
$\$ 5.00$
VOL. 50, NO. 4
RY

Nick Smith, W4GKM, writes about his trip to Honduras on page 10.
CONTENTS
Hits \& Misses 2 Dayton 2003 RTTY Schedule- 9
Biography: Hiroshi Aihara, JHIBIH Summer/Fall 2003 Contest Schedule 10
2003 DL-DX RTTY Contest Rules Contesting on the Go- 10
HAL Products Over the Years RTTY Dictionary 12
2002 CQ/RJ WW DX Contest Results- 6

George W. (Bill) Henry, K9GWT
Publisher and Editor
All Correspondence: The New RTTY Journal
P.O. Box 236

Champaign, IL 61824-0236
Voice: 217-367-7373
FAX: 217-367-1701
www.rttyjournal.com

STAFF

Linda Henry \qquad .Accountant

Joe Wittmer, K9SZAssistant Editor jwittmer@rttyjournal.com

Dale Sinner, W6IWO...........Associate Editor dsinner@rttyjournal.com

Jason Allen . \qquad ..Production Manager jallen@rttyjournal.com

The publisher assumes no liability or responsibility for errors, omissions or editorial content. Written permission from the publisher of The New RTTY Journal is required prior to and for any reproduction of all or any portion of this magazine.

Expiration Date: Your address label shows the date of your last subscription issue. Please contact us if this does not agree with your calculations.

POSTMASTER: Please send all address changes to: The New RTTY Journal, P.O. Box 236, Champaign, IL 61824-0236

The New RTTY Journal is a continuation of the magazine formerly known as RTTY, RTTY Journal, RTTY Digital Journal, Digital RTTY Journal, and Digital Journal.

Hits \& Misses

Bill Henry, K9GWT
k9gwt@rttyjournal.com

Once again it's time to be heading to the annual gathering at Dayton, Ohio. You'll find a map and a list of the weekend's activities in the center-fold of this issue. Jay Townsend, WS7I, has been managing the hotel room and banquet sales this year and he reports that sales are good. By the time this magazine gets to you, advance sales will have been closed but give the hotel a call if you make a last minute decision to join us. Once again, Frank Fallon, N2FF, has organized the RTTY Forum for us. I hope that all of you can come and join us on May 15 through 18.

This issue includes a nice article by Nick Smith, W4GKM, about his DXpedition to Honduras this year. You no doubt remember Nick as the guy at the Amateur Radio Trader magazine booth at just about every hamfest for 4 or 5 years. Nick retired from hamfesting to pursue his first love - driving airplanes. If you get the urge to charter a biz-jet, call Nick. He'll get you there!

I find that I am frequently answering questions about which product HAL made when. Dating products can be a problem as new products evolve from old ones and the lifetime of a given device or family of devices can be indefinite. Several times, we have revived a "retired product" when volume orders are offered. But, in answer to those requests, I have tried to make a list of products in the order they were first introduced by HAL Devices and by HAL Communications Corp. For me, it was an interesting exercise and brought back a lot of memories. I hope this helps the collectors in the group.

Finally, I have revised and updated the RTTY Dictionary that we've run from time-to-time. This edition includes new terms and
acronyms and a few of the old ones have been excised (like selector magnets, stunt box, etc.).

Silent Keys: Once again, it is my sad duty to report the loss of two leaders of our amateur radio group.

VE3UR: Ray Hunter, VE3UR - "Uncle Ray" to many of us - passed away on Friday, March 28, 2003. Ray was a long time and regular attendee at the Dayton Hamvention. Dale Sinner reported Ray's biography in the Fall, 2001 (V49, \#3) issue of The New RTTY Journal and we featured Ray's 90th birthday party on the front cover of the June, 1999 issue (V47, \#2). Ray had quite a long and colorful career, manufacturing model airplanes, selling model planes and trains, as well as selling amateur radio equipment.

W2LZX: Jack Gutzeit was not an active RTTY operator but he was well known to many of us who have gone to ham shows over the past years. Jack was advertising manager for CQ Magazine for many years and could always be counted on for a good story, help in making show arrangements, or solid advice. Jack was a CW DX operator of the "old school". His KWM-2 went with him everywhere and Jack was always chasing the "new ones". Jack was a WWII B17 pilot and offered much good advice when I caught the "airplane disease" in 1978. He was also among the first to applaud when I sold the ' 210 in 1983! I worked on him to get on RTTY for many years and almost won him over. I used to kid him that he'd worked all the DX on the "1st Data Mode" (CW) and now he needed to try "Modern Data" (RTTY). But then he retired and moved to Florida where he didn't have space for RTTY gear or a real antenna system. Jack passed away on February 1, 2003.

Biography
by Dale Sinner, W6IWO
JH1BIH

Hiroshi Aihara, JH1BIH

Hiroshi Aihara, who goes by Hiro, is known to most RTTYers as JH1BIH. He is fifty years old, and is the only ham in his family. He started operating in 1967, and recalls getting a Kleinschmidt machine in 1972. His main
interests lie in contesting, DXing, and software. He is currently a software programmer, and used to be a high school teacher. Aside from ham radio, Hiro enjoys offshore fishing.

2003 DL-DX
 RTTY Contest

July 5, 1100 UTC
to July 6, 1059 UTC

1) Object: Contact and exchange QSO information with as many stations as possible using RTTY only. Any station may work any other station.
2) Contest Period: July 5, 2003 (Saturday) from: 11:00 UTC until 10:59 UTC July 6 2003 (Sunday), 24 h.
3) Modes: RTTY only!
4) Bands: All amateur bands $3.5-30 \mathrm{MHz}$ (excluding 10,18 and 24 MHz).
5) Entry Categories: (A) Single Operator, multiband - One person performs all operating and logging functions. The use of spotting nets (operating arrangements involving assis-
tance through DX-alerting nets, etc.) is permitted. Single operator stations are allowed only one transmitted signal at any given time. (B) As 5 A , but operating time is only six hours - off-time must be greater than 60 minutes. (C) As 5A, but only Dipol-antenna or Groundplane is permitted. (D) As 5C, Operating time is only six hours - off-time must be greater than 60 minutes. (E) Multi operator, single transmitter only - More than one person operates, checks for duplicates, keeps the log, etc. Multi operator stations are allowed only one transmitted signal at any given time. The use of spotting nets (operating arrangements involving assistance through DX-alerting nets, etc.) is permitted.
6) Exchange: RST + QSO number, starting with 001 .
7) QSO Points: QSO with own country, 5 points. QSO with other countries in own continent 10 points. QSO with other continents 15 points. QSO with DL-Station from EU: +3 points. QSO with DL-Station from other continent: +5 points. Same station can be worked once on each band.
8) Multiplier: Each DXCC country on each band, including first contact with Australia,

