standard navy AND (SIGNAL CORP. STOCK NO. & MFGR. \& MFGR'S DESIGNAIION & \begin{tabular}{l}
CON-
TRACTOR dRAWING \\
PART No
\end{tabular} & & \\
\hline \multicolumn{9}{|c|}{Crystal} \\
\hline Y101 & CRYSTAL UNIT, quartz: one quartz plate, nominal frequency lmc; two . \(05^{\prime \prime}\) diam contact pins spaced \(0.486^{\prime \prime}\) C to C on bottom; rectangular metal body \(3 / 4^{\prime \prime} \lg \times 1 / 32^{\prime \prime}\) wd x \(3 / 4^{\prime \prime}\) high; not adjustable; Spec. MIL-C-3098. & Crystal calibrator (V105) crystal & CR-18/U & & & & Y101 & 1 \\
\hline \multicolumn{9}{|c|}{Accessories} \\
\hline W 101-1 & CABLE ASSEMBLY, power, electrical: c/o cable W108 with plug Pito at one end. & AC line cable & & & \[
\begin{aligned}
& \text { (25) } \\
& 142-\mathrm{B}-25
\end{aligned}
\] & 142-B-25 & W101-1 & 1 \\
\hline W104 & CABLE ASSEMBLY, RF: MIL type RG-58C/U cable 3 ft. \(11^{\prime \prime} \mathrm{lg}\); two MIL type UG-88C/U connectors, one at each end. & RF output cable & & & & & W104 & 1 \\
\hline W10s & CABLE ASSEMBLY, RF: MIL type RG-58C/U cable s" Ig ; two MIL type UG-88C/U connectors, one at each end. & Accessory RF output cable & & & & & W105, 106 & 2 \\
\hline W106 & Same as Wi05. & Accessory RF output cable & & & & & & \\
\hline W108 & CABLE, power, electrical: type SJ; 3 conductor, stranded, No. 18AWG; rubber insulation; cotton warp; rubber jacket. & p/o W101-1 & & & & & W108 & 6 ft . \\
\hline & ATTENUATOR, fixed: pi network; input and output impedance 50 ohms; 5:1 attenuation; enclosed in rectangular aluminum case \(2^{\prime \prime} \lg \times 1 /^{\prime \prime}\) wd \(\times 1^{\prime \prime}\) high; two UG-1094/U connectors, one at each end; each marked 5:1 Fixed Attenuator CN-223/URM-25D. & 5:1 fixed attenuator & & & \[
\begin{aligned}
& \text { (25) } \\
& 107 \cdot \mathrm{C} \cdot 663
\end{aligned}
\] & 107-C-663 & & 1 \\
\hline & ATTENUATOR, fixed: pi network; input and output impedance 50 ohms; 10:1 attenuation; enclosed in rectangular aluminum case \(2^{\prime \prime} \lg \times 11 / 4^{\prime \prime}\) wd \(\times 1^{\prime 2}\) high; (wo UG-1094/U connectors, one at each end; each marked 10:1 Fixed Attenuator CN-224/URM-25D. & 10:1 fixed attenuator & & & \[
\begin{aligned}
& \text { (25) } \\
& 107-C-662
\end{aligned}
\] & 107.C-662 & & 1 \\
\hline & ADAPTER, impedance: terminating resistor 50 obms; enclosed in rectangular aluminum case \(2^{\prime \prime} \lg \times 1 \frac{1}{4 \prime \prime}\) wd x \(1^{\prime \prime}\) high; two UG-1094/U connectors, one at each end; marked Impedance Adapter MX-1487/URM-251). & 50 ohms termination & & & \[
\begin{aligned}
& \text { 107) } \mathrm{C} \cdot 664
\end{aligned}
\] & 107-C-664 & & 1 \\
\hline & LEAD, test: one red lead MIL type MW-C20(7)U2; one black lead MIL type MW-C20(7)U0; \(16^{\prime \prime} \mathrm{lg}\); each wire term at one end in Mueller type 60CS alligator clip; red lead connected in series with a parallel combination of capacitors C 601 and C 602 ; black lead grounded to case; & Output test lead & & & \[
\begin{aligned}
& \text { (25) } \\
& 107-\mathrm{D}-683
\end{aligned}
\] & 107-D.683 & & 1 \\
\hline
\end{tabular}
rectangular aluminum case \(2^{\prime \prime} \lg \times 11 / 4 "\) wd \(x 1^{\prime \prime}\) high;
one UG. \(1094 / \mathrm{U}\) connector at each end; \(5 / 3^{\prime \prime}\) ID bushing at other end to permit entry of both leads; marked TEST LEAD CX-1363/U.
ANTENNA SIMULATOR: consists of inductor L701, capacitors C701 and C702 and resistor R701: enclosed in rectangular aluminum case \(2^{\prime \prime} \lg \times 1 / 4^{\prime \prime}\) wd \(\times 1^{\prime \prime}\) high; wo UG-1094/U connectors, one at each end; marked Antena Simulator SM-35/URM-25.
ADAPTER, coaxial: (described under symbol P801).
WRENCH: for No. 8 Allen setscrew.
WRENCH: for No. 10 Allen setscrew.
CONNECTOR, adapter: cylindrical nickel pl brass body,
\(1^{13} 1_{6}{ }^{\prime \prime} \lg \times 1^{\prime \prime}\) diam exd connectors; one BNC connector, receptacle, type UG-1094/U at one end; one phone jack, type JJ-03/ at other end; marked Connector Adapter UG-684A/U.
P1001

