NAVSHIPS 91339

INSTRUCTION BOOK
for
FREQUENCY SHIFT
CONVERTER-COMPARATOR GROUP
AN/URA- 8
and
FREQUENCY SHIFT CONVERTER CV-60/URR

RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION
Camden, New Jersey, U. S. A.

LIST OF EFFECTIVE PAGES

PACE NUMBERS	CHANGE IN EFFECT	PACE NUMBERS	CHANGE IN EFFECT
Title Page	Change 1	7-31, 7-32	Change 1
A	Change 1	$7-33$ to 7-62	Original
B, C	Original	7-63, 7-64	Change 1
i to vii	Original	7-65, 7-66	Change 1
1-0 to 1-5	Original	8-1	Change 1
1-6 to 1-9	Change 1	8-2	Original
1-10	Original	8-3, 8-4	Change 1
2-1	* Original	8-5, 8-6	Original
2-2 to 2-16	Original	8-7	*Original
3-1	*Original	8-8	Original
3-2 to 3-5	Original	8-9	*Original
3-6, 3-6A	Change 1	8-10, 8-11	Original
3-7 to 3-10	Original	8-12, 8-13	*Original
3-11	Change 1	8-14 to 8-20	Original
3-12	Original	8-21 to 8-24A	Change 1
3-13, 3-14	*Original	8-25	*Original
3-15 to 3-18	Original	8-26	Original
4-1 to 4-4	Original	8-27, 8-28	Change 1
5-1 to 5-4	Original	8-29	Original
6-1, 6-2	Original	8-30, 8-31	Change 1
7-1	Change 1	8-32, 8-33	Original
7-2 to 7-24	Original	$\mathrm{i}-1$ to $\mathrm{i}-4$	Original
7-25	Change 1	i-5	*Original
7-26 to 7-30	Original	i-6	Original

One print each of Figures 7-15, 7-16 also in envelope at end of instruction book.

Figure 7-15 Original
Figure 7-16 Change 1

* Original page with minor corrections made according to errata sheet issued with Change 1 .

10 January 1951
Temporary Correction T-3
to Instruction Book for
Frequency Shift Converter-Comparator
Group AN/URA-8 and
Frequency Shift Converter CV-60/NRR NAVSHIPS 91339

1. In Figures 7-16 (on page 7-31, 7-32, and in the envelope at end of book) and Figure 7-33 (page 7-63, 7-64), make the following revigions:
(a) Break the connection between R922 and R923, and connect the lower end of R922 to pin 1 of X906. Connect the open top end of R923 to pin 8 of X907.
(b) Break the connection of the arm on R923 to pin 8 of X906. Instead, connect the arm of R923 to ground.
(c) Change resistance values of R921, R946, R945, R922, from 4.7K, 47, 47,470 , to $68 \mathrm{~K}, 680,680,68 \mathrm{~K}$ respectively.
(d) Delete resistor R940, and connect P901-3 directly to junction of R910 and R911. Insert resietor R940 (10K) between P901-2 and X906-6.
2. Corresponding changes to the wiring diagram, affected by the revisions in paragraph 1, will be made in Figure 7-34 (page 7-65, 7-66), to come later.
3. Make following changes to Section 8:

Prge No.
8-23 For R-940: Change function to "V-906 and V-907 Plate Dropping".

RADIO CORPORATION OF AMERICA - RCA VICTOR DIVISON Camden, New Jersey, U.S.A.

Contract: NObsr-39421
T-3 page 1
(of l page)

ERRATA SHEET WITH CHANGE 1
 TO INSTRUCTION BOOK FOR
 FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-8
 AND FREQUENCY SHIFT CONVERTER CV-60/URR NAVSHIPS 91339

The following minor corrections should be made in the instruction book with pen and ink when Change 1 Revision Pages are inserted.

Page No.

Location and Correction

2-1 Second column, fifth line from bottom, change $B \pm$ to $B+$
3-1 Second column, eleventh line from bottom, change "nuts" to "screws"
3-13, 3-14 In lower right-hand corner, delete "nut" from "8-32 x 3/8 screws with nut, flatwasher, and lockwasher"
8-7 For E-606, add Standard Navy Stock No. "N17-B-78083-1401"
8-9 For E-1201, add Standard Navy Stock No. "N17-F-74266-9227"
8-12 For M-1601, add Standard Navy Stock No. "N17-M-19051-9600"
8-13 Change first word of description for $0-1506$ from "SCALE" to "BEZEL"
8-25 In column for T-601, change "N17-T-62664-3500" to "N17-T-62664-5501"
i-5 Change listing of "Repair Parts" to "Spare Parts"

RECORD OF CORRECTIONS MADE

chance No.	datt	Sticnatue of officre makinc coraction
wre	14/51	I, Keurman
-		
-		
-		
-		
-		
-		
-		
-		
-		
,		
-		
-		
-		

TABLE OF CONTENTS

SECTION 1——GENERAL DESCRIPTION
ParagraphPage

1. Scope of this Book 1-1
2. Purpose and Basic Principles 1-1
3. Description of Units 1-1
4. Reference Data 1-6
SECTION 2-THEORY OF OPERATION
5. Introduction 2-1
6. Single Channel Frequency Shift Converter CV-60/URR 2-1
7. Converter Chassis Assembly (For CV- 60/URR) 2-1
8. Cable Filter Unit 2-2
9. Audio Input Unit 2-2
10. Keyer Unit 2-3
11. Tuning Monitor Unit 2-5
12. Power Supply Unit (For CV-60/URR 2-6
13. Dual Channel Frequency Shift Converter- Comparator Group AN/URA-8 2-6
14. Comparator Chassis Assembly (For CM- 14/URR) 2-7
15. Cable Filter Unit (For CM-14/URR) 2-7
16. Diversity Selector Unit 2-8
17. Keyer Unit 2-9
18. Power Supply Unit (For CM-14/URR) 2-9
SECTION 3-INSTALLATION
19. Unpacking 3-1
20. Installation, General 3-1
21. Installation of Frequency Shift Converter CV-60/URR 3-1
a. Rack Mounting 3-1
b. Table Mounting 3-1
c. Connecting Cables 3-3
22. Installation of Frequency Shift Converter- Comparator Group AN/URA-8 3-4
a. Mounting 3-4
b. Connecting Cables 3-6
23. Initial Adjustments 3-6
a. Frequency Shift Converter CV-60/URR 3-6
b. Frequency Shift Converter-Compara- tor Group AN/URA-8 3-10
SECTION 4-OPERATION
24. Introduction 4-1
25. Capabilities and Limitations 4-1
26. Operating Controls 4-1
27. Tuning Adjustment 4-2
Paragraph Page
28. Summary of Operation 4-3
a. Single-Channel CV-60/URR Starting Procedure 4-3
b. Tuning Single-Channel, CV-60/URR, to Another Frequency 4-3
c. Other Adjustments, Single Channel 4-3
d. Stopping the Single-Channel Equip- ment 4-3
e. Dual-Channel AN/URA-8 Starting Procedure 4-3
f. Tuning Dual-Channel, AN/URA-8, to Another Frequency 4-4
g. Other Adjustments, Dual Channel 4-4
b. Stopping the Dual-Channel Equipment 4-4
SECTION 5—OPERATOR'S MAINTENANCE
29. Routine Checks 5-1
a. System Sensitivity Check 5-1
b. Tuning Monitor Sensitivity Check 5-1
30. Emergency Maintenance 5-1
a. Replacing Fuses 5-1
b. Replacing Electron Tubes 5-2
c. Replacing Sub-Chassis 5-4
SECTION 6-PREVENTIVE MAINTENANCE
31. Routine Maintenance 6-1
32. Adjustment After Replacement of D-C Amplifier, V903 6-2
33. Lubrication 6-2
SECTION 7—CORRECTIVE MAINTENANCE
34. Localizing Trouble $7-1$
a. Frequency Shift Converter, CV-60/ URR 7-1
Failure Reports 7-2
b. Frequency Shift Converter-Compara- tor Group; AN/URA-8 7-4
35. Unit Trouble Shooting and Repair 7-4
a. Equipment Required 7-4
b. Cable Filters 7-7
c. Power Supplies 7-7
d. Tuning Monitor 7-7
e. Audio Input Unit 7-8
f. Keyer Unit 7-10
g. Diversity Selector Unit 7-11
36. Voltage and Resistance Measurements 7-12
SECTION 8-PARTS LISTINDEX

LIST OF ILLUSTRATIONS

SECTION I—GENERAL DESCRIPTION

SECTION 4-OPERATION

Figure Title Page
4-1 Operating Panel Controls 4-2
SECTION 5-OPERATOR'S MAINTENANCE5-1 Frequency Shift Converter CV-60/URR,Fuse Locations5-1
5-2 Frequency Shift Converter-Comparator5-3 Frequency Shift Converter CV-60/URR,Tube Locations5-3
5-4 Comparator CM-14/URR, Tube Loca-tions5-3
5-5 Removal of Cathode-ray Tube from Tun- ing Monitor 5-4
SECTION 6--PREVENTIVE MAINTENANCE
6-1 Test Oscilloscope Patterns for \% MARK Control Adjustment 6-1
6-2 Test Oscilloscope Patterns for GATE BAL Control Adjustment 6-2
SECTION 7-CORRECTIVE MAINTENANCE
7-1 Frequency Shift Converter-Comparator Group AN/URA-8 with Chassis Ex- tended for Servicing 7-1
7-2 Cable Filters 7-6
7-3 Converter Power Supply Chassis, Top View 7-6
7-4 Converter Power Supply Chassis, Bot- tom View 7-6
7-5 Comparator Power Supply Chassis, Top View 7-7
7-6 Comparator Power Supply Chassis, Bot- tom View 7-7
7-7 Tuning Monitor Chassis, Top View 7-7
7-8 Tuning Monitor Chassis, Bottom View 7-8
7-9 Audio Input Unit Chassis, Top View 7-9
7-10 Audio Input Unit Chassis, Bottom View 7-9
7-11 Keyer Chassis, Top View 7-10
7-12 Keyer Chassis, Bottom View 7-10
7-13 Diversity Selector Unit Chassis, Top View 7-11
7-14 Diversity Selector Unit Chassis, Bottom View 7-11
7-15 *Frequency Shift Converter CV-60/URRSchematic Diagram 7-29, 7-30
7-16 Comparator CM-14/URR Schematic Diagram 7-31, 7-32

* Also in envelope at back of book.

LIST OF ILLUSTRATIONS (Continued)

SECTION 7-CORRECTIVE MAINTENANCE (Cont'd.)			
Figure	Title Page	Figure	Title Page
7-17	Frequency Shift Converter CV-60/URR, Main Chassis Wiring Diagram 7-33	7-25	Comparator Power Supply Schematic Diagram7-47, 7-48
7-18	Comparator CM-14/URR Main Chassis Wiring Diagram 7-34	7-26	Comparator Power Supply Wiring Diagram $7-49,7-50$
7-19	Frequency Shift Converter Cable Filter Schematic Diagram 7-35, 7-36	7-27	Tuning Monitor Schematic Diagram 7-51, 7-52 Tuning Monitor Wiring Diagram 7-53, $7-54$
7-20	Frequency Shift Converter Cable Filter Wiring Diagram …..........7-37,7-38	7-29	Audio Input Unit Schematic Diagram $7-55,7-56$
7-21	Comparator Cable Filter Schematic Dia- gram 7-39,7-40	7-30	Audio Input Unit Wiring Diagram 7-57, 7-58
7-22	$\begin{aligned} & \text { Comparator Cable Filter Wiring Dia- } \\ & \text { gram } \end{aligned}$	7-32	Keyer Unit Schematic Diagram Keyer Unit Wiring Diagram $7-59,7-60$ $-61,7-62$
7-23	Frequency Shift Converter Power Supply Schematic Diagram 7-43, 7-44	7-33	Diversity Selector Unit Schematic Diagram $7-63,7-64$
7-24	Frequency Shift Converter Power Sup- ply Wiring Diagram \quad 7-45, 7-46	7-34	Diversity Selector Unit Wiringgram \quadDia- 7-65, 7-66

LIST OF TABLES

| | SECTION 1——CENERAL DESCRIPTION |
| :--- | :--- | :--- | :--- |
| Table | | Page

Table Page
7-5 Tuning Monitor Voltage and Resistance Measurements 7-16
7-6 Converter Power Supply Voltage and Resistance Measurements 7-17
7-7 Comparator Power Supply Voltage and Resistance Measurements 7-18
7-8 Diversity Selector Unit Voltage and Re- sistance Measurements 7-19
7-9 Tube Operating Voltages and Currents 7-20
7-10 Tube Characteristics 7-21
7-11 Winding Data 7-22
SECTION 8-PARTS LIST
8-1 Weights and Dimensions of Spare Parts Boxes 8-1
8-2 Shipping Weights and Dimensions of Spare Parts Boxes 8-1
8-3 List of Major Units 8-1
8-4 Combined Parts and Spare Parts List 8-2
8-5 Cross Reference Parts List 8-31
8-6 Applicable Color Codes and Miscellane- ous Data 8-32
8-7 List of Manufacturers 8-33

GUARANTEE

The equipment, including all parts and spare parts, except vacuum tubes, batteries, rubber and material normally consumed in operation, is guaranteed for a period of one year from the date of delivery of the equipment to and acceptance by the Government with the understanding that all such items found to be defective as to material, workmanship or manufacture will be repaired or replaced, f.o.b. any point within the continental limits of the United States designated by the Government, without delay and at no expense to the Government; provided that such guarantee will not obligate the Contractor to make repair or replacement of any such defective items unless the defect appears within the aforementioned period and the Contractor is notified thereof in writing within a reasonable time and the defect is not the result of normal expected shelf life deterioration.

To the extent the equipment, including all parts and spare parts, as defined above, is of the Contractor's design or is of a design selected by the Contractor, it is also guaranteed, subject to the foregoing conditions, against defects in design with the understanding that if ten percent (10%) or more of any such said item, but not less than two of any such item, of the total quantity comprising such item furnished under the contract, are found to be defective as to design, such item will be conclusively presumed to be of defective design and subject to one hundred percent (100%) correction or replacement by a suitably redesigned item.

All such defective items will be subject to ultimate return to the Contractor. In view of the fact that normal activities of the Naval Service may result in the use of equipment in such remote portions of the world or under such conditions as to preclude the return of the defective items for repair or replacement without jeopardizing the integrity of Naval communications, the exigencies of the Service, therefore, may necessitate expeditious repair of such items in order to prevent extended interruption of communications. In such cases the return of the defective items for examination by the Contractor prior to repair or replacement will not be mandatory. The report of a responsible authority, including details of the conditions surrounding the failure, will be acceptable as a basis for affecting expeditious adjustment under the provisions of this contractual guarantee.

The above one year period will not include any portion of time the equipment fails to perform satisfactorily due to any defects, and any items repaired or replaced by the Contractor will be guaranteed anew under this provision.

INSTALLATION RECORD

Contract Number NObsr-39421

Serial Number of equipment
Date of acceptance by the Navy
Date of delivery to contract destination
Date of completion of installation
Date placed in service

Blank spaces on this page shall be filled in at time of installation. Operating personnel shall also mark the "date placed in service" on the date of acceptance plate located below the model nameplate on the equipment, using suitable methods and care to avoid damaging the equipment.

REPORT OF FAILURE

Report of failure of any part of this equipment, during its entire service life, shall be made to the Bureau of Ships in accordance with current regulations using form NAVSHIPS NBS 383 (revised).

The report shall cover all details of the failure and give the date of installation of the equipment. For procedure in reporting failures see Chapter 67 of the Bureau of Ships Manual or superseding instructions.

ORDERING PARTS

All requests or requisitions for replacement material should include the following data:

1. Federal stock number or, when ordering from a Marine Corps or Signal Corps supply depot, the Signal Corps stock number.
2. Name and short description of part.

If the appropriate stock number is not available the following shall be specified:

1. Equipment model or type designation, circuit symbol, and item number.
2. Name of part and complete description.
3. Manufacturer's designation.
4. Contractor's drawing and part number.
5. JAN or Navy type number.

DESTRUCTION OF ABANDONED MATERIAL IN THE COMBAT ZONE

In case it should become necessary to prevent the capture of this equipment, and when ordered to do so, DESTROY IT SO THAT NO PART OF IT CAN BE SALVAGED, RECOGNIZED, OR USED BY THE ENEMY. BUR ${ }^{\top}$ ALL PAPERS AND BOOKS.

Means:

1. Explosives, when provided.
2. Hammers, axes, sledges, machetes, or whatever heavy object is readily available.
3. Burning by means of incendiaries such as gasoline, oil, paper or wood.
4. Grenades and shots from available firearms.
5. Burying all debris, where possible and when time permits.
6. Throwing overboard or disposing of in streams or other bodies of water

Procedure:

1. Obliterate all identifying marks. Destroy nameplates and circuit labels.
2. Demolish all panels, castings, switch and instrument boards.
3. Destroy all controls, switches, relays, connections and meters.
4. Rip out all wiring and cut interconnections of electrical equipment. Smash gas, oil, and water cooling systems in gas engine generators, etc.
5. Smash every electrical or mechanical part, whether rotating, moving or fixed.
6. Break up all operating instruments such as keys, phones, microphones, etc.
7. Destroy all classes of carrying cases, straps, containers, etc.
8. Bury or scatter all debris.

SAFETY NOTICE

The attention of officers and operating personnel is directed to Chapter 67 of the Bureau of Ships Manual or superseding instructions on the subject of radiosafety precautions to be observed.

This equipment employs voltages which are dangerous and may be fatal if contacted by operating personnel. Extreme caution should be exercised when working with the equipment.

While every practicable safety precaution has been incorporated in this equipment, the following rules must be strictly observed:

KEEP AWAY FROM LIVE CIRCUITS:

Operating personnel must at all time observe all safety regulations. Do not change tubes or make adjustments inside equipment with high voltage supply on. Under certain conditions dangerous potentials may exist in circuits with power controls in the off position due to charges retained by capacitors. To
avoid casualties always remove power and discharge and ground circuits prior to touching them.

DON'T SERVICE OR ADJUST ALONE:

Under no circumstances should any person reach within or enter the enclosure for the purpose of servicing or adjusting the equipment without the immediate presence or assistance of another person capable of rendering aid.

DON'T TAMPER WITH INTERLOCKS:

Do not depend upon door switches or interlocks for protection but always shut down motor generators or other power equipment. Under no circumstances should any access gate, door, or safety interlock switch be removed, short-circuited, or tampered with in any way, by other than authorized maintenance personnel, nor should reliance be placed upon the interlock $s w i t c h e s$ for removing voltages from the equipment.

RESUSCITATION

> AN APPROVED POSTER ILLUSTRATING THE RULES FOR RESUSCITATION BY THE PRONE PRESSURE METHOD SHALL BE PROMINENTLY DISPLAYED IN EACH RADIO, RADAR, OR SONAR ENCLOSURE. POSTERS MAY BE OBTAINED UPON REQUEST TO THE BUREAU OF MEDICINE AND SURGERY.

WARNING

Voltages over 300 volts shall be measured as follows:

1. De-energize the equipment. Ground terminals to be measured to ground to discharge any capacitors connected to these terminals. (See Note F).
2. Connect meter to terminals to be measured, using a range higher than the expected voltage.
3. WITHOUT TOUCHING METER OR TEST LEADS, energize the equipment and read the meter.
4. De-energize the equipment. Ground the terminals connected to the meter to ground before disconnecting meter.

NOTES:
A. MAKE SURE you are NOT GROUNDED whenever you are adjusting equipment or using measuring equipment.
B. In general, USE ONE HAND only when servicing live equipment.
C. If test meter must be held or adjusted while voltage is applied GROUND the case of the meter before starting measurement and DO NOT touch the live equipment or personnel working on live equipment while you are holding the meter. Some movingvane type meters should not be grounded. These should not be held during measurements.
D. DO NOT FORGET that high voltages MAY BE PRESENT across terminals that are normally low voltage, due to equipment breakdown. Be careful even when measuring low voltages.
E. DO NOT use test equipment known to be in poor condition.
F. High-voltage high-capacity capacitors should be discharged with a grounding stick with approximately 10 ohms in series with the grounded line. Where neither terminal of a capacitor is grounded, short capacitor terminals to each other.

Figure 1-1. Frequency Shift Converter-Comparator Group AN/URA-8

Figure 1-2. Frequency Shift Converter CV-60/URR

SECTION 1 GENERAL DESCRIPTION

1. SCOPE OF THIS BOOK.

This book covers Frequency Shift Converter CV60/URR (AF type, single channel) and Frequency Shift Converter-Comparator Group AN/URA-8 (AF type, dual channel) equipment and includes description, theory, installation, operation, maintenance, and parts lists.

2. PURPOSE AND BASIC PRINCIPLES.

This equipment is designed to operate on frequency shift keyed radio telegraph signals, as derived from the audio-frequency outputs of communication receiving equipments, to provide keying facilities for the operation of teletype printers or other similar automatic recording devices.

To achieve the above purpose the incoming signals are filtered to remove all frequencies except those necessary for a good signal; amplified to a level above the saturation point of a limiter and passed through a discriminator to obtain positive and negative pulses. These pulses are filtered and used to trigger a double Eccles-Jordan flip-flop circuit to operate d-c keying tubes which key the teletypewriter loop. A d-c pulse, identical with the d-c pulses appearing in the teletypewriter loop, in addition keys an internal tone for transmission to a remote point.

In the AN/URA-8 equipment two receiving channels are used in a diversity arrangement with a Comparator (CM-14/URR) selecting the stronger signal to control the teletypewriter loop and the keyed tone.

3. DESCRIPTION OF UNITS.

a. FREQUENCY SHIFT CONVERTER CV. 60/URR.-See Figure 1-2. Frequency Shift Converter CV-60/URR is housed in a case $51 / 8$ inches high, $175 / 1$; inches wide, and $1113 / 16$ inches deep. All units are finished in smooth grey enamel. Removable brackets with shock mounts are supplied for table mounting.

Brackets are supplied for standard relay rack installaiion without the shock mounting feature (see Figure 1-4). The chassis slides completely out of the cabinet, on rails, and can be placed in one of several positions for servicing convenience (see Figure 7-1). The front panel controls which do not normally need frequent attention are covered by a cover in the center of the panel containing an air filter. Screwdriver-operated controls are mounted behind oilcup-type hole covers. Jacks are provided, under a spring cover, on the lower left corner for checking the tone and teletypewriter outputs (see Figure $4-1$). Power-line fuses are located on the filter unit attached to the rear of the cabinet and are accessible only from within the cabinet (see Figure 5-1).

The Frequency Shift Converter CV-60 URR is made up of the following units, which are described below (see Figure 1-5).

UNIT NAME	SYMBOL SERIES
Converter Chassis	1500
Cable Filter Unit	1200
Audio Input Unit	400
Keyer Unit	600
Tuning Monitor Unit	700
Power Supply Unit	800
Jumper Cable	W1502

(1) CONVERTER CHASSIS (see Figure 1-5). -The Converter Chassis supports all the Frequency Shift Converter units except the Cable Filter which is mounted on the back of the case. The separate units are interconnected by plugs and jacks when inserted in olace. A plug P1501, on the rear of the main chassis connects the main chassis to J1201 on the Cable Filter when in operating position. When servicing the chassis, it can be slid out of the cabinet and locked in any one of four positions while still supported by cabinet rails. A jumper cable is provided for con-
necting the chassis (see Figure 3-6) with the cable filter when the chassis is withdrawn from the cabinet. An air filter, in the center of the panel, covers the controls requiring only occasional adjustment, but makes them readily accessible by a half-turn screw holding the cover against the panel. Two jacks, TTYP and PHONES, are located on the bottom left of the panel protected by a cover. To the right of the jacks is located the neon lamp $B+$ indicator. The POWER OFF-ON switch is located to the right center of the air filter.
(2) CABLE FILTER UNIT FOR CV-60/URR (see Figure 7-2).-All external connections to the equipment are made through the Cable Filter Unit. Filtering of the power lines and tone output circuits is provided. The Cable Filter Unit and Converter Chassis are interconnected automatically when the Converter Chassis is pushed in place. The entire filter assembly is fastened to the rear of the cabinet by eight screws accessible from the inside of the cabinet (see Figure 5-1).

Looking in the front of the cabinet, the major items of the Cable Filter Unit are arranged from left to right as follows: fuses, Allen wrenches, fan, and spare fuses. Located below the spare fuses is a jack, J1201, through which all connections between the Converter Chassis and the Cable Filter Unit are made. The fuses can only be replaced after sliding the Converter Chassis out of the case.

The housing is made in the shape of a triangle with the apex toward the rear. On the lower side of the triangle are mounted all jacks for external connections. A removable cover, held in place by five halfturn screws, forms the top of the assembly, making all internal connections and parts available for repair or replacement (see Figure 3-1).
(3) AUDIO INPUT UNIT. - The 600 -ohm audio output of a communication receiver is fed to the Audio Input Unit through either the NARROW A-F INPUT jack J1211 or the WIDE A.F INPUT jack J1212. This signal is filtered, amplified, limited and fed into a discriminator which provides Tuning Indicator and remote oscilloscope vertical signals together with diversity and keyed signals.

The Audio Input Unit (see Figures 7-9 and 7-10) mounts on the left side of the Converter Chassis by front and rear flanges. Two captive screws hold the rear flange in place and one captive screw holds the front flange in place. Brackets, front and rear, permit lifting the unit in and out of the Converter Chassis. The transformer assemblies (Z401 and Z402) are mounted on the top rear of the chassis with the terminals extending through the bottom for wiring. In front of the transformers, from left to right, are a control resistor R403 and tubes V401 to V404 in numerical order. Capacitors C417 and C416 are located in front of V401 and V403, respectively. At the left center of the front bracket is S402, the TUNE-OPER-

Figure 1-3. Cables for CV-60/URR and AN/URA-8 Equipments

ATE switch; and on the right side is the THRESHOLD control R421 mounted above S401, the NARROW. WIDE band switch. Mechanical couplers are provided for coupling the controls to the panel knobs on insertion of the unit into the chassis except R 403 which is screwdriver-controlled and accessible only by withdrawing the chassis from the case.

The connecting plug P401 is mounted on the bottom front center, with terminal boards E404 on the left and E405 on the right. To the rear of the plug is the row of sockets and R403, with terminal board E402 to the rear of the sockets. Terminal board E403 is on the right side of E402 and mounts the audio coupling links. Mounted on the rear of the chassis is terminal board E401.
(4) KEYER UNIT.-The Keyer Unit is supplied with d-c signal pulses from the Audio Input Unit. These pulses serve to control the electronic keying tubes to key the external teletype loop. The unit also supplies an on-off tone signal of adjustable level and frequency for remote teletypewriter operation and monitoring purposes.

One Keyer Unit (see Figures 7-11 and 7-12) is mounted at the front center of the Converter Chassis and one also on the Comparator Chassis; each Keyer Unit is held in place by three captive screws, two at the rear and one at the front. Brackets at the front and rear serve as handles for lifting the unit into and out of the chassis. The front bracket is also the mounting for all the controls of the unit. On the bottom front center is located the connecting plug P601. On the right-hand side of the plug is terminal board E602 and on the left-hand side is termial board E601. To the rear of the plug is a row of capacitors (C603, C616, C615, and C601 from left to right) with four tube sockets (X601, X606, X602, and X603) to the rear of the capacitors. In back of the tube sockets are terinal boards E605 and E604 mounted over the terminals of Z601 and L601. Transformer T601 is to the right. To the rear of the items just mentioned are four tube sockets (X607, X608, X604, and X605) and four capacitors (C617, C618, C606, and C602). Terminal board E603 is fastened to the rear bracket. The rear bracket also mounts a toggle switch (S604).

Mounted on the front bracket are the following controls: S601, S602, S603, R613, R629, and R633. Looking at the top right of the rear of the front bracket is the TONE FREQ switch (S602), with the TONE LEVEL control (R629) located below. To the left is the terminal board E608 mounting the tone oscillator tuning capacitors C607 to C614 inclusive. To the top left of E608 is the SPEED (LOW-HI-ADJ) switch

Figure 1-4. Gusset, Rack Mounts for Frequency Shift Converter CV-60/URR
(S601) with the MOD BAL control R633 below. On the extreme left is the NORM-REV switch (S603A, B) above the \% MARK control R613. The controls S601, S602, S603, and R629 couple to the panel knobs by means of mechanical couplers. Controls R633 and R613 are screwdriver-adjusted through the front panel.
(5) TUNING MONITOR UNIT (see Figures 7-7 and 7-8).-The Tuning Monitor is supplied with d-c pulses from the Audio Input Unit discriminator to indicate proper tuning of the receiver. When the CAL IN button is depressed the proper setting of the THRESHOLD control can be observed.

The Tuning Monitor Unit is a separate unit fastened to the right side of the Converter Chassis by four captive screws, two at the front and two at the rear. Connections are made by a plug and jack when the unit is placed in position. All the controls, except the Vertical Linearity control, are on the front panel.

The chassis is formed from aluminum with a vertical crosswise bracket supporting the cathode-ray tube shield and three controls, CENT (R702), Vertical Linearity (R705), and FOCUS (R715). Clamped to the tube shield are the tube and socket clamp for the JAN-2BP1. A shelf, at the rear of the chassis, supports a capacitor (C 701) and a tube socket (X 701) with its shield. On the bottom of the chassis are the connecting plug (P701), a terminal board (E701 for resistors and small capacitors), and bracket mounting controls VERT GAIN (R701), INTENSITY (R713) and CAL IN switch (S701).

The control shafts of R701 and S701 are arranged to connect or disconnect with the panel knob shafts by means of mechanical couplings on removal or replacement of the unit. Controls R702, R713, and R715 are screwdriver-adjusted and are accessible through spring covers on the top of the front panel. Access to R705 can only be had by withdrawing the chassis from the case.
(6) POWER SUPPLY UNIT (for CV-60/URR). -See Figures 7-3 and 7-4. Power for all the units assembled on the Converter Chassis is supplied by the Power Supply Unit. This Unit has no controls and is readily changed by unscrewing four captive screws and lifting from position. All connections are made by a single plug (P801).

The chassis is formed from aluminum with flanges at both ends for support on the Converter Chassis (looking from the front of the Converter Chassis with the Power Supply Unit in its operating position). The right-hand flange has one caprive screw and the lefthand flange has two captive screws. A fourth captive screw is located beside socket X801. These captive screws hold the unit in place on the Converter Chassis. The power transformer (T801) is mounted on the left side of the chassis and the remaining components are grouped on the right side. Capacitor C802A, B
is mounted by an octal socket (X804) with a screw. adjusted clamp to hold it in place.