Canada, Japan and USA. Additionally, each call area in VK, VE, JA and W will count as one multiplier on each band (W1, WA4, JA2, VK4). NOTE: Stations operating from call areas other than their call ID, are asked to use '/ x ' for their actual call area. i.e. K5DJ/1
9) Logs: All stations must submit an electronic log. All computer-generated "electronic logs" should be submitted as a file either by E-Mail. The log must be in ASCII format. All QSOs must be in chronological sequence. Log must show date and time in UTC, band, call of station worked, RST and exchange sent, RST and exchange received, points per QSO and multipliers. The files should be named after the participant's call sign, so for example XX0YY.ALL and XX0YY.SUM. Cabrillo-Files are preferred.
10) Deadline: Logs must be received by August, 102003 to qualify.
Mail logs to: LOGS@DL-DX.DE
Homepage: http://www.dl-dx.de
11) Awards: Certificates for the first op ten stations in each class. The JUDGES decision will be final and no correspondence will be entered into. By submitting their logs contesters agree to be bound by these rules.

HAL Products Over the Years

Bill Henry, K9GWT
k9gwt@rttyjournal.com

Many of you have asked me about old HAL products. Below is a list of radio data products we have made and sold over the years. Items in italics are still active as of May 1, 2003.

HAL Devices:

DBM-1 Double-Balanced Modulator Kit 1967
111/211/311 RTL Morse Code Keyer . 1967

RT-1 RTTY Demodulator 1967
MKB-1 Morse Keyboard 1968
RKB-1 RTTY Keyboard 1968
ST-6 High-performance Solid-State RTTY Demodulator 1968
AK-1 AFSK Oscillator 1968
XTK-100 Crystal-Controlled AFSK Oscillator 1969
1550 Morse Code Iambic Keyer 1969
ST-5 Low Cost RTTY Demodulator 1970
ID-1A Morse Code Repeater Identifier 1970
RVD-1002 Receive terminal for Baudot RTTY 1970
HAL Communications Corp:
RVD-1005 Receive Terminal for Baudot RTTY 1972
RVD-1005A Receive Terminal for ASCII RTTY 1972
2550 Morse Code Iambic Keyer 1972
ST-6000

DKB-2010 Morse \& Baudot electronic keyboard1973
ID-1000A Morse Code Repeater Identifier 1973
FYO Morse Code Key 1973
DS-3000 Microprocessor controlled RTTY Terminal
DS-3280 Poll-select Bank Data Terminal 1976
MCEM-8080 Hobby Computer System
ST-6000 High Performance RTTY Demodulator 1976

DS-3282 Data Terminal 1977
DS-3100ASR Split-screen Baudot/ASCII/Morse Terminal 1977
ST-5000 Low-cost Solid-state RTTY Demodulator 1977
PS-3100 Printer Controller 1977
8000 Personal Computer System 1978
DS-3285 Bank Data Terminal 1978
DS-2000 Low cost RTTY terminals 1978
8200 Computer System 1978
CT-2100MSU-4 Modem Sharing Unit 1979
DS-2050 Low cost RTTY terminals 1979
MPT-3100 Message Storage Option (MSO) RTTY Terminal 1979
Super Duper Contest Dupe Computer 1979
PS-3800 Controller 1979
CWR-6850
PS-3900 Controller 1980
DSK-3100 Diskette storage for MPT-3100 1981
CT-2100 Low-cost Communications Terminal with modem 1982
KB-2100 Keyboard for CT-2100/CT-2200 1981
CWR-685 Portable RTTY Terminal 1981
CWR-670 Receive Only Telereader 1982

CWR-6850 Portable RTTY Terminal . 1982
CWR-6700 Receive Only Telereader . 1982
RS-2100 RTTY Tuning Scope . 1982

CT-2200 Low-cost Communications Terminal with modem 1983 ARQ-1000 Error Correcting Terminal for SITOR \& AMTOR . . 1983 M-1700 FSK Modem for ARQ-1000 . 1983 CRI-100 Computer RTTY Interface . 1983

CRI-200 Computer RTTY Interface
.1983
PS-3910 Printer Controller . 1983
PCI-2000 Personal Computer Interface 1984
SPT-1 Spectra-Tune Tuning Indicator . 1984
DS-RTTY RTTY Terminal Software for IBM-PC 1984

ARQ-1000B

LP-120 Loop Power Supply 1984
IF-600 PC-Jr. Data Interface 1984
ST-8000 High performance HF RTTY Modem 1985
ARQ-1000A Error Correcting Terminal 1985
WX-1000 Weather Box message storage terminal 1985
ARQ-200 Radio Telex Modem for Shipboard Use 1986
HFCS-1000 High Frequency Communications Simulator 1986
LP-1200A Polar / Neutral Loop Power Supply 1987
ARQ-1000B Error Correcting Terminal 1987
DS-3200 Data Communications Terminal 1987
ST-7000 HF Packet Radio Modem 1988
STI-1000/8 8-Channel Morse Code Receiver 1988
LP-1210 High Reliability 10-channel Loop Power Supply 1989
PCI-3000 PC-Amtor Multi-mode HF Data Modem 1989
SPT-2 Spectra-Tune Tuning Indicator 1989
ST-8000A High Reliability HF Radio Modem 1990
EMAD Emergency Message Alert Device (NMC-MARS) 1990
ALERT-1 Message Alert Device 1990
RMX-3100 2-Port Radio Mail Box Switch 1990

RPC-1000 Radio Packet Controller
MRI-1000 More Receiver Interface

ST-8000A

RPC-2000 Radio Packet Controller 1991
SCM-1000 Split Channel Modem 1991
Summer CLOVER Modem 1992
PCI-4000 DSP Modem for CLOVER 1993
DS-3486 Data Communications Terminal 1994
PCI-4000/M Multi-mode DSP Modem 1994
P38 Low-cost DSP Modem 1994
RVM-100 Radio Voice Mail 1994
ARQ-1000B/DSC Digital Selective Call Modem 1995
PCI-4000/2K CLOVER-2000 Modem 1995
ST-8000A/DBIN Dual Binary Modem 1996

DSP-4100 Portable DSP Modem 1996
DSP-4100/2K CLOVER-2000 Modem 1996
FAX-4100 FAX-Over-Radio Interface 1997
DXP-38 Low-cost DSP Modem 1998
RTTY-1 RTTY Tuning Indicator 1998
HFCS-2000 High Frequency Communications Simulator 1999LP1203 3-Channel Loop Power Supply2000
DSPWin / DXPWin DSP Modem Software for Windows 2001
DSRTTY-Win RTTY Software for Windows 2002

2002 CQ/RJ WW RTTY DX Contest Results

Boldface represents a plaque winner; italics indicate a certificate winner.
Sponsored by CQ Magazine and The New RTTY Journal

 		 N.

