35 Typing Reperforator

Adjustments

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. GENERAL</td>
<td>2</td>
</tr>
<tr>
<td>2. BASIC UNIT</td>
<td>4</td>
</tr>
</tbody>
</table>

Function Mechanism

- Adjusting arm spring (early design) 17
- Adjusting arm torsion spring (latest design) 18
- Cam follower roller 20
- Cam follower roller alignment 20
- Clutch shoe lever 5
- Clutch shoe lever spring 6
- Follower lever 17
- Function clutch drum end play 5
- Function clutch latch lever spring 19
- Function clutch release spring 21
- Function clutch trip lever 18
- Main trip lever spring (early design) 17
- Main trip lever spring (latest design) 17
- Release downstop bracket 21
- Reset arm 19

Punch Mechanism

- Detent lever spring 32
- Feed hole spacing 28
- Feed hole spacing (final) 28
- Feed hole spacing (preliminary) 28
- Feed pawl 27
- Feed pawl spring 32
- Lateral and front to rear feed wheel position detent (early design) 29
- Lateral and front to rear feed wheel position detent (latest design) 30
- Perforator position (final) 25
- Perforator position (preliminary) 22
- Punch pin penetration 24
- Punch slide downstop position 24
- Punch slide guide 24
- Punch slide latch spring 33
- Punch slide reset bail 27
- Punch slide spring 31

Ribbon Shift and Print Suppression Mechanism

- Armature air gap 53
- Armature downstop 53
- Armature spring 53
- Armature upstop 54
- Ribbon carrier 52
- Ribbon carrier spring 52
- Ribbon shift and print suppression contacts 39
- Ribbon shift and print suppression contact position 40

Selector Mechanism

- Clutch shoe lever 5
- Clutch shoe lever spring 6
- Clutch shoe spring 6
- Marking lock lever spring 9
- Oil shield 16
- Push lever reset bail spring 12
- Range finder knob phasing 14
- Selector armature 7
- Selector armature downstop bracket 7
- Selector armature spring 11
- Selector armature spring (final) 10
- Selector armature spring (preliminary) 10
- Selector cam lubricator 16
- Selector clutch drum end play 13
- Selector clutch latch lever spring 12
- Selector clutch stop arm 14
- Selector lever spring 13
- Selector magnet bracket 8
- Selector push lever spring 13
- Selector receiving margin 15
Contents

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacing lock lever spring</td>
<td>12</td>
</tr>
<tr>
<td>Start lever spring</td>
<td>15</td>
</tr>
<tr>
<td>Typing Mechanism</td>
<td></td>
</tr>
<tr>
<td>Accelerator spring</td>
<td>55</td>
</tr>
<tr>
<td>Axial corrector (non-yielding)</td>
<td>45</td>
</tr>
<tr>
<td>Axial corrector (yielding)</td>
<td>46</td>
</tr>
<tr>
<td>Axial output rack guide roller</td>
<td>48</td>
</tr>
<tr>
<td>Axial sector alignment</td>
<td>47</td>
</tr>
<tr>
<td>Bell crank spring</td>
<td>34</td>
</tr>
<tr>
<td>Correcting drive link</td>
<td>49</td>
</tr>
<tr>
<td>Correcting drive link (yielding)</td>
<td></td>
</tr>
<tr>
<td>Extension spring tension</td>
<td>46</td>
</tr>
<tr>
<td>Correcting drive link spring</td>
<td>44</td>
</tr>
<tr>
<td>Detent spring</td>
<td>59</td>
</tr>
<tr>
<td>Drive arm</td>
<td>58</td>
</tr>
<tr>
<td>Drive arm spring</td>
<td>59</td>
</tr>
<tr>
<td>Eccentric shaft detent lever spring</td>
<td>47</td>
</tr>
<tr>
<td>Feed pawl spring</td>
<td>58</td>
</tr>
<tr>
<td>Function blade spring</td>
<td>44</td>
</tr>
<tr>
<td>Function box</td>
<td>37</td>
</tr>
<tr>
<td>Idler gear eccentric shaft</td>
<td>49</td>
</tr>
<tr>
<td>Lifter arm</td>
<td>41</td>
</tr>
<tr>
<td>Lifter arm eccentric screw</td>
<td>41</td>
</tr>
<tr>
<td>Lifter spring</td>
<td>44</td>
</tr>
<tr>
<td>Lifter toggle link spring</td>
<td>44</td>
</tr>
<tr>
<td>Oscillating drive link</td>
<td>45</td>
</tr>
<tr>
<td>Print hammer spring</td>
<td>57</td>
</tr>
<tr>
<td>Print between perforated feed holes</td>
<td>57</td>
</tr>
<tr>
<td>Printing latch spring</td>
<td>55</td>
</tr>
<tr>
<td>Printing trip link</td>
<td>55</td>
</tr>
<tr>
<td>Printing trip link spring</td>
<td>55</td>
</tr>
<tr>
<td>Pulse beam spring No. 5</td>
<td>36</td>
</tr>
<tr>
<td>Pulse beam spring No. 7</td>
<td>36</td>
</tr>
<tr>
<td>Push bar guide bracket</td>
<td>48</td>
</tr>
<tr>
<td>Push bar operating blade (final)</td>
<td>35</td>
</tr>
<tr>
<td>Push bar operating blade (preliminary)</td>
<td>34</td>
</tr>
<tr>
<td>Ratchet wheel torque spring</td>
<td>58</td>
</tr>
<tr>
<td>Rocker bail pilot stud</td>
<td>36</td>
</tr>
<tr>
<td>rotary correcting lever</td>
<td>50</td>
</tr>
<tr>
<td>Toggle link</td>
<td>42</td>
</tr>
<tr>
<td>Toggle trip arm</td>
<td>43</td>
</tr>
<tr>
<td>Transfer mounting bracket</td>
<td>38</td>
</tr>
<tr>
<td>Typewheel</td>
<td>56</td>
</tr>
</tbody>
</table>

Variable Features

Power Drive Backspace Mechanism

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armature bail spring</td>
<td>79</td>
</tr>
<tr>
<td>Armature hinge (early design)</td>
<td>75</td>
</tr>
<tr>
<td>Armature latch spring</td>
<td>79</td>
</tr>
<tr>
<td>Armature spring (latest design)</td>
<td>78</td>
</tr>
<tr>
<td>Armature up-stop</td>
<td>76</td>
</tr>
<tr>
<td>Backspace pawl clearance</td>
<td>74</td>
</tr>
<tr>
<td>Backspace ratchet</td>
<td>74</td>
</tr>
<tr>
<td>Bell crank spring</td>
<td>79</td>
</tr>
<tr>
<td>Drive link</td>
<td>76</td>
</tr>
<tr>
<td>Feed pawl disabling</td>
<td>75</td>
</tr>
<tr>
<td>Feed pawl spring</td>
<td>79</td>
</tr>
<tr>
<td>Final power adjustment (latest design)</td>
<td>78</td>
</tr>
<tr>
<td>Latch</td>
<td>77</td>
</tr>
<tr>
<td>Latch extension</td>
<td>76</td>
</tr>
<tr>
<td>Magnet extension (latest design)</td>
<td>78</td>
</tr>
<tr>
<td>Non-repeat arm</td>
<td>77</td>
</tr>
</tbody>
</table>

Print Suppression Mechanisms

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control lever (manual)</td>
<td>81</td>
</tr>
<tr>
<td>Print suppression link</td>
<td>80</td>
</tr>
</tbody>
</table>

Remote Control Non-Interfering Rubeout Tape

Feed-Out Mechanism

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusting lever</td>
<td>68</td>
</tr>
<tr>
<td>Armature backstop</td>
<td>61</td>
</tr>
<tr>
<td>Armature hinge</td>
<td>60</td>
</tr>
<tr>
<td>Blocking bail spring</td>
<td>61</td>
</tr>
<tr>
<td>Blocking latch torsion spring</td>
<td>61</td>
</tr>
<tr>
<td>Drive arm spring</td>
<td>67</td>
</tr>
<tr>
<td>Drive bail spring</td>
<td>60</td>
</tr>
<tr>
<td>Feed pawl and front check pawl springs</td>
<td>63</td>
</tr>
<tr>
<td>Latch lever</td>
<td>62</td>
</tr>
<tr>
<td>Latch lever spring</td>
<td>62</td>
</tr>
<tr>
<td>Magnet assembly</td>
<td>60</td>
</tr>
<tr>
<td>Mounting plate</td>
<td>60</td>
</tr>
<tr>
<td>Non-repeat lever spring</td>
<td>61</td>
</tr>
<tr>
<td>Punch slide latch</td>
<td>67</td>
</tr>
<tr>
<td>Ratchet return spring</td>
<td>65</td>
</tr>
<tr>
<td>Ratchet stop block</td>
<td>64</td>
</tr>
<tr>
<td>Rear check pawl</td>
<td>63</td>
</tr>
<tr>
<td>Rear check pawl spring</td>
<td>63</td>
</tr>
<tr>
<td>Release arm</td>
<td>66</td>
</tr>
<tr>
<td>Release arm spring</td>
<td>66</td>
</tr>
<tr>
<td>Release lever</td>
<td>61</td>
</tr>
<tr>
<td>Release lever spring</td>
<td>62</td>
</tr>
<tr>
<td>Reset bail latch</td>
<td>71</td>
</tr>
<tr>
<td>Reset bail latch</td>
<td>71</td>
</tr>
<tr>
<td>Reset bail trip lever</td>
<td>69</td>
</tr>
<tr>
<td>Reset bail trip lever</td>
<td>71</td>
</tr>
<tr>
<td>Reset bail trip lever spring</td>
<td>71</td>
</tr>
<tr>
<td>Tape length adjusting plate</td>
<td>70</td>
</tr>
<tr>
<td>Time delay lever</td>
<td>65</td>
</tr>
<tr>
<td>Time delay lever spring</td>
<td>65</td>
</tr>
<tr>
<td>Trip cam follower</td>
<td>68</td>
</tr>
</tbody>
</table>
CONTENTS

TIMING CONTACTS
Contact assembly mounting bracket 73
Contact spring gap (preliminary) 72
Contact swinger (preliminary) 72
Latch lever spring 72
Tape length adjusting plate 73

right and the punch mechanism to the left. It is assumed that the elements depicted in illustrations in this section are being viewed from a position in front of the equipment, unless the illustrations are specifically labeled otherwise. In the illustrations, pivot points are shown by circles or ellipses that are solid black to indicate fixed points and cross-hatched to indicate floating points.

1.04 Tools required to make the adjustments and test the spring tensions are listed in the appropriate section. Spring tensions given in this section are indications, not exact values, and should be checked with the correct scale applied in the positions shown in the drawings.

1.05 The unit is in its unoperated, or stop, condition when it is not under power. It is in its idling condition when it is under power and clutches are disengaged (steady marking condition of signal line). The unit is in the letters condition when the typewheel rack is in its upper position (the numerals appear on the top half of the typewheel). The unit is in the figures condition when the typewheel rack is in its lower position (the letters appear on the top half of the typewheel).

CAUTION: APPARATUS SHOULD NOT BE SEPARATED FROM ITS PROTECTIVE HOUSING UNLESS POWER IS DISCONNECTED. WHERE OPERATION OF THE EQUIPMENT IS REQUIRED AFTER IT HAS BEEN SEPARATED FROM ITS PROTECTIVE HOUSING, APPROPRIATE PRECAUTIONARY MEASURES SHOULD BE TAKEN TO PREVENT ACCIDENTS.

1.06 When a requirement calls for a clutch to be DISENGAGED, the clutch shoe lever must be fully latched between its trip lever (or stop arm) and latch lever. The main shaft will then turn freely without the clutch shoes dragging. When the clutch is ENGAGED, the shoe lever and cam disk stop lug are moved apart, and the clutch shoes are wedged against the drum so that the clutch turns with the shaft.

Note: If the shaft is turned by hand, the clutch will not fully disengage upon reaching its stop position. Where a procedure calls for disengagement, rotate the clutch to its stop position, apply a screwdriver to the cam disk stop lug and turn the disk in the normal direction of shaft rotation until the latch lever seats in its notch in the disk.

Figure 1 - Typical 35 Typing Reperforator (Left Front View)

1. GENERAL

1.01 This section is reissued to include complete adjustment requirements for the 35 Typing Reperforator as a standard.

1.02 This section contains specific requirements and adjustments for the 35 Typing Reperforator (Fig. 1). The basic equipment includes selector mechanism, transfer mechanism, eight-level fully perforating punch mechanism, and printing mechanism. The printing mechanism includes letters-figures contacts and magnet and may include print suppression, remote control non-interfering rubout tape feed-out, end of feed-out timing contacts and power drive backspace mechanisms.

1.03 Reference to left or right, front or rear and up or down refer to the apparatus in its normal operating position, as viewed from the front with the selector mechanism to the
1.07 To manually operate the 35 Typing Reperforator, proceed as follows:

(a) Attach the armature clip to the selector magnet armature by carefully putting the flat formed end of the armature clip over the top of the armature between the pole pieces and then hooking the projection under the edge of the armature. The spring tension of the armature clip will hold the selector armature in the marking (attracted) position.

(b) While holding the selector magnet attracted by means of the armature clip, manually rotate the main shaft in a counterclockwise direction until all the clutches are brought to their disengaged position.

(c) Fully disengage the clutches in accordance with 1.06, Note.

(d) Release the selector magnet armature momentarily to permit the selector clutch to engage.

(e) Rotate the main shaft slowly until all the push levers have fallen to the left of their selecting levers.

(f) Strip the push levers from their selector levers if they are spacing in the code combination of the character or function that is being selected. Allow the push levers to move to the right. The push levers and selector levers move in succession, starting with the inner lever No. 1 to the outer lever No. 8.

(g) Continue to rotate the main shaft until all operations initiated by the selector action clear through the unit.

1.08 Parts dismantled to facilitate checking or readjustment should be reassembled after the operation is completed. If a part mounted on shims is to be dismantled, the number of shims used at each mounting screw should be noted so that the same shim pile-ups can be replaced when the part is remounted. When parts removed are replaced, related adjustments which may have been affected should be checked.

1.09 Parts that are worn to the extent that they can no longer be made to meet the specified requirements by authorized adjustments or which are worn to the extent that it seems probable that early further wear might cause a loss of adjustment should be replaced by new parts. Springs which do not meet the requirements and for which there are no adjusting procedures should be discarded and replaced by new springs.