Filter Choke L801 and capacitor C801A, B, C are mounted on the top of the chassis with their terminals through the chassis for wiring convenience. A bracket, fastened to the right-hand side of the chassis, together with the power transformer provide means of lifting the unit into and out of the Converter Chassis. Four tube sockets are mounted in the chassis (X801 through X804), three for the tubes and one for the filter capacitor C802A, B. Under the chassis is located a terminal board (E801) and the connecting plug P801.

b. FREQUENCY SHIFT CONVERTER-COMPAR-

 ATOR GROUP AN/URA-8.-Frequency Shift Con-verter-Comparator Group AN/URA-8 consists of two Frequency Shift Converter CV-60/URR units with one Comparator CM-14/URR unit secured within a tablemounting frame (see Figure 1-1). The units may be removed from this frame and be mounted in a standard relay rack. The CV-60/URR units are connected to separate receivers. The Comparator CM-14/URR selects the better of the two signals from the converters to key the teletypewriter loop and the tone signal.The Comparator differs in appearance from the Frequency Shift Converters in that it has a meter in place of the cathode-ray tube of the Converter units.

Figure 1-5. Frequency Shift Converter CV-60/URR Chassis, Top View
cable filter when the chassis is withdrawn from the cabinet. An air filter and cover in the center of the panel, cover the controls requiring only occasional adjustment, but make them readily accessible by a halfturn screw holding the cover against the panel.

Two jacks, TTYP and PHONES, are located on the bottom left of the panel protected by a cover. To the right of the jacks is the neon lamp $B+$ indicator. The POWER OFF-ON switch is located to the right center of the air filter.
(2) CABLE FILTER UNIT (for CM-14/URR). -See Figure 7-2. Converter and external connections to the Comparator are made through the Cable Filter Unit. Filtering of the power lines and tone output circuits is provided. Connections berween the Cable Filter Unit and Comparator Chassis are made automatically when the Comparator Chassis is pushed in place. The entire filter assembly is fastened to the rear of the cabinet by eight screws accessible from the inside of the cabinet (see Figure 5-2).

The housing is made in the shape of a triangle with the apex toward the rear. On the lower side of the triangle are mounted all jacks for external connections. A removable cover held in place by five half-turn screws forms the top of the assembly, making all internal connections and parts available for repair or replacement (see Figure 7-2).

Figure 1-6. Comparator CM-14/URR Chassis, Top View

Looking at the front of the cabinet, the major items of the Cable Filter Unit are arranged from left to right as follows: fuses, Allen wrenches, fan, and spare fuses. Located below the spare fuses is a jack, J1301, by means of which all connections between the Camparator Chassis and the Cable Filter Unit are made. The fuses can only be replaced after sliding the chassis out of the case.
(3) DIVERSITY SELECTOR UNIT.-See Figures 7-13 and 7-14. The Diversity Selector unit receives the incoming signal being fed into each of the two converter channels and selects the stronger of the signals to operate a gating circuit. The d-c pulses from the two converter discriminators are fed into the gating circuit. The discriminator output from the converter receiving the stronger signal is selected to operate the Comparator Keyer Unit.

The Diversity Selector Unit is supported in the Comparator Chassis by front and rear flanges on the left front of the Comparator Chassis. Two captive screws through the rear flange and one captive screw through the front flange hold the unit in place. The front and rear brackets extend upward to make handles for inserting and removing the unit from the Comparator Chassis. The three controls (S901, R905 and R923) are mounted on the front bracket.

Underneath the chassis at the front center is a plug (P901) through which all connections are made. To the left is terminal board E904 and on the right is terminal board E905. To the rear of the plug are four tube sockets, X907, X906, X902, and X901 from left to right. In the center, arranged from left to right, are capacitors C919, C920, C914, C913, and C912. Mounted above the capacitors are terminal boards E 902 and E903. Terminal board E906 is mounted on the righthand side of E902. To the rear of the terminal boards is a row of tube sockets X905, X904, X903, X909, and $\mathbf{X} 908$ from left to right. Mounted on the rear bracket is terminal board E901.

Looking at the right rear of the bracket is the CHANNEL A-COMBINED-CHANNEL B switch (S901). To the top left is the GATE BAL control (R923) with the CONT BAL control (R905) below. The CHANNEL A-COMBINED-CHANNEL B switch couples to the panel knob by means of a mechanical coupler. The GATE BAL and CONT BAL controls are screwdriver-adjusted through the front panel.
(4) POWER SUPPLY UNIT (for CM-14/ URR).-See Figures 7-5 and 7-6. Power for all the units assembled on the Comparator Chassis and is readdy changed by unscrewing four captive screws and lift-
ing from position. All connections are made by a single plug (P1001).
The chassis is formed from aluminum with flanges at both ends for support on the Comparator Chassis (looking from the front of the chassis with the Power Supply Unit in its operating position). The righthand flange has one captive screw and the left-hand flange has two captive screws. A fourth captive screw is located beside the socket X1001. These captive screws hold the unit in place on the Comparator Chassis. The power transformer T1001 is mounted on the left side of the chassis and the remaining parts are grouped on the right side. Capacitor C1002A, B is mounted by an octal socket (X1004) with a screwadjusted clamp to hold it in place.

Filter choke L1001 and capacitor C1001A, B, C are mounted on the top of the chassis with their terminals going through the chassis for wiring convenience. A bracket, fastened to the right side of the chassiss, together with the power transformer provide means of lifting the unit into and out of the Comparator Chassis. Four tube sockets are mounted in the chassis (X1001 through X1004), three for the tubes and one for the filter capacitor C1002A, B. Under the chassis is located a terminal board (E1001) and the connecting plug P1001.

4. REFERENCE DATA.

a. Equipment Designation:
(1) Frequency Shift Converter CV-60/URR (Single Channel).
(2) Frequency Shift Converter-Comparator Group AN/URA-8 (Dual Channel).
b. Contract Number: NObsr-39421 dated 30 June 1947.
c. Contractor: Radio Corporation of America, RCA Victor Division, Camden, New Jersey, U.S.A.
d. Cognizant Inspector: Inspector of Naval Material, Philadelphia District, Upper Darby, Pa.
e. Number of packages per complete shipment:
(1) CV-60/URR: two (includes equipment)
(2) AN/URA-8: two (spare parts)
f. Total cubical contents:

| CV-60/URR | Crated 6.5 | Uncrated 1.5 | |
| :--- | ---: | :--- | :--- | :--- |
| AN/URA-8 | Crated 14.4 | Uncrated 4.66 | |
| Equipment spare parts included. | | | |
| g. Total Weights: | | | |
| CV-60/URR | Crated 139 | Uncrated | 66 |
| AN/URA-8 | Crated 282 | Uncrated | 154 |

Equipment spare parts included.
b. Frequency Range: Audio with either a 1000 cycle or 2550 -cycle center frequency.
i. Frequency Shift:
(1) Ten to 200 cycles total separation between mark and space frequencies for 1000 -cycle center frequency (narrow band).
(2) 200 to 1000 cycles total separation between mark and space frequencies for 2550 -cycle center frequency (wide band).
j. Output:
(1) Electron tube keyer for keying 60 -ma teletype loop (loop current must be supplied from external teletype battery or power supply).
(2) Tone signal, 12 milliwatts into 600 -ohm load.
(3) Tone signal frequencies, $595,765,935,1105$, $1275,1445,1615,1785$ cycles per second. Provision is also made for an externally supplied tone frequency for alternative use within the 595 -1785-cycle range.
k. Input impedance:
(1) Wide band, 600 ohms balanced or unbalanced.
(2) Narrow band, 600 ohms balanced or unbalanced.
l. Audio input power required: 60 microwatts to 60 milliwatts $600-\mathrm{ohm}$ line.
m. Type of signal: Frequency shift keying. Keying speeds up to 100 dot cycles per second, corresponding to four-channel multiplex, 100 words per minute each channel.
n. Power Supply: 105,115 or 125 volts, 60 cycles, single phase.
o. Power required:
(1) CV-60/URR, 70 watts at 115 volts.
(2) AN/URA-8, 220 watts at 115 volts.

TABLE 1-1. EQUIPMENT SUPPLIED

SINGLE CHANNEL

$\begin{aligned} & \text { QUAN- } \\ & \text { TITY } \\ & \text { PER } \\ & \text { EQUIP- } \\ & \text { MENT } \end{aligned}$	NAME OF UNIT	NAVY TYPE DESICNA TION	OVERALL DIMENSIONS (INCHES)			$\begin{gathered} \text { VOL- } \\ \text { UME } \\ \text { CU. FT. } \end{gathered}$	WEICHT (LBS.)
			HEIGHT	WIDTH	DEPTH		
1 2	Frequency Shift Converter (Single Channel) including tubes, external connecting plugs and jumper cable Instruction Books (IB-38483)	CV-60/URR NAVSHIPS 91339	5-1/8*	17-5/16**	15-1/4	1	43
1	Suitable container, containing: (A) 1 Bracket Assembly, Shock Mount Right Hand (B) 1 Bracket Assembly, Shock Mount Left Hand (C) 1 Gusset, rack mount right hand (D) 1 Gusset, rack mount left hand (E) 1 Channel (F) 4 Shock Mounts (G) 1 Suitable container, containing: (1) 26 screws $\# 8-32 \times 3 / 8$ pan head (2) 16 screws $1 / 4-20 \times 1 / 2$ hex head (3) 26 lock washers $\# 8$ (4) 16 lock washers $1 / 4$ (5) 16 nuts $1 / 4-20$ (6) 8 washers \#8						\%

" Height 7-1/8" with shock mounting brackets.
** Width $19-1 / 16^{\prime \prime}$ with rack mounting brackets.

TABLE 1-1. EQUIPMENT SUPPLIED (Continued)
 DUAL CHANNEL

1.	Frequency Shift Converter-Comparator	AN/URA-8	21-3/4	20-1/4	17-5/32	4.16	130
	Group including tubes, external connecting plugs, and jumper cable						
2	Instruction Books (IB-38483)	NAVSHIPS 91339					
2	Cables, Diversity Control, W1705 and W1706						
2	Cables, Diversity Signal, W1711 and W1712						
2	Cables, Power, W1717 and W1718						

Unless otherwise stated, dimensions are inches, volume in cubic feet, weight in pounds.

TABLE 1-2. EQUIPMENT AND PUBLICATIONS REQUIRED BUT NOT SUPPLIED FREQUENCY SHIFT CONVERTER CV-60/URR
(SINGLE CHANNEL)

$\begin{aligned} & \text { QUAN- } \\ & \text { TITY } \\ & \text { PER } \\ & \text { EQUIP. } \\ & \text { MENT } \end{aligned}$	NAME OF UNIT	NAVY TYPE DESIGNATION	REQUIRED	REQUIRED CHARACTERISTICS
1	Radio Receiver	RBA, RBB or RBC series**	Receiving signal	$600-\mathrm{ohm} \quad 60-\mathrm{mw}$ maximum audio output
1	Teletypewriter and loop power supply		Printing received signal	Standard or high speed
1	Headset		Monitoring signals	600-ohm impedance
5	Connecting cables, lengths depend on installation:			
	1 Power	MCOS-2	Power line connection	Two-wire power
	1 Input (Narrow or Wide)	TTHFWA-1 or RG-108/U	Receiver audio to input	Two-wire with shield
	1 Teletypewriter	MCOS-2	CV-60/URR to teletypewriter	Shielded single* or twowire
	1 Tone Output (if used)	TTHFW A- 1 or RG-108/U RG-11/U or	Tone signal to telephone line	Shielded single* or twoor three-wire Shielded single
	1 Carhode-ray Tube Remote Vertical (if used)	$\begin{aligned} & \text { RG-11/U or } \\ & \text { RG-12/U } \end{aligned}$	Oscilloscope signal (external)	
4	Screws for rack mounting or 5/16-18 bolts and flat washers for tabletop mounting			

* Depends on local system.
** or other receiver having good stabilitv, suitable frequency range, and provided with bfo.

GENERAL DESCRIPTION

TABLE 1-2. EQUIPMENT AND PUBLICATIONS REQUIRED BUT NOT SUPPLIED (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-8 (DUAL CHANNEL)

$\begin{aligned} & \text { QUAN- } \\ & \text { TITY } \\ & \text { PER } \\ & \text { EQUIP- } \\ & \text { MENT } \end{aligned}$	NAME OF UNIT	$\begin{aligned} & \text { NAVY } \\ & \text { TYPE } \\ & \text { DESIGNA- } \\ & \text { TION } \end{aligned}$	REQUIRED	REQUIRED CHARACTERISTICS
2 1 1 1	Radio Receivers Teletypewriter and loop power supply Headset Connecting cables, lengths depend on installation: 1 Power 2 Input (Narrow or Wide) 1 Teletypewriter 1 Tone Output 1 Cathode-ray Tube Remote Vertical (if used) 3/8-in. bolts and nuts with matching threads of any available gauge, for table-top mounting 3/8-in. (I. D.) flat washers for use with above bolts and nuts Blank panels, 4 screws, for relay rack mounting, see Fig. 3-13	RBA, RBB, or RBC series** MCOS-2 TTHFWA-1 or RG-108/U MCOS-2 TTHFWA-1 or RG-108/U RG-11/U or RG-12/U	Receiving signals Printing received signal Monitoring signals Power line connection Receiver audio to input AN/URA-8 teletypewriter Tone signal to telephone line Oscilloscope signal (external)	600 -ohm 60 -mw maximum audio output Standard or high speed 600 -ohm impedance Two-wire power Two-wire with shield Shielded single* or twowire Shielded single* or twoor three-wire Shielded single

* Depends on local system.
** or other receiver having good stability, suitable frequency range, and provided with bfo.

TABLE 1-3. SHIPPING DATA

$\begin{aligned} & \text { SHIP- } \\ & \text { PINC } \\ & \text { BOX } \\ & \text { NO. } \end{aligned}$	CONTENTS		OVERALL DIMENSIONS (INCHES)			VOL. UME (CU. FT.)	WEICHT (LES.)
	NAME	DESIGNATION	HEICHT	WIDTH	DEPTH		
1 of 1	Freq. Shift Converter	CV-60/URR	10.75	19.75	19	5.1	100
$1 \text { of } 1$	Freq. Shift Converter Comparator	AN/URA-8	29	29	25.5	13	242
1 of 1	CV-60/URR Set of Equipment Spares		8.5	16.75	16.5	1.4	39
1 of 1	AN/URA-8 Set of Equipment Spares		8.5	16.75	16.5	1.4	40

TABLE 1-4. BASIC SIMILARITIES IN THIS SERIES EQUIPMENT

MODEL	INPUT FREQUENCY	UNITS INVOLVED	REMARKS
CV-57/URR CV:60/URR	395 to 475 kc . 1000 cps narrow, 2550 cps wide (center frequency)		Single-channel operation Single-channel operation
CV-71/URR CM-14/URR	47.5 to 52.5 kc .		Single-channel operation Provides diversity switching on dual-channel systems
AN/URA-6	395 to 475 kc .	$\begin{aligned} & \text { 2—CV-57/URR } \\ & \text { 1—CM-14/URR } \end{aligned}$	Dual-channel, diversity operation
AN/URA-7	47.5 to 52.5 kc .	$\begin{aligned} & \text { 2-CV-71/URR } \\ & \text { 1-CM-14/URR } \end{aligned}$	Dual-channel, diversity operation
AN/URA-8	1000 cps narrow, 2550 cps wide (center frequency)	$\begin{aligned} & \text { 2-CV-60/URR } \\ & \text { 1-CM-14/URR } \end{aligned}$	Dual-channel, diversity operation

TABLE 1-5. ELECTRON TUBE COMPLEMENT

COMPLEMENT FOR ONE (1) FREQUENCY SHIFT CONVERTER CV-60/URR											
UNIT	NUMBER OF TUBES OF TYPE INDICATED										
	N	*	N	\#	「	¢	n	-	N	\%	Total No. of Tubes
Audio Input Tuning Monitor Keyer Power Supply	1	1	1	1	1	1	1	1	5	2	$\begin{aligned} & 4 \\ & 2 \\ & 8 \\ & 3 \end{aligned}$
Total Number of Each Type	1	1	1	1	2	1	2	1	5	2	17
COMPLEMENT FOR ONE (1) COMPARATOR CM-14/URR											
Diversity Selector Keyer. Power Supply	1	1	1	1		2	2		4 5	2	9 8 3
Total Number of Each Type	1	1	1	1		2	3		9	2	20

SECTION 2

THEORY OF OPERATION

1. INTRODUCTION.

This instruction book covers two equipments, the single-channel Frequency Shift Converter CV-60/URR and the dual-channel diversity Frequency Shift Con-verter-Comparator Group AN/URA-8. An antenna, receiver, and teletypewriter with battery or power supply are required for the single-channel equipment. The dual-channel diversity equipment requires two antennas, two receivers, and a teletypewriter with battery or power supply.
These converters are used to convert a frequency shift signal into d-c pulses sufficient to operate a teletypewriter or other automatic recording devices. A frequency shift signal is one whose normal frequency is shifted to another frequency for a period of time corresponding to the coding of the information being transmitted. This equipment is designed to handle shifts of from 10 to 1000 cycles.

2. SINGLE CHANNEL FREQUENCY SHIFT CONVERTER CV-60/URR.

In the CV-60/URR units (see Figure 2-1, SingleChannel Equipment CV-60/URR Block Diagram) the signal is filtered, amplified, clipped (by the limiter) and fed through the discriminator. The discriminator output is amplified, filtered, amplified again, and triggers two Eccles-Jordan flip-flop stages in cascade to key the rone oscillator and teletypewriter loop keyer tubes.

Frequency Shift Converter CV-60/URR is made up of the following operating sub-assemblies shown interconnected on the System Schematic, Figure 7-15.

UNIT NAME	FIGURE NUMBER (Schematic Diagram)	SYMBOL SERIES
Converter Chassis	Part of $7-15$	1500
Cable Filter Unit	$7-19$	1200
Audio Input Unit	$7-29$	400
Keyer Unit	$7-31$	600
Tuning Monitor Unit	7.27	700
Power Supply Unit	7.23	800

3. CONVERTER CHASSIS ASSEMBLY (FOR CV-60/URR).

Refer to the System Schematic Figure 7-15. All connections to the Cable Filter and to the units on the Converter chassis are made by plugs and jacks. Plug P1501, mounted on the rear of the Converter chassis, engages with jack $\mathbf{J 1 2 0 1}$ on the Cable Filter Unit when the Converter chassis is properly seated in the case. This permits external cable connections, which are made to the Cable Filter Unit, to be carried into the chassis assembly cable and distributed to jacks J1503 to J1506 inclusive. These jacks, in turn, engage the proper sub-assembly plugs when these units are assembled in the Converter chassis. The other electrical items of the chassis are the $\mathrm{B} \pm$ "on" indicator and socket (1/X1501), the POWER OFF-ON switch S1501, and the TTYP and PHONES jacks J1501 and J1502.

The B "on" indicator is a neon lamp connected between ground and the 200 -volt supply, in series with a limiting resistor R 807 located in the power supply. The neon lamp glows to indicate that a voltage of 200 volts is present in the power supply.

The POWER OFF-ON switch makes or breaks both legs of the a-c line into the power transformer primary. The TTYP jack (J 1501) is connected in series with the external teletype loop circuit and is used to meter the teletype current and otherwise monitor the teletype circuit. The PHONES jack (J 1502) is supplied with keyed tone output signals through the Tone Output Filter (Z1201) for monitoring purposes.

4. CABLE FILTER UNIT.

Refer to Schematic Diagram, Figure 7-19. All external cable connections are made by jacks mounted on the rear of the Cable Filter Unit to facilitate connection and replacement of the equipment. The various jacks and their functions are listed below together with the names with which they are designated on the equipment:

SYMBOL NO.	NAME	FUNCTION
J1202	VERT. CRT-REMOTE	Remote vertical cathode-ray tube signal
J1204	EXT. TONE IN	External tone signal input
J1205	TONE OUTPUT	Tone output
J1206	TTYP OUTPUT	Teletypewriter signal (output)
J1207		A-C power outlet
J1208	PWR. INPUT	A-C power input
J1209	DIV. CONT.	Diversity control voltage
J1210	DIV. SIG.	Diversity output signal
J1211	NARROW A-F INPUT	600-ohm narrow-band input
J1212	WIDE A-F INPUT	600-ohm wide-band input

Electrical connections from these jacks to the various sub-assembly units on the Converter Chassis are made through jack J1201. This is mounted on the lower right hand of the inside panel and engages P1501 mounted on the Converter Chassis. The equipment is protected from overload by three-ampere fuses, F1201 and F1202, each in series with one leg of the line. The fuses do not protect circuits which may be connected to a-c power outlet jack J1207. A power line filter, Z 1202 , is inserted in the power line, in series with the power transformer primary. This filter has an attenuation of at least 65 db from 14 kc to 10 mc and of at least 50 db from 10 mc to 30 mc when fully loaded. It prevents any signal generated in the equipment from entering the power line and also prevents external signals from entering the equipment.

A fan, B1201, operates from the 115 -volt power line. Capacitor C1201 provides the necessary phase shift to operate the fan motor. The fan maintains an even temperature distribution when the equipment is in use.

A tone output filter (Z 1201) is inserted in series with the tone output from the Keyer Unit. It has the same attenuation and purpose as the power line filter previously described. The output connections of the tone filter are taken to the PHONES jack J1502 for monitoring purposes.

The tone output impedance is 600 ohms nominal from 595 to 1785 cycles with a power output of at least 12 milliwatts across a 600 -ohm non-inductive load.

The output circuit has its center tap brought out to terminal B of the Tone Output jack J1205 and may be grounded if required by external conditions.

5. AUDIO INPUT UNIT.

See Schematic Diagram, Figure 7-29. The Audio Input Unit receives a detected frequency shift signal from the 600 -ohm audio output of a communication receiver through the Cable Filter Unit. It is designed for a signal with a center frequency of 1000 cycles for narrow shift (10 to 200 cycles) or 2550 cycles for wide shift (200 to 1000 cycles). This signal is filtered, amplified, limited, and fed into an audio discriminator which transforms the frequency shift signal into d-c pulses. These pulses are filtered and fed into the Keyer Unir to key the teletypewriter loop.

The tubes used in the Audio Input Unit are as follows:

SCHEMATIC SYMBOL	TUBE TYPE	CIRCUIT FUNCTION
V401	JAN-6C4	Amplifier
V402	JAN-12AX7	Limiter
V403	JAN-6AU6	Driver
V404	JAN-6AL5	Discriminator

Two three-wire inputs are provided, one for wideband (pins 12, 13, 14 of P401) and one for narrowband (pins 9, 10, 11 of P401) input. Connecting links

The discriminator output signal from pin 5 of V404 is filtered by a twin T network, consisting of $\mathbf{R 4 1 7}$ through R420 and capacitors C409, C410, C411, having its maximum attenuation at 1000 cycles. This filter removes the 1000 -cycle carrier from the discriminator output.

From the filter, the signal is fed through R422 and pin 5 of P401, to the Tuning Monitor Unit and to VERT. CRT-REMOTE jack J1202 for a remote oscilloscope. The signal from the filter is fed through the THRESHOLD control (R421) and TUNE-OPERATE switch S 402 to pin 4 of plug P401. The signal then goes to the Keyer Unit, and also to the DIV. SIG jack J1210 for external connection to the Diversity Selector Unit of the Comparator CM-14/URR when this is used.

The TUNE-OPERATE switch S402 disconnects the output of the discriminator and grounds the Keyer input in the TUNE position.

The THRESHOLD control R421 sets the input level to the Keyer Unit to provide the proper signal amplitude at the clamping circuit as described under paragraph 6, Keyer Unit.

6. KEYER UNIT.

See Schematic Diagram, Figure 7-31. The Keyer Unit receives the d-c pulses from the discriminator, amplifies and filters them to energize the Eccles-Jordan flip-flop circuit which in turn keys a power output stage to key the teletype loop circuit. The output of the flip-flop circuit also keys on and off a tone oscillator for monitoring and transmission over telephone lines and radio links.

The tubes used in the Keyer Unit are as follows:

SCHEMATIC SYMBOL	TUBE TYPE	CIRCUIT FUNCTION
V601A	JAN-12AU7	A-F Amplifier I V601B
V602A	JAN-12AU7	Amplifier II Balance Modulator V602B
V603A	JAN-12AU7	Trigger I I
V603B		
V604A	JAN-12AU7	Trigger II
V604B		
V605A	JAN-12AU7	Tone Modulator V605B V606
V607 Oscillator		
V608	JAN-6AL5	D-C Restorer Teletypewriter Loop Keyer
		JAN-6AQ5
	Teletypewriter Loop Keyer	

CV-60/URR
 THEORY OF OPERATION

The audio signal from pin 14 of P601 is amplified by a-f amplifier I (tube V601A). The output of this stage is fed through the LOW-HI-ADJ. switch (S601) which is connected between the plate circuit of V601A and the input circuit of V601B. The LOW-HI-ADJ. switch (S601) inserts a low-pass filter (Z601) for either low- or high-speed teletype signals or a calibration signal in the ADJ, position.

The filter (Z601) serves to cut off frequencies above those necessary for teletype operation. In the LOW position the filter response is flat within 6 db from 80 to 140 cycles and is down not less than 40 db from 240 cycles and above. However, capacitors C617, C618 cause the overall circuit response to be flat within 6 db from 80 to 125 cycles and down not less than 40 db from 200 cycles and above (these are approximate values only). In the HI position the filter response is flat within 6 db from 80 to 300 cycles and is down not less than 40 db from 500 cycles and above. However, capacitor C618 causes the overall circuit response to be flat within 6 db from 80 to 240 cycles and down no: less than 40 db from 415 cycles and above (these are approximate values only).
The output of a-f amplifier II (tube V601B) is applied to the trigger driver tube (V602B) grid pin 2 through capacitor C616 and resistor R605. This same signal is fed to the Tuning Monitor through pin 5 of P601 to indicate proper setting of the THRESHOLD control on the Audio Input Unit. This voltage, when the THRESHOLD control is properly adjusted, should be approximately 17 volts peak to peak and the traces on the cathode-ray tube screen will coincide with the top and bottom engraved lines on the Tuning Monitor window when the CAL IN switch ($\mathbf{S 7 0 1}$) is depressed. Accuracy of the trace indication can be checked by setting the LOW-HI-ADJ. switch (S601) to the ADJ. position and observing the traces to coincide with the top and bottom lines on the window when the CAL IN button is depressed. See Section 3, paragraph 5a(13).

Connected between the grid of the trigger driver (V602B) tube and ground is a d.c restorer tube (V606) and its associated circuits. This circuit selects a portion from the output of V601B near the zerovoltage axis, eliminating the superimposed noise and telegraph distortion. This is accomplished by two diodes, one which (pins 1 and 7) clips the negative portion and the other (pins 2 and 5), positively biased, clips the signal level above plus four volts. Therefore, appearing on the grid (pin 2) of the trigger driver (V602B) is a four-volt peak to peak square wave of plus two volts average. This square wave is
identical to the discriminator square-wave output, except that the amplitude-modulated noise has been reduced and the d-c component has been removed by capacitive coupling.

In normal frequency shift teletypewriter operation the teletypewriter loop circuit is closed during the standby, or mark signal. This keeps the teletypewriter in condition to receive the coding pulses which key the teletypewriter loop circuit through the keyer tubes (V607 and V608). The d-c component, from the discriminator, could be used to return the output tubes to conduction after each coding pulse has been received; however, since this component has been removed, a mark-return circuit is provided at the grid of the trigger driver (V602B) to accomplish this result.

The mark-return circuit has a normal and a reverse position and consists of resistor R610 and switch S603B. The switch (S603B) is used in the NORM position when the detected audio output from the receiver returns to a higher frequency in the mark or standby position. This permits the grid of V602B to return to plus four volts through resistor R610 and results in the output tubes (V607 and V608) conducting. The REV position of switch S603B is used when the receiver output returns to a lower frequency and permits the grid of V602B to return to zero voltage.
The output signal of V602B is direct-coupled to an Eccles-Jordan flip-flop stage (V603A, B) which in turn is capacitively coupled to another Eccles-Jordan flip-flop stage (V604A, B) having two stable positions. The output, taken from the grids of the second stage (V604A, B), is fed to the control grids of the output tubes (V607 and V609) and the tone modulator tubes (V605A and V602A) through the NORM-REV switch (S603A).
The pulse appearing in the teletype loop circuit must be an exact duplicate of the pulse appearing at the discriminator output to prevent loss of printing margin on the teletypewriter. The keyer unit is provided with a \% MARK control (R613) located in the cathode circuit of tube V602B; this permits adjustment of the operating bias of this tube to linearly amplify pulses appearing on its grid and therefore minimizing distortion of this pulse.
This control is adjusted to give a symmetrical square wave in the teletype loop circuit with the LOW-HIADJ. switch in the ADJ. position. The detailed procedure is given in Section 3, paragraph 5a(19).
The teletype output tubes (V607 and V608) obtain their plate voltage and current from an external power
supply or battery through the teletypewriter loop and are controlled by the negative pulses received from the grids of the second trigger stage ($\mathbf{V} 64 \mathrm{~A}, \mathrm{~B}$).

Inserted in the common screen grid (pin 6) circuit of both output tubes, V607 and V608, is an ON-OFF toggle switch (S604). When the teletype equipment is disconnected from the output tubes their plate voltage is removed. Under this condition the design and construction of the tubes is such that they will oscillate at about 200 mc . To prevent this, the switch (S604) must be opened when the teletypewriter is not used.

Certain operating requirements necessitate transmission of the keyed teletype pulses over telephone lines or radio relay links. The tone oscillator (V605B) and tone modulator (V605A) provide facilities for the above.

The tone oscillator (tube V605B) and its tuned circuits (L601 and C607 through C614) provide a choice of eight tone frequencies, namely $595,765,935,1105$, $1275,1445,1615$, and 1785 cycles per second. The output of the tone oscillator is fed through TONE LEVEL control R629, to the tone modulator V605A. The tone modulator is keyed by the square-wave signal from trigger II tube. The output of the tone modulator is coupled through transformer T601 and tone output filter Z1201 to the TONE OUTPUT jack J1205 for connection to an external line and the PHONES jack J1502 for monitoring purposes. A balance modulator (tube V602A) functions to balance out the transients resulting from square-wave signal currents. The MOD BAL control (R633) is adjusted for a minimum of transients as described in Section 3, paragraph 5a(18).

7. TUNING MONITOR UNIT.

See Schematic Diagram, Figure 7-27. The Tuning Monitor Unit is a direct-coupled oscilloscope which is used to indicate proper tuning of the associated radio receiver and to set the THRESHOLD control R421 to its proper level.

