INSTRUCTION BOOK for

FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 and FREQUENCY SHIFT CONVERTER CV-57/URR

RADIO CORPORATION OF AMERICA

RCA VICTOR DIVISION CAMDEN, NEW JERSEY, U.S.A.

LIST OF EFFECTIVE PAGES

PAGE NUMBERS	CHANGE IN EFFECT	PAGE NUMBERS	CHANGE IN EFFECT
Title page	Original	$4-1$ to $4-4$	Original
A, B, C	Original	$5-1$ to $5-4$	Original
i to ix	Original	$6-1$ to $6-3$	Original
$1-0$ to 1-12	Original	$7-0$ to $7-82$	Original
$2-1$ to $2-18$	Original	$8-1$ to $8-63$	Original
$3-1$ to 3-28	Original	$i-1$ to i-8	Original

One print each of Figures 7-19, 7-20, 7-21 also in envelope at end of instruction book.

10 January 1951
Temporary Correction T-4 to Instruction Book for Frequency Shift Converter-Comparator

Groups AN/URA-6, AN/URA-7, and Frequency Shift Converter CV-57/URR NAVSHIPS 91355

1. In Figures 7-21 (on page 7-35, 7-36, and in envelope at end of book) and Figure 7-44 (page 7-79, 7-80), make the following revisions:
(a) Break the connection between R922 and R923, and connect the lower end of R922 to pin 1 of X906. Connect the open top end of R923 to pin 8 of X907.
(b) Break the connection of the arm on R923 to pin 8 of X906. Instead, connect the arm of R923 to ground.
(c) Change resistance values of R921, R946, R945, R922, from 4.7K, 47, 47,470 , to $68 \mathrm{~K}, 680,680,68 \mathrm{~K}$ respectively.
(d) Delete resistor R940, and connect P901-3 directly to junction of R910 and R911. Insert resistor R940 (10K) between P901-2 and X906-6.
2. In Figure 7-36 make the following revisions. Also make these revisions in Figures 19 and 20 (on pages 7-31 through 7-34, and in envelope at end of book).
(a) Reverse connections at pins 8 and 9 of switch s302. S302-8 should go to P3O1-4, and S302-9 should connect to arm of R318.
(b) Connect S302-7 to ground.
(c) Insert resistor R3O4 (100K) between P3OL-6 and the junction of C306 and C3ll.
3. Corresponding changes to the wiring diagrams affected by the revisions in paragraphs 1 and 2, will be made in Figure $7-37$ (page 7-65, 7-66) and 7-45 (page 7-81, 7-82), to come later.

RADIO CORPORATION OF AMERICA - RCA VICTOR DIVISION
Camden, New Jersey, U.S.A.
Contract: NObsr-39421
T-4 page 1
IB-38482- .
(of 2 pages)

RESTRICTED

4. Make following changes to Section 8:

Page No.
8-33 For R-304: Change description to that used for R-615 on page 8-36; add function, "divereity control dropping" and make all other column entries same as that for $R-615$, except that spare parts totals should be " $6,21,21$ " and involved symbol desig. Ehould read, "R-304, R-615, R-621, R-6e2, R-624, R-625, R-912, R-917, R-918, R-937"。

8-36 For R-615: Change description to "Same as R-304"; delete all column entries excepting the function column.

8-37 For R-621, R-622, R-624, R-625: Change description to "Same as R-304".

8-42 For R-912, R-917, R-918: Change description to "Seme as R-304"。

8-44 For R-937: Change description to "Same as R-304". For R-940: Change function to "V-906 and V-907 Plate Dropping".

8-61 For N16-R-50632-431: Change key symbol from "R-615" to "R-304".

14 December 1950
Temporary Correction T-3
to Instruction Book for
Frequency Shift ConverterComperator Groups AN/URA-6, AN/URA-7 and Frequency Shift Converter CV-57/URR
NAVSHIPS 91355

Pages 1-8 and 1-9:
In Table I-I, after the words "Receiver Coupling Kit" add "Standard Navy Stock No. F16-C-91911-1005 ${ }^{\circ}$

Page 3-5:
In sub-paragraph $3 \underline{h}(1)$ change "plate pin 8 " to read "grid pin 4"
Page 3-6:
In Figure 3-5, on socket X303 chenge PIN 8 to read PIN 4
Page 3-17:
At beginning of paragraph 7 add the following NOTE:
NOTE: Certain adjustments may require the chassis to be withdrawn or removed from the case. This is done as follows:
a. TO SLTDE THE CHASSIS OUT OF THE CASE:
(1) Grasp the handles, push the button near the top of each handle with the thumb, turn the left-hand hande clockwise and the right-hand handle counterclockwise as far as they will go.
(2) Pull the chassis out of the case as far as it will go and return the handles to their original positions.
b. TO SLIDE CHASSIS INTO CASE:
(1) Grasp the handes, push the button near the top of each handle, turn the left-hand handle clockwise and the right-hand handle counterclockwise as far as they will go.
(2) Slide the chassis into the case as far as it will go.
(3) When completely in case, return handles to normal position to lock chassis in place.

> Radio Corporation of America
> RCA Victor Division
> Camden, New Jersey, U.SoA.

Page 3-17 (continued):
C. TO CHANGE CHASSIS POSITION AFTER VITBDRAWING CHASSIS FROM CASF:
(1) Grasp the handles, push the bell-shaped buttons near the inside bottom of the handies, and raise or lower the chassis aproximately to one of the locking positions.
(2) Release the buttons and move the chassis until the locking mechenism snaps into position.
a. TO RRMOVE CHASEIS FROM RATIS:
(I) Slide chassis out of case end set to vertical position.
(2) Slide retainers (Just forward of chassis pivots) upward until top eyelet is free of slot.
(3) Let retainer drop. Press bell-shaped buttons and lift chassis forward from rails.
e. TO REFIACE CHASEIS ON RAIIS:
(1) Check that the retainers on each side are henging downward.
(2) Hang chascia on raile, by the pivots, puching it to the rear as far as it will go.
(3) Push vell-shaped buttons. Pull the retainers as high as they will go, press them egaingt mounting plate, and slide downard as far as they will go beine careiul to see that top rivet in retainer engeges slot in mounting plate.

WARNING
This equiment employs voltages which sre dangerous and may be fatal if contacted. Always observe all safety regulations and precautions. See Safety Notice and Highvoltage warning printed on pages viii and ix in the Front Matter of instruction book.

Pace 7-1:
At end of text in second colum, add "Refer to Section 3, paragraph 7, for instructions on removal of chassic from case"

Page 7-26:
For T202, $d-c$ resistance should reed 20 ohme for the primary and 20 ohms for the secondary.

Page 7-71, 7-72:
In upper left comer of Figure 7-40, change aestination of lead to read "RBB-RBC X303 ITN 4, RDN X6 ETH 8"

Page 7-73:
At bottom left corner of Figure 7-1, change destinction of lead to read "RBB-PBC X3O3 YTN 4, RDN X5 ITN 8"

Contract NOber-39421 $18-34.82-c \quad T-3$ page 2 ResmaCisd

14 December 1950
Temporary Correction T-3 to RCA IB-38482-WXY-1
Frequency Shift ConverterComparator Groups AN/URA-6, AN/URA-7
and Frequency Shift Converter CV-57/URR
To be inserted in: Combined Parts and Spare Parts List

TABIE 8-4

Page 8-3:
C-105-Desc. - Delete "merked w/ NT \#, prefixed by Mfris desig. Itr",
Page 8-4:
C-119 - Add Standard Navy Stock No. - N16-C-16908-3063
Page 8-13:
Add E-103 $=$ BOARD, TERMINAL: general purpose; 4 solder lug term, all term spaced $11 / 16^{\circ}$ apart, $1 / 16^{\prime \prime}$ thk lam phenolic board; $1-5 / 16^{\prime \prime}$ $\lg \times 1.0^{\prime \prime}$ wd $\times 3 / 8^{\circ \prime}$ thk $0 / a$; has integral aluminum mtg bkt heving one end bent at 90 deg, bent end has single mitg hole 0.147^{81} diam
Function - Supports Resistors and Capacitore
Mfr - 1
Dwg. No. - $A=8833237=501$
All Synbol Desigo - E-103
Total No, per Equip. - 1, 2, and O respectively
Page 8-31:
R-103 - All Symbol Desig. - Delete R-501 and R-922
Change Total No. per Equip. for $A R / U R A-6$ to 4 and AN/URA-7 to 0
R-106 - Desc. - Chenge 2700 ohme to " 1200 ohms"
Change Jan type No. to - RC2OBFleak
Change Standard Navy Etock No. to - N16-R-49940-811
Change Dwg. No. to - A-8897969-63
All Symbol Desig. - Add R-657
Change Total No. per Equip. to $-2,5$, and 3 respectively

RADIO CORPORATION OF AMERICA - RCA VICTOR DIVISION
 Camden, New Jersey, U. S.A.

Page 8-31 (continued):
Add R-112* - Desc. - RESISTOR, FIXED: comp; 68,000 ohms p/m 10%, $1 / 2 \mathrm{w}$; F characteristic; $0.375^{\prime \prime} \mathrm{lg} \times 0.140^{\prime \prime}$ diam; ins, humidity and salt water immersion cycling resistant; 2 axial wire lead term; marked w/ JAN color code; spec JAN-R-11
Function - V-102 Cathode Compensation JAN Type No. - RC20BF683K Standard Navy Stock No. - N16-R-50552-811 Dwg. No. - A-8897969-84 All Symbol Desig. - R-112, R-310, R-641 Total No. per Equip. - 3, 7, and 7 respectively

Page 8-33:
R-310 - Change Desc. to - Same as R-112
After the Function column - Delete all information in subsequent columns
R-313 - Change Standard Navy Stock No. to - N16-R-50894-811
Page 8-38:
R-637 - Change Desc. to - Same as R-106
After the Function column - Delete all information in subsequent columns

R-641 - Change Desc. to - Same as R-112
Page 8-43:
R-921* - Desc. - Change 4700 ohms to " 68,000 ohms"
Change Function to - M-1601 Series Change JAN Type No. to - RC20BF683J Delete Standard Navy Stock No. Change Dwg. No. to - A-8897969-203
All Symbol Desig. - Delete R-930 and add R-922
R-922 - Change Desc. to - Same as R-921
Page 8-44:
R-939* - Change Desc. to - RESISTOR, FIXED: comp; 4700 ohms p/m 5\%; l/2 w; F characteristic; $0.375^{\prime \prime} 1 \mathrm{~g} \times 0.140^{\prime \prime}$ diam; ins, humidity and salt water immersion cycling resistant; 2 axial wire leads; marked w/ JAN color code; spec JAN-R-11
Add JAN type No. - RC2OBF472J
Add Standard Navy Stock No. - N16-R-50128-431
Add Dwg. No. - A-8897969-175
All Symbol Desig. - Add R-939
Total No. per Equip. - Add 0, I, and 1 respectively

RESTRICTED

Pege $8 \cdot 44$ (continued):
R 945^{*} - Desc. = Change 47 ohms to " 680 ohms " Change Function to - M-1601 Shunt Change JAN Type No. to - RC2OBF681J Delete Standard Navy Stock No. Change Dwg. No. to - A - 8897969-155
R-946 - Change Function to - M-1601 Shunt

TABLE 8-5. CROSS REFERENCE PARIS LIST

Page 8-60:
Change the $3 x d$ column heading to - JAN (OR AWS) DESIGNATION, also, the 5th column (lst heading) to - JAN (OR AWS) DESIGNATION
Change Key Symbol R-637 to R-106
Delete JAN Type RC20BF272K and Key Symbol R-106
Change Key Symbol R-921 to R $\times 939$
After Key Symbol R-806 - Add JAN Type RC20BF681J, Key Symbol R-945
After Key Symbol R-305-Add JAN Type RC20BF683J, Key Symbol R-921
Change Key Symbol R-310 to $\mathrm{R}=112$
Page 8-61:
Delete Standard Navy Stock No. N16-R-49426-631 and Key Symbol R-945 Change Key Symbol $\mathrm{R}-637$ to $\mathrm{R}-106$
Delete Standard Nayy Stock No. N16-R-50039-811 and Key Symbol R-106
Change Key Symbol R-921 to R-939
Change Key Symbol $\mathrm{R}-310$ to $\mathrm{R}-112$

Temporary Correction to
RCA IB－38482－WXY－1
Frequency Shift Converter－ Comparator Groups AN／URA 6 AN／URA－7 and Frequency Shift Converter CV－57／URR

16 October 1950
Temporary Correction T－2
to Instruction Book for
Frequency Shift Converter－Comparator
Groups AN／URA－6，AN／URA－7，and
Frequency Shift Converter CV－57／URR
NAVSHIPS 91355

SPECIAL NOTICE FOR NAVSHIPS 91355
REGARDING
PANORAMIC COUPLING KIT TYPE CRV－10563－B

This inetruction book for Frequency Shift Converter－Comparator Groups AN／URA－ 6 and AN／URA－7 and Frequency Shift Converter CV $-57 / \mathrm{TRR}$ ，NAVSHIPS 91355，is supplied in lieu of a separate book for Panoramic Coupling Kit，Type CRV－10563－B。

Information on Panoramic Coupling Kit，Type CRV－I0563－B is in－ cluded on pages $1-9,1-10,2-10,3-1$ ，and $7-11$ and illustrated on Figures $1-1 c, 3-1$ to $3-9$ inclusive， $7-40$ and $7-41$ ．

Methods for modifying RBB，RBC，and RDM equipments for use with Frequency Shift Converter CV $57 / \mathrm{URR}$ and Frequency Shift Converter－ Comparator Group AN／URA－6 are covered in this book．However the Panoramic Coupling Kit，Type CRV－10563－B may also be used for other applications．In each case refer to the instruction book for the particular equipment concerned．

TABIE 8－4

Page 8－3

C－104－Add Standard Navy Stock Noo－N16－C－29128－2546

```
Page 8－4
C－119－Change Desc．to－．o．o．temp coef－220 mmf／mf \({ }^{\circ} \mathrm{C} ; \ldots\). case \(0.875^{\prime \prime}\) \(\max \lg 000\) ．
Change Dwg．No．to－A－8830139－3
```

Page 8－5
C－204－Add Standard Navy Stock No．－N16 0－29602－9746
Change equipment and stock spare quantities for AN／URA－7 to 1 and 2 respectively．

RADIO CORPORATION OF AMERICA－RCA VICTOR DIVISION
Camden，New Jersey，U。S。A。

RESTTRICTED

```
Page 8-6
    C-219-Add Standard Navy Stock No. - N16-C-17742-1841
Page 8-16
    E-606 - Add Standard Navy Stock No. - N17-B-78083-1401
Page 8-20
    H-1102 - Add Standard Navy Stock No. - N41-W-2445-6
Page 8-23
    J-1401 - Add Standard Navy Stock No. - N17-J-39108-2701
Page 8-25
    M-1401 - Change Standard Navy Stock No. to N17-M-19051-9600
Page 8-43
    R-923 - Add Standard Navy Stock No. - N16-R-87680-9449
```

TABLE 8-5. CROSS REFERENCE PARTS LIST

```
Page 8-61
    Key Symbol M-1601 - Change Standard Navy Stock No. to - N17-M-19051-9600
    After Key Symbol W-1401 - Add Standard Navy Stock No. - N41-W-2445-6,
    Key Symbol H-1102
```

> Temporary Correction to RCA IB-38482-wXY-1 Frequency Shif't converterComparator froups AN/TRA-6, AN/TRA-7 and Frequency Shift CONVERTER CV-57/URR

Page 8-24
L-1101 - Change Desc. to - ... shielded; inductance $5.3 \mathrm{mh}, 1060$ Add Standard Navy Stock No - N16-C-76763-2803

Page 8-25 L-1102 - Add Standerd Navy Stock No. - N16-C-76666ml,963

Page 8-48 T-101 - Change Desc, to - Coil, RF: ose; I wnd, 2 pie universal wnd; rectangular, aluminum shield can; 91 turns/pie; total turns $182 \mathrm{w} /$ taps at 16 th turn and 45 th turn; $3-23 / 64^{\prime \prime} 7 \mathrm{~g}$ max $x 29 / 32^{\prime \prime} \mathrm{sq}$ Iess mtg attachments ; o/a $\lg 4-1 / 64^{\prime \prime}$ max; phenolic coil执-40 $\times 15 / 64^{\prime \prime} 1 \mathrm{~g}$ located one oa...

Add Standard Navy stook No. - M16-C-76504-4.569

```
Page 8-50
    T-601 - Change Standard Navy Stock No to - N17-T-62664-5501
Page 8-56
    X-702 - Chenge Desc. to - ... wire leads; 1-7/8" diam socket; beryllium
                        oopper silvor ....
            Change standard Navy stock no, to - N16-S-64286-3950
```

 TABLE 8-5. CROSS REFERENCE PARTS IIST
 Page 8-60
After Key Symbol L-501 - Add Standard Navy stock No - N16-C-76504-4569,
Key Symbol T-101
After key Symbol T-201 - Add Stenderd Navy Stook No. - N16-C-76666-4963,
Key Symbol L-1102 and Standard Navy Stock No. -N16-C-76763-2803,
Key Symbol L-1101

Page 8-61

After Key Symbol X-601 - Add Standard Navy Stock No, -N16-S-64 $286-3950$, Key Symbol $x-702$
After Key Symbol E-1/401, Idd Stendard Navy Stock No. - N17-T-62664-5501, Key Symbol T-601

RADIO CORPORATION OF ATERICA - RCA. VICTOR DIVISJON Camden, New Jursey, t.s.A.

COMTRACT NObsr-39421

$$
\text { IB }-38482-N X Y-1 a
$$

```
T-1 page 7
(of l page)
```


RECORD OF CORRECTIONS MADE

CHANGE NO.	DATE	

TABLE OF CONTENTS

SECTION 1-GENERAL DESCRIPTION

Paragraph
1 Scope of this Book.
Page
SECTION 4-OPERATION
1 Introduction 4-1
2 Capabilities and Limitations 4-1
3 Operating Controls 4-1
4 Tuning Adjustments 4-2
5 Summary of Operation. 4-3
a. Single-Channel CV-57/URR Starting Procedure 4-3
b. Tuning Single-ChannelCV-57/URR to AnotherFrequency4-3
c. Other Adjustments, Single Channel 4-3
d. Stopping the Single-Channel Equipment 4-3
c. Dual-Channel AN/URA-6 or AN/URA-7 Starting Procedure 4-3
f. Tuning Dual-Channel AN/URA-6 or AN/URA-7 to Another Frequency 4-4
g. Other Adjustments, Dual Channel 4-4
b. Stopping the Dual Channel Equipment 5-1
SECTION 3-INSTALLATION
1 Unpacking 3-1
2 Installation, General 3-1
3 Installation of Receiver Coupling Kit in RBB or RBC Receiver 3-1
4 Installation of Receiver Coupling Kit in RDM Receiver 3-7
5 Installation of Frequency Shift Converter CV-57/URR 3-12
a. Rack Mounting 3-12
b. Table Mounting 3-12
c. Connecting Cables 3-12

TABLE OF CONTENTS (continued)

SECTION 7-CORRECTIVE MAINTENANCE

Paragraph

Failure Reports
Page
7-0
7-2
1 Localizing Trouble
a. Frequency Shift Converter CV-57/URR

7-2
b. Frequency Shift ConverterComparator Group AN/URA-6 or AN/URA-7

7-2
2 Unit Trouble Shooting and Repair
a. Equipment Required
b. Cable Filters

Paragraph
c. Power Supplies

Page
d. Tuning Monitor

7-7
e. Input Unit

7-8
f. I-F Unit . 7 7-8
g. Keyer Unit

7-8
h. Diversity Selector Unit
i. Receiver Coupling Kit 10563

7-11
Vors
3 Voltage and Resistance Measurements
SECTION 8-PARTS LIST INDEX

SECTION 1-GENERAL DESCRIPTION

LIST OF ILLUSTRATIONS (continued)

Figure
SECTION 4-OPERATION
4-1 Operating Panel Controls 4-2
SECTION 5-OPERATOR'S MAINTENANCE
5-1 Frequency Shift ConvertersCV-57/URR and CV-71/URR FuseLocations5-1
5-2 Frequency Shift Converter-Comparator Groups AN/URA-6 and AN/URA-7 Fuse Locations 5-2
5-3 Frequency Shift Converters CV-57/URR and CV-71/URR TubeLocations5-3
5-4 Comparator CM-14/URR TubeLocations5-3
5-5 Removal of Cathode-ray Tube fromTuning Monitor5-4
SECTION 6-PREVENTIVE MAINTENANCE
6-1 Test Oscilloscope Patterns for \%MARKControl Adjustment6-2
6-2 Test Oscilloscope Patterns for GATEBAL Control Adjustment6-2
SECTION 7-CORRECTIVE MAINTENANCE
7-1 Frequency Shift Converter-ComparatorGroup AN/URA-6 or AN/URA-7,with Chassis Extended for Servicing7-1
7-2 Cable Filters 7-5
7-3 Converter Power Supply Chassis, Top View 7-6
7-4 Converter Power Supply Chassis, Bot- tom View 7-6
7-5 Comparator Power Supply Chassis, TopView7-6
7-6 Comparator Power Supply Chassis, Bot-tom View7-6
7-7 Tuning Monitor Chassis, Top View 7-7
7-8 Tuning Monitor Chassis, Bottom View 7-7
7-9 Keyer Chassis, Top View 7-8
7-10 Keyer Chassis, Bottom View 7-8
7-9
7-11 Input Unit, Top View 7-9
7-13 I-F Unit, Top View 7-10
7-14 I-F Unit, Bottom View 7-10
7-15 Receiver Coupling Kit Type 10563,Top View7-127-16 Receiver Coupling Kit Type 10563,Bottom View7-12
7-17 Diversity Selector Unit Chassis, Top View 7-13

Figure
Title
Page
7-18 Diversity Selector Unit Chassis, Bottom View

7-13
7-19: Frequency Shift Converter
CV-57/URR, Schematic Diagram 7-31, 7-32
7-20* Frequency Shift Converter
CV-71/URR, Schematic Diagram 7-33, 7-34
7-21* Comparator CM-14/URR, Schematic Diagram 7-35, 7-36
7-22 Frequency Shift Converter
CV-57/URR or CV-71/URR, Main
Chassis Wiring Diagram 7-37
7-23 Comparator CM-14/URR Main Chassis Wiring Diagram 7-38
7-24 Frequency Shift Converter Cable Fil-
ter, Schematic Diagram 7-39, 7-40
7-25 Frequency Shift Converter Cable Fil-
ter, Wiring Diagram 7-41, 7-42
7-26 Comparator Cable Filter, Schematic
Diagram 7-43, 7-44
7-27 Comparator Cable Filter, Wiring
Diagram $7-45,7-46$
7-28 Frequency Shift Converter Power
Supply, Schematic Diagram. . . . 7-47, 7-48
7-29 Frequency Shift Converter Power
Supply, Wiring Diagram 7-49, 7-50
7-30 Comparator Power Supply, Schematic
Diagram
7-51, 7-52
7-31 Comparator Power Supply, Wiring
Diagram 7-53, 7-54
7-32 Tuning Monitor,
Schematic Diagram
7-55, 7-56
7-33 Tuning Monitor, Wiring Diagram 7-57, 7-58
7-34 Input Unit 47.5 to 52.5 kc ,
Schematic Diagram 7-59, 7-60
7-35 Input Unit 47.5 to 52.5 kc , Wiring Diagram 7-61, 7-62
7-36 I-F Unit, Schematic Diagram .. 7-63, 7-64
7-37 I-F Unit, Wiring Diagram 7-65, 7-66
7-38 Input Unit, 395 to 475 kc , Schematic Diagram

7-67, 7-68
7-39 Input Unit, 395 to 475 kc , Wiring Diagram 7-69, 7-70
7-40 Receiver Coupling Kit, Schematic
Diagram 7-71, 7-72
7-41 Receiver Coupling Kit, Wiring Diagram

7-73
7-42 Keyer Unit, Schematic Diagram 7-75, 7-76
7-43 Keyer Unit, Wiring Diagram .. 7-77, 7-78
7-44 Diversity Selector Unit, Schematic
Diagram 7-79, 7-80
7-45 Diversity Selector Unit, Wiring
Diagram
7-81, 7-82

LIST OF TABLES

SECTION 1-GENERAL DESCRIPTION

Table	Title	Page	Table	Title	Page
1-1	Equipment Supplied	1-8	7-6	Keyer Voltage and Resistance	
1-2	Equipment and Publications Required	1-10		Measurements	7-17
	but not Supplied		7-7	Tuning Monitor, Voltage and	
1-3	Shipping Data	1-12		Resistance Measurements	7-19
1-4	Basic Similarities in this Series Equipment	1-12	7-8	Converter Power Supply, Voltage and Resistance Measurements	7-20
1-5	Electron Tube Complement	1-12	7-9	Comparator Power Supply, Voltage and Resistance Measurements.	7-21
	SECTION 3-INSTALLATION		7-10	Diversity Selector Unit, Voltage and	
3-1	External Connectors, CV-57/URR	3-12		Resistance Measurements	7-22
3-2	External Connectors, AN/URA-6		7-11	Tube Operating Voltages and Currents	7-23
	or AN/URA-7	3-16	7-12	Rated Tube Characteristics	7-24
			7-13	Winding Data	7-25
	SECTION 5-OPERATOR'S MAINTENANCE				
5-1	Routine Check Chart	5-4		SECTION 8-PARTS LIST	
			8-1	Weights and Dimensions of Spare Parts	
	SECTION 7-CORRECTIVE MAINTENANCE			Boxes	8-1
7-1	Trouble Shooting Chart, Converter	7-3	8-2	Shipping Weights and Dimensions of	
7-2	Trouble Shooting Chart, Comparator	7-4		Spare Parts Boxes	8-1
7-3	Input Unit, CV-57/URR, Voltage and		8-3	List of Major Units	8-1
	Resistance Measurements	7-14	8-4	Combined Parts and Spare Parts List	8-2
7-4	Input Unit, CV-71/URR, Voltage and		8-5	Cross Reference Parts List...... 8-60,	8-61
	Resistance Measurements	7-15	8-6	Applicable Color Codes and	
7-5	I-F Unit, Voltage and Resistance			Miscellaneous Data	8-62
	Measurements	7-16	8-7	List of Manufacturers	8-63

GUARANTEE

The equipment, including all parts and spare parts, except vacuum tubes, batteries, rubber and material normally consumed in operation, is guaranteed for a period of one year from the date of delivery of the equipment to and acceptance by the Government with the understanding that all such items found to be defective as to material, workmanship or manufacture will be repaired or replaced, f.o.b. any point within the continental limits of the United States designated by the Government, without delay and at no expense to the Government; provided that such guarantee will not obligate the Contractor to make repair or replacement of any such defective items unless the defect appears within the aforementioned period and the Contractor is notified thereof in writing within a reasonable time and the defect is not the result of normal expected shelf life deterioration.

To the extent the equipment, including all parts and spare parts, as defined above, is of the Contractor's design or is of a design selected by the Contractor, it is also guaranteed, subject to the foregoing conditions, against defects in design with the understanding that if ten percent (10%) or more of any such said item, but not less than two of any such item, of the total quantity comprising such item furnished under the contract, are found to be defective as to design, such item will be conclusively presumed to be of defective design and subject to one hundred percent (100%) correction or replacement by a suitably redesigned item.

All such defective items will be subject to ultimate return to the Contractor. In view of the fact that normal activities of the Naval Service may result in the use of equipment in such remote portions of the world or under such conditions as to preclude the return of the defective items for repair or replacement without jeopardizing the integrity of Navy communications, the exigencies of the Service, therefore, may necessitate expeditious repair of such items in order to prevent extended interruption of communications. In such cases the return of the defective items for examination by the Contractor prior to repair or replacement will not be mandatory. The report of a responsible authority including details of the conditions surrounding the failure, will be acceptable as a basis for affecting expeditious adjustment under the provisions of this contractural guarantee.

The above one year period will not include any portion of time the equipment fails to perform satisfactorily due to any defects, and any items repaired or replaced by the Contractor will be guaranteed anew under this provision.

INSTALLATION RECORD

Contract Number NObsr-39421
Date of Contract, 30 June 1947
Serial Number of equipment
Date of acceptance by the Navy
Date of delivery to contract destination
Date of completion of installation
Date placed in service

Blank spaces on this page shall be filled in at time of installation. Operating personnel shall also mark the "date placed in service" on the date of acceptance plate located below the model nameplate on the equipment, using suitable methods and care to avoid damaging the equipment.

REPORT OF FAILURE

Report of failure of any part of this equipment, during its entire service life, shall be made to the Bureau of Ships in accordance with current regulations using form NAVSHIPS NBS 383 (revised). The report shall cover all details of the failure and give the date of installation of the equipment. For procedure in reporting failures see Chapter 67 of the Bureau of Ships Manual or superseding instructions.

ORDERING PARTS

All requests or requisitions for replacement material should include the following data:

1. Federal stock number or, when ordering from a Marine Corps or Signal Corps supply depot, the Signal Corps stock number.
2. Name and short description of part.

If the appropriate stock number is not available the following shall be specified:

1. Equipment model or type designation, circuit symbol, and item number.
2. Name of part and complete description.
3. Manufacturer's designation.
4. Contractor's drawing and part number.
5. JAN or Navy type number.

DESTRUCTION OF ABANDONED MATERIAL IN THE COMBAT ZONE

In case it should become necessary to prevent the capture of this equipment, and when ordered to do so, DESTROY IT SO THAT NO PART OF IT CAN BE SALVAGED, RECOGNIZED, OR USED BY THE ENEMY. BURN ALL PAPERS AND BOOKS.

Means:

1. Explosives, when provided.
2. Hammers, axes, sledges, machetes, or whatever heavy object is readily available.
3. Burning by means of incendiaries such as gasoline, oil, paper or wood.
4. Grenades and shots from available firearms.
5. Burying all debris, where possible and when time permits.
6. Throwing overboard or disposing of in streams or other bodies of water.

Procedure:

1. Obliterate all identifying marks. Destroy nameplates and circuit labels.
2. Demolish all panels, castings, switch and instrument boards.
3. Destroy all controls, switches, relays, connections and meters.
4. Rip out all wiring and cut interconnections of electrical equipment. Smash gas, oil, and water cooling system, in gas engine generators, etc.
5. Smash every electrical or mechanical part, whether rotating, moving or fixed.
6. Break up all operating instruments such as keys, phones, microphones, etc.
7. Destroy all classes of carrying cases, straps, containers, etc.
8. Bury or scatter all debris.

DESTROY EVERYTHING!

SAFETY NOTICE

The attention of officers and operating personnel is directed to Chapter 67 of the Bureau of Ships Manual or superseding instructions on the subject of radio safety precautions to be observed.

This equipment employs voltages which are dangerous and may be fatal if contacted by operating personnel. Extreme caution should be exercised when working with the equipment.

While every practicable safety precaution has been incorporated in this equipment, the following rules must be strictly observed:

KEEP AWAY FROM LIVE CIRCUITS:

Operating personnel must at all time observe all safety regulations. Do not change tubes or make adjustments inside equipment with high voltage supply on. Under certain conditions dangerous potentials may exist in circuits with power controls in the off position due to charges retained by capacitors. To avoid casualties always remove power and discharge and ground circuits prior to touching them.

DONT SERVICE OR ADJUST ALONE:
Under no circumstances should any person reach within or enter the enclosure for the purpose of servicing or adjusting the equipment without the immediate presence or assistance of another person capable of rendering aid.

DON'T TAMPER WITH INTERLOCKS:

Do not depend upon door switches or interlocks for protection but always shut down motor generators or other power equipment. Under no circumstances should any access gate, door, or safety interlock switch be removed, short-circuited, or tampered with in any way, by other than authorized maintenance personnel, nor should reliance be placed upon the interlock switches for removing voltages from the equipment.

RESUSCITATION

AN APPROVED POSTER ILLUSTRATING THE rules for resuscitation by the prone PRESSURE METHOD SHALL BE PROMINENTLY DISPLAYED IN EACH RADIO, RADAR, OR SONAR ENCLOSURE. POSTERS MAY BE OBTAINED UPON REQUEST TO THE BUREAU OF MEDICINE AND SURGERY.

WARNING

Voltages over 300 volts shall be measured as follows:
(1) De-energize the equipment. Ground terminals to be measured to ground to discharge any capacitors connected to these terminals. (See Note F)
(2) Connect meter to terminals to be measured using a range higher than the expected voltage.
(3) WITHOUT TOUCHING METER OR TEST LEADS, energize the equipment and read the meter.
(4) De-energize the equipment. Ground the terminals connected to the meter to ground before disconnecting meter.

NOTES:

(A) MAKE SURE you are NOT GROUNDED whenever you are adjusting equipment or using measuring equipment.
(B) In general, USE ONE HAND only when servicing live equipment.
(C) If test meter must be held or adjusted while voltage is applied GROUND the case of the meter before starting measurement and DO NOT touch the live equipment or personnel working on live equipment while you are holding the meter. Some moving vane type meters should not be grounded. These should not be held during measurements.
(D) DO NOT FORGET that high voltages MAY BE PRESENT across terminals that are nominally low voltage, due to equipment breakdown. Be careful even when measuring low voltages.
(E) DO NOT use test equipment known to be in poor condition.
(F) High voltage high capacity capacitors should be discharged with a grounding stick with approximately 10 ohms in series with the grounded line. Where neither terminal of a capacitor is grounded, short capacitor terminals to each other.

FREQUENCY SHIFT CONVERTER CV-57/URR OR CV-7I/URR	
COMPARATOR CM-14/URR	FREQUENCY SHIFT CONVERTER COMPARATOR GROUP AN/URA-6 OR AN/URA-7
FREQUENCY SHIFT CONVERTER CV-57/URR OR CV-TI/URR	

Figure 1-1 a. Frequency Shift Converter-Comparator Group AN/URA-6 or AN/URA-7

Figure 1-1 b. Frequency Shift Converter CV-57/URR

SECTION 1

GENERAL DESCRIPTION

1. SCOPE OF THIS BOOK.

This book covers Frequency Shift Converter CV-57/URR, (395-470 kc type, single channel), and Frequency Shift Converter-Comparator Groups AN/URA-6 (395-470 kc type, dual channel) and AN/URA-7 ($50-\mathrm{kc}$ type, dual channel). It includes description, theory, installation, operation, maintenance, and parts lists. Refer to Tables at the end of this section for a listing of items included in the above major equipments.

2. PURPOSE AND BASIC PRINCIPLES.

These equipments are designed to operate on frequency shift keyed radio telegraph signals, as derived from the intermediate-frequency circuits of communication receiving equipments, to provide keying facilities for the operation of teletype printers or other similar automatic recording devices.

To achieve the above purpose the signals are filtered to remove all frequencies except those necessary for a good signal, amplified to a level above the saturation point of a limiter, and passed through a discriminator to obtain positive and negative pulses. These pulses are filtered and used to trigger a double Eccles-Jordan flip-flop circuit to operate d-c keying tubes which key the teletypewriter loop. A d-c pulse, identical with the d-c pulses appearing in the teletypewriter loop, in addition keys an internal tone for transmission to a remote point.

In each of the AN/URA--6 and AN/URA-7 equipments two receiving channels are used in a diversity arrangement, and a Comparator (CM-14/URR) selects the stronger signal to control the teletypewriter loop and the keyed tone. Each channel can be used independently in separate circuits, no
diversity being then utilized. The CV-57/URR operates on one channel only.

3. DESCRIPTION OF UNITS.

a. FREQUENCY SHIFT CONVERTER CV-57/-URR.-See Figure 1-1b. Frequency Shift Converter CV-57/URR may be used either alone or as a component of the Frequency Shift Converter-Comparator Group AN/URA-6. It is housed in a case 5-1/8 inches high, 17-5/16 inches wide, and 11-13/16 inches deep. The unit is finished in smooth grey enamel. Removable brackets with shock mounts are supplied for table mounting; when so mounted the overall height is $7-1 / 8$ inches. Brackets are supplied for standard relay rack installation without the shock mounting feature (See Figure 1-2). The chassis slides completely out of the cabinet, on rails, and can be placed in one of several positions to facilitate servicing (see Figure 7-1). The front panel controls

Figure I-I c. Receiver Coupling Kit Type 10563

Figure 1-2. Gussef, Rack Mounts for frequency Shift Converter CV-57/URR
which do not normally need frequent attention are located behind a cover (containing an air filter) in the center of the panel. Screwdriver-operated controls are mounted behind oilcup-type hole covers. Jacks are provided, under a spring cover, on the lower left corner for checking the tone and teletypewriter outputs (See Figure 4-1). Power-line fuses are located on the filter unit attached to the rear of the cabinet and are accessible only from within the cabinet (see Figure 5-1).

Frequency Shift Converter CV-57/URR includes the following units, which are described below (see Figure 1-4). Mention is also made of Frequency Shift Converter CV-71/URR which differs from the CV-57/URR in that it operates at $50-\mathrm{kc}$ input frequency and is supplied only as a part of Frequency Shift Converter-Comparator Group AN/URA-7.

UNIT NAME	SYMBOL SERIES
Converter Chassis	1400
Cable Filter Unit	1100
Input Unit (for CV-57/URR)	100
Input Unit (for CV-71/URR)	200
I-F Unit	300
Keyer Unit	600
Tuning Monitor Unit	700
Power Supply Unit	800
Jumper Cable	W1402

(1) CONVERTER CHASSIS (see Figure 1-4). -The Converter Chassis supports all the Frequency Shift Converter units except the Cable Filter Unit which is mounted on the back of the case. The units are interconnected by plugs and jacks when inserted
in place. A plug, P1401, on the rear of the Converter chassis connects this chassis to jack J1101 on the Cable Filter Unit when in operating position. For servicing, the chassis can be slid out of the cabinet and locked in any one of four positions while still supported by cabinet rails. A jumper cable is provided for connecting the chassis (see Figure 3-15) with the Cable Filter Unit when the chassis is withdrawn from the cabinet. An air filter, in the center of the panel, covers the controls requiring only occasional adjustment, but makes them readily accessible by a half-turn screw holding the cover against the panel. Two jacks, TTYP and PHONES, are located on the bottom left of the panel, protected by a cover. To the right of these jacks is the neon lamp $\mathrm{B}+$ indicator. The POWER OFF-ON switch is located to the right center of the air filter.
(2) CABLE FILTER UNIT (for CV-57/URR). -See Figure 7-2. All external connections to the equipment are made through the Cable Filter Unit. Filtering is provided for the power lines, teletypewriter output circuit, tone output circuits, and cathode-ray tube remote vertical circuit. The Cable Filter Unit and Converter Chassis are interconnected automatically when the Converter Chassis is pushed in place. The entire filter assembly is fastened to the rear of the cabinet by eight screws accessible from the inside of the cabinet (see Figure 5-1).

Looking in the front of the cabinet, the items of the Cable Filter Unit are arranged from left to right as follows: fuses, Allen wrenches, fan, and spare fuses. Below the spare fuses is a jack, J1101, through which all connections between the Converter Chassis and the Cable Filter Unit are made. The fuses can only be replaced after sliding the Converter Chassis out of the case.

The housing is in the shape of a triangle with the apex toward the rear. On the lower side of the triangle are mounted all jacks for external connections. A removable cover, held in place by five halfturn screws, forms the top of the assembly, making all internal connections and parts available for repair or replacement (see Figure 3-10).
(3) INPUT UNIT FOR CV-57/URR.-The Input Unit for the CV-57/URR Converter converts the receiver intermediate frequency of $395-470$ kilocycles to a frequency of 40 kilocycles for the I-F Unit. Three tubes are used, an oscillator, an automatic frequency control tube, and a converter. The unit is located on the left front of the Converter Chassis and is tunable over the range of 395 to 470 kilocycles to match the receiver with which it operates.

The unit (see Figures 7-11, 7-12) is supported in the Converter Chassis by its front and rear flanges and held in place by captive screws, two on the back flange and one on the front flange. The front and rear brackets extend upward to protect the unit and serve as handles for lifting the unit into and out of the Converter Chassis. The single tuning control and a fixed capacitor (C108) are located on the front bracket. The tuning capacitor couples to the panel knob shaft by a mechanical coupler when the unit is mounted in place.

The location of the various parts on the bottom is as follows, looking at the unit with the bottom turned upward. At the front, extending crosswise is the connecting plug P101. On the left side, from front to rear, are tube socket X103, capacitors C118 and C115 (C118 is on the left), transformers T103 and T102. On the right side are a feed-through terminal E102, tube socket X101, capacitor C102, transformer T101, tube socket X 102 , and capacitors C110 and C101. Capacitor C110 is on the right. Extending along the center from P101 to the rear of the chassis is terminal board E101. Capacitor C120 is near the rear of the terminal board.
(4) INPUT UNIT FOR CV-71/URR.-This Input Unit is a part of Frequency Shift Converter CV-71/URR which is supplied as a component of the Frequency Shift Converter-Comparator Group AN/-

URA-7. It converts the intermediate frequency of the associated receiver from 47.5-52.5 kilocycles to a 40-kilocycle frequency for the I-F Amplifier Unit.

The unit (see Figures 7-11, 7-12) is essentially similar in construction to the Input Unit described above. Its components are designated by symbols in the 200-series.
(5) I-F UNIT.-The I-F Unit has one stage of intermediate-frequency amplification, a limiter stage, and a discriminator stage. One signal input is required and four signal outputs are provided, a diversity control signal, an automatic frequency control signal (AFC), the Tuning Monitor and remote tuning monitor signal, and the output signal to the keyer. Three switches and one potentiometer make up the controls, which are all adjustable from the front panel.

The I-F Unit (see Figures 7-13, 7-14) is mounted on the Converter Chassis, between the Keyer Unit and Input Unit, by its front and rear flanges. It is secured in place by one captive screw through the front flange and two captive screws through the rear flange. The front and rear brackets extend upward to form handles for lifting the unit into and out of the main chassis. All controls are mounted on the front bracket and couple to the knob shafts when the unit is mounted in place, provided the driving pins are properly aligned. Facing the rear of the

Figure 1-3. Cables for AN/URA-6, AN/URA-7, and CV-57/URR Equipments

AN/URA-6, AN/URA-7
CV-57/URR
GENERAL DESCRIPTION

front bracket the TUNE-OPERATE switch, S302, is at the top right, with the AFC ON-OFF switch, S303, located below. At the top left is the THRESHOLD control R318. Below the THRESHOLD control is the NARROW-WIDE switch S301.

On the bottom front center of the chassis is located the connecting plug P301. On the left side, from front to rear, are tube socket X303, transformer T304, tube socket X302, and transformer T303. On the right side, from front to rear, are transformer T301, capacitor C318, transformer T302, and tube socket X301. Two terminal boards, mounted back to back, extend from the center of plug (P301) to the rear of the chassis. Terminal board E302 is to the left and terminal board E301 is to the right. Switch 5301 extends above the chassis in line with the two terminal boards. Various mica capacitors are supported by clips underneath the chassis.
(6) KEYER UNIT.-The Keyer Unit is suppied with d-c signal pulses from the I-F Unit. These pulses serve to control the electronic keying tubes to key the external teletypewriter loop. The unit also supplies an on-off tone signal of adjustable level and frequency for remote teletypewriter operation and monitoring purposes.

One Keyer Unit (see Figures 7-9 and 7-10) is mounted at the front center of the Converter Chassis and a similar unit is mounted on the Comparator Chassis; each Keyer Unit is held in place by three captive screws, two at the rear and one at the front. Brackets at the front and rear serve as handles for lifting the unit into and out of the chassis. The front bracket is also the mounting for all the controls of the unit. On the bottom front center is located the connecting plug P601. On the right-hand side of the plug is terminal board E602 and on the left-hand side is terminal board E601. To the rear of the plug is a row of capacitors, $\mathrm{C} 603, \mathrm{C} 616, \mathrm{C} 615$, and C 601 from left to right, and four tube sockets, X601, $\mathrm{X} 606, \mathrm{X} 602$, and X 603 , to the rear of the capacitors. In back of the tube sockets are terminal boards E 605 and E604, mounted over the terminals of Z601 and L601. Transformer T601 is to the right. To the rear of the items just mentioned are four tube sockets, X607, X608, X604, and X605, and four capacitors, C617, C618, C606, and C602. Terminal board E603 is fastened to the rear bracket. The rear bracket also mounts a toggle switch, S604.

Mounted on the front bracket are the following controls: S601, S602, S603, R613, R629, and R633. Looking at the top right of the rear of the front

Figure 1-4. Frequency Shift Converfer CV-57/URR or CV-71/URR, Top View
ports a capacitor, C701, and a tube socket, X701, with its shield. On the bottom of the chassis are the connecting plug, P701, a terminal board, E701, for resistors and small capacitors, and a bracket mounting controls VERT GAIN, R701, INTENSITY, R713, and CAL IN switch, S701.

The control shafts of $R 701$ and $S 701$ connect or disconnect with the panel knob shafts by means of mechanical couplings on removal or replacement of the unit. Controls R702, R713, and R715 are screw-driver-adjusted and are accessible through spring covers on the top of the front panel. Access to R705 can only be had by withdrawing the chassis from the case.
(8) POWER SUPPLY UNIT (for CV-57/URR or CV-71/URR).-See Figures 7-3 and 7-4. The Power Supply Unit supplies power to all the units assembled on the Converter Chassis. This Unit has no controls and is readily changed by unscrewing four captive screws and lifting from position. All connections are made by a single plug, P801.

The chassis is formed from aluminum; flanges at both ends support it on the Converter Chassis (looking from the front of the converter Chassis with the Power Supply Unit in its operating position). The right-hand flange has one captive screw and the lefthand flange has two captive screws. A fourth captive screw is located beside socket X801. These screws hold the unit in place on the Converter Chassis. The power transformer, T801, is mounted

Figure 1-5. Comparator CM-14/URR, Chassis Top View
on the left side of the chassis and the remaining components are grouped on the right side. Capacitor C802A,B is mounted by an octal socket, X804, with a screw-adjusted clamp to hold it in place.