1.10. All contact points should meet squarely. Smaller points should fall wholly within the circumference of larger mating points. Points that are the same size should not be out of alignment more than 25 per cent of the point diameter. Avoid sharp kinks or bends in the contact springs.

Note: Keep all electrical contacts free of oil and grease.

1.11 Where a 35 Typing Reperforator is used as a component of a receive only or a send-receive set, it is mounted on a base or keyboard base. Refer to the base, keyboard and other applicable sections for gear mesh and additional adjustment requirements.

2. BASIC UNIT

2.01 The following figures show the adjusting tolerances, position of parts and spring tensions. The illustrations are arranged so that the adjustments are in the sequence that would be followed if a complete readjustment of the apparatus were being made. In some cases, where an illustration shows interrelated parts, the sequence that should be followed in checking the requirements and making the adjustments is indicated by the letters (A), (B), (C), etc.
2.02 Selector Mechanism

2.03 Function Mechanism

NOTE: FOR GEAR MESH ADJUSTMENT, REFER TO APPLICABLE SECTIONS COVERING BASE OR KEYBOARD MOUNTING FACILITY.

(A) CLUTCH SHOE LEVER
NOTE:
THIS ADJUSTMENT SHOULD BE MADE FOR BOTH SELECTING AND FUNCTION CLUTCHES.
TO CHECK
(1) DISENGAGE CLUTCH. MEASURE CLEARANCE.
(2) ALIGN HEAD OF CLUTCH DRUM MOUNTING SCREW WITH STOP LUG. ENGAGE CLUTCH. MANUALLY PRESS SHOE LEVER AND STOP LUG TOGETHER AND ALLOW TO SNAP APART. MEASURE CLEARANCE.
REQUIREMENT
CLEARANCE BETWEEN SHOE LEVER AND STOP LUG:
MIN. 0.055 INCH --- MAX. 0.085 INCH
GREATER WHEN CLUTCH ENGAGED (2) THAN WHEN DISENGAGED (1).
TO ADJUST
ENGAGE WRENCH OR SCREWDRIVER WITH LUG ON ADJUSTING DISK. ROTATE DISK WITH CLAMP SCREWS LOOSENED.
NOTE: AFTER MAKING ADJUSTMENT, DISENGAGE CLUTCH. REMOVE DRUM MOUNTING SCREW. ROTATE DRUM IN NORMAL DIRECTION AND CHECK TO SEE IF IT DRAGS ON SHOE. IF IT DOES REFINE ADJUSTMENT.

(B) FUNCTION CLUTCH DRUM END PLAY
REQUIREMENT
WITH FUNCTION CLUTCH DISENGAGED:
MIN. SOME --- MAX. 0.015 INCH
WHEN PLAY IS TAKEN UP TO MAKE CLEARANCE MAX.
TO ADJUST
WITH ITS MOUNTING SCREW LOOSENED, MOVE DRUM TO EXTREME FRONT POSITION, TIGHTEN DRUM MOUNTING SCREW, POSITION COLLAR WITH MOUNTING SCREW LOOSENED.
NOTE:
THESE SPRING TENSIONS APPLY TO BOTH CLUTCHES.

(A) CLUTCH SHOE LEVER SPRING
TO CHECK
ENGAGE CLUTCH, HOLD CAM
DISK TO PREVENT ITS TURNING.
REQUIREMENT
MIN. 15 OZS. ---- MAX. 20 OZS.
TO PULL SHOE LEVER IN CONTACT
WITH STOP LUG.

(B) CLUTCH SHOE SPRING
NOTE:
IN ORDER TO CHECK THIS SPRING
TENSION, IT IS NECESSARY TO
REMOVE THE CLUTCH FROM THE
MAIN SHAFT. THEREFORE, IT SHOULD
NOT BE CHECKED UNLESS THERE IS
REASON TO BELIEVE IT WILL NOT
MEET ITS REQUIREMENT.

TO CHECK
REMOVE CLUTCH FROM DRUM.
REQUIREMENT
MIN. 3 OZS. ---- MAX. 5 OZS.
TO START PRIMARY SHOE MOVING.
2.06 Selector Mechanism (continued)

TO FACILITATE MAKING THE FOLLOWING ADJUSTMENTS, REMOVE THE RANGE FINDER ASSEMBLY AND SELECTOR MAGNET ASSEMBLY. TO INSURE BETTER OPERATION, PULL A PIECE OF BOND PAPER BETWEEN THE ARMATURE AND THE POLE PIECES TO REMOVE ANY OIL OR FOREIGN MATTER THAT MAY BE PRESENT. MAKE CERTAIN THAT NO LINT OR PIECES OF PAPER REMAIN BETWEEN THE POLE PIECES AND THE ARMATURE.

NOTE

SELECTOR ARMATURE

NOTE

THESE REQUIREMENTS NEED NOT BE MADE NOR CHECKED IF THE SELECTOR MAGNET BRACKET AND RECEIVING MARGIN REQUIREMENTS ARE MET.

(1) REQUIREMENT
CLEARANCE
MIN. 0.025 INCH
MAX. 0.045 INCH
BETWEEN ARMATURE CLAMP STRIP AND MAGNET BRACKET CASTING.

(2) REQUIREMENT
OUTER EDGE OF ARMATURE SHOULD BE FLUSH WITHIN 0.015 INCH WITH OUTER EDGE OF POLE PIECES.

(3) REQUIREMENT
START LEVER SHALL DROP FREELY INTO ARMATURE EXTENSION SLOT.

TO ADJUST
POSITION ARMATURE SPRING ADJUSTING NUT TO HOLD ARMATURE FIRMLY AGAINST PIVOT EDGE OF CASTING. POSITION ARMATURE WITH MOUNTING SCREWS LOOSENED.

SELECTOR ARMATURE DOWSTOP BRACKET

REQUIREMENT
REMOVE OIL SHIELD. WITH MAGNET DE-ENERGIZED, LOCK LEVERS ON HIGH PART OF THEIR CAM, AND ARMATURE RESTING AGAINST ITS DOWSTOP, CLEARANCE BETWEEN END OF ARMATURE AND LEFT EDGE OF LEFT POLE PIECE
MIN. 0.025 INCH MAX. 0.030 INCH.

TO ADJUST
POSITION DOWSTOP BRACKET WITH MOUNTING SCREW LOOSENED, REPLACE OIL SHIELD AND CHECK OIL SHIELD ADJUSTMENT.
NOTE: THE APPROPRIATE PRELIMINARY SELECTOR ARMATURE SPRING TENSION ADJUSTMENT MUST BE MADE PRIOR TO THIS ADJUSTMENT.

2.07 Selector Mechanism (continued)

SPACING LOCK LEVER ON HIGH PART OF CAM, ARMATURE IN CONTACT WITH POLE PIECE. SOME CLEARANCE BETWEEN UPPER SURFACE OF ARMATURE EXTENSION AND LOWER SURFACE OF SPACING LOCK LEVER WHEN LOCK LEVER IS HELD DOWNWARD. MAX. 0.003 INCH

TO ADJUST
POSITION UPPER END OF MAGNET BRACKET, TIGHTEN TWO MAGNET BRACKET MOUNTING SCREWS, RECHECK REQUIREMENT (1).

TO ADJUST
LOOSEN TWO MAGNET BRACKET MOUNTING SCREWS AND ADJUSTING LINK CLAMP SCREW. POSITION MAGNET BRACKET BY MEANS OF ADJUSTING LINK AND TIGHTEN LINK CLAMP SCREW ONLY.

NOTE
SEE FOLLOWING PAGE FOR REQUIREMENT (3).
2.08 Selector Mechanism (continued)

NOTE: SEE PRECEDING PAGE FOR SELECTOR MAGNET BRACKET ADJUSTMENTS (1) AND (2).

SELECTOR MAGNET BRACKET (continued)

(3) REQUIREMENT
MARKING LOCK LEVER ON LOW PART OF CAM, MAGNET ENERGIZED, ARMATURE IN CONTACT WITH LEFT POLE PIECE, SOME CLEARANCE BETWEEN LOWER SURFACE OF ARMATURE EXTENSION AND UPPER SURFACE OF MARKING LOCK LEVER.

TO ADJUST
POSITION UPPER END OF MAGNET BRACKET WITH MOUNTING SCREWS LOOSENED, TIGHTEN MOUNTING SCREWS AND RECHECK (1).
MARKING LOCK LEVER

MARKING LOCK LEVER SPRING REQUIREMENT
RUBOUT COMBINATION (12345678) SELECTED, MAIN SHAFT ROTATED UNTIL SELECTOR CLUTCH IS DISCONNECTED, PUSH SCALE APPLIED TO LOWER EXTENSION OF LOCK LEVER.
MIN. 1-1/2 OZS.
MAX. 3 OZS.
TO START LEVER MOVING.
SECTION 574-233-700

2.09 Selector Mechanism (continued)

SELECTOR ARMATURE SPRING
(FOR UNITS EMPLOYING SELECTOR ARMATURE WITH TWO ANTI-FREEZE BUTTONS ONLY)

REQUIREMENT (PRELIMINARY)
WITH LOCKING LEVERS AND START LEVER ON HIGH PART OF THEIR CAMS, SCALE APPLIED AS NEARLY VERTICAL AS POSSIBLE UNDER END OF ARMATURE EXTENSION. IT SHALL REQUIRE APPROXIMATELY THE FOLLOWING TENSIONS TO MOVE THE REAR ANTI-FREEZE BUTTON AGAINST THE MAGNET CORE:

- 0.060 AMPERE - APPROXIMATELY 3/4 OZ.
- 0.030 AMPERE - APPROXIMATELY 5/8 OZ.
- 0.500 AMPERE - APPROXIMATELY 1-1/8 OZS.

TO ADJUST POSITION ADJUSTING NUT.

(SEE SELECTOR RECEIVING MARGIN ADJUSTMENT)

SELECTOR ARMATURE SPRING
REQUIREMENT (FINAL)
WHEN A DISTORTION TEST SET IS AVAILABLE, THE SELECTOR ARMATURE SPRING TENSION SHOULD BE REFINED, IF NECESSARY, TO OBTAIN SATISFACTORY RECEIVING MARGINS. THE FRONT ANTI-FREEZE BUTTON MUST CONTACT THE MAGNET CORE WHEN THE MAGNET COILS ARE ENERGIZED.

(SEE SELECTOR RECEIVING MARGIN ADJUSTMENT (PARAGRAPH 2.14))
2.10 Selector Mechanism (continued)

SELECTOR ARMATURE SPRING
(For units employing selector armature with single anti-freeze button only).

REQUIREMENT (PRELIMINARY)
With locking levers and start lever on high part of their cams, scale applied as nearly vertical as possible under end of armature extension. It shall require the following tensions to move armature to marking position:

- 0.060 AMPERE - MIN. 2-1/2 OZS. --- MAX. 3 OZS.
- 0.030 AMPERE - MIN. 1-1/2 OZS. --- MAX. 2 OZS.
- 0.500 AMPERE - MIN. 4-1/2 OZS. --- MAX. 5-1/2 OZS.

NOTE
This spring can be adjusted for maximum selector performance only when printer is connected to the specific circuit over which it is to operate under service conditions. Since there are several operating speeds and since circuits vary widely, it is impossible to adjust spring for maximum performance at the factory. The foregoing spring tension requirement is given to permit operation prior to measurement of receiving margins. Readjustment made to obtain satisfactory receiving margin should not be disturbed in order to meet requirements of this adjustment.

To adjust position adjusting nut.
2.11 Selector Mechanism (continued)

PUSH LEVER RESET BAIL SPRING

Requirement
Push lever reset bail on low part of cam. 32 oz. scale applied to reset bail.
Min. 4 ozs.
Max. 8 ozs.
To move bail from cam.

Selector Clutch Latch Lever Spring

Requirement
Latch resting on low part of its cam disk.
Min. 2 ozs.
Max. 3-1/2 ozs.
To start latch moving.

Spacing Lock Lever Spring

Requirement
Selector armature released. Spacing lock lever on low part of its cam.
Spring scale applied to lower end of spacing lock lever.
Min. 3 ozs.
Max. 6 ozs.
To move spacing lock lever from its pivot shaft.
2.12 Selector Mechanism (continued)

Selector Push Lever Spring Requirement
- Push lever in spacing position
 - Min. 1 oz. --- Max. 2 ozs.
 - For all except first in sequence
 - Min. 2 ozs. --- Max. 3 ozs.
 - For first in sequence (copper colored)
- To move push lever from selector lever, check eight springs.

Selector Lever Spring Requirement
- Typing unit upside down, reset bail on peak of its cam.
 - Min. 1-1/2 ozs.
 - Max. 3 ozs.
- To start each lever moving check eight springs. If necessary, unhook start lever spring to check.
 - No. 4 selector lever spring.

Selector Clutch Drum End Play Requirement
- Clutch latched in stop position, clutch drum should be securely against shoulder on main shaft.
- To adjust position clutch drum with mounting screw loosened.
2.13 Selector Mechanism (continued)

(A) RANGE FINDER KNOB PHASING

REQUIREMENT

With range finder knob turned to either end of rack, zero mark on scale should be in line with scribed line on range finder plate ± 3 points.

To adjust:
Remove mounting nut, disengage knob from rack and position knob. Re-engage knob with rack and replace mounting nut.

NOTE: Replace range finder and selector magnet assembly before checking these adjustments.

(B) SELECTOR CLUTCH STOP ARM

REQUIREMENT

Range scale set at 60. Selector clutch disengaged. Armature in marking position. Clutch stop arm should engage clutch shoe lever by approximately full thickness of stop arm.

To adjust:
Position stop arm on stop arm bail with clamp screw loosened.

Page 14
2.14 Selector Mechanism (continued)

START LEVER SPRING
REQUIREMENT
LATCH LEVER SPRING UNHOOKED. STOP
ARM BAIL IN INDENT OF ITS CAM. RANGE
SCALE SET AT 60°.
MIN. 2-1/2 OZS.
MAX. 4-1/2 OZS.
TO START STOP ARM MOVING.

STOP ARM BAIL

START LEVER

START LEVER SPRING

CLUTCH STOP ARM

LATCH LEVER SPRING

SELECTOR RECEIVING MARGIN
REQUIREMENT (FOR UNITS EMPLOYING ARMATURE WITH ONE ANTI-FREEZE BUTTON)
WHEN A SIGNAL DISTORTION TEST SET IS USED FOR DETERMINING THE RECEIVING MARGINS
OF THE SELECTOR, AND WHERE THE CONDITION OF THE COMPONENTS IS EQUIVALENT TO
THAT OF NEW EQUIPMENT, THE RANGE AND DISTORTION TOLERANCES BELOW SHOULD BE MET.
REQUIREMENT (FOR UNITS EMPLOYING ARMATURE WITH TWO ANTI-FREEZE BUTTONS)
WHEN A DISTORTION TEST SET IS AVAILABLE, THE SELECTOR ARMATURE SPRING TENSION SHOULD BE
REFINED, IF NECESSARY, TO OBTAIN SATISFACTORY RECEIVING MARGINS. THE FRONT ANTI-FREEZE
BUTTON MUST CONTACT THE MAGNET CORE WHEN THE MAGNET COILS ARE ENERGIZED.