The following tubes are used in the Tuning Monitor Unit:

SCHEMATIC SYMBOL	TUBE TYPE	CIRCUIT FUNCTION
V701	JAN-12AX7 V702	Vertical amplifier JAN-2BP1

When the associated radio receiver is tuned through the frequency range of the discriminator the average voltage from the discriminator will vary from a negative to a positive value. Since at the center of the discriminator characteristic the d-c component is zero, the discriminator voltage will indicate proper tuning of the radio receiver.

Intensity and focus voltages are provided by the - 600 -volt bleeder made up of R713 (the INTENSITY control), R714, R715 (the FOCUS control), and R716. The arm of the INTENSITY control (R713) adjusts the grid (pin 2, V702) bias to vary the brilliance of the pattern on the cathode-ray tube. Resistor $\mathbf{R} 715$ varies the voltage on pin 4 of V702 to change the focus of the pattern on the screen. The heater leads of V702 are connected, through P701 pins 9 and 10 , to a special 6.3 -volt winding on the power transformer in the Power Supply Unit. This is necessary because the cathode-ray tube operates at a cathode voltage of -600 volts to ground.

A sine-wave voltage for horizontal deflection is applied to pin 10 and is obtained from a tap on the power transformer (T801 located in the Power Supply Unit) through pin 2 of P701. Pin 9 of the cathoderay tube is grounded to complete the sine-wave voltage circuit.
The d-c signal from the audio discriminator is applied to the VERT GAIN control R701 through pin 14 of P701. The level of the grid signal of V701A is adjusted by R701 to provide a pattern of reasonable size. The output of V701A is cathode-coupled to V701B through R702. The output of V701B is directly coupled to the vertical plate (pin 6 of V702) through the CAL IN switch S701.
Control R705 applies a d-c voltage to the other vertical plate (pin 7) and is adjusted so that the amplifier tube V701B operates over the linear portion of its characteristic. Detailed adjustment procedure is given in Section 3, paragraph 5a (6) (e).

The V CENT control R702 varies the vertical centering of the image on the cathode-ray tube. This control is in series with the cathode of V701A and a tap on the negative high-voltage bleeder. Therefore, the signal appearing on the arm of the resistor R702 consists of the normal cathode signal and an adjustable negative d-c voltage depending on the setting of the control. When this signal is fed into the grid of V701B the adjustable d-c voltage controls the average voltage appearing on the plate and, in effect, controls the vertical centering of the partern. The V CENT control is initially adjusted as explained in Section 3, paragraphs $5 a(6)(d),(e),(f)$ and (g).

The THRESHOLD control R421 is set to its proper level by comparing the voltage at the input of the clamping circuit (pin 6 of V601B in the Keyer Unit) against a pre-determined deflection of the cathode-ray tube which is marked by top and bottom lines engraved on the tube window. This procedure is given in detail in Section 3, paragraph 5a(13). The CAL IN switch, when depressed, applies the clamping circuit voltage to the vertical plate of V702 to make this comparison.

8. POWER SUPPLY UNIT FOR CV-60/URR.

See Schematic Diagram, Figure 7-23. The Power Supply Unit consists of a negative high-voltage supply for the cathode-ray tube, a regulated low-voltage supply for critical circuits, an unregulated low-voltage supply, filament voltage supply for all tubes, and an a-c voltage supply to provide horizontal deflection voltage for the cathode-ray tube.

The tubes used in the Power Supply Unit are as follows:

SCHEMATIC SYMBOL	TUBE TYPE	CIRCUIT FUNCTION
V801	JAN-1Z2	High-voltage Rectifier
V802	JAN-6X4	Low-voltage Rectifier
V803	JAN-0A2	Voltage Regulator

The high-voltage rectifier tube JAN-1Z2 (V801) supplies -600 volts. Capacitors C801A, B, C and resistors R801, R802 make up the filter for this high-voltage supply. Resistors R803 and R805 form a voltage divider and bleeder with a -45 volt tap.

This bleeder also discharges the capacitors when the line voltage is turned off, should the load be disconnected.

The 200 -volt supply utilizes a JAN-6X4 (V802) rectifier and is filtered by capacitors C802A and B (35 microfarads each) and filter choke 1801. Bleeder resistor R806 discharges the capacitors in case the load is disconnected.

The JAN-0A2 (V803) tube regulates the 150 -volt supply, the current through the tube increasing or decreasing when the input voltage rises or falls. The 200 -volt source feeds the regulator tube V803 through series resistor R804. The increase or decrease in tube current increases or decreases the voltage drop across resistor $\mathbf{R}-804$ to provide a regulated output.

Resistor R807, in series with pin 11 of P801, limits the current through the neon $\mathrm{B}+$ indicator 11501, located on the Converter Chassis panel.

The input power to the transformer T801 is fed through the power line filter Z1202 located in the Cable Filter Unit to suppress r-f noise.

Provision for 105 -, 115 - or 125 -volt nominal line voltages is made by a tapped primary brought out to terminals 2,3 , and 4 , respectively; terminal 1 provides the connection for the other side of the line.

Connections to plug P801 are as follows:

VOLTAGE	P801 PIN NUMBER	SERVICE
105, 115, 125 A-C	12 and 14	A-C input
115 A-C	5	Fan supply
6.3 A-C	9 and 10	Heater of cathode-ray tube (V702)
6.3 A.C	1 and 7	Heaters of all tubes except cathode-ray tube (V702) and H-V rectifier V801 (1Z2)
35 A-C	6	Horizontal sweep voltage for cathode-ray tube (V702)
+200 D.C	2	General plate voltage supply
+150 D-C	3	For Tuning Monitor Unit and audio amplifier and tone oscillator in Keyer Unit
-600 D.C	8	High voltage for cath-ode-ray tube V702
-45 D-C	4	Bias for trigger and teletype keyer tubes in Keyer Unit
$+80 \text { D-C }$ (nominal)	11	Voltage for neon $\mathrm{B}+$ indicator I 1501
Ground	13	Return for D-C and 35 volt A.C voltages

9. DUAL CHANNEL FREQUENCY CONVERTERCOMPARATOR GROUP AN/URA-8.

The dual-channel equipment (see Figure 2-2, DualChannel Equipment AN/URA-8 Block Diagram) has two CV-60/URR units, which operate from separate receivers, and a Comparator CM-14/URR.

The Comparator CM-14/URR takes the discriminator output voltage and the diversity control voltage from two CV-60/URR units, and, by electronic switching, selects the discriminator voltage from the channel supplying the stronger control signal. The selected
discriminator voltage is then used to key the reletypewriter loop or provide a tone signal for transmission to a remote point. See Block Diagram, Figure 2-3.

The Comparator CM-14/URR is made up of the following operating sub-assemblies shown interconnected on the system schematic Figure 7-16:

UNIT NAME	FIGURE NUMBER Schematic Diagram)	SYMBOL SERIES
Comparator Chassis	part of 7-16	1600
Cable Filter Unit	$7-21$	1300
Diversity Selector Unit	$7-33$	900
Keyer Unit	$7-31$	600
Power Supply Unit	$7-25$	1000

10. COMPARATOR CHASSIS ASSEMBLY (FOR CM-14/URR).

See Schematic Diagram, Figure 7-16. All connections to the Cable Filter Unit and the units on the Comparator Chassis are made by plugs and packs. Plug P1601, mounted on the rear of the Comparator chassis, engages with jack J1301 on the Cable Filter Unit when the Comparator chassis is properly seated in the case. This permits all external cable connections, which are made to the Cable Filter Unit, to be carried into the chassis assembly cable and distributed to jacks J 1603 and J 1605 inclusive. These jacks, in turn, engage the proper sub-assembly plugs when these units are assembled in the Comparator chassis. The other electrical items of the chassis, in addition to the jacks and cable, are the B+ indicator and socket (I/X1601), the POWER OFF-ON switch S1601, the meter switch S1602, comparison meter M1601 and the TTYP and PHONES jacks J1601 and J1602.

The $B+$ "on" indicator is a neon lamp connected between ground and the 200 -volt supply, in series with a limiting resistor R1008 located in the power supply. The neon lamp glows to indicate that a voltage of 200 volts is present in the power supply.

The POWER OFF-ON switch makes or breaks both legs of the a-c line connecting into the power transformer primary. The TTYP jack (J1601) is in series with the external teletype loop circuit and is used to meter the teletype current and otherwise monitor the teletype circuit. The PHONES jack (J1602) is supplied with keyed tone output signals through the Tone Ourput Filter (Z1301) for monitoring purposes.

The CHANNEL A LEVEL-DIV IND-CHANNEL B LEVEL switch (S1602) connects the meter (M1601) to
indicate the incoming signal level of either channel A or channel B or, in the DIV IND position, which channel is supplying the input to the Comparator Keyer Unit.

11. CABLE FILTER UNIT (FOR CM-14/URR).

Refer to Schematic Diagram, Figure 7-21. All external cable connections are made by jacks mounted on the rear of the Cable Filter Unit to facilitate connection and replacement of the equipment. The various jacks and their functions are listed below together with the names with which they are designated on the equipment.

$\begin{gathered} \text { SYMBOL } \\ \text { NO. } \end{gathered}$	NAME	CIRCUITS
J1302	Ext. Tone In	External tone signal input
J1303	Tone Output	Tone output
J1304	TTYP Output	Teletype output
J1305	Pwr. Input	A-C power input
J1306	Pwr. Output	A-C power output (paralleled with J 1305 and J1307)
J1307	Pwr. Output	A-C power output (paralleled with J1305 and J1306)
J 1308	Div-Cont Chan-A	Diversity control voltage channel A
J 1309	Div-Cont Chan-B	Diversity control voltage channel B
J 1310	Div-Sig Chan-A	Diversity signal input channel A
J1311	Div-Sig Chan-B	Diversity signal input channel B

Electrical connections from these jacks to the various sub-assembly units on the Comparator chassis are made through jack J 1301 . This jack is mounted on the lower right-hand of the inside panel and engages plug P1601 mounted on the Comparator chassis.

The equipment is protected from overload by threeampere fuses, F1301 and F1302, each in series with one leg of the line. The fuses do not protect circuits to the Converters, through jacks J1306 and J1307. These circuits are fused in the individual converters. A Dower line filter, Z1302, is inserted in the power line in series with the power transformer primary. This filter has an attenuation of at least 65 db from 14 kc to 10 mc and at least 50 db from 10 mc to 30 mc when fully loaded. It prevents any signals generated in the
equipment from entering the line and also prevents external signals from entering the equipment.

A fan, B1301, operates from the 115 -volt power line. Capacitor C1301 provides the necessary phase shift to operate the fan moror. The fan maintains an even temperature distribution when the equipment is in use.

A tone output filter (Z1301) is inserted in series with the tone output from the Keyer Unit. It has the same attenuation and purpose as the power line filter previously described. The output connections of the tone filter are taken to the PHONES jack J1602 for monitoring purposes.

The tone output impedance is 600 ohms nominal from 595 to 1785 cycles with a power output of at least 12 milliwatts across a $600 \cdot \mathrm{ohm}$ non-inductive load. The output circuit has its center tap brought out to terminal B of the Tone Output jack J1303 and may be grounded if required by external conditions.

12. DIVERSITY SELECTOR UNIT.

See Schematic Diagram, Figure 7-33. The Diversity Selector Unit compares the Channel A and Channel B diversity control signals and permits the stronger signal to operate the gating circuit with switches the discriminator output of either Channel A or Channel B converters to the input of the Keyer Unit.

The following tubes are used in Diversity Selector Unit:

SCHEMATIC SYMBOL	TUBE TYPE	CIRCUIT FUNCTION
V901	JAN-6AU6	Channel A Amplifier V902
JAN-6AL5	AVC and Differential Recti- fier Channel A	
V903	JAN-6C4	D-C Amplifier V904
JAN-12AU7	First Control Trigger	
V905	JAN-12AU7	Second Control Trigger
V906	JAN-12AU7	Gate B and Gate B Control V907
JAN-12AU7		
V908	JAN-6AU6 and Gate A Control	
V909	JAN-6AL5	Channel B Amplifier AVC and Differential Rec- tifier Channel B

The diversity control signal from channel A is amplified by V901 and its output is rectified negatively by a diode, pins 5 and 2 of V902. The diversity control signal from channel B is amplified by V908 and its output is rectified positively by a diode, pins 5 and 2 of V909. The two rectified outputs are com-
bined across resistors R931 and R932 which form a differential rectifier circuit, the output of which is used to control the gating circuits. A negative voltage at the junction of R931 and R932 indicates channel A signal is the stronger. Conversely, a positive voltage indicates a reverse condition.

A portion of the output appearing at the plate of V901 and a portion of the output of V908 are rectified negatively by two diodes, pins 1 and 7 of V902 and pins 1 and 7 of V909. The outputs of these diodes are combined across a common load resistor R947 and returned to both grids through R902, R941, and R942. This voltage provides AVC control which extends the operating range of the amplifier tubes to accommodate approximately 50 db input range of signal amplitude.

The output of the differential rectifier which appears at the junction of resistors R931 and R932 is fed to the grid of the d-c amplifier tube V903 through a twin-T network, links O 901 and O 902 , and the CHANNEL A-COMBINED-CHANNEL B switch S901. Since the Comparator Unit CM-14/URR is designed for use with either the a-f or i-f type converter the links O901 and O902 permit connection to the twin-T network for the a-f type converter or the filter capacitor C909 for the i-f type converter. This adjustment is made at the time of installation.

The twin-T network is a low-pass filter having its maximum attenuation at 100 cycles and is used to remove the 1000 - or 2550 -cycle component which may be present on the incoming signal supplied by the Audio Input Unit.

The CHANNEL A-COMBINED-CHANNEL B switch S901 permits single channel operation from channel A or channel B or diversity operation from both channels. In the CHANNEL A position it applies a fixed negative voltage to the grid of V903 to hold this tube in non-conducting condition. In the CHANNEL B position it applies a fixed positive voltage to the V903 grid to hold this tube in a conducting condition. In the combined position the switch applies the output voltage of the differential rectifier to operate V903 in the normal manner.

The Control Balance resistor (R 905) permits the gating circuits to switch channels with an equal change of input level for either channel. This adjustment is explained in detail in Section 3, paragraph $5 b(10)$.

The output of V903 is direct-coupled to an EcclesJordan flip-flop stage (V904) which in turn is capacitively coupled to another Eccles-Jordan flip-flop stage (V905) having two stable positions. The output, taken from the grids of the second stage (V905)

13. KEYER UNIT.

The Keyer Unit receives the d-c pulses from either channel A or channel B discriminator through jack J1310 or J1311 depending on which channel is selected by the Diversity Selector Unit. The selected pulses are then use to key the teletype loop circuit and to key on and off a tone oscillator for transmission to a remote point. The detailed theory of the Keyer Unit is given in paragraph 6 of this section, since the Keyer Units used on the Comparator and on the Converter are interchangeable.

14. POWER SUPFLY UNIT (FOR CM-14/URR).

See Schematic Diagram, Figure 7-25. The Power Supply Unit consists of a negative-voltage supply for bias voltages, a regulated d-c voltage supply for critical circuits, an unregulated d-c voltage supply and a filament voltage supply for all the tubes.

The tubes used in the Power Supply Unit are as follows:

SCHEMATIC SYMBOL	TUBE TYPE	CIRCUIT FUNCTION		
V1001	JAN-1Z2	Negative Voltage Rectifier V1002 V1003		
JAN-6X4				
JAN-0A2				Voltage Regulator
:---				

Connections to P1001 are as follows:

voltage	P1001 PIN NUMBER	SERVICE
105, 115, 125 A-C	12 and 14	A-C input
115 A-C	5	Fan supply
6.3 A-C	1 and 7	Heaters of all tubes except negative voltage rectifier (V1001)
+200 D.C	2	General plate voltage supply
$+150 \mathrm{D}-\mathrm{C}$	3	Tone Oscillator and Audio Amplifier plate voltage in Keyer Unit
-130 D-C	8	Trigger and gate bias in Diversity Selector Unit
-45 D-C	4	Bias for trigger and teletype keyer tubes in Keyer Unit
$\begin{gathered} +80 \mathrm{D}-\mathrm{C} \\ \text { (nominal) } \end{gathered}$	11	Voltage for neon $B+$ indicator 11601
Ground	13	Return for D-C Voltages

The negative voltage rectifier tube JAN-1Z2 (V1001) supplies -130 and -45 volts. Capacitors C1001A, B, C and resistors R1001, R1002 make up the filter for the negative voltage supply. Resistors R1003 and R1005 form a voltage divider and bleeder with a -45 volt tap. They also serve to discharge the capacitors when the line voltage is turned off, should the load be disconnected.

The 200 -volt supply utilizes a JAN-6X4 (V1002) rectifier and is filtered by capacitors C1002A and B (35 microfarads each) and filter choke L1001. Bleeder resistor R1006 discharges the capacitors in case the load is disconnected.

The JAN-0A2 (V1003) tube regulates the 150 -volt supply, the current through the tube increasing or decreasing when the input voltage rises or falls. The

200 -volt source feeds the regulator tube V1003 through the series resistors R1004 and R1007. The increase or decrease in tube current increases or decreases the voltage drop across resistors R1004 and R1007 to provide a regulated output.
Resistor R1008, in series with pin 11 of P1001, limits the current through the neon B+ indicator 11601, located on the Comparator Chassis panel.
The input power to the transformer T1001 is fed through the power line filter Z1302 located in the Cable Filter to suppress r-f noise.
Provision for 105 -, 115-, or 125 -volt nominal line voltages is made by a tapped primary brought out to terminals 2,3 , and 4 respectively; terminal 1 provides the connection for the other side of the line.

JACK	NAME
SYMBOL	J1202
J1204	VERT. CRT-REMOTE
J1205	EXT. TONE IN
J1206	TONE OUTPUT
J1207	TTYP OUTPUT
J1208	
J1209	PWR. INPUT
J1210	DIV. CONT.
J1211	NARIG.
J1212	WIDE A-F INP INPUT

Figure 2-2. Dual-Channel Equipment AN/URA-8 Block Diagram

JACK	
SYMBOL	NAME
J1302	EXT. TONE IN
J1303	TONE OUTPUT
J1304	TTYP OUTPUT
J1305	PWR. INPUT
J1306	PWR. OUTPUT
J1307	PWR. OUTPUT
J1308	DIV-CONT CHAN-A
J1309	DIV-CONT CHAN-B
J1310	DIV-SIG CHAN-A
J1311	DIV-SIG CHAN-B

Figure 2-3. Comparator CM-14/URR Block Diagram

SECTION 3

INSTALLATION

1. UNPACKING.

CAUTION

> THE EQUIPMENT IS SUPPLIED WITH THE CHASSIS INSTALLED IN THE CABINET AND THE ELECTRON TUBES IN PLACE. IT IS THEREFORE VERY IMPORTANT THAT ALL MECHANICAL SHOCKS BE AVOIDED WHEN UNPACKING AND INSTALLING THE EQUIPMENT IN ORDER NOT TO DAMAGE ANY PART.

The following special precautions should be observed:

Keep boxes and crates containing equipment in an upright position at all times.

Observe the weights marked on the boxes and make certain that appropriate lifting and transporting gear is available to handle the equipment without subjecting it to shock or damage.

Remove at least three sides from the boxes or crates with a nail puller. Do not use a hammer or pinch bar for this purpose.

2. INSTALLATION, GENERAL.

The various pieces of equipment making up the complete systern should be arranged for convenience of operation and accessibility for maintenance. Allow front clearance for tuning and maintenance and rear clearance for connection plugs and cables to the Cable Filter Units. See Figure 3-11 for clearance dimen. sions of the CV-60/URR and Figures 3-12 and 3-13 for clearance dimensions of the AN/URA-8. Observe tilting clearances shown on drawing, for equipment that may be installed in the relay rack above or below.

CAUTION

THE RQUIPMENT FRAME SHOULD BE SECURELY GROUNDED TO INSURE BESI PERFORMANCE AND ELIMINATE POSSIBILITY OF ELECTRIC SHOCK TO PERSONNEL.

3. INSTALLATION OF FREQUENCY SHIFT CONVERTER CV-60/URR.

a. RACK MOUNTING.-Place the equipment on a bench; place the rack mounts (see Figure 1-4) identified as (C) and (D) in Table 1-1 against the cabinet sides so the slotted flanges turn ourward, parallel to the front panel, and fasten each in place with nine No. $8-32 \times 3 / 8$ screws supplied. Put lock washers under the screw heads. See Figure 3-11 for further information. Mount the cabinet in the rack, using rack screws and washers (not supplied).
b. TABLE MOUNTING. - Assemble the shock mount first. Proceed as follows:
(1) Assemble the shock mounts, (F) of Table 1-1, two each on the bracket assemblies, (A) and (B) of Table 1-1, using $1 / 4-20$ screws, lock washers and nuts supplied (see Figure 3-11). Put the lock washers under the nuts.
(2) Attach the above two assemblies to the channel, (E) of Table 1-1, using eight No. 8-32 $\times 3 / 8$ screws. Put flat washers and lock washers under the nets, with the lock washers next to the nuts.
2one2 (3) Turn the case up side down and put shock mount assembly in place.
(4) Fasten shock mount in place with nine No. $8.32 \times 3 / 8$ screws and lock washers on each side of cabinet.
(5) Drill the four mounting holes in the table for ifi-inch diameter bolts (not supplied). Two holes with centers 14 inches apart for the front shock mounts, and two holes with their centers $75 / 8$ inches to the rear of the front boit hole centers.

Figure 3-1. Frequency Shift Converter CV-60/URR, Rear View
(6) Turn the equipment to rest on the shock mounts and boit to the table with $3 / 16$-inch bolts. The following Table 3-1 shows a listing of external
connectors, and related information. Figure $3-1$ is a rear view of the CV-60/URR unit showing the locations of these connectors.

TABLE 3-1. EXTERNAL CONNECTORS, CV-60/URR

SYMBOL	TYPE	PIN NUMBERS USED	FUNCTION
J1202	C. 49194	Center and shell	Cathode-ray Tube Remote Vertical jack
P1202	C-49195	Center and shell	Cathode-ray Tube Remote Vertical plug
J1204	AN-3102-14S-7S	A, B, C	External Tone Input jack
P1204	AN-3106-14S-7P	A, B, C	External Tone Input plug
J1205	AN-3102-14S-7S	A, B, C	Tone Output jack
P1205	AN-3106-14S-7P	A, B, C	Tone Output plug
J1206	AN-3102-14S-9P	A, B	Teletype Output jack
P1206	AN-3106-14S-9S	A, B	Teletype Output plug
J1207	49435	1, 2	A.C. Outlet
J1208	AN-3102-14S-7P	A, B, C	Power Input jack
P1208	AN-3106-14S-7S	A, B, C	Power Input plug
J1209	JAN-UG-290/U	Center and shell	Diversity Control for diversity operation*
J1210	JAN-UG-290/U	Center and shell	Diversity Signal for diversity operation*
J1211	AN-3102-14S-7S	A, B, C	Narrow Input jack
P1211	AN-3106-14S-7P	A, B, C	Narrow Input plug
J1212	AN-3102-14S-7S	A, B, C	Wide Input jack
P1212	AN-3106-14S-7P	A, B, C	Wide Input plug

*Used for dual-channel operation only. See Table 3-2.

Figure 3-2. Cable Fabrication Instructions
c. CONNECTING CABLES.
(1) GENERAL.-Connections to the equipment vary with different installations, so the following information serves only as a guide. Use cables with an insulating sheath if possible.

Length and termination of connecting cables depend on the installation. The equipment is delivered with the mating plugs (and their associated cable clamps and ferrules) connected to their corresponding receptacles (jacks) on the unit. Remove each plug, one at a time, when it is ready for cable fabrication. For single-conductor cable fabrication refer to Figure 3-2. For multi-conductor cable fabrication refer to Figure 3-4. To disassemble the plug, first unscrew its associated cable clamp on the back of the plug. Be careful not to lose the ferrule seated inside the cable clamp, between the clamp and plug. Refer to Figure 3-4 for further details.
(2) POWER CABLE.-Remove plug Pl208 from PWR INPUT jack J1208, disassemble and, using a two-wire power cable, solder the wires to pins A and C. Reassemble the plug and replace on PWR INPUT jack J1208.
(3) TELETYPEWRITER OUTPUT CABLE.Remove plug J1206 from TTYP. OUTPUT jack J1206, disassemble, and, using two-wire cable connect leads to A and B. Note that pin B is grounded inside the unit. If using single conductor shielded wire, solder conductor to A and shield to B. Reassemble plug and replace on TTYP. OUTPUT jack J1206. The teletype loop current must be supplied from external teletype battery or power supply. The negative side of the teletype loop is grounded in the Frequency Shift Converter CV-60/URR. See Figure 3-3.

Figure 3-3. Teletypewriter Loop Circuit, Block Diagram
(4) INPUT PLUG P1211 or P1212.-Remove plug from NARROW A-F INPUT jack J1211 or WIDE A-F INPUT jack J1212, as the case may be, and disassemble. Using two-conductor shielded cable, connect the leads to A and C. Pin B is the center tap of the input transformer and should not be used unless a ground at this point is required to maintain a bal-
anced grounded circuit. Reassemble the plug and replace on proper jack.
(5) TONE OUTPUT. - Remove plug P1205 from TONE OUTPUT J1205 and disassemble. If twowire or single-wire shielded cable is used, solder leads to A and C. P in B is the center tap of the output transformer and should be used only when a balanced grounded output is required. Reassemble plug and replace on TONE OUTPUT jack J1205. Connect a short length of bus wire from pin B of TONE OUT. PUT jack J1205 to GND 5 (see Figure 7-20) if a ground is necessary.

4. INSTALLATION OF FREQUENCY SHIFT CON-VERTER-COMPARATOR GROUP AN/URA-8.

a. MOUNTING.-The AN/URA-8 equipment is supplied in a rack for table mounting. Four holes are provided in the base to bolt the rack to the table with $3 / 8$-inch bolts (not supplied), see Figurc 3-12. The centers of the front holes are $151 / 2$ inches apart, located $1^{11}{ }_{16}$ inches back from the front of the cabinet. The centers of the rear holes are $111 / 1$ s inches directly to the rear of the centers of the front holes.

TABLE 3-2. EXTERNAL CONNECTIONS, AN/URA-8
(1200 Symbol Series, one on each converter or two per equipment. 1300 Symbol Series, one per equipment.)

SYMBOL	TYPE	PIN NUMBERS USED	FUNCTION
J1202	C. 49194	Center and shell	Cathode-ray Tube Remote Vertical jack
P1202	C-49195	Center and shell	Cathode-ray Tube Remote Vertical plug
J1204	AN-3102-14S-7S	A, B, C	External Tone Input jack
P1204	AN-3106.14S-7P	A, B, C	External Tone Input plug
J1205	AN-3102-14S-7S	A, B, C	Tone Output jack
P1205	AN-3106-14S-7P	A, B, C	Tone Output plug
J1206	AN-3102-14S-9P	A, B	Teletype Output jack
P1206	AN-3106-14S-9S	A, B	Teletype Output plug
J1207	49435	1, 2	A.C. Outlet
J1211	AN-3102-14S-7S	A, B, C	Narrow Input jack
P1211	AN-3106-14S-7P	A, B, C	Narrow Input plug
J1212	AN-3102-14S-7S	A, B, C	Wide Input jack
P1212	AN-3106-14S-7P	A, B, C	Wide Input plug
J 1302	AN-3102-14S-7S	A, B, C	External Tone Input jack
P1302	AN-3106-14S-7P	A, B, C	External Tone Input plug
J1303	AN-3102-14S-7S	A, B, C	Tone Diversity Output jack
P1303	AN-3106-14S-7P	A, B, C	Tone Diversity Output plug
J1304	AN-3102-14S-9P	A, B	Teletype Diversity Ourput jack
P1304	AN-3106-14S-9S	A, B	Teletype Diversity Output plug
J1305	AN-3102-14S-7P	A, B, C	Power Input jack
P1305	AN-3106-14S-7S	A, B, C	Power Input plug

1. Unscrew cable clamp from plug, being careful not to lose ferrule, rubber washer, and fibre gasket.
2. Remove cable clamp cap by unfastening the two clamp s.iews.
3. Slip cable through cable clamp, fibre gasket, and rubber washer, the threaded portion of clamp being towards the end of cable.
4. Disassemble plug for soldering wires by unscrewing its back shell. Slip the cable through back shell and the plug coupling ring, which is freed when the back shell is removed.
5. Cut and strip cable and wires to suit. Pre-tin each wire. Cut back the shielding to within one half inch of the outer covering.
6. Pre-tin braided shielding of cable.
7. Solder wires to plug contacts. Avoid excessive solder.
8. Reassemble plug. The cable shielding should show about $1 / 4$ inch beyond the assembled plug.
9. Slip ferrule over cable so that shielding is on side that will be within connector housing. Solder shielding to ferrule, not permitting any solder to get near outer edge of ferrule as this causes a barrier between ferrule and rim of connector shell.
10. Push the cable in so that the ferrule is up against the connector shell rim, position the clamp rubber washer and fibre gasket, and then screw the cable clamp body onto the back shell of plug.
11. Reassemble the cable clamp cap with the two associated clamp screws and lock washers.

Figure 3-4. Cable Fabrication with AN-3106 Plugs, AN-3057 Cable Clamps, and Associated Ferrules.

Access to the two front bolt holes can be had by removing the four screws holding the bottom Converter in the cabinet and then removing the Converter. After bolting the cabinet to the table, replace the Converter previously removed.
The Converters and Comparator can be removed from the table-mounting rack for installation in a standard relay rack. This is shown in Figure 3-13. The units may be fastened to the relay rack by the same screws as are used in the table-mounting rack. Spaces between the units may be covered by blank panels, each being held by two screws (one at each end). These panels and their screws are not supplied as parts of the subject equipment and must be procured separately. Observe the clearances shown on the drawing to allow for pulling out the chassis and tilting them for servicing, in order to avoid interference with other equipment that may be mounted in the relay rack above or below the units of the AN/URA-8 equipment.

b. CONNECTING CABLES.