Dayton 2003 RTTY Schedule

Thursday, May 16, Evening - Casual RTTY get-together in the Howard Johnson bar and lounge. Location: Howard Johnson at 7575 Poe Avenue, Dayton, OH.

Saturday, May 17, 9:30 a.m. - RTTY Forum: Ten Sure Fire Ways to Improve QSO Counts in RTTY Contests. Hear from three top contesters who know how to get more QSOs in a RTTY contest. They have done it time and again. We plan to torture them into revealing the secrets of their high scores during the thirty minute tutorial from three top gun contesters: Don Hill, AA5AU; George Johnson, W1ZT, and Jay Townsend, WS7I. Location: Hara Arena.

Saturday, May 17, 7:00 P.M. - Join other RTTY enthusiasts at the annual dinner hosted by the RTTY Journal. Tickets are $\$ 19.00$
each, and may be purchased at the door. The menu: sliced roast beef, sliced baked ham, boneless chicken breast, stuffed baked manicotti, twice baked potatoes, green bean almondine, and Japanese vegetable blend. Drinks will also be available. Location: Howard Johnson at 7575 Poe Avenue, Dayton, OH.

Hamvention Schedule

Inside Exhibitors:

Friday - 9:00 A.M. to 6:00 P.M.
Saturday - 8:00 A.M. to 5:00 P.M.
Saturday - 8:00 A.M. to 1:00 P.M.
Outside Vendors (Flea Market):
Friday - 8:00 A.M. to 6:00 P.m.
Saturday - 8:00 A.m. to 5:00 P.M.
Sunday - 8:00 A.M. to 1:00 P.M.

For Windows 9x/ME/NT/XP/2000
RTTY, PSK31, Pactor, AMTOR, and CW

- Normal QSO and Full Contest operation in all modes with one package
- Supports major RTTY, PSK31, CW, and SSB contests
- Supported TNCs: SCS-PTCx, AEA-x, KAM-x, MFJ-x, DSPCOM, HAL-Dx
- Supports RTTY and PSK31 with PC soundcard - Radio Control: Kenwood, ICOM, Yaesu
- PR/Telnet for DX-Cluster in same window
- Waterfall display and spectrum analyzer
- Multilingual versions: English, Italian, Spanish, German, Dutch, Czech, Russian, Ukrainian, French
- Uses "friend.ini", "master.cal", "cty.dat"
- Powerful logging functions (edit, search, export...) Call, DXCC, State, CQ Zone, ITU Zone, WPX, and IOTA detection with automatic insertion
- Full contest operation with mouse
- Generate all contest reports (including Cabrillo) - Realtime QSO rates and other statistics
- Extensive documentation and Windows help file
- Free updates on the internet, e-mail reflector
- Many more features, write or e-mail for full details

Only \$45

Walter Dallmeier, DL4RCK Odenwaldstrasse 4
93173 Wenzenbach, Germany FAX: +49 9407957139 e-mail: dl4rck@rckrtty.de http://www.rckrtty.de

Summer/Fall 2003 RTTY Contest Schedule

- Alessandro Volta RTTY DX
May 10 to May 11
- Anatolian WW RTTY

May 17 to May 18

- Great Lakes QSO Party May 31 to June 1
- ANARTS RTTY

June 14 to June 15

- Spanish Islands (DIE)

June 15

- ARRL Field Day

June 28 to June 29

- DL-DX RTTY

July 5 to July 6

- DARC 10m Digital "Corona" July 6

- Colombian Independence Day Contest
 July 19

- NCJ North American QSO Party July 19 to July 20
- Russian WW RTTY

July 26 to July 27

- SARTG WW RTTY

August 16 to August 17

- SCC RTTY Championship

August 30 to August 31

- DARC 10m Digital "Corona" September 7
- CQ/RJ WW DX

September 27 to September 28

- North American Sprint

October 12

- JARTS WW RTTY

October 18 to October 19

More contest information available at http://www.rtyyournal.com/contests

Contesting on the Go Nick Smith, W4GKM

For sometime now I have wanted to operate from a different country during either a RTTY contest or just to give out some QSOs. However, it seems each time I try and schedule such an adventure something prevents such an occurrence. Last January I went on a 10 day cruise in the Caribbean and South America and packed all my equipment, and shipped it via the airlines with me. But as luck would have it, the airlines lost all my equipment but my luggage was sent to the ship. I had planned to operate from the ship for the 10 days at sea using a ship antenna. I had packed a couple of portable antennas just in case but of course that was all for naught. When I finally arrived back at Ft. Lauderdale the airline had found the large box of equipment and wanted a pat on the back, but didn't get one from me.

So work and other obligations have prevented me from doing a planned operation from another country. It finally occurred to me that I would have to plan this in more detail and take some vacation time off from work in order to be assured that the trip would go as intended. This year I planned to do just that and take some time off but so far had not decided when and where I would go. Since my work requires me to be on call and ready to go on a short notice I thought that getting ready for such an adventure would be difficult.

Recently, I received a call from our dispatcher advising me of a trip to Tegucigalpa, Honduras. I had planned to work the BARTG contest and really did not want to go but since it was a QTH that I had not been to, I really started thinking about some possibilities that just might work out.

The first thing I did was to check with the Honduran Telecommunications office to see if a license could be acquired in such a short time. The answer was yes and they said that they would have it waiting for me at my hotel. Wow, such nice people and very efficient. I was very impressed, to say the least. Now if I could just get my equipment together in time, everything would fall into place.