\section*{Dummy antenna}
BNC to N adapter
No. 8 Allen setscrew
wrench
wrench
Adapter from type
UG-88C/U BNC plug
to phone plug type
PJ-055
CONNECTOR, adapter: straight type; BNC type to mate with plug UG-88C/U one end; other end to mate with with plug UG-88C/U one end; other end to mate with
type 49120 receptacle; \(1^{13 / 16} \mathrm{in}\). Ig ; \(3 / 4 \mathrm{in}\). od; cylindrical shaped body; brass; sil pl ; molded Teflon insert

Adapter from type UG-88C/U to type 49120

TABLE 7-5. LIST OF MANUFACTURERS
\begin{tabular}{|clll|}
\hline \begin{tabular}{c}
ABBREVI- \\
AIIONS
\end{tabular} & PREFIX & \multicolumn{1}{c|}{ NAME } & \\
\hline 1 & CBZ & Allen-Bradley Co. & ADDRESS \\
2 & CQG & Belden Mfg. Co. & Milwaukee, Wis. \\
3 & CFA & Bussman Mfg. Co. & Chicago, Ill. \\
4 & CMC & Clarostat Mfg. Co. & St. Louis, Mo. \\
5 & & Croname Inc. & Brooklyn, N. Y. \\
6 & CAE & Cutler-Hammer, Inc. & Chicago, Ill. \\
7 & DLC & Dial Light Co. & Milwaukee, Wis. \\
8 & CEB & Eby, Hugh, Inc. & New York, N. Y. \\
9 & & Electra Mfg. Co. & Philadelphia, Pa. \\
10 & CER & Erie Resistor Co. & Kansas City, Mo. \\
11 & GE & General Electric Co. & Erie, Pa. \\
12 & GRA & General Radio & Cleveland, O. \\
13 & & Grigsby-Allison & Cambridge, Mass. \\
14 & CCF & Gudeman Co. & Arlington Heights, Ill. \\
15 & & Herzog Miniature Lamp Works & Chicago, Ill. \\
16 & CIR & International Resistance Corp. & New York, New York \\
17 & CJC & Jones, Howard B. & Philadephia, Pa. \\
18 & COC & Oak Mfg. Co. & Chicago, Ill. \\
19 & COM & Ohmite Mfg. Co. & Chicago, Ill. \\
20 & CRK & Radio Condenser Co. & Chicago; Ill. \\
21 & CSF & Sprague Specialties Co. & Camden, N. J. \\
22 & CABU & Superior Electric Co. & N. Adams, Mass. \\
23 & CHS & Sylvania Electric Products Inc. & Bristol, Conn. \\
24 & & Texas Instrument Co. & Emporium, Pa. \\
25 & & Trad Electronics Corp. & Dallas, Texas \\
26 & & Malco Tool and Mfg. Co. & Asbury Park, N. J. \\
& & & Chicago, III. \\
\hline & & & \\
\hline
\end{tabular}
RESISTOR COLOR GODES