(1) GENERAL.-Connections to the equipment vary with different installations, so the following information serves only as a guide. Use cables with an insulating sheath if possible. Length and termination of connecting cables, except those supplied, depends on the individual installation.
The equipment is delivered with the mating plug (and their associated cable clamps and ferrules) connected to their corresponding receptacles (jacks) on the unit. Remove each plug, one at a time, when it is ready for cable fabrication. For single-conductor cable fabrication refer to Figure 3-2 and Table 1-2. For multi-conductor cable fabrication refer to Figure 3-4. To disassemble the plug, first unscrew its associated cable clamp on the back of the plug. Be careful not to lose the ferrule seated inside the cable clamp, between the clamp and plug. Refer to Figure 3-4 for further details.
(2) CONVERTER-TO-CONVERTER CABLES. -Connect the six cables supplied with the equipment (Figure 3-5) as follows:
(a) Cable W1705 from DIV. CONT. jack J1209 of top converter to DIV.-CONT. CHAN-A jack J1308 of Comparator.
(b) Cable W1706 from DIV. CONT. jack I1209 of bottom converter to DIV.-CONT. CHAN-B jack J1309 of Comparator.
(c) Cable W1711 from DIV. SIG. jack J1210 of top converter to DIV.-SIG. CHAN-A jack J1310 of Comparator.
(d) Cable W1712 from DIV.-SIG. jack J1210 of bottom converter to DIV.-SIG. CHAN-B jack J1311 of Comparator.
(e) Cable W 1717 from PWR INPUT jack J1208 of top converter to PWR OUTPUT jack J1306 of Comparator.
(f) Cable W1718 from PWR INPUT jack J1208 of bottom converter to PWR OUTPUT jack J1307 of Comparator.
(3) POWER CABLE.-Remove plug P1305 from PWR INPUT jack J1305, disassemble and, using a two-wire power cable, solder the wires to pins A and C. Reassemble the plug and replace on PWR INPUT jack J1305.
(4) TELETYPEWRITER CABLE.-Remove plug P1304 from TTYP. OUTPUT jack J1304, disassemble, and using two-wire cable, solder leads to A and B. The teletypewriter loop current must be supplied from external teletype battery or power supply. The negative side of the teletypewriter loop is grounded in the Frequency Shift Converter-Comparator Group AN/URA-8. See Figure 3-3.
(5) INPUT P1211 OR P1212 ON BOTH CON-VERTERS.-Remove the plugs from NARROW A-F INPUT or WIDE A.F INPUT jacks J1211 or J1212 and disassemble. Solder the two conductors to A and C. Pin B is the center tap on the input transformer and should not be used unless a ground is required at this point to maintain a balanced grounded circuit. Ground shield externally. Reassemble plugs and place in proper jacks. The two cables of the two converters will go to separate receivers.
(6) TONE OUTPUT.-Remove the plug from TONE OUTPUT jack J1303 and disassemble. If twowire or single-wire shielded cable is used, solder leads to A and C. Pin B is the center tap of the output transformer and should be used only when a balanced grounded output is required. Reassemble plug and replace on TONE OUTPUT jack J1303. Connect a short length of bus wire from pin B of TONE OUT. PUT jack J1303 to GND. 4 (see Figure 7-22) if a ground is necessary.

5. INITIAL ADJUSTMENTS.

NOTE

Certain adjustments may require the chassis to be withdrawn or removed from the case. This is done as follows:

TO SLIDE THE CHASSIS OUT OF THE CASE:

(1) Grasp the handles, push the button near the top of each handle with the thumb, turn the left-hand handle clockwise and the right-hand handle counterclockwise as far as they will go.
(2) Pull the chassis out of the case as far as it will go, and return the handles to their original positions.

TO SLIDE CHASSIS INTO CASE:

(1) Grasp the handles, push the button near the top of each handle, turn the left-hand handle clockwise and the right-hand handle counterclockwise as far as they will go.
(2) Slide the chassis into the case as far as it will go.
(3) When completely in case, return handles to normal position to lock chassis in place.

TO CHANGE CHASSIS POSITION AFTER WITHDRAWING CHASSIS FROM CASE:

(1) Grasp the handles, push the bell-shaped buttons near the inside bottom of the handles, and raise or lower the chassis approximately to one of the locking positions.
(2) Release the buttons and move the chassis until the locking mechanism snaps into position.

TO REMOVE CHASSIS FROM RAILS:

(1) Slide chassis out of case and set to vertical position.
(2) Slide retainers (just forward of chassis pivots) upward until top eyelet is free of slot.
(3) Let retainers drop. Press bell-shaped buttons and lift chassis forward from rails.

TO REPLACE CHASSIS ON RAILS:

(1) Check that the retainers on each side are hanging downward.
(2) Hang chassis on rails, by the pivots, pushing it to the rear as far as it will go.
(3) Push bell-shaped buttons. Pull the retainers as high as they will go, press them against mounting plate, and slide downward as far as they will go being careful to see that top rivet in retainer engages slot in mounting plate.

WARNING

This equipment employs voltages which are dangerous and may be fatal if contacted. Always observe all safety regulations and precautions. See safety notice and high-voltage warning printed on pages viii and ix in the Front Matter of this book.
a. FREQUENCY SHIFT CONVERTER CV-60/ URR.
(1) Measure the power-line voltage by connecting a 150 -volt range a-c voltmeter across the two contacts of the a-c outlet J1207, located next to PWR INPUT jack J1208 (see Figure 3-1). Adjust tap on

Figure 3-5. Frequency Shift Converter-Comparator Group AN/URA-8, Rear View
power transformer T801, if necessary, by changing the grey lead on terminal 2,3 or 4 . Transformer terminals 2,3 , and 4 are, respectively, for approximate line voltages of 105,115 , and 125 volts. Leave the fan lead (brown) on terminal 3 of the transformer. See Figure 7-4.
(2) Turn POWER switch to ON. Neon pilot light on front panel should light about ten seconds later, which allows for tube warm-up.
(3) Check input plug is in correct jack, narrow or wide band input. Links O 401 and O 402 in the Audio Input Unit permit paralleling the WIDE and NARROW input jacks to permit the receiving of wide or narrow frequency shift from the same receiver. For this type operation the links are placed in the C posi-
tion (see Figure 7-10). Adjust NARROW-WIDE switch on front panel, under cover to suit.
(4) Set TUNE-OPERATE switch to TUNE.
(5) Set the TONE FREQ switch, under the cover on the front panel, to the desired frequency. If an external tone frequency is used, set TONE FREQ to EXT and adjust frequency of tone generator. Adjust to suitable output level with TONE LEVEL control.
(6) After about one minute, adjust the Tuning Monitor as follows:
(a) Using a screwdriver, adjust the INTENSITY to give a reasonably bright trace. Too bright a trace will result in short tube life and focusing difficulties.
(b) Using a screwdriver, adjust the FOCUS for sharpest trace.

Figure 3-6. Jumper Cable W1502 in Use in Frequency Shift Converter CV-60/URR
(c) Turn POWER switch to OFF. Slide chassis out of case and connect Cable Filter Jack (J1201) and Converter plug (P1501) with jumper cable furnished. See Figure 3-6.
(d) Turn POWER switch to ON and allow about one minute for warm-up. Push CAL IN button (no signal input, VERT GAIN fully counterclockwise set).
(e) Loosen lock nut and adjust R705 (located on the rear of the cathode-ray tube mounting bracket, below the V CENT potentiometer R702) until scope line coincides with engraved center line. Tighten lock nut. See Figure 7-7.
(f) Release CAL IN button.
(g) Adjust V CENT on panel with a screwdriver until scope line coincides with engraved center line.
(b) Readjust FOCUS with a screwdriver for best average focus with CAL IN button depressed and released.
(i) Make certain S604 (toggle switch on rear bracket of Keyer Unit) is in ON position.
(j) Remove jumper cable and push chassis back in case.
(7) Set SPEED switch to LOW for normal (60 words per minute speed) or HIGH for high-speed multiple or speeds greater than 60 words per minute.
(8) Plug an $0-100$ ma milliammeter, such as Navy Model OE (connected to a phone plug with the tip to the "minus" and the shank to the "plus" terminal of the meter), into the TTYP jack on the front panel. With no keying signal adjust the loop current control, at the teletype power supply for 60 ma . When the unit is keying normally the current will drop to 30 ma.
(9) Tune in the radio receiver to a frequency shift signal with the receiver bfo adjusted to give a 1000 - or 2550 -cycle beat note, depending on whether a narrow or wide band frequency shift signal is being received. The 1000 -cycle beat note is for 10 - to 200 -

Figure 3-7. Radio Receiver Tuning Patterns as Seen on Tuning Monitor
cycle separation between mark and space; and the 2550 -cycle signal for 200 - to 1000 -cycle separation between mark and space signals.
(10) With the VERT GAIN control, adjust the separation of the two lines, on the cathode-ray tube, to a convenient distance apart.
(11) Adjust receiver tuning (main dial and bfo) to center the lines on the cathode-ray tube (see Figure 3-7.
(12) Set TUNE-OPERATE switch to OPERATE; teletypewriter may start printing.
(13) Push CAL IN button and adjust THRESHOLD control, to produce a pattern on the cathode-ray tube which matches the top and bottom lines engraved on cathode-ray tube window. (see Figure 3-8).
(14) Release CAL IN button.
(15) Teletypewriter should be printing; if it does not, change position of NORM-REV switch or tune radio receiver to other side of zero beat.
(16) Turn the LOW-HIGH-ADJ switch to the ADJ position and push the CAL IN button. The cathode-ray tube pattern should just fit between the top and bottom engraved lines of the window. This is a sensitivity check of the tuning monitor tube V702 and amplifier tube V601B.
(17) Turn the LOW-HIGH-ADJ switch to original position.
(18) Connect an external test oscilloscope such as Navy Models OBL or OBT series, to the TONE OUTPUT or PHONE jacks and with TONE FREQ on EXT, TONE LEVEL on 10 , no tone input adjust MOD BAL for minimum transients on the signal.
(19) Adjust the \% MARK control as follows:
(a) Set SPEED switch on the ADJ position.
(b) Connect external oscilloscope input across a 20 -ohm resistor conrrected to a plug inserted in the TTYP jack.

Figure 3-8. Tuning Pattern (CAL IN) On Tuning Monitor

Figure 3-9. Test Oscilloscope Patterns for \% MARK Control Adjustment
(c) Set test oscilloscope sweep for approximately 90 cycles with sync off.
(d) Adjust sweep control on scope for the peak of one cycle to be centered in the trough of another cycle.
(e) Adjust the \% MARK control until the peaks and troughs are equal in width (see Figure 3-9).
(f) Remove test oscilloscope and return SPEED switch to former position. Teletypewriter should be printing normally.
b. FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-8.
(1) Set up each channel as described in paragraph $5 a$ of this section with:
(a) The teletypewriter plugged into the channel being adjusted.
(b) Both radio receivers tuned to the same side of zero beat.
(2) Measure the power-line voltage by connecting a 150 -volt range a-c voltmeter across contacts of the a-c outlet on one of the two converter units (see paragraph $5 a$ (1) of this section). Adjust tap on power transformer T1001 of the Comparator, if necessary, by changing the grey lead on terminal 2,3 or 4 . Transformer terminals 2,3 , and 4 are, respectively, for approximate line voltages of 105,115 , and 125 volts. Do not change the fan lead (brown) from terminal 3. See Figure 7-6.
(3) Turn Comparator POWER switch to ON. Neon pilot light on front panel should light after about ten seconds.
(4) Set the TONE FREQ switch, under the front panel cover of the comparator, to the desired frequency. If an external tone frequency is used set

TONE FREQ to EXT and adjust the frequency of the tone generator. Adjust signal to suitable output level with TONE LEVEL control.
(5) Set SPEED switch on comparator to low for normal (60 words per minute) or HIGH for highspeed multiplex or speeds greater than 60 words per minute.
(6) Plug an $0-100 \mathrm{ma}$ milliammeter, such as a Navy Model OE (connected to a phone plug with the tip to the "minus" and the shank to the "plus" terminal of the meter), into the TTYP jack on the front panel. With no keying signal adjust the loop current control, at the teletype power supply, for 60 ma . When the unit is keying normally the current will drop to 30 ma .
(7) With channel A (top CV-60/URR) receiving signals, set CHANNEL A-COMBINED-CHANNEL B switch to CHANNEL A position.
(8) Connect an external test oscilloscope, such as Navy Models OBL or OBT series, to the TONE OUTPUT or PHONE jack of Comparator and with TONE FREQ on EXT, TONE LEVEL on 10, no tone output adjust MOD BAL for a minimum of transients on the signal.
(9) Adjust \% MARK of Comparator control as follows:
(a) Set SPEED switch to ADJ.
(b) Use test oscilloscope connected as in step 7.
(c) Set test oscilloscope horizontal sweep for approximately 90 cycles with sync off.
(d) Adjust test oscilloscope sweep control for the peak of one cycle to be centered in the trough of another cycle.
(e) Adjust the \% MARK control until the peaks and troughs are equal widths (see Figure 3-9).
(f) Remove oscilloscope and return SPEED switch to original position. Teletypewriter should print normally. If it does not, change position of Comparator NORM-REV switch.
(10) Adjust GATE BAL as follows:
(a) Slide the Comparator out of the cabinet and connect to Cable Filter Unit by jumper cable supplied.
(b) Connect a jumper from a filament lead to grid of V903, pin 6 (location of this tube is shown in Figures 5-4 and 7-34).
(c) Set CHANNEL A-COMBINED-CHANNEL B switch to COMBINED.
(d) Connect a test oscilloscope to V906 cathode, pin 3, and ground.
(e) Channel switching is now occurring at a 60 -cycle rate. The test oscilloscope pattern will be a

INSTALLATION

square wave switching oscillogram. Adjust the GATE BAL for minimum of pattern (see Figure 3-10).
(f) Remove jumper and test oscilloscope.
(g) Throw switch S604 on the rear bracket of Keyer Unit to the ON position.
(11) Adjust CONT BAL as follows:
(a) Set CHANNEL A-COMBINED-CHANNEL B switch to COMBINED.
(b) Set CHANNEL A LEVEL-DIV IND. CHANNEL B LEVEL switch to DIV IND.
(c) Set links O901 and O902 (on top face of Diversity Selector Unit) to AUDIO position. See Figure 7-14.
(d) Apply separate 1000 -cycle signals of about 0.1 volt to DIV-CONT CHAN-A jack J1308 and DIVCONT CHAN-B jack J1309 on the rear of the Cable Filter. One channel will conduct. If the panel meter (M1601) reads approximately 50 , channel A is conducting; if meter reads approximately 150 , channel B is conducting; and if meter reads approximately 100 , the channels are switching too fast for the meter to follow. The latter case will not occur during this adjustment. The output signals of the two associated receivers may be used for this purpose if an electrontube a-c voltmeter is used to measure the diversity control voltages which appear at DIV-CONT CHAN-A jack J1308 and DIV-CONT CHAN-B jack J1309. To connect the voltmeter to these jacks, first remove the Cable Filter Unit top cover, and this will give access to the desired terminals at the rear of the jacks.
(e) Increase the inpur voltage to the channel not conducting until it conducts, as indicated by the

Figure 3-10. Test Oscilloscope Patterns for GATE BAL Control Adjustment
meter. Record the increase in voltage necessary to make it conduct, then reduce the voltage to 0.1 volt.
(f) Increase input voltage on other channel until it conducts, as shown by panel meter and record voltage. If the two voltages recorded in steps (e) and (f) are within 10 per cent of each other, then the CONT BAL is correctly adjusted. If they are not, change the CONT BAL setting and repeat procedure until voltages to shift each channel are equal.
(g) Remove signal from DIV-CONT CHAN-A and DIV-CONT CHAN-B jacks J1308 and J1309, and plug original cables in place. This completes the adjustment of the AN/URA-8.

CAUTION

Any of the Keyers not connected to teletypewriters in operating condition must have switch S604 (on rear bracket of Keyer Unit) in the OFF position.

FRONT ELEVATION

side elevation

REAR ELEVATION

DIMENSIONS IN INCHES
WEIGHT: 125 POUNDS

Figure 3-12. Frequency Shift Converter-Comparator Group AN/URA-8 Outline. Drawing 3-15, 3-16

Figure 3-13. Frequency Shift Converter-Comparator Group AN/URA-8 Relay Rack Mounting Installation Drawing

$$
3-17,3-18
$$

SECTION 4 OPERATION

1. INTRODUCTION.

The Frequency Shift Converters covered by this instruction book are only part of a complete teletypewriter radio receiving system. Other equipment necessary for use of Frequency Shift Converter CV-60/ URR includes an antenna to pick up the radio signals, a radio receiver to select and amplify the radio signals, and a teletypewriter with teletypewriter battery or d-c power supply to provide loop current. If the tone signal is used for transmission to a remote point, terminal equipment to operate from the on-off keyed tone must also be provided. A Frequency Shift keyed audio sig. nal centered about 1000 cycles for mark and space frequency separation of 200 cycles or less, or centered about 2550 cycles, for mark and space frequency separation of 200 to 1000 cycles, obtained from the radio receiver is the input signal for the Frequency Shift Converter. This signal shifts to higher and lower frequencies corresponding to the characters transmitted. The Frequency Shift Converter translates the frequency shifts into off-on keyed d-c square-wave pulses to key the receiving teletypewriter loop circuit.

Since the teletypewriter signals are essentially d-c signals (square waves), transmission over telephone lines is impracticable; therefore, a tone modulator, keyed on and off by the teletype signals, is provided. This on-off keyed tone signal must be demodulated to operate a teletypewriter.

The Frequency Shift Converter-Comparator Group, AN/URA-8, serves the same purpose as Frequency Shift Converter CV-60/URR, except that two receivers, are used for diversity operation. The Comparator CM-14/URR functions to compare continuously the levels of the two signals, and select the stronger one to key the teletypewriter loop circuits. When diversity
operation is not required, the two CV-60/URR Converters can be used for different signals and operate different teletypewriters.

2. CAPABILITIES AND LIMITATIONS.

The equipment provides the best possible teletype signals when not subjected interference and the irregularities of radio transmission. It will give accurate conversion up to the point when the noise level is approximately equal to or greater than the signal. The Radio receiver audio output signal level must be high enough to keep the input to the limiter stage well above saturation level.

Little attention of the operator is required during operation after the equipment has warmed up (warmup time for the CV-60/URR and CM-14/URR is about one minute; additional time may be required for the associated receivers). A tuning monitor gives continuous, visible monitoring of the discriminator output. The neon ON indicator, operating from the +200 volt supply, gives a continuous indication of the B-power supply for the tubes.

The meter in the Comparator can be switched to indicate the signal strength of each channel or to indicate which channel is selected at the moment to control the keyer.

3. OPERATING CONTROLS.

All operating controls are located on the front panel with all but the essential operating controls located under a center cover or behind oil-cup-type hole covers. This feature helps prevent breaks in service due to the operator manipulating the wrong knob accidentally. All but two controls, primarily of a maintenance nature, are accessible from the front panel.

Figure 4-1. Operating Panel Controls

4. TUNING ADJUSTMENT.

Tuning is accomplished with the associated radio
receiver, but the following adjustments are necessary on the CV-60/URR and AN/URA-8 equipments (see Figure 4-1):

CONTROL	
TUNE-OPERATE	FUNCTION
THRESHOLD	In the Tune position it prevents the keyer from keying the teletypewriter loop.
NARROW-WIDE	Adjusts the input signal to the keyer, for the proper level.
TONE FREQ.	Selects input signal and switches the discriminator for narrow or wide shift.
TONE LEVEL	Adjusts ton signal to one of eight internal fixed frequencies or an external frequency.
SPEED	Adjusts the mplitude of the tone signal.
SORM-REV.	Solts proper fiter for standard or high speed teletypewriter. Applies a standard voltage for adjustments in the ADJ position. Reverses polarity of teletype signals. Same effect can be obtained by tuning radio receiver to the other side of zero beat. (Latter is not recommended.) POWER, OFF-ON
Turns power to equipment on or off. Does not deenergize fuses, convenience outlet,	
VERT GAIN	power line filter, or switch wiring.
CAL IN	Adjusts height of pattern on cathode-ray tube.
When depressed, connects cathode-ray tube to indicate Keyer input voltage.	

The following controls are on the Comparator CM-14/URR, part of the AN/URA-8 equipment.

CONTROL	FUNCTION
CHANNEL A-COMBINED. CHANNEL B	Switches comparator keyer to channel A alone, both channels in diversity operation, or channel B alone. CHANEL A LEVEL-DIV IND- CHANEL B LEVEL
Shows signal level of channel A, which channel is supplying the signal in diversity operation, or the signal level of Channel B.	

c. OTHER ADJUSTMENTS, SINGLE CHANNEL.
(1) TONE LEVEL. Adjustment can be made any time by means of the TONE LEVEL control R629. If an external tone source is used, adjustment can also be made, independently, by changing the amplitude at the source. Tone will not be keyed on and off when TUNE-OPERATE switch is in TUNE position when there is no signal being received and when a steady mark signal is being received.
(2) TONE FREQUENCY.-Adjustment can be made at any time convenient to the operator when using the internal tone oscillator. An external signal (switch on EXT) can only have its frequency adjusted at the source.
(3) MAINTENANCE ADJUSTMENTS.—Adjustments other than those mentioned are part of the initial and maintenance adjustments. For further information see sections 3 and 7 of this book.
d. STOPPING THE SINGLE-CHANNEL EQUIP-MENT.-To stop the equipment throw the Frequency Shift Converter POWER switch to OFF.
e. DUAL-CHANNEL AN/URA-8 STARTING PROCEDURE.
(1) Throw the POWER switches of each of the three units to ON. Turn on power to the two radio receivers and teletypewriter and allow sufficient time for all equipment to warm up.
(2) Set the TUNE-OPERATE switches of the two Frequency Shift Converters to TUNE.
(3) Tune in the same frequency-shift signal on both radio receivers, with each receiver bfo adjusted to give 1000 -cycle or 2550 -cycle beat note. The 1000 cycle beat note is for narrow shift (mark and space frequency separation of 200 cycles or less); the 2550cycle beat note is for wide shift (mark and space frequency separation between 200 and 1000 cycles). Both receivers must be tuned to the same side of zero beat.
(4) Adjust the frequency of each receiver accurately by vertically centering the horizontal lines on the respective tuning monitor. See Figure 3-7.
(5) Set TUNE-OPERATE switch on each of the Converters to OPERATE.
(6) Push CAL-IN button and adjust each THRESHOLD control to produce cathode-ray tube pattern which matches lines engraved on tuning monitor window. See Figure 3-8.
(7) Release CAL IN button.
(8) Set CHANNEL A-COMBINED-CHANNEL R ewritrh of the Comparator to CHANNEL A. The
teletypewriter should operate. If the printing appears to be garbled, change the position of the NORM-REV switch of the Comparator.
(9) Set CHANNEL A-COMBINED-CHANNEL B switch of the Comparator to CHANNEL B. The teletypewriter should operate. If the printing appears to be garbled, tune the channel B radio receiver to the other side of zero beat.
(10) Set channel B receiver gain to zero. Set CHANNEL A LEVEL-DIV IND-CHANNEL B LEVEL switch to CHANNEL A and adjust channel A radio receiver output for a reading of approximately 90 microamperes on the Comparator meter. Adjust channel B receiver gain until meter reads half of above setting.
(11) Set CHANNEL A-DIV IND-CHANNEL B switch to DIV IND. A reading of approximately 50 microamperes indicates channel A is supplying the signal, 150 microamperes indicates channel B is supplying the signal and 100 microamperes indicates the channels are switching too rapidly for the meter to follow. If one channel carries the signal most of the time increase the level of the other channel.
f. TUNING DUAL-CHANNEL, AN/URA-8, TO ANOTHER FREQUENCY.
(1) Set the TUNE-OPERATE switches of the Converters to TUNE.
(2) Tune in new signal on both receivers with bfo adjusted to give either a 1000 - or a 2550 -cycle beat note as required. Tune each radio receiver to the same side of zero beat.
(3) Adjust the frequency of each receiver accurately by vertically centering the horizontal lines on the respective tuning monitor. See Figure 3-7.
(4) Set TUNE-OPERATE switch on each of the Converters to OPERATE.
(5) Push CAL-IN button and adjust each THRESHOLD control to produce cathode-ray tube pattern which matches lines engraved on tuning monitor window. See Figure 3-8.
(6) Release CAL-IN button.
(7) Set CHANNEL A-COMBINED-CHANNEL B switch of the Comparator to CHANNEL A. The teletypewriter should operate. If the printing appears
to be garbled, change the position of the NORM-REV switch of the Comparator.
(8) Set CHANNEL A-COMBINED-CHANNEL B switch of the Comparator to CHANNEL B. The teletypewriter should operate. If the printing appears to be garbled, tune the channel \mathbf{B} radio receiver to the other side of zero beat.
(9) Set channel B receiver gain to zero. Set CHANNEL A LEVEL-DIV IND-CHANNEL B LEVEL switch to CHANNEL A and adjust channel A radio receiver output for a reading of approximately 90 microamperes on the Comparator meter. Adjust channel B receiver gain until meter reads half of above setting.
(10) Set CHANNEL A-DIV IND-CHANNEL B switch to DIV IND. A reading of approximately 50 microamperes indicates channel A is supplying the sig. nal, 150 microamperes indicates channel B is supplying the signal and 100 microamperes indicates the channels are switching too rapidly for the meter to follow. If one channel carries the signal most of the time increase the level of the other channel.

g. OTHER ADJUSTMENTS, DUAL CHANNEL.

(1) TONE LEVEL--Adjustments can be made any time by means of the TONE LEVEL control R629. If an external source is used, adjustment can also be made, independently, by changing the amplitude at the source.
(2) TONE FREQUENCY.-Adjustment can be made at any time, operating or non-operating.
(3) SINGLE CHANNEL OPERATION.-Should it be desired to operate the teletypewriter from one particular channel only, set the CHANNEL A-COM-BINED-CHANNEL B switch to CHANNEL A or CHANNEL B, depending on which channel is to operate the teletypewriter. Each Frequency Shift Converter CV-60/URR can be used independently by connecting separate teletypewriter loops to TTYP OUTPUT jack J1206 of the respective Converters.
(4) MAINTENANCE ADJUSTMENTS.-Adjustments other than those mentioned are part of the maintenance or initial adjustments. For further information, see sections 3 and 7 of this book.

b. STOPPING THE DUAL-CHANNEL EQUIP-

 MENT.-To stop the equipment throw the POWER switches on each of the three units to OFF.
SECTION 5

OPERATOR'S MAINTENANCE

1. ROUTINE CHECKS.

Make the following checks once a week when possible.
a. SYSTEM SENSITIVITY CHECK.-This check requires the use of a signal generator and is therefore described in Section 6, Preventive Maintenance.
b. TUNING MONITOR SENSITIVITY CHECK.
(1) Set the SPEED switch of the Frequency Shift Converters to the ADJ position.
(2) Observe the lines on the Tuning Monitor screen. They should coincide, within $1 / 16$ inch, with the top and bottom lines inscribed on the tuning monitor window. If they do not, report to technician.

2. EMERGENCY MAINTENANCE.

NOTICE TO OPERATORS

Operators shall not perform any of the following emergency maintenance procedures without proper authorization.

a. REPLACING FUSES.

WARNING

Never replace a fuse with one of a higher rating unless continued operation of the equipment is more important than probable damage. If a fuse burns out immediately after replacement, do not replace it a second time until the cause has been corrected.
(1) SYMPTOMS OF FUSE FAILURE.-Pilot light not lighted. Tubes will be cold when chassis is pulled from case.
(2) FUSE LOCATIONS.-The fuses are located one above the other at the left rear of the cabinet in the Cable Filter Comparcment. Spare fuses will be found to the right of the fan. See Figures 5-1 and 5-2.
(3) REPLACEMENT.
(a) Slide chassis out of cabinet and tilt 45 degrees.
(b) Reach in cabinet and unscrew one fuse holder cap by turning cap counterclockwise. Cap with fuse is now free of holder.

Figure 5-1. Frequency Shift Converter CV-60/URR, Fuse Locations

Figure 5-2. Frequency Shift Converter-Comparator Group AN/URA-8, Fuse Locations
(c) Pull fuse from cap and replace with new one, if blown.
(d) If fuse is good screw cap, in a clockwise direction, back in holder and repeat with the other fuse.
(e) Slide chassis back in cabinet.
h. REPLACING ELECTRON TUBES.

WARNING

THIS EQUIPMENT EMPLOYS VOLTAGES WHICH ARE DANGEROUS AND MAY BE FATAL IF CONTACTED. ALWAYS OBSERVE ALL SAFETY REGULATIONS AND PRECAUTIONS. REFER TO the safety notices and highVOLTAGE WARNING PRINTED ON PAGES VI AND VII IN THE FRONT MAT. TER OF THIS INSTRUCTION BOOK.
(1) LOCATING DEFECTIVE TUBE.-Defective tubes may be located as follows: Turn the POWER switch to OFF. Slide the chassis out of the case and connect the jumper cable (W1502 for the Converter or W 1602 for the Comparator) between the Cable Filter jack (J 1201 or J1301 as the case may be) and the corresponding plug. Turn the POWER switch to ON and allow about one minute warm-up time. Defective tubes will fail to glow and also will appear cold when touched. KEEP AWAY FROM LIVE CIRCUITS.
(2) REPLACING ELECTRON TUBES.
(a) SPECIAL PRECAUTIONS.

1. Turn off power before changing tubes.
2. When replacing the 1 Z 2 tube (V801 or V1001) AVOID CONTACT WITH THE INSIDE CLIP OF THE CAP or a shock may be experienced if the bleeder resistors are open. The cap is insulated and normal handling of the cap will prevent contact,

Figure 5-3. Frequency Shift Converter CV-60/URR, Tube Locations

Figure 5-4. Comparator CM-14/URR, Tube Locations

Figure 5-5. Removal of Cathode-ray Tube from Tuning Monitor
but the inside contact of the cap may be discharged as follows: hold the shank of a screwdriver firmly in contact with the chassis, then touch the inside metal clip of the cap to the tip of the screwdriver.
3. The cathode-ray tube (V702) MUST BE HANDLFD CAREFULLY. Always keep these tubes in their shipping cartons when not in use. Scratches on the bulb may impair their useability and increase the chance of breakage; do not knock the tubes. IT IS RECOMMENDED THAT PROTECTIVE GOGgles, gloves, and clothing be worn WHILE HANDLING A CATHODE-RAY TUBE.
(b) TUBE CLAMPS.-Three types of tube clamps are used, the push-and-turn shield, the springwire type and the screw-clamp type (used only on the cathode-ray tube). Remove and replace clamps as follows:

1. PUSH-AND-TURN SHIELD.-Push shield downward, turn counterclockwise as far as it will go, and lift off. Replace tube, slide shield down over locking pins as far as it will go, turn clockwise, and release.
2. SPRING-WIRE CLAMP.-Push spring wire to side and pull out tube, insert new tube and release spring wire.
3. SCREW CLAMP.-WARNING: JUMPER CABLE SHOULD NOT BE CONNECTED. See Figure 5-5. Unscrew rear thumbscrew of cathode-ray tube socket, remove front window on panel, and through hole in socket, push tube forward through hole in front panel. Replace tube, tighten thumbscrew and replace panel window. Front thumbscrew may have to be loosened to rotate tube so image lines on tube are parallel to engraved lines on window.
c. REPLACING SUB-CHASSIS.-The sub-chassis units may be replaced in little more time than necessary to change a tube. Three (or four) screws hold the units in place and all connections are made automatically by plugs and jacks. When removing a subchassis from the main chassis, loosen rear screws first, and front screws last. When installing a sub-chassis, tighten the front screws first and the rear screws last.