I put an MFJ switching power supply in my suitcase along with a few tools, a soldering gun and a few PL259 connectors - just in case. There was an old windom antenna in my work shop and I figured I could use that. I had used it for all bands several years ago and it
seemed to work okay for that as long as I used a tuner. I found my old MFJ very light weight 941C tuner and put it in with the power supply. Now all I needed was some coax, which I found right away. It was only about 20 feet long, but I knew I would not need much as I planned to put the windom close to a window and use it as an inverted V. Next would be a transceiver and my Kenwood TS 450S fit the bill, so it went in the bag, too. My laptop had gone QRT so that meant I would have to borrow one or go buy another. I asked my son about his and he said okay. But I didn't have time to pick it up from him. You see, I fly for an air charter company and since this trip was to Honduras, I had to take a quick four hour course on terrorism.

So, during lunch I stopped by the Staples store picked up a nice laptop. But it didn't have a serial port. I then went up to Radio Shack and got an adapter USB to Serial. I had no idea whether this would work but I had packed my old PK232MBX and hoped it would be OK with this setup. When I arrived back at the office, I loaded Writelog on and was ready to go. My passengers were scheduled to arrive in about an hour and, so far, things seemed to be working out.

Since $9 / 11$, when we leave the country we have to clear customs outbound as well as on the return. So we left Nashville and stopped at Mobile, AL, went through customs and finally we were on our way to Honduras. The flight was smooth and uneventful, and in 2 hours and 33 minutes we landed in Tegucigalpa. I had the Lear at only 37,000 feet but that seemed to be the best altitude for the fastest time. We were cruising around 500 knots most of the trip and were able to make a visual approach to the runway which, by the way, is not very long and is surrounded by mountains on all sides.

When I was with Eastern Airlines we went into many of the Central and South American cities. I was used to flying the B757 into them as I had done it many times. But that was a while ago and, going into a new airport made me and my 1st officer, Leo DeAngelo, pay close attention to what we were doing. I greased it on and went through customs with a breeze because our handler - Universal, out of Houston - takes care of all the details. Our ride to the hotel was quick and we checked to the Intercontinental. Soon I went to work getting ready for my new adventure of operating in a foreign country from a hotel room with limited equipment and antennas. (At home I have 11 antennas, three radios, two amps and three computers, so this was different.)

Leo and I had a quick lunch and soon I was back up to the 6th floor facing away from the busy streets down below, at work planning my antenna location. The window opened. Great! (In lots of hotels they're sealed shut.) Down below on the 2 nd floor there was a tile roof that would be great for securing my antenna ends to make an inverted V. I was excited, but I had no way of getting on the roof. Time to call the manager, I thought, so I went down and asked if I could speak with him and he came right out. I explained what I wanted to do and he called his maintenance person and we went right to work on stringing wire from my room to the lower roof. I had brought a balun with me and put it at the apex location and so everything was in place now. These folks were really nice and helpful. I certainly was not expecting such cooperation and willingness to help.

Now came a few problems. The east side was completely blocked by the hotel, so I thought that might not work. I seemed to do better to the north but found it wasn't so bad in any direction. When the contest started I had a few problems with the radio not shutting off after it got through with transmitting a buffer. I thought at first it was the TNC, then the computer, but it turned out that I was getting RF in the radio and for some reason it would not stop transmitting on 14 and 75 meters. So I had to turn the power down (from 50 watts to 0) to get it to stop. On 15 and 10 it worked fine, but the SWR was very high on those bands and I had to use the tuner to get any power at all. I was able to get the SWR down to 1.5 to 1.0 on 15 and not near that on 10 meters. On 14 meters I had a 1:0 to 1:0 without the tuner but it would not stop transmitting unless I turned the power completely down to minimum. So when operating on 20 meters I would have to send a message, then grab the power and turn it down to listen for the reply. No problem. Just a nuisance.
I had a slow start and tried to see which band would be the easiest for me to begin on. I decided that 15 would be best but it soon went dead. 14 was very noisy and I couldn't understand why until I realized that the hotel was holding a wedding and had turned on lights right outside my window. On top of that, they were using lots of electrical equipment for musical instruments and a PA system. I called Leo and we went out to eat.

As we entered the restaurant, there was a big sign on the door that read, "No guns allowed." There were police inside and out. I figured if a gun fight broke out, I had my cover and a get away route and Leo did the same. We ate quickly and left. (It was hard to order because the servers spoke no English and we spoke no Spanish. Fortunately, they
had pictures on the menu and I just pointed.) My dinner cost 292.00 lempurs, which is about \$12.00 U.S.

The next day, Saturday, I worked the contest on and off during the day and some that night. Sunday was about the same and I had a little run going there once, which was quite a thrill with 50 watts and a wire antenna hung out the window. I finally called in the dogs at about 7:30 and quit. I must say that Writelog worked as it always does for me, flawlessly and with ease.
This was a really fun contest, although I didn't make a high score or many contacts. Yet it seemed to redirect my thoughts about future contests and to help me be a better operator and contester. I must say it was the most fun I have had in a long time during a contest. Without all the help of Marco at the Telecommunications office and the hotel manager, I would not have been able to accomplish any of this.

I left the next day for Nashville and took off the next morning to Nassau, Bahamas, for five days. My equipment was already packed so I took it with me to see how it would work out in the Caribbean. There wasn't any contest but, since I already had a Bahamian license, I figured I'd just rag chew a little and try to enjoy that location, too. It really is a tough life but someone has to do it....hi hi.

WriteLog for Windows with Rttyrite/WinRTTY/AFC One Package Handles All Your CW, SSB, and RTTY Contesting Needs
 and SSB \& Perfect CW transmission.

Tired of obsolete DOS logging packages that force you to use special configurations and don't use all of the power of your computer? WriteLog is the first contest logging software designed to fully deliver the convenience and ease of use of Windows 95, $98 \&$ NT.
WriteLog includes these battle-proven features:

- Work RTTY using any 16 -bi (or better) sound card. No other hardware required! Opt. 2 sound cards and run 4 radios Full Radio Control - Helpful Band Map Packet Interface - Fast Ethernet Networking
- Super Check Partial
- Click and Go Mouse Support - Perfect Log Submission
- Two Radio Support - Supports All Major Contests in All Modes
- Only $\$ 75.00$ Ver 9 users upgrade $\$ 30$.