Filter Choke L801 and capacitor C801A,B,C are on the top of the chassis with their terminals passing through the chassis for wiring convenience. A bracket, on the right-hand side of the chassis, and the power transformer provide means of lifting the unit into and out of the Converter Chassis. Four tube sockets are mounted in the chassis, X801 through X804, three for the tubes and one for the filter capacitor C802A, B. Under the chassis is a terminal board, E801, and the connecting plug P801.
b. FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6 AND AN/URA-7.-The Frequency Shift Converter-Comparator Groups AN/URA-6 and AN/URA-7 differ only in the Converters supplied. The AN/URA-6 Group is supplied with two CV-57/URR Converters while the AN/URA-7 Group is supplied with two CV71 URR Converters. The Converters, in turn, differ only in their Input Units: The CV-57/URR Converter operates on a 395- to 470-kc input signal and its Input Unit is identified by component symbols in the 100 series; the CV-71/URR Converter operates on a 47.5- to $52.5-\mathrm{kc}$ input signal and its Input Unit is identified by component symbols in the 200 series.

Each Frequency Shift Converter-Comparator Group consists of two Frequency Shift Converter CV-57/URR or CV-71/URR and one Comparator CM-14/URR, all secured in a table-mounting frame (see Figure 1-1a). The units may be removed from this frame and mounted in a standard relay rack. The Converters are connected to separate receivers. The Comparator selects the stronger of the two signals from the Converters to key the teletypewriter loop and the tone signal.

The Comparator differs in appearance from the Frequency Shift Converters in that it has a meter in place of the cathode-ray tube of the Converter units.

The Frequency Shift Converters are described in the preceding paragraph. The Comparator CM-14/URR will now be described. It is made up of the following units.

UNIT NAME	SYMBOL GROUP
Comparator Chassis	1600
Cable Filter Unit	1300
Diversity Selector Unit	900
Keyer Unit	600
Power Supply Unit	1000
Jumper Cable	W1602

These units are described below, except the Keyer Unit which is identical to the Keyer Unit used in the

Converters and was described previously in paragraph $3 a(6)$.
(1) COMPARATOR CHASSIS. - See Figure 1-5. The Comparator Chassis supports all the Comparator units except the Cable Filter Unit which is mounted on the back of the case. The units are interconnected by plugs and jacks when inserted in place. A plug, J1601, on the rear of the Comparator Chassis connects the chassis to J 1301 on the Cable Filter Unit when in operating position. For servicing, the chassis can be slid out of the cabinet and locked in any one of four positions while still supported by cabinet rails. A jumper cable is provided for connecting the chassis (similar to that shown in Figure 3-15) with the Cable Filter when the chassis is withdrawn from the cabinct. An air filter and cover, in the center of the panel, cover the controls requiring only occasional adjustment, but make them readily accessible by a half-turn screw holding the cover against the panel.

Two jacks, T'TYP and PHONES, are located on the bottom left of the panel protected by a cover. To the right of the jacks is the neon lamp $\mathbf{B +}$ indicator. The POWER OFF-ON switch is located to the right center of the air filter.
(2) CABLE FILTER UNIT (for CM-14/URR). -See Figure 7-2. Converter and external connections to the Comparator are made through the Cable Filter Unit. Filtering of the power lines and tone output circuits is provided. Connections between the Cable Filter Unit and Comparator Chassis are made automatically when the Comparator Chassis is pushed in place. The entire filter assembly is fastened to the rear of the cabinet by eight screws accessible from the inside of the cabinet (see Figure 5-2).

The housing is in the shape of a triangle with the apex toward the rear. On the lower side of the triangle are mounted all jacks for external connections. A removable cover, held in place by five halfturn screws, forms the top of the assembly and makes all internal connections and parts available for repair or replacement (see Figure 7-2).

Looking at the front of the cabinet, the items of the Cable Filter Unit are arranged from left to right as follows: fuses, Allen wrenches, fan, and spare fuses. Located below the spare fuses is a jack, J1301, through which all connections between the Comparator Chassis and the Cable Filter Unit are made. The fuses can only be replaced after sliding the chassis out of the case.
(3) DIVERSITY SELECTOR UNIT.-See Figures 7-17 and 7-18. The Diversity Selector Unit
receives the incoming signal being fed into each of the two Converter channels and selects the stronger of the signals to operate a gating circuit. The d-c pulses from the two Converter discriminators are fed into the gating circuit. The discriminator output from the Converter receiving the stronger signal is selected to operate the Comparator Keyer Unit.

The Diversity Selector Unit is supported, by its front and rear flanges, on the left front of the Comparator Chassis. Two captive screws through the rear flange and one captive screw through the front flange hold the unit in place. The front and rear brackets extend upward to make handles for inserting and removing the unit from the Comparator Chassis. The three controls, S901, R905, and R923, are mounted on the front bracket.

Underneath the chassis at the front center is a plug, P901, through which all connections are made. To the left is terminal board E904 and on the right is terminal board E905. To the rear of the plug are four tube sockets, X907, X906, X902, and X901 from left to right. In the center, arranged from left to right, are capacitors C919, C920, C914, C913, and C912. Mounted above the capacitors are terminal boards E902 and E903. Terminal board E906 is mounted on the right-hand side of E902. To the rear of the terminal boards is a row of tube sockets, X905, X904, X903, X909, and X908 from left to right. Mounted on the rear bracket is terminal board E901.

Looking at the right rear of the bracket is the CHANNEL A-COMBINED-CHANNEL B switch, S901. To the top left is the GATE BAL control, R923, with the CONT BAL control, R905, below. The CHANNEL A-COMBINED-CHANNEL B switch couples to the panel knob by means of a mechanical coupler. The GATE BAL and CONT BAL controls are screwdriver adjusted through the front panel.
(4) POWER SUPPLY UNIT (for CM-14/URR). -See Figures 7-5 and 7-6. The Power Supply Unit supplies power to all the units assembled on the Comparator Chassis. This unit has no controls and is readily changed by unscrewing four captive screws and lifting from position. All connections are made by a single plug, P1001.

The chassis is formed from aluminum with flanges at both ends for support on the Comparator Chassis (looking from the front of the chassis with the Power Supply Unit in its operating position). The right- and left-hand flanges have, respectively, one and two captive screws. A fourth captive screw is located beside the socket $\mathbf{X 1 0 0 1}$. These screws hold the unit in place on the Comparator Chassis. The
power transformer, T1001, is mounted on the left side of the chassis and the remaining parts are grouped on the right side. Capacitor $\mathrm{C} 1002 \mathrm{~A}, \mathrm{~B}$ is mounted by an octal socket, X1004, with a screwadjusted clamp to hold it in place.

Filter choke L1001 and capacitor C1001A,B,C are mounted on the top of the chassis with their terminals passing through the chassis for wiring convenience. A bracket, fastened to the right side of the chassis, together with the power transformer provide means of lifting the unit into or out of the Comparator Chassis. Four sockets, X1001 through X1004, are mounted in the chassis, three for the tubes and one for the filter capacitor C1002A,B. Under the chassis is located a terminal board, E1001, and the connecting plug P1001.
c. RECEIVER COUPLING KIT, TYPE 10563.The Receiver Coupling Kit is to be installed in an associated radio receiver (such as Navy Model RBB, RBC, or RDM) to provide for a low-impedance line from the receiver third i-f amplifier plate circuit to the input circuit of the Converter unit. The kit contains two major sub-assemblies, a Cathode-Follower Assembly and a Low-Pass Filter Unit. Figures 7-15 and 7-16 show the physical arrangement of the parts. The circuits are described in Section 2 while installation instructions are given in Section 3. This kit is for use only with Frequency Shift Converter CV--57/URR and Frequency Shift Converter-Comparator Group AN/URA-6, which operate on an input frequency of 395 to 470 kc . It is neither supplied nor intended for use with Frequency Shift Converter-Comparator Group AN/URA-7, which operates on an input frequency of 47.5 to 52.5 kc .

4. REFERENCE DATA.

a. Equipment Designation:
(1) Frequency Shift Converter CV-57/URR (Single Channel, 395 to 470 kc).
(2) Frequency Shift Converter Comparator Group AN/URA-6 (Dual Channel, 395 to 470 kc).
(3) Frequency Shift Converter Comparator Group AN/URA-7 (Dual Channel, 50 kc).
b. Contract Number: NObsr-39421 dated 30 June 1947.
c. Contractor: Radio Corporation of America, RCA Victor Division, Camden, New Jersey, U. S. A.
d. Cognizant Inspector: Inspector of Naval Material, Philadelphia District, Upper Darby, Pa.
c. Number of packages per complete shipment:
(1) CV-57/URR
(2) AN/URA-6
(3) AN/URA-7
f. Total cubical contents (cu. ft.):

CV-57/URR	Crated 6.25	Uncrated 1.5
AN/URA-6	Crated 8.25	Uncrated 5.8
AN/URA-7	Crated 8.25	Uncrated 5.8

(Equipment spare parts included.)
g. Total weights:

CV-57/URR
AN/URA-6
Crated

AN/URA-7 Crated Crated

Uncrated
Uncrated Uncrated
(Equipment spare parts included.)
b. Frequency Range: 395 to 470 kc for $\mathrm{CV}-57 /-$ URR and AN/URA-6. 47.5 to 52.5 kc for AN/-URA-T.
i. Frequency Shift:
(1) Ten to 200 cycles total separation between "MARK" and "SPACE" frequencies for narrow-band operation.
(2) 200 to 1000 cycles total separation between "MARK" and "SPACE" frequencies for wide-band operation.
j. Output:
(1) Electron tube keyer for keying 60-ma teletype loop (loop current must be supplied from external teletype battery or power supply).
(2) Tone signal, 12 milliwatts into $600-0 \mathrm{hm}$ load.
(3) Tone signal frequencies, $595,765,935$, $1105,1275,1445,1615,1785$ cycles per second. Provision is also made for an externally supplied tone frequency for alternative use within the 595-1785cycle range.
k. Input impedance:
(1) AN/URA-6, 70 ohms unbalanced.
(2) AN/URA-7, 910 ohms unbalanced.
(3) CV-57/URR, 70 ohms unbalanced.
l. Input signal level required: 2500 microvolts to 0.5 volt.
m. Type of signal: Frequency shift keying. Keying speeds up to 100 dot cycles per second, corresponding to four-channel multiplex, 100 words per minute each channel.
n. Power Supply: 105,115 or 125 volts, 60 cycles, single phase.
o. Power required:
(1) CV-57/URR; 80 watts at 115 volts.
(2) AN/URA-6 or AN/URA-7, 240 watts at 115 volts.

TABLE 1-1. EQUIPMENT SUPPLIED
(SINGLE CHANNEL, FREQUENCY SHIFT CONVERTER CV-57/URR)

[^0]TABLE 1-1. EQUIPMENT SUPPLIED (continued)
(DUAL CHANNEL, FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-6)

QUAN. PER	NAME OF UNIT	NAVY TYPE DESIGNATION	OVERALL DIMENSIONS (INCHES)			VOLUME CU. FT.	WEIGHT
MENT			HEIGHT	WIDTH	DEPTH		
1	Frequency Shift Converter-Comparator Group including tubes and external connecting plugs and jumper cable	AN/URA-6	21-3/4	20-1/4	17-5/32	4.16	
2	Receiver Coupling Kits	10563					
2	Cables, Diversity Control, W1703 and W1704						
2	Cables, Diversity Signal, W1709 and W1710						
2	Cables, Power, W1715 and W1716						
2	Instruction Books (IB-38482)	$\begin{gathered} \text { NAVSHIPS } \\ 91355 \end{gathered}$					

(DUAL CHANNEL, FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-7)

Unless otherwise stated, dimensions are in inches, volume in cubic feet, weight in pounds.

TABLE 1-1. EQUIPMENT SUPPLIED (RECEIVER COUPLING KIT, NAVY TYPE 10563)

TABLE 1-1. EQUIPMENT SUPPLIED (continued) (RECEIVER COUPLING KIT, NAVY TYPE 10563) (continued)

$\begin{aligned} & \text { QUAN. } \\ & \text { PER } \\ & \text { EQUIP- } \\ & \text { MENT } \\ & \hline \end{aligned}$	ITEM	DESCRIPTION	OVERALLDIMENSIONS (INCHES)			VOLUME CU. FT.	WEIGHT
			HEIGHT	WIDTH	DEPTH		
1	7	Suitable container, containing hardware: (A) 2 screws \#10-32 $\times 3 / 8 \mathrm{RH}$ (B) 3 screws \#6-32 $\times 5 / 16 \mathrm{RH}$ (C) 2 spacers $0.147^{\prime \prime} \mathrm{ID} \times 5 / 16^{\prime \prime} \mathrm{OD} \times 1 / 16^{\prime \prime}$ (D) 2 lockwashers \#10 (E) 3 lockwashers \#6 (F) 2 nuts \#10-32					
1	8	Suitable container, containing: (A) 1 bracket, rear (B) 1 bracket, side					
1	9	Suitable container, containing wire, etc.: (A) 1 cable (1 conductor, shielded and braided) (B) 1 cable (11-1/4" $1 g .1$ conductor, shielded) (C) 1 sleeving ($9^{\prime \prime} \mathrm{Ig} . \times 0.106^{\prime \prime}$ ID)					
1	10	Sheet of Templates for RDM receivers					
1	11	Packing List					

TABLE 1-2. EQUIPMENT AND PUBLICATIONS REQUIRED BUT NOT SUPPLIED SINGLE CHANNEL, FREQUENCY SHIFT CONVERTER CV.57/URR

$\begin{gathered} \text { QUANTITY } \\ \text { PER } \\ \text { EQUIPMENT } \end{gathered}$	NAME OF UNIT	NAVY TYPE DESIGNATION	$\begin{gathered} \text { REQUIRED } \\ \text { USE } \\ \hline \end{gathered}$	REQUIRED CHARACTERISTICS
1	Radio Receiver	RBB, RBC, or RDM series**	Receiving signal	70 ohms 2500 microvolts to 0.5 volt; 400 - to $470-\mathrm{kc}$ intermediate frequency output
1	Teletypewriter and loop power supply		Printing received signal	Standard or high-speed, 60 -ma power supply
1	Headset		Monitoring signals	600-ohm impedance
-	Connecting cables, lengths depend on installation: 1 Power	MCOS-2	Power line connection	Two wire power
	1 Input	$\begin{aligned} & \text { RG-11/U or } \\ & \text { RG-12/U } \end{aligned}$	Receiver i-f to input	Coaxial, 70 ohms
	1 Teletypewriter	MCOS-2	CV-57/URR to teletypewriter	Shielded single* or two wires
	1 Tone Output (if used)	TTHFWA-1 or RG-108/U	Tone signal to telephone line	Shielded single* or two or three wires
	1 CRT REM VERT (if used)	$\begin{aligned} & \text { RG-11/U or } \\ & \text { RG-12/U } \end{aligned}$	Oscilloscope signal (external)	Shielded single
	1 External Tone Input (if used)	TTHFWA-1 or RG-108/U		
4	Screws for rack mounting or 5/16-18 bolts and flat washers for cable top mounting			

[^1]TABLE 1-2. EQUIPMENT AND PUBLICATIONS REQUIRED BUT NOT SUPPLIED (continued) DUAL CHANNEL, FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP, AN/URA-6

" Depends on local system.
** or other receiver having good stability and suitable frequency range.

TABLE 1-2. EQUIPMENT AND PUBLICATIONS REQUIRED BUT NOT SUPPLIED DUAL CHANNEL, FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-7

$\begin{aligned} & \text { QUANTITY } \\ & \text { PER } \\ & \text { EQUIPMENT } \end{aligned}$	NAME OF UNIT	NAVY TYPE DESIGNATION	REQUIRED USE	REQUIRED CHARACTERISTICS
2	Radio Receivers	RBP or RCP**	Receiving Signals	910 ohms 2500 microvolts to 0.5 volt; 48. to 52 kc output frequency
	Teletypewriter and loop power supply as required.		Printing received signals	Standard or high-speed, $60-\mathrm{ma}$ power supply for each loop
1	Headset Connecting cables, lengths depend on installation: 1 Power		Monitoring signals	600-ohm impedance
		MCOS-2	Power line connection	Two wire power
	2 Input	$\begin{aligned} & \text { RG-11/U or } \\ & \text { RG-12/U } \\ & \text { MCOS-2 } \end{aligned}$	Receiver i-f to input	Coaxial
	1, 2 or 3 Teletypewriter as required		AN/URA-7 to teletypewriter	Shielded single* or two wires
	1,2 or 3 Tone Output as required	TTHFW A- 1 or RG-108/U RG-11/U or RG-12/U T'THFWA-1 or RG-108/U	Tone signal to telephone line	Shielded single ${ }^{*}$ or two or three wires
	2 CRT REM VERT (if used)		Oscilloscope signal (external)	Shielded single
	1, 2 or 3 External tone input (if used as required)			

[^2]TABLE 1-3. SHIPPING DATA

SHIPPING BOX NO.	CONTENTS		OVERALL DIMENSIONS (INCHES)			VOLUME	'EIGHT
	NAME	designation	height	WIDTH	DEPTH		

Unless otherwise stated, dimensions are in inches, volume in cubic feet, weight in pounds.

MODEL	TABLE	BASIC SIMILARITIES	SERIES EQUIPMENT
	INPUT FREQUENCY	UNITS INVOLVED	REMARKS
CV-57/URR CV-60/URR	395 to 470 kc 1000 cps narrow, 2550 cps wide, center frequency		Single channel operation Single channel operation
$\begin{aligned} & \text { CV-71/URR } \\ & \text { CM-14/URR } \end{aligned}$	$47.5 \text { to } 52.5 \mathrm{kc}$		Single channel operation Provides diversity switching on dual channel systems
AN/URA-6	$395 \text { to } 470 \mathrm{kc}$	$\begin{aligned} & \text { 2—CV-57/URR } \\ & \text { 1-CM-14/URR } \end{aligned}$	Dual channel, diversity operation
AN/URA-7	$47.5 \text { to } 52.5 \mathrm{kc}$	$\begin{aligned} & \text { 2-CV-71/URR } \\ & 1-\text { CM-14/URR } \end{aligned}$	Dual channel, diversity operation
AN/URA-8	1000 cps narrow, 2550 cps wide, center frequency	$\begin{aligned} & 2-C V-60 / \text { URR } \\ & 1-C M-14 / \text { URR } \end{aligned}$	Dual channel, diversity operation

NOTE: CV-60/URR and AN/URA-8 equipments are covered in instruction book NAVSHIPS 91339.
TABLE 1-5. ELECTRON TUBE COMPLEMENT
COMPLEMENT FOR ONE (1) FREQUENCY SHIFT CONVERTER CV-57/URR or CV-71/URR

	NUMBER OF TUBES OF TYPE INDICATED												
UNIT	-	迨	N	莐	$\underset{\mathbf{O}}{\mathbf{\Sigma}}$	U	¢	$\stackrel{8}{8}$	¢	a - N	N		TOTAL NO OF TUBES
Input 1-F Unit Tuning Monitor Keyer Power Supply		1	1	1	1	1	1	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	5	2	3
Total No. of each type		1	1	1	1	1	1	3	2	1	5	2	19

COMPLEMENT FOR ONE (1) COMPARATOR CM-14/URR

Diversity Selector Keyer Power Supply	1	1	1	1	2	2 1	4 5	2	9 8 3
Total No. of each type	1	1	1	1	2	3	9	2	20

COMPLEMENT FOR ONE (1) COUPLING KIT 10563
\square

1. INTRODUCTION.

This section covers the theory of operation of the single-channel Frequency Shift Converter CV-57/URR, the dual-channel diversity Frequency Shift Converter-Comparator Groups AN/URA-6, AN/-URA-7, and the Receiver Coupling Kit 10563. (Frequency Shift Converter CV-71/URR is discussed in paragraph 17 of this section, as a part of Frequency Shift Converter-Comparator Group AN/URA-7.) An antenna, radio receiver, and teletypewriter with battery or power supply are required for the singlechannel equipment. Dual-channel diversity equipment requires two antennas, two receivers, and a teletypewriter with battery or power supply.

The Converter changes a frequency shift signal into d-c pulses sufficient to operate a teletypewriter or other automatic recording devices. A frequency shift signal is one whose normal frequency is shifted to another frequency for a period of time corresponding to the coding of the information being transmitted. The subject equipment is designed to handle shifts of from 10 to 1000 cycles.

2. SINGLE-CHANNEL FREQUENCY SHIFT CONVERTER CV-57/URR.

In the CV-57/URR unit (see Figure 2-1, SingleChannel Equipment CV-57/URR Block Diagram) the signal is filtered, converted to a $40-\mathrm{kc}$ frequency, amplified, clipped (by the limiter) and fed through the discriminator. The discriminator output is amplified, filtered, amplified again, and triggers two Eccles-Jordan flip-flop stages in cascade to key the tone oscillator and teletypewriter-loop keyer tubes.

Frequency Shift Converter CV-57/URR includes the following operating sub-assemblies shown interconnected on the System Schematic, Figure 7-19.

FIGURE	
NUMBER	SYMBOL
(SCHEMATIC	SERIES
DIAGRAM)	
Part of $7-19$	1400
$7-24$	1100
$7-38$	100
$7-36$	300
$7-42$	600
$7-22$	700
$7-28$	800

3. CONVERTER CHASSIS ASSEMBLY (for CV-57/URR).

Refer to the System Schematic Figure 7-19. All connections to the Cable Filter and to the units on the Converter Chassis are made by plugs and jacks. Plug P1401, mounted on the rear of the Converter Chassis, engages with jack J1101 on the Cable Filter Unit when the Converter Chassis is properly seated in the case. This permits external cable connections, which are made to the Cable Filter Unit, to be carried into the chassis assembly cable and distributed to jacks J1403 to J1407 inclusive. These jacks, in turn, engage the proper sub-assembly plugs when these units are assembled in the Converter Chassis. Other electrical items of the chassis are the B+ "on" indicator and socket I/X1401, the POWER OFF-ON switch S1401, the T'TYP and PHONES jacks J1401 and J402, and the B + dropping resistor R1402.

The B+ "on" indicator is a neon lamp connected between ground and the 200 -volt supply in series with a limiting resistor R807 located in the power supply. The neon lamp glows to indicate that a voltage of 200 volts is present in the power supply.

The POWER OFF-ON switch makes or breaks both legs of the a-c line into the power transformer primary. The TTYP jack, J1401, is connected in series with the external teletypewriter loop circuit and is used to meter the teletypewriter loop current and otherwise monitor the loop circuit. The PHONES jack, J 1402 , is supplied with keyed tone output signals through the Tone Output Filter, Z1101, for monitoring purposes.

4. CABLE FILTER UNIT (for CV-57/URR).

Refer to Schematic Diagram, Figure 7-24. All external cable connections are made by jacks mounted on the rear of the Cable Filter Unit. These jacks and their functions are listed below together with the names with which they are designated on the equipment.

SYMBOL	No. NAME	FUNCTION
J1102	VERT. CRTREMOTE	Remote vertical cathode-ray tube signal
$J 1104$	EXT. TONE IN	External tone signal input
J1105	TONE OUTPUT	Tone output
J1106	TTYP OUTPUT	Teletypewriter signal (output)
J1107		A-C power outlet
J1108	PWR INPUT	A-C power input
J1109	DIV. CONT	Diversity control voltage
J1110	DIV. SIG	Diversity output signal
11111	I-F INPUT	I-F Input

Electrical connections from these jacks to the various sub-assembly units on the Converter Chassis are made through jack J1101. This is mounted on the lower right-hand of the inside panel and engages plug P1401 mounted on the Converter Chassis.

The equipment is protected from overload by two three-ampere fuses, F1101 and F1102, each in series with one leg of the line. The fuses do not protect circuits which may be connected to a-c power outlet jack J1107.

A power line filter, Z1102, is inserted in the power line in series with the power transformer primary. This filter has an attenuation of at least 65 db from 14 kc to 10 mc and of at least 50 db from 10 mc to 30 mc when fully loaded. It prevents any signal generated in the equipment from entering the power line and also prevents external signals from entering the equipment.

A tone output filter, Z1101, is inserted in series with the tone output from the Keyer Unit. It has the same attenuation and purpose as the power line filter just described. The output connections of the tone filter are taken to the PHONES jack J1402 for monitoring purposes.

The tone output impedance is 600 ohms nominal from 595 to 1785 cycles with a maximum power output of at least 12 milliwatts across a 600 -ohm non-inductive load. The output circuit has its center tap brought out to terminal B of the Tone Output jack J1105 and may be grounded if required by external conditions.

Other filtering circuits include resistor R1101, choke L1101, and capacitor C1103 to filter the cathode-ray tube remote signal; and choke L1102 and capacitor C 1102 to filter the teletypewriter output.

A fan, B1101, operates from the 115 -volt power line. Capacitor C1101 provides the necessary phase shift to operate the fan motor. The fan maintains an even temperature distribution when the equipment is in use.

5. INPUT UNIT (for CV-57/URR).

See Schematic Diagram, Figure 7-38. The Input Unit receives the intermediate-frequency (395 to 470 kc) signal from the associated receiver. It converts it into a $40-\mathrm{kc}$ signal which it then feeds into the I-F Unit (discussed in paragraph 6). AFC is provided across the oscillator to correct for receiver drift. The following tubes are used in the Input Unit of the CV-57/URR Converter.

SCHEMATIC SYMBOL	TUBE TYPE	function
V101	JAN-6C4	Oscillator
V102	JAN-6AU6	Automatic frequency control (AFC)
V103	JAN-6BE6	Converter

The signal is fed from the receiver to the Converter through the Receiver Coupling Kit, which is mounted in the receiver: The output of this Coupling unit is fed through the Cable Filter Unit and plug P101 to the junction of capacitors C111, C112 of the Input Unit. These capacitors tune the primary of transformer T102 and provide proper impedance match. Additional selectivity is provided by transformers T102, T103 and associated tuning capacitors.

A characteristic is thereby obtained, such that the circuit bandwidth at 400 kc center frequency is not more than 7.6 kc at 6 db down; and not more than 56 kc at 60 db down.

The equipment is adjusted between 395 and 470 lac by adjusting the powdered-iron cores of the transformer windings.

The converted signal appears at the plate of tube V103 and is fed to the input of the I-F Unit through plug P101.

The oscillator tuned circuit, T101, is bridged by
two fixed capacitors, C104 and C119, and is adjusted to a frequency of 430 to 510 kc by a powdered-iron core. External tuning of the circuit over a narrow range is accomplished by C105, a variable air capacitor acting as a vernier.

The plate circuit of the automatic frequency control tube, V102, acts as a variable reactance across the oscillator tank circuit to tune the oscillator over a small range. The reactance presented by the tube depends on the transconductance, which is controlled by the AFC bias from the discriminator. This bias is obtained from the I-F Unit through pin 11 of P101 and filtered by resistors R103, R104, R105, and capacitor C108.

6. I-F UNIT.

See Schematic Diagram, Figure 7-36. The I-F Unit receives a $40-\mathrm{kc}$ signal from the Input Unit, which is amplified through highly selective transformers and fed to a discriminator whose output is applied to the Keyer Unit. The following tubes are used in the I-F Unit:

CIRCUIT SYMBOL	TUBE TYPE	fUNCTION
V301	JAN-6AU6	1st I-F Amplifier
V302	JAN-6AU6	Limiter
V303	JAN-6AL5	Discriminator

The signal from the Input Unit is fed to the primary of transformer T301 through pin 10 of plug P301. It is then applied, through transformer T302, to the grid of amplifier tube V301. Further selectivity is obtained through transformer T303 which applies the signal to the grid of limiter tube V302. Each i-f transformer has two coupling coils, one for narrow-band reception and one for wideband reception. A switch, S301, selects the coupling coil desired by means of the NARROW-WIDE knob on the front panel. Capacitors C302, C303, C305, C306, C307, C311, C313 tune the associated circuits.

The selectivity of these circuits is such that the bandwidth, at 6 db down, is between 0.8 and 1 kc in the NARROW position and between 1.6 and 2 kc in the WIDE position of the switch. The shape factor (bandwidth $60 \mathrm{db} /$ bandwidth 6 db) does not exceed 3.75 and 3.5 in the NARROW and WIDE positions, respectively.

The signal appearing at the plate of tube V301 has an amplitude which is proportional to the receiver output; a portion of this signal is fed to pin 6 of plug P301 for diversity control in Comparator CM-14/URR.

Tube V302 operates as a limiter, using a grid leak, R309, to supply a bias voltage which increases as the
amplitude of the incoming signal increases. A bleeder, consisting of resistors R310 and R311, fixes the screen voltage to assist in the limiting action.

In the plate circuit of V 302 is the discriminator transformer, T304, with associated capacitors C314, C316, C317 which provide proper tuning. The transformer is also switched in the NARROW or WIDE position by the NARROW-WIDE control knob on the front panel (switch S301).

The discriminator diode, V303, supplies three output signals, as follows:
(a) A Monitoring signal, which is fed to the Tuning Monitor Unit and a remote cathode-ray tube monitor through pin 3 of P301.
(b) an AFC signal, which is fed to the converter oscillator of the Input Unit through pin 8 of P301,
(c) an output signal, which is fed to the Keyer Unit through the THRESHOLD control, R318, and pin 4 of P301.

The discriminator characteristic, when tube V302 is limiting, gives a $1.8-\mathrm{kc}$ spread between peaks on the WIDE position and a $1.35-\mathrm{kc}$ spread between peaks on the NARROW position. The slope sensitivity is about 0.04 volt per cycle on either position.

The AFC OFF-ON switch, S303, grounds the AFC voltage when in the OFF position. The TUNE OPERATE switch, S302, opens the output signal circuit and grounds the AFC voltage for tuning purposes.

7. KEYER UNIT.

See Schematic Diagram, Figure 7-42. The Keyer Unit receives the d-c pulses from the discriminator, amplifies and filters them to energize the EcclesJordan flip-flop circuit which, in turn, keys a power output stage to key the teletypewriter loop circuit. The output of the flip-flop circuit also keys on and off a tone oscillator for monitoring and transmission over telephone lines and radio links. The tubes used in the Keyer Unit are as follows:
schematic

SYMBOL	TUBE TYPE	CIRCUIT FUNCTION
V601A	JAN-12AU7	A-F Amplifier I
V601B		A-F Amplifier II
V602A	JAN-12AU7	Balance Modulator
V602B		Trigger Driver
V603A,B	JAN-12AU7	Trigger I
V604A,B	JAN-12AU7	Trigger II
V605A	JAN-12AU7	Tone Modulator
V605B		Tone Oscillator
V606	JAN-6AL5	D-C Restorer
V607	JAN-6AQ5	Teletypewriter Loop Keyer
V608	JAN-6AQ5	Teletypewriter Loop Keyer

The audio signal from pin 14 of P 601 is amplified by a-f amplifier I tube, V601A. The output of this stage is fed through the LOW-HI-ADJ switch, S601,

AN/URA-6, AN/URA-7
 CV-57/URR
 THEORY OF OPERATION

which is connected between the plate circuit of V601A and the input circuit of V601B. The LOW-HI-ADJ switch, S601, inserts a low-pass filter, Z601, for either low- or high-speed teletype signals or a calibration signal in the ADJ position.

Filter Z601 cuts off frequencies above those necessary for teletype operation. In the LOW position the filter response is flat within 6 db from 80 to 140 cycles and is down not less than 40 db from 240 cycles and above. However, capacitors C617, C618 cause the overall circuit response to be flat within 6 db from 80 to 125 cycles and down not less than 40 db from 200 cycles and above (these are approximate values only). In the HI position the filter response is flat within 6 db from 80 to 300 cycles and is down not less than 40 db from 500 cycles and above. However, capacitor C618 causes the overall circuit response to be flat within 6 db from 80 to 240 cycles and down not less than 40 db from 415 cycles and above (these are approximate values only).

The output voltage of a-f amplifier II tube, V 601 B , is applied to grid pin 2 of the trigger driver tube, V602B, through capacitor C616 and resistor R605. This same signal is fed to the Tuning Monitor through pin 5 of P601 to indicate proper setting of the THRESHOLD control on the I-F Unit. When the THRESHOLD control is properly adjusted this voltage should be approximately 17 volts peak to peak; the traces on the cathode-ray tube screen will then coincide with the top and bottom engraved lines on the Tuning Monitor window when the CAL IN switch, S701, is depressed. Accuracy of the trace indication can be checked by setting the LOW-HIADJ switch, S601, to the ADJ position and observing the traces to coincide with the top and bottom lines on the window when the CAL IN button is depressed. See Section 3, paragraph 7a(14).

Connected between the grid of the trigger driver tube, V602B, and ground is a d-c restorer tube, V606, and its associated circuits. This circuit selects a portion from the output of V601B near the zerovoltage axis, eliminating the superimposed noise and telegraph distortion. This is accomplished by two diodes, one which (pins 1 and 7) clips the negative portion and the other (pins 2 and 5), positively biased, clips the signal level above plug four volts. Therefore, appearing on the grid, pin 2, of the trigger driver, $V 602 \mathrm{~B}$, is a four-volt peak to peak square wave of plus two volts average. This square wave is identical to the discriminator square-wave output, except that the amplitude-modulated noise has been reduced and the $d-c$ component has been removed by capacitive coupling.

In normal frequency shift teletypewriter operation the teletypewriter loop circuit is closed during the standby, or mark signal. This keeps the teletypewriter in condition to receive the coding pulses which key the teletypewriter loop circuit through the keyer tubes, V607 and V608. The d-c component, from the discriminator, could be used to return the output tubes to conduction after each coding pulse has been received; however, since this component has been removed, a mark-return circuit is provided at the grid of the trigger driver, V602B, to accomplish this result.

The mark-return circuit has a normal and a reverse position and consists of resistor R 610 and switch S603B. This switch is used in the NORM position when the detected audio output from the receiver returns to a higher frequency in the mark or standby position. This permits the grid of V602B to return to plus four volts through resistor R610 and causes the output tubes, V607 and V608, to conduct. The REV position of switch S603B is used when the receiver output returns to a lower frequency and permits the grid of V602B to return to zero voltage.

The output signal of V602B is direct-coupled to an Eccles-Jordan flip-flop stage, V603 A,B, which in turn is capacitively coupled to another Eccles-Jordan flipflop stage, V604A,B; having two stable positions. The output, taken from the grids of the second stage, V604A,B, is fed to the control grids of the output tubes, V607 and V608, and the tone modulator tubes, V605A and V602A, through the NORM-REV switch, S603A.

The pulse appearing in the teletypewriter loop circuit must be an exact duplicate of the pulse appearing at the discriminator output to prevent loss of printing margin on the teletypewriter. The keyer unit is provided with a \%MARK control, R613, located in the cathode circuit of tube V602B; this permits adjustment of the operating bias of this tube to obtain linear amplification of the pulses appearing on its grid and thereby minimize distortion of these pulses.

This control is adjusted to give a symmetrical square wave in the teletypewriter loop circuit with the LOW-HI-ADJ switch in the ADJ position. The detailed procedure is given in Section 3, paragraph $7 a(20)$.

The output tubes, V607 and V608, obtain their plate voltage and current from an external power supply or battery through the teletypewriter loop and are controlled by the negative pulses received from the grids of the second trigger stage, V604A,B.

The common circuit of the screen grids (pins 6) of the two output tubes, V607, V608, includes an ON-OFF toggle switch, S604. When the teletype equipment is disconnected from the output tubes their plate voltage is removed. Under this condition the design and construction of the tubes is such that they will oscillate at about 200 mc . To prevent this, the switch S 604 must be opened when the teletypewriter is not used.

Certain operating requirements necessitate transmission of the keyed teletype pulses over telephone lines or radio relay links. The tone oscillator, V605B, and tone modulator, $V 605 \mathrm{~A}$, provide facilities for such transmission.

The tone oscillator tube, V605B, and its tuned circuits, L601 and C607 through C614, permit a choice of eight tone frequencies, namely 595,765 , $935,1105,1275,1445,1615$, and 1785 cycles per second. The output of the tone oscillator is fed through TONE LEVEL control, R629, to the tone modulator V605A. The tone modulator is keyed by the square-wave signal from trigger II tube. The output of the tone modulator is coupled through transformer T601 and tone output filter Z1101 to the TONE OUTPUT jack J1105 for connection to an external line and the PHONES jack J1402 for monitoring purposes. A balance modulator tube, V602A, balances out the transients resulting from square-wave signal currents. The MOD BAL control, R633, is adjusted for a minimum of transients as described in Section 3, paragraph 7a(19).

8. TUNING MONITOR UNIT.

See Schematic Diagram, Figure 7-32. The Tuning Monitor Unit is a direct-coupled oscilloscope which serves to indicate proper tuning of the associated radio receiver and to set the THRESHOLD control, R318, to its proper level.

The following tubes are used in the Tuning Monitor Unit:
schematic

MBOL	tube trpe	circuit function
V701	JAN-12AX7	Vertical Amplifier
702	JAN-2BP1	Cathode-ray

When the associated radio receiver is tuned through the frequency range of the discriminator the average voltage from the discriminator will vary from a negative to a positive value. Since at the center of the discriminator characteristic the d-c component is zero, the discriminator voltage will indicate proper tuning of the radio receiver.

Intensity and focus voltages are provided by the - 600 -volt bleeder made up of R713 (the INTEN-

SITY control), R714, R715 (the FOCUS control), and R716. The arm of the INTENSITY control, R713, adjusts the bias on grid pin 2 of V702 to vary the brilliance of the pattern on the cathode-ray tube. Resistor R715 varies the voltage on pin 4 of V702 to focus the pattern on the screen. The heater leads of V702 are connected, through P701 pins 9 and 10, to a special 6.3 -volt winding on the power transformer in the Power Supply Unit. This is necessary because the cathode-ray tube operates at a cathode voltage of -600 volts to ground.

A sine-wave voltage for horizontal deflection is applied to pin 10 and is obtained from a tap on the power transformer T801, located in the Power Supply Unit, through pin 2 of P701. Pin 9 of the cathode-ray tube is grounded to complete the sinewave voltage circuit.

The d-c signal from the audio discriminator is applied to the VERT GAIN control, R701, through pin 14 of P701. The level of the grid signal of V701A is adjusted by R701 to provide a pattern of reasonable size. The output of V701A is cathode-coupled to V701B through R702. The output of V701B is directly coupled to the vertical plate, pin 6 of V702, through the CAL IN switch S701.

Control R705 applies a d-c voltage to the other vertical plate, pin 7, and is adjusted so that the amplifier tube V701B operates over the linear portion of its characteristic. Detailed adjustment procedure is given in Section 3, paragraph 7a(5) (e).

The V CENT control, R702, varies the vertical centering of the image on the cathode-ray tube. This control is in series with the cathode of V701A and a tap on the negative high-voltage bleeder. Therefore, the signal appearing on the arm of resistor R702 consists of the normal cathode signal and an adjustable negative d-c voltage depending on the setting of the control. When this signal is fed into the grid of V701B the adjustable d-c voltage controls the average voltage appearing on the plate and, in effect, controls the vertical centering of the pattern. The V CENT control is initially adjusted as explained in Section 3, paragraph 7a(5).

The THRESHOLD control, R318, is set to its proper level by comparing the voltage at the input of the clamping circuit (pin 6 of V601B in the Keyer Unit) against a pre-determined deflection of the cathode-ray tube which is marked by top and bottom lines engraved on the tube window. This procedure is given in detail in Section 3 paragraph $7 a(14)$. The CAL IN switch, when depressed, applies the clamping circuit voltage to the vertical plate of V702 to make this comparison.

AN/URA-6, AN/URA-7 CV-57/URR
 THEORY OF OPERATION

9. POWER SUPPLY UNIT (for CV-57/URR).

See Schematic Diagram, Figure 7-28. The Power Supply Unit consists of a negative high-voltage supply for the cathode-ray tube, a regulated lowvoltage supply for critical circuits, an unregulated low-voltage supply, filament voltage supply for all tubes, and an a-c voltage supply to provide horizontal deflection voltage for the cathode-ray tube.

SCHEMATIC		
SYMBOL	TUBE TYPE	CIRCUIT FUNCTION
V801	JAN-1Z2	High-voltage Rectifier
V8 02	JAN-6X4	Low-voltage Rectifier
V803	JAN-0A2	Voltage Regulator
Connections to plug P801 are as follows:		
	P801 PIN	
Voltage	NUMBER	SERVICE
105, 115, 125	12 and 14	A-C input
A-C		
115 A-C	5	Fan supply
6.3 A-C	9 and 10	Heater of cathode-ray tube, V702
6.3 A-C	1 and 7	Heaters of all tubes except cathode-ray tube, V702, and H-V rectifier, V801
35 A-C	6	Horizontal sweep voltage for cathode-ray tube, V702
+2000-C	2	General plate voltage supply
+150D-C	3	For Tuning Monitor Unit and audio amplifier and tone oscillator in Keyer Unit
$-600 \mathrm{D}-\mathrm{C}$	8	High voltage for cathode-ray tube, V702
-45 D-C	4	Bias for trigger and teletype keyer tubes in Keyer Unit
$\begin{aligned} & +80 \mathrm{D}-\mathrm{C} \\ & \text { (nominal) } \end{aligned}$	11	Voltage for neon $B+$ indicator, 1401
Ground	13	Return for D-C and 35 volt A-C voltages

The high-voltage rectifier tube, V801, supplies -600 volts. Capacitors C801A,B,C and resistors R801, R802 filter this high-voltage supply. Resistors R803 and R805 form a voltage divider and bleeder with a - 45 volt tap. This bleeder also discharges the capacitors when the line voltage is turned off, should the load be disconnected.

The 200 -volt supply includes rectifier tube V802, filter capacitors C802A and B (35 microfarads each), and filter choke L801. Bleeder resistor R806 discharges the capacitors in case the load is disconnected.

Tube V803 regulates the 150 -volt supply, the current through the tube increasing or decreasing when the irput voltage rises or falls. The 200 -volt source feeds the regulator tube V803 through series resistor R804; variations in tube current change the voltage drop across this resistor to provide a reguJated output.

Resistor R807, in series with pin 11 of P801, limits the current through the neon B+indicator I1401, located on the Converter Chassis panel.

Input power to transformer T801 is fed through the power line filter Z1102 located in the Cable Filter Unit to suppress r-f noise.

Provision for $105-$, 115 - or 125 -volt nominal line voltages is made by a tapped primary brought out to terminals 2,3 , and 4 respectively; terminal 1 provides the connection for the other side of the line.

10. DUAL-CHANNEL FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-6.

See Figure 2-2, Dual-Channel Equipment AN/-URA-6 Block Diagram. The dual-channel equipment has two Converter CV-57/URR units which operate from separate receivers, and a Comparator CM-14/URR unit.

The Comparator CM-14/URR takes the discriminator output voltage and the diversity control voltage from the two CV-57/URR units and, by electronic switching, selects the discriminator voltage from the channel supplying the stronger control signal. The selected discriminator voltage is then used to key the teletypewriter loop or provide a tone signal for transmission to a remote point.

The Comparator CM-14/URR (see Figure 2-3) includes the following operating sub-assemblies shown interconnected on the System Schematic, Figure 7-21:

	FIGURE NUMBER	SYMBOL SNRIT NAMES
Comparator Chassis	(SCHEMATIC DIAGRAM)	Part of $7-21$

11. COMPARATOR CHASSIS ASSEMBLY (for CM-14/URR).

See Schematic Diagram, Figure 7-21. All connections to the Cable Filter Unit and the units on the Comparator Chassis are made by plugs and jacks. Plug P1601, mounted on the rear of the Comparator Chassis, engages with jack J1301 on the Cable Filter Unit when the Comparator Chassis is properly seated in the case. This permits all external cable connections, which are made to the Cable Filter Unit, to be carried into the chassis assembly cable and distributed to jacks J1603 and J1605 inclusive. These jacks, in turn, engage the proper sub-assembly plugs when these units are assembled in the Comparator Chassis. The other electrical items of the chassis, in addition to the jacks and cable, are the $B+$ indicator and socket I/X1601, the POWER OFF-ON switch S1601, the meter switch S1602, comparison meter M1601 and the TTYP and PHONES jacks J1601 and J1602.

The B+ "on" indicator is a neon lamp connected between ground and the 200 -volt supply, in series with a limiting resistor R1008 located in the power supply. The neon lamp glows to indicate that a voltage of 200 volts is present in the power supply.

The POWER OFF-ON switch makes or breaks both legs of the a-c line connecting into the power transformer primary. The TTYP jack, J1601, is in series with the external teletypewriter loop circuit and is used to meter the teletype current and otherwise monitor the loop circuit. The PHONES jack, J1602, is supplied with keyed tone output signals through the Tone Output Filter, Z1301, for monitoring purposes.

The CHANNEL A LEVEL-DIV IND-CHANNEL B LEVEL switch, S1602, connects the meter, M1601, to indicate the incoming signal level of either channel A or channel B or, in the DIV IND position, to show which channel is supplying the input to the Comparator Keyer Unit.

12. CABLE FILTER UNIT (for CM-14/URR).

Refer to Schematic Diagram, Figure 7-26. All external cable connections are made by jacks mounted on the rear of the Cable Filter Unit. These jacks and their functions are listed below together with the names with which they are designated on the equipment.

SYMBOL No.	NAME	CIRCUITS
J1302	EXT. TONE	External tone signal input
	IN	
J1303	TONE	Tone output
	OUTPUT	
J1304	TTYP	Teletype output
	OUTPUT	
J1305	PWRINPUT	A-C power input
J1306	PWR	A-C power output (paralleled
	OUTPUT	with J1305 and J1307)
J1307	PWR	A-C power output (paralleled
	OUTPUT	with J1305 and J1306)
J1308	DIV-CONT	Diversity control voltage
	CHAN-A	channel A
J1309	DIV-CONT	Diversity control voltage
	CHAN-B	channel B
J1310	DIV-SIG	Diversity signal input channel
	CHAN-A	A
J1311	DIV-SIG	Diversity signal input channel
	CHAN-r	B

Electrical connections from these jacks to the various sub-assembly units on the Comparator Chassis are made through jack J1301. This jack is mounted on the lower right-hand of the inside panel and engages plug P1601 mounted on the Comparator Chassis.