If the equipment fails to operate correctly after the above measures have been taken, advise a technician.

SECTION 6

PREVENTIVE MAINTENANCE

1. ROUTINE MAINTENANCE.

Every 1000 hours check or adjust the following items:
a. JUMPER CABLES.-Check each jumper cable by sliding the chassis out of the case and operating the equipment with the cable in place.
b. TUBES.-Check all tubes except the cathode-ray tube in a tube tester and replace any showing signs of deterioration. The condition of the cathode-ray tube is best shown by the unit control settings. Controls associated with tubes being replaced should be readjusted as described in Section 3 and 7.
c. SYSTEM SENSITIVITY.-Check the system sensitivity as follows:
(1) Connect an audio oscillator (such as Navy Model LAJ) adjusted to 1000 or 2550 cycles to A-F INPUT NARROW (J1211) or A-F INPUT WIDE (J1212) respectively. The output impedance must be 600 ohms.
(2) Connect an external oscilloscope (such as Navy Model OBL or OBT), adjusted to between 400 and 600 -cycle sweep, to the grid, pin 1 , of the Driver tube V403 and ground.
(3) Vary the output voltage of the audio oscillator over a range of 0.19 to 6 volts. The pattern should be a square wave over the entire range showing limiter action. After completion of test remove audio oscillator aand external oscilloscope.
d. TUNING MONITOR SENSITIVITY.-Set the SPEED switch of the Converter units to the ADJ position and depress the CAL IN button. The image lines on the cathode-ray tube should coincide with the top and bottom lines on the tuning monitor window. If the amplitude is less than it should be, check the circuits of V601B in the Keyer, the voltage source (resistors R639 and R640 in the Keyer) or replace the cathode-ray tube V702.
e. TUNING MONITOR ADJUSTMENT.-Readjust the Tuning Monitor as follows
(1) Using a screwdriver, adjust the INTENSITY to give a reasonably bright trace. Too bright a trace will result in short tube life and focusing difficulties.
(2) Using a screwdriver, adjust FOCUS for sharpest trace.
(3) Slide chassis out of case and connect Cable ${ }_{n}$ Filter jack and Converter plug with jumper cable furnished.
(4) Set TUNE-OPERATE switch to TUNE, SPEED switch on HIGH or LOW.
(5) Push CAL IN button.
(6) Loosen lock nut and adjust R705 until horizontal trace on oscilloscope is centered vertically with center line engraved on tuning monitor window. Tighten lock nut.
(7) Release CAL IN button.
(8) Adjust V CENTER on panel, with a screwdriver, so tuning monitor trace is centered vertically with center line engraved on tuning monitor window.
(9) Remove jumper cable and push chassis back in case.

f. \% MARK CHECK.

(1) Set the SPEED switch to ADJ position.
(2) Connect an external test oscilloscope such as Navy OBL or OBT series across a 20 -ohm resistor connected to a plug inserted in the TTYP jack.
(3) Set the test oscilloscope sweep speed for approximately 90 cycles with sync off.
(4) Adjust the sweep control on the test oscilloscope for the peak of one cycle to be centered in the trough of another cycle (see Figure 6-1).
(5) If the troughs and peaks are unequal in width adjust the \% MARK control to make them equal.

Figure 6-1. Test Oscilloscope Patterns for \% MARK Control Adjustment

Figure 6-2. Test Oscilloscope Patterns for GATE BAL Control Adjustment
(6) After completion of check return SPEED switch to former position.
g. MOD BAL CHECK.-With the TONE FREQ control on EXT, TONE LEVEL control on 10 and no tone signal input, look for transients as part of the pattern of the test oscilloscope connected to the TONE OUTPUT or to the PHONE jack. Adjust the MOD BAL control for minimum transients. Disconnect the test oscilloscope.

h. GATE BALANCE ADJUSTMENT.

(1) Slide the Comparator out of the cabinet and connect to Cable Filter by means of the jumper cable supplied.
(2) Connect a jumper from a filament lead to grid of V903, pin 6 (location of this tube is shown in Figures 5-4 and 7-34).
(3) Set CHANNEL A-COMBINED CHANNEL B switch to COMBINED.
(4) Connect a test oscilloscope from V906 cathode, pin 3, to ground.
(5) Channel switching is now occurring at a 60 cycle rate.

The oscilloscope pattern will be a square wave switching oscillogram. Adjust the GATE BAL for minimum of pattern (see Figure 6-2).
(6) Remove jumper and oscilloscope.
i. TELETYPEWRITER LOOP CURRENT AD. JUSTMENT.-Plug an $0-100$ ma milliammeter, such as Navy Model OE (coniiected to a phone plug with the tip to the "minus" and the shank to the "plus" terminal of the meter), into the TTYP jack on the
front panel. With no keying signal adjust the loop current control, at the teletype power supply, for 60 ma. When the unit is keying normally the current will drop to 30 ma .

2. ADJUSTMENT AFTER REPLACEMENT OF D-C AMPLIFIER, V903.

Adjust CONT BAL control (shown in Figure 4-1) as follows:
a. Set CHANNEL A-COMBINED-CHANNEL B switch to COMBINED.
b. Set CHANNEL A-LEVEL-DIV IND-CHANNEL LEVEL B switch to DIV IND.
c. Apply a 1000 -cycle signal of about 0.1 volt to jacks DIV-CONT CHAN-A and DIV-CONT CHAN-B (J1308 and J1309) on the Cable Filter. One channel will conduct. If the panel meter (M1601) reads about 50 , channel \mathbf{A} is conducting; if meter reads 150 , channel B is conducting; and if meter reads 100 , the channels are switching too fast for the meter to follow. The latter case will not occur during this adjustment.
d. Increase the input voltage to the channel not conducting until it conducts, as indicated by the meter. Record the increase in voltage necessary to make it conduct, then reduce the voltage to 0.1 volt. The output signals of the two associated receivers may be used for this purpose if an electron-tube a-c voltmeter is used to measure the diversity control voltages which appear at DIV-CONT CHAN-A jack J1308 and DIVCONT CHAN-B jack J1309. To connect the voltmeter to these jacks, first remove the Cable Filter Unit top cover, and this will give access to the desired terminals at the rear of the jacks.
e. Increase input voltage on other channel until it conducts, as shown by panel meter and record voltage. If the two voltages recorded are equal, then the CONT BAL is correctly adjusted. If they are not, change the CONT BAL setting and repeat procedure until voltages to shift each channel are equal.
f. Remove signal from J1308 and J1309 and plug original cables in place.

3. LUBRICATION.

The only mechanism requiring lubrication is the rail system for sliding the main chassis into and out of the cabinet. Apply a light oil such as Military Symbol MX-2175 or specification MIL-L-15016 (Standard Navy Stock No. 14-0-2586 for a five-gallon can) when necessary.

SECTION 7

CORRECTIVE MAINTENANCE

WARNING

THIS EQUIPMENT EMPLOYS VOLTAGES WHICH ARE DANGEROUS AND MAY be fatal if CONTACTED. ALWAYS OBSERVE ALL SAFETY REGULATIONS AND PRECAUTIONS. REFER TO THE SAFETY NOTICES AND HIGH-VOLTAGE WARNINGS PRINTED ON PAGES VI AND VII IN THE FRONT MATTER AT THE BEGINNING OF THIS INSTRUCTION BOOK.

1. LOCALIZING TROUBLE.

NOTE
Refer to Section 3, page 3-6A, paragraph 5, for instructions regarding the removal of chassis from case.
a. FREQUENCY SHIFT CONVERTER, CV-60/ URR, See Table 7-1.
(1) Check power (fuses good, pilot light on).
(2) If two lines appear on the tuning monitor while receiving frequency-shift signals and can be made to merge by reducing the radio receiver gain to zero, the Audio Input Unit is operating.
(3) Press the CAL IN button. Two flickering lines on the tuning monitor indicate proper operation of circuits up to and including V601B in the Keyer.

Figure' 7-I. Frequency Shift Converter-Comparator Group AN/URA-8 with Chassis Extended for Servicing

FAILURE REPORTS

AFAILURE REPORT must be filled out for the failure of any part of the equipment whether caused by defective or worn parts, improper operation, or external influences. It should be made on Failure Report, form NBS383, which has been designed to simplify this requirement. The card must be filled out and forwarded to BUSHIPS in the franked envelope which is provided. Full instructions are to be found on each card.

Use great care in filling the card out to make certain it carries adequate information. For example, under "Circuit Symbol" use the proper circuit identification taken from the schematic drawings, such as T-803, in the case of a transformer, or R-207, for a resistor. Do not substitute brevity for clarity. Use the back of the card to completely describe the cause
of failure and attach an extra piece of paper if necessary.

The purpose of this report is to inform BUSHIPS of the cause and rate of failures. The intormation is used by the Bureau in the design of future equipment and in the maintenance of adequate supplies to keep the present equipment going. The cards you send in, together with those from hundreds of other ships, furnish a store of information permitting the Bureau to keep in touch with the performance of the equipment of your ship and all other ships of the Navy.

This report is not a requisition. You must request the replacement of parts through your Officer-in-Charge in the usual manner.

Make certain you have a supply of Failure Report cards and envelopes on board. They may be obtained from any Electronics Officer.

TABLE 7-1. FREQUENCY SHIFT CONVERTER CV-60/URR TROUBLE SHOOTING CHART

(4) Plug a pair of headphones into the PHONES jack. A keyed tone signal will indicate the Keyer is operating, except for the output tubes, V607 and V608, which are checked in step 5 .
(5) Plug a $0-100$ ma milliammeter such as Navy Model OE (connected to a phone plug with the tip to the "minus" and the shank to the "plus" terminal of the meter) into the TTYP jack on the front panel. A reading of about 60 ma on the milliammeter and a reading of 70 volts on a d-c voltmeter connected from jack to ground indicate the output tubes of the Keyer to be conducting but not keying. A reading of 30 ma indicates normal keying.
(6) Replace the unit that the above tests have shown to be defective. Most troubles in any of the units can be located by replacing tubes or by checking voltages and resistance values within that unit. Troubles in the Cable Filter Unit, Power Supply, or Tuning Monitor can best be located by continuity checks. See later paragraphs in this section, referring to the individual units.
b. FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP, AN/URA-8, See Table 7-2.
(1) Check power of each unit (fuses good, pilot light on).
(2) If two lines appear on each of the Tuning Monitors and can be made to merge by reducing the respective radio receiver gain to zero, the Audio Input Units of the Converters are operating.
(3) Set the CHANNEL A LEVEL-DIV INDCHANNEL B LEVEL first on CHANNEL A LEVEL and then on CHANNEL B LEVEL. Indication of similar levels shows the Diversity Selector Unit channel amplifiers and avc rectifiers (V901, V908, V902 and V909) to be functioning.
(4) Set the CHANNEL A LEVEL-DIV INDCHANNEL B LEVEL switch to DIV IND. Change the CHANNEL A-COMBINED-CHANNEL B switch first to CHANNEL A, then to CHANNEL B. The meter should read 50 on the CHANNEL A position and 150 on CHANNEL B position, showing that the channel switching circuits are operating correctly.
(5) Plug a pair of phones in the PHONES jack of the Comparator. If a keyed tone is heard, the trouble is in the output tubes of the keyer or in the teletypewriter loop which are checked in step 7 .
(6) Turn the Comparator SPEED switch to ADJ. If a keyed signal is heard, the trouble is in, or ahead of, the circuits of V601B of the Keyer.
(7) Plug a 0-100 ma milliammeter such as Navy Model OE (connected to a phone plug with the tip to the "minus" and the shank to the "plus" terminal of the meter) into the TTYP jack on the front panel. A reading of about 60 ma on the milliammeter and a reading of about 70 volts on a d-c voltmeter connected from jack to ground indicate the output tubes of the Keyer to be conducting but not keying. A reading of 30 ma indicates normal keying.
(8) Replace the dofective unit (note that the Keyer Units of the Frequency Shift Converter CV-60/ URR and Comparator CM-14/URR are interchangeable) and shoot the trouble by checking tubes, voltages, and resistances, as shown in Tables 7-3 to 7-10 inclusive in another part of this section.

2. UNIT TROUBLE SHOOTING AND REPAIR.

a. EQUIPMENT REQUIRED.-The equipment for trouble shooting should consist of the following:
(1) A 20,000 ohms per volt multimeter such as Navy Model OE series or equivalent.
(2) An electronic multimeter such as multimeter ME-25/U series, Navy Model OBQ series or equivalent.
(3) An oscilloscope, such as Navy Models OBL or OBT series or equivalent.
(4) A microammeter such as Navy Type 60107.
(5) An adjustable audio oscillator such as Navy Model LAJ series or equivalent, with minimum range 10 to 5000 cycles.
(6) A 14 -conductor cable approximately 4 feet long with a 14 -prong plug on one end and a 14 -prong jack on the other end to match the connectors for the operating sub-assemblies.
(7) Use the equipment itself for servicing during non-operating periods. Where continuous operation is required, a separate maintenance system, comparable to the equipment in use, may be desirable.
(8) Tools normally used in the electronic technician's work will be satisfactory for this work.

NOTES

1. Before attempting to remove the individual units controlled by panel knobs, pull the

TABLE 7-2. FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-8 TROUBLE SHOOTING CHART

panel knobs outward to disengage the mechanical coupling. After the unit has been re-seated in the chassis, merely pushing the knobs will engage the mechanical couplers if the settings have not been disturbed; otherwise it will be necessary to push and turn the
knobs to engage the couplings.
2. Remove the chassis by unscrewing the rear screws and then the front screw. Replace units by tightening the rear screws first and then the front screw.

Figure 7-2. Cable Filters

Figure 7-3. Converter Power Supply Chassis, Top View

Fiaure 7-4. Converter Power Supply Chassis, Bottom View

Figure 7-5. Comparator Power Supply Chassis, Top View

Figure 7-6. Comparator Power Supply Chassis, Bottom View
b. CABLE FILTERS.-See Figure 7-2. Check the circuits for continuity and shorts, using an ohmmeter. Trouble in the fan motor can best be remedied by replacing the motor or motor capacitor. See Figures 7-19 and 7-20 for the Converter Cable Filter schematic and wiring diagram and Figures 7-21 and 7-22 for the Comparator Cable Filter schematic and wiring diagram.
c. POWER SUPPLIES.-See Figures $7-3$ to $7-6$ inclusive. First check the resistance values as given in Table 7-6 for the Converter Power Supply and Table 7-7 for the Comparator Power Supply. Measure voltages only when the Power Supply is delivering normal load. The proper load voltages are indicated on the schematic and wiring diagrams, Figures 7-23 and 7-24, for the Converter Power Supply and Figures 7-25 and 7-26 for the Comparator Power Supply.
d. TUNING MONITOR.-See Figures 7-7 and 7-8. Circuit check (resistance and continuity) and tube replacement will locate troubles in the Tuning Monitor. See Table 7-5 for the resistance measurements. See Figures 7-27 and 7-28 for the schematic and wiring diagrams giving electrical part values.

Figure 7-8. Tuning Monitor Chassis, Bottom View

After the trouble has been corrected, the vertical centering for both positions of the CAL IN button must be adjusted with no signal input.
(1) Depress the CAL IN button and adjust R705 so the sweep line coincides with the engraved center line on the Tuning Monitor window.
(2) Adjust the V CENT control so the horizontal sweep line coincides with the center line engraved on the Tuning Monitor window.

After the centering is completed, adjust the FOCUS for the best average focus for the two CAL IN positions.
e. AUDIO INPUT UNIT.-See Figures 7-9 and 7-10. Check the tubes, then circuit-check the unit for shorts, open circuits, or off-value parts (see Figures 7-29, 7-30 and Table 7-3). If the trouble is not located, use the following signal tracing procedure:
(1) Apply a 1000 -cycle audio signal of about 0.1 volt to the narrow input, pins 9 and 11 of P401. Set the NARROW-WIDE switch to NARROW. Connect an external test oscilloscope to the diversity control line, pin 6 of P401. If no signal is observed, the trouble is in the circuits of Z401 or the back wafer of S401. If a signal is observed on the test oscilloscope, proceed as in step (2).
(2) Check the test oscilloscope lead to pin 2 of V402. Adjust R403 clockwise as far as it will go. Absence of a signal indicate trouble in the circuits of V401. If a signal of greater amplitude than in step (1) is obtained, proceed with step (3).
(3) Change the test oscilloscope lead to pin 1 of V403. The signal should have flat top and bottom peaks due to limiter action. If no signal is obtained,
the trouble is in the limiter circuits V402. If a signal is obtained, proceed with step (4).
(4) Turn off power and connect test oscilloscope to pin 5 of V403. Turn on power. Signal should appear the same as in step (3) but of greater amplitude. If no signal is obtained, the trouble is in the circuits of V403. If a signal is obtained, proceed tc step (5) and remove the test oscilloscope.
(5) Connect an electronic voltmeter to pin 5 of V404. Adjust the audio input frequency to approximately 1000 cycles. A small or no d-c voltage should be indicated on the meter. Decreasing the input frequency should produce a negative voltage which decreases until a maximum is reached at approximately 650 cycles. Return frequency to 1000 cycles and reverse polarity of meter. Increase the oscillator frequency; the voltage indicated on the meter should increase (positive voltage) to a peak at 1300 cycles. This test checks the discriminator circuits, including Z402, tuning capacitors and resistors, and V404 with its output circuits in the NARROW position of NARROWWIDE switch.
(6) Check the WIDE position of the NARROWWIDE switch by feeding a signal of approximately 0.5 volt into pins 12 and 14 of P401 and, using an adjustable 2550 -cycle signal for center frequency (zero voltage), 1600 cycles should correspond to approximate maximum negative and 3400 cycles to approximate maximum positive voltage. Disconnect the signal generator and the electronic voltmeter.
(7) The output circuits can best be checked by an ohmmeter, checking the values indicated on the schematic and wiring diagrams, Figures 7-29 and 7-30.

Figure 7-9. Audio Input Unit Chassis, Top View

Figure 7-10. Audio Input Unit Chassis, Bottom View

Figure 7-II. Keyer Chassis, Top View
f. KEYER UNIT.-See Figures 7-11 and 7-12. Check the tubes then circuit check the unit for shorts, open circuits or off-value parts (see Figures 7-31, 7-32 and Table 7-4).

Switch S604 (on the rear bracket) must be in the ON position for the teletypewriter to operate. The switch, in the OFF position, opens the screen grid circuir of the output tubes when the Keyer is not connected to a teletypewriter.

Connect an 0.5 -volt source of 60 -cycle sine wave voltage to P601-14 or E609 and ground. Proceed from stage to stage, using the test oscilloscope as an indicator (see Figures 7-31 and 7-32).
(1) Connect the test oscilloscope to pin 1 of V601 before turning on the power. Turn on the power and adjust the test oscilloscope to 30 cycles sweep frequency, giving a pattern with two complete cycles. A signal indicates that the 1,2,3 triode of V601 is working astisfactorily. Turn off power and remove oscilloscope leads.
(2) Connect the test oscilloscope to pin 7 of V601. Turn on the power and check the three positions of S601, the SPEED switch. LOW and HIGH positions should give the same amplitude, but the ADJ position may give a different amplitude since the sig. nal will be coming from a different source. Return

Figure 7-12. Keyer Chassis, Bottom View

S601 to its original position. This checks the signal to the grid, pin 7, of V601B.
(3) Connect the test oscilloscope to E610. A signal with the same shape but increased amplitude, compared to step (2), should be obtained.
(4) With the power turned off, connect the test oscilloscope input to the indicated pins of tubes V603 and V604 in the order 2, 7, 1, 6. Turning on the power, a square wave should be obtained in all cases with the NORM-REV switch in either position. If the signal is anything but a square wave, check the values of parts in the circuits of the tubes V603 and V604.
(5) Turn off power, connect the test oscilloscope to either pin 1 or 7 of first V607, and then V608, turning on the power every time. If the square-wave keying signal is obtained, turn the power off and change the test oscilloscope lead to pin 5 of V607. Turn the power on, and if no signal is obtained the trouble is in the output circuits of the keyer tubes V607 and V608.
(6) Connect the test oscilloscope to the center contact of the TONE LEVEL control R629 or pin 7 of V605 to check the Tone Oscillator operation. Further check of tube V605 can be had by connecting the test oscilloscope (with the power turned off) to pin 6 of V605 and then across the output (terminals 3 and 4) of T601.

CORRECTIVE MAINTENANCE

Figure 7-13. Diversity Selector Unit Chassis, Top View
g. DIVERSITY SELECTOR UNIT.-See Figures 7-13, and 7-14. Check tubes, then circuit check the unit for shorts, open circuits or off-value parts (see Figures 7-33, 7-34 and Table 7-8).

Apply an adjustable 1000 -cycle sine wave voltage (0.5 volt maximum) to pins 9 and 14 on plug P901. Check to make sure the connectors O901 and O902 are set to AF .
(1) Connect the microammeter first to pin 12 of P901, and adjust a-c voltage to give a 50 -microampere reading. Change meter to pin 11 of P901. The reading should also be about 50 microamperes. If these readings are obtained the channel amplifier and avc rectifier circuits are satisfactory. Continue with step (3). If not satisfactory, continue with step (2).
(2) If no indication is obtained in step (1), connect a test oscilloscope first to pin 1 and then to pin 5 of each of the two input tubes V901 and V908. A 1000cycle sine wave should appear at each point indicated, but the amplitude of the signal at pin 5 should be greater than at pin 1. Turn the power off before contacting pin 5 . If a signal is on pin 5 check the circuits of V902 and V909 pins 1 and 7 each.
(3) Connect the test oscilloscope to O901. A sinewave signal should be had. If one half of the cycle

Figure 7-14. Diversity Selector Unit Chassis, Bottom View
is a square wave shape, the corresponding channel is not conducting.
(4) With S901 on COMBINED (center position) put the test oscilloscope lead on pin 6 of V903. If a sine wave is obtained, connect test oscilloscope to pin 1 with the power turned off. If the amplitude is greater, continue with step (5). If no signal is obtained on pin 6, circuit-check the audio filter consisting of resistors R933, R934, R935 and capacitors C904, C905, C906.
(5) Connect the test oscilloscope (with the power turned off) to pins 2, 7, 1 and 6 of tubes V904 and V905. At all points a square-wave signal should be obtained, if not, check circuit values and voltages for the trouble.
(6) Connect the test oscilloscope to pin 7 of V906 and then to pin 7 of V907. A 1000-cycle square-wave signal should be on each grid and cathode (pin 8). A similar signal should appear on the plate (pin 1 of V906 and V907).
(7) Any further trouble would be in the signal input and output circuits and may be readily located by circuit check. See the Schematic Diagram, Figure 7-28.

NAVSHIPS 91339
AN/URA-8
CV-60/URR

3. VOLTAGE AND RESISTANCE MEASUREMENTS.

The following Tables 7-3 to 7-8 inclusive show voltage and resistance measurements made on the equipment under the following conditions.

1. TUNE-OPERATE control in TUNE position.
2. NARROW-WIDE control in WIDE position.
3. TONE FREQ control at 595 position.
4. TONE LEVEL control at 10 position.
5. SPEED control at LOW position.
6. NORM-REV control in NORM position.
7. VERT GAIN control at maximum clockwise position.
8. FOCUS control in normal operating position.
9. THRESHOLD control at 0 .
10. INTENSITY control in normal operating position.
11. Teletypewriter out, Keyer Unit toggle switch S604 in OFF position.
12. On Comparator CM-14/URR, CHANNEL A-COMBINED-CHANNEL B control and CHANNEL A-DIV IND-CHANNEL B control set to CHANNEL A position.
13. Units assembled in chassis for voltage measurements to chassis ground.
14. Units removed from chassis for resistance measurements to chassis ground.
15. No signal input.
16. Voltage readings taken with a 20,000 ohms per volt multimeter Model OE series or equivalent.

WARNING

THIS EQUIPMENT EMPLOYS VOLTAGES WHICH ARE DANGEROUS AND MAY BE FATAL IF CONTACTED. PERSONNEL MUST OBSERVE ALL SAFETY REGULATIONS AND PRECAUTIONS. REFER TO

THE SAFETY NOTICES AND HIGHVOLTAGE WARNING PRINTED ON PAGES VI AND VII IN THE FRONT MATTER AT THE BEGINNING OF THIS INSTRUCTION BOOK.

TABLE 7-3. AUDIO INPUT UNIT VOLTAGE AND RESISTANCE MEASUREMENTS

TABLE 7-3. AUDIO INPUT UNIT VOLTAGE AND RESISTANCE MEASUREMENTS (Continued)

VOLTAGE MEASUREMENTS TO CHASSIS GROUND (volts)

TUBE SYMBOL	PIN NUMBERS									PLATE CAP
	1	2	3	4	5	6	7	8	9	
V401	80	-	3.1*	3.1*	80	0	2.6	-	-	-
V402	206	0	2.3	$3.1 *$	3.1*	202	0	2.3	3.1*	-
V403	0	2.8	3.1*	3.1\%	205	173	2.8	-	-	-
V404	0	-0.5	3.1*	3.1*	0.05	-	-0.5	-	-	-

*a-c volts

RESISTANCE MEASUREMENTS TO CHASSIS GROUND (ohms; $K=1000$ ohms)

V401	inf.	-	inf.	inf.	inf.	65 K	1 K	-	-	-
V402	inf.	100 K	6.8 K	inf.	inf.	inf.	0	6.8 K	inf.	-
V403	1 meg	470	inf.	inf.	inf.	inf.	470	-	-	-
V404	0	130 K	inf.	inf.	250 K	-	130 K	-	-	-

RESISTANCE MEASUREMENTS ON P401 TO CHASSIS GROUND

PIN NO.	RESISTANCE, OHMS	PIN NO.	RESISTANCE, OHMS
1	inf.	8	inf.
2	inf.	9	inf.
3	inf.	10	inf.
4	0	11	inf.
5	1.5 meg	12	inf.
6	19 K	13	inf.
7	inf.	14	inf.

TABLE 7-4. KEYER UNIT VOLTAGE AND RESISTANCE MEASUREMENTS

VOLTAGE MEASUREMENTS TO CHASSIS GROUND (volts)

TUBE SYMBOL	PIN NUMBERS									$\begin{aligned} & \text { PLATE } \\ & \text { CAP } \end{aligned}$
	1	2	3	4	5	6	7	8	9	
V601	105	0	2.25	3.1*	3.1*	55	0	2.1	3.1*	-
V602	42	$4.0+$	6.0	3.1*	3.1*	107	-20	0	3.1*	-
V603	158	42	65	3.1*	3.1*	120	62	65	3.1*	-
V604	16.5	1.7	1.6	3.1*	3.1*	105	-23	1.6	3.1*	-
V605	87	0.02	19	3.1*	3.1*	110	0.4	3.2	3.1*	-
V606	$4.0+$	$4.0 \dagger$	3.1*	3.1*	4.6	-	0	-	-	-
V607	-0.2	0	3.1*	3.1*	180	0	-0.2	-	-	-
V608	-0.2	0	$3.1 *$	3.1*	180	0	-0.2	-	-	-

* a-c volts. \dagger measured with electron-tube voltmeter.

TABLE 7-4. KEYER UNIT VOLTAGE AND RESISTANCE MEASUREMENTS (Continued)
RESISTANCE MEASUREMENTS TO CHASSIS GROUND (ohms; $\mathbf{K}=1000$ ohms)

$\begin{gathered} \text { TUBE } \\ \text { SYMBOL } \end{gathered}$	PIN NUMBERS									${ }^{\text {PLATATE }}$
	1	2	3	4	5	6	7	8	9	
V601	inf.	1.8 meg	390	56K	56K	inf.	1.8 meg	1800	56K	-
V602	300K	1 meg	5.5K	56K	56K	150K	400 K	900	56K	-
V603	130K	300K	19K	56K	56K	140K	72K	19K	56K	-
V604	210K	250K	1K	56K	56K	210K	250K	1 K	56K	-
V605	inf.	3700	12K	56K	56K	150K	420K	600	56K	-
V606	1 meg	1 meg	56K	56K	56K	-	0	-	-	-
V607	270K	0	56K	56K	180K	inf.	270K	-	-	-
V608	270K	0	56K	56K	180K	inf.	270K	-	-	-

RESISTANCE MEASUREMENTS ON P601 TO CHASSIS GROUND

PIN NO.	RESISTANCE, OHMS	PIN NO.	RESISTANCE, OHMS
1	56 K	8	1200
2	125 K	9	inf.
3	inf.	10	inf.
4	260 K	11	0
5	inf.	12	180 K
6	inf.	13	0
7	56 K	14	inf.

TABLE 7-5. TUNING MONITOR UNIT VOLTAGE AND RESISTANCE MEASUREMENTS

VOLTAGE MEASUREMENTS TO CHASSIS GROUND (volts)

TUBE SYMBOL	PIN NUMBERS											
	1	2	3	4	5	6	7	8	9	10	11	12
V701	150	0	1.7	3.1*	3.1*	80	-0.5	0	-	-	-	-
V702	-560	-570	-560	-300	-	80	80	150	0	35*	-	-560

* a-c volts

RESISTANCE MEASUREMENTS TO CHASSIS GROUND (ohms; $\mathbf{K}=\mathbf{1 0 0 0}$ ohms)

V701	85 K	1 meg	inf.	inf.	inf.	550 K	inf.	0	inf.	-	-	-
V702	5 meg	5 meg	5 meg	3 meg	-	550 K	48 K	85 K	0	0	-	5 meg

RESISTANCE MEASUREMENTS ON P701 TO CHASSIS GROUND

PIN NO.	RESISTANCE, OHMS	PIN NO.	RESISTANCE, OHMS
1	inf.	8	5.5 meg
2	inf.	9	5 meg
3	85 K	10	5 meg
4	inf.	11	inf.
5	inf.	12	inf.
6	inf.	13	0
7	inf.	14	1 meg

TABLE 7-6. CONVERTER POWER SUPPLY VOLTAGE AND RESISTANCE MEASUREMENTS

VOLTAGE MEASUREMENTS TO CHASSIS GROUND (volts)

TUBE SYMBOL	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	PIN NUMBERS	CAP
V801	-	600^{*}	600^{*}	-	-	-	-	-	-670	
V802	197^{*}	-	3.1^{*}	3.1^{*}	-	197^{*}	215	-	-	
V803	-	-	-	-	150	-	0	-	-	

* a-c volts

RESISTANCE MEASUREMENTS TO CHASSIS GROUND (ohms; $\mathbf{K}=1000$ ohms)

V801	-	1700	1700	-	-	-	-	-	600 K
V802	110	-	0.1	0.1	-	105	550 K	-	-
V803	-	-	-	-	550 K	-	0	-	-

resistance measurements on p801 TO CHASSIS GROUND

PIN NO.	RESISTANCE, OHMS	PIN NO.	RESISTANCE, OHMS
1	0.1	8	550 K
2	550 K	9	inf.
3	550 K	10	inf.
4	150 K	11	700 K
5	inf.	12	inf.
6	19	13	0
7	0.1	14	inf.