TO ADJUST: REFINE THE SELECTOR ARMATURE SPRING ADJUSTMENT

SELECTOR RECEIVING MARGIN MINIMUM REQUIREMENTS

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>SPEED IN W.P.M.</th>
<th>POINTS RANGE WITH ZERO DISTORTION</th>
<th>PERCENTAGE OF MARKING AND SPACING BIAS</th>
<th>END DISTORTION TOLERATED WITH SCALE AT BIAS OPTIMUM SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.500 AMP (WINDINGS SERIES)</td>
<td>100</td>
<td>72</td>
<td>38</td>
<td>35</td>
</tr>
</tbody>
</table>

Page 15
2.15 Selector Mechanism (continued)

OIL SHIELD

REQUIREMENT

(1) MAGNET DE-ENERGIZED. STOP ARM BAIL ON LOW PART OF ITS CAM. CLEARANCE BETWEEN START LEVER AND OIL SHIELD. MIN. 0.020 INCH

(2) MAGNET ENERGIZED. STOP ARM BAIL ON HIGH PART OF ITS CAM. CLEARANCE BETWEEN END OF ARMATURE AND OIL SHIELD. MIN. 0.010 INCH

TO ADJUST POSITION SHIELD WITH MOUNTING SCREW LOOSENED. MAKE SURE OIL SHIELD MOUNTING STUD IS SECURE BEFORE MAKING ADJUSTMENT.

LEATHER WICK

SELECTOR CAM LUBRICATOR

REQUIREMENT

HIGH PART OF SELECTOR LEVER CAMS SHOULD CONTACT LEATHER WICK BUT SHOULD NOT DEFLECT WICK MORE THAN 1/32 INCH GAUGED VISUALLY.

TO ADJUST POSITION LUBRICATOR ASSEMBLY AROUND LOWER SCREW WITH MOUNTING SCREWS LOOSENED.
2.16 Function Mechanism (continued)

NOTE: FOR UNITS EQUIPPED WITH AUTOMATIC NON-INTERFERING LETTERS TAPE FEED OUT MECHANISM, SUBSTITUTE ADJUSTMENT IN VARIABLE FEATURES, PARAGRAPH 3.

(A) FOLLOWER LEVER REQUIREMENT

WITH FOLLOWER LEVER ON HIGH PART OF CAM:
(1) CLEARANCE BETWEEN RELEASE AND MAIN TRIP LEVER:
MIN. 0.010 INCH --- MAX. 0.030 INCH
(2) SOME CLEARANCE BETWEEN MAIN TRIP LEVER AND DOWNSTOP BRACKET.
TO ADJUST BY MEANS OF PRY POINT, POSITION ADJUSTING ARM ON FOLLOWER LEVER WITH LOCK NUT LOOSENED.

(C) MAIN TRIP LEVER SPRING (LATEST DESIGN)

REQUIREMENT
TRIP RESET BAIL TRIP LEVER EXTENSION.
PULLING AT TOP OF LEVER
MIN. 1 OZ. --- MAX. 4 OZS.
TO START LEVER MOVING.
NOTE
IT MAY BE NECESSARY TO REMOVE RIBBON FEED MECHANISM WHEN CHECKING TENSION.

MAIN TRIP LEVER SPRING (EARLY DESIGN)

REQUIREMENT
WITH FOLLOWER LEVER ON HIGH PART OF TRIP CAM:
MIN. 2-1/2 OZS. --- MAX. 4-1/2 OZS.
TO START TRIP LEVER MOVING.

(B) ADJUSTING ARM SPRING REQUIREMENT (EARLY DESIGN)

WITH FOLLOWER LEVER ON HIGH PART OF TRIP CAM AND MAIN TRIP LEVER HELD AWAY FROM ADJUSTING ARM:
MIN. 2-1/2 OZS. --- MAX. 4 OZS.
TO START ADJUSTING LEVER MOVING.
SECTION 574-233-700

2.17 Function Mechanism (continued)

Adjusting Arm Torsion Spring
(Latest Design)
With follower lever on low part of trip cam and main trip lever held away from adjusting arm
Min. 1 oz. --- Max. 4 ozs.
To start adjusting lever moving.

Function Clutch Trip Lever

Requirement
(1) With release resting on main trip lever (see below), function clutch trip lever should engage full thickness of shoe lever.
(2) Min. some --- Max. 0.006 inch end play in trip lever.

To adjust position trip lever on its shaft with clamp screw loosened.

(Right side views)
2.18 Function Mechanism (continued)

(A)
RESET ARM.
TO CHECK
TRIP FUNCTION CLUTCH AND POSITION
MAIN SHAFT SO THAT RESET ARM IS
HELD IN ITS HIGHEST POSITION BY CAM PIN.

REQUIREMENT
(1) CLEARANCE BETWEEN RELEASE
AND MAIN TRIP LEVER:
MIN. 0.010 INCH — MAX. 0.030 INCH
(2) LATCH LEVER END PLAY:
MIN. SOME — MAX. 0.010 INCH

TO ADJUST
POSITION RESET ARM WITH CLAMP
SCREW LOOSENED.

(RIGHT SIDE VIEW)

LATCH LEVER SPRING

(B)
FUNCTION CLUTCH LATCH LEVER SPRING
REQUIREMENT
WITH FUNCTION CLUTCH TURNED TO
STOP POSITIONS AND LATCH LEVER
UNLATCHED
MIN. 12 OZS.
MAX. 15 OZS.
TO START LATCH LEVER MOVING.

REAR VIEW
2.19 Function Mechanism (continued)

(A)

CAM FOLLOWER ROLLER
REQUIREMENT
WITH ROCKER BAIL POSITIONED TO ITS
EXTREME LEFT AND UPPER ROLLER
IN CONTACT WITH FUNCTION CAM:
MIN. 0.004 INCH
CLEARANCE BETWEEN CAM AND LOWER
ROLLER AT POINT OF LEAST CLEARANCE.
TO ADJUST
POSITION LOWER ROLLER MOUNTING SCREW IN
ELONGATED SLOT WITH LOCK NUT LOOSENED.

(B)

CAM FOLLOWER ROLLER ALIGNMENT
REQUIREMENT
(1) ROCKER BAIL ROLLERS SHOULD
ENGAGE FULL THICKNESS OF FUNCTION
CAM.
(2) LIFTER ROLLER IN FULL ENGAGEMENT
WITH ROCKER BAIL CAMMING
SURFACE.
TO ADJUST
POSITION ROCKER BAIL AND GUIDE
BRACKET WITH GUIDE BRACKET
MOUNTING SCREWS LOOSENED.
2.20 Function Mechanism (continued)

(A) FUNCTION CLUTCH RELEASE SPRING
REQUIREMENT
TRIP FUNCTION CLUTCH, ROTATE MAIN SHAFT UNTIL RELEASE IS RESET ON MAIN TRIP LEVER.
MIN. 5 OZS. --- MAX. 8 OZS.
TO START RELEASE MOVING.

(B) RELEASE DOWNSTOP BRACKET
REQUIREMENT
WITH FUNCTION CLUTCH TRIPPED, ROTATE SHAFT UNTIL CLEARANCE BETWEEN FUNCTION CLUTCH DISK STOP LUG AND CLUTCH STOP LEVER IS AT A MINIMUM. RELEASE RESTING AGAINST DOWNSTOP BRACKET. CLEARANCE BETWEEN FUNCTION CLUTCH DISK STOP LUG AND STOP LEVER:
MIN. 0.002 INCH --- MAX. 0.045 INCH
TO ADJUST
REMOVE TAPE GUIDE, WITH DOWNSTOP BRACKET MOUNTING SCREWS FRICTION TIGHT POSITION BRACKET.
PERFORATOR POSITION (PRELIMINARY)

REQUIREMENT
THE PERFORATOR MECHANISM MOUNTING SCREW BENEATH PUNCH BLOCK AND MOUNTING SCREW
AT LOWER EDGE OF PERFORATOR MECHANISM BACKPLATE SHALL BE LOCATED CENTRALLY WITHIN
THEIR RESPECTIVE MOUNTING HOLES.

NOTE
THE MOUNTING HOLES ARE OVERSIZE TO FACILITATE USE OF PERFORATOR MECHANISM ON THE TYPING
REPERFORATOR.

TO ADJUST
REMOVE MOUNTING SCREW AT THE LOWER EDGE OF PERFORATOR MECHANISM BACKPLATE, WITH THE
TWO REMAINING BACKPLATE MOUNTING SCREWS AND MOUNTING BRACKET SCREW, FRICTION TIGHT.
POSITION PERFORATOR MECHANISM SO THAT THE TAPPED HOLE OF THE FRAME IS CENTRALLY LOCATED
(AS GAUGED BY EYE) WITHIN LARGE BODY HOLE OF PUNCH MECHANISM BACKPLATE. TIGHTEN
THE TWO BACKPLATE MOUNTING SCREWS AND RECHECK TO SEE THAT REQUIREMENT IS MET. REPLACE
AND TIGHTEN THE LOWER BACKPLATE MOUNTING SCREW. TIGHTEN THE BRACKET MOUNTING
SCREW.

![Diagram of Punch Mechanism]
2.22 Punch Mechanism (continued)

NOTE

BEFORE PROCEEDING WITH THE PUNCH MECHANISM ADJUSTMENTS, CHECK THE ROCKER BAIL CAM FOLLOWER ROLLER ADJUSTMENT AND LOOSEN THE PUNCH SLIDE DOWNSHIFT MOUNTING NUT AND GUIDE MOUNTING STUD.

(A) TOGGLE BAIL ECCENTRIC (PRELIMINARY)

REQUIREMENT

THE INDENT (HIGH SIDE OF ECCENTRIC) SHALL BE IN ITS UPPERMOST POSITION.

TO ADJUST

WITH THE TOGGLE ECCENTRIC SHAFT LOCK NUT FRICITION TIGHT POSITION ECCENTRIC.

(C) PERFORATOR DRIVE LINK

PERFORATOR DRIVE

LINK SPRING

REQUIREMENT

MIN. 3-1/2 OZS.
MAX. 8 OZS.

TO PULL SPRINGS TO INSTALLED LENGTH

(B) TOGGLE OPERATING ARM

(1) REQUIREMENT

TRIP FUNCTION CLUTCH AND ROTATE MAIN SHAFT UNTIL THE UPPER ROCKER BAIL ROLLER IS ON HIGH PART OF ITS CAM.

MIN. 0.002 INCH --- MAX. 0.005 INCH

CLEARANCE BETWEEN FEED PAWL STUD AND THE TP 159926 GAUGE.

(2) CLEARANCE BETWEEN ARM AND OSCILLATING SHAFT BEARING HUB.

MIN. 0.002 INCH --- MAX. 0.015 INCH

WITH PLAY TAKEN UP IN DIRECTION TO MAKE CLEARANCE MAXIMUM.

TO ADJUST

WITH LOCKSCREW FRICITION TIGHT, POSITION TOGGLE BAIL AND OPERATING ARM.
2.23 Punch Mechanism (continued)

(A) PUNCH PIN PENETRATION REQUIREMENT

1. With the rubout combination selected, function clutch engaged. Rotate main shaft until all punch pins are into or above the tape aperture in punch block.
 With the TP159926 gauge in position
 - Min. 0.050 inch clearance between feed pawl stud and the gauge.

2. With rubout combination selected, function clutch engaged. Rotate main shaft until all punch pins have cleared the punch block.
 With the TP159926 gauge in position
 - Max. 0.080 inch clearance between feed pawl stud and gauge.

To adjust
Refine the toggle bail eccentric adjustment keeping the indent to the right of a vertical centerline through the shaft.

(B) PUNCH SLIDE GUIDE REQUIREMENT

The punch slides should align with their corresponding punch pins and be free of binds after tightening the guide mounting studs. Each punch slide should return freely after being pushed in not more than 1/16 inch.

To adjust
Position the guide with its mounting studs friction tight.

(C) PUNCH SLIDE DOWNSTOP POSITION REQUIREMENT

With function clutch disengaged and latched. Play taken up toward the top, clearance between both the front and rear punch slides and the downstop plate
 - Min. some
 - Max. 0.008 inch
All other punch slides shall have some clearance.

Note
To check for some clearance, place unit in stop position, trip function trip mechanism and latches, the punch slides shall move fully to their operated position.

To adjust
With unit in stop position, loosen the two downstop plate mounting lock nuts and locate the downstop plate to meet the requirement.
PERFORATOR POSITION----FINAL

(1) TO CHECK
SELECT RUBOUT CODE COMBINATION (12345678). ROTATE UNTIL FUNCTION CLUTCH TRIPS WITH PUNCH LEVERS IN EXTREME LEFT-HAND POSITION.

REQUIREMENT
CLEARANCE BETWEEN PUNCH SLIDE AND PUNCH SLIDE LATCH:
MIN. 0.015 INCH----MAX. 0.045 INCH
AT SLIDE WHERE CLEARANCE IS LEAST.

TO ADJUST
LOosen PERFORATOR MOUNTING SCREWS, ADJUSTING CLAMP LOCK SCREW, ADJUSTING CLAMP PIVOT SCREW AND ANCHOR BRACKET SCREW UNTIL FRICITION TIGHT. PLACE TIP OF SCREW DRIVER BETWEEN SCREW AND RIM OF PRY HOLE AND PRy PERFORATOR UP OR DOWN. TIGHTEN ONLY ADJUSTING CLAMP LOCK SCREW.

(2) TO CHECK
SELECT "L" CODE COMBINATION (---34--78). TRIP FUNCTION CLUTCH AND MOVE ROCKER BAIL TO EXTREME LEFT.

REQUIREMENT
CLEARANCE BETWEEN STRIPPER PLATE AND TYPEWHEEL CHARACTER "L":
MIN. 0.075 INCH----MAX. 0.085 INCH

TO ADJUST
REMOVE RIBBON FROM CARRIER. POSITION PERFORATOR WITH TWO MOUNTING SCREWS, ADJUSTING CLAMP PIVOT SCREW AND ANCHOR BRACKET SCREW LOOSENED. CHECK RESET BAIL TRIP LEVER REQUIREMENT FOR SOME CLEARANCE AND ADJUST IF NECESSARY.