PLUS These NEW Features:

RTTY mode AFC - also
known as Autotune
Audio Compression - now you can save \& play back your entire log after a contest, contact by con tact, from WAV files on your H.D. - in CW, SSB, RTTY \& PSK31 modes - via WAV file compression.

CW Reader - print CW on screen like in a RTTY contest. We also added multi-channel CW reader capability. With a fast PC (350 MHz Pentium or faster) WriteLog will
decode CW at 6 different pitches on 2 radios simultaneously. Like having a backup operator looking over your shoulder.
'I made the first contest (non RTTY) with WriteLog, and it is FANTASTIC. It is such an improvement for me over CT... I really love it, and from now on anyone who operates from here will HAVE to use this program! I will twist their arms." - John, ON4UN
http://www.writelog.com e-mail:k5dj@writelog.com
Ron Stailey, K5DJ 504 Dove Haven Dr. Round Rock, TX 78664-5926 Tel: (512) 255-5000

W4GKM/HR Station

RTTY Dictionary

Bill Henry, K9GWT
k9gwt@rttyiournal.com

We in RTTY have devised a language all of our own. As our hobby has grown we've added new words, abbreviations, and acronyms to our discussions. Interest in amateur RTTY is growing and we add new enthusiasts every year. Here is hopefully some help for old and new RTTY'ers.

AFSK: Audio Frequency Shift Keying. One audio tone represents the MARK state and a different audio frequency represents the SPACE state.

AMTOR: AMateur Teleprinter Over Radio. The error-correcting code and ARQ protocol used by radio amateurs. Same as SITOR except that certain features such as Selective Forward Error Correction (SFEC) are not included. Also, AMTOR includes a LISTEN mode that is not supported by either TOR or SITOR. Modifications of CCIR-476 SITOR first described by Peter Martinez, G3PLX in 1980.

ARQ: Automatic Repeat reQuest. A radio protocol that can sense receive errors and the receiver may then request that the transmitting station repeat transmission of flawed data bits, bytes, or characters. This is generally a chirp or burst type of two-way emission, one station to a second station. Typical ARQ modes are TOR, SITOR, AMTOR, AX. 25 Packet Radio, Pactor, CLOVER, and G-TOR.

ASCII RTTY: American National Standard for Communications Information Interchange. The standard 8 -bit data code used for computer data. Often pronounced "as-key". Normally transmitted via radio using simple two-tone frequency shift keying (FSK) or audio frequency shift keying (AFSK) modulation.

ASM: Amplitude Shift Modulation used in CLOVER. Amplitude levels are shifted to send data. For example, 2A mode has two levels and sends information for 1 data bit; 4A sends data for 2 data bits. In CLOVER, 8P2A mode sends information for 4 data bits and 16P4A sends data for 6 data bits.

Asynchronous: A sequential (serial) data bit format that includes a control "Start Bit" to signal the beginning of the data character and a "Stop Bit" to signal the end of the character. The bits sent between the Start and Stop bits represent the data. In common amateur use, the Baudot code has one start bit, 5 data bits, and one or more stop bits.

AX.25: First offered by Tucson Amateur Packet Radio (TAPR) club in 1982. Based on the commercial X. 25 protocol but tailored for VHF/UHF amateur radio use. Terminal Node Controller (TNC) offered AX. 25 error correction protocol and FSK modem for 300 and 1200 baud operation. The 1200 baud option is used with VHF FM equipment and has enjoyed strong popularity. 300 baud FSK has been used on HF radio with limited success.

Baudot RTTY: The five-level code commonly used by radio amateurs for HF radio communications. The actual code used today most closely follows that devised by Murray but "Baudot" is the common name. Also known as CCIR / ITA \#2 code. Since the 5 -unit code has only 32 $\left(2^{5}\right)$ combinations, code combinations must be used twice to represent
all 26 letters, 10 numbers and assorted symbols. Special case-control characters - LTRS and FIGS - are sent to signal a case change to the receiving device. Normally transmitted via radio using simple twotone frequency shift keying (FSK) or audio frequency shift keying (AFSK) modulation.

Baud: The signaling rate in "Baud" (named after Baudot). Baud is the reciprocal of the time width of shortest pulse in the data stream. Baud $=1 / \mathrm{T}$. Common baud rates for HF RTTY are $45.45,50,57,75,100$, and 110 Baud. Common VHF/UHF rates are 300, 1200, 2400, 4800, 9,600, and 19,200 Baud.

Bias Distortion: Distortion that increases the time length of one state at the expense of the other. For example, if all Space pulses are 10% longer than normal and all Mark pulses are 10% shorter than normal. May be caused by incorrectly tuned radio receiver or by interference. In a loop circuit, may be caused by a loop voltage that is too low.

Bit Error Rate (BER): A performance test that may be performed on a demodulator. In its simplest form, a "BERT" (Bit Error Rate Tester) mixes a RTTY signal of known amplitude with a random noise source. The S / N (Signal/Noise) ratio is varied and a tally is made of the number of bit errors found on the demodulator data output. The BER is lowest for high S / N (strong signal) and highest for low S / N (weak signal). The lower the BER, the less the distortion caused by the demodulator and the better the reception A good 45 baud RTTY demodulator may have a BER of the order of 1 error bit per 100,000 bits at a S/N of 0 dB or lower.

Bit-rate: The rate at which bits are sent, measured in bits-per-second. In a simple two-tone FSK or AFSK modulation, one bit is sent per Mark or Space pulse and the bit rate and baud are the same. In the case of complex modulation such as CLOVER, more than one bit may be sent per tone pulse. For example, in CLOVER QPSM mode, the phase may be set to $0,90,180$, or 270 degrees on each tone pulse. Thus 4 data states or the information in two binary bits may be sent with each CLOVER tone pulse. In CLOVER-II QPSM mode, the signaling rate is 31.25 baud but the data rate is 62.5 bits-per-second.

BMUNS: "Broad Minds Use Narrow Shift" - an acronym to remind hams to use narrow shift on HF RTTY. Coined by Dusty Dunn, editor of the RTTY Journal (1967-1977).

B/Y: Mark/Space bit states of a TOR, SITOR, or AMTOR data signal.
Characteristic Distortion: Repetitive and consistent distortion of one or more bit elements of a signal. For example, a start bit that was noticeably shorter or longer than the following data bits.