AmA AID N NANUFACTUACRS ASSOCIATION
SAN SOINT ARLIT-NAUY
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{RESISTORS} & \multicolumn{5}{|c|}{CAPACITORS} \\
\hline \multirow[b]{2}{*}{rozerance} & \multirow[b]{2}{*}{multiplien} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SHAIIICANT } \\
& \text { I/GUAE }
\end{aligned}
\]} & \multirow[b]{2}{*}{colon} & \multicolumn{3}{|c|}{multiplfer} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { voltace } \\
& \text { AATINC }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\text { TEMAGPATuAE } \\
\text { COCFFKIEAT }
\end{array}
\]} \\
\hline & & & & CEAMANOARANO & JAN MICA ANO MAPCR-DIFLECTMK & JAN CEAANAC diecectaic & & \\
\hline & 1 & \(\bigcirc\) & BLACK & - 1 & - 1 & 1 & & A \\
\hline & 10 & 1 & BAOWN & 10 & 10 & 10 & 100 & B \\
\hline & 100 & 2 & RED & 100 & 100 & 100 & 200 & c \\
\hline & 1000 & 3 & ORANCE & 1.000 & 1000 & 1000 & 300 & 0 \\
\hline & 10000 & 4 & YELLOW & 10000 & & & 600 & \(\varepsilon\) \\
\hline & 100000 & 3 & Crien & 100000 & & & 500 & f \\
\hline & 1000000 & 8 & blue & 1000000 & & & 800 & 5 \\
\hline & 1000000 & 1 & VIolet & 10000000 & & & 700 & \\
\hline & 100000000 & - & GRar & 100000,00 & & 001 & 800 & \\
\hline & 1000000000 & 9 & WHITE & 1000000.000 & & 0.1 & 000 & \\
\hline 5 & 0.1 & & Colo & 0.1 & 0.1 & & 1000 & \\
\hline 10 & 0.01 & & SILVEA & 0.01 & 0.01 & & 2000 & \\
\hline 20 & & & NO COLON & & & & 500 & \\
\hline
\end{tabular}