The equipment is protected from overload by two three-ampere fuses, F1301 and F1302, each in series with one leg of the line. The fuses do not protect circuits to the Converters, through jacks J1306 and J1307. These circuits are fused in the individual Converters.

A power line filter, $\mathbf{Z 1 3 0 2}$, is inserted in the power line in series with the power transformer primary. This filter has an attenuation of at least 65 db from 14 kc to 10 mc and at least 50 db from 10 mc to 30 mc when fully loaded. It prevents any signals generated in the equipment from entering the line and also prevents external signals from entering the equipment.

A tone output filter, Z1301, is inserted in series with the tone output from the Keyer Unit. It has the same attenuation and purpose as the power line filter just described. The output connections of the tone filter are taken to the PHONES jack, J1602, for monitoring purposes.

The tone output impedance is 600 ohms nominal from 595 to 1785 cycles with a power output of at least 12 milliwatts across a 600 -ohm non-inductive load. The output circuit has its center tap brought out to terminal B of the Tone Output jack J1303 and may be grounded if required by external conditions.

RESTRICTED
NAVSHIPS 91355

AN/URA-6, AN/URA-7
CV-57/URR
THEORY OF OPERATION

A fan, B1301, operates from the 115 -volt power line. Capacitor C1301 provides the necessary phase shift to operate the fan motor. The fan maintains an even temperature distribution when the equipment is in use.

13. DIVERSITY SELECTOR UNIT.

See Schematic Diagram, Figure 7-44. The Diversity Selector Unit compares the channel A and channel B diversity control signals and permits the stronger signal to operate the gating circuit which switches the discriminator output of either channel A or channel B Converters to the input of the Keyer Unit. The following tubes are used in the Diversity Selector Unit:

SCHEMATIC SYMBOL	tUBE TYPE	CIRCUIT FUNCTION
V901	JAN-6AU6	Channel A Amplifier
V902	JAN-6AL5	AVC and Differential Rectifier Channel A
V903	JAN-6C4	D-C Amplifier
V904	JAN-12AUT	First Control Trigger
V905	JAN-12AU7	Second Control Trigger
V906	JAN-12AU7	Gate B and Gate B Control
V907	JAN-12AU7	Gate A and Gate A Control
V908	JAN-6AU6	Channel B Amplifier
V909	JAN-6AL5	AVC and Differential Rectifier Channel B

The diversity control signal from channel A is amplified by V901 and its output is rectified negatively by a diode, pins 5 and 2 of V902. The diversity control signal from channel B is amplified by V908 and its output is rectified positively by a diode, pins 5 and 2 of V909. The two rectified outputs are combined across resistors $\mathbf{R 9 3 1}$ and $\mathbf{R 9 3 2}$ which form a differential rectifier circuit, the output of which is used to control the gating circuits. A negative voltage at the junction of R931 and R932 indicates channel A signal is the stronger. Conversely, a positive voltage indicates a reverse condition.

A portion of the output appearing at the plate of V901 and a portion of the output of V908 are rectified negatively by two diodes, pins 1 and 7 of V902 and pins 1 and 7 of V909. The outputs of these diodes are combined across a common load resistor R947 and returned to both grids through R902, R941, and R942. This voltage provides AVC control which extends the operating range of the amplifier tubes to accommodate approximately 50 db input range of signal amplitude.

The output of the differential rectifier which appears at the junction of resistors R931 and R932 is fed to the grid of the d-c amplifier tube V903 through links O901 and O902 and the CHANNEL

A-COMBINED-CHANNEL B switch S901. Since the Comparator CM-14/URR is designed for use with either a-f or i-f type Converters, the links O901 and O902 permit connection to a twin-T network for the a-f type Converter or filter capacitor C909 for the i-f type Converter. This adjustment is made at the time of installation.
(The twin-T network is a low-pass filter having its maximum attenuation at 100 cycles; it removes the 1000- or 2550-cycle component which may be present in the signal supplied by the Audio Input Unit of the a-f type Converter. This network is not operative in the equipment discussed in the present instruction book, being disconnected by links O901, O902.)

The CHANNEL A-COMBINED-CHANNEL B switch S901 permits single-channel operation from channel A or channel B or diversity operation from both channels. In the CHANNEL A position it applies a fixed negative voltage to the grid of V903 to hold this tube in non-conducting condition. In the CHANNEL B position it applies a fixed positive voltage to the V903 grid to hold this tube in a conducting condition. In the combined position the switch applies the output voltage of the differential rectifier to operate V903 in the normal manner.

The Control Balance resistor, R905, permits the gating circuits to switch channels with an equal change of input level for either channel. This adjustment is explained in detail in Section 3, paragraph $7 c(11)$.

The output of V903 is direct-coupled to an EcclesJordan flip-flop stage, V904, which in turn is capacitively coupled to another Eccles-Jordan flip-flop stage, V905, having two stable positions. The output, taken from the grids of the second stage, V905, is fed to the control grids of the gate-A control tube, V907, and the gate-B control tube, V906.

The gate circuits consist of a control tube in series with a gate tube for each of the two channels. The discriminator outputs of channels A and B are fed to grids (pin 2) of the gate tubes V907 and V906, respectively.

When the grid (pin 7) of V907 receives a positive voltage from V905, current flows through the cathode resistors R921 and R946, impressing a voltage on the plate (pin 1) of V907 and permitting the input signal on the grid ($\operatorname{pin} 2$) of this tube to appear across the cathode resistor R926. When a positive voltage appears on the gate-A control tube, V907 pin 7 , a negative voltage appears on the gate- B control tube, V906, pin 7. Such a condition stops the flow of current through cathode resistors R923,

R922, and R945, resulting in no plate voltage on gate-B. Since no plate current can flow, the signal on the input grid cannot appear across the common cathode resistor R926.

When the channel B input signal level exceeds the channel A signal level the polarities on the gate control grids are reversed and the opposite condition exists on the gate tubes. The outputs of the two gate tubes, combined across cathode load resistor R926, are then fed to the input of the Keyer Unit.

The GATE BAL control, R923, varies the plate voltage on pin 1 of V906 to compensate for differences in gain of the two gate tubes. When properly balanced the switched plate voltage pulse created by the switching action of the control tubes is effectively cancelled in the common cathode resistor R926. Adjustment is explained in detail in Section 3, paragraph $7 c(10)$.

The CHANNEL A LEVEL-DIV IND-CHANNEL B LEVEL switch, S1602, connects the meter, M1601, to indicate the incoming signal level of either channel A or channel B or, in the DIV IND position, to show which channel is supplying the input to the Comparator Keyer Unit. In the CHANNEL A position the meter is inserted in series with the cathode resistor, R948, of the AVC rectifier V902. A similar connection to V909 is made when the switch is in the CHANEL B position. The current reading of the meter is therefore proportional to the voltage appearing across its respective differential rectifier. Further use of the meter is explained in Section 4, paragraph $5 e$. In the DIV IND position the meter is inserted across the resistors R944, R945, and R946 to indicate which of the gate tubes, V906 and V907, has voltage on its plate and is therefore conducting. A reading to the left of center indicates channel A is conducting and a reading to the right indicates channel B is conducting.

14. KEYER UNIT.

The Keyer Unit receives the d-c pulses from either channel A or channel B discriminator through jack J1310 or J1311 depending on which channel is selected by the Diversity Selector Unit. The selected pulses are then used to key the teletypewriter loop circuit and to key on and off a tone oscillator for transmission to a remote point. The detailed theory of the Keyer Unit is given in paragraph 7 of this section, since the Keyer Units used on the Comparator and on the Converter are interchangeable.

15. POWER SUPPLY UNIT (for CM-14/URR).

See Schematic Diagram, Figure 7-30. The Power Supply Unit consists of a negative-voltage supply for bias voltages, a regulated d-c voltage supply for critical circuits, an unregulated d-c voltage supply and a filament voltage supply for all the tubes.

The tubes used in the Power Supply Unit are as follows:

SCHEMATIC SYMBOL	TUBE TYPE	CIRCUIT FUNCTION
V1001	JAN-1Z2	Negative Voltage Rectifier
V1002	JAN-6X4	Positive Voltage Rectifier
V1003	JAN-0A2	Voltage Regulator
Connections to P1001 are as follows:		
VOLTAGE	PIOO1 PIN NUMBER	SERVICE
105,115,125	12 and 14	A-C input
A-C		
115 A-C	5	Fan supply
6.3 A.C	1 and 7	Heaters of all tubes except negative voltage rectifier, V1001
$+200 \mathrm{D}-\mathrm{C}$	2	General plate voltage supply
+150 D-C	3	Tone Oscillator and Audio Amplifier plate voltage in Keyer Unit
-130 D-C	8	Trigger and gate bias in Di versity Selector Unit
-45 D-C	4	Bias for trigger and teletype keyer tubes in Keyer Unit
$\begin{gathered} +80 \mathrm{D}-\mathrm{C} \\ \text { (nominal) } \end{gathered}$	11	Voltage for neon $B+$ indicator, 11601
Ground	13	Return for D-C voltages

The negative-voltage rectifier tube, V1001, supplies -130 and -45 volts. Capacitors C1001A,B,C and resistors R1001, R1002 filter the negative voltage supply. Resistors R1003 and R1005 form a voltage divider and bleeder with a - 45 volt tap. They also discharge the capacitors when the line voltage is turned off, should the load be disconnected.

The 200-volt supply includes rectifier tube V1002, filter capacitors $C 1002$ A and $B(35$ microfarads each), and filter choke L1001. Bleeder resistor R1006 discharges the capacitors in case the load is disconnected.

Tube V1003 regulates the 150 -volt supply, the current through the tube increasing or decreasing when the input voltage rises or falls. The 200 -volt source feeds the regulator tube V1003 through the series resistors R1004 and R1007. Variations in tube current change the voltage drop across these resistors to provide a regulated output.

Resistor R1008, in series with pin 11 of P1001, limits the current through the neon $B+$ indicator [1601, located on the Comparator Chassis panel.

RESTRICTED
NAVSHIPS 91355

Input power to transformer T1001 is fed through the power line filter $\mathbf{Z 1 3 0 2}$, located in the Cable Filter, to suppress r-f noise.

Provision for 105-, 115-, or 125-volt nominal line voltages is made by a tapped primary brought out to terminals 2,3 , and 4 respectively; terminal 1 provides the connection for the othet side of the line.

16. DUAL-CHANNEL FREQUENCY SHIFT CONVERTERCOMPARATOR GROUP AN/URA-7.

Frequency Shift Converter-Comparator Group AN/URA-7 includes two Frequency Shift Converters CV-71/URR and one Comparator CM-14/URR. Thus it differs from Frequency Shift Con-verter-Comparator Group AN/URA-6 in that it utilizes CV-71/URR Converters in place of CV-57/URR Converters and that no Receiver Coupling Kit is used with the AN/URA-7 equipment. The arrangement of the Converters and Comparator is the same in both the AN/URA-6 and AN/URA-7 equipments and is illustrated in the Block Diagram, Figure 2-2.

17. FREQUENCY SHIFT CONVERTER CV-71/URR.

The only difference between Frequency Shift Converter CV-71/URR and Frequency Shift Converter CV-57/URR is that the input signal frequency for the former is from 47.5 to 52.5 kc while the input frequency for the latter is from 395 to 470 kc . Circuit-wise, the difference between the two Converter models is in the Input Unit, which is described in the following paragraph. For a discussion of the other units refer to the appropriate preceding paragraphs of this section. The Block Diagram of Figure 2-1 applies to both Converter models.

18. INPUT UNIT (for CV-71/URR).

See Schematic Diagram, Figure 7-34. Essentially, the Input Unit of the CV-71/URR Converter differs from that of the CV-57/URR Converter (described in paragraph 5 of this section) in that certain circuit component values have been changed in view of the different operating frequency, as mentioned in the preceding paragraph. While the circuit components in the Input Unit of the CV-57/URR equipment are designated by symbols in the 100 -series, those in the Input Unit of the CV-71/URR bear symbols in the 200-series.

The following tubes are used in the Input Unit of the CV-71/URR Converter;

SCHEMATIC		
SYMBOL	TUBE TYPE	CIRCUIT FUNCTION
V201	JAN-6C4	Oscillator
V202	JAN-6AU6	Automatic Frequency Control V203
	JANC)	

The signal is fed from the receiver to the Converter through the Cable Filter Unit and plug P201 to the junction of capacitors C211, C212 of the Input Unit. These capacitors tune the primary of transformer T202 and provide proper impedance match. Additional selectivity is provided by transformers T202, T203 and associated capacitors.

A characteristic is thereby obtained, such that the circuit bandwidth at 50 kc center frequency is not more than 2.4 kc at 6 db down; and not more than 11 kc at 60 db down.

The equipment is adjusted between 47.5 and 52.5 kc by adjusting the powdered-iron cores of the transformer windings.

The converted signal appears at the plate of tube V203 and is fed to the input of the I-F Unit through plug P201.

The oscillator tuned circuit, T201, is bridged by fixed capacitors C204, C219 and is adjusted to a frequency of 47.5 to 52.5 kc by a powdered-iron core. External tuning of the circuit over a narrow range is done by C205, a variable capacitor used as a vernier.

The plate circuit of the automatic frequency control tube, V202, appears as a variable reactance across the oscillator tank circuit to tune the oscillator over a small range. The reactance presented by the tube is dependent on the transconductance, which is controlled by the afc bias from the discriminator. This bias is obtained from the I-F Unit through pin 11 of P201 and filtered by resistors R203, R204, R205 and capacitor C208.

19. RECEIVER COUPLING KIT, TYPE 10563.

As stated in Section 1, the Receiver Coupling Kit, Type 10563 includes a Cathode-follower Assembly and a Low-pass Filter Unit. These are described below with reference to the Schematic Diagram, Figure 7-40.

Only one tube, V501, is used, a type JAN-6AB7.
a. CATHODE-FOLLOWER ASSEMBLY.-The

Cathode-follower Assembly is an L-shaped bracket with a terminal board and socket for mounting the
component parts. A switch, $\mathbf{S 5 0 1}$, in the heater circuit turns the unit off and on. The tube, V501, gets its heater and plate power from the receiver in which it is installed. Operating as a cathode follower, the tube grid (pin 4) signal is supplied by the plate circuit of the third i-f stage in the associated Navy Model RBB, RBC, or RDM Receiver through a 100 micromicrofarad d-c blocking capacitor, C501. The output is taken from the cathode (pin 5) through a 0.01 microfarad capacitor. Resistor $\mathbf{R} 501$ is the load and bias resistor. Plate (pin 8) and screen grid (pin 6) voltage is obtained from the radio receiver +200 -volt supply through resistor $\mathbf{R} 502$. Capacitor C503 bypasses the signal voltage which appears in the plate circuit, to ground.
b. LOW-PASS FILTER UNIT.-The Low-pass Filter consists of a coil and capacitor assembly with a shield can and an output jack, J501. The filter is
mounted on the rear shield of the radio receiver and is connected to the Cathode-follower Assembly by a shielded single-conductor cable covered with an insulating braid. The filter includes two series-connected coils with a capacitor connected from each coil terminal to ground. A grounded shield separates the two coils. The mounting bracket holes match the output jack so that the jack mounting screws also support the Low-pass Filter Unit. An overall shield mounts on the radio receiver.

The Low-pass Filter unit passes frequencies below 550 kc with very little attenuation. The attenuation increases with frequency above 550 kc .

The output impedance of the filter is approximately 70 ohms.

A one-volt $400-\mathrm{kc}$ signal at the input of the cathode follower will produce a signal of 0.1 to 0.3 volt across a $\mathbf{7 0}$-ohm resistor at the filter output.

2-12

JACK	
SYMBOL	NAME
J1102	VERT. CRT-REMOTE
J1104	EXT. TONE IN
J1105	TONE OUTPUT
J1106	TTYP OUTPUT
J1107	
J1108	PWR. INPUT
J1109	DIV. CONT.
J1110	DIV. SIG.
J1111	I-F INPUT

Figure 2-1. Frequency Shift Converter
on CV-71/URR, Block Diagram

KIT 10563
SEE NOTEA

NOTE A: RECEIVER COUPLING KIT IO563 USED ONLY WITH CV-57/URR AND AN/URA-6 EQUIPMENTS.

JACK SYMBOL	NAME		
J1108	PWR. INPUT		
J1109	DIV. CONT		
JIIIO J\|			$\begin{aligned} & \text { DIV. SIG. } \\ & \text { I-F INPUT } \end{aligned}$
	I-F INPUT		
J1302	EXT. TONE IN		
J1303	TONE OUTPUT		
J304	TTYP OUTPUT		
J1305	PWR. INPUT		
J1306	PWR. OUTPUT		
J1307	PWR..OUTPUT		
J1308	DIV. CONT. CHAN-A		
J309	DIV. CONT. CHAN-B		
$\begin{aligned} & 11310 \\ & 11311 \end{aligned}$	DIV. SIG. CHAN_A		
J311	DIV. SIG. CHAN - B		

Figure 2-2. Frequency Shift Converter-Comparafor Group AN/URA-6 and AN/URA-7, Block Diagram

JACK SYMBOL	NAME
J1302	EXT. TONE IN
J1303	TONE OUTPUT
J1304	TTYP OUTPUT
J1305	PWR. INPUT
J1306	PWR. OUTPUT
J1307	PWR. OUTPUT
J1308	DIV-CONT CHAN-A
J1309	DIV-CONT CHAN-B
J1310	DIV-SIG CHAN-A
J1311	DIV-SIG CHAN-B

I. UNPACKING.

CAUTION

THE EQUIPMENT IS SUPPLIED WITH THE CHASSIS INSTALLED IN THE CABINET AND THE ELECTRON TUBES IN PLACE. IT IS THEREFORE VERY IMPORTANT THAT ALL MECHANICAL SHOCKS BE AVOIDED WHEN UNPACKING AND INSTALLING THE EQUIP. MENT IN ORDER NOT TO DAMAGE ANY PART.

The following special precautions should be observed:

Keep boxes and crates containing equipment in an upright position at all times.

Observe the weights marked on the boxes and make certain that appropriate lifting and transporting gear is available to handle the equipment without subjecting it to shock or damage.

Remove at least three sides from the boxes or crates with a nail puller. Do not use a hammer or pinch bar for this purpose.

2. INSTALLATION, GENERAL.

The various pieces of equipment making up the complete system should be arranged for convenience of operation and accessibility for maintenance. Allow front clearance for tuning and maintenance and rear clearance for connection plugs and cables to the Cable Filter Units. See Figure 3-21 for clearance dimensions of the CV-57/URR and Figures 3-22 and 3-23 for clearance dimensions of the $A N /-$ URA-6 and AN/URA-7 equipments. Observe tilt-
ing clearances shown on drawing, for equipment that may be installed in the relay rack above or below.

Receiver Coupling Kits, Type 10563, are supplied one with the CV-57/URR and two with the AN/-URA-6 equipment, for installation in the associated radio receiver to provide low-impedance i-f coupling between the radio receiver and Converter. The Filter Unit in the Receiver Coupling Kit passes frequencies of $400 \mathrm{kc} \pm 100 \mathrm{kc}$.

CAUTION

The equipment frame should be securely grounded to insure best performance and eliminate possibility of electric shock to personnel.

3. INSTALLATION OF RECEIVER COUPLING KIT IN RBB OR RBC RECEIVER.

a. REMOVAL OF RBB/RBC CHASSIS FROM CABINET.-Remove the RBB-RBC chassis from its cabinet in the following manner:
(1) Disconnect the antenna, audio output and interconnecting cable plugs from their receptacles at the rear of the radio receiver.
(2) Loosen the twelve panel thumb screws by turning them approximately six turns. These thumb screws are of the captive type and do not release entirely.
(3) Grasp the two round knobs located on the front of the receiver and pull the chassis out part way, until the stops strike. These stops may be released by pressing them through the holes on both sides, near the bottom.
(4) Pull the chassis completely out and set it on a level surface.

RESTRICTED
NAVSHIPS 91355

Figure 3-1. Audio Filter Coil (L304A,B) Mounting on RBB/RBC Receivers
b. REMOVAL OF AUDIO FILTER COIL AND CONNECTOR ASSEMBLY.-Remove the audio filter coil, L304-A,B, and connector assembly, J302, in the following manner: (See Figure 3-1).
(1) Remove retaining nut.
(2) Remove the grounding spring.
(3) Remove the outside insulating washer.
(4) Remove shield can screws and brackets.
(5) Remove audio filter coil, connector assembly, and inside insulating washer. NOTE: It is not necessary to unsolder any wires.
c. CHASSIS DRILLING.-See Figure 3-2.
(1) Cut out template No. 1 (item 6 of Table 1-1) with a razor or some sharp instrument. Hold the template in place against the rear of the RBB or RBC radio receiver chassis with scotch tape, friction tape, etc. See Figure 3-2A.
(2) Mark off the position of the seven additional holes by means of a center punch.
(3) Drill the holes in the back of the chassis frame as shown in Figure 3-2A. NOTE: Use a small drill (\#47 Drill, 0.078 -inch diameter) before drilling the finished (correct) size of the 0.187 -inch diameter holes.
(4) Cut out template No. 2. Remove the ground terminal and drill the three additional (0.187inch diameter) holes. See Figure 3-2B.
(5) Drill an additional 0.187 -inch hole, $3 / 4$ inch toward the front and $1 / 2$ inch to the left of the front left hole drilled in step 4. See Figure 3-2B.
d. CABINET DRILLING.-See Figure 3-3.
(1) Cut out template No. 3. See Figure 3-3.
(2) Drill the additional (one-inch diameter) hole.
(3) Remove the paint on the inside and outside of the cabinet as shown on Figure 3-3.
e. AUDIO FILTER MOUNTING.-Remount the Audio Filter Coil, L304A,B, and Connector Assembly, J302, in their new positions as shown in Figure 3-1. Use the same mounting hardware (brackets, nuts, etc.) as were used for the original mounting.
f. LOW-PASS FILTER UNIT MOUNTING.-See Figure 3-4 and see Table 1-1 for item references.
(1) Connect lead "D" (item 4-J) on Receptacles J501 (item 3D) as shown in Figure 3-4. Assemble the four insulating washers (item 4-D), grounding spring (item $3 G$), receptacle (item 3D), insulating board (item 3C), coil assembly (item 2), four lockwashers (item 4G), and four screws (item 4C) as shown in Figure 3-4. Add spaghetti (item $4 K$) over lead " D " and connect to terminals of coil assembly.
(2) Place the shield can (item 3A) over the above assembly.
(3) Fasten the shield can assembly (item 3A) to the chassis frame by two lock washers (item 4H), two nuts (item 41), and two screws (item 4A).
(4) Place the shield can cover (item 3B) in position. Note: The cable "C" (see Figure 3-5) should be fed through the side hole.
(5) Place the decalcomanias in position as shown in Figure 3-2A.

REMOVE PAINT ON OUTSIDE OF CABINET WITHIN THESE AREAS
$2 \frac{3}{4}$
$\frac{3}{4}$ DIA 1301
DIMENSIONS
IN
INCHES

Figure 3-4. Low-Pass Filter Unit Mounting
g. CATHODE-FOLLOWER ASSEMBLY MOUNT-ING.-See Figure 3-5 and see Table 1-1 for item references.
(1) Mount the Cathode-Follower Assembly in position as shown in Figure 3-5.
(2) Fasten this assembly to the chassis by means of the four screws (item 4B) and four lock washers (item 4H). NOTE: Be sure to put the ground terminal in place as shown in Figure 3-5.
b. WIRING.-See Figures 3-5 and 7-41 and see Table 1-1 for item references.
(1) Connect lead "A" (part of item 1) to the Third I-F, X303, plate pin 8 (see Figure 3-5).
(2) Connect cable "B" (item 3H) to TB307. The white lead with red tracer is connected to terminal No. 7 and the white lead with brown tracer is connected to terminal No. 5.
(3) Connect cable "C" (part of item 2) to TB501, terminal No. 1, located on the CathodeFollower Assembly.
(4) Turn S 501 to ON and replace the receiver in the cabinet.

Figure 3-5. Receiver Coupling Kit Installation on RBB/RBC Receivers

4. INSTALLATION OF RECEIVER COUPLING KIT IN RDM RECEIVER.

a. CHASSIS DRILLING.-See Table 1-1 for items referenced in the following steps a to j.
(1) Cut out the templates (item 10) with a razor or some sharp instrument. Hold the templates in place against the RDM receiver chassis with scotch tape or friction tape. See Figure 3-6 for the template locations, one being placed on right side of chassis, the other on rear apron of chassis.
(2) Mark the positions of the new holes by means of a center punch.
(3) Drill the new holes with a 0.187 -inch drill.
(4) Drill a $1 / 4$-inch hole close to the right apron between sockets $X 9$ and $X 10$, as shown on Figure 3-8.
b. Mount the Tube Shelf Assembly (item 1) on the Side Bracket (item 8-B), using the 6-32 x 3/8 screws (item 4B) and the number 6 lock washers (item 4-H) supplied. Because of the position of the mounting spacers, the Tube Shelf will only fit one way. See Figure 3-6 for position.
c. Mount the Side Bracket on the receiver sideapron, using two $10-32 \times 3 / 8$ screws (item 7A) No. 10 lock washers (item 7C), and No. 10 nuts (item 7E).
d. Mount the Receptacle (item 3D) on the Coil Assembly, using four 4-32 $\times 7 / 16$ binder-head screws (item 4C). Slide the spaghetti (item 4K) over the conductor (item 4J) and solder between coil terminal and receptacle (see Figure 3-4). Do not use the Insulating Board (item 3C) or the Insulating Washers (item 4D).
e. Slide the Coil Assembly in the Shield Can (item 3A) and fasten the complete assembly to the Rear

Bracket (item 8A) using two 6-32 screws (item 4A), two lock washers (item 4H), two 6-32 nuts (item 4I), and two spacers (item 7C).
f. Mount the Rear Bracket on the receiver rearapron, using three 6-32 screws (item 7B), and lock washers (item 7E). See Figures 3-6 and 3-7.
g. Crimp and solder center conductor of cable (item 9A) to terminal A of Coil Assembly. Solder shield pigtail to terminal B.
b. Solder center conductor at other end of above cable to terminal 1 of TB501 on Tube Shelf Assembly. See Figure 3-7.
i. Install power cable (item 3 H) as follows:
(1) At longer lead end, strip back the braid six inches.
(2) Crimp and solder red-tracer lead at other end of cable to terminal 3 of TB501 on the Tube Shelf.
(3) Crimp and solder brown-tracer lead to terminal 2 of TB501 on Tube Shelf.
(4) Push leads through $1 / 4$-inch hole near X9 and $X 10$.
(5) Crimp and solder brown-tracer lead to pin 7 of X10. See Figure 3-8.
(6) Crimp and solder red-tracer lead to terminal 9 of TB3. See Figure 3-8.
j. Install signal cable (item 9B) as follows:
(1) Crimp and solder cable to TP1 on Tube Shelf Assembly (see Figure 7-41). Remove short lead if necessary.
(2) Slide sleeving (item 9C) over cable.
(3) Put cable through hole made by punching as shown at G16 in Figures 3-8 and 3-9.
(4) Crimp and solder cable to pin 8 of X6.
k. Check to assure switch S 501 is in ON position and replace receiver in cabinet,

Figure 3-7. Receiver Coupling Kit Installation on RDM Receiver, Top View

Figure 3-8. Receiver Coupling Kit Installation on RDM Receiver, Wiring Side of Chassis

Figure 3-9. Receiver Coupling Kit Installation on RDM Receiver, Bottom View

RESTRICTED
NAVSHIPS 91355

AN/URA-6, AN/URA-7 CV-57/URR INSTALLATION

5. INSTALLATION OF FREQUENCY SHIFT CONVERTER CV-57/URR.

a. RACK MOUNTING.-Place the equipment on a bench; place the rack mounts (see Figure 1-2), identified as (C) and (D) in Table 1-1, against the cabinet sides so the slotted flanges turn outward, parallel to the front panel, and fasten each in place with nine No. $8-32 \times 3 / 8$ screws supplied. Put lock washers under the screw heads. See Figure 3-22 for further information. Refer to Figure 3-23 for tilting clearances to avoid interference with other equipment that may be located above or below. Mount the cabinet in the rack, using rack screws and washers (not supplied).
b. TABLE MOUNTING. - Assemble the shock mount first. Proceed as follows:
(1) Assemble the shock mounts, (F) of Table 1-1, two each on the bracket assemblies, (A) and (B) Table 1-1, using $1 / 4-20$ screws, lock washers and nuts supplied (see Figure 3-22). Put the lock
washers under the nuts.
(2) Attach the above two assemblies to the channel, (E) of Table 1-1, using eight No. 8-32 x $3 / 8$ screws. Put flat washers and lock washers under the screws, with the lock washers next to the screws.
(3) Turn the case upside down and put shock mount assembly in place.
(4) Fasten shock mount in place with nine No. $8-32 \times 3 / 8$ screws and lock washers on each side of cabinet.
(5) Drill the four mounting holes in the table for 5/16-inch diameter bolts (not supplied): Two holes with centers 14 inches apart for the front shock mounts, and two holes with their centers $7-5 / 8$ inches to the rear of the front bolt hole centers.
(6) Turn the equipment to rest on the shock mounts and bolt to the table with $5 / 16$-inch bolts. Table 3-1 shows a listing of external connectors and related information. Figure 3-10 is a rear view of Converter CV-57/URR showing the locations of these connectors.

TABLE 3-1. EXTERNAL CONNECTORS, CV-57/URR

SYMBOL	TYPE	PIN NUMBERS USED	FUNCTION
J1102	49194	Center and shell	Cathode-ray Tube Remote Vertical jack
P1102	49195	Center and shell	Cathode-ray Tube Remote Vertical plug
J1104	AN-3102-14S-7S	A,B,C	External Tone Input jack
P1 104	AN-3106-14S-7P	A,B,C	External Tone Input plug
11105	AN-3102-14S-7S	A,B,C	Tone Output jack
P1105	AN-3106-14S-7S	A,B,C	Tone Output plug
J1106	AN-3102-14S-9P	A,B	Teletype Output jack
P1106	AN-3106-145-9S	A,B	Teletype Output plug
J1107	97-4085	1,2	A-C Outlet
J1108	AN-3102-14S-7P	A,B,C	Power Input jack
P1108	AN-3106-14S-7S	A,B,C	Power Input plug
J1109	AN UG-290/U	Center and shell	Diversity Control for diversity operation*
J1110	AN UG-290/U	Center and shell	Diversity Signal for diversity operation*
J1111	49194	Center and shell	I-F Input jack
P1111	49195	Center and shell	I-F Input plug

* Used for dual-channel operaton only. See Table 3-2.

c. CONNECTING CABLES.

(1) GENERAL. - Connections to the equipment vary with different installations. In each case the equipment should be installed in accordance with approved installation plans which will show where to install it and the types of cables to be used.

Length and termination of connecting cables depend on the installation. The equipment is delivered with the mating plugs (and their associated cable clamps and ferrules) connected to their corresponding receptacles (jacks) on the unit. Remove each plug, one at a time, when it is ready for cable
fabrication. For coaxial cable fabrication refer to Figure 3-11.

For multi-conductor cable fabrication refer to Figure 3-12. To disassemble the plug, first unscrew its associated cable clamp on the back of the plug. Be careful not to lose the ferrule seated inside the cable clamp, between the clamp and plug. Refer to Figure 3-12 for further details.
(2) POWER CABLE. - Remove plug P1108 from PWR INPUT jack J1108, disassemble and, using a two-wire power cable, solder the wires to pins A and C. Reassemble the plug and replace on PWR INPUT jack J1108.

Figure 3-10. Frequency Shift Converfer CV-57/URR, Rear View

APPLY ELECTRICAL insulating VARNISH* UNDER HEAD OF SCREW

* NAVY SPEC 52-V-13 GRADE CA STANDARD NAVY STOCK NO. 52-V-1240

CONDUCTOR
DIELECTRIC

OUTER GOVERING

1. Unscrew cable clamp from plug, being careful not to lose ferrule, rubber washer, and fibre gasket.
2. Remove cable clamp cap by unfastening the two clamp screws.
3. Slip cable through cable clamp, fibre gasket, and rubber washer, the threaded portion of clamp being towards the end of cable.
4. Disassemble plug for soldering wires by unscrewing its back shell. Slip the cable through back shell and the plug coupling ring, which is freed when the back shell is removed.
5. Cut and strip cable and wires to suit. Pre-tin each wire. Cut back the shielding to within one-half inch of the outer covering.
6. Pre-tin braided shielding of cable.
7. Solder wires to plug contacts. Avoid excessive solder.
8. Reassemble plug. The cable shielding should show about one-quarter inch beyond the assembled plug.
9. Slip ferrule over cable so that shielding is on side that will be within connector housing. Solder shielding to ferrule, not permitting any solder to get near outer edge of ferrule as this causes a barrier between ferrule and rim of connector shell.
10. Push the cable in so that the ferrule is up against the connector shell rim, position the clamp rubber washer and fibre gasket, and then screw the cable clamp body onto the back shell of plug.
11. Reassemble the cable clamp cap with the two associated clamp screws and lock washers.

Figure 3-12. Cable Fabrication Instructions, Multi-Conductor Cable
(3) TELETYPEWRITER OUTPUT CABLE.Remove plug P1106 from TTYP OUTPUT jack J1106, disassemble and, using two-wire cable, connect leads to A and B. Note that pin B is grounded inside the Converter. If using single-conductor shielded wire, solder conductor to A and shield to B. Reassemble plug and replace on T'TYP OUTPUT jack J1106. The teletypewriter loop current must be supplied from external teletype battery or power supply. The negative side of the teletypewriter loop is grounded in the Frequency Shift Converter CV57/URR. See Figure 3-13.
(4) SIGNAL INPUT (I-F INPUT) PLUG P1111.-Remove plug from I-F INPUT jack J1111 and disassemble. Using 70 -ohm coaxial cable, solder the center conductor to the plug center, and the shield to the plug shell. Reassemble plug and engage in jack. The other end of the cable goes to the associated receiver by way of Receiver-Coupling Kit, Navy type 10563.
(5) TONE OUTPUT CABLE.-Remove plug P1105 from the TONE OUTPUT J1105 and disassemble. If two-wire or single-wire shielded cable is used, solder leads to A and C. Pin B is the center tap of the output transformer and should be used only when a balanced grounded output is required. Reassemble plug and replace on TONE OUTPUT jack J1105. Connect a short length of bus wire from pin B of TONE OUTPUT jack J1105 to GND 5 (see Figure 7-25) if a ground is necessary.
(6) EXTERNAL TONE INPUT CABLE (IF USED).-Remove plug P1104 from the EXT. TONE IN jack J1104. If two-wire or single-wire shielded cable is used, solder leads to A and B. Terminals A and C of jack J1104 are connected together. Terminal B of J1104 is connected to the shield and ground. Reassemble plug and insert in jack J1104. Use of this cable is optional.
(7) VERTICAL CRT REMOTE CABLE (IF USED).-Remove plug P1102 from the VERT. CRT-REMOTE jack J1102. Using 70 -ohm coaxial or single-wire shielded cable, solder the center conductor to the plug center, and the shield to the plug shell. Reassemble plug and insert in jack J1102. Use of this cable is optional.

Figure 3-13. Telefypewriter Loop Circuit,
Block Diagram

6. INSTALLATION OF FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-6 or AN/URA-7.

a. MOUNTING. - The AN/URA-6 or AN/-URA-7 equipment is supplied in a rack for table mounting. Four holes are provided in the base to bolt the rack to the table with $3 / 8$-inch bolts (not supplied), see Figure 3-22. The centers of the front holes are 15-1/2 inches apart, located $1-11 / 16$ inches back from the front of the cabinet. The centers of the rear holes are 11-1/16 inches directly to the rear of the centers of the front holes.

Access to the two front bolt holes can be had by removing the four screws holding the bottom Converter in the cabinet and then removing the Converter. After bolting the cabinet to the table, replace the Converter previously removed.

The Converters and Comparator can be removed from the table-mounting rack and installed in a standard relay rack. This is shown in Figure 3-23. The units may be fastened to the relay rack by the same screws as are used in the table-mounting rack. Spaces between the units may be covered by blank panels, each being held by two screws (one at each end). These panels and their screws are not supplied as parts of the subject equipment and must be procured separately. Observe the clearances shown on the drawing to allow for pulling out the chassis and tilting them for servicing, in order to avoid interference with other equipment that may be mounted in the relay rack above or below the units of the AN/URA-6 or AN/URA-7 equipments.

RESTRICTED
NAVSHIPS 91355

TABLE 3-2. EXTERNAL CONNECTORS, AN/URA-6 or AN/URA-7
(1100-Symbol Series, one on each Converter or two per equipment. 1300-Symbol Series, one per equipment)

SYMBOL	TYPE	PIN NUMBERS USED	FUNCTION
$J 1102$	49194	Center and shell	Cathode-ray Tube Remote Vertical jack
P1102	49195	Center and shell	Cathode-ray Tube Remote Vertical plug
J1104	AN-3102-14S-7S	A,B,C	External Tone Input jack
P1104	AN-3106-14S-7P	A,B,C	External Tone Input plug
J1105	AN-3102-14S-7S	A,B,C	Tone Output jack
P1105	AN-3106-14S-7P	A,B,C	Teletype Output jack
J1106	AN-3102-14S-9P	A,B	Teletype Output plug
P1106	AN-3106-14S-9S	A,B	A-C Outlet
J1107	$97-4085$	I-F Input jack	
J1111	49194	Center and shell	
P1111	49195	Center and shell	
		Anput plug	
J1302	AN-3102-14S-7S	A,B,C	External Tone Input jack
P1302	AN-3106-14S-7P	A,B,C	Tone Diversity Output jack
J1303	AN-3102-14S-7S	A,B,C	Tone Diversity Output plug
P1303	AN-3106-14S-7P	A,B,C	Teletype Diversity Output jack
J1304	AN-3102-14S-9P	A,B	Teletype Diversity Output plug
P1304	AN-3106-14S-9S	A,B	Power Input jack
J1305	AN-3102-14S-7P	A,B,C	Power Input plug
P1305	AN-3106-14S-7S	A,B,C	

b. CONNECTING CABLES.

(1) GENERAL.-Connections to the equipment vary with different installations. In each case the equipment should be installed in accordance with approved installation plans which will show where to install it and the types of cables to be used.

The equipment is delivered with the mating plugs (and their associated cable clamps and ferrules) connected to their corresponding receptacles (jacks) on the unit. Remove each plug, one at a time, when it is ready for cable fabrication. For single-conductor cable fabrication refer to Figure 3-11 and Table 1-2. For multi-conductor cable fabrication refer to Figure 3-12. To disassemble the plug, first unscrew its associated cable clamp on the back of the plug. Be careful not to lose the ferrule seated inside the cable clamp, between the clamp and plug. Refer to Figure 3-12 for further details.
(2) CONVERTER-TO-COMPARATOR CABLES.-Connect the six cables supplied with the equipment (Figure 3-14) as follows: (The first cable symbol number given is for the AN/URA-6 equipment; the symbol number in parentheses is for the AN/URA-7 equipment):
(a) Cable W1703 (W1701) from DIV. CONT. jack J1109 of top converter to DIV.-CONT. CHAN-A jack J1308 of Comparator.
(b) Cable W1704 (W1702) from DIV. CONT. jack J1109 of bottom converter to DIV.CON'T. CHAN-B jack J1309 of Comparator.
(c) Cable W1709 (W 1707) from DIV. SIG. jack J1110 of top converter to DIV.-SIG. CHAN-A jack J1310 of Comparator.
(d) Cable W1710 (W1708) from DIV. SIG. jack J1110 of bottom converter to DIV.-SIG. CHANB jack J1311 of Comparator.
(e) Cable W1715 (W1713) from PWR INPUT jack J1108 of top converter to PWR OUTPUT jack J1306 of Comparator.
(f) Cable W1716 (W1714) from PWR INPUT jack J1108 of bottom converter to PWR OUTPUT jack J1307 of Comparator.
(3) POWER CABLE. - Remove plug P1305 from PWR INPUT jack J1305, disassemble and, using a two-wire power cable, solder the wires to pins A and C. Reassemble the plug and replace on PWR INPUT' jack J1305.
(4) TELETYPEWRITER CABLE. - Remove plug P1304 from TTYP OUTPUT jack J1304, disassemble, and using two-wire cable, solder leads to A and B as shown in Figure 3-12. The teletypewriter loop current must be supplied from external teletype power supply as shown in applicable installation drawing. The negative side of the teletypewriter loop is grounded in the Frequency Shift Converter-Com: parator Group AN/URA-6 or AN/URA-7. See Figure 3-13. Teletypewriter cables may be connected in the same manner to individual Converter units, if desired, for single-channel operation. See paragraph $5 c(3)$ of this section.

Figure 3-14. Frequency Shift Converter-Comparator Group AN/URA-6 and AN/URA-7, Rear View
(5) I-F INPUT CABLES ON BOTH CON-VERTERS.-Remove the plugs P1111 from I-F INPUT jacks J1111 and disassemble. Using 70 -ohm coaxial cable RG-11/U or RG-12/U, solder the center conductor to the plug center, and the shield to the plug shell (see Figure 3-11). Reassemble plugs and place in proper jacks. The two cables of the two converters will go to separate receivers.
(6) TONE OUTPU'T CABLE. - Remove the plug from TONE OUTPUT jack J1303 and disassemble. If two-wire or single-wire shielded cable is used, solder leads to A and C. Pin B is the center tap of the output transformer and should be used only when a balanced grounded output is required. Reassemble plug and replace on TONE OUTPUT jack J1303. Connect a short length of bus wire from pin B of TONE OUTPUT jack J1303 to GND. 4 (see Figure 7-27) if a ground is necessary. Tone output cables may be connected in the same manner to individual Converter units if desired, for single-channel operation. See paragraph $5 c(5)$ of this section.
(7) EXTERNAL TONE INPUT CABLE (IF USED).-Remove plug P1302 from EXT. TONE IN jack J1302. If two-wire or single-wire shielded cable is used, solder leads to A and B. Terminals A and C of jack J1302 are connected together. Terminal B of $J 1302$ is connected to the shield and ground. Reassemble plug and insert in jack J1302. Use of this cable is optional. External tone input cables may be connected in the same manner to individual Converter units, if desired, for single-channel operation. See paragraph $5 c(6)$ of this section.
(8) VERTICAL CRT REMOTE CABLE (IF USED).-Optional use may be made of a connection to a remote cathode-ray tube through the VERT. CRT-REMOTE jack J1102 on the Converter units. See paragraph $5 c(7)$ of this section.

7. INITIAL ADJUSTMENTS.

Refer to Figure 4-1 for location of front panel controls.
a. FREQUENCY SHIFT CONVERTER CV-57/URR.

RESTRICTED NAVSHIPS 91355

Figure 3-15. Jumper Cable in Use in Frequency Shift Converter CV-57/URR
(1) Measure the power-line voltage by connecting a 150 -volt range a-c voltmeter across the two contacts of the a-c outlet J 1107 located next to PWR INPUT jack J1108 (see Figure 3-10). Pull chassis out of cabinet and remove Power Supply subassembly from chassis. Adjust tap on power transformer T801, if necessary, by changing the grey lead on terminals 2,3 or 4 . Transformer terminals 2 , 3, and 4 are, respectively, for approximate line voltages of 105,115 , and 125 volts. Leave the fan lead (brown) on terminal 3 of the transformer. See Figures 7-4 and 7-29. Re-install Power Supply sub-assembly on chassis and push chassis back in place.
(2) Turn POWER switch, S1401, to ON. Neon pilot light on front panel should light about ten seconds later, which allows for tube warm-up.
(3) Set TUNE-OPERATE switch, S302, to TUNE.
(4) Set the TONE FREQ switch, S602, under the cover on the front panel, to the desired frequency. If an external tone frequency is used, set TONE FREQ to EXT and adjust frequency of tone generator. Adjust to suitable output level with TONE LEVEL control, R629.
(5) After about one minute, adjust the Tuning Monitor as follows:
(a) Using a screwdriver, adjust the INTENSITY control, R713, to give a reasonably bright trace. Too bright a trace will result in short tube life and focusing difficulties.
(b) Using a screwdriver, adjust the FOCUS control, R715, for sharpest trace.
(c) Turn POWER switch to OFF. Slide chassis out of case and connect Cable Filter jack, J1101, and Converter plug, P1401, with jumper cable furnished. See Figure 3-15.
(d) Turn POWER switch to ON and allow about one minute for warm-up. Push CAL IN button, S701, (no signal input, VERT GAIN control, R701, set fully counterclockwise).
(e) Loosen lock nut and adjust R705 (located on the rear of the cathode-ray tube mounting bracket, below the V CENT potentiometer, R702) until scope line coincides with engraved center line. Tighten lock nut. See Figure 7-7.
(f) Release CAL IN button.

Figure 3-16. Radio Receiver Tuning Pafterns as Seen on Tuning Monitor
(g) Adjust V CENT on panel with a screwdriver until scope line coincides with engraved center line.
(b) Readjust FOCUS with a screwdriver for best average focus with CAL IN button depressed and released.
(i) Make certain S604 (toggle switch on rear bracket of Keyer Unit) is in ON position, see Figure 7-9.
(6) Set SPEED switch to LOW for normal(60 words per minute) speed or HIGH for highspeed multiplex or speeds greater than 60 words per minute.
(7) Plug a 0-100 ma milliammeter, such as Navy Model OE (connected to a phone plug with the tip to the "minus" and the shank to the "plus" terminal of the meter), into the TTYP jack on the front panel. With no keying signal (steady mark) adjust the loop current control, at the teletype power supply, for 60 ma . When the unit is keying, the current indication on the meter will drop.
(8) Using a signal generator, such as Navy Model LP or equivalent, feed into the associated radio receiver a signal having a frequency within the receiver tuning range. Carefully tune the receiver to this signal, using such tuning meter or indicator as it may have.
(9) Connect an r-f voltmeter (40 kc , approximately 10 -volt range), such as Navy Model OBQ or Multimeter ME-25/U series or equivalent, across the DIV. CONT jack J1109 at rear of Converter.
(10) Set the TUNING control, C105, to the approximate center of its range. On the Input Unit (see Figures 7-11, 7-12), adjust the core of transformer T101, and then the top and bottom cores of transformers T102, T103, for maximum indication on the r-f voltmeter. Reduce receiver gain to avoid overloading and keep voltmeter reading on scale. Turning off the receiver bfo may facilitate this adjustment.
(11) Disconnect the Model LP signal generator and tune the radio receiver to a frequency shift signal. With the VERT GAIN control, adjust the separation of the two lines on the cathode-ray tube to a convenient distance apart.
(12) Adjust receiver tuning (main dial on receiver and TUNING dial, C105, on Converter) to center the lines on the cathode-ray tube (see Figure 3-16).
(13) Set TUNE-OPERATE switch, S302, to OPERATE; teletypewriter may start printing.
(14) Push CAL IN button and adjust THRESHOLD control, R318, to produce a pattern on the cathode-ray tube which matches the top and bottom lines engraved on cathode-ray tube window (see Figure 3-17).