CLOVER: An error-correction protocol and waveform invented by Ray Petit, W7GHM, and sold by HAL Communications Corp. Uses Reed-Solomon error-correction coding and selective block repeat ARQ. CLOVER-II has a 500 Hz bandwidth and will pass data at rates up to 70 bytes/second (560 bits/sec). CLOVER-2000 has a 2000 Hz bandwidth and will pass error-corrected data at rates up to 250 bytes/sec ($2000 \mathrm{bits} / \mathrm{sec}$). Four audio tones, spaced 125 Hz apart are used in CLOVER-II; CLOVER-2000 uses 8 tones, spaced 250 Hz apart. Both CLOVER-II and CLOVER-2000 provide five modulation levels that use Phase Shift Modulation (PSM) and Audio Shift Modulation (ASM). Modulation levels are automatically adjusted to fit measured received signal conditions. The base symbol rate of CLOVER-II is 31.25 baud; of CLOVER-2000, 62.5 baud.

Code: The method used to represent letters, numbers, and symbols by a sequence of bits. Common amateur radio digital codes include Baudot, ASCII, and Morse codes.

Data Bits: The Mark or Space pulses that follow the start bit. All are one unit bit period long, the same time length as the start bit. Five data bits are sent in the Baudot code and 8 bits in the ASCII code.

Demodulator: The device that accepts audio data from the receiver output, detects the Mark and Space signals, and passes a digital pulse stream to the terminal device - PC or teleprinter.

Duplex: In an ARQ communications system, use of different radio frequencies for reception and transmission. Normally used for ship-toshore ARQ (TOR) communications.

EOL: End Of Line sequence. For amateur Baudot RTTY, the correct end of line sequence should be CR LF LTRS. For MARS circuits, send CR LF. For ASCII, send CR LF.

FDX: Full duplex. Communications between two stations pass simultaneously in both directions. Requires two radio frequency links for RTTY.

FEC: Forward Error Correction. A mode often included in an ARQ modem. This is a "broadcast mode" in which one station may send data to several other stations. Error detection coding is used and the data may be sent multiple times, the receiver choosing which received version is correct. This may not result in error-free and/or gap-free data transmission but is useful when a one-to-many mode is required.

FIGS: The special Baudot character sent to signal the receiving device that the following characters are figures and not letters.

Flat Fading: A signal amplitude change on an FSK signal that has equal (or near equal) affect on the amplitude of both the Mark and Space FSK signals. A good receiver AGC system will usually compensate for this form of amplitude change.

Fortuitous Distortion: A random "jitter" of the Mark/Space transition time. Maybe caused by defective sending equipment (dirty contacts), clock frequency instability, or random noise.

Free Signal: Alternate Mark/Space (B/Y) bit sequence sent by shore stations using TOR. Signals to ship stations that the coast station and frequency channel are available to link and pass traffic. Usually sent in 2 to 5 second bursts of B/Y followed by CW identification of the shore station.

FSK: Frequency Shift Keying: One radio frequency represents the MARK state and a different radio frequency represents the SPACE state.

G-TOR: An error-correction protocol invented by Phil Anderson, W0XI, and sold by the Kantronics company. Uses Golay error-correction coding and 300 baud FSK modulation.

HDX: Half duplex. Communications between two stations pass one direction at a time. Stations take turns sending. Some ARQ systems such as AMTOR and Pactor require an "OVER" command to change the direction of data flow. Other systems such as AX. 25 and CLOVER do not require a special command to change direction.
HERE IS: A pre-programmed identification message that can be sent
manually or automatically. May also be called "Answer-back Message".

High Tones: RTTY modem tones used in the United States: Mark $=$ 2125 Hz ; Space $(170)=2295 \mathrm{~Hz}$, Space $(425)=2250 \mathrm{~Hz}$, Space (850) $=2975 \mathrm{~Hz}$.

Ionosphere Simulator: Test equipment that simulates the distortion and signal variations that can be caused by ionospheric propagation. A typical simulator output may include multi-path time-smearing distortion, selective fading, flat fading, and Doppler frequency shifts, all at varying S / N levels. The BER vs S / N is tallied for each of these conditions; a low BER at low S / N ratios is the goal.

IRS: Information Receiving Station. In TOR, SITOR, AMTOR, and Pactor, the ARQ station that is receiving information from the other station. May be either the Master or Slave station, depending upon the use of the OVER command. Does not apply to CLOVER as either station may send at any time and OVER is not required.

ISS: Information Sending Station. In TOR, SITOR, AMTOR, and Pactor, the ARQ station that is sending information to the other station. May be either the Master or Slave station, depending upon the use of the OVER command. Does not apply to CLOVER as either station may send at any time and OVER is not required.

Line Length: 72 characters for normal amateur Baudot RTTY; 69 characters for MARS Baudot RTTY, 80 characters for ASCII and most computer applications.

Loop: The original serial data voltage and current interface. All data equipment is wired in a series connection (the RTTY "loop"). The current in the loop is set to a standard value, 60 ma and 20 ma being common values. The voltage generator in the loop circuit is usually a high voltage power supply; $60 \mathrm{~V}, 100 \mathrm{~V}, 150 \mathrm{~V}$, and 200 V supplies are common.

Low Tones: RTTY modem tones used outside the United States: Mark $=1275 \mathrm{~Hz}$; Space $(170)=1445 \mathrm{~Hz}$, Space $(425)=1700 \mathrm{~Hz}$, Space (850) $=2125 \mathrm{~Hz}$.

LTRS: The special Baudot character sent to signal the receiving device that the following characters are letters and not figures characters.

LSMFT: "Low Space Means Fine Teletype" - an acronym to remind hams about the correct Mark/Space polarity to use on HF RTTY. Coined by Dusty Dunn, editor of the RTTY Journal (1967-1977).

Marine Tones: RTTY modem tones used for TOR and SITOR; Mark $(B)=1615 \mathrm{~Hz}$; Space $(\mathrm{Y})=1785 \mathrm{~Hz}$.

MARK: "ON" state of a RTTY data signal; the " 1 " logical state of the digital RTTY signal; the "rest" state on a mechanical teleprinter.

Master: In TOR, SITOR, AMTOR, and Pactor, the ARQ station that makes the original call and initiates the data link connection. The Master station sets the timing for both stations. The originating station remains "Master" for the duration of the ARQ link regardless of the use of the OVER command.

MCP: ARRL acronym for "Multi-mode Communications Processor" (also known as "TNC").

MIL-188C: A Military data voltage and control protocol. Mark $=$ +6 V , Space $=-6 \mathrm{~V}$. Data Connectors are not standardized. Also called "MIL-188-114".

MODEM: Acronym to describe the RTTY MOdulator-DEModulator.
Modulator: The device that accepts digital data from the terminal device and converts it into an FSK or AFSK signal where one signal frequency is sent to represent the Mark data state and another frequency to represent the Space state.

Multi-path Distortion: Distortion caused by splitting of the radio signal into two or more rays, each taking a different path to the receiver. This can be caused on HF signals by ionospheric propagation or by reflection from large buildings in a large city for VHF and UHF signals. In either case, multiple signal components that travel different path lengths arrive at the receiving antenna and are summed vectorially. Due to the difference in path lengths, the Mark/Space transition times are different and when the components are summed, the transition is smeared, making exact determination of bit timing difficult or impossible. Multi-path propagation may also cause cancellation of one radio frequency of an FSK signal, leading to selective fading.

Narrow Shift: Commonly accepted to be 170 Hz for radio amateur use, but 85 and 42.5 Hz have also been used in military FSK applications.

NBDPT: Narrow Bandwidth Direct Printing Telegraph
Neutral Loop: A loop circuit in which the loop current is keyed ON/OFF by the data signal. The polarity standard is that Mark = loop current ON and Space = loop current off (open circuit). Typical neutral loops use +100 to +200 V @ 20 ma or 60 ma .

OVER: In TOR, SITOR, AMTOR, and Pactor, the command that causes the direction of data flow to reverse. When sent and acknowledged, the former Information Sending Station (ISS) becomes the Information Receiving Station (IRS) and vice-versa. This does not affect Master/Slave status that remains fixed for the duration of the ARQ link. Does not apply to CLOVER as either station may send at any time without the use of OVER.

Pactor: An error-correction protocol invented by the SCS firm in Germany. This protocol is a cross between CCIR-476 and AX.25, including features of each. The symbol rate may be 100 or 200 baud. Uses Huffman error-correction coding. Three versions have been offered by SCS: Pactor-I, Pactor-II, and Pactor-III, each providing faster data throughput than its predecessor. Two-tone FSK modulation is used for Pactor-I, and multi-tone PSK for Pactor-II and Pactor-III. Also called " P -Mode".

Polarity: The MARK and SPACE sense of the signal. On HF radio teletype, "normal polarity" is when the MARK radio frequency is higher than the SPACE radio frequency. For AFSK systems used for VHF/UHF and with HF SSB equipment, normal polarity is when MARK has the lower audio tone frequency and SPACE has the higher audio tone frequency. Either RTTY polarity is "legal" but common practice is to observe these standards. Note that when AFSK tones with normal polarity (MARK $=$ low) are applied to the audio input of an SSB transmitter set to lower sideband (LSB), the radio frequency order is reversed and this inverts the RTTY signal to match the HF polarity standard (MARK $=$ higher radio frequency).

Polar Loop: A loop circuit in which the loop current is keyed from positive to negative by the data signal. Either polarity may be used but Mark $=+$ current is more common. The typical polar loop power supply furnishes +60 V or $-60 \mathrm{~V} @ 20 \mathrm{ma}$ or 60 ma .

PSM: Phase Shift Modulation used in CLOVER. Similar to PSK but uses amplitude controlled pulse shapes so that data state changes occur only at zero-amplitude of the waveform, preventing wide bandwidth switching transients.

PSK: Phase Shift Keying. Data is sent by changing the phase of the radio or audio signal. May be used for multi-level signaling - BPSK for 1 bit, QPSK for 2 bits, 8PSK for 3 bits, 16PSK for 4 bits. Requires wide bandwidth due to switching transients. Used by Pactor.

QBF: Test message that sends each letter in the alphabet. Most common format is "THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG 0123456789".

RATT: RAdio TeleType - the military version of "RTTY".
RS-232: The data voltage and control protocol used by most computers for serial data. Mark $=-25$ to -3 V and Space $=+3$ to +25 V . The normal data connectors are the DB- 25 and DE-9, but the RJ-45 is also used. The current standard is called "TIA/EIA-232F"

RTTY: Radio TeleTYpe - what we hams call the mode
RTTY FSK Tone Frequencies: By common practice, RTTY audio filters and tones are usually set to odd multiples of 85 Hz . This evolved from use of a 425 Hz tuning fork as the frequency standard in the 1940s and 1950s. For example: USA high tones: $2125=85 \times 25,2295$ $=85 \times 27$ etc.

RYRYRY...: Test sequence that sends alternate Mark/Space bit patterns in the Baudot code. $\mathrm{R}=(01010), \mathrm{Y}=(10101)$.

SEL-CAL: Selective Call. A unique identification character sequence whereby the receiving station will only respond if the message includes the station SEL-CAL at the start. Used with Baudot RTTY, TOR, SITOR, Pactor, CLOVER, and G-TOR.

Selective Fading: The signal distortion condition in which multi-path propagation causes cancellation of one FSK signal frequency without affecting the other. A selective fade may be very deep, the amplitude change often exceeding 60 dB in depth from the normal level. Such fades are usually of short duration but long enough to obscure one or more bits of RTTY data, particularly at high rates. Normal receiver AGC will not compensate for the effects of selective fading. Hard-limiting "FM" demodulators and AM demodulators that have very wide dynamic-range detectors may offset the effects of selective fading.
In addition, demodulators that have automatic "Mark-only" and "Space-only" detection will provide superior protection against selective fading.

SFEC: Selective FEC. This is a broadcast mode that can be customized to send a message only to a selected group of receiving stations. This mode is included in TOR and SITOR but not in other ARQ protocols.

SHIFT: The frequency difference between the MARK and SPACE frequencies. Applies to either FSK or AFSK modulation.

Simplex: In an ARQ communications system, the use of the same radio frequencies for reception and transmission. Used for amateur communications on RTTY and ARQ modes.

SITOR: SImplex Teleprinter Over Radio. The error-correcting code and ARQ protocol used for ship-to-shore radio teletype. Same as TOR except that the transmit and receive radio frequencies are the same rather than split as for TOR.

Slave: In TOR, SITOR, AMTOR, and Pactor, the ARQ station that is called and links to the Master station. All link timing is synchronized to the Master station's signal.

SPACE: The "OFF" state of a RTTY data signal; the " 0 " logical state of the digital RTTY signal; the "pulse" or "open" state on a mechanical teleprinter.

Speed: The average Baudot speed at which characters can be printed in words per minute. Common Baudot speeds used by amateurs are 60 wpm, $67 \mathrm{wpm}, 75 \mathrm{wpm}$, and 100 wpm .

Start Bit: The control bit in a serial asynchronous data stream that signals the start of a character. On a normal Baudot or ASCII data circuit, the data line is in the Mark or "rest" state when data is not being sent. When data is sent, the start of the character is signaled when the data line transitions from Mark to Space and remains in Space condition for one unit pulse time. Data bits follow the completion of the start bit.

Stop Bit: The control bit in a serial asynchronous data stream that signals the end of a character. In a normal Baudot or ASCII serial data stream, upon completion of the last data bit, the data line is set to the Mark state and remains in Mark for the duration of the stop pulse. The stop pulse length is not standard. It may be the same length as the unit pulse or longer. Common stop pulse lengths are : 1.0 unit (300 baud and higher ASCII), 1.43 units (standard 45.45 baud Baudot, 1.5 units (Western Union 50 baud), 2.0 units, or longer. Note that any stop pulse length greater than 1.0 unit is valid. If only one character is sent, the stop pulse length is essentially infinite. All asynchronous receiving devices should be able to synchronize with and decode data streams using different stop pulse lengths.

Synchronous: A sequential (serial) data bit format that does not include control start or stop bits. Special bit sequences are sent to synchronize the transmitter and receiver devices. AMTOR, AX.25, and CLOVER use synchronous data streams.

Sync Idle: Synchronous Idle, also called "diddle". In Baudot RTTY, characters are sent as typed. If the typist is slow and has not pre-typed text into a buffer, the transmitted data will be sent in a "jerky", startstop manner, with Mark-state pauses between each data burst. Sync Idle sense when typed input is slower than the output rate and automatically inserts non-printing characters to fill the gap. The "blank" character (00000) is usually sent to fill these gaps but LTRS (11111) has also been used. Use of Sync Idle on an HF RTTY link may result in remarkably improved reception.

Throughput: A measure of the actual rate of information transfer that includes all overhead. For example, the symbol rate of CLOVER-2000 is 62.5 Baud and the maximum bit rate is 3000 bits-per-second. However, because of the use of error correction coding, and the time that the transmitter must pause for acknowledgement from the receiver, the actual measured data throughput is 2000 bits-per-second.

Throughput is easily computed by timing how many characters, bytes, or bits are passed error-free in a fixed time interval.

TNC: Terminal Node Controller. The name originally given to the modem and data processing device used for AX. 25 Packet Radio. However, most AX. 25 TNC's include RTTY and other data modes. By popular use, "TNC" often refers to a RTTY modem device.

TOR: Teleprinter Over Radio. The error-correcting code and ARQ protocol used for ship-to-shore radio teletype. Also called "NBDPT" in US Federal Communications Commission (FCC) regulations. Uses a special 7-bit error correction code that allows each receive character to be inspected and re-transmitted if a parity error is detected. Full details of the coding and protocol are given in CCIR 476 and CCIR 625 documents. Normally transmitted via radio using simple two-tone frequency shift keying (FSK) or audio frequency shift keying (AFSK) modulation. The symbol rate is 100 baud and the FSK signal has 170 Hz shift. Normal AFSK modem tone frequencies are 1615 Hz and $1785 \mathrm{~Hz},(170 \mathrm{~Hz}$ shift, centered at 1700 Hz$)$. The transmit and receiver radio frequencies are split by 400 to 800 kHz .

TU: Terminal Unit - original name for the RTTY demodulator and modulator.
$\mathbf{U}^{*} \mathbf{U}^{*} \mathbf{U}^{*}$...: Test sequence that sends alternate Mark/Space bit patterns in the ASCII code. $\mathrm{U}=(1010101), *=(0101010)$.

Unit Pulse: The basic minimum width pulse in the serial data stream. The width is always equal to the reciprocal of the Baud rate. The start and data pulses always have a time duration equal to one unit pulse. For example, 50 baud $=>20 \mathrm{~ms}$ unit pulse.

USOS: UnShift On Space. When receiving Baudot RTTY, noise may accidentally be interpreted as the Baudot FIGS character. If so, all following characters will be displayed in the FIGS case until a LTRS character is decoded. USOS causes the receive printer/terminal to change to LTRS case after reception of a space character. This reduces the problem.

Wide Shift: A shift that is greater than 170 Hz .850 Hz and 425 Hz shifts are the most commonly used wide FSK shifts for commercial and government applications.

WRU: Who aRe yoU. A control/command character or sequence of characters that can be sent from one RTTY station to another. Upon reception of the WRU character(s), the receiving station changes to transmit, sends the pre-programmed HERE IS message, and returns to receive state. Optional and rarely used with Baudot RTTY, but standard for advanced ARQ modes such as Pactor and CLOVER.

RTTY Journal archive discs

All RTTY Journal issues, from 1953 to 1997, are available on CD-ROMs. Buy the whole set of eight discs for just $\$ 100$ (a savings of $\$ 20$), or you may purchase each archive disc individually for $\$ 15$ (\$20 each for non-subscribers).

See the enclosed form for details on ordering.

Next Contest, Work the Weak Ones

- DSP filtering and Motorola microprocessor control

Flash memory for easy software and firmware updates

DXP38 DSP HF Radio Modem
Modes: CLOVER-II, RTTY, AMTOR, P-MODE

Everything bad can and does happen to your HF signals, especially during a contest. Selective fading, noise, interference, and poor tuning indicators all conspire to let that rare DX get away. Track it down with the DXP38.

The DXP38 modem provides advanced digital signal processing the other do-everything ana\log designs cant. You cant work the rare ones if your modem can t copy them. The DXP38 will!

- Connects to computer with a standard DB9 serial cable
- Radio connections made easy with phono connectors
Rugged and portable aluminum cabinet
- Unique Crossed-X tuning indicator displays M/S in FSK and CLOVER, and frequency center in all modes