TABLE 7-6. APPLICABLE COLOR CODES AND MISCELLANEOUS DATA

NAVSMIPS 92134(A)
A-C
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{INDEX} \\
\hline Subject & figure or table & PARAGRAPH & PAGE \\
\hline \multicolumn{4}{|l|}{A} \\
\hline Adjusting Output Voltage & & 4-6 & 4-2 \\
\hline Antenna Simulator, Use of & 4-4, 6-23 & 4-11 & 4-5 \\
\hline | Applicable Color Codes and Miscellaneous Data & 7-6 & & 7-29 | \\
\hline Attenuators, Fixed & 6-22, 6-24 & 4-13, 4-14 & 4-6 \\
\hline \multicolumn{4}{|l|}{Attenuator, Step} \\
\hline Calibration & & 6-19 & 6-8 \\
\hline Removal of &a.......... & 6-13 & 6-3 \\
\hline Top and Bottom Views & 6-20 & & 6-23 \\
\hline Attenuator, Variable RF & & 4-12 & 4-6 \\
\hline \multicolumn{4}{|l|}{Audio and Metering Unit} \\
\hline Interior View & 6-17 & & 6-22 \\
\hline Rear View & 6-16 & & 6-22 \\
\hline Audio Compartment Assembly & & 6-12 & 6-3 \\
\hline Audio Output & & 4-7b & 4-2 \\
\hline Audio Response Test & & 4-16b(4) & 4-10 \\
\hline Audio Voltage & & 2-2d & 2-3 \\
\hline \multicolumn{4}{|l|}{B} \\
\hline Beat Amplifier & & 2-5c & 2-7 \\
\hline \multicolumn{4}{|l|}{Buffer Amplifier} \\
\hline Rear View & 6-6 & & 6-5 \\
\hline Bottom View & 6-7 & & 6-6 \\
\hline Side View & 6-5 & & 6-5 \\
\hline Buffer Stage & 2-3 & 2-2c & 2-2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{c} \\
\hline Calibrating the Step Attenuator & \multicolumn{3}{|l|}{(See Attenuator, Step)} \\
\hline Calibrating the Voltmeter & (See Voltme & & \\
\hline Carrier Oscillator & 2-2 & 2-2b & 2-2 \\
\hline Carrier Oscillator Bracket & 6-8 & & 6-7 \\
\hline Cathode Follower & & 2-5d & 2-7 \\
\hline Cathode Follower Stage & 2-6 & 2-3c & 2-4 \\
\hline \multicolumn{4}{|l|}{Charts} \\
\hline General Test Procedure for Localizing Trouble & 6-3 & & 6-13 \\
\hline Percentage Modulation & 6-14 & & 6-20 \\
\hline Routine maintenance check & 5-1 & 5-1 & 5-0 \\
\hline Suggested tests for locating trouble & 6-4 & & 6-14 \\
\hline Trouble Shooting & 6-2 & & 6-12 \\
\hline Voltage and Resistance & 6-15 & & 6-21 \\
\hline Circuits, General Description of & & 2-1 & 2-1 \\
\hline Combined Parts and Spare Parts List & 7-4 & & 7-3 \\
\hline \multicolumn{4}{|l|}{Coupling to the Receiver Under Test 4-10 4-5} \\
\hline Cross Reference Between Symbol Number and Figure Location & 6-8 & & 6-35 \\
\hline Crystal Calibration & & 2-5a & 2-6 \\
\hline \multicolumn{4}{|l|}{Crystal Calibrator} \\
\hline Analysis of & 2-9 & 2-5b & 2-6 \\
\hline Limitations of & & 6-16b & 6-4 \\
\hline Operation of & & 4-5 & 4-1 \\
\hline Crystal Calibrator Bracket Assembly & 6-9 & 6-11 & 6-3 \\
\hline change 3 & & & - \\
\hline
\end{tabular}

\section*{subject}

D
Data
Frequency Calibration
Reference
Shipping
6-1
1-5
FIGURE OR
TABLE
PARAGRAPH
PAGE

Description, detailed
Diagrams
AC Power Source
Antenna Simulator SM-35/URM-25 with Input Impedance Frequency Curve
Attenuator, Fixed
Attenuator, Step
Buffer Stage
Crystal Calibrator
Modulation Cathode Follower and Crystal Rectifier
Modulation Oscillator
Output Amplifier Stage
Power Supply
RF Oscillator
RF Signal Generator
Vacuum Tube Voltmeter
Vernier Reading of Frequency Scale
Voltage Regulator
\(E\)
Electron Tube Complement
Equipment Similarities
Equipment supplied
1-4
1-3
1-5
1-1
1-4
Equivalent Circuits
With Impedance Adapter added
With Series Matching Resistor added
4-5
1-3
4-3
With Shunt Resistor added
Exterior Views
External Modulation
Analysis of
Operation
4-6
4-3
4-7
4-4
(See Views of Units)

G
General Chart of Test Procedure
6-3
6-13
General Instructions for Use
6-11
1-5
1-3
1-1
2-11
4-5
2-10
2-8
2-3
2-9
2-6
2-5
2-3
2-11
2-2
2-1
2-7
4-2
2-11

Failure Report
F

Fixed Attenuators
Frequency Calibration
Chart
Procedure
Readjustment of
Frequency Calibration Data
Frequency Interpolation
Frequency Calibration
Fuse Locations
Fuse Failure
i-2
AN/URM-25D NAVSHIPS 92134(A) I-P