Figure 3-17. Tuning Pattern (CAL IN) on Tuning Monitor

Figure 3-18. Adjustment of MOD BAL Control
(15) Release CAL IN button.
(16) Teletypewriter should be printing; if it does not, change position of NORM-REV switch, S603.
(17) Turn the LOW-HIGH-ADJ switch, S601, to the ADJ position and push the CAL IN button. The cathode-ray tube pattern should fit between the top and bottom engraved lines of the window, within about $1 / 16$ inch. This is a sensitivity check of the tuning monitor tube V702 and amplifier tube V601B. If the pattern does not match the engraved lines, the circuits of V601 and the tube V702 itself need checking as described in Section 6.
(18) Turn the LOW-HIGH-ADJ switch to original (LOW or HIGH) position.
(19) Connect an external test oscilloscope, such as Oscilloscope OS-8/U, Navy Model OBL or OBT series, to the TONE OUTPUT or PHONE jacks, J1105 or J1402, and with TONE FREQ switch, S602, on EXT', TONE LEVEL control, R629, on 10 , no tone input adjust MOD BAL control, R633, for minimum transients, as seen on the oscilloscope (see Figure 3-18).
(20) Adjust the \%MARK control, R613, as follows:
(a) Set SPEED switch. S601, on the ADJ position.
(b) Connect external oscilloscope input across a 20 -ohm resistor connected to a plug inserted in the TTYP jack.
(c) Set test oscilloscope sweep for approximately 90 cycles with sync off.
(d) Adjust sweep control on scope for the peak of one cycle to be centered in the trough of another cycle.
(e) Adjust the \%MARK control until the peaks and troughs are equal in width (see Figure 3-19).
(f) Remove test oscilloscope and return SPEED switch to former (LOW or HIGH) position. Teletypewriter should be printing normally. If it is not, repeat procedure. If operation is still unsatisfactory, equipment needs trouble-shooting, see Section 7.
(g) If no teletypewriter equipment is available for connection to the Frequency Shift Converter CV-57/URR, use the following ALTERNATE PROCEDURE in place of the above steps (a) to (f).

1. Set SPEED switch to ADJ position.
2. Connect an audio voltmeter to the PHONES jack, J1402, on the front panel.
3. Set the TONE FREQ switch, S602, to the 1785 -cycle position and the TONE LEVEL control, R629, to its maximum position.
4. Place the NORM-REV switch S603 alternately in the FORM and REV positions and adjust the \%MARK control, R613, to obtain equal indications on the audio voltmeter in the two positions of the switch.
(21) Cut off power. Remove jumper cable and push chassis back in case. Remove voltmeter from DIV. CONT jack.
b. FREQUENCY SHIFT CONVERTER CV-71/-URR.-Initial adjustments for Frequency Shift Converter CV-71/URR are the same as for Frequency Shift Converter CV-57/URR as set forth in the preceding paragraph $7 a$ except in sub-paragraph $7 a(10)$ read $T 201, \mathrm{~T} 202, \mathrm{~T} 203$ instead of T101, T102, T103. Note that the signal from the associated receiver is of the order of 50 kc instead of 400 kc .
c. FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-6 or AN/URA-7.
(1) Set up each channel as described in paragraph $7 a$ or $7 b$ of this section with:
(a) The teletypewriter plugged into the channel being adjusted.
(b) Note that instead of connecting an r-f voltmeter as in step (9) of paragraph 7a, the meter on the front panel of Comparator CM-14/URR may be used as an indicating device when aligning the Input Unit transformers.
(2) Measure the power-line voltage by connecting a 150 -volt range a-c voltmeter, such as Navy type 60044 Vacuum-tube volt-ohm-meter or equivalent, across contacts of the a-c outlet on one of the two Converter units (see paragraph $7 a(1)$ of this section). Pull chassis out of cabinet and remove Power Supply sub-assembly from chassis. Adjust tap on power transformer T1001 of the Comparator, if necessary, by changing the grey lead on terminal

Figure 3-19. Test Oscilloscope Patferns for \% MARK Control Adjustment

2, 3, or 4. Transformer terminals 2, 3, and 4 are, respectively, for approximate line voltages of 105 , 115 , and 125 volts. Do not change the fan lead (brown) from terminal 3. See Figures 7-6 and 7-31. Re-install Power Supply sub-assembly on chassis and push chassis back into cabinet.
(3) Turn Comparator POWER switch to ON. Neon pilot light on front panel should light after about ten seconds.
(4) Set the TONE FREQ switch, S602, under the front panel cover of the Comparator (see Figure 4-1) to the desired frequency. If an external tone frequency in place of internal tone is used set TONE FREQ to EXT' and adjust the frequency of the tone generator. Adjust signal to suitable output level with TONE LEVEL control.
(5) Set SPEED switch, S601, on Comparator to LOW for normal-(60 words per minute) or HIGH for high-speed multiplex or speeds greater than 60 words per minute.
(6) Plug a $0-100$ ma milliammeter, such as Navy Model OE (connected to a phone plug with the tip to the "minus" and the shank to the "plus" terminal of the meter), into the TTYP jack on the front panel. With no keying signal (steady mark) adjust the loop current control, at the teletype power supply, for 60 ma . When the unit is keying, the current indication on the meter will drop.
(7) With channel A (top Converter unit) receiving signals, set CHANNEL A-COMBINEDCHANNEL B switch to CHANNEL A position.
(8) Connect the external test oscilloscope to the TONE OUTPUT or PHONE jack, J1303 or J1602, of Comparator and with TONE FREQ on EXT, TONE LEVEL control, R629, on 10 , no tone input adjust MOD BAL control, R633, for a minimum of transients.

Figure 3-20. Test Oscilloscope Pafterns for GATE BAL Control Adjustment
(9) Adjust \%MARK control, R613, of Comparator as follows:
(a) Set SPEED switch to ADJ.
(b) Connect external oscilloscope input across a 20 -ohm resistor connected to a plug inserted in the TTYP jack.
(c) Set test oscilloscope horizontal sweep for approximately 90 cycles with sync off.
(d) Adjust test oscilloscope sweep control for the peak of one cycle to be centered in the trough of another cycle.
(e) Adjust the \%MARK control until the peaks and troughs are equal widths (see Figure 3-19).
(f) Remove oscilloscope and return SPEED switch to original position. Teletypewriter should print normally. If it does not, change position of Comparator NORM-REV switch.
(g) If no teletypewriter equipment is available for connection to the Frequency Shift ConverterComparator Group, use the following ALTERNATE PROCEDURE in place of the above steps (a) to (f) :

1. Set SPEED switch to ADJ position.
2. Connect an audio voltmeter to the PHONES jack on the front panel.
3. Set the TONE FREQ switch to the 1785-cycle position and the TONE LEVEL control to its maximum position.
4. Place the NORM-REV switch alternately in the NORM and REV positions and adjust the \%MARK control to obtain equal indications on the audio voltmeter in the two positions of the switch.
(10) Adjust GATE BAL control, R923 (see Figure 4-1), as follows:
(a) Slide the Comparator out of the cabinet and connect to Cable Filter Unit by jumper cable supplied.

RESTRICTED
NAVSHIPS 91355

AN/URA-6, AN/URA-7
 CV-57/URR
 INSTALLATION

(b) Connect a jumper from a filament lead to grid of V903, pin 6 (location of this tube is shown in Figures 5-4 and 7-45).
(c) Set CHANNEL A-COMBINEDCHANNEL B switch to COMBINED.
(d) Connect a test oscilloscope to V906 cathode, pin 3, and ground.
(e) Channel switching is now occurring at a 60 -cycle rate. The test oscilloscope pattern will be a square wave switching oscillogram. Adjust the GATE BAL for minimum of pattern (see Figure 3-20).
(f) Turn power off and remove jumper and test oscilloscope.
(g) Throw switch S604 (on the rear bracket of the Keyer Unit) to the ON position.
(11) Adjust CONT BAL control, R905 (see Figure 4-1), as follows:
(a) Set CHANNEL A-COMBINEDCHANNEL B switch, S901, to COMBINED.
(b) Set CHANNEL A LEVEL-DIV INDCHANNEL B LEVEL switch, S1602, to DIV IND.
(c) Set links O901 and O902 (on Diversity Selector Unit) to I-F position. See Figure 7-18.
(d) Apply separate 1000 -cycle signals of about 0.1 volt to DIV-CONT CHAN-A jack J1308 and DIV-CONT CHAN-B jack J1309 on the rear of the Cable Filter. One channel will conduct. If the panel meter, M1601, reads approximately 50 , channel A is conducting; if meter reads approximately 150 , channel B is conducting; and if meter reads approximately 100 , the channels are switching too fast for the meter to follow. The latter case will not occur during this adjustment. The output signals of the two associated receivers may be used for this purpose if an electron-tube a-c voltmeter is used to measure the diversity control voltages which appear at DIVCONT CHAN-A jack J1308 and DIV-CONT CHAN-B jack J1309. To connect the voltmeter to these jacks, first remove the Cable Filter Unit top cover, and this will give access to the desired terminals at the rear of the jacks.
(e) Increase the input voltage to the channel not conducting until it conducts, as indicated by the meter. Record the increase in voltage necessary to make it conduct, then reduce the voltage to 0.1 volt.
(f) Increase input voltage on other channel until it conducts, as shown by panel meter and record voltage. If the two voltages recorded in steps (e) and (f) are within 10 per cent of each other, then the CONT BAL is correctly adjusted. If they are
not, change the CON'T BAL setting and repeat procedure until voltages to shift each channel are equal.
(g) If the preceding procedure is impracticable because of lack of necessary test equipment or for any other reason, use the following ALTERNATE SIMPLIFIED PROCEDURE for adjusting the CONT BAL control:

When the CON' BAL control, R905, is properly adjusted, the operation of the CHANNEL A-COMBINED-CHANNEL B switch, S901, should be as follows. With no signal from either channel and with the switch in the CHANNEL A position, the panel meter, M1601, should indicate approximately 50; and throwing the switch over to the COMBINED position should not change this indication. With the switch in the CHANNEL B position, the panel meter should indicate approximately 150 ; and throwing the switch into the COMBINED position should not change this indication. If the meter indication should change when turning the switch from the CHANNEL A or CHANNEL B position to the COMBINED position, adjust the CONT BAL control until no such change is observed on the meter.
(b) Pull the Comparator chassis out of the case and connect its 14 -conductor jumper cable. Set the TONE FREQ switch to 1785 -cycle position. Insert a lead into the PHONES jack on the front panel and touch the free end of the lead to the diversity control input "A" on the Diversity Selector Unit (this point is marked " A " in Figure $7-18$ and is shown in Figure 7-45 as terminal 8 of E905). Adjust the TONE LEVEL control, R629, to obtain an indication of 50 on the panel meter, M1601. Next move the free end of the lead to the diversity control input "B" on the Diversity Selector Unit (this point is marked "B" in Figure 7-18 and is shown in Figure $7-45$ as terminal 22 of E901). The panel meter should indicate $50 \pm 20 \%$. If it does not, the circuits of the Diversity Selector Unit require checking and trouble shooting for faulty tubes or circuit components. Use the information (schematic diagrams, wiring diagrams. voltage and resistance measurements) given in Section 7.
(i) Remove signal from DIV-CONT CHANA and DIV-CONT CHAN-B jacks J1308 and J1309, and plug original cables in place. This completes the adjustment of the AN/URA-6 or AN/URA-7.

CAUTION

Any of the Keyers not connected to teletypewriters in operating condition must have switch $\mathbf{S 6 0 4}$ (on rear bracket of Keyer Unit) in the OFF position.

RESTRICTED NAVSHIPS 91355

RESTRICTED
NAVSHIPS

RACK MOUNTING ASSEMBLY
side elevation
DIMENSIONS IN INCHES
WEIGHTS:
34 P
34 POUND IN CASE FOR RACK MOUNTING
40 POUNDS IN CASE WITH SHOCK MOUNTS

YIEW IN DIRECTION OF ARROWS "A-A"
DIMENSIONS IN INCHES WEIGHT: 125 POUNDS

Figure 3-22. Frequency Shift ConverterComparator Groups AN/URA-6 and AN/URA-7, Outline Drawing

RESTRICTED

DIMENSIONS IN INCHES
 Comparator Groups AN/URA-6 and AN/URA-7, Relay Rack Mounting Installation Drawing

SECTION 4 OPERATION

1. INTRODUCTION.

The Frequency Shift Converters covered by this instruction book are only part of a complete teletypewriter radio receiving system. Other equipment necessary for use of Frequency Shift Converter CV-57/URR includes an antenna to pick up the radio signals, a radio receiver to select and amplify the radio signals, and a teletypewriter with a d-c power supply to provide loop current. If the tone signal is used for transmission to a remote point, terminal equipment to operate from the on-off keyed tone must also be provided. A frequency shift keyed signal centered about the intermediate frequency of the associated radio receiver is the input signal for the Frequency Shift Converter. This signal shifts to higher and lower frequencies corresponding to the characters transmitted. The Frequency Shift Converter translates the frequency shifts into off-on keyed d-c square-wave pulses to key the receiving teletypewriter loop circuit.

Since the teletypewriter signals are essentially d-c signals (square waves), transmission over telephone lines is limited; therefore, a tone modulator, keyed on and off by the teletype signals, is provided. This onoff keyed tone signal must be demodulated to operate a teletypewriter.

The Frequency Shift Converter-Comparator Group, AN/URA-6 or AN/URA-7, serves the same purpose, respectively, as Frequency Shift Converter CV-57/URR or CV-71/URR, except that two receivers are used for diversity operation. The Comparator CM14/URR compares continuously the levels of the two signals, and select the stronger one to key the teletypewriter loop circuits. When diversity operation is not required, the two converters can be used for
different signals and operate different teletypewriters.

2. CAPABILITIES AND LIMITATIONS.

The equipment provides the best possible teletype signals when not subjected to interference and the irregularities of radio transmission. It will give accurate conversion up to the point when the noise level is approximately equal to or greater than the signal. The Radio Receiver output signal level must be high enough to keep the input to the limiter stage well above saturation level.

Little attention of the operator is required during operation after the equipment has warmed up (warm-up time for the Converters and Comparator is about ten minutes; additional time may be required for the associated receivers). The tuning monitor gives continuous, visible monitoring of the discriminator output. The neon ON indicator, operating from the +200 volt supply, gives a continuous indication of the B-power supply for the tubes.

The meter in the Comparator can be switched to indicate the signal strength of each channel or to indicate which channel is selected at the moment to control the keyer.

3. OPERATING CONTROLS.

All operating controls are located on the front panel with all but the essential operating controls located under a center cover or behind oil-cup-type hole covers. This feature helps prevent breaks in service due to the operator manipulating the wrong knob accidentally. All but two controls, primarily of a maintenance nature, are accessible from the front panel.

RESTRICTED NAVSHIPS 91355

Figure 4-1. Operating Panel Controls

4. TUNING ADJUSTMENT.

Tuning is accomplished with the associated radio receiver, but the following adjustments are necessary on the CV-57/URR, AN/URA-6 and AN/-URA-7 equipments (see Figure 4-1):

CONTROL TUNING

AFC ON-OFF

TUNE-OPERATE

THRESHOLD

NARROW-WIDE

TONE FREQ

TONE LEVEL Adjusts the amplitude of the tone signal.
SPEED

NORM-REV
4-2 or high-spced teletypewriter. Applies a standard voltage for adjustments in the ADJ position.
Reverses polarity of teletype signals.

CONTROL POWER, OFF-ON

VERT GAIN

CAL IN

FUNCTION

Turns power to equipment on or off. Does not de-energize fuses, convenience outlet, power line filter or switch wiring.

Adjusts height of pattern on cathoderay tube.

When depressed, connects cathoderay tube to indicate Keyer input voltage.

The following controls are on the Comparator CM-14/URR, part of the AN/URA-6 or AN/-URA-7 equipments.

CONTROL

CHANNEL A-COMBINED-

CHANNEL B

CHANNEL A
LEVEL-DIV
IND-
CHANNEL
B LEVEL

FUNCTION

Switches Comparator Keyer to channel A alone, both channels in diversity operation, or channel B alone.

Shows signal level of channel A, which channel is supplying the signal in diversity operation, or the signal level of channel B.

5. SUMMARY OF OPERATION.

a. SINGLE-CHANNEL CV-57/URR STARTING PROCEDURE.
(1) Turn POWER switch of Frequency Shift Converter to $O N$, turn on power to radio receiver and teletypewriter and allow sufficient time for all equipment to warm up.
(2) Set TUNE-OPERATE switch of the Frequency Shift Converter to TUNE and AFC ON-OFF control to ON.
(3) Tune in a frequency shift signal on the radio receiver with receiver bfo adjusted to give a beat note of about 1000 cycles, using a pair of headphones to assist in locating the signal. Receiver bfo may now be turned off if desired. The receiver tuning controls serve for rough tuning adjustment while the TUNING control on the Converter front panel serves for fine (vernier) tuning. Adjust the tuning controls carefully to vertically center the horizontal lines on the Tuning Monitor. See Figure 3-16.
(4) Set TUNE-OPERATE switch to OPERATE.
(5) Push CAL IN button and adjust the THRESHOLD control, to produce cathode-ray tube pattern which matches lines engraved on tuning monitor window. See Figure 3-17.
(6) Release CAL IN button.
(7) Teletypewriter should be printing correctly; if it is not, change the position of the NORMREV switch. If trouble is not corrected, advise technician.
(8) Observe the Tuning Monitor indication occasionally and readjust receiver tuning as necessary to maintain proper operation until the equipment has thoroughly stabilized.
b. TUNING SINGLE-CHANNEL, CV-57/URR, TO ANOTHER FREQUENCY.
(1) Set TUNE-OPERATE switch to TUNE and AFC control to ON.
(2) Tune in a frequency shift signal on the radio receiver with receiver bfo adjusted to give a beat note of about 1000 cycles, using a pair of headphones to assist in locating the signal. Receiver bfo may now be turned off if desired. The receiver tuning controls serve for rough tuning adjustment while the TUNING control on the Converter front panel serves for fine (vernier) tuning. Adjust the tuning controls carefully to vertically center the horizontal lines on the Tuning Monitor. See Figure 3-16.
(3) Set TUNE-OPERATE switch to OPERATE.
(4) Push CAL IN button and adjust THRESHOLD control, to produce cathode ray tube pattern which matches lines engraved on the Tuning Monitor window. See Figure 3-17.
(5) Release CAL IN button.
(6) Teletypewriter should now be printing; if it is not, change the position of the NORM-REV switch.
c. OTHER ADJUSTMENTS, SINGLE CHANNEL.
(1) TONE LEVEL.-Adjustment can be made any time by means of the TONE LEVEL control R629. If an external tone source is used, adjustment can also be made, independently, by changing the amplitude at the source. Tone will not be keyed on and off when TUNE-OPERATE switch is in TUNE position when there is no signal being received and when a steady mark signal is being received.
(2) TONE FREQUENCY.-Adjustment can be made at any time convenient to the operator when using the internal tone oscillator. An external signal (switch on EXT) can only have its frequency adjusted at the source.
(3) MAINTENANCE ADJUSTMENTS. - Adjustments other than those mentioned are part of the initial and maintenance adjustments. For further information see sections 3 and 7 of this book.
d. STOPPING THE SINGLE-CHANNEL EQUIP-MENT.-To stop the equipment throw the Frequency Shift Converter POWER switch to ÓFF.

e. DUAL-CHANNEL AN/URA-6 or AN/URA-7

 STARTING PROCEDURE.(1) Throw the POWER switches of each of the three units to ON. Turn on power to the two radio receivers and teletypewriter and allow sufficient time for all equipment to warm up.
(2) Set the TUNE-OPERATE switches of the two Frequency Shift Converters to TUNE and the AFC controls to ON.
(3) Tune in a frequency shift signal on both radio receivers with receiver bfo adjusted to give a beat note of about 1000 cycles, using a pair of headphones to assist in locating the signal and to make sure that both receivers are tuned to the same signal. Receiver bfo may now be turned off if desired. The receiver tuning controls serve for rough tuning adjustment while the TUNING control on the Converter front panel serves for fine (vernier) tuning. Adjust the tuning controls carefully to vertically center the horizontal lines on the Tuning Monitor. See Figure 3-16.
(4) Adjust the frequency of each receiver accurately to be sure they are tuned to the same signal.
(5) Set TUNE-OPERATE switch on each of the Converters to OPERATE.
(6) Push CAL IN button and adjust each THRESHOLD control to produce cathode-ray tube pattern which matches lines engraved on tuning monitor window. See Figure 3-17.
(7) Release CAL IN button.
(8) Set CHANNEL A-COMBINED-CHANNEL B switch of the Comparator to CHANNEL A. The teletypewriter should operate. If the printing appears to be garbled, change the position of the NORM-REV switch of the Comparator.
(9) Set CHANNEL A-COMBINED-CHANNEL B switch of the Comparator to CHANNEL B. The teletypewriter should operate. If the printing appears to be garbled, check the tuning of the channel B receiver to make sure it is tuned to the same signal as the channel A receiver.
(10) Set channel B receiver gain to zero. Set CHANNEL A LEVEL-DIV IND-CHANNEL B LEVEL switch to CHANNEL A and adjust channel A radio receiver output (gain control) for a reading of approximately 90 microamperes on the Comparator meter. Adjust channel B receiver gain until meter reads half of above setting.
(11) Set CHANNEL A LEVEL-DIV INDCHANNEL B LEVEL switch to CHANNEL B LEVEL position. The meter should now read approximately the same as for channel A.
(12) Set CHANNEL A-DIV IND-CHANNEL B switch to DIV IND. A reading of approximately 50 microamperes indicates channel A is supplying the signal, 150 microamperes indicates channel B is supplying the signal and 100 microamperes indicates the channels are switching too rapidly for the meter to follow. If one channel carries the signal most of the time increase the receiver gain of the other channel.
f. TUNING DUAL-CHANNEL, AN/URA-6 or AN/URA-7, to ANOTHER FREQUENCY.
(1) Set the TUNE-OPERATE switches of the Converters to TUNE and AFC controls to ON.
(2) Tune in a frequency shift signal on both radio receivers with receiver bfo adjusted to give a beat note of about 1000 cycles, using a pair of headphones to assist in locating the signal and to make sure that both receivers are tuned to the same signal. The receiver bfo may now be turned off if desired. The receiver tuning controls serve for rough tuning adjustment while the TUNING control on the Converter front panel serves for fine (vernier) tuning. Adjust the TUNING control carefully to vertically center the horizontal lines on the Tuning Monitors.

See Figure 3-16.
(3) Set TUNE-OPERATE switch on each of the Converters to OPERATE.
(4) Push CAL IN button and adjust each THRESHOLD control to produce cathode-ray tube pattern which matches lines engraved on tuning monitor window. See Figure 3-17.
(5) Release CAL IN button.
(6) Set CHANNEL A-COMBINED-CHANNEL B switch of the Comparator to CHANNEL A. The teletypewriter should operate. If the printing appears to be garbled, change the position of the NORM-REV switch of the Comparator.
(7) Set CHANNEL A-COMBINED-CHANNEL B switch of the Comparator to CHANNEL B. The teletypewriter should operate. If the printing appears to be garbled, check the tuning of the channel B radio receiver to make sure both radio receivers are tuned to the same signal.
(8) Set Channel B receiver gain to zero. Set CHANNEL A LEVEL-DIV IND-CHANNEL B LEVEL switch to CHANNEL A and adjust channel A radio receiver gain for a reading of approximately 90 microamperes on the Comparator meter. Adjust channel B receiver gain until meter reads half of above setting.
(9) Set CHANNEL A LEVEL-DIV INDCHANNEL B LEVEL switch to CHANNEL B LEVEL. The meter should now read approximately the same as for channel A.
(10) Set CHANNEL A-DIV IND-CHANNEL B switch to DIV IND. A reading of approximately 50 microamperes indicates channel A is supplying the signal, 150 microamperes indicates channel B is supplying the signal and 100 microamperes indicates the channels are switching too rapidly for the meter to follow. If one channel carries the signal most of the time increase the receiver gain of the other channel.
g. OTHER ADJUSTMENTS, DUAL CHANNEL.
(1) TONE LEVEL.-Adjustment can be made any time by means of the TONE LEVEL control R629. If an external source is used, adjustment can also be made, independently, by changing the amplitude at the source.
(2) TONE FREQUENCY.-Adjustment can be made at any time, operating or non-operating.
(3) SINGLE CHANNEL OPERATION.Should it be desired to operate the teletypewriter from one particular channel only, set the CHANNEL A-COMBINED-CHANNEL B switch to CHANNEL Λ or CHANNEL B, depending on which channel is to operate the teletypewriter. Each Frequency Shift

Converter CV-57/URR or CV-71/URR can be used independently by connecting separate teletypewriter loops to TTYP OUTPUT jack J1106 of the respective Converters.

CAUTION

Any of the Keyer Units not connected to teletypewriters in operation must have toggle switch S604 (on rear bracket of Keyer Unit) in the OFF position.
(4) MAINTENANCE ADJUSTMENTS.-Adjustments other than those mentioned are part of the maintenance or initial adjustments. For further information, see Sections 3 and 7 of this book.
h. STOPPING THE DUAL-CHANNEL EQUIP-MENT.-To stop the equipment throw the POWER switches on each of the three units to OFF.

SECTION 5 OPERATOR'S MAINTENANCE

1. ROUTINE CHECKS.

Make the following Tuning Monitor sensitivity check once a week when possible:
a. Set the SPEED switch of the Frequency Shift Converters to the ADJ position.
b. Observe the lines on the tuning monitor screen. They should coincide, within $1 / 16$ inch, with the top and bottom lines inscribed on the Tuning Monitor window. If they do not, report to technician.

2. EMERGENCY MAINTENANCE.

NOTICE TO OPERATORS

Operators shall not perform any of the following emergency maintenance procedures without proper authorization.
a. REPLACING FUSES.

WARNING

Never replace a fuse with one of a higher rating unless continued operation of the equipment is more important than probable damage. If a fuse burns out immediately after replacement, do not replace it a second time until the cause has been corrected.

Figure 5-1. Frequency Shift Converters CV-57/URR and CV-71/URR Fuse Locations

RESTRICTED
NAVSHIPS 91355

Figure 5-2. Frequency Shiff Converter-Comparator Groups AN/URA-6 and AN/URA-7 Fuse Locations
(i) SYMPTOMS OF FUSE FAILURE.-Pilot light not lighted. Tubes will be cold when chassis is pulled from case.
(2) FUSE LOCATIONS.-The fuses are located one above the other at the left rear of the cabinet in the Cable Filter Compartment. Spare fuses will be found to the right of the fan. See Figures 5-1 and 5-2.
(3) REPLACEMENT.
(a) Slide chassis out of cabinet and tilt 4 degrees.
(b) Reach in cabinet and unscrew one fuse holder cap by turning cap counterclockwise. Cap with fuse is now free of holder.
(c) Pull fuse from cap and replace with new one, if blown.
(d) If fuse is good screw cap, in a clockwise direction, back in holder and repeat with the other fuse.
(e) Slide chassis back in cabinet.

b. REPLACING ELECTRON TUBES.

WARNING

This equipment employs voltages which are dangerous and may be fatal if contacted. Always observe all safety regulations and precautions. Refer to the Safety Notices and high-voltage Warning printed on pages viii and ix in the Front Matter of this instruction book.
(1) LOCATING DEFECTIVE TUBE.-Defective tubes may be located as follows. Turn the POWER switch to OFF. Slide the chassis out of the case and connect the jumper cable (W1402 for the Converter or W1602 for the Comparator) between the cable filter jack (J1201 or J1301 as the case may be) and the corresponding plug. Turn the POWER switch to ON and allow about one minute warm-up time. Tubes which fail to glow and also feel cold when touched are defective. KEEP AWAY FROM LIVE CIRCUITS.
(2) REPLACING ELECTRON TUBES.
(a) SPECIAL PRECAUTIONS.

1. Turn off power before changing tubes.
2. When replacing the $1 Z 2$ tube, V801 or

Figure 5-3. Frequency Shift Converters CV-57/URR and CV-71/URR Tube Locations

Figure 5-4. Comparator CM-14/URR Tube Locations

Figure 5-5. Removal of Cathode-ray Tube from Tuning Monitor

V1001, AVOID CONTACT WITH THE INSIDE CLIP OF THE CAP or a shock may be experienced if the bleeder resistors are open. The cap is insulated and normal handling of the cap will prevent contact, but the inside contact of the cap may be discharged as follows: hold the shank of a screwdriver firmly in contact with the chassis, then touch the inside metal clip of the cap to the tip of the screwdriver.
3. The cathode-ray tube, V702, MUST BE HANDLED CAREFULLY. Always keep these tubes in their shipping cartons when not in use. Scratches on the bulb may impair their usability and increase the chance of breakage. Do not knock the tubes. IT IS RECOMMENDED THAT PROTECTIVE GOGGLES, GLOVES, AND CLOTHING BE WORN WHILE HANDLING A CATHODE-RAY TUBE.
(b) TUBE CLAMPS.-Three types of tube clamps are used, the push-and-turn shield, the springwire type and the screw-clamp type (used only on the cathode-ray tube). Remove and replace clamps as follows:

1. PUSH-AND-TURN SHIELD.-Push shield downward, turn counterclockwise as far as it will go, and lift off. Replace tube, slide shield down over locking pins as far as it will go, turn clockwise, and release.
2. SPRING-WIRE CLAMP.-Push spring wire to side and pull out tube, insert new tube and release spring wire.
3. SCREW CLAMP. - WARNING: JUMPER CABLE SHOULD NOT BE CONNECTED. See Figure 5-5. Unscrew rear thumbscrew of cathode-ray tube socket, remove front window on panel, and through hole in socket, push tube forward through hole in front panel, using a rod (see Figure 5-5) such as a pencil or similar tool. Replace tube, tighten thumbscrew and replace panel window. Front thumbscrew may have to be loosened to rotate tube so image lines on tube are parallel to engraved lines on window.
c. REPLACING SUB-CHASSIS.-The sub-chassis units may be replaced in little more time than necessary to change a tube. Three (or four) screws hold the units in place and all connections are made automatically by plugs and jacks. When removing a sub. chassis from the main chassis, loosen rear screws first and front screws last. When installing a sub-chassis tighten the front screws first and the rear screws last

If the equipment fails to operate correctly afte the above measures have been taken, advise a tech nician.

TABLE 5-1 ROUTINE CHECK CHART

The following chart shows routine check, with no signal input, to be made by operator every week. If test shows failure, report to technician.

WHAT TO CHECK	NORMAL INDICATION	PROCEDURE
Tuning Monitor Sensitivity Tone Oscillator NORM-REV Switch CONT BAL control	See paragraph 1 Tone heard when plugging headphones in PHONES jack Same as above No change in Comparator Meter reading when CHANNEL A-COMBINEDCHANNEL B switch is operated from COMBINED position to CHANNEL A or to CHANNEL B position	Report to technician Plug headphones in PHONES jack, listen for tone at all positions of TONE FREQ control Same as above but repeat for both positions of NORM-REV switch See Section 6, paragraph $2 f$

SECTION 6

PREVENTIVE MAINTENANCE

1. ROUTINE MAINTENANCE.

NOTE

THE ATTENTION OF MAINTENANCE PERSONNEL IS INVITED TO THE REQUIREMENTS OF CHAPTER 67 OF THE bUREAU OF SHIPS MANUAL, OF THE LATEST ISSUE.

Every 1000 hours check or adjust the following items:
a. JUMPER CABLES.-Check each jumper cable by sliding the chassis out of the case and operating the equipment with the cable in place.
b. TUBES.-Check all tubes except the cathoderay tube in a tube tester and replace any showing signs of deterioration. The condition of the cathoderay tube is best shown by the unit control settings. Controls associated with tubes being replaced should be readjusted as described in Sections 3 and 7.
c. SYSTEM SENSITIVITY.- Check the system sensitivity as follows:
(1) Connect an r-f signal generator, such as R-F Signal Generator Set AN/URM-25 series or equivalent (approximately 400 kc for $C V-57 / U R R$ or AN/URA-6 equipments or 50 kc for AN/URA-7 equipment) to the I-F INPUT jack J1111. The outpat impedance should be approximately 70 ohms for

CV-57/URR or AN/URA-6 equipments; and approximately 910 ohms for AN/URA-7 equipment.
(2) Connect an external oscilloscope (such as Oscilloscope OS-8/U, Navy Models OBL, OBT or equivalent) to the plate, pin 5, of the limiter tube V302 and ground.
(3) Vary the output voltage of the r-f signal generator over a range of 2500 microvolts to 0.5 volt. The pattern should be a square wave over the entire range, showing limiter action. After completion of test remove r-f signal generator and external oscilloscope.
d. TUNING MONITOR SENSITIVITY.-Set the SPEED switch of the Converter units to the ADJ position and depress the CAL IN button. The image lines on the cathode-ray tube should coincide with the top and bottom lines on the tuning monitor window. If the amplitude is less than it should be, check the circuits of V601B in the Keyer Unit, the voltage source (resistors R639 and R640 in the Kcyer) or replace the cathode-ray tube V702.
c. TUNING MONITOR ADJUSTMENT.-Readjust the Tuning Monitor as follows:
(1) Using a screwdriver, adjust the INTENSITY control R713 to give a reasonably bright trace.

Too bright a trace will result in short tube life and focusing difficulties.
(2) Using a screwdriver, adjust FOCUS control for sharpest trace.
(3) Slide chassis out of case and connect Cable Filter jack and Converter plug with jumper cable furnished.
(4) Set TUNE-OPERATE switch to TUNE, SPEED switch on HIGH or LOW.
(5) Push CAL IN button.
(6) Loosen lock nut and adjust R705 until horizontal trace on oscilloscope is centered vertically with center line engraved on tuning monitor window. Tighten lock nut.
(7) Release CAL IN button.
(8) Adjust V CENTER on panel, with a screwdriver, so tuning monitor trace is centered vertically with center line engraved on tuning monitor window.
(9) Remove jumper cable and push chassis back in case.

f. \%MARK CHECK.

(1) Set the SPEED switch to ADJ position.
(2) Connect an external test oscilloscope, such as Navy OBL or OBT series, across a $\mathbf{2 0}$-ohm resistor connected to a plug inserted in the TTYP jack.
(3) Set the test oscilloscope sweep speed for approximately 90 cycles with sync off.
(4) Adjust the sweep control on the test oscilloscope for the peak of one cycle to be centered in the trough of another cycle (see Figure 6-1).
(5) If the troughs and peaks are unequal in width adjust the $\%$ MARK control to make them equal.
(6) After completion of check return SPEED switch to former position.
(7) If no teletypewriter equipment is available

Figure 6-1. Test Oscilloscope Patterns for \% MARK Control Adjustment
for connection to the Frequency Shift ConverterComparator group, use the following ALTERNATE PROCEDURE in place of the above steps:
(a) Set SPEED switch to ADJ position.
(b) Connect an audio voltmeter to the PHONES jack on the front panel.
(c) Set the TONE FREQ switch to the 1785cycle position and the TONE LEVEL control to its maximum position.
(d) Place the NORM-REV switch alternately in the NORM and REV positions and adjust the /MARK control to obtain equal indications on the audio voltmeter in the two positions of the switch.
g. MOD BAL CHECK.-With the TONE FREQ control on EXT, TONE LEVEL control on 10 and no tone signal input, look for transients as part of the pattern of the test oscilloscope connected to the TONE OUTPUT or to the PHONE jack. Adjust the MOD BAL control for minimum transients. Disconnect the test oscilloscope.

b. GATE BALANCE ADJUSTMENT.

(1) Slide the Comparator out of the cabinet and connect to Cable Filter by means of the jumper cable supplied.
(2) Connect a jumper from a filament lead to grid of V903, pin 6 (location of this tube is shown in Figures 5-4 and 7-45).
(3) Set CHANNEL A-COMBINED-CHANNEL B switch to COMBINED.
(4) Connect a test oscilloscope from V906 cathode, pin 3, to ground.
(5) Channel switching is now occurring at a 60 -cycle rate.

The oscilloscope pattern will be a square wave switching oscillogram. Adjust the GATE BAL control for minimum of pattern (see Figure 6-2).

Figure 6-2. Test Oscilloscope Patterns for GATI BAL Control Adiustment
(6) Turn off power and remove jumper and scilloscope.
i. TELETYPEWRITER LOOP CURRENT AD-IUSTMENT.-Plug a 0-100 ma milliammeter, such is Navy Model OE series (connected to a phone plug with the tip to the "minus" and the shank to the "plus" terminal of the meter), into the TTYP jack on the front panel. With no Keying signal adjust he loop current control, at the teletype power supply, for 60 ma . When the unit is Keying normally, the current indication on the meter will drop.

ADJUSTMENT AFTER REPLACEMENT OF

D-C AMPLIFIER V903.
Adjust CONT BAL control (shown in Figure 4-1) follows:
a. Set CHANNEL A-COMBINED-CHANNEL B switch to COMBINED.
b. Set CHANNEL A LEVEL-DIV IND-CHAN NEL B LEVEL switch to DIV IND.
c. Apply separate 1000 -cycle signals of about 0.1 volt to DIV-CONT CHAN-A jack J1308 and DIV-CONT CHAN-B jack J1309 on the rear of the Cable Filter. One channel will conduct. If the panel meter, M1601, reads approximately 50 , channel A is conducting; if meter reads approximately 150 , chanel B is conducting; and if meter reads approxinately 100 , the channels are switching too fast for the meter to follow. The latter case will not occur luring this adjustment. The output signals of the :wo associated receivers may be used for this purpose f an electronic voltmeter, such as in Multimeter $\mathrm{ME}-25 / \mathrm{U}$ series, is used to measure the diversity :ontrol voltages which appear at DIV-CONT CHAN-A jack J1308 and DIV-CONT CHAN-B ack J1309. To connect the voltmeter to these jacks, irst remove the Cable Filter Unit top cover, and this vill give access to the desired terminals at the rear f the jacks.
d. Increase the input voltage to the channel not onducting until it conducts, as indicated by the reter. Record the increase in voltage necessary to aake it conduct, then reduce the voltage to 0.1 volt. e. Increase input voltage on other channel until it onducts, as shown by panel meter and record voltge. If the two voltages recorded in steps d and e re within 10 per cent of each other, then the CONT $A L$ is correctly adjusted. If they are not, change be CONT BAL setting and repeat procedure until oltages to shift each channel are equal.
f. If the preceding procedure is impracticable because of lack of necessary test equipment or for any other reason, use the following ALTERNATE SIMPLIFIED PROCEDURE for adjusting the CONT BAL control:

When the CONT BAL control, R905, is properly adjusted, the operation of the CHANNEL A-COM-BINED-CHANNEL B switch, S901, should be as follows. With the switch in the CHANNEL A position, the panel meter, M1601, should indicate approximately 50 ; and throwing the switch over to the COMBINED position should not change this indication. With the switch in the CHANNEL B position, the panel meter should indicate approximately 150 ; and throwing the switch into the COMBINED position should not change this indication. If the meter indication should change when turning the switch from the CHANNEL A or CHANNEL B position to the COMBINED position, adjust the CONT BAL control until no such change is observed on the meter.
g. Pull the Comparator chassis out of the case and connect its 14-conductor jumper cable. Set the TONE FREQ switch to 1785 -cycle position. Insert a lead into the PHONES jack on the front panel and touch the free end of the lead to the diversity control input " A " on the Diversity Selector Unit (this point is marked " A " in Figure 7-18 and is shown in Figure $7-45$ as terminal 8 of E905). Adjust the TONE LEVEL control, R629, to obtain an indication of 50 on the panel meter, M1601. Next move the free end of the lead to the diversity control input "B" on the Diversity Selector Unit (this point is marked "B" in Figure $7-18$ and is shown in Figure $7-45$ as terminal 22 of E901). The panel meter should indicate $50 \pm 20 \%$. If it does not, the circuits of the Diversity Selector Unit require checking and trouble shooting for faulty tubes or circuit components. Use the information (schematic diagrams, wiring diagrams, voltage and resistance measurements) given in Section 7.
b. Remove signal from jacks J1308 and J1309 and plug original cables in place.

3. LUBRICATION.

The only mechanism requiring lubrication is the rail system for sliding the main chassis into and out of the cabinet. Apply a light oil such as Military Symbol MS-2175 or specification MIL-L-15016 (Standard Navy Stock No. 14-0-2586 for a fivegallon can) when necessary.

FAILURE REPORTS

AFAILURE REPORT must be filled out for the failure of any part of the equipment whether caused by defective or worn parts, improper operation, or external influences. It should be made on Failure Report, form NBS383, which has been designed to simplify this requirement. The card must be filled out and forwarded to BUSHIPS in the franked envelopt which is provided. Full instructions are to be found on each card.

Use great care in filling the card out to make certain it carries adequate information. For example, under "Circuit Symbol" use the proper circuit identification taken from the schematic drawings, such as T-803, in the case of a transformer, or R-207, for a resistor. Do not substitute brevity for clarity. Use the back of the card to completely describe the cause
of failure and attach an extra piece of paper if necessary.

The purpose of this report is to inform BUSHIPS of the cause and rate of failures. The information is used by the Bureau in the design of future equipment and in the maintenance of adequate supplies to keep the present equipment going. The cards you send in, together with those from hundreds of other ships, furnish a store of information permitting the Bureau to keep in touch with the performance of the equipment of your ship and all other ships of the Navy.

This report is not a requisition. You must request the replacement of parts through your Officer-in-Charge in the usual manner.

Make certain you have a supply of Failure Report cards and envelopes on board. They may be obtained from any Electronics Officer.

SECTION 7 CORRECTIVE MAINTENANCE

WARNING

This equipment employs voltages which are dangerous and may be fatal if contacted. Always observe all safety regulations and precautions. Refer to the Safety Notices and high-voltage W arning printed on pages viii and ix in the Front Matter of this instruction book.
The following procedures, together with the trouble-shooting charts in Tables 7-1 and 7-2, con-
stitute a systematic check of the functioning of the equipment. The overall circuits are first considered, after which information is given permitting to trace possible faults in individual units or sub-assemblies. Reference should be made also to the schematic and wiring diagrams and the tables of voltage and resistance measurements given at the end of this section. Adjustment procedures described in Section 3 will often be found useful in restoring proper operation of the equipment.

Figure 7-1. Frequency Shift Converter-Comparator Group AN/URA-6 or AN/URA-7, with Chassis Extended for Servicing

1. LOCALIZING TROUBLE.

a. FREQUENCY SHIFT CONVERTER, CV-57/URR, See Table 7-1.
(1) Check power (fuses good, pilot light on).
(2) If two lines appear on the tuning monitor while receiving frequency-shift signals, and can be made to merge by reducing the radio receiver gain to zero, the Input Unit and I-F Unit are operating.
(3) Press the CAL IN button. Two flickering lines on the tuning monitor indicate proper operation of circuits up to and including V601B in the Keyer.
(4) Plug a pair of headphones into the PHONES jack. A keyed tone signal will indicate the Keyer is operating, except for the output tubes, V607 and V608, which are checked in step 5 .
(5) Plug a $0-100$ ma milliammeter such as Navy Model OE series (connected to a phone plug with the tip to the "minus" and the shank to the "plus" terminal of the meter) into the TTYP jack on the front panel. A reading of about 60 ma on the milliammeter and a reading of 70 volts on a d-c voltmeter connected from jack to ground indicate the output tubes of the Keyer to be conducting but not keying.
(6) Replace the unit that the above tests have shown to be defective. Most troubles in any of the units can be located by replacing tubes as described in section 5 or by checking voltages and resistance values within that unit. Troubles in the Cable Filter Unit, Power Supply, or Tuning Monitor can best be located by continuity checks. See later paragraphs in this section, referring to the individual units.
b. FREQUENCY SHIFT CONVERTER-COMPARATOR GROUP AN/URA-6 or AN/URA-7.See Table 7-2.
(1) Check power of each unit (fuses good, pilot light on).
(2) Tune the two radio receivers to a frequency shift keyed signal. If two lines appear on each of the Tuning Monitors and can be made to merge by reducing the respective radio receiver gain to zero, the Input Units and I-F Units of the Converters are operating.
(3) Set the CHANNEL A LEVEL-DIV IND -CHANNEL B LEVEL first on CHANNEL A LEVEL and then on CHANNEL B LEVEL. Indication of similar levels shows the Diversity Selector Unit channel amplifiers and avc rectifiers, V901, V908, V902, and V909, to be functioning.
(4) Set the CHANNEL A LEVEL-DIV IND -CHANNEL B LEVEL switch to DIV IND. Change the CHANNEL A-COMBINED-CHANNEL B
switch firse to CHANNEL A, then to CHANNEL B. The meter should read 50 on the CHANNEL A position and 150 on CHANNEL B position, showing that the channel switching circuits are operating correctly.
(5) Plug a pair of phones in the PHONES jack of the Comparator. If a keyed tone is heard, the trouble is in the output tubes of the keyer or in the teletypewriter loop which are checked in step 7.
(6) Turn the Comparator SPEED switch to ADJ. If a keyed signal is heard, the trouble is in, or ahead of, the circuits of V601B of the Keyer.
(7) Plug a $0-100 \mathrm{ma}$ milliammeter such as Navy Model OE series (connected to a phone plug with the tip to the "minus" and the shank to the "plus" terminal of the meter) into the T'TYP jack on the front panel. A reading of about 60 ma on the milliammeter and a reading of about 70 volts on a d-c voltmeter connected from jack to ground indicate the output tubes of the Keyer to be conducting but not keying. A reading of approximately 30 ma indicates normal keying.
(8) Replace the defective unit (note that the Keyer Unit of the Frequency Shift Converters CV57/URR, CV-71/URR, and Comparator CM-14/URR are interchangeable) and shoot the trouble by checking tubes, voltages, and resistances, as shown in Tables 7-3 to 7-10 inclusive in another part of this section.