TABLE 7-7. COMPARATOR POWER SUPPLY VOLTAGE AND RESISTANCE MEASUREMENTS

VOLTAGE MEASUREMENTS TO CHASSIS GROUND (volts)

TUBE SYMBOL	PIN NUMBERS								PLATE CAP
	1	2	3	4	5	6	7	8	
V1001	-	200*	200*	-	-	-	-	-	175
V1002	200*	-	3.1*	$3.1 *$	-	200*	200	-	-
V1003	-	-	-	-	150	-	0	-	-

* a-c volts

RESISTANCE MEASUREMENTS TO CHASSIS GROUND (ohms; $K=1000$ ohms)

V1001	-	70	70	-	-	-	-	-	230 K
V1002	75	-	0.1	0.1	-	70	550 K	-	-
V 1003	-	-	-	-	550 K	-	0	-	-

RESISTANCE MEASUREMENTS ON P1001 TO CHASSIS GROUND

PIN NO.	RESISTANCE, OHMS	PIN NO.	RESISTANCE, OHMS
1	0.1	8	210 K
2	550 K	9	inf.
3	550 K	10	inf.
4	150 K	11	700 K
5	inf.	12	inf.
6	inf.	13	0
7	0.1	14	-

TABLE 7-8. DIVERSITY SELECTOR UNIT VOLTAGE AND RESISTANCE MEASUREMENTS

VOLTAGE MEASUREMENTS TO CHASSIS GROUND (volts)

TUBE SYMBOL	PIN NUMBERS									PLATE CAP
	1	2	3	4	5	6	7	8	9	
V901	-0.5	0	3.1*	3.1*	14	95	0	-	-	-
V902	0.01	-0.01	3.1*	3.1*	0.01	-	-0.02	-	-	-
V903	65	-	3.1*	3.1*	65	-1.5	2.3	-	-	-
V904	105	65	65	3.1*	3.1\%	140	40	65	3.1*	-
V905	120	$-16 \dagger$	0	$3.1 *$	3.1*	150	-0.03	0	3.1*	-
V906	0	0	1.6	3.1*	3.1*	150	$-18 \dagger$	0	3.1*	-
V907	23	0	1.6	3.1*	3.1*	150	$18+$	23	3.1*	-
V908	-0.5	0	3.1*	3.1*	14	95	0	-	-	-
V909	0.01	0.01	3.1\%	3.1*	-0.01	-	-0.02	-	-	-

*a-c volts. \dagger measured with electron-tube voltmeter.

RESISTANCE MEASUREMENTS TO CHASSIS GROUND (ohms; K $=1000$ ohms)

V901	2.25 meg	0	inf.	inf.	inf.	inf.	0	-	-	-
V902	inf.	400 K	inf.	inf.	270 K	-	270 K	-	-	-
V903	325 K	-	inf.	inf.	325 K	4.7 K	5.25 K	-	-	-
V904	160 K	325 K	18 K	inf.	inf.	170 K	85 K	18 K	inf.	-
V905	250 K	1.5 meg	0	inf.	inf.	250 K	1.5 meg	0	inf.	-
V906	6 K	1 meg	56 K	inf.	inf.	165 K	500 K	6 K	inf.	-
V907	4.7 K	1 meg	56 K	inf.	inf.	165 K	500 K	6 K	inf.	-
V908	2.25 meg	0	inf.	inf.	inf.	inf.	0	-	-	-
V909	inf.	$270 K$	inf.	inf.	400 K	-	270 K	-	-	-

TABLE 7-8. DIVERSITY SELECTOR UNIT VOLTAGE AND RESISTANCE MEASUREMENTS (Continued)

RESISTANCE MEASUREMENTS ON P901 TO CHASSIS GROUND

PIN NO.	RESISTANCE, OHMS	PIN NO.	RESISTANCE, OHMS
1	inf.	8	56K
2	inf.	9	inf.
3	$165 K$	10	inf.
4	1200	11	inf.
5	$260 K$	12	inf.
6	47	13	inf.
7	inf.	14	inf.

TABLE 7-9. TUBE OPERATING VOLTAGES AND CURRENTS

TUBE SYMBOL	TUBE TYPE	FUNCTION	$\begin{aligned} & \text { PLATE } \\ & \text { VOLTS } \end{aligned}$	$\underset{\text { MATE }}{\text { PLATE }}$	SCREEN VOLTS	$\begin{gathered} \text { SCREEN } \\ \text { MA } \end{gathered}$	$\begin{gathered} \text { SUP. } \\ \text { PRESSOR } \\ \text { VOLTS } \end{gathered}$	$\begin{aligned} & \text { CATH- } \\ & \text { ODE } \\ & \text { VOLTS } \end{aligned}$	$\begin{aligned} & \text { GRID } \\ & \text { VOLTS } \end{aligned}$	$\begin{aligned} & \text { HEATER } \\ & \text { VOLTS } \end{aligned}$ $\mathbf{A C}$
V401	6 C 4	A-F Amplifier	80	2.6	-	-	-	2.6	0	6.3
V402A	12AX7	A.F Limiter	206	0.29	-	-	-	2.3	0	6.3
V402B		A-F Limiter	202	0.15	-	-	-	2.3	0	6.3
V403	6AU6	Driver	205	4.4	173	1.5	2.8	2.8	0	6.3
V404A	6AL5	A-F Discriminator	-	-	-	-	-	-	-	6.3
V404B		A-F Discriminator	-	-	-	-	-	-	-	6.3
V601A	12AU7	A-F Amplifier I	105	5.75	-	-	-	2.25	0	6.3
V601B		A-F Amplifier II	55	1.17	-	-	-	2.1	0	6.3
V602A	12AU7	Balanced Modulator	107	0	-	-	-	0	-20	6.3
V602B		Trigger Driver	42	0.43	-	-	-	6	4	6.3
V603A	12AU7	Trigger I	120	3.0	-	-	-	65	62	6.3
V603B		Trigger 1	158	0	-	-	-	65	42	6.3
V604A	12AU7	Trigger II	16.5	1.6	-	-	-	1.6	1.7	6.3
V604B		Trigger II	105	0	-	-	-	1.6	-23	6.3
V605A	12AU7	Tone Modulator	107	6.7	-	-	-	3.2	0.4	6.3
V605B		Tone Oscillator	87	1.5	-	-	-	19	0.1	6.3
V606A	6AL5	D.C Restorer	4	-	-	-	-	4.6	-	6.3
V606B		D.C Restorer	0	-	-	-	-	4.0	-	6.3
V607 ${ }^{+}$	6AQ5	TTYP Keyer	80	30	97	3.2	-	0	0	6.3
V608 ${ }^{\dagger}$	6AQ5	TTYP Keyer	80	30	97	3.2	-	0	0	6.3
V701A	$12 \mathrm{AX7}$	D.C Amplifier	150	0.2	-	-	-	1.7	0	6.3
V701B		D.C Amplifier	80	0.15	-	-	-	0	-0.5	6.3
V702	2BP1	CRT (Tuning Monitor)	150	0	-300	0	150	-560	-570	6.3
V801	$1 \mathrm{Z2}$	High Voltage Rectifier	-670	2	-	-	-	600*	-	1.5
V802	6X4	Low Voltage Rectifier	197*	70	二	-	-	21.5	-	6.3

\because Represents a-c volts. $\quad+$ With TTYP plug inserted and S604 on.

TABLE 7-9. TUBE OPERATING VOLTAGES AND CURRENTS
(Continued)

TUBE SYMBOL	$\begin{aligned} & \text { TUBE } \\ & \text { TYPE } \end{aligned}$	FUNCTION	PLATE VOLTS	PLATE MA	SCREEN VOLTS	$\underset{\text { SCREEN }}{\text { MA }}$	$\begin{gathered} \text { SUP_- } \\ \text { PRESSOR } \\ \text { VOLTS } \end{gathered}$	$\begin{aligned} & \text { CATH- } \\ & \text { ODE } \\ & \text { VOLTS } \end{aligned}$	$\begin{aligned} & \text { CRID } \\ & \text { VOLTS } \end{aligned}$	heater VOLTS AC
V803	OA2	Voltage Regulator	150	15	-	-	-	0	-	-
V901	6AU6	Channel "A" Amplifier	14	3.3	95	2.5	0	0	-0.5	6.3
V902A	6AL5	AVC Rectifier	-	-	-	-	-	-	-	6.3
V902B		Differential Rectifier	-	-	-	-	-	-	-	6.3
V903	6 C 4	D-C Amplifier	65	0.32	-	-	-	2.3	-1.5	6.3
V904A	12AU7	First Control Trigger	105	3.6	-	-	-	65	65	6.3
V904B			140	0	-	一	-	65	40	6.3
V905A	12AU7	Second Control Trigger	120	0	-	-	-	0	-16	6.3
V905B			15	1.2	-	-	-	0	-0.03	6.3
V906A	12AU7	Gate B Control	150	0	-	-	-	0	-18	6.3
V906B		Gate B	0	0	-	-	-	1.6	0	6.3
V907A	12AU7	Gate A Control	150	3	-	-	-	23	18	6.3
V907B		Gate A	23	4.7	-	-	-	1.6	0	6.3
V908	6AU6	Channel B Amplifier	14	3.3	95	2.5	0	0	-0.5	6.3
V909A	6AL5	AVC Rectifier	-	-	-	-	-	-	-	6.3
V909B		Differential Rectifier	-	-	-	-	-	-	-	6.3
V1001	$1 \mathrm{Z2}$	Negative Voltage Rectifier	-175	-	-	-	-	200*	-	1.5
V1002	6X4	Positive Voltage Rectifier	200*	70	-	二	-	200	-	6.3
V1003	OA2	Voltage Regulator	150	15	-	-	-	0	-	-

* Represents a-c volts. $\quad+$ With TTYP plug inserted and S604 on.

TABLE 7-10. RATED TUBE CHARACTERISTICS

TUBE	FILAMENT VOLT AGE (V)	FILAMENT CURRENT (A)	PLATEVOLTAGE (V)	$\begin{aligned} & \text { GRID } \\ & \text { BiAS } \\ & (V) \end{aligned}$	$\begin{aligned} & \text { SCREEN } \\ & \text { VOL.T.- } \\ & \text { ACE } \\ & \text { (V) } \end{aligned}$	PLATE CUR- (MA)	SCREEN GUR(MA)	PLATE RESISTANCE (OHMS)	VOLTAGE AMPLI-FICATION FACTOR(MU)	TRANSCONDUCTANCE (MICROMHOS)		EMISSION	
										NORMAL	MINI- MUN	$\begin{gathered} \text { IS } \\ (\text { MA }) \end{gathered}$	$\begin{aligned} & \text { TEST } \\ & \text { VOLT } \end{aligned}$
0 A 2	-	-	150	-	-	5 to 30	-	-	-	-	-	30	185*
$1 \mathrm{Z2}$	1.25	265	15 KV	-	-	8.5	-	-	-	-	-	9.5	100
2BP1	6.3	0.6	2750	200	1100	-	-	-	-	-	-	-	-
6AL5	6.3	0.3	165	-	-	10 max.	-	-	-	-	-	40 40	10 10
6AQS	6.3	0.45	250	-12.5	250	45	3.75	2000	--	5200	3000	100	30
6AU6	6.3	0.3	250	-0.8	150	11	6	-	-	6250	4150	60	20
6C4	6.3	0.15	25	-8.5	-	14.5	-	-	18.5	4000	2500	70	30
6X4	6.3	0.6	400	-	-	75	-	-	-	-	-	140	50
12AU7	6.3	0.3	250	-8.5	-	14.5	-	-	18.5	2650	175	140 70	50 30
	12.6	0.15										70	30
12AX7	6.3	0.3	250	-2	-	1.75	-	-	115	2050	1250	55	30
	12.6	0.15										55	30

[^0]TABLE 7-11. WINDING DATA

SYMBOL DESICNATION	$\begin{gathered} \text { RCA } \\ \text { PART } \\ \text { NUMBER } \end{gathered}$	DACRAM	WINDING	$\begin{aligned} & \text { WIRE } \\ & \text { SIZE } \end{aligned}$	TURNS				REMARKS
B1201	454882	ExTERMal CAPACITOM CONNECT LINE TO IAND 3	Bobbin Bobbin	No. 40SE No. 40SE	Top or bottom 1900	358 340			Dry at $121^{\circ} \mathrm{C}\left(250^{\circ} \mathrm{F}\right)$ for one hour. Apply 1 coat of varnlsh to coils and bake at $121^{\circ} \mathrm{C}$ ($250^{\circ} \mathrm{F}$) two hours. Apply second coat of varnlsh and bake 8 hours at $135^{\circ} \mathrm{C}$ ($275^{\circ} \mathrm{F}$).
B1301	Same as B1201	See B1201							Same information as given under B1201.
${ }^{*}$ L60 1	453141		Close, layer wound	No. 43sE	$\begin{aligned} & 10,0001 / 2 \\ & \text { tapped at } \\ & 9360 \end{aligned}$	$\begin{aligned} & 1-2 \\ & 3354 \\ & 1-3 \\ & 3081 \end{aligned}$		750	Adjust air gap in core for frequence. Approx. 0.017.
+L601	Same as above	Same as above	Close, layer wound	No. 43SE	$\begin{gathered} 10.857 \\ \text { tapped at } \\ 10.179 \end{gathered}$	$\begin{gathered} 1-3 \\ 3284 \\ 3-2 \\ 271 \end{gathered}$			$\begin{gathered} \text { Halowax Dip } \\ \text { impregnation } \\ \text { potted in wax. } \end{gathered}$
* L801	453147	(\%80\%	Close. layer wound	No. 348E	1850	150		1000	0.003 -inch air sap in core. Layers separated by 0.001 inch thick paper. 4.5 henrys min. $30 v-60$ cycles at 70 ma d-c.
+L801	Same as above	Same as above	Close, layer wound	No. 338E	2600	150		1000	Vacuum varnish impregnation asphalt potting. 4.5 henrys min . $30 \mathrm{r}-60 \mathrm{cy}-$ cles at 70 ma d c .
11001	$\begin{gathered} \text { Same as } \\ \text { L801 } \end{gathered}$	See L801							Same information as given under L801.
*T401	Subassem- bly of 453143 Part of Z401	See Schematic of $\mathbf{Z 4 0 1}$ following this table	Close, layer wound Primary Secondary	No 358E No. 4i82	$\begin{gathered} 506 \text { tapped } \\ \text { at } 253 \\ 2040 \end{gathered}$	20.9		$\begin{aligned} & 500 \\ & 500 \end{aligned}$	0.001 -inch paper between layers. 0.00075 -inch paper between layers.
+T401	Same as above	Same as above	Close, layer wound Primary Secondary	No. 34St No. 33se		$\begin{aligned} & 18.58 \\ & 21.4 \end{aligned}$		$\begin{gathered} 500 \\ 500 \end{gathered}$	
*T402	Same as T401	See Schematic of Z401 following this table	Close. layer wound Primary Secondary	No. 35SE No. 438E	$\begin{aligned} & 506 \text { tapped } \\ & \text { at } 253 \\ & 3210 \end{aligned}$	20.9		$\begin{gathered} 500 \\ 300 \end{gathered}$	0.001 -inch paper between layers. 0.00075 - inch paper between 'ayers'.
+T402	Same as T401	Same as above	Close, layer wound Primary Secondary	No. 348 E No. 338 E	$\begin{aligned} & 582 \text { c. t. } \\ & 600 \end{aligned}$	$\begin{aligned} & 18.33 \\ & 21.4 \end{aligned}$		$\begin{aligned} & 500 \\ & 500 \end{aligned}$	

[^1]TABLE 7-11. WINDING DATA-Continued

- Made by Chicago Transformer.

4 Made by United Transformer.

TABLE 7-11. WINDING DATA-Continued

SYMBOL DESIGNATION	RCA PART NUMBER	DIACRAM	WINDING	$\begin{aligned} & \text { WIRE } \\ & \text { SIZE } \end{aligned}$	TURNS		$\begin{aligned} & \mu \\ & \frac{1}{2} 0 \\ & \frac{2}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \underline{2} \end{aligned}$	$\begin{aligned} & 4 \\ & \frac{1}{4} \\ & 5 \\ & 5 \\ & \frac{1}{4} \\ & \frac{1}{5} \\ & \frac{1}{x} \end{aligned}$	REMARKS
+T801	$\begin{aligned} & \text { Same as } \\ & \text { T } 7801 \end{aligned}$	Same as T801	Primary 1-4 Secondary 8-10 Secondary 10-11 Secondary 11-12 Secondary 13-14 Secondary 6.7	No. 238E No. 348E No. 428E No. 268E 2 No. 258E 3 No. 178E	608 tapped at 503 and 555 2190 tapped at 1095 and 1285 2275 8 34 34 	$\begin{gathered} 5.86 \\ 204 \\ 1418 \\ 0.293 \\ 0.346 \\ 0.068 \end{gathered}$		1260 2000 2000 2000 2000 1015	
*T1001	453148	* INPGT TO POWER 2 絙 C	Primary 1-4 Secondary 6.8 $\underset{\substack{5-6}}{\text { Secondary }}$ 5-6 $\underset{\substack{\text { Secondary } \\ 9-10}}{ }$	No. 248E No. 318E No. 238E 2 No. 168E	356 tapped at 217 and 288 2836 tapped at 1418 11.5 46 each, center tapped	6.4 0.14 0.049		1500 1500 1500 1500	0.004 -inch paper between layers. 0.0015 -inch paper between layers. One wound on top of other.
†T1001	Same as above	Same as above	Primary 1-4 Secondary 6-8 Secondary 5-6 secondary 9-10	No. 23sE No. 32SE No. 268E No. 13 cen- ter tapped	646 tapped at 534 and 589 2290 cen- ter tapped $81 / 2$ 36 center tapped	$\begin{gathered} 6 \\ 147.5 \\ 0.305 \\ 0.066 \end{gathered}$		$\begin{aligned} & 1500 \\ & 1500 \\ & 1500 \\ & 1500 \end{aligned}$	Vacuum varnish impregnation. Asphalt compound potting.
*2401	453143	See *T401. *T402 and Schematic following this table							
†2401	Same as above	See tT401, †T402 and Schematic following this table							
*2402	453145		Primary Secondary 3-4 Secondary 4-5		See *T403 and T404	? 15 . 354		$\begin{aligned} & 500 \\ & 300 \\ & 500 \end{aligned}$	Two titanstormers ("T403 and ${ }^{-}$T404) potted in one case.

* Made by Chicage Transformer.
+ Mide by Inited Transformer.

TABLE 7-11. WINDING DATA-Concluded

SYMBOL DESICNATION	$\begin{gathered} \text { RCA } \\ \text { PART } \\ \text { NUMBER } \end{gathered}$	DIACRAM	WINDINC	$\begin{aligned} & \text { WIRE } \\ & \text { SIZE } \end{aligned}$	TURNS			$\begin{aligned} & \text { HIGH-POT A-C } \\ & \text { VOLTS } \end{aligned}$	REMARKS
†Z402	$\begin{aligned} & \text { Same as } \\ & { }^{*} \mathrm{Z402} \end{aligned}$	Same as * $\mathbf{4 4 0 2}$	limary 1-2 Secondary 3-4 Secondary 4-5	$\left.\begin{array}{\|c\|} \text { See } \dagger \text { T403 } \\ \text { and } \\ +T 404 \end{array} \right\rvert\,$	$\begin{aligned} & \text { See } \dagger \mathrm{T} 403 \\ & \text { and }+\mathrm{T} 404 \end{aligned}$	$\begin{array}{r} 905 \\ \mathbf{9 1} \\ \mathbf{3 3 4} \end{array}$		$\begin{gathered} 500 \\ 500 \\ 500 \end{gathered}$	Twotransformers $1+T 403$ and †T404) potted in one case
* $\mathrm{Cf01}$	453144	See schematic following this table.	$\begin{aligned} & 1-2 \\ & 4-5 \end{aligned}$			$\begin{aligned} & 2620 \\ & 5800 \end{aligned}$		$\begin{aligned} & 500 \\ & 500 \end{aligned}$	Values given in Schematic following this table.
+2601	Same as alove	See Schematic following this table.	$\begin{aligned} & 1-2 \\ & 4-5 \end{aligned}$			$\begin{aligned} & 2293 \\ & 5024 \end{aligned}$		$\begin{aligned} & 500 \\ & 500 \end{aligned}$	Values given in Schematic following this table.
* 21201	453539		Primary 1.2 Secondary Primary Secondary 3-4	No. 35se No. 4 18E No. 418E No. 368E	$\begin{array}{\|c} 570 \\ 1980 \\ 1980 \\ 688 \\ \text { at } \\ \text { tapped } \end{array}$	$2 \ddagger$ 36.3		$\begin{gathered} 500 \\ 500 \\ 500 \\ 500 \end{gathered}$	0.001 -inch paper between layers. 0.00075 -inch paper between layers. 0.00075 -inch paper between layers. 0.001 -inch paper between layers.
†21201	Same as above	$\left.\begin{array}{l} \text { Nee Schematic } \\ \text { following thts } \\ \text { table. } \end{array}\right\} \begin{gathered} \text { Ingut trans- } \\ \text { former. } \end{gathered}$	1'rimary 1-2 Secondary Primary Secondary 3-4 Secondary 4-5	No. 338E No. 32SE No. 338E No. 328E No. 32SE	$\begin{aligned} & 500 \\ & 490 \\ & 500 \\ & 490 \text { c. t. } \end{aligned}$	12.7 13.7 12.7 6.41 7.31		$\begin{gathered} 500 \\ 500 \\ 500 \\ 500 \\ 500 \end{gathered}$	Vacuum varnish impregnation. Asphalt compound potting.
†21202	453146	See Sclumatic following this table.	$\begin{aligned} & \text { Terminals } \\ & 1-4 \\ & \text { Terminals } \\ & 2-3 \end{aligned}$			$\begin{aligned} & 0.738 \\ & 0.738 \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \end{aligned}$	
Z1301	Bee Z1201	See 21201							
21302	See 21202	See 71202							

* Made by Chlagn Transformer.
+ Mide ly Vonted Transfurmer.

SCHEMATICS FOR WINDING DATA

Complete repair of the filter assemblies is an intricate factory procedure and is not described here. In addition to values of components shown on schematic diagrams, refer to the filter characteristics given in the following paragraphs of Section 2:

Filter Symbol	Paragraph
Z401	5
Z601	6
Z1201	4
Z1202	4
Z1301	11
Z1302	11

INDUCTANCE IN HENRYS
CAPACITANCE IN MICROFARADS RESISTANCE IN OHMS

INDUCTANCE VALUES IN HENRYS
CAPAGITANCE VALUES IN MICROFARADS
INDUCTANCE VALUES IN HENRYS
CAPAGITANCE VALUES IN MICROFARADS

Z12O1,Z1301 UTC
INDUCTANCE IN HENRYS GAPACITANCE IN MICROFARADS RESISTANCE IN OHMS

INOUCTANGE IN HENRYS GAPACITANCE IN MICROFARADS RESISTANCE IN OHMS

NOTE: Numbers in wires refer to wire table, Coding at ends of wires indicate wire number and destination.

Figure 7-18. Geraporator CM-14/URR Main Chassis
Wiring Diagram

Figure 7-19. Frequency Shift Converter Cable Filter, Schematic Diagram

7-35, 7-36

Figure 7-21. Comparator Cable Filter Schematic Diagram

$$
7-39,7-40
$$

TRANSFORMER DATA FOR T801

winding	terminals	$\begin{aligned} & \text { VOLTAGE } \\ & 60 \text { CPS } \end{aligned}$	CURRENTAMPERES	RESISTANCE OHMS	
				CTC TRANSFORMER	UTC TRANSFORMER
Primary	1-2	105*	0.65		
	1-3	115*	0.6		
	1-4	125*	0.55	7.2	5.86
Secondary	6-7	6.3 CT	6.	0.099	0.068
Secondary	8-10	400 CT	0.07	347	204
Secondary	9-11	625	0.002		
Secondary	11-12	1.5	0.3	0.13	0.293
Secondary	13-14	6.3	0.6	0.805	0.346
Secondary	9-5	35	-		

* Applied through power line filter.

CODING AT ENDS OF WIRES INDICATES WIRE NUMBER AND DESTINATINNINAL WIRE YHUS: $32-\times 80$

TRANSFORMER DATA FOR TIOO1

| WINDING | TERMINALS | $\begin{array}{c}\text { volTAGE } \\ 60 \text { CPS }\end{array}$ | CURRENT | AMPERES | |
| :--- | :---: | :---: | :---: | :---: | :---: |$)$ RESISTANCE OHMS

* Applied through power line filter.

Figure 7-27. Tuning Monitor Schematic Diagram
7-51, 7-52

Figure 7-28. Tuning Monitor Wiring Diagram

Figure 7-29. Audio Input Unit Schematic Diagram

DETAIL ENDS
CABLES"

NUMBERS IN WIRES REFER TO WIRE TABLE. CODING AT ENOS OF WIRES INDICATES WIRE NUMBER \& DESTINATION OF WIRE THUS: $65-E 401-4$, $65=$ WIRE NUMBER E
BOARD E 401 . AND $4=$ TERMINAL 4 OFE4OI ASINDICATED ON THIS DRAWING.
assemble ends of shielded leads as per "detail ends of cables" for two leads
ASSEMBLE in a similar manner.

NAVSHIPS 91339

VIEW AT "B-B"
FRONT PANEL VIEWED FROM REAR

Figure 7-30. Audio Input Unit Wiring Diagram

Bottom View

 ASSEMBLE ENDS OF SHILLEED LEADS AS RER "EETAAL ENOS OF CABLES

Figure 7-33. Diversity Selector Unit Schematic Diagram
7-63, 7-64

EQUIPMENT SPARE PARTS						tender spare parts						STOCK SPARE PARTS					
SPAREPARTS BOX	OVERALL DIMENSIONS, IN.			$\begin{aligned} & \text { VOLUME } \\ & \text { CU.FT. } \end{aligned}$	WEIGHT	SPARE PARTS BOX	OVERALL DIMENSIONS, IN.			$\begin{aligned} & \text { VOLUME } \\ & \text { CU.FT. } \end{aligned}$	WEIGHT	SPARE BOX	OVERALL DIMENSIONS, IN.			VOLUME CU. FT.	WEIGHT
	HEIGHT	WIDIH	DEPTH				HEIGHT	WIDTH	DEPTH				HEIGHT	WIDTH	DEPTH		
$\begin{gathered} \text { CV-60/ } \\ \text { URR } \\ \text { AN/ } \\ \text { URA-8 } \end{gathered}$	6 6	12 12	12 12	0.5 0.5	23 24	NONE SUPPLIED						SUPPLIED AS ITEMS OF A KIND IN BULK					

CV-60/URR box is labeled MI-16295 and AN/URA-8 box is labeled MI-16296.

TABLE 8-2. SHIPPING WEIGHTS AND DIMENSIONS OF SPARE PARTS BOXES

EQUIPMENT SPARES							TENDER SPARES							STOCK SPARES												
SHIPPING BOX NUMBER	SPARE PARTS BOX	OVERALL DIMENSIONS IN.			VOLUME	WEIGHT	$\begin{aligned} & \text { SHIPPING } \\ & \text { BOX } \\ & \text { NUBER } \end{aligned}$	SPARE PARTS BOX	OVERALL DIMENSIONS, IN.			VOLUME	WEIGHT	SHIPPING BOX NUMBER	SPARE PARTS BOX	OVERALL DIMENSIONS, IN.			VOLUME	WEIGHT						
		HEIGHT	WIDTH	DEPTH					HEIGHT	WIDTH	DEPTH					HEIGHT	WIDTH	DEPTH								
1 of 1	$\begin{aligned} & \text { CV-60 } \\ & \text { URR } \end{aligned}$	8.5	16.75	16.5	1.4	39	NONE SUPPLIED							SUPPLIED AS ITEMS OF A KIND IN BULK												
1 of 1	$\begin{gathered} \text { AN } / \\ \text { URA }-8 \end{gathered}$	8.5	16.75	16.5	1.4	40																				

CV-60/URR box is labeled MI-16295 and AN/URA-8 box is labeled MI-16296.