\section*{INDEX}

\section*{subject}

I

\(L\)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{8}{*}{\begin{tabular}{l}
List of Effective Pages \\
List of Illustrations \\
List of Manufacturers \\
List of Major Units \\
List of Parts \\
List of Tables \\
Localization, Theory of Lubrication
\end{tabular}}} \\
\hline & & \\
\hline
\end{tabular}

\section*{M}

\section*{0}
\begin{tabular}{|c|c|c|c|}
\hline Operation, Principles of & & 1-1 & 1-1 \\
\hline Operation, Summary of & & 4-15 & 4-7 \\
\hline Operational Summary of Front Panel Controls & 4-3 & & 4-9 \\
\hline Oscillator Bracket Assembly & & 6-10 & 6-3 \\
\hline \begin{tabular}{l}
Oscillator Compartment \\
Rear View
\end{tabular} & 6-10 & & 6-10 \\
\hline Output Amplifier Analysis of & 2-4 & \(2-2 d\) & 2-3 \\
\hline
\end{tabular}

P
Parts List
Parts, Removal and Replacement of
Percentage Modulation Calibration
Power Circuit Operation
Power Supply PP-977/URM-25D
Analysis of
Description

Localization, Theory of
Lubrication

2-4
\(2-2 d\)
2-3
\begin{tabular}{ccc}
\(7-5\) & & \begin{tabular}{l}
\(1-1 d\) \\
\(7-2\)
\end{tabular} \\
\(4-16 b(5)\) & \(1-1\) \\
\(4-12\) & \(6-17 a(4)\) & \\
& & \(6-6\) \\
\(4-1,4-2\) & \(4-9\) & \(4-2\) \\
& \(4-16 c\) & \(4-10\) \\
& \(2-4,4-8\) & \(4-2\) \\
& \(2-3,4-7\) & \(4-2\) \\
& \(2-3 d\) & \(2-5\)
\end{tabular}
(See Manufacturers) (See Major Units)

\[
7-4
\]

\[
7-3
\]

\section*{FIGURE OR TABLE}

PARAGRAPH
page
\begin{tabular}{lcc}
\(4-3,6-25\) & \(3-2\) & \(4-3\) \\
\(\ldots\) & \(4-16\) & \(3-1\) \\
(See Views of Units) & & \(4-7\) \\
& & \\
& \(2-3 a\) & \(2-4\) \\
\hdashline & \(4-7 a\) & \(4-2\)
\end{tabular}

A
i

6-1
5-0
-1

1-1
4-10

6-6

4-2
4-10
-2
2-5
\(-2\)

\begin{tabular}{|c|}
\hline SUBJECT \\
\hline Power Supply PP-977/URM-25D - (Continued) Outside Cabinet \\
\hline Rear Bottom \\
\hline Top and Bottom Views \\
\hline View for Removal \\
\hline Principle Circuits \\
\hline
\end{tabular}