2. UNIT TROUBLE SHOOTING AND REPAIR.

a. EQUIPMENT REQUIRED. - The equipment for trouble shooting should consist of the following:
(1) A $\mathbf{2 0 , 0 0 0}$ ohms-per-volt multimeter such as Navy Model OE series or equivalent.
(2) An electronic multimeter such as Multimeter ME-25/U series, Navy Model OBQ series or equivalent.
(3) An oscilloscope, such as Oscilloscope OS$8 / \mathrm{U}$, Navy Models OBL or OBT series or equivalent.
(4) A microammeter such as Navy Type 60107.
(5) An adjustable r-f signal generator such as R-F Signal Generator Set AN/URM-25 series, Navy Model LP series or equivalent, with minimum range 25 to 500 kc and an impedance of approximately 70 ohms for testing of CV-57/URR and AN/URA-6 equipments or 910 ohms for testing of AN/URA-7 equipment (this impedance will have to be obtained by a matching network).
(6) A 14-conductor cable approximately 4 feet long with a 14 -prong plug on one end and a 14 -prong jack on the other end to match the connectors for the operating sub-assemblies.

TABLE 7-1. TROUBLE SHOOTING CHART, CONVERTER

ORIGINAL

TABLE 7-2. TROUBLE SHOOTING CHART, COMPARATOR

Figure 7-2. Cable Filters
(7) Use the equipment itself for servicing during non-operating periods. Where continuous operation is required, a separate maintenance system, comparable to the equipment in use, may be desirable.
(8) Tools normally used in the electronic technician's work will be satisfactory for this work.

NOTES

1. Before attempting to remove the individual units controlled by panel knobs, pull the panel knobs outward to disengage the mechanical coupling. After the unit has been re-seated in the chassis, merely pushing the knobs will engage the mechanical couplers if the settings have not been dis-
turbed; otherwise it will be necessary to push and turn the knobs to engage the couplings.
2. Remove the chassis by unscrewing the rear screws and then the front screw. Replace units by tightening the front screw first and then the rear screws.
b. CABLE FILTERS.-See Figure 7-2. Check the circuits for continuity and shorts, using an ohmmeter. Trouble in the fan motor can best be remedied by replacing the motor or motor capacitor. See Figures 7-24 and 7-25 for the Converter Cable Filter schematic and wiring diagram and Figures $7-26$ and $7-27$ for the Comparator Cable Filter schematic and wiring diagram.

Figure 7-3. Converter Power Supply Chassis, Top View

Figure 7-4. Converter Power Supply Chassis, Botfom View

Figure 7-5. Comparator Power Supply Chassis, Top View

Figure 7-6. Comparator Power Supply Chassis, Boftom View
c. POWER SUPPLIES.-See Figures 7-3 to 7-6 inclusive. First check the resistance values as given in Table 7-8 for the Converter Power Supply and Table 7-9 for the Comparator Power Supply. Measure voltages only when the Power Supply is delivering normal load. The proper load voltages are indicated on the schematic and wiring diagrams, Figures 7-28 and 7-29, for the Converter Power Supply and Figures $7-30$ and $7-31$ for the Comparator Power Supply.
d. TUNING MONITOR.-See Figures 7-7 and 7-8. Circuit check (resistance and continuity) and tube replacement will locate troubles in the Tuning Monitor. See Table 7-7 for the resistance measurements. See Figure 7-32 and 7-33 for the schematic and wiring diagrams giving part locations and electrical values.

After the trouble has been corrected, the vertical centering for both positions of the CAL IN button must be adjusted with no signal input as follows.
(1) Depress the CAL IN button and adjust R705 so the sweep line coincides with the engraved center line on the Tuning Monitor window.
(2) Release CAL IN button and adjust the V CENT control so the horizontal sweep line coincides with the center line engraved on the Tuning Monitor window.

Figure 7-7. Tuning Monitor Chassis, Top View

After the centering is completed, adjust the FOCUS for the best average focus for the two CAL IN positions.

Figure 7-8. Tuning Monitor Chassis, Bottom View

AN/URA-6, AN/URA
 CV-57/UR

Figure 7-9. Keyer Chassis, Top View
e. INPUT UNIT.-See Figures 7-11 and 7-12. Check the tubes, then circuit-check the unit for shorts, open circuits, or off-value parts (see Figures $7-34,7-35,7-38,7-39$, and Tables $7-3$ and 7-4). If the trouble is not located, use the following procedure.
(1) Apply a 400-kc signal (for CV-57/URR or AN/URA-6 equipments) or a $50-\mathrm{kc}$ signal (for AN/URA-7 equipment) of about 0.01 volt to the i-f input, pin 8 of plug P101 or P201 as the case may be. Set the NARROW-WIDE switch to NARROW. Connect an external test oscilloscope to the plate pin 5 of converter tube V103 or V203. If no signal is observed, check for incoming signal on pin 7 or local-oscillator input on pin 1. Absence of signal in either case indicates direction of trouble:
(2) If no signal appears on pin 7 of V103 (or V203), check the circuit by connecting test oscilloscope to terminal D of transformers T102 (or T202) and T103 (or T203) in that order.
(3) If no signal appears on pin 1 of V103 (or V203), remove tube V103 (or V203) from its socket. If signal then appears, the trouble is in the AFC circuits.
f. I-F UNIT.-See Figures 7-13 and 7-14. Check the tubes, then circuit-check the unit for shorts, open circuits, or off-value parts (see Figures 7-36, 7-37, and Table 7-5). If the trouble is not located, use the following procedure.

Figure 7-10. Keyer Chassis, Boffom View
(1) Apply a $40-\mathrm{kc}$ signal of about one volt pin 10 of plug P301 or, if the Input Unit is know to be in operating order, apply a signal to the IINPUT jack J1111 (400 kc for CV-57/URR AN/URA-6 equipment, 50 kc for AN/URAequipment). Place switch S301 in WIDE positio
(2) With the test oscilloscope, check for pre ence of signal successively at V302 pin 1, V301 pin V301 pin 1, T301 terminal D. Absence of signal a one of these points indicates trouble in the relate circuit.
(3) Place switch S302 in TUNE position. Cor nect a VoltOhmyst or equivalent indicating meter pin 7 of V303. Vary the input-signal frequency. Th meter should trace out the discriminator curv Changing the input-signal level between 2500 micr volts and 0.5 volt should not change the discriminatc curve amplitude.
g. KEYER UNIT.-See Figures 7-9 and 7-1 Check the tubes then circuit check the unit fo shorts, open circuits or off value parts (see Figur 7-42, 7-43 and Table 7-6). Switch S604 (on th rear bracket) must be in the ON position for th teletypewriter to operate. The switch, in the OF position, opens the screen grid circuit of the outpy tubes when the Keyer is not connected to a tel typewriter.

Figure 7-11. Input Unit, Top View

Figure 7-12. Input Unit, Botfom View

Figure 7-1 3. I-F Unit, Top View

figure 7-14. I-F Unit, Boftom View

g

Connect a 0.5 -volt source of 60 -cycle sine-wave voltage to P601-14 or E609 and ground. Proceed from stage to stage, using the test oscilloscope as an indicator (see Figures 7-9 and 7-10).
(1) Connect the test oscilloscope to pin 1 of V601 before turning on the power. Turn on the power and adjust the test oscilloscope to 30 cycles sweep frequency, giving a pattern with two complete cycles. A signal indicates that the $1,2,3$ triode of V601 is working satisfactorily. Turn off power and remove oscilloscope leads.
(2) Connect the test oscilloscope to pin 7 of V601. Turn on the power and check the three positions of S601, the SPEED switch. Low and HIGH positions should give the same amplitude, but the ADJ position may give a different amplitude since the signal will be coming from a different source. Return S601 to its original position. This checks the signal to the grid, pin 7, of V601B.
(3) Connect the test oscilloscope to E610. A signal with the same shape but increased amplitude, compared to step (2), should be obtained.
(4) With the power turned off, connect the test oscilloscope input to the indicated pins of tubes V603 and V604 in the order $2,7,1,6$. Turning on the power, a square wave should be obtained in all cases with the NORM-REV switch in either position. If the signal is anything but a square wave, check the values of parts in the circuits of the tubes V603 and V604.
(5) Turn off power, connect the test oscilloscope to either pin 1 or 7 of first V607, and then V608, turning on the power every time. If the square-wave keying signal is obtained, turn the power off and change the test oscilloscope lead to pin 5 of V607. Turn the power on, and if no signal is obtained the trouble is in the output circuits of the keyer tubes V607 and V608.
(6) Connect the test oscilloscope to the center contact of the TONE LEVEL control R629 or pin 7 of V605 to check the Tone Oscillator operation. Further check of tube V605 can be had by connecting the test oscilloscope (with the power turned off) to pin 6 of V605 and then across the output (terminals 3 and 4) of T601.
b. DIVERSITY SELECTOR UNIT.-See Figures 7-17, and 7-18. Check tubes, then circuit check the unit for shorts, open circuits or off-value parts (see Figures 7-44, 7-45 and Table 7-10).

Apply an adjustable 400-kc (for CV-57/URR or AN/URA-6) or $50-\mathrm{kc}$ (for AN/URA-7) sinc-wave voltage (0.5 volt maximum) to pins 9 and 14 on
plug P901. Check to make sure the connector links O901 and O902 are set to the I-F position.
(1) Connect the microammeter first to pin 12 of P901, and adjust a-c voltage to give a 50 -microampere reading. Change meter to pin 11 of P 901. The reading should also be about 50 microamperes. If these readings are obtained the channel amplifier and avc rectifier circuits are satisfactory. Continue with step (3). If not satisfactory, continue with step (2).
(2) If no indication is obtained in step (1), connect a test oscilloscope first to pin 1 and then to pin 5 of each of the two input tubes V901 and V908. A sine wave should appear at each point indicated, but the amplitude of the signal at pin 5 should be greater than at pin 1. Turn the power off before contacting pin 5. If a signal is on pin 5 check the circuits of V902 and V909 pins 1 and 7 each.
(3) Connect an electronic voltmeter between O901 and ground (see Figure 7-18). A d-c voltage should be observed whose polarity will depend on which channel is conducting (posicive when channel A is conducting, negative when channel B is conducting).
(4) Turn off power. With switch S901 on COMBINED (center position) connect pin 6 of V903 to one side (pin 4) of filament. Connect test oscilloscope to pin 6 of V903. Turn on the power and observe signal amplitude. Turn off power, connect test oscilloscope to pin 1 of V903. Turn on power. If signal amplitude is smaller, trouble is in V903 circuit. If signal amplitude is greater proceed with step (5).
(5) Connect the test oscilloscope (with the power turned off) to pins 2,7,1 and 6 of tubes V904 and V905. At all points a square-wave signal should be obtained; if not, check circuit values and voltages for the trouble.
(6) Connect the test oscilloscope to pin 7 of V906 and then to pin 7 of V907. A square-wave signal should be on each grid and cathode, pin 8. A similar signal should appear on the plate, pin 1 of V906 and V907.
(7) Any further trouble would be in the signal input and output circuits and may be readily located by circuit check. See the Schematic Diagram, Figure 7-44.
(8) Remove test lead from pin 6 of V903.
i. RECEIVER COUPLING KIT 10563. - Check the tube, then circuit-check for shorts, open circuits, or off-value parts (see Figures 7-40 and 7-41).

Figure 7-15. Receiver Coupling Kit Type 10563, Top View

Figure 7-16. Receiver Coupling Kit Type 10563, Botfom View

Figure 7-17. Diversity Selector Unit Chassis, Top View

3. VOLTAGE AND RESISTANCE MEASUREMENTS.

The following Tables 7-3 to $7-10$ inclusive show voltage and resistance measurements made on the equipment under the following conditions:

1. TUNE-OPERATE control in TUNE position.
2. NARROW-WIDE control in WIDE position.
3. TONE FREQ control at 595 position.
4. TONE LEVEL control at 10 position.
5. SPEED control at LOW position.
6. NORM-REV control in NORM position.
7. VERT GAIN control at maximum clockwise postion.
8. FOCUS control in normal operating position.
9. THRESHOLD control at 0 .
10. INTENSITY control in normal operating position.
11. Teletypewriter out, Keyer Unit toggle switch S604 in OFF position.

Figure 7-1 8. Diversity Selector Unit Chassis, Bottom View
12. On Comparator CM-14/URR, CHANNEL A -COMBINED-CHANNEL B control and CHANNEL A-DIV IND-CHANNEL B control set to CHANNEL A position.
13. Units assembled in chassis for voltage measurements to chassis ground.
14. Units removed from chassis for resistance measurements to chassis ground.
15. No signal input.
16. Voltage readings taken with a 20,000 ohms per volt multimeter Model OE series or equivalent.

WARNING

This equipment employs voltages which are dangerous and may be fatal if contacted. Always observe all safety regulations and precautions. Refer to the Safety Notices and high-voltage Warning printed on pages viii and ix in the Front Matter of this instruction book.

TABLE 7-3. INPUT UNIT, CV-57/URR, VOLTAGE AND RESISTANCE MEASUREMENTS

Test conditions as described in paragraph 3.
VOLTAGE MEASUREMENTS TO CHASSIS GROUND (VOLTS)

TUBE SYMBOL	PIN NUMBERS								PLATE CAP
	1	2	3	4	5	6	7	8	
V101	90	-	$6.1 *$	$6.1 *$	90	-6	0	-	-
V102	0	2.8	$6.1 *$	$6.1 *$	101	108	2.8	-	-
V103	-1.6	2.1	6.1*	6.1 *	185	68	0	-	-

* Voltage measured between pins 3 and 4.

RESISTANCE MEASUREMENTS TO CHASSIS GROUND (ohms; K $=1000$ ohms)

V101	Inf.	-	-	-	Inf.	390 K	0	-	-
V102	1 Meg.	2700	-	-	Inf.	Inf.	2700	-	-
V103	820 K	470	-	-	Inf.	Inf.	0	-	-

RESISTANCE MEASUREMENTS ON P101 TO CHASSIS GROUND

PIN NO.	RESISTANCE, OHMS	PIN NO.	RESISTANCE, OHMS
1	Inf.	8	Inf.
2	Inf.	9	0
3	Inf.	10	0
4	Inf.	11	1.25 Meg.
5	Inf.	12	Inf.
7	Inf.	13	0

TABLE 7-4. INPUT UNIT, CV-71/URR, VOLTAGE AND RESISTANCE MEASUREMENTS

Test conditions as described in paragraph 3.
VOLTAGE MEASUREMENTS TO CHASSIS GROUND (VOLTS)

TUBE SYMBOL	PIN NUMBERS								PLATE CAF
	1	2	3	4	5	6	7	8	
V201	90	-	6.1\%	6.1*	90	-6	0	-	-
V202	0	3.6	6.1*	6.1*	131	131	3.6	-	-
Y203	-2.7	1.5	6.1*	6.1*	182	98	0	-	-

* Voltage measured between pins 3 and 4.

RESISTANCE MEASUREMENTS TO CHASSIS GROUND (ohms; K $=1000$ ohms)

V201	Inf.	-	-	-	Inf.	$390 K$	0	-	-
V202	1 Meg	8200	-	-	Inf.	Inf.	$\mathbf{3 2 0 0}$	-	-
V203	820 K	330	-	-	Inf.	Inf.	0	-	-

RESISTANCE MEASUREMENTS ON P201 TO CHASSIS GROUND

PIN NO.	RESISTANCE, OHMS	PIN NO.	RESISTANCE, OHMS
1	Inf.	8	Inf.
2	Inf.	9	0
3	Inf.	10	Inf.
4	Inf.	11	1.25 Meg
5	Inf.	12	Inf.
6	Inf.	13	0
7	Inf.	14	Inf.

TABLE 7-5. I-F UNIT, VOLTAGE AND RESISTANCE MEASUREMENTS

Test conditions as described in paragraph 3.
VOLTAGE MEASUREMENTS TO CHASSIS GROUND (VOLTS)

TUBE SYMBOL	PIN NUMBERS								$\begin{aligned} & \text { PLATE } \\ & \text { CAP } \end{aligned}$
	1	2	3	4	5	6	7	8	
V301	0	2.0	6.1*	6.1*	169	112	2.0	-	-
V302	-0.5	0	6.1*	6.1\%	177	53	0	-	-
V303	0.4	0	6.1*	6.1*	0.4	-	0	-	-

*Voltage measured between pins 3 and 4.

RESISTANCE MEASUREMENTS TO CHASSIS GROUND (ohms; K $=1000$ ohms)

V301	56	680	-	-	Inf.	Inf.	680	-	-
V302	1 Meg.	0	-	-	Inf.	33 K	0	-	-
V303	680 K	0	-	-	680 K	-	1 Meg.	-	-

RESISTANCE MEASUREMENTS ON P301 TO CHASSIS GROUND

PIN NO.	RESISTANCE, OHMS	PIN NO.	RESISTANCE, OHMS
1	Inf.	8	0
2	100 K	9	0
3	1 Meg.	10	100 K
4	Inf.	11	0
5	Inf.	12	Inf.
7	Inf.	13	0

TABLE 7-6. KEYER UNIT, VOLTAGE AND RESISTANCE MEASUREMENTS

Test conditions as described in paragraph 3.
VOLTAGE MEASUREMENTS TO CHASSIS GROUND (VOLTS)

TUBE SYMBOL	PIN NUMBERS									PLATE CAP
	1	2	3	4	5	6	7	8	9	
V601	105	0	2.25	3.1*	3.1*	55	0	2.1	3.1 *	-
V602	42	$4.0 \dagger$	6.0	3.1*	3.1*	107	-20	0	3.1*	-
V603	158	42	65	3.1*	3.1*	120	62	65	$3.1 *$	-
V604	16.5	1.7	1.6	3.1*	3.1*	105	-23	1.6	3.1*	-
V605	87	0.02	19	3.1*	3.1*	110	0.4	3.2	3.1 \%	-
V606	$4.0 \dagger$	$4.0 \dagger$	3.1*	3.1*	4.6	-	0	-	-	-
V607	-0.2	0	3.1*	3.1*	180	0	-0.2	-	-	-
V608	-0.2	0	3.1*	3.1*	180	0	-0.2	-	-	-

* a-c volts. \dagger measured with electron-tube voltmeter.

RESISTANCE MEASUREMENTS TO CHASSIS GROUND (ohms; K $=1000$ ohms)

V601	inf.	1.8 meg	390	56 K	56 K	inf.	1.8 meg	1800	56 K	-
V602	300 K	1 meg	5.5 K	56 K	56 K	150 K	400 K	900	56 K	-
V 603	130 K	300 K	19 K	56 K	56 K	140 K	72 K	19 K	56 K	-
V 604	210 K	250 K	1 K	56 K	56 K	210 K	250 K	1 K	56 K	-
V605	inf.	3700	12 K	56 K	56 K	150 K	420 K	600	56 K	-
V606	1 meg	1 meg	56 K	56 K	56 K	-	0	-	-	-
V607	270 K	0	56 K	56 K	180 K	inf.	270 K	-	-	-
V608	270 K	0	56 K	56 K	180 K	inf.	270 K	-	-	-

TABLE 7-6. KEYER UNIT, VOLTAGE AND RESISTANCE MEASUREMENTS-Continued

RESISTANCE MEASUREMENTS ON P601 TO CHASSIS GROUND

PIN NO.	RESISTANCE, OHMS	PIN NO.	RESISTANCE, OHMS
1	56 K	8	1200
2	125 K	9	inf.
3	inf.	10	inf.
4	260 K	11	0
5	inf.	12	180 K
7	inf.	13	0

TABLE 7-7. TUNING MONITOR UNIT, VOLTAGE AND RESISTANCE MEASUREMENTS

Test conditions as described in paragraph 3.
VOLTAGE MEASUREMENTS TO CHASSIS GROUND (VOL'TS)

TUBE SYMBOL	PIN NUMBERS											
	1	2	3	4	5	6	7	8	9	10	11	12
V701	150	0	1.7	3.1*	3.1*	80	-0.5	0	-	-	-	-
V702	-560	-570	-560	-300	-	80	80	150	0	35*	-	-560

*a-c volts

RESISTANCE MEASUREMENTS TO CHASSIS GROUND (ohms; K $=1000$ ohms)

V701	85 K	1 meg	inf.	inf.	inf.	550 K	inf.	0	inf.	-	-	-
V702	5 meg	5 meg	5 meg	3 meg	-	550 K	48 K	85 K	0	0	-	5 meg

RESISTANCE MEASUREMENTS ON P701 TO CHASSIS GROUND

PIN NO.	RESISTANCE, OHMS	PIN NO.	RESISTANCE, OHMS
1	inf.	8	5.5 meg
2	inf.	9	5 meg
3	85 K	10	5 meg
5	inf.	11	inf.
6	inf.	12	inf.
7	inf.	13	0

table 7-8. CONVERTER POWER SUPPLY VOLTAGE AND RESISTANCE MEASUREMENTS

Test conditions as described in paragraph 3.
VOLTAGE MEASUREMENTS TO CHASSIS GROUND (VOLTS)

TUBE SYMBOL	PIN NUMBERS								PLATE CAP
	1	2	3	4	5	6	7	8	
V801	-	$60{ }^{*}$	600*	-	-	-	-	-	-670
V802	197*	-	3.1*	3.1\%	-	197*	215	-	-
V803	-	-	-	-	150	-	0	-	-

* a-c volts

RESISTANCE MEASUREMENTS TO CHASSIS GROUND (ohms; $K=1000$ ohms)

$\mathrm{V801}$	-	1700	1700	-	-	-	-	-
V802	110	-	0.1	0.1	-	105	550 K	-
V803	-	-	-	-	-	-	-	-

RESISTANCE MEASUREMENTS ON P801 TO CHASSIS GROUND

PIN NO.	RESISTANCE, OHMS	PIN NO.	RESISTANCE, OHMS
1	0.1	8	550 K
2	550 K	9	inf.
3	550 K	10	inf.
4	150 K	11	700 K
5	inf.	12	inf.
7	19	13	0

TABLE 7-9. COMPARATOR POWER SUPPLY VOLTAGE AND RESISTANCE MEASUREMENTS

Test conditions as described in paragraph 3.
VOLTAGE MEASUREMENTS TO CHASSIS GROUND (VOLTS)

TUBE SYMBOL	PIN NUMBERS								PLATE CAP
	1	2	3	4	5	6	7	8	
V1001	-	200*	200*	-	-	-	-	-	175
V1002*	200*	-	3.1*	3.1*	-	200*	200	-	-
V1003	-	-	-	-	150	-	0	-	-

*a-c volts

RESISTANCE MEASUREMENTS TO CHASSIS GROUND (ohms; $K=1000$ ohms)

V1001	-	70	70	-	-	-	-	-	230 K
V1002	75	-	0.1	0.1	-	70	550 K	-	-
V1003	-	-	-	\cdots	550K	-	0	-	-

RESISTANCE MEASUREMENTS ON P1001 TO CHASSIS GROUND

PIN NO.	RESISTANCE, OHMS	PIN NO.	RESISTANCE, OHMS
1	0.1	8	210 K
2	550K	9	inf.
3	550K	10	inf.
4	150 K	11	700K
5	inf.	12	inf.
6	inf.	13	0
7	0.1	14	-

TABLE 7-10. DIVERSITY SELECTOR UNIT, VOLTAGE AND RESISTANCE MEASUREMENTS

WIRING SIDE OF CHASSIS

Test conditions as described in paragraph 3.
VOLTAGE MEASUREMENTS TO CHASSIS GROUND (VOLTS)

TUBE SYMBOL	PIN NUMBERS									PLATE CAP
	1	2	3	4	5	6	7	8	9	
V901	-0.5	0	3.1*	3.1*	14	95	0	-	-	-
V902	0.01	-0.01	3.1*	3.1*	0.01	-	-0.02	-	-	-
V903	65	-	3.1*	3.1*	65	-1.5	2.3	-	-	-
V904	105	65	65	3.1*	3.1*	140	40	65	3.1*	-
V905	120	$-16 \dagger$	0	3.1*	3.1*	150	-0.03	0	3.1*	--
V906	0	0	1.6	$3.1 *$	3.1*	150	$-18 \dagger$	0	3.1*	-
V907	23	0	1.6	3.1*	3.1*	150	18%	23	3.1*	-
V908	-0.5	0	3.1*	3.1*	14	95	0	-	-	-
V909	0.01	0.01	3.1*	3.1*	-0.01	-	-0.02	-	-	-

* a-c volts. \dagger measured with electron-tube voltmeter.

RESISTANCE MEASUREMENTS TO CHASSIS GROUND (ohms; K $=1000$ ohms)

V901	2.25 meg	0	inf.	inf.	inf.	inf.	0	-	-	-
V902	inf.	400 K	inf.	inf.	270K	-	270 K	-	-	-
V903	325 K	-	inf.	inf.	325K	4.7K	5.25 K	-	-	-
V904	160 K	325 K	18 K	inf.	inf.	170K	85 K	18 K	inf.	-
V905	250 K	1.5 meg	0	inf.	inf.	250K	1.5 meg	0	inf.	-
V906	6K	1 meg	56K	inf.	inf.	165 K	500K	6K	inf.	-
V907	4.7 K	1 meg	56 K	inf.	inf.	165 K	500 K	6 K	inf.	-
V908	2.25 meg	0	inf.	inf.	inf.	inf.	0	-	-	-
V909	inf.	270K	inf.	inf.	400K	-	270 K	--	-	-

RESTRICTED
Section
table 7-10. diversity selector unit, voltage and resistance measurements-Continued RESISTANCE MEASUREMENTS ON P901 TO CHASSIS GROUND

PIN NO.	RESISTANCE, OHMS	PIN NO.	RESISTANCE, OHMS
1	inf.	8	66K
2	inf.	9	inf.
3	165 K	10	inf.
4	1200	11	inf.
5	260 K	12	inf.
6	47	13	inf.
7	inf.	14	inf.

table 7-11. tube operating voltages and currents

TURE SYMBOL	TUBE TYPE	FUNCTION	plate VOLTS	plate MA	SCREEN VOLTS	$\begin{aligned} & \text { SCREEN } \\ & \text { MA } \end{aligned}$	SUP- PRESSOR VOLTS	$\begin{aligned} & \text { CATH- } \\ & \text { ODE } \\ & \text { VOLTS } \end{aligned}$	GRID VOLTS	HEATER Votrs AC
V101	6C4	Local Oscillator	90	3	-	-	-	0	-6	6.3
V102	6AU6	AFC Reactance	101	0.7	108	0.4	2.8	2.8	0	6.3
V103	6BE6	Converter	185	1.3	68	2.7	2.1	2.1	-1.6	6.3
V201	6C4	Local Oscillator	90	3	-	-	-	0	-6	6.3
V202	6AU6	AFC Reactance	131	0.4	131	0.1	3.65	3.65	0	6.3
V203	6BE6	Converter	182	2	98	8	1.5	1.5	-2.7	6.3
V301	6AU6	IF Amplifier	169	2.7	112	0.9	1.72	1.72	0	6.3
V302	6AU6	Limiter	177	2.1	52.5	0.4	0	0	-0.58	6.3
V303A	6 AL5	IF Discriminator	0	0	-	-	-	0.42	-	6.3
V303B	6ALS	IF Discriminator	0	0	-	-	-	0.42	-	6.3
V601A	AU7	A-F Amplifier I	105	5.75	-	-	-	2.25	0	6.3
V6018	AU	A-F Amplifier II	55	1.17	-	-	-	2.1	0	6.3
V602A	$12 \mathrm{UU7}$	Balanced Modulator	107	0	-	-	-	0	-20	6.3
V602B	12AU7	Trigger Driver	42	0.43	-	-	-	6	4	6.3
Y603A	12AU	Trigger I	120	3.0	-	-	-	65	62	6.3
V603B	12AU7	Trigger I	158	0	-	-	-	65	42	6.3
V604A	12AU7	Trigger II	16.5	1.6	--	-	-	1.6	1.7	6.3
V604B	12AU7	Trigger II	105	0	-	-	-	1.6	-23	6.3
V605A	$12 \mathrm{AU7}$	Tone Modulator	107	6.7	-	-	-	3.2	0.4	6.3
V605B	12AU7	Tone Oscillator	87	1.5	-	-	-	19	0.1	6.3
V606A	6 AL5	D-C Restorer	4	-	-	-	-	4.6	-	6.3
V606B		D-C Restorer	0	-	-	-	-	4.0	-	6.3
V607 ${ }^{\text {¢ }}$	6AQ5	TTYP Keyer	80	30	97	3.2	-	0	0	6.3
V6087	6AQ5	T'TYP Keyer	80	30	97	3.2	-	0	0	6.3
V701A	$12 \mathrm{AX7}$	D-C Amplifier	150	0.2	-	-	-	1.7	0	6.3
V701B	12AX	D-C Amplifier	80	0.15	-	-	-	0	-0.5	6.3
V702	2BP1	CRT (Tuning Monitor)	150	0	-300	0	150	-560	-570	6.3
V801	122	High Voltage Rectifier	-670	2	-	-	-	600*	-	1.5
V802	6X4	Low Voltage' Rectifier	197*	70	-	--	-	21.5	-	6.3

- Represents a-c volts. \dagger With TTYP plug inserted and S604 on.

TABLE 7-11. TUBE OPERATING VOLTAGES AND CURRENTS-Continued

TUBE SYMBOL	TUBE TYPE	FUNCTION	PLATE VOLTS	PLATE MA	$\begin{gathered} \text { SCREEN } \\ \text { VOLTS } \end{gathered}$	SCREEN MA	$\begin{gathered} \text { SUP- } \\ \text { PRESSOR } \\ \text { VOLTS } \end{gathered}$	$\begin{aligned} & \text { CATH- } \\ & \text { ODE } \\ & \text { VOLTS } \end{aligned}$	$\begin{aligned} & \text { GRID } \\ & \text { VOLTS } \end{aligned}$	HEATER VOLTS AC
V803	OA2	Voltage Regulator	150	15	-	-	-	0	-	-
V901	6AU6	Channel "A" Amplifier	14	3.3	95	2.5	0	0	-0.5	6.3
V902A		AVC Rectifier	-	-	-	-	-	-	-	6.3
V902B		Differential Rectifier	-	-	-	-	-	-	-	6.3
V903	6 C 4	D-C Amplifier	65	0.32	-	-	-	2.3	-1.5	6.3
V904A	12AUT	First Control Trigger	105	3.6	-	-	-	65	65	6.3
V904B	12AU\%	First Control Trigge	140	0	-	-	-	65	40	6.3
V905A	12 A	Second Control 'Trigger	120	0	-	-	-	0	-16	6.3
V905B	12 A	Second Control Trigger	15	1.2	-	-	-	0	-0.03	6.3
V906A	12 A	Gate B Control	150	0	-	-	-	0	-18	6.3
V906B	12AU7	Gate B	0	0	-	-	-	1.6	0	6.3
V907A	12 A	Gate A Control	150	3	-	-	-	23	18	6.3
V907B	12AU7	Gate A	23	4.7	-	-	-	1.6	0	6.3
V908	6AU6	Channel B Amplifier	14	3.3	95	2.5	0	0	-0.5	6.3
V909A	S 5	AVC Rectifier	-	-	-	-	-	-	-	6.3
V909B		Differential Rectifier	-	-	-	-	-	-	-	6.3
V1001	122	Negative Voltage Rectifier	-175	-	-	-	-	200*	-	1.5
V1002	6×4	Positive Voltage Rectifier	200*	70	-	-	-	200	-	6.3
V1003	OA2	Voltage Regulator	150	15	-	-	-	0	-	-

* Represents a-c volts.
table 7-12. RATED tUbE CHARACTERISTICS

TUBE TYPE	FILAMENT VOLTAOE (V)	FILAMENT CURRENT (A)	plate VOLT- AGE (V)	GRID BIAS (V)	SCREEN VOLTAGE (V)	Plate CURRENT (MA)	SCREEN CUR- RENT (MA)	$\begin{aligned} & \text { A-C PLATE } \\ & \text { RESIST- } \\ & \text { ANCE } \\ & \text { (OHMS) } \\ & \hline \end{aligned}$	VOLT- AGE AMPLI. FICA- TION FAC- TOR (MU)	TRANSCONDUCTANCE (MICROMHOS)		EMISSION	
										NORMAL	MINIMUM	$\begin{gathered} 15 \\ (\mathrm{MA}) \end{gathered}$	TEST VOLT
$0 \mathrm{A2}$			150			5 to 30						30	185*
1Z2	1.25	265	15KV			8.5						9.5	100
2BP1	6.3	0.6	2750	200	1100								
			max.	max.	max.								
6 AL5	6.3	0.3	165			10						40	10
												40	10
6AQ5	6.3	0.45	250	-12.5	250	45	3.75	2000		5200	3000	100	30
6AU6	6.3	0.3	250	-0.8	150	11	6			6250	4150	60	20
6BE6	6.3	0.3	250	-16.5	100	4.1	9.8			660	280	50	15
										9000	5500		
$6 \mathrm{C4}$	6.3	0.15	25	-8.5		14.5			18,5	4000	2500	70	30
6X4	6.3	0.6	400			75						140	50
												140	50
12AU7	6.3	0.3	250	-8.5		14.5			18.5	2650	1750	70	30
	12.6	0.15										70	30
$12 \mathrm{AX7}$	6.3	0.3	250	-2		1.75			115	2050	1250	55	30
	12.6	0.15										55	30
$12 \mathrm{AB7}$	6.3	0.45	300	-3	200	12	3			5000	4000	65	20

*Applied through a dropping resistor.

TABLE 7-13. WINDING DATA

SYMBOL DESIGNATION	RCA PART NUMBER	DIAGRAM	WINDING	WIRE SIZE	TURNS				REMARKS
B1101	454892	CONNECT LINE TOIANDS	Bobbin Bobbin	No. 40SE No. 40SE	Top or bottom 1900 Right or left 1800	358 340			Dry at $121^{\circ} \mathrm{C}\left(250^{\circ} \mathrm{F}\right)$ for one hour. Apply 1 coat of varnish to coils and bak k at $121^{\circ} \mathrm{C}$ $\left(250^{\circ} \mathrm{F}\right)$ Apply second coat of varnish and bake ${ }^{8}$ $\xrightarrow\left[(275]{ }{ }^{\text {hours }} \text {). }\right.$
B1301	Same as B1101	See B1101							Same information as given under Bllo1.
L501	890737-501		One layer space wnd.	No. 30E	55 ± 1	0.55			22 uh. Phenolic form, air core, wax impreg. Part of Z501. Form. diameter 0.5 inch
L502	$\begin{gathered} \text { Same as } \\ \text { L501 } \end{gathered}$	Same as L501							
*L601	4531.41		Close. layer wound	No. 43SE	$\begin{gathered} 10,0001 / 2 \\ \text { tapped at } \\ 9360 \end{gathered}$	$\begin{aligned} & 1-2 \\ & 3354 \\ & 1-3 \\ & 3081 \end{aligned}$		750	Adjust air gap in core for frequency. Approx. 0.017 .
†L601	Same as above	Same as above	Close. layer wound	No. 43SE	$\begin{aligned} & 10,857 \\ & \text { tapped at } \\ & 10,179 \end{aligned}$	$\begin{aligned} & 1-3 \\ & 3284 \\ & 3-2 \\ & 271 \\ & \hline \end{aligned}$			Halowax Dip for impregnation and potted in wax.
*L801	453147	$\overline{\overline{\beta r m p m}}_{2}$	$\begin{aligned} & \text { Close. layer } \\ & \text { wound } \end{aligned}$	No. 34SE	1850	1.50		1000	0.003 -inch air gap in core. Layers sep$\begin{array}{ll}\text { arated by 0.001-ineh } \\ \text { thick paper. } & 4.5\end{array}$ henrys min. $30 \mathrm{v}-60$ cycles at 70 ma d-c.
\dagger L801	Same as above	Same as above	Close. layer wound	No. 33SE	2600	150		1000	Vacuum varnish impregnation asphalt potting. 4.5 henrys min. $30 \mathrm{v}-60$ cycles at 70 ma . d-c.
L1001	$\begin{gathered} \text { Same as } \\ \text { L801 } \end{gathered}$	See L801							Same information as given under L801.
LI101	456846-501		Universal 1 cross per turn	No. 38 AWG Single enameled	1060	86.2			6.7 mh .
L1102	456846-502	Same as above	Universal 1 cross per turn	No. 34 AWG Single Nylon enameled	150	2.32			143 uh.

* Made by Chicago Transformer.
\dagger Made by United Transformer.

TABLE 7-13. WINDING DATA-Continued

SYMBOL DESIGNATION	RCA PARI NUMBER	DIAGRAM	WINDING	$\begin{aligned} & \text { WIRE } \\ & \text { SIZE } \end{aligned}$	TURNS				REMARKS
T101	739972-506		Universal 4 crosses per turn, 2 sections	Litz 3 strands of No. 41 wire, Single Nylon	91 turns per section, tap No. 1 at 16 turns, tap No. 2 at 45 turns	$\begin{aligned} & \text { S to } \mathrm{T}_{1} \\ & 0.747 \\ & \mathrm{~S} \text { to } \mathrm{T}_{2} \\ & 2.3 \\ & \text { Total } \\ & 9.37 \end{aligned}$			Coil sections wound in series. 0.455 -inch max dia. after winding.
T102	739972-501		Universal 4 crosses per turn, 2 coils, 3 sections per coil	Litz 3 strands of No. 34 wire, Single Nylon	130 turns per section	$\begin{aligned} & 20.5 \\ & \text { per } \\ & \text { Coil } \end{aligned}$			Sections of each coil wound in series. Start leads are 180 degrees apart.
T103	$\underset{T 102}{ }{ }_{\text {Same }}$	Same as T102							
T201	739972-594		Universal $1 / 2$ cross per turn	```Litz 3 strands of No. 40 wire, Single Nylon```	690 turns, tap No. 1 at 36 turns, tap No. 2 at 500 turns	$\begin{aligned} & \mathrm{S} \text { to } \mathrm{T}_{1} \\ & 1.16 \\ & \mathrm{~S} \text { to } \mathrm{T}_{2} \\ & 21.16 \\ & \text { Total } \\ & 28.7 \end{aligned}$			
T202	739972-502		Universal $1 / 2$ cross per turn	No. 34 Single Nylon enameled	Primary 708 turns, Secondary 692 turns	$\begin{aligned} & 20 \\ & 20 \end{aligned}$			
T203	Same as	Same as T202							
T301	739972-505		Universal Coils BE and CE 6 crosses per turn; Coils DE and AF $1 / 2$ cross perturn	Coils BE and CE No. 34 Single Nylon enameled; Coils DE and $A F$ No. 34 Formex ins. (heavy Vinyl acetal)	Coil BE:52 Coil CE:52 Coil DE :810 Coil AF:816	$\begin{aligned} & 1.53 \\ & 1.53 \\ & 23.2 \\ & 23.7 \end{aligned}$			
T302	Same as T301	Same as T301							
T303	$\begin{gathered} \text { Same as } \\ \text { T301 } \end{gathered}$	Same as T301							

CV-57/URR
 CORRECTIVE MAINTENANCE

NAVSHIPS 91355

TABLE 7-13. WINDING DATA-Continued

SYMBOL DESIGNATION	RCA PART NUMBER	DIAGRAM	WINDING	WIRE sIZE	TURNS				REMARKS
T304	739972-503		Universal Coils BE and AF 6 crosses per turn; Coils CD and EF $1 / 2$ cross per turn	Coils BE and $A E$ No. 34 Single Nylon enameled; Coils CD and EF No. 34 Formex ins. (heavy Vinyl acetal)	Coil BE: 75 Coil AE:55 Coil CD:824 Coil EF :803	$\begin{aligned} & 2.32 \\ & 1.61 \\ & 23.7 \\ & 23.1 \end{aligned}$			
*T601	453142		Close, layer wound Primary 1-2 Secondary 3-4	No. 42SE No. 38SE	$\begin{array}{r} 3096 \\ 744 \end{array}$	$\begin{aligned} & 842 \\ & 57.63 \end{aligned}$		$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	0.0075 -inch paper between layers. 0.001 -inch paper between layers.
\dagger T601	Same as above	Same as above	Close, layer wound Primary 1-2 Secondary 3-4	$\begin{aligned} & \text { No. 41SE } \\ & \text { No. } 37 \mathrm{SE} \end{aligned}$	$\begin{array}{r} 4500 \\ 936 \end{array}$	$\begin{array}{r} 1045 \\ 65 \end{array}$		$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	Vacuum wax dip, wax potted.
*T801	453149	*input to fower line filter	Primary 1-4 Secondary 8-10 Secondary 10-11 Secondary 11-12 Secondary 13-14 Secondary 6-7	No. 25SE No. 34SE No. 39SE No. 25SE No. 25SE 2 No. 16SE	351 tapped at 213 and 284 3136 tapped at 1568 and 1831.5 3040 11.5 49 46	7.2 347 1317 0.13 0.805 0.49		$\begin{aligned} & 2500 \\ & 2500 \\ & 2500 \\ & 2500 \\ & 2500 \\ & 2500 \end{aligned}$	0.004 -inch paper between layers. 0.0015 -inch paper between layers. 0.001 -inch paper between layers. Wound one on top of other.
\dagger T801	Same as above	Same as *T801	Primary 1-4 Secondary 8-10 Secondary 10-11 Secondary 11-12 Secondary 13-14 Secondary 6-7	No. 23SE No. 34SE No. 42SE No. 26SE 2 No. 25SE 3 No. 17SE	608 tapped at 503 and 555 2190 tapped at 1095 and 1285 2275 8 84 34 34	5.86 204 1418 0.293 0.346 0.068		$\begin{aligned} & 1260 \\ & 2000 \\ & 2000 \\ & 2000 \\ & 2000 \\ & 1015 \end{aligned}$	

[^3]TABLE 7-13. WINDING DATA-Concluded

SYMBOL DESIGNATION	RCA PART NUMBER	DIAGRAM	WINDING	WIRE SIZE	TURNS				REMARKS
*T1001	453148	* INPUT TO POWER LINE FILTER	Primary 1-4 Secondary 6-8 Secondary 5-6 Secondary $9-10$	No. 24SE No. 31SE No. 23 SE 2 No. 16SE	356 tapped at 217 and 288 2836 tapped at 1418 11.5 46 each, center tapped	$\begin{aligned} & 6.4 \\ & \\ & 0.14 \\ & 0.049 \end{aligned}$		$\begin{aligned} & 1500 \\ & 1500 \\ & 1500 \\ & 1500 \end{aligned}$	0.004 -inch paper between layers. 0.0015 -inch paper between. One wound on top of other.
\dagger T1001	Same as above	Same as above	Primary 1-4 Secondary 6-8 Secondary 5-6 Secondary 9-10	No. 23 SE No. 32 SE No. 26 SE No. 13 cen- ter tapped	$\begin{aligned} & 646 \text { tapped } \\ & \text { at } 534 \\ & \text { and } 589 \\ & 2260 \text { cen- } \\ & \text { ter tapped } \\ & 81 / 2 \\ & 36 \text { center } \\ & \text { tapped } \end{aligned}$	$\begin{gathered} 6 \\ 147.5 \\ 0.305 \\ 0.066 \end{gathered}$		$\begin{aligned} & 1500 \\ & 1500 \\ & 1500 \\ & 1500 \end{aligned}$	Vacuum varnish impregnation. Asphalt compound potting.
*Z601	453144	See Schematic following this table.	$\begin{aligned} & 1-2 \\ & 4-5 \end{aligned}$			$\begin{aligned} & \hline 2620 \\ & 5800 \end{aligned}$		$\begin{aligned} & 500 \\ & 500 \end{aligned}$	Values given in Schematic following this table.
†Z601	Same as above	See Schematic following this table.	$\begin{aligned} & 1-2 \\ & 4-5 \end{aligned}$			$\begin{aligned} & 2293 \\ & 5024 \end{aligned}$		$\begin{aligned} & 500 \\ & 500 \end{aligned}$	Values given in Schematic following this table.
*Z1101	453539	$\begin{gathered} \text { See Schematic } \\ \text { following this } \\ \text { table. } \end{gathered}\left\{\begin{array}{c} \text { Input trans- } \\ \text { former. } \\ \text { Output trans- } \\ \text { former. } \end{array}\right.$	Primary 1-2 Secondary Primary Secondary $3-4$	No. 35SE No. 41SE No. 41SE No. 36SE	$\begin{aligned} & 570 \\ & 1980 \\ & 1980 \\ & 688 \text { tapped } \\ & \text { at } 344 \end{aligned}$	24 36.3		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	0.001 -inch paper between layers. 0.00075 -inch paper between layers. $0.00075-\mathrm{inch}$ paper between layers. 0.001 -inch paper between layers.
†Z1101	Same as above	$\begin{gathered} \text { See Schematic } \\ \text { following this } \\ \text { table. } \end{gathered}\left\{\begin{array}{c} \text { Input trans- } \\ \text { former. } \\ \text { Output trans- } \\ \text { former. } \end{array}\right.$	Primary 1-2 Secondary Primary Secondary 3-5 Secondary 4-5			12.7 $\begin{aligned} & 6.41 \\ & 7.31 \end{aligned}$		$\begin{gathered} 500 \\ 500 \\ 500 \\ 500 \\ 500 \end{gathered}$	Vacuum varnish impregnation. Asphalt compound potted.
\dagger Z1102	Same as above	See Schematic following this table.	$\begin{aligned} & \text { Terminals } \\ & \text { 1-4 } \\ & \text { Terminals } \\ & 2-3 \end{aligned}$			$\begin{aligned} & 0.738 \\ & 0.738 \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \end{aligned}$	
Z1301	See Z1101	See Z1101							
Z1302	See Z1102	See Z1102							

* Made by Chicago Transformer
\dagger Made by United Transformer.