--- Diagram ---

PERFORATOR

TYPEWHEEL CHARACTER "L"

STRIPPER PLATE

ADJUSTING CLAMP LOCK SCREW

ADJUSTING CLAMP PIVOT SCREW

PUNCH SLIDE

PUNCH SLIDE LATCH

ANCHOR BRACKET SCREW

ANCHOR BRACKET SCREW (ALTERNATE POSITION)

PERFORATOR MOUNTING SCREW

PRY HOLE

PERFORATOR MOUNTING SCREW
2.25 Punch Mechanism (continued)

RESET BAIL TRIP LEVER
REQUIREMENT

(1) MANUALLY SELECT AN ALL SPACING COMBINATION.
MANUALLY ROTATE RESET BAIL TRIP LEVER.
THE PUNCH SLIDE RESET BAIL SHALL TRIP
BEFORE THE FUNCTION CLUTCH IS TRIPPED.

(2) WITH FUNCTION AND SELECTOR CLUTCHES DIS-
ENGAGED AND LATCHED, THE PUNCH SLIDE
RESET BAIL SHALL FULLY ENGAGE THE PUNCH
SLIDE LATCHING SURFACE WHEN PLAY IN
PARTS IS TAKEN UP IN DIRECTION TO
MAKE THE ENGAGEMENT THE LEAST.

TO ADJUST

(1) WITH TRIP LEVER EXTENSION LOCK SCREW FRICION
TIGHT AND DELETE (RUBOUT) COMBINATION
SELECTED, POSITION RESET BAIL AGAINST PUNCH
SLIDES. TAKE UP PLAY BETWEEN RESET BAIL
AND TRIP LEVER IN A COUNTER COUNTERWISE
DIRECTION. POSITION TRIP LEVER BY MEANS
OF ITS PLY POINT.

(2) RECHECK REQUIREMENT (1) ABOVE AND
REFINE ADJUSTMENT IF NECESSARY.
2.26 Punch Mechanism (continued)

(A) PUNCH SLIDE RESET BAIL

REQUIREMENT
WITH FUNCTION CLUTCH DISENGAGED:
MIN. 0.005 INCH—MAX. 0.015 INCH
BETWEEN PUNCH SLIDE AND PUNCH SLIDE LATCH.

TO ADJUST
ROTATE THE RESET BAIL ECCENTRIC SHAFT WITH ITS LOCK NUT LOOSENED.
KEEP THE INDENTATION IN THE ECCENTRIC ABOVE CENTER OF SHAFT.

NOTE
THIS ADJUSTMENT IS RELATED TO FEED HOLE SPACING, AND TWO ADJUSTMENTS SHOULD BE MADE AT SAME TIME.
FEED HOLE SPACING

(1) REQUIREMENT

(2) REQUIREMENT
WITH TAPE SHOE HELD AWAY FROM FEED WHEEL, FEED PAWL AND DETENT DISENGAGED AND TAPE REMOVED, FEED WHEEL SHOULD ROTATE FREELY.

TO ADJUST
WITH TAPE REMOVED FROM PUNCH MECHANISM, LOOSEN ECCENTRIC LOCK NUT AND ROTATE DIE WHEEL ECCENTRIC SHAFT UNTIL IT BINDS AGAINST FEED WHEEL. BACK OFF ECCENTRIC UNTIL DIE WHEEL IS JUST FREE. CHECK THROUGH 3 OR 4 ROTATIONS. KEEP THE INDENT OF ECCENTRIC BELOW THE HORIZONTAL CENTERLINE OF THE STUD. REFINE ADJUSTMENT FOR REQUIREMENT (1), IF NECESSARY, BY MOVING THE DIE WHEEL TOWARD THE FEED WHEEL TO DECREASE THE CHARACTER SPACING AND AWAY FROM THE FEED WHEEL TO INCREASE THE CHARACTER SPACING.

CAUTION: WITH TAPE REMOVED, MAKE SURE FEED WHEEL AND DIE WHEEL DO NOT BIND. RECHECK REQUIREMENT (1), IF NECESSARY, REFINE.

NOTE 3: FIRST THROUGH FIFTH HOLES IN GAUGE ARE SAME SIZE AS CODE HOLES IN TAPE (0.072 INCH DIAMETER). SIXTH HOLE IN GAUGE IS LARGER (0.086 INCH). THIS ARRANGEMENT ALLOWS ± 0.007 INCH VARIATION IN 5 INCHES.
LATERAL AND FRONT TO REAR FEED WHEEL POSITION DETENT (EARLY DESIGN) REQUIREMENT

WITH THE REPERFORATOR OPERATING UNDER POWER, OBTAIN A TAPE SAMPLE CONSISTING OF A SERIES OF "SPACE" PERFORATIONS, BY A VISUAL INSPECTION OF THE PERFORATED FEED HOLES, LATERALLY AND FRONT TO REAR, THE INDENTATIONS OF THE FEED WHEEL SHALL BE FULLY PUNCHED OUT.

TO ADJUST

(1) TO MEET THE LATERAL REQUIREMENT. LOOSEN THE DETENT ECCENTRIC STUD LOCK NUT AND ROTATE THE DETENT ECCENTRIC CLOCKWISE TO MOVE THE FEED WHEEL PERFORATIONS TOWARDS THE LEAD EDGE OF THE FEED HOLE AND ROTATE THE DETENT ECCENTRIC COUNTER CLOCKWISE TO MOVE THE FEED WHEEL PERFORATION TOWARDS THE TRAILING EDGE OF THE FEED HOLE. REFINISH THE FEED PAWL ADJUSTMENT.

(2) TO ADJUST

2.29 Punch Mechanism (continued)

FOR EARLY DESIGN SEE PARAGRAPH 2.28

LATERAL AND FRONT TO REAR FEED WHEEL POSITION DETENT (LATEST DESIGN) REQUIREMENT

THE INDENTATIONS PUNCHED BY THE FEED WHEEL SHOULD BE CENTRALLY LOCATED BETWEEN THE PUNCHED FEED HOLES (GAUGED BY EYE) AND ON SAME HORIZONTAL CENTERLINE. THE UNIT MUST BACKSPACE THE TAPE AT LEAST 30 CHARACTERS WITHOUT LOSING ITS POINT OF REGISTRATION.

TO CHECK

PERFORATE 6 INCHES OF RY TAPE, BACK SPACE 30 CHARACTERS, REPERFORATE WITH RUBOUT CHARACTERS. CODE HOLES MUST COINCIDE EXCEPT FOR FIRST TWO CHARACTERS WHICH MAY BE ELONGATED ±0.010 INCH.

TO ADJUST (LATERALLY)

ROTATE DETENT ECCENTRIC CLOCKWISE TO MOVE THE FEED WHEEL PERFORATION TOWARD THE LEADING EDGE OF THE FEED HOLE AND ROTATE ECCENTRIC COUNTERCLOCKWISE TO MOVE THE PERFORATION TOWARD THE TRAILING EDGE OF THE FEED HOLE. TIGHTEN LOCK NUT. REFINE FEED PAWL ADJUSTMENT IF NECESSARY.

TO ADJUST (FRONT TO REAR)

LOosen LOCK NUT ON ADJUSTING SCREW AND ROTATE THE SCREW COUNTERCLOCKWISE TO MOVE THE INDENTATIONS IN THE TAPE AWAY FROM THE REFERENCE EDGE (REAR) OF THE TAPE. TO MOVE INDENTATIONS IN THE TAPE TOWARD THE REFERENCE EDGE OF THE TAPE, ROTATE ADJUSTING SCREW CLOCKWISE. REFINE THE DETENT ADJUSTMENT IF NECESSARY.
2.30 Punch Mechanism (continued)

Note

It is necessary to remove several parts, on units equipped with back space mechanism, in order to check this spring tension. It should not be checked unless there is good reason to believe that requirements are not met.

Tape Guide Spring (Punch Block)

1. **Requirement**
 - With tape removed from the punch block, the tape guide spring should rest against the clearance slot in the block in a symmetrical manner.

2. **Requirement**
 - With tape in the punch block and the perforator operating under power, the spring should not distort the edge of the tape.
 - To adjust:
 - Bend the spring and position it with its mounting screw loosened.
Punch Mechanism (continued)

FEED PAWL SPRING

REQUIREMENT
FUNCTION CLUTCH DISENGAGED AND LATCHED. DETENT SPRING UNHOOKED FROM TOGGLE BAIL

MIN. 3 OZS.
MAX. 4-1/2 OZS.

TO START THE DETENT LEVER MOVING

DETENT LEVER

FEED PAWL SPRING

DETENT LEVER SPRING

REQUIREMENT
FUNCTION CLUTCH DISENGAGED AND LATCHED. FEED PAWL SPRING UNHOOKED.

MIN. 7 OZS.
MAX. 10 OZS.

TO START THE DETENT LEVER MOVING.

DETENT LEVER SPRING
2.32 Punch Mechanism (continued)

TAPE TORSION SPRING

REQUIREMENT
- MIN. 13 OZS.
- MAX. 18 OZS.

TO MOVE TAPE SHOE FROM FEED WHEEL.

PUSH LEVER

SELECTING LEVER

PUNCH SLIDE LATCH SPRING

PUNCH SLIDE LATCH

PUNCH SLIDE LATCH SPRING

TORSION SPRING

FEED WHEEL

TAPE SHOE

PUNCH SLIDE LATCH SPRING

TO CHECK

SELECT RUBOUT CODE COMBINATION (12345678). POSITION ROCKERS BAIL TO EXTREME LEFT. STRIP PUSH LEVERS FROM SELECTING LEVERS.

REQUIREMENT
- FOR ONE-SHAFT UNIT
 - MIN. 1 OZS., --- MAX. 3 OZS.
 - TO START LATCH MOVING.
- FOR TWO-SHAFT UNIT
 - MIN. 3/4 OZS., --- MAX. 2 OZS.
 - TO START LATCH MOVING.
(A) PUSH BAR OPERATING BLADE (PRELIMINARY)

TO CHECK
MANUALLY SELECT RUBOUT CODE COMBINATION (12345678),
ROTATE MAIN SHAFT UNTIL FUNCTION CLUTCH TRIPS. HOLD
NO. 2 AND 3 BELL CRANKS AGAINST STOP POST.

REQUIREMENT
OPERATING BLADE PARALLEL TO (NOT NECESSARILY FLUSH WITH)
NO. 2 AND 3 PUSH BARS.

TO ADJUST
WITH ITS MOUNTING SCREWS FRICITION TIGHT, PRY TRANSFER
MOUNTING BRACKET ALL THE WAY TO THE RIGHT. ADD OR
REMOVE SHIMS UNDER THE REAR LEG OF THE OPERATING
BLADE. PLACE EXTRA SHIMS ON REAR MOUNTING SCREW
BETWEEN BLADE AND FLAT WASHER.

(3) BELL CRANK SPRING (5)
TO CHECK
SELECT RUBOUT CODE COMBINATION
(12345678). ROTATE MAIN SHAFT UNTIL
FUNCTION CLUTCH TRIPS.

REQUIREMENT
MIN. 1 OZ. --- MAX. 3 OZS.
TO START PUSH BAR MOVING

NOTE: THIS ADJUSTMENT IS COMPLETED ON THE
FOLLOWING PAGE.

NOTE: CHECK ALL FIVE SPRINGS.
2.34 Typing Mechanism (continued)

PUSH BAR OPERATING BLADE (FINAL)
(1) TO CHECK
MANUALLY SELECT RUBOUT CODE COMBINATION
(12345678). ROTATE MAIN SHAFT UNTIL FUNCTION
CLUTCH TRIPS. MANUALLY SEAT PUSH BARS IN
DETENTED POSITION. IN BAR WHICH IS NEAREST
LEFT EDGE OF BLADE, TAKE UP PLAY TO LEFT
AND REAR, AND THEN RELEASE.

REQUIREMENT
CLEARANCE BETWEEN BAR AND LEFT EDGE OF
BLADE:
MIN. 0.015 INCH --- MAX. 0.030 INCH

(2) REQUIREMENT
SOME CLEARANCE BETWEEN RIGHT EDGE OF
BLADE AND PUSH BARS WHEN PLAY IN BARS
HAS BEEN TAKEN UP TO RIGHT AND RELEASED.

(3) REQUIREMENT
WITH UNIT IN STOP POSITION, SOME CLEAR-
ANCE BETWEEN RIGHT EDGE OF BLADE AND
BARS WHEN PLAY IN BARS HAS BEEN TAKEN
UP TO RIGHT AND RELEASED.

TO ADJUST
WITH MOUNTING SCREWS LOOSENEO, POSITION
OPERATING BLADE IN ELONGATED HOLES.

NOTE:
IT MAY BE NECESSARY
TO REFINF THIS AD-
JUSTMENT AFTER ROCK-
ER BAIL PILOT STUD AD-
JUSTMENT.

PUSH BARS

PUSH BAR OPERATING BLADE

MOUNTING SCREWS

(TOP VIEW)
 SECTION 574-233-700

2.35 Typing Mechanism (continued)

(A) ROCKEBAIL PILOT STUD

TO CHECK
SELECT SPACE COMBINATION. POSITION
ROCKER BAIL THROUGH A COMPLETE CYCLE
TO INSURE THE CLEARANCE IS A MINIMUM.
REQUIREMENT
CLEARANCE BETWEEN FUNCTION BOX REAR
PLATE AND PUSH BAR OPERATING BLADE:
MIN. 0.005 INCH ---- MAX. 0.020 INCH
AT A POINT IN THE CYCLE WHERE PLAY IS
TAKEN UP TO MAKE CLEARANCE MINIMUM.
TO ADJUST
POSITION ROCKEBAIL PILOT STUD IN
ELONGATED HOLE WITH LOCK NUT
LOOSENED.

NOTE 7 PULSE BEAM SPRING

REQUIREMENT
MIN. 10 OZS. ---- MAX. 15 OZS.
TO PULL SPRING TO LENGTH OF
7/16 INCH.