Replacing Buffer and Amplifier Circuit Components
Replacing RF Oscillator Circuit Components
RF Attenuator controls
RF Connectors and Cable Assemblies
RF Output Voltage Calibration
RF Signal Generator Set AN/URM-25D
Complete Equipment
Functional Block Diagram
Outline Dimension Drawing
Unpacking Procedure
Simplified Procedure for Operating
RF Signal Generator SG-85/URM-25D
Outside Cabinet
Bottom View
Front View
Top View
Routine Maintenance Check Chart
\begin{tabular}{|c|c|c|}
\hline \(\underset{\text { table }}{\text { figur }}\) & Paragraph & PAGE \\
\hline 6-4 & & 6-4 \\
\hline 6-3 & \(\ldots\) & 6-2 \\
\hline 6-2 & & 6-2 \\
\hline 6-3 & & 6-2 \\
\hline & 2-1c & 2-1 \\
\hline
\end{tabular}
\begin{tabular}{ccc}
\(6-6\) & & \(6-16\) \\
\(6-12\) & \(4-16 b(6)\) & \(6-29\) \\
\(\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots\) & \(6-4\) \\
\(\cdots \cdots \cdots \cdots \cdots \cdots \cdots\) & \(4-16 b(7)\) & \(4-10\) \\
\(\cdots \cdots \cdots \cdots \cdots \cdots\) & \(4-16 d\) & \(4-10\) \\
\(\cdots\) & \(4-16 b\) & \(4-7\)
\end{tabular}
(See Data, Reference)
4-1
4-4
6-9 6-3
(See Audio Compartment Assembly) (See Oscillator Bracket Assembly) (See Attenuator, Step)
\begin{tabular}{|c|c|c|}
\hline & 6-8 & 6-1 \\
\hline & 6-15 & 6-4 \\
\hline & 6-14 & 6-3 \\
\hline & 1-2k & 1-2 \\
\hline 6-26 & & 6-27 \\
\hline & 6-18c & 6-8 \\
\hline 1-1 & & 1-0 \\
\hline (See Diagram) & & \\
\hline 3-2 & & 3-0 \\
\hline 3-1 & & 3-0 \\
\hline & 4-15 & 4-7 \\
\hline 6-4 & & 6-4 \\
\hline 6-13 & & 6-11 \\
\hline 6-2 & . & 6-2 \\
\hline 6-18 & & 6-22 \\
\hline (See Chart, Check) & & \\
\hline
\end{tabular}

\section*{S}
\begin{tabular}{|c|c|c|c|}
\hline Selectivity Test & & 4-16b(3) & 4-8 \\
\hline Sensitivity Test & & 4-16b (2) & 4-8 \\
\hline Setting Carrier Frequency & & 4-4 & 4-1 \\
\hline Setting the Meter Zero & & 4-3 & 4-1 \\
\hline Shipping Data & (See Data, Shipping) & & \\
\hline Shipping Weights and Dimensions of Spare Parts Boxes & 7-2 & & 7-1 \\
\hline Signal Channel & & 2-2a & 2-2 \\
\hline Signal Generator SG-85/URM-25D & & & \\
\hline Front View for Removal & 6-2 & & 6-2 \\
\hline Rear View & 6-3 & & 6-2 \\
\hline Signal Output Circuit & 2-4, 2-8 & 2-2f & 2-4 \\
\hline
\end{tabular}

\section*{Spare Parts}
(See Parts List)
\begin{tabular}{|c|}
\hline sumbect \\
\hline Standard Antenna Electrical Constants \\
\hline Standard Levels \\
\hline Step Attenuator \\
\hline Summary of Operation \\
\hline Switching \\
\hline System Trouble Shooting \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Terminating the Signal Generator} \\
\hline Analysis of & & 2-7 & 2-9 \\
\hline Operation & & 4-9 & 4-2 \\
\hline Test Equipment & & 6-2 & 6-1 \\
\hline Test Lead & & 2-9 & 2-10 \\
\hline Tests, Receiver & & 4-16b & 4-7 \\
\hline Theory of Localization & & 6-1 & 6-1 \\
\hline Tube Operating Voltages and Currents & 6-5 & 6-4 & 6-1 \\
\hline Tube Socket Electrical Measurements & & 6-5 & 6-1 \\
\hline
\end{tabular}

\section*{U}

Unpacking \(\qquad\)
\(\qquad\)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Vacuum Tube Voltmeter \\
Variable RF Attenuator
\end{tabular}} \\
\hline \\
\hline Analysis of \\
\hline Use of \\
\hline Views of Units \\
\hline Voltmeter \\
\hline As Output Meter \\
\hline Calibration of \\
\hline Zero Adjustment \\
\hline
\end{tabular}

W
\begin{tabular}{|c|c|c|c|}
\hline Weights and Dimensions of Spare Parts Boxes & 7-1 & & 7-1 \\
\hline Winding Data & 6-7 & 6-6 & 6-1 \\
\hline
\end{tabular}```