SCHEMATICS FOR WINDING DATA

Complete repair of the filter assemblies is an intricate factory procedure and is not described here. In addition to values of components shown on schematic diagrams, refer to the filter characteristics given in the following paragraphs of Section 2:

Filter Symbol	Paragraph
Z601	7
Z1101	4
Z1102	4
Z1301	12
Z1302	12

In the adjoining schematic diagrams inductance values are in henrys, capacitance values in microfarads, and resistance values in ohms.

> ZGOI SCHEMATIC DIAGRAM CTC

Z6OI UTC

21102, Z1302 UTC

$7-22$

Resturio

sxmboL	widma	termanals		$\|$cirbren AMPRRS	Mavorccture	Sistace oims	MANUFACATURE
1601		${ }_{\text {cos }}^{1-2}$			${ }_{\substack{3384 \\ 3084}}^{\text {3 }}$	${ }_{384}^{3555}$	
${ }_{\substack{1801 \\ \text { L1101 }}}^{\text {Ler }}$							
${ }^{\text {T101 }}$							
${ }_{101}$	${ }_{\substack{\text { Primary } \\ \text { Seemary }}}$						${ }_{\substack{20.5 \\ 20.5}}^{\substack{\text { 20, }}}$
${ }_{\text {Troi }}^{\text {T103 }}$		${ }^{\mathrm{F}-\mathrm{A}}$					
${ }_{\text {T304 }}$	${ }_{\text {Primary }}^{\substack{\text { Primary } \\ \text { primaty }}}$	$\underbrace{\substack{\mathrm{E}-\mathrm{F}}}_{\text {c-p }}$					
т601					${ }_{85}^{842}$		${ }_{23.7}^{23}$
${ }_{\text {r801 }}$	Scoondary Primary	$\substack { \text { 3-2 } \\ \begin{subarray}{c}{\text { 1-3 } \\ 1-3{ \text { 3-2 } \\ \begin{subarray} { c } { \text { 1-3 } \\ 1 - 3 } } \end{subarray}$					
	${ }_{\text {Primary }}^{\text {Seconary }}$	$\underset{\substack{1-4 \\ 6-7}}{\substack{1-9}}$	${ }_{\text {cke }}^{1125}$	${ }^{0.65}$	7.299	${ }_{\text {c. }}^{5.0688}$	
		coso		-0.002	${ }^{347}$	${ }^{204}$	
	Steemiary		¢,	-	${ }_{0}^{0.18}$	${ }_{\substack{0.393 \\ 0.346}}^{\substack{\text { a }}}$	
	Seeonary						

For a larger print of this drawing, see Envelope

1-

为
$\xrightarrow{2}$

Restricted
restricted
RESTRLCTIED \quad 7-31, 7-32
Ressplctep
NALSHIISS 935

REsTrictep
AVSHPLSS 91355

> Sen

sxmbor	wndma	tremmals	$\underbrace{\substack{\text { gecps }}}_{\text {voltage }}$	${ }_{\text {cter }}^{\text {current }}$ AMPRES	MANUFTCCTURE	RESISTANCE Of	Vs RCA
${ }^{1601}$		${ }^{1-2}$			${ }_{\text {3354 }}$		manuracture
L901		$\underbrace{1-2}_{\text {l-2 }}$			150	$\substack{3284 \\ 150}$	
$\underbrace{\text { dion }}_{\substack{\text { L102 } \\ \text { T201 }}}$							
							, 1.16
${ }^{\text {r202 }}$	${ }_{\substack{\text { Primary } \\ \text { Seconary } \\ \\ \text { and }}}$						${ }_{20}^{20}$
${ }_{\text {Tr30 }}^{\text {T20 }}$		${ }_{\text {F }}^{\text {F-A }}$					${ }^{23.75}$
		$\substack{\begin{subarray}{c}{\text { cher } \\ \text { D-E }} }} \\{\text { der }} \end{subarray}$					${ }_{\substack{1.53 \\ 23.25}}^{\text {2, }}$
$\begin{gathered} \substack{7302 \\ \text { Tros } \\ \hline 102} \end{gathered}$	Sex						
	${ }_{\text {Primary }}$	$\underbrace{\substack{\mathrm{E}-\mathrm{F}}}_{\text {E-F }}$					
$\begin{aligned} & \text { T601 } \\ & \text { T801 } \end{aligned}$		$\substack{\begin{subarray}{c}{\text { c-i- } \\ \text { c-2 }} }} \end{subarray}$					${ }_{21}{ }^{11.71}$
	(ermary	(in			${ }_{57.3}$	${ }_{65}$	
	Primary	-	${ }^{1125}{ }^{115}$				
	${ }_{\substack{\text { Secondary } \\ \text { seonary }}}$	coicio		(0.05			
		cosile	$\begin{aligned} & 625 \\ & 6,5 \\ & 6,3 \end{aligned}$	(e.0.002 0.6 0.6	${ }_{0}^{0.138}$	(0.2938	
	Seconary	$\underbrace{\substack{\text { a }}}_{\substack{13-14 \\ 8-5}}$	$\begin{aligned} & 6,3 \\ & { }_{35} \end{aligned}$				

For a larger pririt of this drawing, see Envelope
at end of this sinstruction book.

Resfrictep
NAVSHPS 91355

symbol					RESSITCTANCE	
symbol	WINDNG	terminals		${ }_{\text {Cur }}^{\text {CurRent }}$ AMPRES	manuracture	Manufacture
${ }^{1601}$		-				${ }_{3284}^{3555}$
${ }_{\substack{\text { Line } \\ \text { T601 }}}$	Primary				$\begin{aligned} & 150 \\ & \hline 820 \\ & 8420 \\ & 57.3 \end{aligned}$	$\begin{array}{r}150 \\ 105 \\ 105 \\ \hline 65\end{array}$
T1001		${ }_{1}^{1-2}$	${ }^{\text {105** }}$			
	Primary	退退-4	${ }_{125 * *}^{115 *}$	- $\begin{aligned} & 0.55 \\ & 0.51 \\ & 0.51\end{aligned}$	${ }^{6.4}$	
	Seconary			0.3 0.07 0	(166.04	

For a larger print of this drawing, see Envelope
ar end of this instrition book.

NOTE: Numbers in wires refer to wire table. Coding at ends of wires indicate wire number and destination.

Figure 7-22. Frequency Shift Converter CV-57/URR or CV-71/URR, Main Chassis Wiring Diagram

WIRE TABLE	
WIRE NO.	DESCRIPTION
-1	CABLE SPECIFICATIONS
3	$4{ }^{4}$
5	
7	
9	
11	
13 TO14	
16 TO 17	\dagger
19 TO20	CABLE SPECIFICATIONS
22 TO 23	WIRE-GRAY
251026	WIRE-BROWN
28 T0 36	WIRE-BLACK
43	WIRE-BROWN
47 TO 49	WIRE-RED
51	WIRE-RED/YELLOW TR
53 TO 54	WIRE-RED/GREEN TR.
56	WIRE-WHT/GREEN TR.
58	WIRE-WHT/BLACK TR.
60	WIRE-GRN/YELLOW TR.
62	WIRE-RED/BLACK TR.
65	WIRE-GRN/BLACK TR.
667076	WIRE-BUSS . 020 DIA.
771079	EXT. TUE. . 0531.0. BLK.
80 TO 83	WIRE-BROWN
87	WIRE-WHITE

"DETAIL ENDS OF CABLES"
Figure 7-25. Frequency Shift Converter Cable Fiter, Wiring Diagram

Figure 7-26. Comparator Cable Filter,

"DETAIL ENDS OF CABLES"

NUMBERS IN WIRES REFER TO WIRE TABLE. CODING AT ENDS OF WIRES INDICATES WIRE NUMBER \& DESTINATION OF WIRE THUS; $77-J 13 O 1-6,77=$ WIRE NO., JI3OI $=$ CONNECTOR J $13 O 1$,
AND 6 $=$ TERMINAL 6 OF $J 1301$ AS INDICATED ON THIS DRAWIN

Figure 7-27. Comparator Cable Filter,
Wiring Diagram
resistance, voltage and current values of coils and transformers

SYMBOL	wINDING	TERMINALS	VOLTAGE60 CPS	CURRENT	RESISTANCE OHMS	
					CTC MANUFACTURE	MANUFACTURE
L801		1-2			150	150
T801		1-2	150*	0.65		
	Primary	1-3	${ }^{115 *}$	0.6		
		1-4	${ }_{\text {125* }}$	0. 55	7.2	5. 86
	Secondary	6-7	6.3 CT	${ }^{6}$	0. 099	0.068
	Secondary	${ }_{9-11}^{8-10}$	${ }_{625}^{400} \mathbf{C T}$	0.07	347	204
	Secondary	11-12	1.5	${ }_{0.3}^{0.002}$		
	Secondary	$13-14$ $9-5$	1.3 6.3 35	0.6	0. 805	0. 346

*Applied through power line filter

AN/URA-6, AN/URA-7 CV-57/URR

	WIRE TABLE
WIRE NO.	DESCRIPTION
TO 4	WIRE-BLACK
6 TO 8	WIRE-BROWN
11-12	WIRE-WHITE
14 TO 18	WIRE-RED
20 TO 22	WIRE-RED/YELLOW TR.
24 TO 25	WIRE-RED/GREEN TR.
27-28	WIRE-GRAY
	WIRE-BROWN
TO 34	WIRE-WHT/GREEN TR.
6 TO 40	WIRE-RED/BLACK TR.
42.1048	WIRE-BUSS .032 DIA.
	EXT. TUBING
9-10	WIRE-BROWN

Resistance, voltage and current values of coils and transformers

SYMBOL	wINDING	TERMINALS	VOLTAGE60 CPS	CURRENT	Resistance ohms	
					$\begin{gathered} \text { CTC } \\ \text { MANUFACTURE } \end{gathered}$	MANUFACTURE
L1001		1-2			150	150
T1001		1-2	105*	0.61		
	Primary	1-3	${ }_{\text {115* }}$	0.55		
	Secondary	5-6	1.5	${ }_{0.3}$	${ }_{0.14}$	${ }_{0}^{6.305}$
	Secondary	6-8	400 CT	0.07	166	147.5
	Secondary	9-10	6.3 CT	6	0.04	0.066

*Applied through power line filter.

[^4] CV-57/URR
CORRECTIVE MAINTENANCE

CODING AT ENDS OF WIRES INDICATES WIRE NUMBER AND DESTINATION
OF WIRE THUS; $30-\times I O O 1-3,30=$ WIRE NO., XIOOI=SOCKET XIOO AND $3=T E R M-$ OF WIRE THUS, $30-X I O O-3,30=$ WIRE NO. XIOOI SSOCKET XIOOI AND $3=$ TERM
INAL 3 OF XIOOI AS INDICATED ON THIS DRAWING.

Figure 7-32. Tuning Monitor, Schematic Diagram

CODING AT ENDS OF WIRES INDICATES WIRE NUMBER AND DESTINATION
OF WIRE THUS; $28-\times 701-1,28=$ WIRE NO., $\times 701=$ SOCKET $\times 7 O 1$ AND $1=$ TERM OF WIRE THUS; $28-\times 701-1,28=$ WIRE NO. $\times 701=S O C K E T$
INAL I OF X POI AS INDICATED ON THIS DRAWING.

TOP VIEW

COIL DATA FOR INPUT UNIT, 47.5 TO 52.5 KC

SYMBOL	WINDING	TERMINALS	RESISTANCE OHMS
T201		EF-BC	28.7
		EF-D	1.16
		EF-A	21.16
T202	Primary	A-BC	6.38
	Secondary	B-F	20
T203	Same as T202		20

Figure 7-34. Input Unit 47.5 to 52.5 kc ,
Schematic Diagram

CODING AT ENDS OF WIRES INDICATES WIRE

DETAIL PZOI
BOTTOM VIEW
Figure 7-35. Input Unit 47.5 to $\mathbf{5 2 . 5} \mathbf{~ k c , ~}$

AN/URA-b, AN/URA-7

$\underset{\substack{\text { Restricted } \\ \text { Navshlips } \\ \text { 9135s }}}{ }$

symbol	WINDING	terminals	Resistance ohms
${ }_{\text {r }}^{\text {T302 }}$	$\underset{\substack{\text { Primary } \\ \text { Secondary }}}{ }$	$\stackrel{\text { A-F }}{\text { B-E }}$	${ }_{\substack{23.7 \\ 1.53}}$
${ }_{\text {T303 }}$		边	- 1.53
т304	primary	A-E	${ }_{1}^{1.61}$
		$\underset{\substack{\text { B-E } \\ \text { F-E }}}{\text { cest }}$	${ }_{23.1}^{2.32}$
	Secondary	${ }_{\text {c-d }}$	${ }_{23.7}^{23.7}$

Figure 7-37. I-F Unit, Wiring Diagram

Figure 7-38. Input Unit, 395 to 475 kc ,
Schematic Diagram

CODING AT ENDS OF WIRES INDICATES WIRE NUMBER AND DESTINATION OF WIRE THUS;
$34-\times 102-74$ WRENE NO. XIO SOCKET XIO2 AND
7-TERMNAL 7 OF $\times 1 O 2$ AS INDICATED ON THIS
DRAWING.

DETAIL PIOI
BOTTOM VIEW
figure 7 39 Imput Unit, 39540475 kc

Figure 7-40. Receiver Coupling Kit, Schematic Diagram

CORRECTIVE MAINTENANCE

CABLE A

cable "c BROWN TR.

ITEMS 9bAND 9C

Figure 7-41. Receiver Coupling Kit, Wiring Diagram

Coil data for keyer unit				
symboL	winding	terminals		CE OHMS UTC MANUFACTURE
${ }^{1} .601$				
T601	Primary	${ }_{\text {l }}^{1-2}$	3081	3013 4500
$z 601$	sec	(in	$\underset{\substack{744 \\ 2620}}{\substack{\text { cen }}}$	

AN/URA-6, AN/URA-7 CV-57/URR
CORRECTIVE MAINTENANCE

RESTRICTED

RESTRICTED

RESTRICTED

RESTRICTED NAVSHIPS 91355

RESTRICTED
NAVSHIPS 91355

RESTRICTED

RESTRICTED NAVSHIPS 91355

Figure 7-45. Diversity Selector Unit, Wiring Diagram

TABLE 8-1. WEIGHTS AND DIMENSIONS OF SPARE PARTS BOXES

TABLE 8-2. SHIPPING WEIGHTS AND DIMENSIONS OF SPARE PARTS BOXES

Equipment spares						tender spares						Stock spares									
SPARE	OVERALL DIMENSIONS, IN.			volume $\mathrm{CU} . \mathrm{FT}$.	WEIGHT	SPARE PARTS BOX	OVERALL dimensions, in.			volume CU. FT.	WEIGHT	SPARE PARTS BOX	OVERALL DIMENSIONS, IN.			volume CU. FT.	WEIGHT				
BOX	HEIGHT	WIDTH	DEPTH				HEIGHT	WIDTH	DEPTH				HEIGHT	WIDTH	DEPTH						
MI							NONE SUPPLIED					supplied as items of a kind in bulk									
16292	17	16.75	8.5	1.35																	
${ }_{\text {MI }}^{\text {M }}$ (6293																					
16293 MI	17	16.75	8.5	1.35																	
$\begin{gathered} \text { MI } \\ 16294 \end{gathered}$	17	16.75	8.5	1.35																	

TABLE 8-3. LIST OF MAJOR UNITS

TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND
frequency shift converter cv-57/urr

TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND FREQUENCY SHIFT CONVERTER CV-57/URR

Parts									Spare parts							
		function	JAN AND TYPE NO.	$\begin{aligned} & \text { SIGNAL CORPS } \\ & \text { STANANDD NAVY } \\ & \text { STOCK NO. } \end{aligned}$		$\xrightarrow{\text { CON- }}$ DRAWING PART NO.			cV-57/URR IF INPUT $395-470 \mathrm{KC}$ (SINGLE)					$\mid \dot{\bar{訁}}$	AN/URA-T 50 kC (DUAL)	
									Equir	stock		Equir	stock	咎	Equip	stock
symal DESIG.	DESCRIPTION							2	-		2	¢	¢	2	-	(1)
C-111	CAPACITOR, FIXED; mica dielectric; $100 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \% ; 500 \mathrm{vdew}$ temp coef $\operatorname{ltr} \mathrm{C} ; 51 / 64^{\prime \prime} \lg \times 15 / 32^{\prime \prime}$ wd $\mathrm{x} 7 / 32^{\prime \prime}$ thk; molded bakelite coded; spec JAN-C.5	$\underset{\mathrm{T}-102}{\text { Pri Tuning Capacitor of }}$	CM20C101J	N16-C-28553-1201		P-722004-523	$\begin{aligned} & \mathrm{C}-111, \\ & \mathrm{C}-113, \\ & \mathrm{C}-116, \\ & \mathrm{C}-117 \end{aligned}$	4	0	0	8	0	0	0		0
C-112	CAPACITOR, FIXED: mica dielectric; $5600 \mathrm{mmf} \mathrm{p} / \mathrm{m} 5 \%$; 500 vdew: temp coef $\operatorname{ltr} \mathrm{C} ; 53 / 64^{\prime \prime}$ lg $\mathrm{x} 53 / 64^{\prime \prime}$ wd $\mathrm{x} 11 / 32^{\prime \prime}$ thk; molded phenolic case: 2 axial wire leads; spee JAN-C-5	$\underset{\text { tor }}{\text { Input Matching Capaci- }}$	CM35С562J	N16-C-32826-3133		P.722029-507	C-112	1	0	0	2	0	0	0	0	0
C-113	Same as C-111	Secd Tuning Capacitor of T-IUZ														
C-114	CAPACITOR, FIXED: ceramic dielectric; $0.68 \mathrm{mmf} \mathrm{p} / \mathrm{m} .0 .068 \mathrm{mmf}$ high dielectric, no limiting range 2 axial wire leads; ceramic ins: cap marked by color code	Couplor to T-103		N16-C-5,551-182,	$\begin{gathered} 711 \\ \text { Type GA } \end{gathered}$	A-99327-11	C-114	1	1	1	2	1	2	0	0	0
C-115	Same as C-101	Cathode verter V-103 Bypass of														
C-116	Same as C-111	Pri Tuning of T-103														
C-117	Same as C-111	Secd Taning of T-103														
C-118	Same as C-101	Screen Bypass verter $V-103$ of Con-														
C-119	CAPACITOR, FIXED: ceramic dielectric; $82 \mathrm{mmf} \mathrm{p} / \mathrm{m} 2 \%$; neg temp coef $-750 \mathrm{mmf} / \mathrm{mf}^{\circ} \mathrm{C}$ (tol diam; 2 radial wire lead term; ins w/ Durez; marked RCA $\# 8830139-1$ and temp characteristics	Temperature Compensating Capacitor for Ose V-101			1	A-8830139-1	C-119	1	1	1	${ }^{2}$	1	2	${ }^{0}$	0	${ }^{0}$
C-120	CAPACITOR, FIXED: paper dielec tric: single sect; 100.000 mmf metal case ; $13 / 16^{\prime \prime} \lg \times 13 / 32^{\prime \prime}$ diam, less leads; vitamin Q impr 1 axial wire lead ; int gnd ; mts by single $0.120^{\prime \prime}$ diam hole in mtg bkt located near end of body opposite lead end: marked w/ cap, tol	+B Filter Capacitor		N16-C-45801-8800	1	B-454030-50	$\mathrm{C}-120$, $\mathrm{C}-220$, $\mathrm{C}-221$, $\mathrm{C}-602$, $\mathrm{C}-606$, $\mathrm{C}-677$, $\mathrm{C}-618 \mathrm{C}$	5	${ }^{3}$	0	14	4	0	16	5	0

$|$| Screen Bypass of AFC |
| :--- |
| Tube V-202 |
| Plate Bypass of Osee |
| V-201 |
| Coupler to Grid of Osee |
| V-201 |
| Fixed Tuning Capacitor |
| of T-201 to Approx |
| 90 KC |

Vernier Tuning of T-201
to Approx $90 \mathrm{KC} \pm 2$ ${ }_{\mathrm{K}}^{\mathrm{KO}} \mathrm{C}^{\mathrm{A}}$
Coupler to Plate of AFC
Tube V-202
Coupler to Grid of AFC
Tube V-202
Filter for AFC
Coupler to
Converter
Vrid
-203 $\# 1$ of
Cathode Bypass of AFC Mri Tuning Capacitor of
\qquad
CM 30D182G
N16-C-31660-5014

Same as C-101

TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND FREQUENCY SHIFT CONVERTER CY-57/URR

mmf $\mathrm{p} / \mathrm{m} 20 \% ;$ hi-dielectric con-
stant (does not fall within limits)
300 vdew $0.500^{\prime \prime} \mathrm{lg} \times 0.250^{\prime \prime}$ ins; humidity resistant; flash test
1500 y DC; pf 3% max from kc
 K-897113-1
Same as C-213
Same as C-213
Same as C-10
 tric ; $3000 \mathrm{mmf} \mathrm{p} / \mathrm{m} 2 \% ; 500$ $\lg \times 53 / 64^{\prime \prime}{ }_{h} \times 9 / 32^{\prime \prime}$ thk, less term; molded phenolic case; ${ }^{2}$
axial wire lead term; colver coded:
spec spec JAN-C-s
CAPACITOR, FIXED: paper dielectric; single sect; $1.0 \mathrm{mf}+30$ $1-13 / 16^{\prime \prime} \lg \mathrm{x} 43 / 64^{\prime \prime}$ diam, less leads; vitamin Q impr: 1 , axial
wire lead; int gnd; single mtg bkt $0.120^{\prime \prime}$ diam hole, located near end opposite to lead; marked w/ cap, tol,
CAPACITOR, FIXED: ceramic ditemp coef var, $1200-20 \%+50 \%$; temp coef var, $1200 \mathrm{mmf} \min \operatorname{cap}$
between $-15^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C} ; 350$ between $-15^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C} ; 350$
vacw; $11 / 16^{\prime \prime} \lg \times \quad 5 / 16^{\prime \prime}$ diam across hex flats; 2 axial \#16 AWG wire term, hook shape; bushing mtd $w /$ \#12-28 male thd and nut;
ceramic ins; brass feedthru bush ceramic ins; brass feedthru bushcap
CAPACITOR, FIXED : paper dielectric ; single \quad sect; $\quad 100,000 \underset{\operatorname{mmf}}{ }$
$+30 \%-20 \% ; 200 \mathrm{vdcw} ; \mathrm{HS}$ meval case; $13 / 16^{\prime \prime} \mathrm{lg} \times 13 / 32^{\prime \prime}$ diam, less leads; vitamin Q impr; 1 axial wire lead; int gnd ; mts by single 0.120 cocam hole in mtg bkt marked w/ cap, tol, rated working v, and mfr name
CAPACITOR, FIXED: mica; 100 CAPACITOR, FIXED: mica; 100
 phenolic case; 2 axial wire leads;

5
0
5
5
5

V/URA-6, AN/URA-7
I-57/URR

TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND FREQUENCY SHIFT CONVERTER CV-57/URR

;1SII SLy

TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued)
FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND FREQUENCY SHIFT CONVERTER CV-57/URR

Parts									Spare parts							
	DESCRIPTION	FUNCTION	JAN AND (NAYY) NO.	$\begin{aligned} & \text { SIGNAL CORPS } \\ & \text { STANDND } \\ & \text { STARD NAVY } \end{aligned}$		CON TRACTOR DRAWING AND PART NO		这	CV-57/URR IF INPUT (SINGLE)			AN/URA-6 IF INPUT 395-470(DUAL)		$\left\|\begin{array}{c} \dot{0} \\ \overline{\mathbf{0}} \\ \mathbf{0} \end{array}\right\|$	AN/URA-7 50 KC (DUAL)	
									EquIP	stock		EQulip	stock		EQUIP	stock
$\underset{\substack{\text { SYMBOL } \\ \text { DESIG. }}}{ }$											$\left\|\begin{array}{l} 0 \\ 2 \\ 2 \\ \mathbf{x} \\ 0 \end{array}\right\|$			¢		¢
C-618	Same as C-120	Filter of Z -601														
C-701	CAPACITOR, FIXED: paper dielectric: single sect; $470,000 \mathrm{mmf}$ $+30 \%-20 \% ; 200$ vdew ; HS diam, less leads; vitamin Q impr: 1 axial wire lead ; int gnd; mts by single $0.120^{\prime \prime}$ diam hole in mtg bkt located near one end of body opposite lead; marked w/ cap, to	$\underset{\text { V-701A }}{\text { Cathode }}$ Filter of Amplr		N15-C-47148-1001	1	B-454030-7	C-701	1	1	0	2	1	0	2	1	0
C-702	CAPACITOR, FIXED: ceramic dielectric; 1500 mmf p/m 20%; hidielectric constant (does not fal within limits) ; 300 vdew ; $0.812^{\prime \prime}$ Ig x $0.250^{\prime \prime}$ diam, less leads; axial wire leads; ins; marked w/ cap value and type \# or RMA color coded	$\underset{\text { V. } 701 \mathrm{~B}}{\mathrm{Grid}}$ Bypass of Amplr		N13-C-18785-8460	1	A-984005-62	C-702	1	1	0	2	1	0	2	1	0
C. 703	CAPACITOR, FIXED: ceramic dielectric; $; 1000 \mathrm{mmf}$ dielectric constant (does not $20 \% ; ~ h i l$ fall within limits) ; 300 vdcw; $0.812^{\prime \prime}$ $\lg \times 0.250^{\prime \prime}$ diam, less leads; axial wire leads; ins; marked w/ cap value and type or RMA color coded	Plate Bypass of Amplr V-701B		N16-C-18657-8451	1	A-984005-58	$\begin{aligned} & \mathrm{C}-703, \\ & \mathrm{C}, 703, \\ & \mathrm{C}-901, \\ & \mathrm{C}-902, \\ & \mathrm{C}-903, \\ & \mathrm{C}-915, \\ & \mathrm{C}-917 \end{aligned}$	1	1	0	7	2	0	7	2	0
C-801	CAPACITOR, FIXED : paper dielec$\begin{array}{ll}\text { tric; } 3 & \text { sect: } 100,000 \\ -10 \% & \mathrm{mmf} \\ \text { ea } \\ \text { sect; } & 1000 \mathrm{vdew} ; ~ \mathrm{HS}\end{array}$ metal can; case $1-3 / 4^{\prime \prime} \lg \times 2-1 / 2^{\prime \prime}$ $\mathrm{h} x 41 / 64 ;$ wd, less term; chlori$3 / 4^{\prime \prime} \mathrm{h}$ on bottom; ea sect has one side int gnd to case ; mtg bkt has 2 mtg slots $0.156^{\prime \prime} \mathrm{wd}$ on $2-1 / 8$ $\mathrm{mtg} / \mathrm{c}$; spec JAN-C-25	-B Supply Filter	${ }_{104 \mathrm{~V}}^{\mathrm{CP} 69 \mathrm{~F}}$	N16-C-54460-6510		K-984662-337	C-801	1	0	0	2	0	0	2	0	0
C-801A	Part of C-801															
C-801B	Part of C-801															
C-801C	Part of C-801															
C.802	CAPACITOR, FIXED: electrolytic dielectric; 2 sect; 35 mf ea sect 300 vdew ; oper temp range from $2-1 / 2^{\prime \prime} \lg \times 1-1 / 2^{\prime \prime}$ diam, less term HS metal can; 4 prong type $7 / 16^{\prime \prime}$ lg term on bottom; has single neg term not gnd to case; octal socket mtg ; spee JAN-C-62	+B Supply Filter	CE52F350N	N16-C-21941-1255		P-735714-69	$\left.\right\|_{\mathrm{C}-802,} ^{\mathrm{C}-1002}$	1	0	0	3	0	0	3	0	0

TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND FREQUENCY SHIFT CONVERTER CV-57/URR

original

$\left\lvert\, \begin{gathered}\text { RF Bypass for Remote } \\ \text { Scope } \\ \\ \begin{array}{c}\text { RF Pypass for Teletype } \\ \text { Output }\end{array}\end{gathered}\right.$

tric: 100 mmf p/m $10 \% ; 500$
vdcw ${ }^{100}$ characteristic $\mathrm{B} ;$ case
$51 / 64^{\prime \prime}$ max $1 \mathrm{x} \times 15 / 32^{\prime \prime}$ max h
$\times 7 / 32^{\prime \prime}$ max thk; molded bake$\mathrm{x} 7 / 32^{\prime \prime}$ max thk; molded bake-
lite case; 2 axial wire lead term; color coded; spec JAN-C-5
Same as C-1101
BOARD, TERMINAL: general purpose term board strip; ${ }^{\text {polder dipped term; no } 2 \text { term }}$ clcser than $0.218^{\prime \prime}$ c to c ; 2 rows
$3 / 4^{\prime \prime}$ apart. $1 / 16^{\prime \prime}$ thk lam pheno$3 / 4^{\prime \prime}$ apart $; 1 / 16^{\prime \prime}$ thk $\operatorname{lam}^{\prime 2}$ pheno-
lic sheet; $4-3 / 8^{\prime \prime} \lg \times 1-7 / 32^{\prime \prime}$ wd lic sheet, $\mathrm{x} 35 / 64^{\prime \prime} \mathrm{d} 0 / \mathrm{a}$; four $0.147^{\prime \prime} \mathrm{diam}$ max holes on $5 / 8^{\prime \prime} \times 4-1 / 16^{\prime \prime} \mathrm{mtg} / \mathrm{e}$; wax impr; stencil both sides w/ $\mathrm{R}-110, \mathrm{C}-109$ R-109, $\mathrm{R}-102$, C-103, $\mathrm{R}-10, \mathrm{C}-109, \mathrm{R}-109, \mathrm{R}-102, \mathrm{C}-107$,
$\mathrm{R}-105, \mathrm{R}-103, \mathrm{R} 104, \mathrm{C}-10, \mathrm{R} 107$,
$\mathrm{R}-101, \mathrm{R}-108, \mathrm{C}-114, \mathrm{R}-106 ;$ other R-101, R-108, C-114, R-106; other
side w/R-11, C-106, C-112; 1 matg
bkt riveted to 1 side of board w/ a $0.147^{\prime \prime}$ diam mtg hole
INSULATOR, FEEDTHRU: solderon term type ; tinned copper term,
HS in glass w/ tinned copper bush. ing ; for \#14 AWG max ; $0.484^{\prime \prime}$ $\lg \times 0.200^{\prime \prime}$ diam $0 / a$; ea end of term w/ hole, $0.050^{\prime \prime}$ diam ; solder
to wire; solder mtg, HS type thru to wire; solder mtg,
term; spec JAN-I-9
BOARD, TERMINAL: general purpose term board strip; 32 single end, brass solder dipped term, no
2 term closer than $0.218^{\prime \prime}$ c to c $1 / 16^{\prime \prime}$ thk lam phenolic sheet; type LTS-E-3 in JAN-P-13; 4-3/8" $\begin{array}{ll}\lg \times & 1-7 / 32^{\prime \prime} \\ \text { four } & 0.147^{\prime \prime} \\ \text { diam } \mathrm{mtg} & 13 / 32^{\prime \prime} \text { d } \mathrm{d} \text { o/a: } \\ \text { on }\end{array}$ ${ }_{4-1 / 16^{\prime \prime}} \times 5 / 8^{\prime \prime} \mathrm{mtg} / \mathrm{c} ;$ che $0.147^{\prime \prime}$ diam hole on etr mtg bkt; wax impr; one side marked R -210, $\mathrm{R}-201, \mathrm{C}-203, \mathrm{R}-209, \mathrm{C}-207, \mathrm{R}-204$,
$\mathrm{R}-203, \mathrm{R}-205, \mathrm{R}-207$,
$\mathrm{R}-208, \mathrm{R}-212$ R-203, R-205, R-207, R-208, R-212
R-206, other side marked C-209, $\mathrm{R}-211, \mathrm{C}-206, \mathrm{C}-214, \mathrm{C}-212$
E-202
Same as E-102
C-1102 CAPACITOR, FIXED: paper dielectric; single sect; $47.000 \mathrm{mmf} \mathrm{p} / \mathrm{m}$ 20%; 400 vdew; HS metal can; diam less leads; vitamin Q imp
and filled ; 2 axial wire leads and filled; 2 axiai wire leads; ungrounded case; marked w/ cap,
warking v, impr. vendor name; oper temp range $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
F characteristic ; 800 v DC test F characteristic ; 800 v DC test

Phase Capacitor of
 Motor B-1301

Supports Resistors and Capacitors
Feedthru for C-108
Supports Resistors and

Capacitors

N16-C-44111-2680

N16-C-2855-1676

Capacitors
\square
N17-12-78232-1844 1

0 H $\quad \rightarrow \quad \rightarrow \quad \rightarrow \quad$
$\underbrace{}_{0} \underbrace{0}_{0} \underbrace{0}_{0}$
$\underbrace{0}_{0} \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0\end{aligned}$

$\left.2\right|_{0} ^{1}{ }_{0}^{1}$

2
2

0
茟
NAVSHIPS 91355
table 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND FREQUENCY SHIFT CONVERTER CV-57/URR

post shape; white, grade L-4
ceramic, glazed; $0.625^{\prime \prime}$ Ig 1 lg ; $3 / 8^{\prime \prime}$
diam, one $\# 6.32 \times 3 / 16^{\prime \prime}$ d tapped
mtg hole in ctr of ea end; marked
mtg hole in ctr of ea end; marked
w/́JAN type \#; spec JAN-I-8,
JAN-I-10
E-601
DOARD, TERMINAL: general
pose term board strip; 8 b
pose term board strip; 8 brass,
solder dipped term $;$ no two term
closer than $0.312^{\prime \prime} c$ to $c ; 1 / 16^{\prime \prime}$
thk
chks lam phenolic sheet; $1-3 / 16^{\prime \prime}$
$\lg \times 1-1 / 16^{\prime \prime}$ wd $\times 5 / 16^{\prime \prime}{ }^{\text {d }}$ o/a;
2 ctr mtg holes, $0.147^{\prime \prime}$ diam on

${ }_{8896262-502}$ except for symbols
BOARD, TERMINAL: general pur-
BOARD,
pose term hoard strip; 8 brass,
solder dipped term; no two term
pose term board strip; s brass,
solder diped term; no two term
closer than $0.312^{\prime \prime} \mathrm{c}$ to $\mathbf{c} ; 1 / 16^{\prime \prime}$
closer than $0.312^{\prime \prime}$ c to $\mathrm{c} ; 1 / 16^{\prime \prime}$
thk lam phenolic sheet, $1-3 / 16^{\prime \prime}$
$\lg \times 1-1 / 16^{\prime \prime}$ wd $\times 5 / 16^{\prime \prime} \mathrm{d}$ o/a;
2 ctr mtg holes, $0.147^{\prime \prime}$ diam on

8896262-501 except for symbols
BOARD, TERMINAL : general pur-
pose term board strip; 36 brass,
single end solder lug term in 2
single end solder lug term in 2
rows of 18 ea; no two term closer
than $0.218^{\prime \prime} c$ a , to $c ; 3 / 4^{\prime \prime}$ ctrs be-
tween rows; $1 / 16^{\prime \prime}$ thk lam pheno-
lic sheet; type L'TS-E-3 in JAN-
P-13; 4-7/32" lg x $1-1 / 16^{\prime \prime}$ wd x

mtg holes in ctr of board on $1-1 / 4^{\prime \prime}$
mtg/c; wax impr marked R-623,
$\begin{aligned} & \mathrm{R}-606, \mathrm{R}-638, \mathrm{R}-622, \mathrm{R}-621, \mathrm{R}-608, \\ & \mathrm{R}-624, \\ & \mathrm{R}-627, \\ & \mathrm{R}-626\end{aligned}, \mathrm{R}-636, \mathrm{R}-625$,
R-624, R-627, R-626, R-636, R-625,
C-604, R-634, R-642, R-632
BOARD, TERMINAL: general pur-
pose; 24 solder lug term; term
pose: 24 solder lug term; term
spaced $0.234^{\prime \prime}$ e to c in 2 rows of
12 ea $3 / 4^{\prime \prime}$ between rows: lam
12 ea, $3 / 4^{\prime \prime}$ between rows; lam
phenolic board $1 / 16^{\prime \prime}$ thk; $3-1 / 2^{\prime \prime}$
phenolic board $1 / 16^{\prime \prime}$ thk; 3-1/2"
$\lg \times 1-1 / 16^{\prime \prime}$ wd $\times 13 / 64^{\prime \prime} \mathrm{b} 0 / \mathrm{a}$:
$\lg \times 1-1 / 16^{\prime \prime}$ wd $\mathrm{x} 13 / 64^{\prime \prime}$ b o/a
4 mtg holes $0.147^{\prime \prime}$ diam on $3.187^{\prime \prime}$
4 mtg holes $0.147^{\prime \prime}$ diam on $3.187^{\prime \prime}$
$\mathrm{x} 5 / 8^{\prime \prime} \mathrm{mtg} / \mathrm{c}:$ term hot solder
dipped: board marked R-603,
R-641, R-609, R-611, R-616, R-612,
R-615, R-618, R-619, R-620, R-617,
C-605
HOARD, TERMINAL: general pur-
pose; 24 solder lug term; term
spaced $0.234^{\prime \prime}$ e to \mathbf{c} in 2 rows of
12 ea, $3 / 4^{\prime \prime}$ between rows; lam
phenolic board $1 / 16^{\prime \prime}$ thk; 3-1/2"
$\lg \times 1-1 / 16^{\prime \prime}$ wd x $13 / 64^{\prime \prime}$ h o/a:
4 mig holes $0.147^{\prime \prime}$ diam on $3.187^{\prime \prime}$
$\mathrm{x} 5 / 8^{\prime \prime} \mathrm{mtg} / \mathrm{c}$; term hot solder

R-630, R-643, R-628, R-614, R-604,
R-602, R-640, R-63

∞
$\stackrel{1}{a}$
TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND FREQUENCY SHIFT CONVERTER CV-57/URR

$\left|\begin{array}{lll}\text { Supports Resistors } \\ \\ \begin{array}{l}\text { Supports Resistors and } \\ \text { Capacitors }\end{array} \\ \\ \begin{array}{l}\text { Supports Resistors } \\ \text { Capacitors }\end{array} \\ \end{array}\right|$
N17-B-78083-1306 pose term board strip; 16 brass, than $0.218^{\prime \prime}$ e to c; 8 per row two
rows $3 / 4^{\prime \prime}$ apart ; $1 / 16^{\prime \prime}$ thk lam phenolic sheet; $2.9 / 16^{\prime \prime} 1 \mathrm{lg} \times 1-1 / 4^{\prime \prime}$ $\mathrm{h} \times 1-1 / 16^{\prime \prime}$ wd o/a; 2 bkt ea ${ }^{\prime} /{ }^{\prime \prime}$
2 mtg holes, one bkt having $0.147^{\prime \prime}$ 2 mtg holes, one bkt having o.14er
diam holes on $5 / 16^{\prime \prime} \mathrm{mtg} / \mathrm{c}$, other blt having $0.136^{\prime \prime}$ diam holes on
$5 / 16^{\prime \prime} \mathrm{mtg} / \mathrm{c}$; wax impr: mtg bkt riveted to board, 1 ea end; marked R-804, R-806
BOARD, TERMINAL: general pur-
pose term board strip $; 46$ brass, pose term board strip; 46 brass,
solder dipped term; no 2 term closer than $1 / 4^{\prime \prime}$ c to $\mathrm{e} ; 1 / 16^{\prime \prime}$ thk
lam phenolic sheet; $5-7 / 8^{\prime \prime} \lg \mathrm{x}$ lam phenolic sheet; $5-7 / 8^{\prime \prime} \lg \mathrm{x}$
$1-1 / 16^{\prime \prime}$ wd $x \mathrm{~s} / 16^{\prime \prime} \mathrm{d}$ o/a; three mtg/c; wax impr; stenciled on 1 side w/ the following: C-901, $\mathrm{C}-902, \mathrm{R}-909, \mathrm{R}-906, \mathrm{C}-903, \mathrm{R}-907$,
$\mathrm{R}-947$,
$\mathrm{R}-902$,
$\mathrm{R}-935, \mathrm{R}-933$,
$\mathrm{R}-934$, R-928, R-904, C-908, C-910, R-941
002 BOARD, TERMINAL: general purpose term board strip; 30 brass,
solder dipped term ; no 2 term closer than $1 / 4^{\prime \prime} \mathrm{c}$ to c ; $1 / 16^{\prime \prime \prime}$ thk lam phenolic sheet; $5-7 / 8^{\prime \prime \prime}$ lg x
$1-1 / 16^{\prime \prime}$ wd $x 5 / 16^{\prime \prime} \mathrm{d}$ o/a; ten
$0.147^{\prime \prime}$ $1-147^{\prime \prime}$ diam mtg boles ; 1st pair of
holes $3 / 16^{\prime \prime}$ from edge of board on holes $3 / 16^{\prime \prime}$ from edge of board on
$5 / 8^{\prime \prime} \mathrm{mtg} / \mathrm{c}$; 2nd pair $3-1 / 2^{\prime \prime}$ from $5 / 8^{\prime \prime} \mathrm{mtg} / \mathrm{c}$; 2nd pair $3-1 / 2^{\prime \prime}$ from
the 1 st pair, 3rd pair $2-3 / 8^{\prime \prime}$ from the 2 nd pair; 1st ctr mtg hole
$1-1 / 16^{\prime \prime}$ from edge of board, 2 nd hole $1^{\prime \prime}$ from the 1 st, 3rd hole $1-1 / 2^{\prime \prime}$ from the 2 nd, 4 th bole $1^{\prime \prime}$ from the 3 rd; all c to c measure-
ments; wax impr; stenciled on one side w/ the following: R-914, R-912, R-908, R-910, R-911, R-940, C-909, R-932, R-930, R-929, R-931,
R-948, C-918, R-949, C-916
pose term board strip ; 40 brass, solder dipped term; no 2 term closer than $1 / 4^{\prime \prime}$ c to $\mathrm{c}^{\prime} ; 1 / 6^{\prime \prime}$ thk $1-1 / 16^{\prime \prime}$ wd x 5/16" ${ }^{\prime \prime}$ o/a; ten $0.147^{\prime \prime}$ diam mtg holes; 1st pair of holes $3 / 16^{\prime \prime}$ from edge of board on $5 / 8^{\prime \prime} \mathrm{mtg} / \mathrm{c}$: 2nd pair $3-1 / 2^{\prime \prime}$ from
the 1st pair, 3rd pair $2-3 / 8^{\prime \prime}$ from the 2nd pair; 1st ctr mtg hole $1-1 / 16^{\prime \prime}$ from edge of board, 2nd hole $1^{1 \prime \prime}$ from the 1 st, 3 3rd hole from the 3 rd; all c to c measurements; wax impr; stenciled on one
side w/ the following: R-922, side w/ the following: $\mathrm{R}-922$,
$\mathrm{R}-944, \mathrm{R}-943, \mathrm{R}-924, \mathrm{R}-915, \mathrm{R}-917$, R-944, R-943, R-924, R-915, R-917,
R-918, R-925, R-913, R-916, R-901, R-919, R-938
Capacitors

Supports Resistors
CONTRACT NObsr-39421
TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND FREQUENCY SHIFT CONVERTER CV-57/URR

$\left\lvert\, \begin{gathered}\text { BOARD, TERMINAL: general pur- } \\ \text { pose term board strip; } 16 \text { brass, }\end{gathered}\right.$

E-1103
E-1104
BOARD, TERMINAL: general purpose; 4 solder lug term; 2 rows
of 2 term, rows $1 / 4^{\prime \prime}$ apart, 1 st term of row is $1-1 / 16^{\prime \prime}$ from left end, 2nd term is $1-7 / 8^{\prime \prime}$ from left end; $\operatorname{lam}^{\text {phenolic }}$ board $1 / 16^{\prime \prime}$
thk ; $2-3 / 8^{\prime \prime} \lg \mathrm{x} 1 / 2^{\prime \prime}$ wd x $13 / 64^{\prime \prime}$ thk; $2-3 / 8^{\prime \prime} \lg \mathrm{x} 1 / 2^{\prime \prime} \mathrm{wd} \mathrm{x} 13 / 64^{\prime \prime}$
$\mathrm{h} 0 / \mathrm{a} ; 2 \mathrm{mtg}$ holes $0.173^{\prime \prime}$ diam on $2-1 / 16^{\prime \prime} \mathrm{mtg} / \mathrm{c}^{\prime}$, has one $0.261^{\prime \prime}$ diam hole $11 / 26^{\prime \prime}$ in from one end;
marked L-1101, R-1101, C-1103 pose; 2 solder lug term; term spaced $11 / 16^{\prime \prime}$ apart; lam phenolic board $1 / 16^{\prime \prime}$ thk ; $2-3 / 8^{\prime \prime} \lg \times 1 / 2^{\prime \prime}$
wd $x 13 / 64^{\prime \prime} \mathrm{h} \mathrm{o} / \mathrm{a} ; 2 \mathrm{mtg}$ holes $0.172^{\prime \prime}$ diam on $2-1 / 16^{\prime \prime} \mathrm{mtg} / \mathrm{c}$; has one $0.261^{\prime \prime}$ diam hole $11 / 16^{\prime \prime}$ in ${ }_{\mathrm{C}-1102}$ one end; marked L-1102, C-1102

E-1301
E-1302
Same as E-1101

Same as E-907
E-1304
Same as E-507

Supports Resistors

Supports F-1101

N17-B-78082-6767

N17-K'-74266-9227

TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND FREQUENCY SHIFT CONVERTER CV-57/URR

$$
1
$$

$$
\text { CONNECTOR, RECEPTACLE: } 1
$$ round female bigh conductivity copper alloy cont; straight type;

body $27 / 32^{\prime \prime} \lg x$ in $116^{\prime \prime}$ OD fl $1^{\prime \prime}$ sq; nominal impedance 50 ohms,
non constant type; cylindrical die non-constant type; cylindrical die
cast zinc body w/sa mtg fl silver cast zinc body w/sq mtg fl silver
pl; low-loss mica-flled dielectric; accommodates solid dielectric coax
abble of $0.41^{\prime \prime}$ OD, $0.29^{\prime \prime}$ dielectric insert, 4 mtg holes $1 / 8^{\prime \prime}$ diam on $23 / 32^{\prime \prime} \times 23 / 32^{\prime \prime} \mathrm{mtg} / \mathrm{c}$, has $5 / 8^{\prime \prime}-24$
thd male coupling thd $35 / 64^{\prime \prime} \mathrm{lg}$ on 1 end only

CONNECTOR, PLUG: 20 female cont, pol: straight type; ${ }^{2-11 / 16^{\prime \prime}}$
$\lg \times 17 / 32^{\prime \prime}$ wd x $13 / 16^{\prime \prime}$ d o/a; cont $\# 8$ to \#12 ten amp min, cont \#1 to \#7 one amp min ; rectangurar ; two $50 . \mathrm{hr}$ salt spray test; marked \#738961-1
Same as J-501

CONNECTOR, RECEPTACLE: 3 round female cont; straight type; round ${ }^{\prime 2}$ emale cont; straight type;
$1-1 / 16^{\prime \prime} \lg$ wtg fl $1-3 / 16^{\prime \prime} \mathrm{x}$
$1-3 / 16^{\prime \prime} \mathrm{sq}, \mathrm{o} / \mathrm{a} ; 20 \mathrm{amp}, 70 \mathrm{v}$ $1-3 / 16^{\prime \prime} \mathrm{sq}, ~ o / a ;\left(20 \mathrm{amp}, 7{ }^{70} \mathrm{~V}\right.$
DC or $50 \mathrm{~V} \mathrm{AC}(\mathrm{RMS}) ;$ cylindrical body, die cast aluminum, w, insert: 8 solder lugs in rear for $\# 16 \mathrm{AWG}$ wire; 4 mtg holes $0.120^{\prime \prime}$ diam on $29 / 32^{\prime \prime} \times 29 / 32^{\prime \prime} \mathrm{mtg} / \mathrm{c}$; $7 / 8^{\prime \prime}-20$ male thd for coupling nut;
Navy spec \#AN-WC-591
Same as J-1104
CONNECTOR, RECEPTACLE: round male cont : straight ty round male cont; straight type;
$1-1 / 16^{\prime \prime} \mathrm{lg}$ w/ mtg fl $1-3 / 16^{\prime \prime} \mathrm{x}$ $1-3 / 16^{\prime \prime} \mathrm{sq}$ o/a; $20 \mathrm{amp}, 70 \mathrm{v} \mathrm{DC}$, or 50 Y AC (RMS); cylindrical body, die cast aluminum, w/ sif
mtg 1 ; molded black bakelite insert: 2 solder lugs in rear for \#16 AWG wire; 4 mtg holes $0.120^{\prime \prime}$
diam on $29 / 32^{\prime \prime} \times 29 / 32^{\prime \prime} \mathrm{mtg} / \mathrm{c}$; diam on $29 / 32^{\prime \prime} \times 29 / 32^{\prime \prime} \mathrm{mtg} / \mathrm{c}$; Navy spec \#AN-WC-591

TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND
FREQUENCY SHIFT CONVERTER CV-57/URR

Parts									SpARE PARTS							
$\begin{gathered} \text { symaol } \\ \text { DESIG. } \end{gathered}$	DESCEIPTION	FUNCTION	$\begin{aligned} & \text { JAN AND AND } \\ & \text { (NAYY: } \\ & \text { NTFE: } \end{aligned}$	$\begin{aligned} & \text { SIGNAL CORPS } \\ & \text { STANDRND NAVY } \\ & \text { STACK NO. } \end{aligned}$					$\begin{gathered} \text { CV-37/URR } \\ \text { TF NPUT } \\ \text { S93-AT KE } \\ \text { (SINGLE) } \end{gathered}$			AN/URA-6IFINPUT $395-470$ KC (DUAL)		$\left\|\begin{array}{l} \dot{0} \\ \overline{3} \\ \mathbf{U} \\ \hline \end{array}\right\|$	$\begin{aligned} & \text { AN/URA-7 } \\ & \text { IF IPUUT } \\ & \text { SO KC } \\ & \text { (DUAL) } \end{aligned}$	
									Equir	stock	\%	Epulif	3т0ck	\%	Epul	stock
										号	2	\times	-	2	¢	-
J-1107	CONNECTOR, RECEPTACLE: 2 rectanguiar female cont; straight cylindrical aluminum body ${ }_{4}^{\mathrm{w} / \mathrm{sq}}$ mtg fl; phenolic insert $;{ }^{4} \mathrm{mtg}^{\mathrm{mtg}}$ $1-1 / 4^{\prime \prime} \mathrm{mtg} / \mathrm{c}$; has $1-3 / 8^{\prime \prime}-18-\mathrm{NEF}-2$ thd male coupling on one end; for outdoor use, thd to accept weather cover	AC Outiet	(-49433)	N17-C.73139-7587	${ }_{97-4085}^{30}$	A-8890697-1	J-1107	1	0	0	2	0	0	2	0	0
J-1108	CONNECTOR, RECEPTACLE: 3 round male cont; straight type body, die cast aluminum, w/ sq mert, 3 ; molder lugs in rear for $\# 16$ AWG wire; 4 mtg holess $0.120^{\prime \prime}$ diam on $29 / 32^{\prime \prime} \times{ }^{\prime}$ 29/32" mtg/e; nut; Navy spec \#AN-WC-591	AC Power Input	$\underset{\substack{\text { AN-3102- } \\ 14 \mathrm{~S}-7 \mathrm{P}}}{ }$	N17-C-72604-1516	$\begin{array}{\|c\|} 30 \\ \text { AN-3102 } \\ 14 \mathrm{~S}-7 \mathrm{PP} \end{array}$	M-253475-25	$\begin{aligned} & \mathrm{J}-1108, \\ & \mathrm{~J}-1305 \end{aligned}$	1	0	0	3	0	0	3	0	0
J-1108	CONNECTOR, RECEPTACLE: 1 round female cont; straight type: $1-1 / 32^{\prime \prime} \lg \mathrm{x}$ $0.375^{\prime \prime}$ $\mathrm{OD}, \mathrm{w} / \mathrm{mmtg}$ pedance brass, silver pl hody, w/ sa mitg fl; thermosetting polymer insert accommodates solid dielectric coax cable, $0.206^{\prime \prime} \mathrm{OD}$ w/ ${ }^{\# 20}$ inner electrolytic protective coating on all silver surfaces; contains ${ }^{2}$ locking studs for male connector ; Navy dwg RE-49F331	40 KC Diversity Control Output	UG-230/U	N17.C-73108-1267	$\begin{gathered} 30 \\ \text { ANG-U. } \\ 200 / \mathrm{U} \end{gathered}$	M-445813-1	$\begin{gathered} \mathrm{J}-1109, \\ \mathrm{~J}-1110, \\ \mathrm{~J}-1308, \\ \mathrm{~J}-1309 \\ \mathrm{~J}-1310, \\ \mathrm{~J}-1311 \end{gathered}$	2	0	0	8	0	0	8	0	0
J-1110	Same as J-1109	Diversity Signal Output														
J-1111	Same as J-501	IF Input														
J-1301	Same as J-1101	Filter and Frame Interconnections														
J.1302	Same as J-1104	Ext Tone Input														
J-1303	Same as J-1104	Tone Diversity Output														
J-1304	Same as J-1106	Teletype Printer Diversity Output														
J-1805	Same as J-1108	AC Power Input														

AC Power Output AC Power Output
${ }^{40} \underset{\text { Input }}{\text { KC Diversity Control }}$ Input
${ }^{40}$ KC Diversity Control
Thput
Diversity Signal Input Diversity Signal Input

Teletype Printer
 wd $x 1^{\prime \prime} \mathrm{h}$ o/a; J 4 contact arrangement; includes brass nickel
pl lock nut, and one steel nickel pl washer; $3 / 8^{\prime \prime}$ mtg hole $; 3 / 8^{\prime \prime}-32$
NEF thd for NEF thd for mtg lock nut; small;
adaptable to compact equip (Part adaptable to
of $W-1401$)
Same as J-1401
CONNECTOR, RECEPTACLE: 14 ${ }_{2 \prime \prime}^{\prime \prime} \lg \times 3 / 4^{\prime \prime}$ wd ; straight type: $2^{\prime \prime} \lg \times 3 / 4^{\prime \prime}$ wd $\mathrm{x} 21 / 32^{\prime \prime} \mathrm{d} \mathrm{o} / \mathrm{a}$;
1000 y min flashover between any cont, cont \#1 to \#7 ten amp min, cont \#8 to \#14 one amp min; rectangular; molded melamine in-
sert; 2 holes $0.156^{\prime \prime}$ diam, $1.687^{\prime \prime}$ sert; 2 holes $0.156^{\prime \prime}$ diam, $1.687^{\prime \prime}$; mtg ; recessed connecting lugs; metal parts 50 hr salt spray cormeta parts test, marked $\# 738962-2$
(Part of $W-1401$)
J-1404

J-1405
J-1406 Same as J-1403
J. 1407 Same as J-1403

J-1601 Same as J-1401 (Part of W-1601)
J-1602 Same as J-1401 (Part of W-1601)
J-1603 Same as J-1403 (Part of W-1601)
J-1604 Same as J-1403 (Part of W-1601)
d-1605 Same as J- 1403 (Part of W-1601)
L-501 COIL, RF: p/o low pass filter assem; single layer space wnd; un-
shielded ; inductance at 1000 cyc, shielded inductance at 1000 cyc,
22 uh $p / m 10 \%$, DC resistance approx $0.55 \mathrm{ohm}: 55 \mathrm{p} / \mathrm{m}$ 1 turn OD o/a; phenolic form, air core: $1-3 / 16^{\prime \prime} \lg \mathrm{x} 1 / 2^{\prime \prime}$ OD'; mtd w/ brass slug, both ends; 2 leads $1-1 / 2^{\prime \prime} \mathrm{lg}$; wax impr, coil pa

Same as L-501

Power Circuit
Power Circuit
Power Circuit
Power Circuit
Teletype Printer
Headset
Power Circuit
Power Circuit
Power Circuit
Output Filter of V-601

Output Filter of V-501

\square
CONTRACT NObsr-39421
TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND
FREQUENCY SHIFT CONVERTER CV-57/URR

RF Filter for Teletype
L－1102 COIL，RF：series single pie uni－
\square
\square

O－301	brass body dull white nickel fin－ ish；rectangular： $25 / 32^{\prime \prime} \lg \times 3 / 16^{\prime \prime}$ wd x $0.032^{\prime \prime} \mathrm{h}$ o／a； 1 end contains encl ctr slot $1 / 4^{\prime \prime} \lg \mathrm{x} 1 / 8^{\prime \prime}$ rads； slot $1 / 16^{\prime \prime}$ from edge of body；other end w／open slot $1 / 8^{\prime \prime}$ ig $x 0^{0.063^{\prime \prime}}$ wd
O－902	Same as 0．901

| 0．1401 | GASKET：for cabinet edges；neo－ prene；elliptical hole through piece；long angular bar shape； $44^{\prime \prime} \lg \times 1 / 4^{\prime \prime}$ wd $\times 1 / 4^{\prime \prime} h$ o／a； for panel to case seal；mat formed and cemented arcund open cabinet edges |
| :---: | :---: | for panel to case seal；mat formed

and cemented arcund open cabinet
edges
O－1402
c／o
1 main mtg bkt plate
1 track plate
1 main mtg
1 track plate
1 detent plate
1 spring
3 levers；main assem aluminum ； small parts，brass and SS；rec－ tangular shape approx ； $10^{\prime \prime} \mathrm{lg} \times$
$4-1 / 8^{\prime \prime} \mathrm{h} \times 1-3 / 16^{\prime \prime}$ wd o／a approx mtd by welding rear bkt plate to cabinet sides；mtg plate $8-7 / 16^{\prime \prime}$ $\mathrm{lg} \times 4-1 / 8^{\prime \prime}$ wd $\times 1-3 / 16^{\prime \prime} \mathrm{h}$ ；bolts
$\mathrm{w} /$ Quintlock nuts are used on bkt w／Quintlock nuts are used on bkt
plate for additional support ；de－ tent plate for chassis tilting，con－ tains 4 slots； 3 tapered slots $0.187^{\prime \prime}$ d 1 large slot $1 / 4^{\prime \prime}$ d w／ $1 / 8^{\prime \prime}$ rad finish：all slots mtd 45 deg apart
$\left\lvert\, \begin{aligned} & \\ & \\ & \substack{\text { MR25W10 } \\ \text { SPEC }}\end{aligned}\right.$

z 2 $i n$ $i n$ 0 0 0 0 0 0 0		Z 0 0 0 0 0 0 0 0 0 0 0		
	\checkmark	$\stackrel{ }{ }$		－
㫛号		$\begin{aligned} & 00 \\ & \dot{0} \dot{0} \\ & 0.8 \end{aligned}$	$\stackrel{\text { 名 }}{\stackrel{\rightharpoonup}{-}}$	5
上	$\stackrel{ }{+}$	－	0	$\stackrel{ }{+}$
\bigcirc	－	\bigcirc	\bigcirc	－
－	$\stackrel{ }{ }{ }^{+}$	\bigcirc	\bigcirc	＋
\cdots	\cdots	N	－	\cdots
0	－	ㅇ．	\bigcirc	－
$\stackrel{ }{+}$	ω	\bigcirc	\bigcirc	ω
\ldots	ω	\cdots	\ldots	10
\bigcirc	\bigcirc	－	－	ㅇ．
$\stackrel{ }{-}$	∞	\bigcirc	0	∞

Sealing Between Front
Sealing Between

AN／URA－6，AN／URA－T
CV－57／VRR
PARTS LISTS
TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND
FREQUENCY SHIFT CONVERTER CV-57/URR

Fastens Buffer and Window to Front Panel
dow to Front Panel
Equipment Cooling
Sealing Between Front
Panel and Case
Sliding Out Chassis for
Accessibility
Sliding Out Chassis for
Accessibility

Air Filter

Equipment Cooling
Power Circuit male cont, pol; straight type: $2^{\prime \prime}$ Ig x $3 / 4$ wd $\times 23 / 32$ d o/a; 1000 cont \#l to $\# 7$ ten amp min, $\# 8$ to \#14 one amp min; rectanguar ; molded melamine insert; recessed connecting $1.687^{\prime \prime}$ mtg/c parts 50 hr salt g pray corrosion test marked +738962 -1

$$
\begin{array}{l|l}
\text { P-201 } & \text { Same as P-101 }
\end{array}
$$

P-301
Same as P-101

N16-S-117101-277	1	P-739045-501	$0-1406$

\qquad

1

1

 $\underset{\substack{0 \\ 0-1407, 0.1607}}{ }$

N17-C-73588-4094

1

2 1∞

TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND FREQUENCY SHIFT CONVERTER CV-57/URR

parts									spare parts								
	DESCRIPTION	FUNCTION	$\begin{aligned} & \text { JAN AND } \\ & \text { (NAYY } \\ & \text { NPE } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { SIGNAL CORPS } \\ & \text { STANDARD NAAVY } \\ & \text { STACK NO. } \end{aligned}$		$\xrightarrow[\text { CRACTOR }]{\text { CON }}$ DRAWING PART NO.		¢	CV-S7/URR IF INPUT 395-470 KC(SINGLE) (SINGLE)		$\left\|\begin{array}{c} \dot{\mathbf{a}} \\ \stackrel{\rightharpoonup}{\mathbf{0}} \\ \mathbf{u} \end{array}\right\|$	$\begin{gathered} \text { AN/URAG } \\ \text { TF/NPUT } \\ \text { 393-470 KC } \\ \text { (DUAL) } \\ \hline \end{gathered}$		$\left\lvert\, \begin{gathered} \dot{0} \\ \stackrel{\rightharpoonup}{\bar{u}} \\ \hline \end{gathered}\right.$	$\begin{gathered} \text { AN/URA-7 } \\ \text { IF INPUT } \\ \text { SO KC } \\ \text { (DUAL) } \\ \hline \end{gathered}$		
									EQUIP	${ }^{\text {sTock }}$	\%	Epul	STOCK	:	EquIP		Tock
$\begin{aligned} & \text { SyMent. } \\ & \text { DESIC. } \end{aligned}$									¢	¢	边	¢	¢	20	¢ $\begin{aligned} & \text { ¢ } \\ & 0 \\ & 0 \\ & 0\end{aligned}$	¢	安
P-501	CONNECTOR, PLUG: single male coax cont; straight type; ${ }^{1-9 / 16^{\prime \prime}}$ $\lg \times 11 / 16^{\prime \prime}$ OD o/a; nom RF impedance 52 ohms; cylindrical brass body, silver pl; insert may be, dielectene, BM10. cable opening $1 / 2^{\prime \prime}$ diam; 24 thd coupling sleeve; insert assem w/ polystyrene to seal connector air spaces	Scanning Adaptor Output Cable	(-49195)	N17-C-71414-2800	$\left\lvert\, \begin{gathered} 30 \\ 83-1 \mathrm{SPN} \end{gathered}\right.$	P-255223-9	$\begin{aligned} & \text { P-501, } \\ & \text { P-1102, } \\ & \text { P-1111 } \end{aligned}$	3	0	0	6	0	0	4	0		0
P-601	Same as P-101	Power Circuit															
P-701	Same as P-101	Power Circuit															
P-801	Same as P-101	Power Circuit															
P-901	Same as P-101	Power Circuit															
P-1001	Same as P-101	Power Circuit															
P-1101	Not Used																
P-1102	Same as P-501	Remote Circuit Line															
P-1103	Not Used																
P-1104	CONNECTOR, PLUG: 3 round male cont; straight type; $1-11 / 32^{\prime \prime} \lg \mathrm{x}$ $1-1 / 8^{\prime \prime} \mathrm{OD} \max ; 20 \mathrm{amp}, 70 \mathrm{v}$, die cast aluminum body; molded $3 / 4^{\prime \prime}-20$ thd, other end $\mathrm{w} / 7 / 8^{\prime \prime}-20$ thd; one end w/ $3 / 4^{\prime \prime}-20$ outside $\underset{\text { thd for cable clamp coupling; }}{\text { tropicalized; }}$ Army-Navy \#AN-WC-591	Ext Tone Line	$\begin{array}{r} \text { AN-3106- } \\ 14 S-7 P \end{array}$	N17-C-70588-1524	$\left.\begin{gathered} 30 \\ \mathrm{AN}-306 \\ 14 \mathrm{~S}-7 \mathrm{P} \end{gathered} \right\rvert\,$	M-253476-30		2	0	0	8	0	0	8	0		0
P-1105	Same as P-1104	Tone Output Line															
P-1106	CONNECTOR, PLUG: 2 round female cont; straight type ; $1-11 / 32^{\prime \prime}$ cylindrical die cast aluminum body; $\mathrm{w}_{\mathrm{w}} / 3 / 4^{\prime \prime}-20$ thd, other end $\mathrm{w} /$ $\begin{array}{ll}\mathrm{w} / 8^{\prime \prime} 3 / 4^{\prime \prime}-20 \text { thd, other } \\ 7 / 8^{\prime \prime}-20 & \text { thd } \text {; one end } w / 4^{\prime \prime}-20\end{array}$ outside thd for cable clamp coupling; $\begin{aligned} & \text { tropicalized } \\ & \text { spec \#AN-WC-591 }\end{aligned}$ Army-Navy	Teletype Line	$\begin{array}{\|c} \text { AN-3106. } \\ 14 S-9 S \end{array}$	N17-C.70320-2882	$\left\|\begin{array}{c} 30 \\ \mathrm{AN}-3106 \\ 14 \mathrm{~S}-9 \mathrm{~S} \end{array}\right\|$	M-253476-26	P-1106,	1	0	0	3	0	0	3	0		0
P-1107	Not Used																

AC Power Line

IF Input Line

Ext Tone Line
Tone Diversity Line
Teletype Diversity Line AC Power Line
Filter and Frame Inter-
connections
CONNECTOR, PLUG: 20 male cont, pol, straight type; 2-11/16"
$\lg \times 5 / 8^{\prime \prime}$ wd $x 15 / 16^{\prime \prime}$ d, less cont lg $x / 8^{\prime \prime}$ wd $x ~ 15 / 16^{\prime \prime}$ d, less cont
and pol pins; cont $\# 8$ to $\# 12$ ten amp min, cont \#1 to \#7 one amp min; rectangular; molded melamine insert; two $0.156^{\prime \prime}$ diam holes, $2-3 / 8^{\prime \prime}$ mtg/e; ${ }^{50} \mathrm{hr}$
spray test; marked $\# 738961-2$

Same as P-1401
P-1601
CONNECTOR, PLUG: single m
coax cont; straight type; $1-1 / 64$ coax cont; straight type ; $1-1 / 64^{\prime \prime}$
lg x $9 / 16^{\prime \prime}$ diam; 52 ohms impedTeflon (pyly (poly-P-114):0.212" diam Teffon (poly-P-114); $0.212^{\prime \prime}$ diam tegral nut (outer shield of coax cable is locked by thd) ; in acdace w/ Navy dwg RE49F246

Filter and Frame Inter-
connections
(Part of connectio
$\mathbf{W}-1601$)

Part of W-1701
Same as P-1701

Same as P-1701
Same as P-1701
Not Used
and
P-1707
P-1708
P-1709
Same as P-1701
Same as P-1701

Same as P-1701

Same as P-1701

CONTRACT NObsr-39421
TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND
FREQUENCY SHIFT CONVERTER CV-57/URR

PaRTS									SPARE PARTS								
	description	FUNCTION	$\begin{aligned} & \text { JAN AND } \\ & \substack{\text { NAVY } \\ \text { NPE. } \\ \text { NO. }} \end{aligned}$	$\begin{aligned} & \text { SIGNAL CORPS } \\ & \text { STANDAND NAVY } \\ & \text { STACK NO. } \end{aligned}$					CV-57/URR IF INPUT 395-470 KC (SINGLE)		$\left\|\begin{array}{c} 0 \\ \stackrel{0}{\mathbf{0}} \\ \mathbf{0} \end{array}\right\|$	AN/URAIF INPUT 393-470 KC(DUAL)		$\left\|\begin{array}{c} \dot{0} \\ \vdots \mathbf{3} \\ \mathbf{0} \\ \mathbf{0} \end{array}\right\|$	AN/URA-7 IF INPUT 50 KC (DUAL)		
									Epurif	stock	妥	Equir	STOCK	$\stackrel{\sim}{*}$	EQUIP	stoc	
$\begin{gathered} \text { SYMBALIL } \\ \text { DESIG. } \end{gathered}$									¢			-	$\begin{array}{ll}x \\ 0 \\ 0 & 2 \\ 0 \\ 0\end{array}$	(1)	-	-	¢
R-203*	RESISTOR, FIXED: comp ; 12,000 ohms $\mathrm{p} / \mathrm{m} 10 \%$; $1 / 2$ w; F characteristic; 0.375 ig x xumidity and salt water immersion cycling resistant; 2 axial wire lead term; marked w/ JAN std color code; spec JAN-R-11	$\underset{\text { Shifter }}{\text { V-202 Grid Phase }}$	RC20BF123K	N16-R-50309-811		A-8897969-75	R-203	0	0	0	0	0	0	2	0		
R-204	Same as R-104	AFC Divider															
R-205	Same as R-105	AFC Filter															
R-206*	RESISTOR, FIXED: comp; 8200 ohms $\mathrm{p} / \mathrm{m} 10 \%$; $1 / 2 \mathrm{w}^{\mathrm{w}} ; \mathrm{F}$ characteristic; $0.375^{\prime \prime} \lg \times 0.140^{\prime \prime}$ diam ; mersion cycling resistant; 2 axial wire lead term; marked w/ JAN std color code; spec JAN-R-11	V-202 Cathode Bias	RC20BF822K	N16-R-50237-811		A.8897969-73	R-206	0	0	0	0	0	0	${ }^{2}$	0		
R-207*	RESISTOR, FIXED: comp ; 39,000 ohms $\mathrm{p} / \mathrm{m} 10 \%$; $1 / 2 \mathrm{w}$; ${ }^{\prime \prime}$ char acteristic: 0.37 Ig X 0.1 water immersion cycling resistant; 2 axial wire lead term; marked w/ JAN std color code ; spec JAN-R-11	V-202 Plate Load	RC20BF393K	N16-R-50444-811		A-8897969-81	$\begin{aligned} & \mathrm{R}-207, \\ & \mathrm{R}-639 \end{aligned}$	1	0	0	3	0	0	5	0		0
R-208	Same as R-108	V-202 Screen Dropping															
R-209*	RESISTOR, FIXED: comp; 330 ohms $\mathrm{p} / \mathrm{m} 10 \%$, $1 / 2 \mathrm{w}$; F charins, humidity and salt water immersion cycling resistant; 2 axial std color code; spec JAN-R-11	V-203 Cathode Bias	RC20BF3311	N16-R-49706-811		A-8897969-56	R-200	0	${ }^{\circ}$	0	0	0	0	2	0		0
R-210*	RESISTOR, FIXED: comp; 33,000 ohms $\mathrm{p} / \mathrm{m} 10 \% ; 1 / 2 \mathrm{w} ; \mathrm{F}$ characteristic: $0.375 \mathrm{lg} \times 0.140$ diam; mersion cycling resistant; 2 axial wire lead term; marked w/ JAN std color code; spec JAN-R-11	V-203 Screen Dropping	RC20BF333K	N16-R-50417-811		A-8897969-80	$\left\lvert\, \begin{aligned} & \mathrm{R}-210, \\ & \mathrm{R}-311 \end{aligned}\right.$	1	0	0	2	0	0	4	0		0
R-211	Same as R-111	V-202 Grid Leak															
R-212*	RESISTOR, FIXED: comp; 1500 ohms $\mathrm{p} / \mathrm{m} 10 \%$; $1 / 2 \mathrm{w} ; \mathrm{F}$ characteristic; 0.406 max $1 g \times 0.175$ ity; 2 axial wire lead term $1-1 / 2^{\prime \prime}$ \lg \#21 AWG wire; spec JAN-	B+ Filter	RC20BF152K	N16-R-49967-811		A-8897969-64	R-212	0	0	0	0	0	0	2	0		0

TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND FREQUENCY SHIFT CONVERTER CV-57/URR

* When ordering replacements specify " \max dimensions not to exceed $5 / 32$ " diam $\times 13 / 32$ " lg "
** When ordering replacements specify "max dimensions not to exceed $15 / 64$ " diam $\times 19 / 32$ " lg "

TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND fREQUENCY SHIFT CONVERTER CV-57/URR

TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND FREQUENCY SHIFT CONVERTER CV-57/URR

TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND FREQUENCY SHIFT CONVERTER CV-57/URR

solder lug term; encl SS $^{\text {o }}$ or
brass nickel pl case 15/16" max

nickel pl shaft $0.250^{\prime \prime}$ diam
$3-1 / 2^{\prime \prime} \lg w / \mathrm{scdr}$ glot; lin taper
$3-1 / 2^{n g} \mathrm{w} / \mathrm{scdr}$ glot; lin taper ;
ins cont arm w/o off position ;
high torque:
high torque; no locking device
mitg bushing $3 / 8^{\prime \prime}-32$ thd $x 3 / 8$

ig; non-turn device on $\frac{7 / 10^{\circ}}{}$ radius at 3 o'clock; salt wate
spray corrosion resistant; ambient
oper temp range -60 to $+100^{\circ} \mathrm{C}$;
ushing SS or brass nickel pl
marked w / NT \#, mfr prefix ltr,
and RCA part/dwg
and RCA part/dwg \#
R-716
R-801*
RESISTOR, FIXED: comp; 27,000

ins, humidity and salt water im-
mersion cycling resistant; 2 axial
wire leads; marked w/ JAN std
wire leads; marked w/' JA
R-802
RESISTOR FIXED: comp; 360,000
RESISTOR, FIXED: $\mathbf{c o m p ; ~ 3 6 0 , 0 0 0}$

ins, moisture resistant; 2 axial
wire lead term ; color coded
R-804 \dagger
RESISTOR, FIXED: comp; 3000
ohms p/m 5\% ; 2 w : F charac-
teristic; $0.750^{\prime \prime} \max \lg x 0.370^{\prime \prime}$
max diam; ins, salt water immer
term ; color coded ; spec JAN-R-11
Same as R-617
RESISTOR, FIXED: comp; 560,000
ohms $\mathbf{p} / \mathrm{m} 10 \% ; 1 / 2 \mathrm{w} ; \mathbf{F}$ char-
acteristic; $0.375^{\prime \prime} \operatorname{lg~x~} 0.140^{\prime \prime}$ diam;
ins, humidity and salt water im-
mersion eycling resistant; ${ }^{2}$ axial
wire leads ; marked w/ JAN std
color code; spec JAN-R-11
Same as R-635
Not Used
Same as R-608
Same as R-104
RESISTOR, FIXED: comp; 56,000
hms p/m 10\%: $1 / 2$ w, F cha
acteristic ; $0.375^{\prime \prime} \lg \times 0.140^{\prime \prime}$ diam;
ins, humidity and salt water im-
wire leads ; marked w/ JAN std
color code; spec JAN-R-11
Same as R-903

CONTRACT NObsr-39421
*When ordering replacements specify "max dimensions not to exceed $5 / 32^{\prime \prime}$ diam $\times 13 / 32$ " 1 g "

* When ordering replacements specify "max dimensions not to exceed $15 / 64^{\prime \prime}$ diam x $19 / 32$ " \lg "
† When ordering replacements specify "max dimensions not to exceed $21 / 64^{\prime \prime}$ diam $\times 23 / 32^{\prime \prime} \lg ^{\prime \prime}$
TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued)
FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND
FREQUENCY SHIFT CONVERTER CV-57/URR

 ins, humidity and salt water imwire leads: marked w/ JAN std spec JAN-R-11

RESISTOR, VARIABLE: comp; 10,000 ohms $p / \mathrm{m} 20 \% ; 1 / 4$
3 solder lug term; encl SS or brass nickel pl case ${ }^{15 / 16^{\prime \prime}} \max$
diam $0.451^{\prime \prime}$
SS^{\prime} or brass diam $x \quad 0.451^{\prime \prime}$ d; $;$ SS or brass
nickel pl shaft $0.250^{\prime \prime}$ diam $\times 1 / 2^{\prime \prime}$ la, sedr slot; lin taper; ins cont arm w/o off position ; high torque, no locking device; mtg bushing
$3 / 8^{\prime \prime}-32$ thd $\mathrm{x} 1 / 4^{\prime \prime} \mathrm{lg}$; salt water spray corrosion resistant; ambient oper temp range -60° to $+100^{\circ} \mathrm{C}$; bushing SS or brass nickel pl;
marked w / NT \#, mfr prefix ltr marked $\mathbf{w} / \mathrm{NT} \#$, mfr prefix ltr,
RCA part/dwg \#, Same as P-104
Same as R-104

Same as R-903
RESISTOR, FIXED: comp; 270,000 ohms $p / \mathrm{m} 5 \%$; $1 / 2 \mathrm{w}$; F characteristic : $0.375^{\prime \prime} \lg \times 0.140^{\prime \prime}$ diam; ins, humidity and salt water im-
mersion cycling resistant; 2 axial mersion cycling resistant; 2 axial std color code; spec JAN-R-11
Same as R-927
RESISTOR, FIXED: comp ; 470,000 ohrns $\mathrm{p} / \mathrm{m} 5 \%$; $1 / 2 \mathrm{w} ; \mathrm{F}$ characteristic ; $0.375^{\prime \prime} \lg \times 0.140^{\prime \prime}$ diam; ins, humidity and salt water immersion cycling resistant; ${ }_{\text {wire }}^{2}$ leads ; marked w/ JAN std color code; spec JAN-R-11

```
Same as R-929
```