TABLE 8-3. LIST OF MAJOR UNITS

SYMBOL GROUP	name of major unit	NAVY TYPE DESIGNATION	Standard navy stock no.
1500	Frequency Shift Converter	CV-60/URR	F16-C-90906-3001
1600	Comparator	CM-14/URR	F16-C-83571-1005
	Frequency Shift Converter-Comparator Group (Consists of two CV-60/URR and one CM-14/URR units)	AN/URA-8	F16-C-83659-1001

[^2]TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-8 and FREQUENCY SHIFT CONVERTER CV-60/URR

C-413	CAPACITOR, FIXED: mica; 5100 mmaf $\mathrm{p} / \mathrm{m} \mathrm{2} \mathrm{\%}$; 500 vdew ; bakelite case: 2 axial wire leads; color coded; spec JAN-C-5	Secd Tuning Capacitor of	CM35C512G
c-414	Same as C-403	Seed Tuning Capacitor of	
C-415	Same 8 C C-13	Seed Tuning Capacitor of	
$\mathrm{C}-116$	CAPACITOR, FIXED: paper; single sect; $100,000 \mathrm{mmf}+30 \%$ leade; vitamin Q impr; 1 axial mire lead; int gnd; mta hy aingle leads; vitamin Q impr; axial mire lead; ;in gop, mosite to lead; 0.120° diam hole in matg bkt located near end oppooite marked $\mathrm{w} / \mathrm{cap}$, tol, rated working ∇, and mfr name		
$\mathrm{C}-417$	Same as C-418	$\underset{\mathrm{V}-401}{\text { Cathode Bypass of Amplr }}$	
C-418	CAPACITOR, FIXED: ceramic dielectric; 220 mmi $p / m 20 \%$; var temp coef; 300 vdcwicase $1 / /^{\prime \prime} \lg \times 1 /{ }^{\prime \prime}$ diam less leads; 2 radial wire leadg; uninsulated; color coded; oper temp range $85^{\circ} \mathrm{C}$; in accordance $\mathrm{w} / \mathrm{spec} \mathrm{RCA}$ part/dwE 4897113	Diversity Control Bypass	
C-601	CAPACITOR, FIXED: paper dielectric; one sect; $1 \mathrm{mf}+20 \%$ diam, less leads; vitamin Q impr; 2 axial erm leads $1 / 2^{\prime \prime} \mathrm{lg}$, no int gnd; mats by snap on bod 0.120° diam hole; spec JAN-C-25	Grid Coupler of Amplr	
C-602	CAPACITOR, FIXED: paper dielectric; single sect; 100,000 diam, less leads; visamin Q mpr; 1 axial wire lead, iat body; marked w/ cap, tol, rated working v, and mfr name	$\underset{\substack{\text { Vat } 605 B}}{\text { Plate }}$	
c-603	CAPACITOR, FIXED: paper dielectric; one sect; $1 \mathrm{mf}+20 \%$ dism, less leads; vitamin Q impr; 2 axial term leade $11 / 3{ }^{\prime}{ }^{1 g}$ g; no int gid; mts by anap on body bkt having 1 mtg ear w/ 0.120° diam hole; spec JAN-C-25	Grid Coupler of Amplr V-601B	
C-604	CAPACITOR, FIXED: ceramic; 390 mmf p/m 20%; hi-dielec tric constant (does not fall within limits); 300 vdew; 0.500 " lg $x 0.250^{*}$ diam; radial wire leads; ceramic ins; humidity resist- 别 ${ }_{\text {RCA }}^{\text {part } / / / \mathrm{wg}} \mathrm{K}-897113-1$	Grid Coupler of Trigger - 604 A	
C-605	Same as C-604	Grid Coupler of Trigger V.604B	
C-606	Same as C-602	+ V Plate Filter of Mod	
C-607	CAPACITOR, FIXED: mica dielectric 390 mmf p/m $2 \% ; 500$ molded phenolic case; 2 axial wire leads; color coded; spec	Tunes L-601 to Cycles 1785	CM20D391G
C-608	CAPACITOR, FIXED: mica; $510 \mathrm{mmi} \mathrm{p} / \mathrm{m} 2 \%$; $500 \mathrm{vdew} ;$ temp coef 1 tr E ; $5 / 4 / 4 \mathrm{lg} \mathrm{X} 53 / \mathrm{k}^{\prime \prime}$ wd $\mathrm{x}{ }^{3} / \mathrm{m}^{\prime \prime} \mathrm{d}$, less leads; molded bakelite case; 2 axial wire leads; color coded; spec JAN-C-5	$\begin{gathered} \text { Tunes L-601 to } 1815 \\ \text { Cycles } \end{gathered}$	CM30ESIIG
C-609	CAPACITOR, FIXED: mica; 680 mmf p/m 2%; 500 vdew; bakelite case; 2 axial wire leads; color coded; spec JAN-C-5	$\begin{gathered} \text { Tunes L-601 to } 1445 \\ \text { Cycles } \end{gathered}$	CM30E681G
C-610	CAPACITOR, FIXED; mica; $910 \mathrm{mmf} \mathrm{p} / \mathrm{m} 2 \% ; 500 \mathrm{vdcw} ;$ bakelite case; 2 axial wire leads; color coded; spee JAN-C- 5	Tunes L-801 to 1275	См30E911G
C-611	CAPACITOR, FIXED: mics; $1200 \mathrm{mmf} p / \mathrm{m} 2 \% ; 500 \mathrm{vdew} ;$ bakelite case; 2 axial wire leads; color coded; apec JAN-C-5	$\underset{\substack{\text { Tunes } \\ \text { Cycles }}}{ }$-601 to 1105	CM30E122G
C-612	CAPACITOR, FIXED: micas; 1800 mmf p/m 2\%; 500 rdcw bakelite care; 2 axial mire leads; color coded; spee JAN-C-5	Tunes L-601 to 835 Cycles	CM30k182C

N16-C-32715-6053		P-722029-556	$\mathrm{C}-413, \mathrm{C}-115$	2	0	0		0		
N16-C458148985	1	B-454030-10	C-416, C-417	2	1	0	4	2		0
N16-C-17731-5200	(1682	K-99372-59	C.418	1	1	0	2	1		0
N16-C-48841-9390	1	B-454030-53	C-601	1	1	0	3			0
N16-C-45801-8800	1	B-454030-50	$\underset{\text { C-618 }}{\mathrm{C}-602, \mathrm{C}-606, \mathrm{C}-617,}$	4	2	0	12			0
N16-C-48841-9487	1	B-454030-54	C-603	1	1	0	3	1		0
N16--18049-8437	${ }_{\text {Ty }} 1882$	A-99372-65	C-604, C-605	2	1	0	6	2		0
N16-C-29893-2126		P.722006-587	C-607	1	0	0	3	0		0
N16-C30183-3619		P-722024-552	C-608	1	0	0	3	0		0
N16-C-30520-2819		P.722024.555	C-609	1	0	0	3	0		0
N18-C30921-8819		P-722024-558	C-610	1	0	0	3	0		0
N16-C31264-8019		P-722024-561	C-611	1	0	0	3			0
N1-C-31660-5019		P-720024-665	C-612	1	0	0	3		0	0

CONTRACT NOber-39421

TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-8 and FREQUENCY SHIFT CONVERTER CV-60/URR

C-802	CAPACTTOR, FIXED: electrolytic dielectric; 2 sect; 35 mf ea sect; 300 vdcw ; oper temp range from -55 deg C to +85 deg C; case $21 / 2^{\prime \prime} \lg \times 11 / 2^{\prime \prime}$ diam, less term; HS metal can; 4 prong type $7 / \mathrm{m}^{\prime \prime}$ Ig term on bottom; has single acg term not gnd to case; octal socket mtd; spec JAN-C-62	+B Supply Filter
C-802A	Part of C-802	
C-802B	Part of C-802	
C-901	Same as C-703	Grid Coupler of Trigger V-905
C-902	Same as C-703	Grid Coupler of Trigger V-905
C-903	Same as C-703	Plate Bypass of Amplr V-903
C-2u4	CAPACITOR, FIXED: mica dielectric; $130 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \% ; 500$ vdew; temp coef ltr C; case ${ }^{51 / 64^{\prime \prime}} \lg \mathrm{x}^{15} 52^{\prime \prime}$ wd $\mathrm{x}^{7 / 3} /{ }^{\prime \prime}$ thk, less leads; molded bakelite case; 2 axial wire lead term; color coded; spec JAN-C-5	Output Filter of Differential Rect V-902 and V-909
O-905	CAPACTTOR, FIXED: mica; $680 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \% ; 500 \mathrm{vdew} ;$ less term; molded low loss bakelite case; 2 axial wire leads; color coded; spec JAN-C-5	Output Filter of Differential Rect V-002 and V:909
C-906	Same as C-905	Output Filter of Differential Rect V-902 and V-909
C-307	Same as $\mathrm{O}-401$	Cathode Coupler to Differential Rect V-902
C, 308	Same as C-401	Cathode Coupler to Differential Rect V-909
C-909	CAPACITOR, FIXED: ccramic dielectric; $680 \mathrm{mmf} \mathrm{p} / \mathrm{m} 20 \%$; hi-dielectric constant (does not fall within limits); 300 vdew ; $0.812^{\prime \prime} \lg 火 0.250^{\prime \prime}$ diam, less leads; axial wire leads; ins; marked w/ cap value and type \# or RMA color coded	Output Filter of Differential Rect V-902 and - -909
C-910	Same as C-401	Grid Coupler of Ampir V-908
C-911	Same as C-401	$\underset{\mathrm{V}-901}{\mathrm{G} \text { Cid }}$ Coupler of Amplr
C-312	CAPACITOR, FIXED: paner dielectric; single sect; 1.0 mf $+20 \%-10 \% ; 200 \mathrm{vdew} ;$ HS metal case; $13{ }^{13} 16^{\prime \prime} \lg x{ }^{43} 6_{4}{ }^{2}$ diam, less leads; vitamin (Q impr; 1 axial wire lead; int gnd; mts by single $0.120^{\prime \prime}$ diam hole in mitg bkt located near 1 end of body opposite lead; marked w/ cap, tol, rated working v, and mir name	-B Supply Filter
C-913	Same as C-912	-B Supply Filter
C-914	Same as C-912	Screen, Bypass of Amplr
C-915	Same as C-703	AVC Filter
C-916	Same as C-909	CathodeCouplingtoAVC Rect V-909
C-917	Same as C-703	AVC Filter
C-918	Same as C-909	Cathode CouplingtoAVC
C-919	CAPACITOR, FIXED: paper dielectric; single sect; 1.0 mf $+20 \%-10 \% ; 200 \mathrm{vdcw} ;$ HS metal case; $17 / 8^{\prime \prime} \lg \mathrm{x}{ }^{43} 64^{\prime \prime}$ diam less leads; vitamin Q impr; 2 axial wire lead; no int gnd; mos by single $0.120^{\prime \prime}$ diam hole in mtg bkt located near 1 end of body; marked w/ cap, tol, rated working ψ, and mfr name	Grid Coupler of Gate V-907
C-920	Same as C-919	Grid Coupler of Gate V-906

CE52F350N

TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued)
FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-8 and FREQUENCY SHIFT CONVERTER CV-60/URR

TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) frequency shift converter-comparator group an/ura-8 and frequency shift converter cv-60/urr
∞

TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-8 and FREQUENCY SHIFT CONVERTER CV-60/URR

7 \forall NIDIYO
$\stackrel{1}{1}$
TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-8 and FREQUENCY SHIFT CONVERTER CV-60/URR

Berel for metg window over CR tube face; assem c/o 1 window, RCA part/dwg $\# 8892351-1$ 1 gasket, RCA part/dwg 48892 , R49-1, 3 Phillip,s head captive screws, \#8-32 thd, RCA part/ dwg $48840884-1$, three $\% 8$ bronze lockwashers, RCA part/dwg
$459048-18 ;$ black enamel finish, outside and edges; bezel only; \%59048-18; black enamel finish, outside and edges; bezel only;
irregular shape; $\mathrm{w} / 1 \mathrm{mtg}$ hole in I on 90° index; 2 holes on large $\mathrm{f} ; 2^{2 / 8^{\prime \prime}} \mathrm{h} \times 29 / 6^{\prime \prime}$ wd $\times 11 / 1^{\prime \prime} \mathrm{d} 0 / \mathrm{a}$; three $0.240^{\prime \prime}$ diam mtg
 2 holes on large $\mathrm{fl}^{\text {on }} 2.062^{\prime \prime} \mathrm{mtg} /$; made from aluminum
alloy; 3 straight lines engraved on window $1 / 8^{\prime \prime}$ apart, $114^{\text {I }} \mathrm{lg}$

1/8 apart, $1 / 4 \mathrm{lg}$
 direct drive; mts on shaft 0.124^{4} diam; fan blades and hub are brass w/ black enamel finish; direction of rotation, counterclockwise facing air discharge
Same as 0-1501
Same as 0-1502
Same as 0-1503
Not Ised
Same as 0-1505
Not T'sed
Same as 0-1507
CONNECTOR, RECEPTACLE: 14 male cont, pol; straight any cont, cont $\# 1$ to $\# 7$ ten amp min, 88 to $\# 14$ one amp min ; rectangular; molded melamine insert; 2 holes, 0.156° diam, $1.687^{7 \mathrm{~m}} \mathrm{mg} / \mathrm{c}$; recessed connecting lugs; metal parts 50 hr salt spray carrosion test ; marked 4738962-1

P-601

Same as P-401
Not Used
CONNECTOR, PLTG: single male coax cont; straight type; $19 \sigma^{\circ} \mathrm{Ig} \times 1 \mathrm{IN}^{\prime \prime} \mathrm{OD}$ o/a; nom RFimpedance 52 ohms; cylindrical durez 11863 ; or copolymer of styrene; cable opening $12^{\prime \prime}$ diam; 24 thd coupling sleeve; insert assem w/ polystyrene to seal connector air spaces; entire unit tropicalized

P-1203

P-1204
CONNECTOR, PLLEG: 3 round male cont; straight type; $11{ }^{11} \mathrm{f}^{\prime \prime}$. $\mathrm{gg} x 1 / 8^{\prime \prime}$ OD max; 20 amp, 70 v DC , or 50 v AC (RMS); cylindrical die cast aluminum body; $m / 3 /{ }^{\prime \prime}$. melamine insert; one
$34^{n}-20$
end Army-Navy spec \#AN-WC-591
P-1205

Air Filter

Fastens Buffer and Win-
dow to Front Panel

Slide Out Ch
SlideTOut Chassis for Accessibility

Air Filter

Equipment Cooling
Power Circuit

Power Circuit
Power Circuit
Power Circuit
Power Circuit
Power Circuit

Remote CR Tube Line

Ext Tone Line

AN-3106-14S-7P

CONTRACT NObsr-39421
Tone Output Line
$\stackrel{\infty}{1} \underset{+}{\perp}$
TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-8 and FREQUENCY SHIFT CONVERTER CV-60/URR
$7 \forall$ NIDIYO

PARTS									SPARE PARTS						
$\left\lvert\, \begin{aligned} & \text { SYMBOL } \\ & \text { DESIG. } \end{aligned}\right.$	DESCRIPTION	function						号 0 0 α α	CV. 6 AF SIN	$\begin{aligned} & \text { o/URR } \\ & \text { NPUUT } \\ & \text { NGLE } \end{aligned}$	$\left\|\begin{array}{l} \dot{0} \\ 0 \\ 0 \end{array}\right\|$	AN/U	$\begin{aligned} & \text { URA } \\ & \text { NNP } \\ & \text { JAL } \end{aligned}$	A ${ }^{\text {¢ }}$	
			$\begin{aligned} & \text { JAN AND } \\ & \text { (NAYY) } \\ & \text { TYEF. } \\ & \text { NO. } \end{aligned}$		$\begin{array}{\|c\|} \text { MFGR } \\ \text { ANFR } \\ \text { MESR'S } \\ \text { DESIG- } \\ \text { NATON } \end{array}$	TRACTOR DRAWING AND NO.	$\begin{gathered} \text { ALEL } \\ \text { SYMBOL } \\ \text { DESIGGED } \end{gathered}$		$\begin{array}{\|c\|c\|} \hline \text { EQUIP } \\ \hline & \dot{z} \\ \times & \alpha \\ 0 & 0 \\ \hline \end{array}$		-	$\begin{array}{\|c\|c} \hline \text { EQUIP } \\ \hline & \dot{y} \\ \times & z \\ 0 & 3 \\ \infty & 0 \\ \hline \end{array}$	ST	Ock	
P-1206	CONAESTOR. PLLC: 2 round female cont; straight type (R.MS ; cylindrical die east aluminum body; molded melamine insert; one end $w / 3 / 4=-20$ that, other end $w / 7 / 8^{\prime \prime}-20$ thd; one end $w / 3 / 4^{\prime \prime}-20$ outside the for eable clamp coupling; tropicalized; Army-Navy spec \|	AN-WC-591	Teletype Line	AN-3106-44-9S	N17-C-7032--2882	$\begin{gathered} 30 \\ \begin{array}{c} \text { AN.3106- } \\ 14 S .9-9 S \end{array} \end{gathered}$	M-253476-26	P-1206, P-1304	1	0	0	3	0		0
P-1217	Not 1sed														
P-120s	CONAECTOR, PLUC: 3 round female cont; straight type; cylindrical die cast aluminum body; moded bakelite insert; one end $w / 34^{n}-20$ thd, other end $w / T 8^{n}-20$ thd; one end $w /$ one end $w / 3 / /^{" 2}$ 2 thd, other end w/ $7 / 8^{\prime \prime}-20$ thd; one end w/ $3 / 4-20$ outside thd for cable clamp coupling; Army-Nary spec \#AN-WC-591	AC Power Line	AN-3106-14S-7S	N17-C-70328-1524	$\begin{gathered} 30 \\ \text { AN-3106. } \\ 14 \mathrm{~S}-7 \mathrm{~S} \end{gathered}$	M-253476-27	P-1208, P-1305, P-1729, P-1730	1	0	0	5	0		0	
$\begin{gathered} P-1203 \\ \text { and } \\ 1-1210 \end{gathered}$	Nat Csed														
P-1211	Saxine as P-1204	AF Input Line													
P-1212	Same as P-1204	AF Input Line													
P-1301	Not Used														
P-1302	Same as P-1204	Ext Tone Line													
P-1303	Same as P-1204	Tone Diversity Line													
P-1304	Same as P-1206	Teletype Diversity Line													
P-1345	Same as P-1208	AC Power Line													
P-1501	CONNECTOR, PLUG: 20 male cont, pol; straight type; $2^{11 / 6_{6}^{\prime \prime}}$ $\lg x 58^{\prime \prime}$. wd x thro ${ }^{\prime \prime}$ d. less cont and pol pins; cont $\# 8$ to \#12 ten 8mp min, cont $\#$ to $\# 7$ one amp min; rectangular; molded melamine insert; two $0.156^{\prime \prime}$ diam holes, $23 / 8^{\circ} \mathrm{mtg} / \mathrm{c}$; 50 hr salt spray test; marked \#738961-2 (Part of W-1501)	Interconnects Filter and Frame		N17-C-73617-2350	1	P-738961-2	P-1801, P-1601	1	1	5	3	1		12	
P-1601	Same as P-1501 (Part of W-1601)	Intereonnects Filter and Frame													
$\begin{gathered} \mathrm{P}-1701 \\ \mathrm{t} \\ \mathrm{H}-1701 \end{gathered}$	Not Used														
1-1705	CONNECTOR, PLUG: single male coax cont; straight type; $166^{4} \lg \mathrm{~S}^{9} / \mathrm{cic}^{\prime \prime}$ diam; 52 ohmsimpedance; cylindrical brass silve pl; Tefon (poly-P-114); $0.212^{\text {n }}$ diam cable opening; mits by thd); in accordance w/ Navy dwg RE49F246	Part of:W-1705		N17-C-71408-5333	1	A-8898625-501	P-1705, P-1706, ${ }^{\text {P-1711, P-1712, }}$ P-1723, P-1724	0	0	0	4	0		0	
${ }^{\text {P }}$-1706	Same as P-1705	Part of W-1706													
$\begin{aligned} & \text { P-1707 } \\ & \text { po } \\ & \text { potio } \end{aligned}$	Not Used														

TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-8 and FREQUENCY SHIFT CONVERTER CV-60/URR

PARTS									SPARE PARTS				
	DESCRIPITON	FUNCTION				CON.		\|					
$\left\lvert\, \begin{array}{\|c\|c\|c\|} \hline \text { SYMBOL } \\ \text { DESIG. } \end{array}\right.$			JAN AND (NAVY) NPE NO			TRACIOR DRAWING AND NO.	$\begin{aligned} & \text { ALL } \\ & \text { SYMBOL } \\ & \text { DESIGGED } \end{aligned}$	这					
12-409	RESISTOR, FINLD: "omp; 1.0 megohra p/m 100 ; $3 / 2 \mathrm{w}$; F characteristic; $0.375^{\prime \prime} \lg x 0.140^{0 \prime}$ diam; ins, humidity and salt water immersion cycling resistant; 2 axial wire lead term; marked w/ JAN std color code; sjec JAN-R-11	V-403 Grid Leak	*RC20BF105K	N16-R-50975-811		A-8897969-98	R-409, R-422, R-610, $\mathrm{R}-902, \mathrm{R}-924, \mathrm{R}-925$, R-941, R-942	3	0		12	0	0
R-410	RESISTOR, FINED: comp; tio ohms p/m 10%; 36 w; F chararteristic; $0.3 \overline{5^{\prime \prime}} \lg x 0.140^{\prime \prime}$ diam; ins, humidity and salt water immersion cyeling resistant; 2 axial wire lead term; marked w/ JAN std color code; spec JAN-12-11	V-403 Cathode Bias	*RC20BF471K	N16-R-49769-811		A-8897969-58	R-410	1	0	0	2	0	0
R-411	RESISTOR, FINED: romp; 18,000 ohms $\mathrm{p} / \mathrm{m} 10 \%$; 132 w ; F characteristic; $0.375^{\prime \prime}$ It $\times 0.140^{\prime \prime}$ diam; ins, humidity and salt water immersion cycling resistant; 2 axial wire lead term; marked w/ JAN std color code; spec JAN-R-11	T-403 Sced Load	*RC20BF183K	N16-R-50354-811		A-8897969-77	R-411, R-413, R-630	3	0	0	7	0	0
$\mathrm{R}-112$	Same as R-406	T-403 Sed Load											
R-413	Same as $\mathrm{R}-411$	T-403 Seed L.oad											
R-414	Same as $\mathrm{R}-\mathbf{4 0 0}$	T-403 Seed Load											
k -415	 water immersion creting resistant; 2 axial wire lead term; marked $\mathrm{w} / \mathrm{JAN}$ std color code; spec $J A \mathrm{~N}-\mathrm{R}-11$ mad Jan sicobr codencoll	V-404 Cathode Load	*RC20BF154K	N16-R-50678-811		A-8897969-88	$\begin{aligned} & \mathrm{R}-415, \mathrm{R}-416, \mathrm{R}-635, \\ & \mathrm{~B}=07 \end{aligned}$	4	0	0	10	0	0
R-416	Same as R-415	V-404 Cathode Load											
R-417	RESISTOR. FIXED: comp; 270,000 ohms $\mathrm{p} / \mathrm{m} 5 \mathrm{~m} ; 1 / 2 w ; \mathrm{F}$ characteristic; $0.375^{\prime \prime} \lg \times 0.140^{\prime \prime}$ diam; ins, humuinty and salt water immersion eycling resistant; 2 axial wire lead term; marked $\mathbf{w} / \mathrm{JAN}$ std color code; spee JAN-R-11	V-404 Output Filter	*RC20BF274J	N16-R-50740-431		A-8897969-217	$\begin{aligned} & \mathrm{R}-417, \mathrm{R}-927, \mathrm{R}-928, \\ & \mathrm{R}-948, \mathrm{R}-949 \end{aligned}$	1	0	0	${ }^{6}$	0	0
R-418	RESISTOR, FIXED: comp; 300,000 ohms $\mathrm{p} / \mathrm{m} 50 ; 1 / 2 \mathrm{w} ;$ F characteristic; 0.3 is $\mathrm{g} x .140$ diam; ins, humirty and salt water immersion cycling resistant; ${ }^{2}$ axial wire lead term; marked $\mathbf{W} / \mathrm{JAN}$ std color code; spec J. $\mathrm{N}-\mathrm{R}$-11	V.404 Output Filter	*RC20BF304J	N16-R-50749-431		A-8897969-218	R-418, R-419	2	0	0	4	0	0
R-419	Same as R-418	V-404 Output Filter											
R-420	RESISTOR, FIXED: comp; 15,000 ohms p/m 577 ; $1 / 2 \mathrm{w} ;$ F characteristic; $0.375^{\prime \prime} \lg \times 0.140^{\prime \prime}$ diam; ins, humidity and salt water immersion cycling resistant; 2 axial wire lead term; marked $\mathrm{w} / \mathrm{JAN}$ std color code; spec JAN-R-11	V-404 Output Filter	*RC20BF153J	N16-R-50335-431		A-8897969-187	R-420	1	0	0	2	0	0
R-421	 max II; at 500 , rotation not more than 10\% resistance in use; to 95% rotation and 100% reisistance in use; CTS " A " laper; radius at 9 o clock: salt water spray corrosion resistant ambient oper temp range - 60 to $+100^{\circ} \mathrm{C}$; busting SS or brass nickel pi; marked w/ NT \#, mfr prefix \|tr, and RCA part/dwg	V-404 Discr Output Con-		N16-R-88340-9355	$\begin{gathered} 786 \\ \text { Type } 45 \end{gathered}$	B-453560-15	R-421	1	0	0	2	0	0
R422	Same as R-409	$\underset{\substack{\text { ider } \\ \text { V-404 Discr Output Div- }}}{ }$											

R-423
Same
Same
RESI
cha
wad
w/
RES

Same as R-401

Same as R-405
 water immerion cycling resistant; 2 a aial wire leads; marked
 In
RESISTOR, FIXED: comp; 10,000 obms $\mathrm{p} / \mathrm{m} 10 \%$; $1 / 2 \mathrm{w}$; F water immerion cycling registant; 2 axial wire lead term: water immersion cycling resistant; 2 axial wil inmmersion cycling resistant; 2 axial wire leads; marked w/ JAN atd color code; apec JAN-R-11
RFSISTOR, FIXED: comp; 220,000 ohms $\mathrm{p} / \mathrm{m} 10 \% ; 1 / 2 \mathrm{w} ; \mathrm{F}$
characteristic $0.375^{\prime \prime} \lg \times 0.140^{\prime \prime}$ diam; ins, humidity and walt water immersion cycling resistant: 2 axial wire leads; marked - JAN std color code; spec JAN-R-11
acteristic, FIXED: comp; 7500 ohms p / m 5\%; 1 wi F characteristic; 0.562 Ig $x 0.220^{\circ}$ dism; ins, salt water minersion
-
Same as R-401
acteristic; FIXED: comp; 5600 ohms $p / \mathrm{m} 5 \% ; 1 / 2 \mathrm{~m}$; F characteristic; $0.375^{\prime \prime} \lg \times 0.140^{\prime \prime}$ diam; ins, humidity and salt
water immersion cycling resistant: ${ }^{2}$ axial wire ieads; marked WAN std color code; spec JAN-R-11

[^3]

Same as R-409

RESISTOR, FIXED: comp; 240,000 ohms $p / \mathrm{m} 5 \% ; 1 / 2$ w; F characteristic; $0.375^{\prime \prime}$ lg $\times 0.140^{\circ}$ diam; ins, RSW and hum

RESISTOR, FIXED: comp; 4700 ohms $\mathrm{p} / \mathrm{m} 10 \% ; 1 / 2 \mathrm{w}$; characteristic $0.375^{\circ} \lg \times 0.140^{\text {diam; }} \mathrm{ms}$, hamidity and sail water immersion cycling resistant; 2 axial wire leads; marked w/ Jan std color code, spec Jan-R-1
RESISTOR, VARIABLE: comp; 750 ohms $\mathrm{p} / \mathrm{m} 20 \%$; $1 / 4$ w; 3 solder lug term; encl SS or brass nickel pl case ${ }^{15} 5_{6}{ }^{\circ}$ max ciam maxle $\bar{\sigma}$ / ecdr slot: lin taper; ins contact arm w/o of position; high torque; no locking device; mtg bushing $2 / 8^{\prime \prime} 32$ thd $\times 1 / 4^{\prime \prime}$ Ig; non-turn device on 1 /f ${ }^{\prime \prime}$ radiua at 90^{\prime} clock; salt water spray, corrosion reesistant; ambien oper wis wis and RCA part/dwg

Same as R-602

RESISTOR, FIXED: comp; 100,000 ohme p/m $5 \% ; / 2 \mathrm{~m} ;$; characteristic; $0.375^{\prime \prime} \mathrm{I} x .140$ diam; ins, humidity and salt water immersion cycling resistant; 2 ax

RESISTOR, FIXED: comp; 18,000 ohms $\mathrm{p} / \mathrm{m} 5 \% ; 1 / 2 \mathrm{~m} ; \mathrm{F}$ characteristic; $0.3 x 5 \mathrm{gx} \times 140$ diam; ins, humiteds ank water immersion cyching resistant; 2 axial wire leads; marked
w/JAN std color code; spec JAN-R-11

V-403 Screen Dropping V-401 Grid Limiting Y-601A Grid Leak	*RC20BF185K	N16-R-51038-811		A-8897969-101	R-601;R-607; R-714	3	0	0	8	0	0
V-601A Cathode Bias	*RC20BF391K	N16-R-49733-811		A-8897969-67	R-602; R-614	2	0	0	6	0	0
V-601A Plate Load	*RC20BF103K	N16-R-50282-811		A-8897969-74	R-603, R-638	2	0	0	6	0	0
V-601B Cathode Bias	*RC20BF182K	N16-R-49985-811		A-8897969-65	R-604	1	0	0	3	0	0
V-602B Grid Limiting	*RC20BF224K	N16-R-50714-811		A-8897069-90	R-605	1	0	0	3	0	0
V-607 and V-608 Screen	*RC30BF752J	N16-R-50218-751		A-8897970-180	R-608, B-623	2	0	0	6	0	0
Y-601B Grid Leak											
Z-601 Output Matching											
V-603 Cathode Voltage Divider	*RC20BF562J	N16-R-50164-431		A-8897969-177	R-609	1	0	0	3	0	0
V-602B Grid Leak											
V. 606 Cathode Voltage Divider	*RC20BF244J	N16-R-50722-431		A-8897969-216	R-611	1	0	0	3	0	0
V-602B.Cathode Bias	*RC20BF472K	N16-R-50129-811		A-8897969-70	R-612	1	0	0	3	0	0
V-602B Bias Control		N16-R-87305-5521	$\begin{gathered} 788 \\ \text { Type } 45 \end{gathered}$	B-453560.3	R-613	1	0	0	3	0	0
V-602B Bias											
V-603A Grid Voitage Di- vider	*RC30BF104J	N16-R-50632-431		A-8897969-207	R-615, R-621, R-622, R-624; R-625, R-912, R-917, R-918, R-937	5	0	0	19	0	0
V-603 Cathode Bias	*RC20BF183J	N16-R-50353-431		A-8887969-189	R-616, R-907	1	0	0	4	0	0
V-603B Grid Voltage Divider	*RC20BF154J	N16-R-50077-431		A-8897969-211	$\begin{aligned} & \mathrm{R}-617, \mathrm{R}-\mathrm{i} 18, \mathrm{R}, \mathrm{R} 05, \\ & \mathrm{R}-908, \mathrm{~K}-409, \mathrm{~K}-1005 \end{aligned}$	3	0	0	11	0	0

[^4]FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-8 and FREQUENCY SHIFT CONVERTER CV-60/URR