Note 7 PULSE BEAM SPRING

REQUIREMENT
MIN. 20 OZS. ---- MAX. 25 OZS.
TO PULL SPRING TO LENGTH OF
7/16 INCH.
2.36 Typing Mechanism (continued)

FUNCTION BOX

REQUIREMENT

WITH LETTERS (RUBOUT) PUSH BAR TO EXTREME RIGHT AND FULLY DETENTED, RUBOUT CODE (12345678) SELECTED, PUNCH SLIDES DISENGAGED AND FUNCTION CLUTCHED TRIPPED, ELIMINATE PLAY IN DOWNWARD DIRECTION, THEN RELEASE. KEEP OPERATING BLADE PARALLEL WITH NO. 2 AND NO. 3 PUSH BARS AND TAKE-UP FUNCTION BOX PLAY IN A CLOCKWISE DIRECTION. THE TOP OF THE OPERATING BLADE SHALL BE

MIN. FLUSH — MAX. 0.020 INCH

ABOVE TOP RUBOUT PUSH BARS.

TO ADJUST

(1) LOOSEN TWO SCREWS MOUNTING FUNCTION BOX TO FRONT PLATE SPACER POSTS
(2) USING PRY POINT, ROTATE ENTIRE FUNCTION BOX.
(3) TAKE UP SPACER POST PLAY TO RIGHT AND TIGHTEN SCREWS.

TO CHECK

(1) FUNCTION BOX SHALL BE FREE TO ROTATE AT LEAST 0.010 INCH IN ITS MOUNTING AS MEASURED AT LIFTER MOUNTING PLATE SHOULDER SCREWS.
(2) SELECT ALL MARKING CODE COMBINATIONS, TRIP FUNCTION CLUTCH AND CHECK FOR FREE MOVEMENT OF FUNCTION BOX PLATE.
2.37 Typing Mechanism (continued)

TRANSFER MOUNTING BRACKET

TO CHECK
MANUALLY SELECT ALL SPACE CODE COMBINATIONS.
ROTATE MAIN SHAFT UNTIL FUNCTION CLUTCH TRIPS.

REQUIREMENT
WITH PUNCH SLIDES LATCHED, CLEARANCE BETWEEN THE LEFT EDGE OF ALL BELL CRANK SLOTS AND THE LEFT FLAT OF BELL CRANK STOP POST SHALL BE MAX. 0.007 INCH*
(PRELIMINARY FOR NO. 6 AND NO. 7 BELL CRANKS.)

TO ADJUST
WITH MOUNTING SCREWS FRICTION TIGHT, PRY TRANSFER BEAM BRACKET TO LEFT UNTIL CLOSEST BELL CRANK TOUCHES STOP POST, TIGHTEN MOUNTING SCREWS AND CHECK REQUIREMENT.
CAUTION: BELL CRANK THAT YIELDS MOST SHOULD NOT YIELD MORE THAN 0.007 INCH MEASURED AT POST.

*NOTE:
REMOVAL OF FUNCTION BLADES WILL FACILITATE MEASURING CLEARANCE.
NOTE: REFER TO VARIABLE FEATURES (PARAGRAPH 3) FOR ADDITIONAL ADJUSTMENTS APPLYING TO PRINT SUPPRESSION ONLY.

RIBBON SHIFT AND PRINT SUPPRESSION CONTACTS

REQUIREMENT

DISCONNECT ALL POWER FROM UNIT, REMOVE CONTACT ASSEMBLY FROM FUNCTION BOX.

(1) CLEARANCE BETWEEN SWINGER CONTACT POINTS AND NORMALLY OPEN CONTACT POINTS SHALL BE MIN. 0.015 INCH—MAX. 0.020 INCH.

(2) IT SHALL TAKE MIN. 2 OZS., ---MAX. 3 OZS.
TO START SWINGER MOVING

(3) IT SHALL TAKE MIN. 2 OZS., ---MAX. 3 OZS.
TO START NORMALLY OPEN CONTACT MOVING.

TO ADJUST
REMOVE COVER AND REPLACE COVER SCREWS, BEND CONTACTS WITH CONTACT ADJUSTING TOOL.
2.39 Ribbon Shift and Print Suppression Mechanism (continued)

RIBBON SHIFT AND PRINT SUPPRESSION CONTACT POSITION

REQUIREMENT
MANUALLY SELECT ALL SPACING COMBINATION (--------) AND TRIP FUNCTION CLUTCH. TAKE UP FUNCTION BOX PLAY IN CLOCKWISE DIRECTION.
MIN. SOME---MAX. 0.004 INCH CLEARANCE BETWEEN SPACING CONTACT AND STIFFENER.

TO ADJUST POSITION CONTACT MOUNTING BRACKET WITH ITS MOUNTING SCREWS LOOSENED.
2.40 Typing Mechanism (continued)

(A) LIFTER ARM

TO CHECK
TRIP FUNCTION CLUTCH. MOVE ROCKER BAIL TO EXTREME LEFT POSITION AND OBSERVE TRAVEL OF LIFTER ROLLER ON RIGHT DWELL SURFACE. MOVE ROCKER BAIL TO EXTREME RIGHT POSITION AND OBSERVE TRAVEL OF ROLLER ON LEFT DWELL SURFACE.

REQUIREMENT
APPROXIMATELY EQUAL TRAVEL ON EACH DWELL SURFACE.

TO ADJUST
LOOSEN LOCK PLATE SCREW UNTIL FRICTION TIGHT. WITH ECCENTRIC SCREW LOCK NUT FRICTION TIGHT, POSITION LIFTER ARM ON LIFTER. TIGHTEN LOCK PLATE SCREW. DO NOT TIGHTEN LOCK NUT.

(B) LIFTER ARM ECCENTRIC SCREW

REQUIREMENT
WITH FUNCTION CLUTCH DISENGAGED, CLEARANCE BETWEEN CLOSEST PROJECTION OF BELL CRANKS AND ASSOCIATED FUNCTION BLADE PROJECTION MIN. 0.008 INCH----MAX. 0.020 INCH

TO ADJUST
POSITION LIFTER ARM ECCENTRIC SCREW WITH LOCK NUT LOOSENED.
NOTE: PRELIMINARY WHEN NO FUNCTION BLADES ARE USED.

TOGGLE LINK
REQUIREMENT
(1) WITH RUBOUT CODE COMBINATION (12345678) SELECTED AND ROCKER BAIL TO EXTREME LEFT, TOGGLE LINKAGE SHOULD MOVE THROUGH POINT WHERE TOGGLE LINK AND LOCK LEVER ARE IN STRAIGHT LINE WITHOUT RAISING LIFTER. (2) WITH TOGGLE LINK AND LOCK LEVER IN STRAIGHT LINE, CLEARANCE BETWEEN TOGGLE LINK AND LIFTER MIN. SOME----MAX. 0.015 INCH.

TO ADJUST
POSITION TOGGLE LINK ON LOCK ARM ASSEMBLY WITH CLAMP SCREW FRICITION TIGHT.

NOTE
TO AVOID INTERFERENCE WITH LOCK LEVER, IT MAY BE NECESSARY TO MOVE HIGH PART OF CORRECTING DRIVE LINK ECCENTRIC BEARING ABOVE HORIZONTAL CENTER LINE.
TOGGLE TRIP ARM
REQUIREMENT
AS ROCKER BAIL APPROACHES EXTREME RIGHT POSITION, LOCK LEVER TOGGLE LINKAGE SHOULD BREAK AND LIFTER ROLLER SHOULD DROP ONTO RIGHT DWELL SURFACE.

TO ADJUST
BY MEANS OF PRY POINTS, POSITION LOCK LEVER TRIP POST WITH CLAMP SCREW LOOSENED.

LIFTER ROLLER
RIGHT DWELL SURFACE
ROCKER BAIL
LOCK LEVER TOGGLE LINKAGE
LOCK LEVER TRIP POST
CLAMP SCREW
PRY POINTS

(REAR VIEW)
2.43 Typing Mechanism (continued)

(A) LIFTER TOGGLE LINK SPRING
REQUIREMENT
WITH UNIT IN STOP POSITION:
MIN. 1-1/2 OZS. --- MAX. 2-1/4 OZS.
TO PULL SPRING TO INSTALLED LENGTH.

(B) FUNCTION BLADE SPRING (2 OR MORE)
REQUIREMENT (IF SO EQUIPPED)
WITH UNIT IN STOP POSITION
MIN. 7 OZS. --- MAX. 10 OZS.
TO START FUNCTION BLADE MOVING.

(C) LIFTER SPRING
REQUIREMENT
WITH UNIT IN STOP POSITION:
MIN. 7 OZS. --- MAX. 9 OZS.
TO PULL SPRING TO INSTALLED LENGTH.

(D) CORRECTING DRIVE LINK SPRING
REQUIREMENT
WITH UNIT IN STOP POSITION:
MIN. 5 OZS. --- MAX. 9 OZS.
TO START DRIVE LINK MOVING.

REAR VIEW

TOP VIEW
(A) OSCILLATING DRIVE LINK

TO CHECK
POSITION ROCKER BAIL TO ITS EXTREME LEFT.

REQUIREMENT
SECTOR MOUNTING STUD, TOGGLE PIVOT SCREW AND OSCILLATING DRIVE BAIL MOUNTING SCREW SHOULD APPROXIMATELY LINE UP.

TO ADJUST
POSITION OSCILLATING DRIVE LINK BY MEANS OF ITS ECCENTRIC BUSHING.

TO ADJUST

1. LOOSEN DRIVE LINK ADJUSTING SCREWS.
2. Firmly seat axial corrector roller into first notch of sector by manually applying and holding this position for next part of adjustment.
3. Apply manual pressure on drive link to bottom its slot against rocker bail bushing.
4. Maintain pressure at these two places.
5. Tighten adjusting screws.

(B) AXIAL CORRECTOR (NON-YIELDING)

TO CHECK
MANUALLY SELECT ALL SPACING CODE COMBINATION. ROTATE MAIN SHAFT UNTIL ROCKER BAIL IS TO EXTREME LEFT.

REQUIREMENT
ROLLER ON AXIAL CORRECTING PLATE SEATED FIRMLY IN CENTER OF FIRST NOTCH OF AXIAL SECTOR.
2.45 Typing Mechanism (continued)

CORRECTOR DRIVE LINK (YIELDING)
EXTENSION SPRING TENSION

REQUIREMENT
WITH ALL SPACING CODE COMBINATION SELECTED, THE FUNCTION CLUTCH TRIPPED AND THE ROCKER BAIL IN ITS EXTREME LEFT POSITION, PLACE A 32 OZS. SPRING HOOK ON THE END OF THE CORRECTOR AXIAL PLATE. IT SHOULD TAKE MIN. 16 OZS. ---MAX. 32 OZS. TO MOVE THE ROLLER FROM THE NOTCH IN THE SECTOR.

AXIAL CORRECTOR (YIELDING)
REQUIREMENT
WITH ALL SPACING CODE COMBINATION SELECTED, FUNCTION CLUTCH TRIPPED AND ROCKER BAIL IN ITS EXTREME LEFT POSITION, THE AXIAL CORRECTOR ROLLER SHOULD SEAT IN THE FIRST SECTOR NOTCH AND THERE SHOULD BE MIN. 0.005 INCH BETWEEN THE ENDS OF THE SLOT AND THE SPRING POST. CHECK BOTH SIDES AND CHECK SEATING IN FOURTH NOTCH (LETTERS SELECTION). TURN THE RETAINING RING THAT FASTENS THE DRIVE LINK EXTENSION TO THE CORRECTOR PLATE TO CHECK THE MINIMUM REQUIREMENT.

TO ADJUST
LOosen TWO DRIVE LINK ADJUSTING SCREWS, POSITION DRIVE LINK TO MEET THE REQUIREMENT AND RETIGHTEN THE SCREWS.
2.46 Typing Mechanism (continued)

(A) **AXIAL SECTOR ALIGNMENT**

REQUIREMENT
1. Teeth of axial sector and axial output rack should engage by their full thickness.
2. Guide roller free to rotate.

TO ADJUST

Loosen lock nut, disengage rack, remove retaining ring and guide roller, add or remove shims. Place extra shims on top of shim used to retain felt washer.

NOTE: On units equipped with larger (0.594 inch diameter) roller, no adjustment is required.

ECENTRIC SHAFT

(B) **DETENT LEVER SPRING**

MIN. 7 OZS. — MAX. 10 OZS.
To start detent lever moving.

NOTE:
Check all 6 springs. There are two on the axial positioning mechanism and four on the rotary positioning mechanism.

(TOP VIEW OF SPRINGS ON AXIAL POSITIONING MECHANISM)
To check:

Select line feed code combination (-2-4-----8). Rotate main shaft until eccentric has rotated 90 degrees. Take up play to make clearance between output rack and guide roller maximum.

Requirement:

Min. some --- Max. 0.008 inch

To adjust:

Position guide roller mounting stud in elongated hole with lock nut loosened.

To check:

Manually select carriage return code combination (1-3-4-----8). Rotate main shaft so that no. 4 push bar moves through complete range of travel.

Requirement:

When play is taken up to make clearance maximum:

Min. some --- Max. 0.008 inch

Between no. 4 push bar and guide bracket throughout complete travel of bar.

To adjust:

Position guide bracket with mounting screws loosened.
2.48 Typing Mechanism (continued)

(A) CORRECTING DRIVE LINK

(1) TO CHECK
SELECT SPACE CODE COMBINATION, TRIP FUNCTION CLUTCH AND MOVE ROCKER BAIL TO EXTREME LEFT.
REQUIREMENT
ROLLER ON AXIAL CORRECTING PLATE FIRMLY SEATED IN FIRST NOTCH OF AXIAL SECTOR.

(2) TO CHECK
SELECT RUBOUT CODE COMBINATION (12345678), TRIP FUNCTION CLUTCH AND MOVE ROCKER BAIL TO EXTREME LEFT.
REQUIREMENT
ROLLER ON AXIAL CORRECTING PLATE FIRMLY SEATED IN FOURTH NOTCH OF AXIAL SECTOR.

CORRECTING PLATE
ADJUSTING SCREWS

TO ADJUST
LOosen DRIVE LINK ADJUSTING SCREWS. HOLDING ROLLER FIRMLY SEATED IN FIRST NOTCH AND HOLDING DRIVE LINK DOWN (BOTTOMED) AGAINST BUSHING, TIGHTEN ADJUSTING SCREWS.

MOUNTING SCREW
ADJUSTING HOLES

(B) IDLER GEAR ECCENTRIC SHAFT
REQUIREMENT
WITH UNIT IN RUBOUT CONDITION AND FUNCTION CLUTCH DIENGAGED;
MIN. SOME --- MAX. 0.015 INCH CLEARANCE BETWEEN TYPEWHEEL RACK TOOTH AND IDLER GEAR TOOTH.

TO ADJUST
WITH MOUNTING SCREW LOOSENED, POSITION IDLER GEAR ECCENTRIC SHAFT BY MEANS OF THREE ADJUSTING HOLES. CHECK RACK THROUGHOUT ITS TRAVEL FOR BINDS.

TYPEWHEEL RACK
ECCENTRIC SHAFT
HORIZONTAL CENTER LINE OF SHAFT
IDLER GEAR
2.49 Typing Mechanism (continued)

ROTARY CORRECTING LEVER

(1) TO CHECK

Loosen correcting clamp adjusting screw. With unit in figures condition select "X" code combination (---45-78). Trip function clutch and position rocker bail to extreme left, manually seat rotary correcting lever in typewheel rack. Requirement second tooth from top of rack seated between lobes of correcting lever.

To adjust loosen eccentric bushing lock nut. With clamp adjusting screw loosened and correcting lever pivot to right of center line, position correcting lever. Tighten bushing lock nut. Do not tighten clamp adjusting screw at this time.

(2) TO CHECK

In a manner similar to that described above, check engagement of fifth tooth (---34---78), ninth tooth (---4---8) and sixteenth tooth (---3-5---8).

To adjust refine adjustment under (1) above.

![Diagram of rotary correcting lever](image-url)

Note: This adjustment continued on following page, see requirement (3) paragraph 2.50.
(3) TO CHECK
WITH UNIT IN LETTERS CONDITION, SELECT RUB-OUT CODE COMBINATION (12345678). POSITION ROCKER BAIL TO EXTREME LEFT. MANUALLY SEAT CORRECTING LEVER IN RACK.

REQUIREMENT
A. LOBES OF ROTARY CORRECTING LEVER FIRMLY SEATED IN TYPEWHEEL RACK.
B. END PLAY BETWEEN CORRECTING CLAMP AND ECCENTRIC BUSHING WITH UNIT IN STOP POSITION:
 MIN. SOME ------ MAX. 0.006 INCH

TO ADJUST
WITH CORRECTING ARM CLAMP ADJUSTING SCREW LOOSENED, TRIP FUNCTION CLUTCH AND ROTATE MAIN SHAFT UNTIL ROLLER ON AXIAL CORRECTING PLATE APPROACHES SEATED POSITION IN NOTCH OF AXIAL SECTOR. WHEN CLEARANCE BETWEEN ROLLER AND SECTOR IS
 MIN. SOME
 MAX. 0.005 INCH
POSITION CORRECTING LEVER FINGER-TIGHT AGAINST RACK. TIGHTEN CORRECTING CLAMP SCREW.

NOTE: SEE REQUIREMENTS (1) AND (2) FOR THIS ADJUSTMENT ON PRECEDING PAGE, PARAGRAPH 2.49.
2.51 Ribbon Shift and Print Suppression Mechanism (continued)

RIBBON CARRIER SPRING
REQUIREMENT
WITH UNIT IN STOP POSITION
MIN. 7 OZS. --- MAX. 10 OZS.
TO START CARRIER MOVING.

RIBBON CARRIER
REQUIREMENT
WITH FUNCTION CLUTCH DISENGAGED:
MIN. 0.040 INCH
MAX. 0.050 INCH
CLEARANCE BETWEEN BLOCKING LINK AND
RIBBON CARRIER.

TO ADJUST
LOOSEN LOCK SCREW, POSITION RIBBON
OSCILLATING LEVER, USING ADJUSTING
SLOT.
NOTE: REFER TO VARIABLE FEATURES (PARAGRAPH 3) FOR ADDITIONAL PRINT SUPPRESSION ADJUSTMENTS.

ARMATURE SPRING

REQUIREMENT
WITH SPRING DISCONNECTED
MIN. 3-1/2 OZS. -- MAX. 4-1/2 OZS.
WHEN PULLED TO INSTALLED LENGTH.

(R) ARMATURE AIR GAP

REQUIREMENT
WITH ARMATURE ON DOWNSTOP SCREW
MIN. 0.015 INCH -- MAX. 0.020 INCH
CLEARANCE BETWEEN MAGNET CORE AND ARMATURE AT CLOSEST POINT AND
MIN. SOME -- MAX. 1/32 INCH
CLEARANCE BETWEEN REAR OF ARMATURE SLOT AND BLOCKING LINK AS GAGED BY EYE.

TO ADJUST POSITION MAGNET BRACKET WITH SCREWS LOOSENED, CHECK FOR BINDS.

NOTE: SEE ARMATURE UPSTOP ADJUSTMENT (PARAGRAPH 2.53).

(A) ARMATURE DOWNSTOP

REQUIREMENT
WITH ROCKER BAIL IN EXTREME LEFT POSITION AND RIBBON CARRIER BIASED DOWNWARD
MIN. SOME -- MAX. 0.005 INCH
CLEARANCE BETWEEN TOP SURFACE OF BLOCKING LINK AND LOWER SURFACE OF RIBBON CARRIER.

TO ADJUST POSITION ARMATURE DOWNSTOP SCREW WITH LOCK NUT LOOSENED.
NOTE: REFER TO VARIABLE FEATURES (PARAGRAPH 3) FOR ADDITIONAL PRINT SUPPRESSION ADJUSTMENTS.

NOTE: THIS ADJUSTMENT IS TO BE PRECEDED BY ARMATURE DOWNSTOP AND ARMATURE AIR GAP ADJUSTMENTS (PARAGRAPH 2.52).

ARMATURE UPSTOP

REQUIREMENT
WITH ARMATURE HELD AGAINST UPSTOP SCREW (MAGNET IS NOT TO BE ENERGIZED)
MIN. 0.004 INCH---MAX. 0.007 INCH CLEARANCE BETWEEN MAGNET CORE AND ARMATURE AT CLOSEST POINT.

TO ADJUST
POSITION UPSTOP SCREW WITH LOCK NUT LOOSENED.
2.54 Typing Mechanism (continued)

PRINTING TRIP LINK

TO CHECK
TRIP FUNCTION CLUTCH AND POSITION ROCK
BAIL TO EXTREME LEFT, MANUALLY LIFT ACCELERATOR
SO THAT LATCHING SURFACES OF PRINTING LATCH
AND ACCELERATOR ARE EVEN.

REQUIREMENT
MIN. SOME—MAX. 0.015 INCH
CLEARANCE BETWEEN ACCELERATOR AND LATCH.

TO ADJUST
WITH LOCK NUT LOOSENED, POSITION PRINTING
TRIP LINK BY MEANS OF ECCENTRIC MOUNTING
SCREW. KEEP HIGH PART OF SCREW TO LEFT OF
CENTER LINE.

ACCELERATOR

ACCELERATOR SPRING

ACCELERATOR SPRING

REQUIREMENT
WITH UNIT IN STOP
CONDITION
MIN. 32 OZS.
MAX. 42 OZS.
TO PULL SPRING TO INSTALLED
LENGTH.

PRINT HAMMER

PRINTING LATCH

PRINTING LATCH SPRING

(LEFT SIDE VIEW)

LOCK NUT

PRINTING LATCH SPRING

REQUIREMENT
WITH UNIT IN IDLE
CONDITION
MIN. 5 OZS.
MAX. 7 OZS.
TO PULL SPRING TO
POSITION LENGTH.

PRINTING TRIP LINK SPRING

REQUIREMENT
MIN. 4 OZS.
MAX. 7 OZS.
TO PULL SPRING TO POSITION LENGTH.
2.55 Typing Mechanism (continued)

To check:
Select "M" code combination (---345--8). Place rocker bail to extreme left, correcting lever should be firmly seated in typewriter rack.

Requirement:
Typewriter aligned so that full character is printed uniformly and 6-1/2 code hole spaces behind its perforated code hole.

To adjust:
Position typewriter with lock nut loosened. Check printing by manually lifting accelerator to latched position and releasing it.

Note:
For best results, it may be necessary to make print hammer adjustment and then refine this adjustment.
2.56 Typing Mechanism (continued)

PRINT HAMMER SPRING
REQUIREMENT
WITH UNIT IN STOP CONDITION
MIN. 1 OZ. ------ MAX. 3 OZS.
PUSH PRINT HAMMER LEVER UNTIL
TOP OF HAMMER HEAD IS LEVEL
WITH TYPE WHEEL.

ACCELERATOR

SPRING

PRINT HAMMER LEVER

HAMMER HEAD

TYPE WHEEL

PRINTING BETWEEN PERFORATED
FEED HOLES
REQUIREMENT
CLEAR PRINTING BETWEEN
PERFORATED FEED HOLES.
MIN. 0.030 INCH ------ MAX. 0.040 INCH
FROM PIN POINT OF FEED WHEEL TO
SIDE OF PRINT HAMMER.

TO ADJUST
POSITION ECCENTRIC STUD WITH
LOCK NUT LOOSENED. REPEAT
PROCEDURE IF NECESSARY.

NOTE
IT MAY BE NECESSARY TO
REMAKE TYPE WHEEL
ADJUSTMENT.
 FEED PAWL SPRING
REQUIREMENT
WITH ROCKE Bail TO EXTREME RIGHT:
MIN. 4 OZS. --- MAX. 6 OZS.
TO PULL FEED PAWL SPRING TO INSTALLED LENGTH.

RATCHET WHEEL TORQUE SPRING
REQUIREMENT
MIN. 1 OZS. --- MAX. 3 OZS.
APPLIED TANGENTIALLY TO THE RATCHET WHEEL TO START IT TO ROTATE.

DRIVE ARM ADJUSTMENT SCREW

DRIVE ARM
TO CHECK
POSITION ROCKE Bail TO EXTREME LEFT.
HOLD THE RIBBON REVERSING ARM UNDER LOWER
REVERSING EXTENSION OF FEED PAWL.
REQUIREMENT
(1) CLEARANCE BETWEEN BLOCKING EDGE OF
RIBBON REVERSE ARM AND REVERSING
EXTENSION OF FEED PAWL:
MIN. SOME
(2) CLEARANCE SHALL NOT BE SO GREAT AS
TO ALLOW FEED PAWL TO FEED MORE
THAN TWO TEETH AT A TIME.
(3) FEED PAWL DETAINED IN BOTH ITS RIGHT
AND LEFT POSITION.
TO ADJUST
POSITION DRIVE ARM ADJUSTABLE EXTENSION
LEVER WITH ITS MOUNTING SCREW LOOSENED.
2.58 Typing Mechanism (continued)

DRIVE ARM SPRING
REQUIREMENT
WITH ROCKER BAIL TO EXTREME RIGHT
MIN. 9 OZS. — MAX. 14 OZS.
TO PULL DRIVE ARM SPRING TO INSTALLED LENGTH.

DETENT SPRING
REQUIREMENT
WITH REVERSING ARM IN ITS EXTREME
RIGHT OR LEFT POSITION;
MIN. 2 OZS. — MAX. 4 OZS.
TO PULL DETENT SPRING TO ITS INSTALLED LENGTH.
3. VARIABLE FEATURES

REMOTE CONTROL NON-INTERFERING "RUBOUT" TAPE FEED-OUT MECHANISM

3.01 Remote Control Non-Interfering RUBOUT Tape Feed-Out Mechanism

(A) ARMATURE HINGE REQUIREMENT
With armature manually operated, it shall be flush against pole face and magnet bracket extension. To adjust loosen armature hinge bracket mounting screws, position armature and tighten screws.

(B) DRIVE BAIL SPRING REQUIREMENT
Rotate main shaft until drive bail is on high part of its cam. Min. 20 ozs. --- Max. 28 ozs. To start the drive bail moving.

(C) MOUNTING PLATE REQUIREMENT
With armature in unoperated position, rotate main shaft until drive bail is on high part of its cam. Clearance between the blocking bail and drive bail surface. Min. 0.006 inch Max. 0.015 inch. To adjust position blocking bail with mounting plate clamp screw and spring post friction tight.

(D) MAGNET ASSEMBLY REQUIREMENT
With armature held in operated position, rotate main shaft until drive bail roller is on high part of its cam. Clearance between blocking bail and right edge of drive bail. Min. 0.005 inch Max. 0.015 inch. To adjust position magnet assembly, armature held against magnet pole piece with magnet bracket mounting screws friction tight.
3.02 Remote Control Non-Interfering
RUBOUT Tape Feed-Out Mechanism (continued)

(A) BLOCKING LATCH TORSION SPRING
REQUIREMENT
WITH ARMATURE IN UNOPERATED POSITION AND
DRIVE BAIL ROLLER ON HIGH PART OF ITS CAM.
MIN. 15 OZ. — MAX. 40 OZ.
TO START BLOCKING LATCH MOVING.

(B) ARMATURE BACKSTOP
REQUIREMENT
WITH ARMATURE IN UNOPERATED POSITION,
ROTATE MAIN SHAFT UNTIL DRIVE BAIL ROLLER
IS ON HIGH PART OF ITS CAM.
BLOCKING BAIL SHALL FULLY ENGAGE THE
DRIVE BAIL.
TO ADJUST
WITH THE ARMATURE BACKSTOP MOUNTING
SCREWS FRICITION TIGHT, POSITION BY
MEANS OF PRY POINT.

(C) NON-REPEAT LEVER SPRING
REQUIREMENT
WITH ARMATURE IN UNOPERATED POSITION AND
DRIVE BAIL ROLLER ON HIGH PART OF ITS CAM
MIN. 6 OZS. — MAX. 9 OZS.
TO PULL SPRING TO INSTALLED LENGTH.

(D) BLOCKING BAIL SPRING
REQUIREMENT
WITH ARMATURE IN UNOPERATED POSITION AND
DRIVE BAIL ROLLER ON HIGH PART OF ITS CAM.
MIN. 3 OZS. — MAX. 5 OZS.
TO PULL SPRING TO INSTALLED LENGTH.

(E) RELEASE LEVER
REQUIREMENT
WITH ARMATURE IN OPERATED POSITION, ROTATE
MAIN SHAFT UNTIL DRIVE BAIL ROLLER IS IN IN-
DENT OF ITS CAM. CLEARANCE BETWEEN RELEASE
LEVER AND LATCH LEVER.
MIN. 0.010 INCH
MAX. 0.025 INCH
TO ADJUST
WITH CLAMP SCREW FRICITION TIGHT POSITION
RELEASE LEVER.
3.03 Remote Control Non-Interfering
RUBOUT Tape Feed-Out Mechanism (continued)

TO CHECK
TRIP SELECTOR CLUTCH, ROTATE MAIN SHAFT UNTIL RESET CAM FOLLOWER IS ON PEAK OF RESET BAIL CAM, WITH SPRING HOOK, HOLD FRONT RATCHET CHECK PAWL AWAY FROM RELEASE LEVER, REQUIREMENT

MIN. 5 OZS. --- MAX. 7 OZS.
TO START RELEASE LEVER MOVING.

LATCH LEVER

LATCH LEVER SPRING

TO CHECK
TRIP SELECTOR CLUTCH, ROTATE MAIN SHAFT UNTIL RESET CAM FOLLOWER IS ON PEAK OF RESET BAIL CAM, REQUIREMENT

MIN. 2 OZS. --- MAX. 4 OZS.
TO PULL SPRING TO INSTALLED LENGTH.

LATCH LEVER

LATCH LEVER SPRING

TO CHECK
TRIP SELECTOR CLUTCH, ROTATE MAIN SHAFT UNTIL RESET CAM FOLLOWER IS ON PEAK OF RESET BAIL CAM, REQUIREMENT

MIN. 2 OZS. --- MAX. 4 OZS.
TO PULL SPRING TO INSTALLED LENGTH.

LATCH LEVER

LATCH LEVER SPRING

TO CHECK
TRIP SELECTOR CLUTCH, ROTATE MAIN SHAFT UNTIL RESET CAM FOLLOWER IS ON PEAK OF RESET BAIL CAM, REQUIREMENT

MIN. 2 OZS. --- MAX. 4 OZS.
TO PULL SPRING TO INSTALLED LENGTH.

LATCH LEVER

LATCH LEVER SPRING

TO CHECK
TRIP SELECTOR CLUTCH, ROTATE MAIN SHAFT UNTIL RESET CAM FOLLOWER IS ON PEAK OF RESET BAIL CAM, REQUIREMENT

MIN. 2 OZS. --- MAX. 4 OZS.
TO PULL SPRING TO INSTALLED LENGTH.

LATCH LEVER

LATCH LEVER SPRING

TO CHECK
TRIP SELECTOR CLUTCH, ROTATE MAIN SHAFT UNTIL RESET CAM FOLLOWER IS ON PEAK OF RESET BAIL CAM, REQUIREMENT

MIN. 2 OZS. --- MAX. 4 OZS.
TO PULL SPRING TO INSTALLED LENGTH.

LATCH LEVER

LATCH LEVER SPRING

TO CHECK
TRIP SELECTOR CLUTCH, ROTATE MAIN SHAFT UNTIL RESET CAM FOLLOWER IS ON PEAK OF RESET BAIL CAM, REQUIREMENT

MIN. 2 OZS. --- MAX. 4 OZS.
TO PULL SPRING TO INSTALLED LENGTH.

LATCH LEVER

LATCH LEVER SPRING

TO CHECK
TRIP SELECTOR CLUTCH, ROTATE MAIN SHAFT UNTIL RESET CAM FOLLOWER IS ON PEAK OF RESET BAIL CAM, REQUIREMENT

MIN. 2 OZS. --- MAX. 4 OZS.
TO PULL SPRING TO INSTALLED LENGTH.
(C) FEED PAWL AND FRONT CHECK PAWL SPRINGS

REQUIREMENT

WITH UNIT IN FEED OUT CYCLE (SEE "TO CHECK" OF REAR CHECK PAWL ADJUSTMENT BELOW):

MIN. 1 OZ. --- MAX. 3 OZS.
TO PULL EACH SPRING TO INSTALLED LENGTH.

FRONT CHECK PAWL SPRING

REAR CHECK PAWL SPRING

(A) REAR CHECK PAWL

TO CHECK
PLACE UNIT IN FEED OUT CYCLE BY POSITIONING RELEASE LEVER ON LOWER STEP OF LATCH LEVER AND ADVANCING HIGH PART OF TIME DELAY CAM BEYOND TIME DELAY LEVER. POSITION FEED PAWL TO EXTREME LEFT.

REQUIREMENT
MIN. 0.008 INCH
MAX. 0.020 INCH BETWEEN REAR CHECK PAWL AND RATCHET TOOTH.

TO ADJUST
WITH CLAMP SCREW LOOSENED, POSITION REAR CHECK PAWL BY MEANS OF PRY POINT.

NOTE: PROCEED TO RATCHET STOP BLOCK ADJUSTMENT (PARAGRAPH 3.05).
3.05 Remote Control Non-Interfering
RUBOUT Tape Feed-Out Mechanism (continued)

NOTE: SEE REAR CHECK PAWL
ADJUSTMENT (PARAGRAPH 3.04)
BEFORE MAKING THIS ADJUSTMENT.

RATCHET STOP BLOCK
TO CHECK
WITH UNIT IN STOP POSITION, PLACE
RELEASE LEVER ON LOWER STEP OF
LATCH LEVER. PERMIT STOP ON FRONT
RATCHET TO REST AGAINST STOP BLOCK.
ROTATE MAIN SHAFT UNTIL FEED PAWL
IS IN EXTREME RIGHT POSITION.

REQUIREMENT
MIN. 0.002 INCH --- MAX. 0.015 INCH
BETWEEN FRONT CHECK PAWL AND
FRONT RATCHET TOOTH.

TO ADJUST
WITH TWO CLAMP SCREWS LOOSENED
POSITION STOP BLOCK BY MEANS OF
PRY POINT.
(A) TIME DELAY LEVER

(1) TO CHECK:
TRIP SELECTOR CLUTCH AND ROTATE
MAIN SHAFT UNTIL RESET CAM FOLLOWER IS ON HIGH PART OF RESET BAIL CAM.
REQUIREMENT
MIN. 0.040 INCH — MAX. 0.060 INCH
CLEARANCE BETWEEN TIME DELAY LEVER AND HIGH PART OF TIME DELAY CAM.

(2) REQUIREMENT
WITH UNIT IN STOP POSITION:
MIN. SOME
CLEARANCE BETWEEN TIME DELAY LEVER AND HIGH PART OF TIME DELAY CAM.
TO ADJUST
WITH CLAMP SCREW LOOSENED, POSITION ECCENTRIC BUSHING.

(C) RATCHET RETURN SPRING
REQUIREMENT
WITH UNIT IN STOP POSITION:
MIN. 5 OZS. — MAX. 7 OZS.
TO PULL SPRING TO INSTALLED LENGTH.

(B) TIME DELAY LEVER SPRING
REQUIREMENT
WITH UNIT IN STOP POSITION:
MIN. 2 OZS. — MAX. 3 OZS.
TO PULL SPRING TO INSTALLED LENGTH.

RESET CAM FOLLOWER ON HIGH PART OF CAM
3.07 Remote Control Non-Interfering

RUBOUT Tape Feed-Out Mechanism (continued)

(A) RELEASE ARM
 (1) REQUIREMENT
 WITH UNIT IN THE FEED-OUT CYCLE, RATCHETS ADVANCED BEYOND THE TIME
 DELAY, CLEARANCE BETWEEN THE DRIVE ARM AND UPPER SURFACE OF RELEASE ARM
 MIN. 0.010 INCH
 MAX. 0.030 INCH
POSITION CAM SO SURFACES ARE IN LINE.

(2) REQUIREMENT
 WITH UNIT IN STOP POSITION THE SURFACE
 OF THE DRIVE ARM BAIL THAT DOES NOT
ENGAGE THE RELEASE ARM SHALL NOT EXCEED
MAX. 0.015 INCH

TO ADJUST
WITH CLAMP NUT FRICITION TIGHT, POSITION
RELEASE ARM BY MEANS OF ECCENTRIC
SCREW ON TIME DELAY LEVER.

ECCENTRIC SCREW
(CLAMP NUT ON OTHER END)

LATCH LEVER

RELEASE LEVER

LOWER STEP
OF LATCH LEVER

RELEASE ARM

TIME DELAY LEVER

FEED OUT CAM

TIME DELAY CAM

DRIVE ARM

RELEASE ARM SPRING

(B) RELEASE ARM SPRING
 REQUIREMENT
WITH CLUTCHES DISENGAGED
AND DRIVE ARM LATCHED BY
RELEASE ARM:
MIN. 2 OZS. — MAX. 5 OZS.
TO PULL SPRING TO INSTALLED LENGTH.
3.08 Remote Control Non-Interfering
RUBOUT Tape Feed-Out Mechanism (continued)

(A) **DRIVE ARM SPRING**

Requirement

With unit in feed-out cycle and drive arm roller held firmly against its cam indent.

Min. 42 ozs, ---Max. 50 ozs.

To pull spring to installed length.

(B) **PUNCH SLIDE LATCH**

Requirement

Manually set up all spacing code combination (-- ---) in selector.

Place unit in feed out cycle by positioning release lever on lower step of latch lever and advancing high part of time delay cam beyond time delay lever, rotate main shaft until drive arm roller is on low part of feed-out cam. Make sure that reset bail is in lower position.

To check

Min. 0.040 inch --- Max. 0.055 inch between punch slide and punch slide latch at slide where clearance is least.

To adjust

With clamp screw loosened, position drive arm adjusting plate by means of pry point.
3.09 Remote Control Non-Interfering
RUBOUT Tape Feed-Out Mechanism (continued)

(B) ADJUSTING LEVER
TO CHECK
PLACE UNIT IN FEED OUT CYCLE BY
POSITIONING RELEASE LEVER ON
LOWER STEP OF LATCH LEVER AND
ADVANCING HIGH PART OF TIME
DELAY CAM BEYOND TIME DELAY
LEVER. POSITION MAIN SHAFT
SO THAT DRIVE ARM ROLLER IS
ON LOW PART OF CAM.

REQUIREMENT
(1) MIN. 0.010 INCH --- MAX. 0.030 INCH
BETWEEN RELEASE AND MAIN TRIP LEVER.
(2) SOME CLEARANCE BETWEEN
MAIN TRIP LEVER AND DOWNSTOP
BRACKET.

TO ADJUST
LOOSEN THE CLAMP SCREW ON THE ADJUSTING
LEVER AND POSITION MAKING SURE THE AD-
JUSTING LEVER RIDES FULLY ON THE SLIDE TRIP
LEVER. TIGHTEN SCREW.

(A) TRIP CAM FOLLOWER
REQUIREMENT
WITH FOLLOWER LEVER ON HIGH
PART OF TRIP CAM:
(1) MIN. 0.010 INCH --- MAX. 0.030 INCH
BETWEEN RELEASE AND MAIN TRIP
LEVER.
(2) SOME CLEARANCE BETWEEN
MAIN TRIP LEVER AND DOWNSTOP
BRACKET.

TO ADJUST
WITH LOCK NUT LOOSENED, POSITION
ADJUSTING ARM BY MEANS OF Pry
POINT.
RESET BAIL TRIP LEVER

(1) TO CHECK
SELECT RUBOUT CODE COMBINATION (12345678). ROTATE MAIN SHAFT UNTIL FUNCTION CLUTCH TRIPS, POSITION PUNCH SLIDES AGAINST DOWNSLOT. TRIP CAM FOLLOWER ON HIGH PART OF CAM.

REQUIREMENT
MIN. 0.008 INCH --- MAX. 0.020 INCH BETWEEN PUNCH SLIDE AND RESET BAIL.

(2) REQUIREMENT
WITH CLUTCHES FULLY DISENGAGED AND LATCHED, RESET BAIL SHOULD FULLY ENGAGE NOTCHES IN PUNCH SLIDES.

TO ADJUST
WITH CLAMP SCREW LOOSENED, POSITION RESET BAIL TRIP LEVER BY MEANS OF ADJUSTING SLOT.
3.11 Remote Control Non-Interfering
RUBOUT Tape Feed-Out Mechanism (continued)

TAPE LENGTH ADJUSTING PLATE
NOTE
AMOUNT OF TAPE FED OUT CAN BE SET FOR ANY LENGTH UP TO 18 INCHES.

(1) REQUIREMENT
PLACE UNIT IN FEED OUT CYCLE BY POSITIONING RELEASE LEVER ON LOWER STEP OF LATCH LEVER. MANUALLY ADVANCE RATCHETS SO THAT FRONT RATCHET IS IN THE TOOTH PRECEDING TRIP OFF. ROTATE MAIN SHAFT UNTIL FEED PAWL IS IN THE EXTREME LEFT POSITION. CLEARANCE BETWEEN ADJUSTING PLATE AND LATCH LEVER PROJECTION:
MIN. 0.002 INCH
MAX. 0.020 INCH

(2) REQUIREMENT
WHEN OPERATING UNDER POWER, UNIT SHOULD FEED OUT CORRECT LENGTH OF TAPE.

TO ADJUST
WITH SPRING POST FRICTION TIGHT, POSITION ADJUSTING PLATE.
3.12 Remote Control Non-Interfering
RUBOUT Tape Feed-Out Mechanism (continued)

(B) RESET BAIL LATCH SPRING
REQUIREMENT
WITH UNIT IN STOP CONDITION
MIN. 1 OZ. ---- MAX. 3 OZS.
TO START RESET BAIL LATCH MOVING.

(A) RESET BAIL LATCH
TO CHECK
(VERTICAL CLEARANCE) SELECT RUBOUT
CODE COMBINATION (12345678). RO-
TATE MAIN SHAFT UNTIL FUNCTION
CLUTCH TRIPS AND PUNCH SLIDES ARE
TO EXTREME LEFT, MANUALLY SET UP
ALL SPACING CODE COMBINATION
(--------) IN SELECTOR. ROTATE MAIN
SHAFT UNTIL PUNCH SLIDES ARE
JUST LATCHED.

(1) REQUIREMENT
MIN. 0.008 INCH ---- MAX. 0.020 INCH
BETWEEN RESET BAIL AND RESET
BAIL LATCH.
TO ADJUST
WITH MOUNTING SCREWS LOOSENED,
POSITION MOUNTING PLATE BY MEANS
OF PRY POINTS.

(2) REQUIREMENT (HORIZONTAL CLEARANCE)
WITH CLUTCHES DISENGAGED,
MIN. 0.005 INCH ---- MAX. 0.020 INCH
BETWEEN RESET BAIL AND RESET BAIL
LATCH.
TO ADJUST
POSITION RESET BAIL SO THAT APPROX.
HALF ITS THICKNESS IS BELOW TOP
SURFACE OF ITS LATCH. WITH CLAMP
SCREW LOOSENED, POSITION RESET
BAIL LATCH BY MEANS OF PRY POINT.

(3) TO CHECK
SELECT RUBOUT CODE COMBINATION (12345678).
ROTATE MAIN SHAFT UNTIL FUNCTION CLUTCH
TRIPS, MANUALLY SET UP ALL SPACING CODE
COMBINATION (--------). ROTATE MAIN
SHAFT TO STOP POSITION.
REQUIREMENT
PUNCH SLIDES LATCHED BY PUNCH SLIDE LATCHES.
TO ADJUST
REFINE (1) AND (2) ABOVE.

(C) RESET BAIL TRIP LEVER SPRING
TO CHECK
DISENGAGE BOTH CLUTCHES. TRIP FUNCTION
CLUTCH BY PIVOTING MAIN TRIP LEVER
COUNTERCLOCKWISE, HOLD RESET BAIL
TRIP LEVER UP AGAINST RESET BAIL.
REQUIREMENT
MIN. 18 OZS. ---- MAX. 24 OZS,
TO PULL SPRING TO INSTALLED LENGTH.
3.13 End of Feed-Out Contacts for Non-Interfering RUBOUT Tape Feed-Out Mechanism.

(A) CONTACT SWINGER --- PRELIMINARY REQUIREMENT
MIN. 25 GRAMS --- MAX. 40 GRAMS
TO OPEN NORMALLY CLOSED CONTACT.

TO ADJUST
BEND SWINGER.

(B) CONTACT SPRING GAP --- PRELIMINARY REQUIREMENT
NORMALLY OPEN CONTACT GAP
MIN. 0.012 INCH --- MAX. 0.020 INCH.

TO ADJUST
BEND CONTACT SPRING.

(C) CONTACT ASSEMBLY
REQUIREMENT
INSULATOR BUTTON ON SWINGER SHALL BE CENTRALLY LOCATED IN BAIL EXTENSION YOKE.

TO ADJUST
WITH MOUNTING SCREWS LOOSENED
POSITION CONTACT ASSEMBLY.

LATCH LEVER SPRING
REQUIREMENT
TRIP SELECTOR AND ROTATE MAIN SHAFT UNTIL STRIPPER CAM FOLLOWER LIES ON HIGH PART
OF ITS CAM
MIN. 7 OZS. --- MAX. 10 OZS.
TO STRETCH SPRING TO ITS INSTALLED LENGTH.
3.14 End of Feed-Out Contacts for Non-Interfering RUBOUT Tape Feed-Out Mechanism (continued)

NOTE: SEE PRELIMINARY CONTACT ADJUSTMENTS, PARAGRAPH 3.13,

(E) TAPE LENGTH ADJUSTING PLATE

(1) REQUIREMENT
WITH UNIT IN STOP POSITION AND RELEASE LEVER ON LOWER STEP OF LATCH LEVER, MANUALLY ADVANCE RATCHETS SO THAT FEED PAWL IS IN THE FRONT TOOTH PRECEDING TRIP OFF (NOT IN DEEP TOOTH OF REAR RATCHET). HOLD BAIL LIGHTLY AGAINST LATCH LEVER EXTENSION.
MIN 0.002 INCH --- MAX 0.020 INCH CLEARANCE BETWEEN ADJUSTING PLATE AND BAIL.

(2) REQUIREMENT
WHEN OPERATING UNDER POWER, UNIT SHOULD FEED-OUT CORRECT LENGTH OF TAPE.

TO ADJUST
POSITION ADJUSTING PLATE WITH SPRING POST LOOSEned.

FEED PAWL IN EXTREME LEFT POSITION AND ADJUSTING PLATE IN DOTTED POSITION FOR ADJUSTMENT (B) ONLY.

(D) CONTACT ASSEMBLY MOUNTING BRACKET

REQUIREMENTS
UNIT IN STOP POSITION
(1) WHEN NORMALLY OPEN CONTACTS ARE USED AND RELEASE LEVER IS ABOVE LOWER STEP OF LATCH LEVER
MIN. 0.005 INCH
OVERTRAVEL OF SWINGER AFTER IT MAKES CONTACT WITH NORMALLY OPEN CONTACT.
(2) WHEN NORMALLY CLOSED CONTACTS ARE USED AND RELEASE LEVER IS ON UPPER STEP OF LATCH LEVER, THE NORMALLY CLOSED CONTACTS SHOULD BE CLOSED AND BAIL SHOULD NOT EXERT ANY FORCE AGAINST SWINGER INSULATOR BUTTON.

TO ADJUST
POSITION CONTACTS WITH BRACKET MOUNTING SCREWS LOOSEned.
3.15 Power Drive Backspace Mechanism

(A) BACKSPACE RATCHET
REQUIREMENT
TEETH OF BACKSPACE AND FEED WHEEL RATCHETS TO LINE UP (VISUAL ALIGNMENT) FEED WHEEL RATCHET TO BE IN DETENTED POSITION.
TO ADJUST
WITH ADJUSTING CLAMP MOUNTING SCREW FRICITION TIGHT, ROTATE BACKSPACE RATCHET TO MEET THE REQUIREMENT.

(B) BACKSPACE PAWL CLEARANCE
(1) REQUIREMENT --- PRELIMINARY
WITH BACKSPACE BELL CRANK ROTATED CLOCKWISE, THE BACKSPACE PAWL SHALL MISS THE FIRST TOOTH BY A CLEARANCE OF:
MIN. 0.003 INCH
MAX. 0.010 INCH
AT POINT OF LEAST CLEARANCE.

(2) REQUIREMENT --- FINAL
THE BACKSPACE PAWL SHALL MISS THE FIRST TOOTH AND ENGAGE THE SECOND TOOTH BY AT LEAST 1/2 OF THE RIGHT ENGAGING SURFACE OF THE BACKSPACE PAWL (AS GAUGED BY EYE) WHEN BACKSPACE PAWL FIRST CONTACTS THE RATCHET TOOTH.
TO ADJUST
TAKE UP ALL ROTATIONAL PLAY OF BACKSPACE RATCHET IN RELATION TO FEED RATCHET BY ROTATING IT CLOCKWISE AT SAME TIME ROTATE BELL CRANK CLOCKWISE.. WITH MOUNTING SCREW FRICITION TIGHT ROTATE ECCENTRIC POST TO MEET THE REQUIREMENTS.

FINAL MINIMUM ENGAGEMENT:
1/2 OF SURFACE WITH SECOND RATCHET TOOTH AT FIRST POINT OF CONTACT.
3.16 Power Drive Backspace Mechanism (continued)

(A) **FEED PAWL DISABLING REQUIREMENT**

WHEN BELL CRANK IS IN OPERATED POSITION HIGH SIDE OF FEED PAWL DISABLING ECCENTRIC SHOULD BE IN UPPERMOST POSITION.

TO ADJUST

WITH NUT POST FRICTION TIGHT, ROTATE ECCENTRIC WITH A 0.060" ALLEN WRENCH.

(B) **ARMATURE HINGE (EARLY DESIGN) REQUIREMENT**

WITH ARMATURE BAIL SPRING REMOVED, ARMATURE HELD AGAINST THE POLE FACE, TAKE UP PLAY AT HINGE IN A DOWNWARD DIRECTION. CLEARANCE BETWEEN THE ARMATURE AND MAGNET BRACKET.

MIN. SOME

MAX. 0.004 INCH

TO ADJUST

WITH HINGE MOUNTING SCREWS FRICTION TIGHT, POSITION HINGE. ARMATURE SHOULD TOUCH FRONT AND REAR OF POLE FACE. TIGHTEN SCREWS AND RECHECK ADJUSTMENT.

NOTE: FOR DC OPERATION, THE ARMATURE SHALL BE POSITIONED SO THAT THE SIDE MARKED "C" FACES POLE FACE OF MAGNET CORE.

FOR AC OPERATION, UNMARKED SIDE FACES POLE.

NOTE: FOR LATEST DESIGN ARMATURE ADJUSTMENTS SEE PARAGRAPH 3.19.
3.17 Power Drive Backspace Mechanism (continued)

(A) ARMATURE UPSTOP
REQUIREMENT
ARMATURE IN UNOPERATED POSITION.
GAP BETWEEN ARMATURE AND POLE
FACE:
MIN. 0.025 INCH
MAX. 0.030 INCH
AT CLOSEST POINT.
TO ADJUST
ROTATE ECCENTRIC WITH MOUNTING
NUT LOOSENED. KEEP HIGH PART OF
ECCENTRIC TO LEFT.

(B) DRIVE LINK
REQUIREMENT
WITH HIGH PART OF ECCENTRIC ARM IN LEFT
HAND POSITION, ARMATURE AGAINST POLE
FACE TO ALLOW DRIVE ARM LATCH LEVER TO
REST AGAINST ECCENTRIC LINK. CLEARANCE
BETWEEN STEP ON ECCENTRIC ARM AND
LATCH LEVER WITH PLAY TAKEN UP TO MAKE
MIN. 0.040 INCH
MAX. 0.045 INCH
TO ADJUST
WITH DRIVE ARM SCREW FRICITION TIGHT,
POSITION ADJUSTING LINK.

(C) LATCH EXTENSION
REQUIREMENT
WITH BACKSPACE MECHANISM IN UNOPERATED POSITION,
ECCENTRIC HIGH PART OF THE LEFT, ARMATURE AGAINST
THE POLE FACE, LATCH RESTING ON THE ECCENTRIC ARM
NOTCH. CLEARANCE BETWEEN TOP OF ARMATURE EX-
TENSION AND LATCH EXTENSION.
MIN. 0.005 INCH
MAX. 0.020 INCH
TO ADJUST
WITH MAGNET MOUNTING SCREWS FRICITION TIGHT,
SWING MAGNET LEFT OR RIGHT.
(A) LATCH EXTENSION REQUIREMENT
BACKSPACE MECHANISM IN UNOPERATED POSITION, ARMATURE OFF POLE FACE (DE-ENERGIZED). LATCH EXTENSION AGAINST END OF ARMATURE, ECCENTRIC ARM AT ITS CLOSEST POINT TO UNDERSIDE OF LATCH LEVER. CLEARANCE BETWEEN LATCH AND ECCENTRIC ARM WITH PLAY IN THE LINKS TAKEN UP TO MAKE THE CLEARANCE A MINIMUM SHOULD BE:
MIN. 0.005 INCH
MAX. 0.025 INCH
TO ADJUST WITH LATCH EXTENSION SCREW FRICITION TIGHT, POSITION LATCH.

(B) NON-REPEAT ARM REQUIREMENT
BACKSPACE MECHANISM IN UNOPERATED POSITION. CLEARANCE BETWEEN TOP SURFACE OF NON-REPEAT ARM AND LOWEST POINT OF LATCH EXTENSION:
MIN. 0.002 INCH
MAX. 0.010 INCH
TO ADJUST WITH ARM SCREW FRICITION TIGHT, POSITION ADJUSTING ARM.
NOTE: FOR EARLY DESIGN ADJUSTABLE MAGNET ASSEMBLY SEE PARAGRAPH 3.16.

(A) MAGNET POSITION (LATEST DESIGN)

REQUIREMENT
MAGNET DEENERGIZED, ARMATURE EXTENSION SHOULD ENGAGE LATCH BY APPROXIMATELY ITS FULL THICKNESS.

TO ADJUST POSITION MAGNET MOUNTING BRACKET BY LOOSENING TWO MOUNTING SCREWS.

(B) FINAL POWER ADJUSTMENT (LATEST DESIGN)

REQUIREMENT
UNIT OPERATING UNDER POWER, TAPE IN PUNCH, PLACE FEED WHEEL SHAFT OIL HOLE IN UPPERMOST POSITION, AND OPERATE BACKSPACE MECHANISM ONCE. BACKSPACE RATCHET WHEEL SHALL BE BACKED ONE SPACE AND FEED WHEEL RATCHET TO A FULLY DETENTED POSITION. RECHECK EVERY 90° FOR ONE FULL REVOLUTION OF THE BACKSPACE RATCHET WHEEL.

NOTE: A FULL DETENTED POSITION IS WHEN WITH THE DETENT ROLLER IN CONTACT WITH THE RATCHET WHEEL, THE PUNCH UNIT FEED PAWL ENGAGES THE FIRST TOOTH BELOW THE HORIZONTAL CENTER LINE OF THE RATCHET FEED WHEEL WITH NO PERCEPTIBLE CLEARANCE.

TO ADJUST LOOSEN ARM ADJUSTING SCREW AND MOVE ADJUSTING PLATE.
3.20 Power Drive Backspace Mechanism (continued)

(A) Feed Pawl Spring Requirement
Backspace mechanism in unoperated position.
Min. 4 OZS.
Max. 6 OZS.
To start feed pawl moving.

(B) Bell Crank Spring Requirement
Min. 9 OZS.
Max. 12 OZS.
To pull spring to installed length.

(C) Armature Latch Spring Requirement
Min. 1 OZS.
Max. 2-1/4 OZS.
To pull armature latch spring to installed length.

(D) Armature Bail Spring Requirement
With armature latch spring unhinged:
Min. 3-1/2 OZS.
Max. 6-1/2 OZS.
To start armature moving.
3.21 Print Suppression Link

A. Print Suppression Link

Requirement
Function clutch tripped and main shaft rotated until print hammer trip lever just touches print release latch. There shall be:
- Min. 0.030 inch
- Max. 0.040 inch

Clearance between the upper surface of the print suppression link and the lower surface of the print hammer accelerator to adjust.
Position the print suppression link all the way to the rear of the slots on the ribbon carrier. Position link in vertical direction with mounting screws loosened to meet requirement.

Note: Refer to Paragraph 2 for preliminary adjustments in common with ribbon shift adjustments in all units.
CONTROL LEVER (MANUAL)

REQUIREMENT
(1) THERE SHALL BE A CLEARANCE OF
MIN. 0.015 INCH
BETWEEN THE PRINT SUPPRESS LEVER AND
THE PRINT HAMMER WHEN THE LEVER
EXTENSION IS IN THE PRINT POSITION
(DOWN).

(2) WHEN THE LEVER EXTENSION IS IN THE
NON-PRINT POSITION (UP), THE BLOCK-
ING EXTENSION SHOULD EXTEND ACROSS
THE FULL THICKNESS OF THE PRINT HAMMER
WITH A CLEARANCE OF
MIN. 0.015 INCH
AT THE SIDE OF THE PRINT HAMMER.

TO ADJUST
LOOSE THE ECCENTRIC BUSHING MOUNTING
NUT AND POSITION THE BUSHING UNTIL THE
REQUIREMENTS ARE MET. THE HIGH PART OF THE
ECCENTRIC SHOULD BE DOWN AND TO THE RIGHT
AS VIEWED FROM THE REAR OF THE UNIT.

LEVER SHOULD EXTEND ACROSS
FULL THICKNESS OF PRINT HAMMER.