Same as R-929
Same as R-913
Same as R-913
Same as R-913
Same as R-913
RESISTOR, FIXED: comp; 750,000 ohms $\mathbf{p} / \mathrm{m} 5 \%, 1 / 2 \mathrm{w}$; \mathbf{F} charins, humidity and salt water immersion cycling resistant; 2 axial wire leads: marked w/ JAN std
color code; spec JAN-R-11

```
V-906 Grid Voltage
Divider
V-907 Cathode Bias

V-906 Cathode Bias Control
V-907 Grid Leak
V-906 Grid Leak
V-906 and V-907
Cathode Load
V-902 Cathode Load
V-909 Plate Load
V-902 Plate Load
V-909 Cathode Load
V-902 Plate Load
V-909 Cathode Load
\[
\begin{aligned}
& \text { Output Filter of Differ- } \\
& \text { ential Rects V-902 and }
\end{aligned}
\]

\section*{}

*When ordering replacements specify "max dimensions not to exceed \(5 / 32^{\prime \prime}\) diam \(\times 13 / 32^{\prime \prime} \mathrm{lg}\) "
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PARIS} & \multicolumn{8}{|c|}{SPARE PARTS} \\
\hline \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { SYMBOLL } \\
& \text { DESIG. }
\end{aligned}
\]} & \multirow[b]{3}{*}{DESCRIPTION} & \multirow[b]{3}{*}{PUNCTION} & \multirow[b]{3}{*}{\[
\begin{gathered}
\text { JAN AND } \\
\begin{array}{c}
\text { NAVY } \\
\text { NPE. }
\end{array} \\
\text { NO. }
\end{gathered}
\]} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { SIGNAL CORPS } \\
& \text { STANDARD NAVY } \\
& \text { STOCK NO. }
\end{aligned}
\]} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { MFGR } \\
& \text { AFD } \\
& \text { MFER'S } \\
& \text { DEESIG } \\
& \text { NATION }
\end{aligned}
\]} & \multirow[b]{3}{*}{CONtractor DRAWING AND part No.} & \multirow[b]{3}{*}{\[
\begin{gathered}
\text { SYMBOL } \\
\text { DESIG. } \\
\text { INN. } \\
\text { VOLVED }
\end{gathered}
\]} & \multirow[t]{3}{*}{} & \multicolumn{2}{|l|}{CV-57/URR IF INPUT 395-470 KC (SINGLE)} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{\(\qquad\)} & \[
\left|\begin{array}{c}
\dot{0} \\
\overline{5} \\
\mathbf{0} \\
\hline
\end{array}\right|
\] & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { AN/URA-T } \\
& \text { FNRPUT } \\
& 50 \text { KC } \\
& \text { (DUAL) } \\
& \hline
\end{aligned}
\]} \\
\hline & & & & & & & & & Equir & STOCK & & EQu|P & stack & 妥 & Equip & stock \\
\hline & & & & & & & & & ¢ & \[
\begin{array}{l|l}
x \\
\mathbf{x} \\
\mathbf{q} \\
\mathbf{z} \\
\mathbf{0}
\end{array}
\] & \[
\left|\begin{array}{l}
\bar{z} \\
\frac{\mathbf{x}}{\mathbf{x}} \\
\mathbf{0}
\end{array}\right|
\] &  &  &  &  &  \\
\hline R-934 & Same as R-933 & Output Filter of Differential Rects V-002 and V-909 & & & & & & & & & & & & & & \\
\hline R-935* & RESISTOR, FIXED: comp; 39,000 ohms \(\mathrm{p} / \mathrm{m} 5 \%: 1 / 2 \mathrm{w} ; \mathbf{F}\) characteristic: \(0.375^{\prime \prime} \lg \times 0.140^{\prime \prime}\) diam ; ins, humidity and salt water immersion cycling resistant; 2 axial wire leads; marked w/ JAN std color code; spec JAN-R-11 & Output Filter of Differ\(\underset{\substack{\text { ential } \\ \mathrm{V}-909}}{ }\) & RC20BF393J & N16-R-50443-431 & & A-8897960-197 & R-935 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
\hline R-936* & RESISTOR, FIXED: comp; 82,000 ohms p/m \(5 \%\) : \(1 / 2 \mathrm{w} ; \mathbf{F}\) characteristic; \(0.375^{\prime \prime} \lg \times 0.140^{\prime \prime}\) diam ; ins, humidity and salt water immersion cycling resistant; 2 axial color code; spec JAN-R-11 & -B Filter & RC20BF823J & N16-R-50587-431 & & A-8897960-205 & \[
\begin{aligned}
& \mathrm{R}-936, \\
& \mathrm{R}-938
\end{aligned}
\] & 0 & 0 & 0 & 2 & 0 & 0 & 2 & 0 & 0 \\
\hline R-937 & Same as R-615 & -B Voltage Divider & & & & & & & & & & & & & & \\
\hline R-938 & Same as R-936 & -B Filter & & & & & & & & & & & & & & \\
\hline R-939 & Same as R-921 & -B Voltage Divider & & & & & & & & & & & & & & \\
\hline R-940 & Same as R-619 & V-905 Plate Dropping & & & & & & & & & & & & & & \\
\hline R-941 & Same as R-104 & V. 908 Grid Leak & & & & & & & & & & & & & & \\
\hline R-042 & Same as R-104 & V-901 Grid Leak & & & & & & & & & & & & & & \\
\hline R-943 & Same as R-933 & +B Voltage Divider & & & & & & & & & & & & & & \\
\hline R-944* & RESISTOR, FIXED: comp; 1200 ohms \(\mathbf{p} / \mathrm{m} 5 \% ; 1 / 2 \mathrm{w} ; \mathrm{F}\) characteristic ; \(0.375^{\prime \prime} \lg \times 0.140^{\prime \prime}\) diam ; ins, RSW and humidity; 2 axial wire lead term; color coded; spec JAN-R-11 & + B Voltage Divider & RC20BF122J & N16-R-49939-431 & & A-8897969-161 & R-944 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
\hline R-945* & RESISTOR, FIXED: comp; 47 ohms \(\mathrm{D} / \mathrm{m} 3 \%\) : \(1 / 2 \mathrm{w}\); F characteristic ; \(0.375^{\prime \prime} \mathrm{Ig} \times 0.140^{\prime \prime}\) diam less leads; ins, humidity and RSW; 2 axial wire lead term; color coded; spec JAN-R-11 & +B Voltage Divider & RC20BF470J & N16-R-49426-431 & & A-8897969-127 & \[
\begin{aligned}
& \mathrm{R}-945, \\
& \mathrm{R}-946
\end{aligned}
\] & 0 & 0 & 0 & 2 & 0 & 0 & 2 & 0 & 0 \\
\hline R-946 & Same as R-945 & V-907 Cathode Bias & & & & & & & & & & & & & & \\
\hline R-947 & Same as R-105 & \(\underset{\substack{\text { Voad } \\ \text { Le92 }}}{ }\) and V-909 Plate & & & & & & & & & & & & & & \\
\hline R-948 & Same as R-927 & \begin{tabular}{l}
V-902 Cathode Load \\
tr nne rinthrine I ramd
\end{tabular} & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND FREQUENCY SHIFT CONVERTER CV-57/URR}
TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued)

* When ordering replacements specify "max dimensions not to exceed \(5 / 32^{\prime \prime}\) diam \(\times 13 / 32\) " \(\lg\) "
** When ordering replacements specify "max dimensions not to exceed \(15 / 64\) " diam \(\times 19 / 32^{\prime \prime} \lg\) "
\(\dagger\) When ordering replacements specify "max dimensions not to exceed \(21 / 64\) " diam \(x 23 / 32^{\prime \prime} \mathrm{Ig}\) "
CONTRACT NObsr-39421

TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND FREQUENCY SHIFT CONVERTER CV-57/URR

SWITCH, ROTARY: single pole,
9 throws, 9 positions; single sect:
50 v, coin silver cont; molded g
g
g
or
to
to
v
nd
ce
Part of S-603
SWITCH, TOGGLE: DPST ; 6 amp at 125v DC, 3 amp at 250 v DC; \(9 / 16^{\prime \prime} \max w{ }^{\prime} \times 1 / 2^{\prime \prime} h\) excluding lever and mtg bushing; bat type handle 18 g; locking action; position 1 normally closed ; 4 solder lug term; single hole mtg bushing \(15 / 32^{\prime \prime}-32\) thd \(\mathrm{x} 1 / 4^{\prime \prime} 1 \mathrm{~g}\); bushing has keyway \(-0.000^{\prime \prime}\) wd \(0.035^{\prime \prime}+0.007^{\prime \prime}\) \(-0.000^{\prime \prime} \mathrm{d}\) extending full length: term hot solder dipped (Part of W-1401)
S-701

mentary action, 2 cont normally open and 2 cont normally closed; 6 solder lug term; \(3 / 8^{\prime \prime \prime} 32\) thd x
\(1 / 4^{\prime \prime} \lg\) mtg bushing; shaft \(0.250^{\prime \prime}\) x \(9 / 16^{\prime \prime} \mathrm{lg}\) flush mtg; 200 hr salt spray, humidity, fungus, vibration and shock resistant in accordance

Switches Tuning C
tors of \(V-605 B\)


Switches Screen Supply \(_{\text {to }} \mathrm{V}-607\) and \(V-608\)

Switches Mark-Space
Polarity
\(\underset{\substack{\text { Switches } \\ \text { ibration } \\ \text { V-702 }}}{\text { Voltages and Cal- }}\) to


TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND

FREQUENCY SHIFT CONVERTER CV-57/URR

\(\qquad\) preselector, 2 windings, 3 pie uni-
versal wnd versal wnd ; rectangular, aluminu
shiel
can \(4-1 / 64^{\prime \prime}\) ig max \(29 / 32^{\prime \prime} \mathrm{sa}\) less mtg attachments;
(2-17/32" 1 g less mtg, slugs and bushing); phenolic coil form, powdered iron core; coil form
\(0.283^{\prime \prime} \mathrm{OD} \times 2.375^{\prime \prime} \mathrm{lg} ; 2\) adjustable iron cores; scdr adj through
top and bottom of can ; mtd by 2 spade type studs \(\# 4-40 \mathrm{x} 7 / 16^{\prime \prime}\) lg located one ea on bottom ctr coil tunes from 378 ke to 495 kc min; single peak resonance curve when pri is tuned w/ a 100 mmf
capacitor across wnd and secd is tuned w/a \(100 \mathrm{mmf}_{\text {mapacitor }}\) \#739972-501, 430 kc ; coil form impr: spec 16T36 (Ships)
\[
\begin{aligned}
& \mathrm{T}-103 \\
& \mathrm{~T} \cdot 201
\end{aligned}
\]
Same as T-102
COIL, RF: 50 kc osc, tunes from versal wnd having 2 taps; rectangular aluminum shield can; wnd \(\mathrm{c} / \mathrm{o} 3\) strands of 0.0031 " diam per turn, tapped at 36 turns and 500 turns; ; total turns \(675 ; 2-17 / 32^{\prime \prime}\) \(\lg \times 0.937^{\prime \prime}\) sa less studs; (tuning slug and bushing) lam phenolic iron core; sedr adj thru top of can; 2 mtg studs \(\# 4-40\) thd \(x\) \(15 / 64^{\prime \prime} \mathrm{lg}\) on \(0.937^{\prime \prime} \mathrm{mtg} / \mathrm{c} ; 6\) B solder lug term on bottom; term wire and term E and F are connected w/ copper wire; marked RCA \(\# 739972-504 ; \min Q\)
frea range is 70
\(p\) m 5 over freq range is \(70 \mathrm{p} / \mathrm{m} 5 \%\); coil
wax impr; coil form has yellow dot on end coil form has yellow TRANSFORMER, VARIABLE, RF: preselector, 2 windings, universal can; \(4-1 / 64^{\prime \prime} \lg \max x 29 / 32^{\prime \prime}\) sq less mtg attachments; (2-17/32" g less slugs and mtg studs) phenolic coil
        r; 2 adj iron cores; sedr ad
        through top and bottom of can;
        mtd by 2 spade type studs \#4-40
        \(x 15 / 64^{\prime \prime} \mathrm{lg}\) located one ea on
        term ; coil tunes from 47.5 to 52.5
        kc min; single peak resonance
        curve when pri is tuned w/a
        1500 mmf capacitor across wnd
        capacitor across wnd; marked
        RCA \(\# 739972-502,50\) ke ; coil
        form has a green dot on end, co
            wax impr; spec \(16 T 36\) (ships)
    Same as T-202
400-470 Ke Input
V-201 Ose Coil

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}
I




TABLE 8－4．COMBINED PARTS AND SPARE PARTS LIST（Continued） FREQUENCY SHIFT CONVERTER－COMPARATOR GROUPS AN／URA－6，AN／URA－7 AND FREQUENCY SHIFT CONVERTER CV－57／URR
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Parts} & \multicolumn{9}{|c|}{Spare parts} & \\
\hline & \multirow[b]{3}{*}{description} & \multirow[b]{3}{*}{FUNCTION} & \multirow[b]{3}{*}{\[
\begin{gathered}
\text { JAN AND } \\
\begin{array}{c}
\text { NAVY) } \\
\text { (YPE. } \\
\text { NO. }
\end{array} \\
\hline
\end{gathered}
\]} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { SIGNAL CORPS } \\
& \text { AND } \\
& \text { STANARD NAVY } \\
& \text { STOCK NA. }
\end{aligned}
\]} & \multirow[b]{3}{*}{} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { CON- } \\
& \text { TRACTOR } \\
& \text { DRAWNNG } \\
& \text { PART NO. }
\end{aligned}
\]} & \multirow[b]{3}{*}{\[
\begin{gathered}
\text { ALL } \\
\text { SYMBOL } \\
\text { DESIG. } \\
\text { INE } \\
\text { VIVED }
\end{gathered}
\]} & \multirow[t]{3}{*}{} & \multicolumn{2}{|l|}{CV－57／URR IF INPUT 395－470 KC （SINGLE）} & \[
\left|\begin{array}{c}
\dot{\overline{3}} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right|
\] & \multicolumn{2}{|l|}{AN／URA－ 6 IF INPUT 395－470 KC （DUAL）} & \[
\left|\begin{array}{l}
0 \\
\frac{0}{5} \\
\text { oun }
\end{array}\right|
\] & \multicolumn{3}{|l|}{AN／VRA－T 50 KC （DUAL）} & \\
\hline & & & & & & & & & Equir & stock & 妥 & EquIP & stock & 品 & Equir & & Hock & \\
\hline \[
\begin{aligned}
& \text { Symson } \\
& \text { DESIG. }
\end{aligned}
\] & & & & & & & & & ¢ &  & 2 & ¢ &  & \[
\left|\begin{array}{l}
\mathbf{2} \\
\frac{1}{2} \\
\mathbf{y} \\
\mathbf{0}
\end{array}\right|
\] &  & & 2 & \\
\hline V－203 & Same as V－103 & Converter & & & & & & & & & & & & & & & & \\
\hline V－301 & Same as V－102 & 1st IF Amplr & & & & & & & & & & & & & & & & \\
\hline V－302 & Same as V－102 & IF Limiter & & & & & & & & & & & & & & & & \\
\hline V－303 & TUBE，ELECTRON：miniature type twin dicde & IF Discriminator & 6ALs & N16－T－56195 & & & \[
\begin{aligned}
& \text { V-303, } \\
& \mathrm{V}-666, \\
& \mathrm{~V}-902, \\
& \mathrm{~V}-909
\end{aligned}
\] & 2 & 0 & 0 & 7 & 0 & 0 & 7 & － & & 0 & z \\
\hline V－501 & TUBE，ELECTRON：remote－cutoff & Cathode Follower & \(6 \mathrm{AB7}\) & N16－T－56127 & & & V－501 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & & 0 & 3 \\
\hline v－601 & TUBE，ELECTRON：duotriode & AF Amplr I and II & 12 AUT & N16－T－58241 & & &  & 5 & 0 & 0 & 19 & 0 & 0 & 19 & 0 & & 0 &  \\
\hline V－602 & Sane as V－601 & \(\underset{\substack{\text { Bal Mod } \\ \text { Driver }}}{ }\) and Trizyer & & & & & & & & & & & & & & & & \\
\hline V－603 & Same as V－601 & Trigger I & & & & & & & & & & & & & & & & \\
\hline V－604 & Same as V－601 & Trigger II & & & & & & & & & & & & & & & & \\
\hline V－605 & Same as V－601 & Tone Mod and Tone Ose & & & & & & & & & & & & & & & & \\
\hline V－606 & Same as V－303 & DC Restorer & & & & & & & & & & & & & & & & \\
\hline V－607 & TUBE ELECTRON：beam power & Teletype Keyer & 6AQ5 & N16－T－56198 & & & \[
\begin{gathered}
\mathrm{V}-607, \\
\mathrm{~V}-608
\end{gathered}
\] & 2 & 0 & 0 & 6 & 0 & 0 & 6 & 0 & & 0 & \\
\hline V－608 & Same as V－607 & Teletype Keyer & & & & & & & & & & & & & & & & \\
\hline V．701 & \(\underset{\text { triode }}{\text { TUBE，ELECTRON：high－mu twin }}\) & DC Amplr & \({ }_{12 \mathrm{AX}} 7\) & N16－T－58241－6 & & & V－701 & 1 & 0 & 0 & 2 & 0 & 0 & 2 & \(\bigcirc\) & & 0 & \(\frac{8}{2}\) \\
\hline V－702 & TUBE，ELECTRON：cathode－ray， medium persistence & Cathode Ray Tube for
tuning & 2 BPI & N16－T－52230 & & & V－702 & 1 & 0 & 0 & 2 & 0 & 0 & 2 & \(\bigcirc\) & & 0 &  \\
\hline v－801 & TUBE，ELECTRON：HV，half wave
rectifier & －B Rect & \(1 \mathrm{z2}\) & N16－T－51990 & & & V－801， & 1 & 0 & 0 & 3 & 0 & 0 & 3 & 0 & & 0 &  \\
\hline V－802 & TUBE，ELECTRON：miniature type high vacuum rectifier & ＋B Rect & 6 X 4 & N16－T－56840 & & & V－802， & 1. & 0 & 0 & 3 & \({ }^{0}\) & 0 & 3 & 0 & & 0 &  \\
\hline V－803 & TUBE，ELECTRON：voltage regu－ lator，cold cathode type & ＋－B Regulator & OA2 & N16－T－52001 & & & \[
\begin{aligned}
& V-1002 \\
& V-803, \\
& V-1003
\end{aligned}
\] & 1 & 0 & 0 & 3 & 0 & 0 & 3 & 0 & & 0 &  \\
\hline V－901 & Same as V－102 & Channel＂A＂Amplr & & & & & & & & & & & & & & & & 듣 \\
\hline V－902 & Same as V－303 & AVC and Differential Rects & & & & & & & & & & & & & & & & 少気号 \\
\hline
\end{tabular}


TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND FREQUENCY SHIFT CONVERTER CV-57/URR


\footnotetext{
8
}


AN/URA-6, AN/URA-7
CV-57/URR
PARTS LISTS
TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND FREQUENCY SHIFT CONVERTER CV-57/URR

\[
\begin{aligned}
& 21 / 32^{\prime \prime} \text { diam } \mathrm{x} 11 / 16^{\prime \prime} \mathrm{h} \text { white } \\
& \text { translucent lens } ; \text { for miniature } \\
& \text { havonet. }{ }_{\text {T3-1/4 }} \text { bulb: enclosed }
\end{aligned}
\]
\[
\begin{aligned}
& \text { translucent lens; for miniature } \\
& \text { bayonet, TT-1/4 bulb; enclosed } \\
& \text { shell; brass shell suitably finished }
\end{aligned}
\]
\[
\begin{aligned}
& \text { shell; brass shell suitably finished } \\
& \text { to be corrosion resistant, } 1-5 / 8^{\prime \prime} \\
& \text { to } 15 / 16^{\prime \prime} \text { diam } 0 / \mathrm{a}: 0.718^{\prime \prime} \text { diamm }
\end{aligned}
\]
\[
\begin{aligned}
& \text { mtg hole required, } 3 / 16^{\prime \prime} \text { max } \\
& \text { panel thk; horizontally mtd, lamp }
\end{aligned}
\]
\[
\begin{aligned}
& \text { panel thk; horizontally motd, lamp } \\
& \text { replaceable from front of panel ; }
\end{aligned}
\]
\[
\begin{aligned}
& \text { replaceable from front of panel } \\
& \text { screw type lens; } 2 \text { solder lug term }
\end{aligned}
\]
\[
\begin{aligned}
& \text { screw type lens; } 2 \text { solder lug term } \\
& \text { located on opposite sides of base } \\
& \text { of socket; outside of bezel to be }
\end{aligned}
\] finished black nickel followed by
black lacquer
X-1601
Same as X-1401
\begin{tabular}{|l} 
For V-801 \\
\\
For V-802 \\
For V-803 \\
For Capacitor C-802
\end{tabular}
For V-901
For V-902
For V-903
\[
\text { For V- } 904
\]
\[
\text { For V- } 905
\]
For V-906
\[
\begin{aligned}
& \text { For V- } 907 \\
& \text { For V- } 908
\end{aligned}
\]
For V-909
For V-1001
For V-1002
For V-1003
For Capacitor C-1002
For Lamp I-1401

For Lamp I-1601


TABLE 8-4. COMBINED PARTS AND SPARE PARTS LIST (Continued) FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND FREQUENCY SHIFT CONVERTER CV-57/URR

\begin{tabular}{l} 
을 \\
\hline 0
\end{tabular}
\begin{tabular}{c|c} 
FILTER, LOW PASS: begins cut- & Suppresses Unwanted \\
off at 14 kc reaching max at 30 me ; & Harmonies
\end{tabular}
            \(5-1 / 16^{\prime \prime} \lg \mathrm{x} 2-3 / 8^{\prime \prime}\) wd \(\mathrm{x} 117 / 8^{\prime \prime}\)
\(\mathrm{h} 0 / \mathrm{a}\) : input impedance 20 ohms;
                    h o/a; input impedance 20 ohms;
output impedance 140 ohms; HS
                    output impedance 140 ohms; HS
rectangular metal case eight

                                on \(1-1 / 4^{\prime \prime}\) mtg/c, 2 fl spaced
                                \(\begin{array}{ll}2-1 / 16 " ; & 4 \text { solder type term; ap- } \\ \text { prox } 75 \mathrm{w} \\ \text { output for use on } \mathrm{AC}\end{array}\)
                                power supply line from 105 to 125
                                \(\mathrm{v} 50 / 60\) cps single ph, and the
line voltage drop incurred by the
                                line voltage drop incurred by the
filter will be not more than 1.5 v
                                filter will be not more than 1.5 v
at 65 amp load; power loss not
                                at 65 mmp load; power loss not
to exceed 1.5 w \(;\) max ambient
tomp of operations \(85^{\circ} \mathrm{C} ; 200 \mathrm{hr}\)
                                temp of operations \(85^{\circ} \mathrm{C}\); \({ }^{\text {ambient }} 200 \mathrm{hr}\)
salt spray test; shock and vibra-
        salt spray test; shock and vibra-
tion resistant; Navy spec 16 T 30
                            Same as Z-1101
    Z 1302
Same as Z-1102
    CASE: for equipment spare parts;
        steel, navy gray enamel finish;
empty ; \(12^{\prime \prime} \lg \times 12^{\prime \prime} w d \times 6^{\prime \prime} \mathrm{h}\)
        empty; \(12^{\prime \prime} \lg x 12^{\prime \prime} w d x 6^{\prime \prime} h\)
        o/a under surface of lid has
cardholder 22 folding type handles,
        cardholder: 2 folding type handies,
i ea end; has hasp and staple for
padlock

CONTRACT NObsr-39421

N16-F-44150-1001

Suppresses Unwanted Suppresses
Harmonics
Suppresses Unwanted Harmonics
TABLE 8-5. CROSS REFERENCE PARTS LIST
FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND FREQUENCY SHIFT CONVERTER CV-57/URR
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline JAN (OR AWS) DESIGNATION & \[
\begin{gathered}
\text { KEY } \\
\text { SYMBOL }
\end{gathered}
\] & NAVY TYPE & \[
\begin{gathered}
\text { KEY } \\
\text { SYMBOL }
\end{gathered}
\] & NAVY TYPE & \[
\begin{gathered}
\text { KEY } \\
\text { SYMBOL }
\end{gathered}
\] & \[
\begin{aligned}
& \text { STANDARD NAVY } \\
& \text { STOCK NO. } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { KEY } \\
\text { SYMBOL }
\end{gathered}
\] & \[
\begin{gathered}
\text { ITEM } \\
\text { NUMBER } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { KEY } \\
\text { SYMBOL }
\end{gathered}
\] \\
\hline CC21HH050D & C-107 & RC20BF154K & R-635 & RC30BF752J & R-606 & N16-C-29608-2201 & C-104 & & \\
\hline CE52F350N & C-802 & RC20BF182K & R-604 & RC40BF302J & R-804 & N16-C-29893-2126 & C-607 & & \\
\hline См208101K & C-1103 & RC20bF183J & R-616 & RC40BF332J & R-1402 & N16-C-30109-3801 & C-204 & & \\
\hline CM20B150K & C-304 & RC20BF183K & R-101 & RC40BF681J & R-1502 & N16-C-30183-3619 & C-608 & & \\
\hline CM20B180K & C-214 & RC20BF184K & R-706 & RC40BF911J & R-1004 & N16-C-30531-4592 & C-905 & & \\
\hline CM20C101J & C-111 & RC20BF185K & R-601 & & & N16-C-30526-2819 & C-609 & & \\
\hline CM20C101K & C-501 & RC20BF223K & R-608 & NAVY TYPE & \[
\begin{gathered}
\text { KEY } \\
\text { SYMBOL } \\
\hline
\end{gathered}
\] & N16-C-30921-8819 & C-610 & & \\
\hline CM20C131J & C-904 & RC20BF224K & R-605 & & & N16-C-31264-8019 & C-611 & & \\
\hline CM20C271J & c-104 & RC20BF225K & R-708 & -24000 & S-501 & N16-C-31502-2614 & C-213 & & \\
\hline CM20C471J & C-204 & RC20BF244J & R-611 & -28032-3 & F-1101 & N16-C-31660-5014 & C-211 & & \\
\hline CM20D391G & C-607 & RC208F272J & R-906 & -49194 & J-501 & N16-C-31660-5019 & C-612 & & \\
\hline CM25B681J & C-905 & RC20BF272K & R-106 & -49195 & P-501 & N16-C-32135-3219 & C-613 & & \\
\hline CM30D182G & C-211 & RC20BF273J & R-801 & -49435 & J-1107 & N16-C-32188-1014 & C-316 & & \\
\hline CM30D152G & C-213 & RC20BF274J & R-927 & -482869 & C-319 & N16-C-32636-4863 & C-614 & & \\
\hline CM30D302G & C-316 & RC20BF274K & R-105 & & & N16-C-32720-7543 & C-504 & & \\
\hline CM30E122G & C-611 & \({ }_{\text {RC20BF275K }}\) & R-710 & ARMY-NAVY TYPE & \[
\begin{gathered}
\text { KEY } \\
\text { SYMBOL } \\
\hline
\end{gathered}
\] & N16-C-32826-3133 & C-112 & & \\
\hline CM30E182G & C-612 & RC20BF331K & R-209 & & & N16-C-33617-4746 & C-106 & & \\
\hline CM30E272G & C-613 & RC20BF333K & R-210 & AN-3102-14S-7P & J-1108 & N16-C-33622-5237 & C-505 & & \\
\hline CM30E511G & C-608 & RC20BF334K & R-707 & AN-3102-14S-7S & J-1104 & N16-C-33622-5604 & C-502 & & \\
\hline CM30E681G & C-609 & RC20BF391K & R-602 & AN-3102-14S-9P & J-1106 & N16-C-42733-5951 & C-907 & & \\
\hline CM30E911G & C-610 & RC20BF393J & R-935 & AN-3106-14S-7P & P-1104 & N16-C-42761-8675 & C-615 & & \\
\hline  & C-106 & \(\mathrm{RC}^{\text {RC20BF393K }}\) & R-207 & AN-3106-14S-7S & P-1108 & N16-C-42767-6982 & C-101 & & \\
\hline CM35С562J & \({ }_{\text {C- }-505}^{\text {C-12 }}\) &  & R-102 & AN-3106-14S-9S & P-1106 & N16-C-43632-9000 & \({ }_{\text {C-308 }}^{\text {C-1102 }}\) & & \\
\hline CM35E472G & C-614 & RC20BF471K & \(\stackrel{\text { R-945 }}{\text { R-103 }}\) & & & N16-C-44111-2680 N16-C-45801-8800 & \({ }_{\text {C-1102 }}^{\text {C-120 }}\) & & \\
\hline CM35E512J & C-504 & RC208F471K & R-501 & STANDARD NAVY
STOCK NO. & KEXY
SYMBOL & N16-C-45814-8983 & C-320 & & \\
\hline CM40E103K & C-502 & RC20BF472J & R-921 &  &  & N16-C-46200-9900 & C-616 & & \\
\hline CP69B5FF254V & C-1001 & RC20BF472K & R-612 & N16-A-700001-181 & --901 & N16-C-47147-9001 & C-1101 & & \\
\hline CP69B5FG104V & C-801 & RC20BF 473 K & R-107 & N16-C-11943-3834 & W-1701 & N16-C-47148-1001 & C-701 & & \\
\hline  & M-1601 &  & R-929 & N16-C-15628-2960 & C-107 & N16-C-48841-9390 & C-601 & & \\
\hline RC20bF102J
RC20BF103J & R-628
R-619 & RC20BF474K
RC20BF560K & R-703
\(\mathrm{R}-301\) & N16-C-16908-8725 & C-119 & N16-C-48841-9485
N16-C-4841-9486 & C-919 & & \\
\hline RC20日F103K & R-302 & RC20BF561K & R-642 & N16-C-17217-8437 & \({ }_{\text {C-312 }}^{\text {C-103 }}\) & N16-C-48841-9486 & C-912
C-603 & & \\
\hline RC20BF103K & R-502 & RC20BF562J & R-609 & N16-C-17331-5200 & C-418 & N16-C-48854-8937 & C-318 & & \\
\hline RC20BF104J & R-615 & RC20BF563J & R-626 & N16-C-17742-1841 & C-219 & N16-C-50756-8805 & C-108 & & \\
\hline RC20BFl05J & R-913 & RC20BF563K & R-903 & N16-C-18049-8437 & C-109 & N16-C-54460-6510 & C-801 & & \\
\hline RC20BF105K & R-104 & RC20BF564K & R-806 & N16-C-18401-8451 & C-909 & N16-C-54535-8505 & C-1001 & & \\
\hline RC20BF105K & R-503 & RC20BF681K & R-305 & N16-C-18657-8451 & C-703 & N16-C-55551-1825 & C-114 & & \\
\hline RC20BF122J & R-944 & RC20BF683K & R-310 & N16-C-18785-8460 & C-702 & N16-C-59676-1001 & C-105 & & \\
\hline RC20BF122K & R-637 & RC20BF684J & R-919 & N16-C-18849-8648 & C-319 & N16-C-73329-3531 & L-501 & & \\
\hline RC20BF123J & R-1001 & RC20BF684K & R-313 & N16-C-21941-1255 & C-802
\(\mathrm{C}-304\) & \({ }_{\text {N16-F-46509-6261 }}\) & \({ }_{\text {T- } 201}^{\text {C- }}\) & & \\
\hline RC20BF123K & R-203 & RC20BF754J & R-933 & N16-C-26447-8676 & \(\mathrm{C}_{\text {C-304 }} \mathrm{C}-214\) & \begin{tabular}{l}
N16-F-44012-8428 \\
N16-F-44039-5266
\end{tabular} & \({ }_{\text {Z-601 }}^{\text {Z-1101 }}\) & & \\
\hline RC20BF124K & R-108 & RC20BF822K & R-206 & N16-C-28553-1201 & C-111 & N16-F-44150-1001 & Z-1102 & & \\
\hline RC20BF125K & R-631 & RC20BF823J & R-936 & N16-C-2855-1676 & C-1103 & N16-F-44295-1002 & Z-501 & & \\
\hline RC20BF150K & R-312 & RC20BF823K & R-306 & N16-C-28558-1681 & C-501 & N16-K-33591-1218 & A-501 & & \\
\hline RC20BF152K & R-212 & RC20BF824K & R-111 & N16-C-28816-8201 & C-904 & N16-R-29070-5501 & L-801 & & \\
\hline RC20BF153K
RC20BF154J & R-636 & RC30BF364J
RC30BF 31 J & R-803
R-1007 & \({ }_{\text {N16-C-29128-2546 }}^{\text {N16-C-2962-9746 }}\) & C-104 & N16-R-29650-2901
N16-R-4928-811 & \({ }_{\text {R-312 }}^{\text {L-601 }}\) & & \\
\hline RC20BF154, & R-617 & RC30BF431J & R-1007 & N16-C-29602-9746 & C-204 & N16-R-49283-811 & R-312 & & \\
\hline
\end{tabular}
CONTRACT NObsr-39421

TABLE 8-5. CROSS REFERENCE PARTS LIST (Continued)
FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND FREQUENCY SHIFT CONVERTER CV-57/URR
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline STANDARD NAVY STOCK NO. & \[
\begin{gathered}
\text { KEY } \\
\text { SYMBOL }
\end{gathered}
\] & STANDARD NAVY STOCK NO. & \[
\begin{gathered}
\text { KEY } \\
\text { SYMBOL } \\
\hline
\end{gathered}
\] & STANDARD NAVY
STOCK NO sTOCK NO. & KEY
SYMBOL & STANDARD NAVY
STOCK NO. & \[
\begin{gathered}
\text { KEY } \\
\text { SYMBOL }
\end{gathered}
\] & \[
\begin{aligned}
& \text { ITEM } \\
& \text { NUMBER }
\end{aligned}
\] & \[
\begin{gathered}
\text { KEY } \\
\text { SYMBOL }
\end{gathered}
\] \\
\hline N16-R-49426-431 & R-945 & N16-R-50759-811 & R-707 & N16-T-58241-6 & V-701 & N17-I-59387-9459 & & & \\
\hline N16-R-49463-811 & R-301 & N16-R-50776-726 & R-803 & N16-T-58241-60 & V-402 & N17-I-59417-6691 & E-907 & & \\
\hline N16-R-49733-811 & R-602 & N16-R-50786-811 & R-102 & N17-B-77536-9380 & E-1106 & N17-I-69156-6251 & E-502 & & \\
\hline N16-R-49750-726 & R-1007 & N16-R-50821-431 & R-929 & N17-B-77636-9541 & E-1105 & N17-J-39108-2701 & J-1401 & & \\
\hline N16-R-49769-811 & R-103 & N16-R-50822-811 & R-703 & N17-B-77734-7950 & E-906 & N17-L-6806-130 & I-1401 & & \\
\hline N16-R-49769-811 & R-501 & N16-R-50858-811 & R-806 & N17-B-77734-7955 & E-403 & N17-L-76909-4827 & X-1401 & & \\
\hline N16.R-49805-811 & R-642 & N16-R-50893-431 & R-919 & N176B-77787-2205 & E-501 & N17-M-19081-9600 & M-1601 & & \\
\hline N16-R-49841-811 & k-305 & N16-R-50894-811 & R-313 & N17-B-77833-9721 & E-601 & N17-M-54301-8001 & B-1101 & & \\
\hline N16-R-49904-121 & R-1004 & N16-R-50911-431 & R-933 & N17-B-77833-9722 & E-602 & N17-P-87208-3501 & O-1407 & & \\
\hline N16-R-49921-431 & R-628 & N16-R-50930-811 & R-111 & N17-B-77834-9121 & E-905 & N17-S-58904-2201 & S-701 & & \\
\hline N16-R-49939-431 & R-944 & N16-R-50974-431 & R-913 & N17-B-77834-9126 & E-404 & N17-S-59292-2663 & S-601 & & \\
\hline N16-R-49940-811 & R-637 & N16-R-50975-811 & R-104 & N17-B-77982-9571 & E-904 & N17-S-60520-5078 & S-602 & & \\
\hline N16-R-49967-811 & R-212 & N16-R-50975-0811 & R-503 & N17-B-77982-9601 & E-405 & N17-S-60907-8578 & S-302 & & \\
\hline N16-R-49985-811 & R-604 & N16-R-50993-811 & R-631 & N17-B-78082-6767 & E-1001 & N17-S-61164-9106 & S-901 & & \\
\hline N16-R-50038-431 & R-906 & N16-R-51038-811 & R-601 & N17-B-78083-1306 & E-801 & N17-S-59292-2663 & S-601 & & \\
\hline N16-R-50039-811 & R-106 & N16-R-51065-811 & R-708 & N17-B-78083-1401 & E-606 & N17-S-62522-3201 & S-301 & & \\
\hline N16-R-50048-131 & R-804 & N16-R-51092-811 & R-710 & N17-B-78177-7712 & E-604 & N17-S-62615-5896 & S-1602 & & \\
\hline N16-R-50066-121 & R-1402 & N16-R-73097-6558 & R-632 & N17-B-78177-7714 & E-605 & N17-S-64977-8101 & S-603 & & \\
\hline N16-R-50129-811 & R-612 & N16-R-87305-5521 & R-613 & N17-B-78197-2101 & E-302 & N17-S-70598-1802 & S-501 & & \\
\hline N16-R-50128-431 & R-921 & N16-R-87380-9401 & R-633 & N17-B-78207-1610 & E-301 & N17-S-73115-2931 & S-604 & & \\
\hline N16-R-50164-431 & R-609 & N16-R-87520-9596 & R-905 & N17-B-78222-5216 & E-902 & N17-T-28240-3646 & E-303 & & \\
\hline N16-R-50218-751 & R-606 & N16-R-87680-9449 & R-923 & N17-B-78232-1844 & E-101 & N17-T-28255-3576 & E-609 & & \\
\hline N16-R-50237-811 & R-206 & N16-R-88010-9591 & R-705 & N17-B-78232-1849 & E-201 & N17-T-28255-8501 & E-1401 & & \\
\hline N16-R-50281-431 & R-619 & N16-R-88040-8526 & R-629 & N17-B-78242-2201 & E-701 & N17-T-67106-7562 & T-304 & & \\
\hline N16-R-50282-811 & R-502 & N16-R-88180-9430 & R-702 & N17-B-78252-2101 & E-603 & N17-T-67431-8697 & T-301 & & \\
\hline N16-R-50308-431 & R-1001 & N16-R-88180-9490 & R-713 & N17-B-78272-5249 & E-903 & N17-T-73580-1001 & T-1001 & & \\
\hline N16-R-50309-811 & R-203 & N16-R-88340-9355 & R-318 & N17-B-78302-5216 & E-901 & N17-T-73580-1101 & T-801 & & \\
\hline N16-R-50336-811 & R-636 & N16-R-88340-9385 & R-715 & N17-C-48193-6050 & W-1713 & N17-T-81036-9815 & T-102 & & \\
\hline N16-R-50353-431 & R-616 & N16-R-88340-9477 & R-701 & N17-C-48892-6585 & W-1402 & N17-T-81387-4415 & T-202 & & \\
\hline N16-R-50354-811 & R-101 & N16-S-117101-278 & H-1402 & N17-C-70328-1524 & P-1108 & N17-W-300081-101 & W-1601 & & \\
\hline N16-R-50372-811 & R-608 & N16-S-117101-277 & O-1406 & N17-C-70320-2882 & P-1106 & N17-W-300906-671 & W-1401 & & \\
\hline N16-R-50417-811 & R-311 & N16-S-480001-102 & 0-1402 & N17-C-70588-1524 & P-1104 & N43-S-99500-10 & H-1401 & & \\
\hline N16-R-50443-431 & R-935 & N16-S-480001-103 & O-1403 & N17-C-71408-5333 & P-1701 & & & & \\
\hline N16-R-50444-811 & R-207 & N16-S-62603-6446 & X-101 & N17-C-71414-2800 & P-501 & & & & \\
\hline N16-R-50480-811 & R-107 & N16-S-62603-6461 & X-801 & N17-C-72240-1516 & J-1104 & & & & \\
\hline N16-R-50515-406 & R-626 & N16-S-63515-6651 & X-804 & N17-C-72596-2880 & J-1106 & & & & \\
\hline N16-R-50516-811 & R-903 & N16-S-63524-6475 & X-501 & N17-C-72604-1516 & J-1108 & & & & \\
\hline N16-R-50552-811 & R-310 & N16-S-64063-6456 & X-601 & N17-C-73108-1267 & J-1109 & & & & \\
\hline N16.R-50587-431 & R-936 & N16-T-51990 & V-801 & N17-C-73108-5890 & J-501 & & & & \\
\hline N16-R-50588-811 & R-306 & N16-T-52001 & V-803 & N17-C-73139-7587 & J-1107 & & & & \\
\hline N16-R-50632-431 & R-615 & N16-T-52230 & V-702 & N17-C-73301-6068 & J-1403 & & & & \\
\hline N16-R-50651-811 & R-108 & N16-T-56127 & V-501 & N17-C-73323-7100 & J-1101 & & & & \\
\hline N16-R-50677-431 & R-617 & N16-T-56195 & V-303 & N17-C-73588-4094 & P-101 & & & & \\
\hline N16-R-50678-811 & R-635 & N16-T-56198 & V-607 & N17-C-73617-2350 & P-1401 & & & & \\
\hline N16-R-50696-811 & R-706 & N16-T-56203-50 & V-102 & N17-C-793001-125 & O-1405 & & & & \\
\hline N16-R-50714-811 & R-605 & N16-T-56211-50 & V-103 & N17-F-16302-120 & F-1101 & & & & \\
\hline N16.R-50722-431 & R-611 & N16-T-56214 & V-101 & N17-F-74266-9227 & E-1101 & & & & \\
\hline N16-R-50740-431 & R-927 & N16-T-56840 & V-802 & N17-G-161779-101 & O-1404 & & & & \\
\hline N16-R-50741-811 & R-105 & N16-T-58241 & V-601 & N17-G-169757-750 & 0-1401 & & & & \\
\hline
\end{tabular}
APPLICABLE COLOR CODES AND MISCELLANEOUS DATA

\section*{GAPACITOR GOLDA CODES}


TABLE 8-7. LIST OF MANUFACTURERS
FREQUENCY SHIFT CONVERTER-COMPARATOR GROUPS AN/URA-6, AN/URA-7 AND FREQUENCY SHIFT CONVERTER CV-57/URR
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline CODE NUMBER & MFR.
PREFIX & NAME & ADDRESS & \begin{tabular}{l}
CODE \\
NUMBER
\end{tabular} & MFR.
PREFIX & NAME & ADDRESS \\
\hline 1 & CRV & Radio Corp. of America Victor Division & Front and Cooper Streets Camden, N. J. & 1581 & cys & Speri, Inc. & Beach and Kenilworth Avenue Cincinnati, Ohio \\
\hline 30 & CPH & American Phenolic Corp. & 1830 S. 54th Street Cicero, Ill. & 1618 & CBCB & H. H. Buggie and Co. & 22nd and Madison Streets Toledo, Ohio \\
\hline 47 & CHH & Arrow Hart and Hegeman Electric Co. & 102 Hawthorne Street Hartford, Conn. & 1669 & & Grant Pulley and Hardware & 57th and Broadway Woodside, N. Y. \\
\hline 133 & CMG & Cinch Mfg. Co. & 2339 W. Van Buren Street Chicago, Ill. & 1682 & CAKD & Muter Co. & Chicago, Ill. \\
\hline 248 & CG & General Electric Supply Corp. & 429 N. 7th Street Philadelphia, Pa. & 1685 & CBIN & Carter Radio Division Precision Parts Co. & 213 W. Institute Place Chicago, Ill. \\
\hline 277 & CHC & Hammarlund Mfg. Co. & 460 W. 34th Street New York, N. Y. & 1727 & CBIQ & Wilkor Products Co. & 3835 W. 150th Street Cleveland, Ohio \\
\hline 426 & CNA & National Company, Inc. & 61 Sherman Street Malden, Mass. & & & & \\
\hline 590 & CSF & Sprague Electric Mfg. Co. & N. Adams, Mass. & & & & \\
\hline 711 & CSA & Stackpole Carbon Co. & \begin{tabular}{l}
1942 Tannery Street \\
St. Marys, Pa.
\end{tabular} & & & & \\
\hline 768 & CFA & Bussman Mfg. Co. & \begin{tabular}{l}
2538 W. University Street \\
St. Louis, Mo.
\end{tabular} & & & & \\
\hline 780 & CAYZ & Dial Light Corp. & \begin{tabular}{l}
900 Broadway \\
New York, N. Y.
\end{tabular} & & & & \\
\hline 784 & CLF & Littelfuse Laboratories, Inc. & 4757 N. Ravenswood Avenue Chicago, 111. & & & & \\
\hline 786 & CTC & Chicare Telephone and Supply Co. & Elkhart, Ind. & & & & \\
\hline 788 & CBEN & Air-Maze Corp. & 5200 Harvard Avenue Cleveland, Ohio & & & & \\
\hline 846 & & Winchester Electronics & New York, N. Y. & & & & \\
\hline 1377 & & Westinghouse Electric and Mfg. Co. & Mansfield, Ohio & & & & \\
\hline 1567 & CBEL & Electro Engineering Products Co. & 627 W. Alexandra Detroit, Mich. & & & & \\
\hline
\end{tabular}
 ? ?

\section*{INDEX}
\begin{tabular}{|c|c|c|c|}
\hline SUbject & Page & figure & table \\
\hline \multicolumn{4}{|l|}{A} \\
\hline \multicolumn{4}{|l|}{Adjustments:} \\
\hline D-C Amplifier V903 Replacement & 6-3 & & \\
\hline Initial, CV-57/URR & 3-17 & . . . . . . & \\
\hline Initial, CV-71/URR & 3-20 & . . . . . . & \\
\hline Initial, AN/URA-6, AN/URA-7 & 3-20 & & \\
\hline MOD. BAL. Control & & 3-18 & \\
\hline Tuning & 4-2 & & \\
\hline Applicable Color Codes and Miscellaneous Data & & & 8-6 \\
\hline \multicolumn{4}{|l|}{B} \\
\hline Basic Principles and Purpose & 1-1 & & \\
\hline Basic Similarities & & & 1-4 \\
\hline \multicolumn{4}{|l|}{Block Diagram:} \\
\hline Comparator CM-14/URR & & 2-3 & \\
\hline \multicolumn{4}{|l|}{Frequency Shift Converter CV-57/URR or} \\
\hline \multicolumn{4}{|l|}{Frequency Shift Converter-Comparator Group} \\
\hline Teletypewriter Loop Circuit & & 3-13 & - \\
\hline \multicolumn{4}{|l|}{C} \\
\hline \multicolumn{4}{|l|}{Cable:} \\
\hline Connecting & 3-12, 3-16 & \(\ldots\) & . \\
\hline Fabrication & & 3-11, 3-12 & \\
\hline For AN/URA-6, AN/URA-7 and CV-57/URR & & 1-3 & \\
\hline Jumper & & 3-15 & \\
\hline Cable Filters & & 7-2 & \\
\hline \multicolumn{4}{|l|}{Cable Filter Unit for CM-14/URR:} \\
\hline Description & 1-2 & . . . . . . & \\
\hline Theory of Operation & 2-7 & . . . . . . . & . . \\
\hline Repair & 7-5 & . . . . . . . . & \\
\hline \multicolumn{4}{|l|}{Cable Filter Unit for CV-57/URR and CV-71/URR:} \\
\hline Description & 1-2 & & \\
\hline Theory of Operation & 2-2 & & \\
\hline Repair & 7-5 & & \\
\hline Capabilities, Limitations of Equipment & 4-1 & & \\
\hline Cathode-ray Tube Removal. & & 5-5 & \\
\hline Characteristics, 'Tube & & & 7-12 \\
\hline Chart, Trouble Shooting & & & 7-1, 7-2 \\
\hline Chassis, Extended for Servicing & & 7-1 & \\
\hline \multicolumn{4}{|l|}{Chassis Assembly:} \\
\hline Comparator for CM-14/URR & 2-7 & 1-5 & \\
\hline Converter for CV-57/URR & 2-1 & 1-4 & \\
\hline Converter for CV-71/URR & 2-10 & 1-4 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline SUBJECT & Page & figure & table \\
\hline Check Chart, Routine & & & 5-1 \\
\hline \multicolumn{4}{|l|}{Checks, Routine-See Routine Checks} \\
\hline Color Code & & & 8-6 \\
\hline Combined Parts and Spare Parts List & & & 8-4 \\
\hline \multicolumn{4}{|l|}{Comparator CM-14/URR:} \\
\hline Block Diagram & & 2-3 & \\
\hline General Description & 1-6 & & ..... \\
\hline Schematic Diagram & & 7-21 & .... \\
\hline Theory of Operation & 2-7 & & \\
\hline Top View & & 1-5 & \\
\hline Tube Locations & & 5-4 & \\
\hline Wiring Diagram & & 7-23 & \\
\hline \multicolumn{4}{|l|}{Comparator Cable Filter-See Cable Filter Unit} \\
\hline Connecting Cables-See Cable & & & \\
\hline Connectors, External & & & 3-1, 3-2 \\
\hline \multicolumn{4}{|l|}{Control Adjustment:} \\
\hline GATE BAL & & 3-20, 6-2 & \\
\hline \%MARK & & 3-19, 6-1 & \\
\hline Controls, Operating & & 4-1 & \\
\hline \multicolumn{4}{|l|}{Converter-See Frequency Shift Converter} \\
\hline \multicolumn{4}{|l|}{Converter Power Supply-See Power Supply Unit} \\
\hline \multicolumn{4}{|l|}{Converter-Comparator Group:} \\
\hline AN/URA-6 & 2-6 & . . . . & \\
\hline AN/URA-7 & 2-10 & & \\
\hline \multicolumn{4}{|l|}{Corrective Maintenance ......................... 7-1} \\
\hline Coupling Kit Type 10563-See Receiver Coupling Kit 10563 & & & \\
\hline Cross Reference Parts List & & \(\cdots\) & 8-5 \\
\hline \multicolumn{4}{|l|}{D} \\
\hline \multicolumn{4}{|l|}{Data:} \\
\hline Reference & 1-7 & . . . . . . . & \\
\hline Shipping & & & 1-3 \\
\hline Winding & & & 7-13 \\
\hline \multicolumn{4}{|l|}{D-C Amplifier, V903, Adjustment after Replacement of
\[
6-3
\]} \\
\hline Description, General & 1-1 & & \\
\hline \multicolumn{4}{|l|}{Diversity Selector Unit:} \\
\hline Chassis, Top and Bottom Views & & 7-17, 7-18 & \\
\hline Description & 1-7 & & \\
\hline Repair & 7-11 & & \\
\hline Schematic Diagram & & 7-44 & \\
\hline Theory of Operation & 2-8 & & \\
\hline Voltage and Resistance Measurements & & & 7-10 \\
\hline Wiring Diagram & & 7-45 & \\
\hline \multicolumn{4}{|l|}{Dual Channel Frequency Shift Converter-Comparator} \\
\hline \multicolumn{4}{|l|}{Group AN/URA-6:} \\
\hline Block Diagram & & 2-2 & \\
\hline Description & 2-6 & & \\
\hline \multicolumn{4}{|l|}{Dual Channel Frequency Shift Converter-Comparator} \\
\hline \multicolumn{4}{|l|}{Group AN/URA-7:} \\
\hline Block Diagram & & 2-2 & \\
\hline Description & 2-10 & ... & \\
\hline
\end{tabular}


SUBJECT

\section*{AN/URA-7:}

Frequency Shift Converter-Comparator Group
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Chassis Extended for Servicing . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 -6
Front View
1-1a
Fuse Locations
Installation Drawing, Rack Mounting . . . . . . . . ........... 3-23
Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22
Rear View
Theory of Operation . . . . . . . . . . . . . . . . . . . . . \(\quad \mathbf{2 - 1 0}\)
Tube Locations
Fuses:
Frequency Shift Converter CV-57/URR \(\ldots \ldots\)
Frequency Shift Converter-Comparator Group
AN/URA-6, AN/URA-7 \(\ldots \ldots \ldots \ldots .5-1\)

\section*{G}

General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 -1
General Installation ............................... . 3-1
Gusset Rack Mounts for Frequency Shift Converter CV-57/URR

\section*{I}

\section*{I-F Unit:}

Chassis, Top and Bottom Views . . .......................................... 7-13, 7-14
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 -3
Repair
Schematic Diagram
7-8
Theory of Operation . . . . . . . . . . . . . . . . . . . . 2-3
Voltage and Resistance Measurements
Wiring Diagram

Initial Adjustments-See Adjustments
Input Unit, CV-57/URR:
Chassis, Top and Bottom Views.
Description
1-2
Repair
7-8
Schematic Diagram
7-38
Theory of Operation . . . . . . . . . . . . . . . . . . . . . . \(\quad \mathbf{2 - 2}\)
Voltage and Resistance Measurements
Wiring Diagram
7-39
Input Unit, CV-71/URR:
Chassis, Top and Bottom Views
7-11, 7-12
Description
1-3
Repair
7-8
Schematic Diagram
Theory of Operation . . . . . . . . . . . . . . . . . . . . . . \(\quad\) 2-10
Voltage and Resistance Measurements
Wiring Diagram
Installation, General
3-1


J

\section*{Jumper Cable W 1402}

3-15

\section*{K}

\section*{Keyer Unit:}

Chassis, Top and Bottom Views
Description
Repair
Schematic Diagram
1-4

Theory of Operation.
Voltage and Resistance Measurements
Wiring Diagram

L
Limitations, Capabilities of Equipment ............. 4-1
List of Major Units
List of Manufacturers
Localizing Trouble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
Lubrication
6-3

M
Maintenance:
Corrective ..... 7-1
Emergency ..... 5-1
Operator's ..... 5-1
Preventive ..... 6-1
Routine ..... 6-1
Major Units, List of ..... 8-3
Manufacturers, List of ..... 8-7
Miscellaneous Data8-6
Monitor Unit, Tuning-See Tuning Monitor
Operating Controls ..... 4-1
4-1
Operation:
Dual Channel AN/URA-6, AN/URA-7: ..... 4-3
Stopping ..... 4-4
Tuning to Another Frequency ..... 4-4
Other Adjustments ..... 4-4
SUBJECT

PAGE
Single Channel CV-57/URR:

4-3
Starting Procedure ..... 4-3
Stopping ..... 4-3
Tuning to Another Frequency ..... 4-3
Other Adjustments ..... 4-3
Theory of ..... 2-1
Operation, Summary of ..... 4-3
Operator's Maintenance ..... 5-1
Outline Drawings:
Frequency Shift Converter CV-57/URR, CV-71/URR
Frequency Shift Converter-Comparator Group AN/URA-6, AN/URA-7
P
Panel Controls, Operating ..... 4-1

\[
4-1
\]
Parts and Spare Parts, Combined List
Power Supply Unit (For Comparator CM-14/URR) :
Chassis, Top and Bottom Views
Description1-7
Repair ..... 7-7
Schematic Diagram
Theory of Operation ..... 2-9
Voltage and Resistance Measurements
Wiring Diagram
Power Supply Unit (For Converters CV-57/URRand CV-71/URR):
Chassis, Top and Bottom Views
Description1-5
Repair ..... 7-7
Schematic Diagram ..... 2-6
Voltage and Resistance Measurements

\[
7-8
\]Wiring DiagramPreventive Maintenance6-1
Principles, Purpose and Basic ..... 1-1
Publications, Equipment and Required But NotSupplied
Purpose and Basic Principles ..... 1-1
\(\mathbf{R}\)
Rack Mounts, Gusset ..... 1-2
Receiver Tuning Patterns As Seen On Tuning Monitor ..... 3-16
Receiver Coupling Kit Type 10563:
Chassis, Top and Bottom Views
Description1-7
Installation ..... 3-1
Repair ..... 7-11Schematic Diagram
Theory of Operation ..... 2-10Wiring Diagram\(7-15,7-16\)
Reference Data
table
8-47-30
7-97-31
\[
7-3,7-4
\]
3-21
3-21 ..... 3-22 ..... 3-22
figure
figure

\(7-5,7-6\)
\[
7-28
\]
\[
7-29
\]
\[
1-2
\]

SUBJECT
Removal of Cathode-ray Tube from Tuning Monitor
Repair-See Unit Trouble Shooting and Repair
Repair Parts-See Spare Parts
Replacement of:
Electron Tubes ..... 5-1
Fuses ..... 5-2
Sub-chassis ..... 5-4
Reports, Failure ..... 7-0
Resistance Measurements-See Voltage and Resistance
Measurements
Routine Check Chart ..... 5-1
Routine Checks ..... 5-1
Routine Maintenance ..... 6-1
S
Scope of this Book ..... 1-1
Selector Unit-See Diversity Selector Unit
Sensitivity Check:
System ..... 6-1
Tuning Monitor ..... 5-1
Shipping Data ..... 1-3
Shipping Weights and Dimensions of Spare Parts Boxes ..... 8-2
Similarities, Basic, in this Series Equipment ..... 1-4
Single Channel Frequency Shift-Converter-See Fre-quency Shift Converter
Spare Parts Boxes:
Shipping Weights and Dimensions ..... 8-2
Weights and Dimensions ..... 8-1
Sub-chassis, Replacement of ..... 5-4
Summary of Operation ..... 4-3
Supplied, Equipment
6-1
System Sensitivity Check
T
Teletypewriter Loop Circuit, Block Diagram ..... 3-13
Test Oscilloscope Patterns:
for GATE BAL Control Adjustment 3-20, 6-2for \%MARK Control Adjustment
3-19, 6-1
Theory of Operation ..... 2-1
Trouble Shooting-See Unit Trouble Shooting andRepair
Trouble Shooting Charts ..... 7-1, 7-2
Tubes:
Characteristics ..... 7-10
Complement ..... 1-5
Location and Replacement ..... 5-2
Operating Voltages and Currents7-9

SUBJECT
Tuning Adjustments-See Adjustments
Tuning Monitor Unit:

Chassis, Top and Bottom Views
Description
Repair
Schematic Diagram
1-5
7-7
Theory of Operation
2-5
Tuning Patterns
Voltage and Resistance Measurements
Wiring Diagram
Tuning Pattern (CAL IN) on Tuning Monitor
Tuning Patterns As Seen On Tuning Monitor

\section*{U}

Unit Trouble Shooting and Repair:
Cable Filters
7-5
Diversity Selector Unit
7-11
Equipment Required . . . . . . . . . . . . . . . . . . . . . . \(\quad \mathbf{7 - 2}\)
Input Unit
7-8
Keyer Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\quad 7 \mathbf{7 - 8}\)
Power Supplies
7-7
Receiver Coupling Kit 10563
7-11
Tuning Monitor
7-7
Units, Description of
1-1
Unpacking
3-13-1

PAGE
figure
table
\[
7-7,7-8
\]
\[
7-32
\]
\[
3-16,3-17
\]

7-33
3-17
3-16

\section*{V}
Voltage and Resistance Measurements:
Comparator Power Supply
7-9
Converter Power Supply
7-8



Input Unit CV-71/URR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


W
Weights and Dimensions of Spare Parts Boxes ..... 8-1 ..... 7-13
Winding Data
Winding Data```


[^0]:    * Height $7-1 / 8^{\prime \prime}$ with shock mounting brackets.
    \#* 19-1/16" with rack mounting brackets.

[^1]:    * Depends on local syster.
    ** or other receiver having good stability and suitable frequency range.

[^2]:    * Depends on local system.
    ** or other receiver having good stability and suitable frequency range.

[^3]:    * Made by Chieago Transfornaer $\dagger$ Made by United Transformer.

[^4]:    Figure 7-30. Comparator Power Supply