R-633	RESISTOR, VARIABLE: comp; 1500 ohms $\mathrm{p} / \mathrm{m} 20 \%$; $1 / 4 \mathrm{w}$; 3 solder lug term; encl SS or brass nickel pl case $15 / h^{\prime \prime}$ max diam bigh torque; no locking device; mtg bushing $3 / 8^{\prime \prime}-32$ thd $x 1 / 4^{\prime \prime}$ lg; non-tura device on $1 / 6^{\prime \prime}$ radius at 90^{\prime} clock; asilt water spray corrosion resistant; ambient oper temp range -60 to $+100^{\circ} \mathrm{C}$; bushing SS or brass nickel pl; marked w/ NT \#, mfr prefix ltr, and RCA part/dwg $\#$
R-634	Same as R-405
R-635	Same as R-415
R-636	RESISTOR, FIXED: comp; 15,000 ohms p/m 10\%; $1 / 2$ w; F characteristic; $0.375^{\prime \prime} \lg \times 0.140^{\prime \prime}$ diam; ins, humidity and salt water immersion cycling resistant; 2 axia wire leads; marked w/ JAN std color code; spec JAN-R-11
R-637	RESISTOR, FIXED: comp; 1200 ohms $\mathrm{p} / \mathrm{m} 10 \%$; $1 / 2 \mathrm{w} ;$ F characteristic; $0.375^{\prime \prime} \lg \times 0.140^{\prime \prime}$ diam; ins, humidity and salt water immersion cycling resistant; 2 axial wire leads; marked w/ JAN std color code; spec JAN-R-11
R-638	Same as R-603
R-639	RESISTOR, FIXED: comp; 39,000 obms $\mathrm{p} / \mathrm{m} 10 \%$; $1 / 2 \mathrm{w}$; F characteristic; $0.375^{\prime \prime} \lg \times 0.140^{\prime \prime}$ diam; ins, humidity and salt water immersion cycling resistant; 2 axial wire lead term; marked W/ JAN std color code; spec JAN-R-11
R-640	Same as R-401
R-641	RESISTOR, FIXED: comp; 68,000 ohms p/m 10%; $1 / 2$ w; F characteristic; $0.375^{\prime \prime} \lg \times 0.140^{\prime \prime}$ diam; ins, humidity and salt water immersion cycling resistant; 2 axial wire lead term; marked w/ JAN std color code; spec JAN-R-11
R-642	RESISTOR, FIXED: comp; 560 ohms $\mathrm{p} / \mathrm{m} 10 \%$; $1 / 2$ w; F characteristic; $0.375^{\prime \prime} \lg \times 0.140^{\prime \prime}$ diam; ins, humidity and salt water immersion cycling resistant; 2 axial wire leads; marked w/ JAN std color code; spec JAN-R-11
R-643	Same as R-626
R-701	RESISTOR, VARIABLE: comp; 1.0 megohm p/m 20\%; 14 w; 3 solder lug term; encl SS or brass nickel pl case 15 /你. max diam $x 0.451^{\prime \prime}$ max d ; SS or brass nickel pl shaft $0.250^{\prime \prime}$ diam x 11/6" max $\mathrm{lg} ;$ lin taper; ins contact arm \mathbf{w} / o off position; high torque; no locking device; mtg bushing $8 / 8^{\prime \prime}-32$ thd $x 3 / 8^{\prime \prime} \mathrm{lg}$; non-turn device on $7{ }^{6}{ }^{6}$. radius at 3 o'clock; salt water spray corrosion resistant; a mbient oper temp range -60 to $+100^{\circ} \mathrm{C}$; bushing SS or brass nickel pl; marked w/ NT \#, mir prefix ltr, and RCA part/dwg \#
R-702	RESISTOR, VARIABLE: comp; 500,000 ohms $\mathrm{p} / \mathrm{m} 20 \% ; 1 / 4 \mathrm{w}$; 3 solder lug term; encl SS or brass nickel pl case 15 in $^{\prime \prime}$ max diam $\times 0.451^{\prime \prime}$ max d; SS or brass nickel pl shaft $0.250^{\prime \prime}$ diam $x 31 / 2^{n}$ max $1 \mathrm{~g} ; \mathrm{w} / \mathrm{scdr}$ slot; lin taper; ins cont arm $w / 0$ of position; high torque; no locking device; mtg bushing $8 / 8^{\prime \prime} \cdot 32$ thd $\times 14^{1 /} \mathrm{lg}$; non-tura device on 7 K" ${ }^{\prime \prime}$ radius at 9 o'dlock; salt water spray corrosion resistant; ambient oper temp range -60 to $-100^{\circ} \mathrm{C}$; bushing SS or brass nickel pl; marked w/ NT 4, mfr prefix ltr, and RCA part/dwg \#
R-703	RESISTOR, FIXED: comp; 470,000 ohms $\mathrm{p} / \mathrm{m} 10 \%$; $1 / 2 \mathrm{w}$; F characteristic; $0.375^{\prime \prime} \lg \times 0.140^{\prime \prime}$ diam; ins, humidity and salt water immersion cycling resistant; 2 axial wire leads; marked w/ JAN std color code; spec JAN-R-11
R-704	Not Used
R-705	Same as R-403
R-706	RESIST0R, FIXED: comp; 180,000 ohms p/m 10%; $1 / 2 \mathrm{w}$; F characteristic; $0.375^{\prime \prime} \lg \times 0.140^{\prime \prime}$ diam; ins, humidity and salt water immersion cycling resistant; 2 axial wire leads; marked w/ JAN std color code; spec JAN-R-11

7VNIפI4O
TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-8 and FREQUENCY SHIFT CONVERTER CV-60/URR

*When ordering replacements specify "max dimensions not to exceed $3 \mathrm{c}^{\prime \prime}$ diam x ${ }^{13 / 2}$ " 18 "

TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-8 and FREQUENCY SHIFT CONVERTER CV-60/URR

$\forall \downarrow て-8$

S-901	SWITCH ROTARY: sinule pole 3 ehrows; 3 positions; staric RCA spec dwg =544 M96i

TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-8 and FREQUENCY SHIFT CONVERTER CV-60/URR

CONTRACT NOber-39421

TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-8 and FREQUENCY SHIFT CONVERTER CV-60/URR

Same as X-801

For V－801
For V－802
F V
SOCKET，TLBE：octal；one piece saddle mtg；two 0．156＂diam
 ph conts

$\mathrm{X}-901$ $\mathrm{X}-902$
 X－003
 X－904
 X－905
 X－906
 X－907
 X－908
 X－1501

Same as X－401
Same as X－401
Same as X－401
Same as X－402
Same as X－402
Same as X－402
Same as X－402
Same as $\mathrm{X}-401$
Same as X－401
 translucent lens；for mintiature bayonet，T31／4 bulb；enclosed
shell；hrass hell suitably finished to be corrosion resistant；
 max panif：screw，horizontalyy midd，lamp replaceable irom front 2 solder lug term located on opposite sides of blase of soeket：outside of thezel to be finished black
nickel followed by black nickel followed by black lacquer
X－1601
FILTER，BAND IASS－HIGH PASS：high pass fiter，attenua－ tion below 425 cps ，not less than 40 db down；band pass filter，
mid－pass freq 2550 cps p $/ \mathrm{m} 50 \mathrm{chs}, 900$ to 4500 csi band
 ohnsis input impedance，nom at $1000 \mathrm{cps}, 22,000$ ohms output impedance；band pass filter， 600 ohms input impedance，nom
 9 solder type term；max power input，both filters， 60 mm ；pri wnd of input transf clectrostatically shielded；filter contains 9 marked term，term 8 common to bath；band pass filter input
terms $1-2-3$ ，output $8-9$ ；high pass filter ingut terms $4-5-6$ terms $1-2-3$
output $7-8$
TRANSFORMER，DISCRIMINATOR：freg range 550 cyc to
 powdered iron core；secd is ext tuned；nits by two $46-32 \mathrm{x}$
 bottom；HS netal case， 2 units med in single case term on
Part of 2－401
Part of 2－401
FILTER，LOW PASS：low speed attenuation No to 140 rps fat within 6 dh， 240 cus and alove－lown not less than 40 th，high

 500 vde test；max arntient temp of oper 55 deg C

Lamp I－ 1601

$\frac{9}{2}$	FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-8 and FREQUENCY SHIFT CONVERTER CV-60/URR									
$\underset{\sim}{\mathbf{H}}$	JAN(OR AWS) DESIGNATION	KEY KMBOL	JAN (OR AWS) DESIGNATION	KEY KYBOL	STANDARD NAVY STOCK NO.	$\begin{aligned} & \text { SYEY } \\ & \text { SYBOL } \end{aligned}$	STANDARD NAVY STOCK NO.	KEY SYBOL	STANDARD NAVY STOCK NO.	SYMBY
	CEs2F350N	C-802	RC20BF682K	R-407	N16-C-42761-8675	C-615	N16-R-50911-431	R-933	N17-C-73108-1267	J-1209
	CM20C131J	C-904	RC20BF683K	R-641	N16-C-45801-8800	C-602	N16-R-50974-431	R-913	N17-C-73108-5890	J-1202
	CM20C361J	C-410	RC20BF684J	R-919	N16-C-45814-8985	C-416	N16-R-50975-811	R-409	N17-C-73139-7587	J-1207
	${ }_{\text {CM25B681J }}$	$\mathrm{C}_{\mathrm{C}-605}$	RC20BF754J	$\mathrm{R}-933$ $\mathrm{R}-936$	N $16-\mathrm{C}-46200-9900$ $\mathrm{~N} 16-\mathrm{C}-47147-9001$	$\mathrm{C}_{\text {C-61201 }}$	N16-R-50993-811 N16-R-51038-811	- $\mathrm{R}-631$	N17-C-73301-6068 N17-C-7323-7100	${ }_{\text {J-1201 }}$
	CM30C182J	C-409	RC30BF364J	R-803	N16-C-47148-1001	C-701	N16-R-51065-811	R-708	N17-C-73588-4094	P-401
	CM130C302G	C-404	RC30BF431J	R-1007	N16-C-48841-9390	C-601	N16-R-51092-811	R-710	N17-C-73617-2350	P-1501
	CM130E122G	C-611	RC30BF752.J	R-606	N16-C-48841-9485	C-919	N16-R-68305-4706	R-945	N17-C-793001-125	O-1505
	CM30E182G	$\mathrm{C}_{\mathrm{C}-612}^{\mathrm{C}-613}$	RC40BF911J	R-1004	N $116-\mathrm{C}-488411-9486$	C-912	N 16-R-73097-6558	R-632	N17-F-74266-9227	E-1201
	CM30E511G	C-608			N16-C-54460-6510	C-801	N16-R-87380-9401	R-633	N17-G-169757-750	O-1501
	CM30E681G	C-609			N16-C-54535-8505	C-1001	N16-R-87520-9596	R-905	N17-1-59417-6691	E-907
	CM30E911G	C-610			N16-F-33402-9213	2-401	N16-R-87680-9449	R-823	N17-J-39108-2701	J-1501
	CM35C472G	$\mathrm{C}-406$ $\mathrm{C}-413$	NAVY TYPE	$\stackrel{\text { KEY }}{\text { SYMBOL }}$	N16-F-44012-8428	${ }_{\text {Z-1201 }}$	N16-R-87680-9449	$\mathrm{R}_{\mathrm{R}-923}$	N17-L-6806-130 ${ }^{\text {N17-L-76909-4827 }}$	${ }_{\text {X-1501 }}^{\text {Y/ }}$
	CM35E472G	C. 614	NAVY TYPE		N $16-\mathrm{F}-44150-1001$	Z-1202	N $\mathrm{N} 16-\mathrm{R}-88040-8526$	R-629	N17-M-54301-8001	B-1201
	CM40C103G	$\xrightarrow{\text { C-403 }} \mathrm{C}-1001$			N16-R-29070-5501	L-801	N16-R-88180-9430	${ }_{\mathrm{R}}^{\mathrm{R}-713}$	N17-M-19051-9600	M-1601
	CP69B5FGil04V	C-801	-28032-3	F-1201	N16-R-49733-811	R-602	N 16-R-88340-9355	R-421	N17-S-58904-2201	S-701
	M1R25W 107 Spec	M-1601	-49194	J-1202	N16-R-49750-726	R-1007	N 16-R-88340-9385	R-715	N17-S-60520-5078	S-602
	RC208F102J	R-628	-49195	P-1202	N16-R-49769-811	R-410	N16-R-88340-9477	R-701	N17-S-60907-8578	S-402
	RC20BF102K RC20BF103J	R-404	-49435		N16-R-49805-811	R-642	N16-S-117101-277	O-1506	N17-S-61164-9106	S-901
	RC20BF103K	R-603			N16-R-49841-121	R-1502	N16-S-80001-103	O-1503	N17-S-62615-5896	S-1602
	RC20BF104J	R-615			N16-R-49904-121	R-1004	N16-S-62603-6446	X-401	N17-S-64977-8101	S-401
	RC20BF104K	R-406	ARMY-NAVY	KEY	N16-R-49921-431	R-628	N16-S-62603-6461	X-801	N17-S-73115-2931	S-604
	RC20BF105J	R-913	TYPE	SYMBOL	N16-R-49922-811	R-904	N16-S-63515-6651	X-804	N17-T-28255-3576	E-609
	${ }_{\text {RC20BF105K }}$	R-409			N16-R-49939-431 $\mathrm{N} 16-\mathrm{R}-49940-811$	R-944	N16-S-64063-6456 N16-S-64286-3950	$\mathrm{X}-402$ $\mathrm{X}-702$	N17-T-62664-5501	T-601
	RC20BF122K	R-637			N16-R-49985-811	R-604	N16-T-51990	V-801	N17-T-73579-9701	T-1001
	RC20BF123J	R-1001	AN-3102-14S-7P	J. 1208	N16-R-50038-431	R-906	N16-T-52001	V-803	N17-T-73580-1101	T-801
	RC20BF125K	R-631	AN-3102-14S-7S	J-1204	N16-R-50048-131	R-804	N16-T-52230	V-702	N17-W-300081-101	W-1601
	$\mathrm{RC}^{\text {RC20BF1533 }}$	R-420	AN-3102-14S-9P	${ }_{\substack{\text { J. } \\ \mathrm{P}-1206 \\ \hline}}$	N16-R-50129-811	R-612	N16-T-56195	V-404	N43-8-99500-10	H-1501
	RC208F154J	R-617	AN-3106-14S-7S	P-1208	N16-R-50164-431	R-609	N16-T-56203-50	V-403		
	RC20BF154K	R-415	AN-3106-14S-9S	P-1206	N16-R-50201-811	R-407	N16-T-56214	$\mathrm{V}-401$		
	RC20BF182K	R-604 $\mathrm{R}-616$	CG-409/U(1'2")	${ }_{\text {W-1109 }}$	N16-R-50218-751	R-606 $\mathrm{R}-619$	N16-T-56840	V-802	STANDARD	NAVY
	$\mathrm{RC}^{20 \mathrm{BF}} 183 \mathrm{~K}$	R-411			N16-R-50308-431	R-1001	N16-T-58241-6	V-402		
	RC20BF185K	R-601			N16-R-50336-811	R-636	N17-B-77734-7955	${ }_{\text {E }}^{\text {E-403 }}$		
	RC20BF223K	R-401	STANDARD	KEY	N16-R-50353-431	R-616	N17-B-77833-9721	E-601	F16-C-83571-1005	CM-14/URR
	RC20BF224K	R-605	NAVY STOCK NO.	SYMBOL	N16-R-50354-811	R-411	N17-B-77833-9722	E-602	F16--83659-1001	AN/URA-8
	RC20BF225K	R-708			N16-R-50372-811	$\stackrel{\mathrm{R}-401}{ }$	N17-B-77834-9121	E-905	F16-C-90906-3001	CV-60/URR
	RC20BF272J	R-906			N16-R-50399-811	R-408	N17-B-77982-9571	E-904		
	RC20BF273.J	R-801	N16-A-700001-181	O-401	N16-R-50443-431	R-935	N17-B-77982-9601	E-405		
	RC20BF273K	R-408	N16-C-11943-3834	W-1705	N16-R-50444-811	R-639	N17-B-78082-6767	E-1001		
	RC20BF274J	R-417	N16-C-18049-8437	C-604	N16-R-50480-811	R-405	N17-B-78083-1306	E-801		
	RC20BF274K	R-947	N16-C-18401-8451	C-909	N16-R-50515-406	R-626	N17-B-78083-1401	E-606		
	RC20BF275K RC20BF304.J	R-710	N16-C-18657-8451 N16-C-18785-8460	C-703 $\mathrm{C}-702$	N16-R-50516-811 N16-R-50551-431	R-903	N17-B-78138-9408	E-401		
	RC20BF334K	R-707	N16-C-21941-1255	C-802	N16-R-50552-811	R-641	N17-B-78177-7714	E-605		
	RC20BF391K	R-602	N 16-C-28816-8201	C-904	N16-R-50587-431	R-936	N17-B-78197-2101	E-302		
	RC208F393J	R-935	N16-C-29819-2401	C-410	N16-R-50633-431	R-615	N17-B-78207-1610	E-301		
	RC20Bl 393 K	R-639	N16-C-29893-2126	C-607	N16-R-50033-811	R-406	N17-B-78222-5216	E-902		
	RC 20 BF 470 J RC 20 BF 471 K	R-945	N16-C-30183-3619	C-608	N16-R-50677-431	R-617	N17-B-78242-2201	$\underset{\mathrm{E}-603}{ }$		
	RC20BF472, ${ }^{\text {J }}$	R-939	N16-C-30526-2819	C-609	N16-R-50696-811	R-706	N17-B-78272-5249	E-903		
	RC20BF472K	R-612	N16-C-30921-8819	C-610	N16-R-50714-811	R-605	N17-B-78272-5254	E-402		
	RC20BF473K	R-405	N16-C-31264-8019	C-611	N16-R-50722-431	R-611	N17-B-78302-5216	E-901		
	RC20BF474J	R-929	N16-C-31660-5019	C-612	N16-R-50740-431	R-417	N17-C-48193-6050	W-1717		
	${ }_{\mathbf{R C} 20 \mathrm{BF} 5614 \mathrm{~K}}$	R-703	N16-C-31665-6489 $\mathrm{N} 16-\mathrm{C}-32135-3219$	$\xrightarrow{\mathrm{C}-409}$	N16-R-50741-81]	R-947	N17-C-70320-2882	P-1206		
	RC 20 BF 562 J	$\mathrm{R}-609$	N16-C-32188-1009	C-404	N16-R-50759-811	R-707	N17-C-70588-1524	P-1204		
	RC20BF563J	R-626	N16-C-32636-4583	C-406	N16-R-50776-726	R-803	N17-C-71408-5333	P-1705		
	RC20BF563K	R-903	N16-C-32636-4863	C-614	N16-R-50821-431	R-929	N17-C-71414-2800	P-1202		
	${ }_{\text {RC20 }}$	$\mathrm{R}-806$ $\mathrm{R}-945$	N16-C-32715-6053 $\mathrm{N} 16-\mathrm{C}-3612-3634$	C-413	N16-R-50822-811	$\mathrm{R}-703$ $\mathrm{R}-806$	N17-C-72240-1516	J-1204		
	RC20BF683J	R-921	N16-C-42733-5951	C-401	N16-R-50893-431	R-919	N17-C-72604-1516	J. 1208		

CAPACITOR GOLOR CODES

RESSSOLCR COLOR CODES

RMA COLOR CODE FOR
FIXEO COMPOSITION RESISTORS

JAN 6-DOT COLOR CODE FOR MICA-DIELECTRIC CAPACITORS

RMA: RADIO MANUFACTUAERS ASSOCIATION JAN: JOINT ARMI-NAVI

RESISTORS				CAPACITORS				
TOCEPANCE	multipliea	SIGNIFICANTFIGURE	COLOR	MULTIPLIER			voltage RATING	temperature coefficient
				PMA MICA ANO CERAMIC-DIELECTRIC	PANM/CA AND	JANCERAMIC OIELECTAIC		
	1	0	black	- 1	$\underline{1}$	- 1		A
	10	1	Brown	10	10	10	100	B
	100	2	RED	100	100	100	200	C
	1000	3	ORANGE	1.000	1000	1000	300	D
	10.000	4	YELLOW	10.000			400	E
	100000	5	GREEN	100000			300	F
	1000.000	\bigcirc	blue	1000,000			600	6
	10.000000	7	VIOLET	10.000000			700	
	100.000000	-	Gray	100.000000		001	800	
	1000,000000	\bigcirc	WHITE	1000,000.000		0.1	800	
3	0.1		GOLD	0.1	0.1		1000	
10	0.01		SILVER	0.01	0.01		2000	
20			NOCOLOR				500	

TABLE 8-7. LIST OF MANUFACTURERS
FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-8 and FREQUENCY SHIFT CONVERTER CV-60/URR

CODE NUMBER	MFR. PREFIX	NAME	ADDRESS	CODE NUMBER	MFR. PREFIX	NAME	ADDRESS
1	CRV	Radio Corp. of America Victor Division	Front and Cooper Streets Camden, N. J.	788	CbEN	Air-Maze Corp.	3200 Lharvard Avenue Cleveland, Ohio
30	CPH	American Phenolic Corp.	1830 S. 54th Street Cicero, Ill.	846		Wincliester Electronics	New York, N. Y.
133	CMG	Cinch Mig. Co.	2339 W. Van Buren Street Chicago, III.	1377		Westinghouse Electric and Mfg. Co.	Mansfield, Ohio
216	CBV	John E. Fast Co.	3123 N. Crawford Avenue Chicago, Ill.	1567	CBEL	Electro Engineering Products Co.	627 W. Alexandria Detroit, Mich.
248	CG	General Electric Supply Corp.	429 N. 7th Street Philadelphia, Pa.	1581	CYS	Speri, Inc.	Beach and Kenilworth Avenue Cincinnati, Ohio
426	CNA	National Company Inc.	61 Sherman Street Malden, Mass.	1618	CBCB	H. H. Buggie and Co.	22nd and Madison Streets Toledo, Ohio
590	CSF	Sprague Electric Mig. Co.	N. Adams, Mass.	1669		Grant Pulley and Hardware	57th and Broadway Woodside, N. J.
768	CFA	Bussman Mfg. Co.	2538 W. University Street St. Louis, Mo.	1682	CAKD	Muter Co.	Chicago, Ill.
780	CAYZ	Dial Light Corp.	900 Broadway New York, N. Y.	1685	CBIN	Carter Radio Division Precision Parts Co.	213 W. Institute Place Chicago, Ill.
784	CLF	Littelfuse Laboratories Inc.	4757 Ravenswood Avenue Chicago, Ill.	1727	CBIQ	Wilkor Products Co.	3835 W. 150th Street Cleveland, Ohio
786	CTC	Chicago Telephone and Supply Co.	Elkhart, Ind.				

INDEX

SUBIECT PACE ficure TABLE
A
Adjustments:
D-C Amplifier V903 Replacement 6-2
Initial, CV-60/URR 3-6
Initial, AN/URA-8 3-10
Tuning 4-2
Audio Input Unit:
Description 1-2
Theory of Operation 2-2
Repair 7-8
Schematic Diagram 7-29
Wiring Diagram 7-30
Views, Top and Bottom 7-9, 7-10Voltage and Resistance Measurements
B
Basic Principles and Purpose 1-1
Basic Similarities 1-4
Block Diagrams:
Comparator CM-14/URR 2-3
Frequency Shift Converter CV-60/URR 2-1
Frequency Shift Converter-Comparator Group AN/URA-8 2-2
Teletypewriter Loop Circuit 3-3
C
Cable:
Connecting
Fabrication 3-2, 3-4for CV-60/URR and AN/URA-8
1-3
Jumper 3-6
Cable Filters 7-2 7-2
Cable Filter Units:
for CM-14/URR
1-5, 2-7, 7-7 7-21, 7-22
for CV-60/URR
Capabilities, Limitations of EquipmentCathode-ray Tube Removal1-2, 2-2, 7-74-15-5
Characteristics, Tube 7-10
Chart, Trouble-shooting7-1, 7-2
Chassis, extended for servicing 7-1
Chassis Assembly:
CV-60/URR2-11-5
CM-14/URR 2-7 1-7
Checks, Routine-see Routine Checks
Color Code 8-6
Color Code
Combined Parts and Spare Parts List 8-4
SUBJECT
Comparator CM-14/URR
Block Diagram
Schematic Diagram
PACE
2-7
Top View
Tube Locations
Wiring Diagram
Comparator Cable Filter-see Cable Filter Unit
Comparator Power Supply-see Power Supply Unit
Connecting Cables-see Cables
Connectors, external
Control Adjustments:
GATE BAL . 3-10, 6-2
\% MARK
Controls, Operating
Converter, CV-60/URR-see Frequency Shift Converter
Converter Power Supply-see Power Supply Unit
Converter-Comparator Group AN/URA-8 2-6
Corrective Maintenance
Cross-reference Parts List
D

Shipping
Winding
D-C Amplifier V903 Adjustment 6-2
Description, general
Diversity Selector Unit
Schematic Diagram
Views, top and bottom
Voltage and Resistance Measurements
Wiring Diagram

SUBIECT PACEFICURE
Filter Unit, Cable:
for CM-14/URR 2-7
for CV. $60 /$ URR 2-2
Frequency Shift Converter CV-60/URR:
Block Diagram 2-1
Chassis, Top View 1-5
Description 2-1
Front View 1-2
Fuse Locations 5-1
Outline Drawing 3-11
Rear View 3-1
Schematic Diagram 7-15
Tube Locations 5-3
Wiring Diagram 7-17
Frequency Shift Converter Cable Filter:
Schematic Diagram 7-19
Wiring Diagram 7-20
Frequency Shift Converter-Comparator Group AN/URA-8:
Chassis Extended for Servicing 7-1
Description 2-6
Front View1-1
Fuse Locations 5-2
Installation Drawing, Rack Mounting 3-13
Outline Drawing 3-12
Rear View 3-5
Fuses:
Frequency Shift Converter CV-60/URR 5-1 5-1
Frequency Shift Converter-Comparator Group AN/URA-8 5-1 5-2
C
General Description 1-1
Gusset, Rack Mounts for Frequency Shift Converter CV-60/URR 1-4
I
Initial Adjustments-see Adjustments
Input Unit, Audio-see Audio Input UnitInstallation, General:of Frequency Shift Converter CV-60/URR3-1
of Frequency. Shifr Converter-Comparator Group AN/URA-8 3-4
Introduction:
Operation 4-1
Theory of Operations 2-1
TABLE
Jumper Cable W1502 3-6
SUBJECT
PACEficure
TABLE
K
Keyer Unit:
Chassis, Top and Bottom Views
Description 1-3
Repair 7-10
Schematic Diagram
Theory of OperationVoltage and Resistance MeasurementsWiring Diagram
L
Limitations, Capabilities of Equipment 4-1
List of Major Units 8-3
List of Manufacturers 8-7
Localizing Trouble
Lubrication 7-1, 7-4 6-2
M
Maintenance:
Corrective 7-1
Emergency 5-1
Operator's 5-1
Preventive 6-1
Routine 6-1
Major Units, List of 8-3
Manufacturers, List of 8-7
Miscellaneous Data 8-6
Monitor Unit, Tuning 2-5Mounting Equipment3-1, 3-4Operating Controls$4-1$4-1
Operation:Operating Adjustments4-3, 4-4
Starting 4-3
Stopping 4-3, 4-4
Operator's Maintenance5-1
Outline Drawings:
Frequency Shift Converter CV-60/URR 3-11
Frequency Shift Converter-Comparator Group AN/URA-8 3-12
P
Parts and Repair Parts, Combined List 8-4
Power Supply Unit (for Comparator CM-14/URR) :
Chassis, Top and Bottom Views$7-5,7-6$
Description 1-6
Repair 7-7
Schematic Diagram 7-25
Theory of Operation 2-9
Voltage and Resistance Measurements 7-7Wiring Diagram7-26

PACE
PACE

$$
7-3,7-4
$$

Chassis, Top and Bottom Views
Description 1-4
Repair 7-7
Schematic Diagram
2-6
Theory of Operation
Voltage and Resistance Measurements 7-6. .
Wiring Diagram
6-1
Preventive Maintenance
1-1
Principles, Purpose and Basic 1-1
Publications, Equipment and, Required but not SuppliedPurpose and Basic Principles
R
Rack Mounts, Gusset 1-4
Receiver Tuning Patterns as seen on Tuning Monitor 3-7
Reference Data 1-6
Removal of Cathode-ray tube from Tuning Monitor 5-5
Repair-see Unit Trouble Shooting and Repair
Repait-Parts spare Pinto
Reports, Failure 7-2
Resistance Measurements-see Voltage and Resistance Measurements
Routine Maintenance 6-1
Routine Sensitivity Checks 5-1
S
Selector Unit, Diversity--see Diversity Selector Unit Sensitivity Check, System 5-1
Sensitivity Check, Tuning Monitor 5-1
Shipping DataSimilarities, Basic, in this Series EquipmentSingle Channel Frequency Shift Converter CV-60/URR:
Block Diagram
Description 2-1
Sub-chassis, Replacement of 5-4
System Sensitivity Check 5-1
T
Teletype Loop Circuit, Block Diagram 3-3
Test Oscilloscope Patterns:
for GATE BAL control adjustment 3-10, 6-2for $\%$ MARK control adjustment
Theory of Operation2-1
Trouble Shooting-see Unit Trouble Shooting and Repair
Trouble Shooting Charts $7-1,7-2$
Tubes:
Characteristics 7-10 7-9
3-9, 6-11-3, 8-2
1-4
2-1
2-18-2, 8-4
7-24
7-23
SUBJECT
SUBJECT

ficure
ficure

TABLE
TABLE
.1-2
1-1
R
R
Complement
5-2
Location and Replacement1-5
Tuning Adjustment-see Adjustments
SUBJECT PAGE
FIGURE
TABLE
Tuning Monitor Unit:
Chassis, Top and Bottom Views $7-7,7-8$
Description 1-3
Repair 7-7
Schematic Diagram 7-27
Sensitivity Check 5-1
Theory of Operation 2-5
Tuning Patterns3-8
Voltage and Resistance Measurements7-5
Wiring Diagram7-28
Tuning Patterns, Receiver, as seen on Tuning Monitor 3-7
U
Unit Trouble Shooting and Repair:
Audio Input Unit 7-8
Cable Filters 7-7
Diversity Selector Unit 7-11
Equipment Required 7-4
Keyer Unit 7-10
Power Supply Units 7-7
Tuning Monitor 7-7
Unpacking 3-1
V
Voltage and Resistance Measurements 7-12
Audio Input Unit 7-3
Comparator Power Supply 7-7
Converter Power Supply 7-6
Diversity Selector Unir 7-8
Keyer Unit 7-4
Tuning Monitor Unit 7-5
W
Weights and Dimensions of Repair Parts Boxes 8-1
Winding Data 7-11

[^0]: * Applied through a dropping resistor.

[^1]: - Made by Chicago Transformer.
 + Made by United Transformer.

[^2]: Spare Parts Boxes and Major Units

[^3]: R-617
 RESISTOR, FIXED: comp; 150,000 ohms $\mathrm{p} / \mathrm{m} 5 \% ; 1 / 2 \mathrm{w} ; \mathrm{F}$ characteristic; $0.375^{\prime \prime} \lg \times 0.140^{\prime \prime}$ diam; ins, humidity and salt water immersion cycling resistant; 2 axia
 w/JAN std color code; spec JAN-R-12

[^4]:

