<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. GENERAL</td>
<td>2</td>
</tr>
<tr>
<td>2. BASIC UNIT</td>
<td>4</td>
</tr>
</tbody>
</table>

Function Mechanism

- Adjusting arm spring (early design) .. 18
- Adjusting arm torsion spring (latest design) 20
- Cam follower roller .. 19
- Cam follower roller alignment ... 19
- Clutch shoe lever ... 5
- Clutch shoe lever spring ... 6
- Follower lever ... 18
- Function clutch drum end play .. 5
- Function clutch latch lever spring .. 34
- Function clutch release spring ... 31
- Function clutch trip lever ... 17
- Main trip lever spring (early design) 18
- Main trip lever spring (latest design) 18
- Release downstop bracket ... 31
- Reset arm .. 17

Punch Mechanism

- Detent lever spring ... 27
- Feed pawl spring ... 26
- Feed pawl spring ... 27
- Perforator drive link spring .. 22
- Perforator position (final) .. 24
- Perforator position (preliminary) .. 21
- Punch slide downstop position .. 23
- Punch slide latching springs .. 23
- Punch slide reset bail .. 26
- Punch slide spring .. 23
- Reset bail trip lever ... 25
- Tape guide assembly spring .. 28
- Tape guide spring ... 28
- Toggle bail eccentric (preliminary) ... 22
- Toggle operating arm ... 22

Ribbon Shift and Print Suppression Mechanism

- Armature air gap ... 51
- Armature downstop .. 51
- Armature spring .. 51
- Armature upstop ... 52
- Ribbon carrier ... 50
- Ribbon carrier spring ... 50
- Ribbon shift and print suppression contacts 37
- Ribbon shift and print suppression contact position 38

Selector Mechanism

- Clutch shoe lever .. 5
- Clutch shoe lever spring ... 6
- Clutch shoe spring .. 6
- Marking lock lever spring ... 9
- Oil shield ... 16
- Push lever reset bail spring .. 13
- Range finder knob phasing ... 14
- Selector armature ... 7
- Selector armature downstop bracket 7
- Selector armature spring ... 11
- Selector armature spring (final) ... 10
- Selector armature spring (preliminary) 10
- Selector cam lubricator ... 16
- Selector clutch drum end play ... 12
- Selector clutch latch lever spring ... 13
- Selector clutch stop arm ... 14
- Selector lever spring .. 12
- Selector magnet bracket ... 8
- Selector push lever spring ... 12
- Selector receiving margin ... 15
- Spacing lock lever spring ... 13
- Start lever spring ... 15

Tape Feed Mechanism

- Feed wheel .. 30
- Tape guide ... 30
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typing Mechanism</td>
<td></td>
</tr>
<tr>
<td>Accelerator spring</td>
<td>53</td>
</tr>
<tr>
<td>Axial corrector (non-yielding)</td>
<td>43</td>
</tr>
<tr>
<td>Axial corrector (yielding)</td>
<td>44</td>
</tr>
<tr>
<td>Axial output rack guide roller</td>
<td>46</td>
</tr>
<tr>
<td>Axial sector alignment</td>
<td>45</td>
</tr>
<tr>
<td>Bell crank springs 1 to 5</td>
<td>32</td>
</tr>
<tr>
<td>Bell crank springs 6 and 7</td>
<td>33</td>
</tr>
<tr>
<td>Bell crank spring 8</td>
<td>32</td>
</tr>
<tr>
<td>Correcting drive link</td>
<td>47</td>
</tr>
<tr>
<td>Correcting drive link (yielding) extension spring tension</td>
<td>44</td>
</tr>
<tr>
<td>Correcting drive link spring</td>
<td>42</td>
</tr>
<tr>
<td>Detent spring</td>
<td>57</td>
</tr>
<tr>
<td>Drive arm</td>
<td>56</td>
</tr>
<tr>
<td>Drive arm spring</td>
<td>57</td>
</tr>
<tr>
<td>Eccentric shaft detent lever springs</td>
<td>45</td>
</tr>
<tr>
<td>Feed pawl spring</td>
<td>56</td>
</tr>
<tr>
<td>Function blade springs</td>
<td>42</td>
</tr>
<tr>
<td>Function box</td>
<td>35</td>
</tr>
<tr>
<td>Idler gear eccentric shaft</td>
<td>47</td>
</tr>
<tr>
<td>Lifter arm</td>
<td>39</td>
</tr>
<tr>
<td>Lifter arm eccentric screw</td>
<td>39</td>
</tr>
<tr>
<td>Lifter spring</td>
<td>42</td>
</tr>
<tr>
<td>Lifter toggle link spring</td>
<td>42</td>
</tr>
<tr>
<td>Oscillating drive link</td>
<td>43</td>
</tr>
<tr>
<td>Print hammer spring</td>
<td>54</td>
</tr>
<tr>
<td>Printing latch spring</td>
<td>53</td>
</tr>
<tr>
<td>Printing trip link</td>
<td>53</td>
</tr>
<tr>
<td>Printing trip link spring</td>
<td>53</td>
</tr>
<tr>
<td>Pulse beam spring no. 5</td>
<td>29</td>
</tr>
<tr>
<td>Pulse beam spring no. 7</td>
<td>29</td>
</tr>
<tr>
<td>Push bar guide bracket</td>
<td>46</td>
</tr>
<tr>
<td>Push bar operating blade (final)</td>
<td>33</td>
</tr>
<tr>
<td>Push bar operating blade (preliminary)</td>
<td>32</td>
</tr>
<tr>
<td>Ratchet wheel torque spring</td>
<td>56</td>
</tr>
<tr>
<td>Rocker bail pilot stud</td>
<td>34</td>
</tr>
<tr>
<td>Rotary correcting lever</td>
<td>48</td>
</tr>
<tr>
<td>Toggle link</td>
<td>40</td>
</tr>
<tr>
<td>Toggle trip arm</td>
<td>41</td>
</tr>
<tr>
<td>Transfer mounting bracket</td>
<td>36</td>
</tr>
<tr>
<td>Tytpewheel</td>
<td>55</td>
</tr>
<tr>
<td>VARIABLE FEATURES</td>
<td>58</td>
</tr>
<tr>
<td>MANUAL INTERFERING RUBOUT TAPE FEED-OUT MECHANISM</td>
<td>58</td>
</tr>
<tr>
<td>Drive arm shaft rear bearing</td>
<td>58</td>
</tr>
<tr>
<td>Trip lever - manually operated</td>
<td>58</td>
</tr>
<tr>
<td>Trip lever spring</td>
<td>58</td>
</tr>
<tr>
<td>PRINT SUPPRESSION MECHANISM</td>
<td>59</td>
</tr>
<tr>
<td>Print suppression link</td>
<td>59</td>
</tr>
</tbody>
</table>

Figure 1 - Typical Tape Printer
(Left Front View)

1. **GENERAL**

1.01 This section is reissued to add engineering changes and incorporate information on the late-design selector and print suppression mechanisms. Arrows in the margins indicate changes and additions.

1.02 Reference to left or right, front or rear and up or down refer to the apparatus in its normal operating position, as viewed from the front with the selector mechanism to the right and the punch mechanism to the left. It is assumed that the elements depicted in illustrations in this section are being viewed from a position in front of the equipment, unless the illustrations are specifically labeled otherwise. In the illustrations, pivot points are shown by circles or ellipses that are solid black to indicate fixed points and cross-hatched to indicate floating points.

1.03 Tools required to make the adjustments and test the spring tensions are listed in the appropriate section. Spring tensions given in this section are indications, not exact values, and should be checked with the correct scale applied in the positions shown in the drawings.

1.04 The unit is in its unoperated, or stop, condition when it is not under power. It is in its idling condition when it is under power...
and clutches are disengaged (steady marking condition of signal line). The unit is in the letters condition when the typewheel rack is in its upper position (the numerals appear on the top half of the typewheel). The unit is in the figures condition when the typewheel rack is in its lower position (the letters appear on the top half of the typewheel).

CAUTION: APPARATUS SHOULD NOT BE SEPARATED FROM ITS PROTECTIVE HOUSING UNLESS POWER IS DISCONNECTED. WHERE OPERATION OF THE EQUIPMENT IS REQUIRED AFTER IT HAS BEEN SEPARATED FROM ITS PROTECTIVE HOUSING, APPROPRIATE PRECAUTIONARY MEASURES SHOULD BE TAKEN TO PREVENT ACCIDENTS.

1.05 When a requirement calls for a clutch to be DISENGAGED, the clutch shoe lever must be fully latched between its trip lever (or stop arm) and latch lever. The main shaft will then turn freely without the clutch shoes dragging. When the clutch is ENGAGED, the shoe lever and cam disk stop lug are moved apart, and the clutch shoes are wedged against the drum so that the clutch turns with the shaft.

Note: If the shaft is turned by hand, the clutch will not fully disengage upon reaching its stop position. Where a procedure calls for disengagement, rotate the clutch to its stop position, apply a screwdriver to the cam disk stop lug and turn the disk in the normal direction of shaft rotation until the latch lever seats in its notch in the disk.

1.06 To manually operate the 35 tape printer proceed as follows:

(a) Attach the armature clip to the selector magnet armature by carefully putting the flat formed end of the armature clip over the top of the armature between the pole pieces and then hooking the projection under the edge of the armature. The spring tension of the armature clip will hold the selector armature in the marking (attracted) position.

(b) While holding the selector magnet attracted by means of the armature clip, manually rotate the main shaft in a counterclockwise direction until all the clutches are brought to their disengaged position.

(c) Fully disengage the clutches in accordance with 1.02, Note.

(d) Release the selector magnet armature momentarily to permit the selector clutch to engage.

(e) Rotate the main shaft slowly until all the push levers have fallen to the left of their selecting levers.

(f) Strip the push levers from their selector levers if they are spacing in the code combination of the character or function that is being selected. Allow the push levers to move to the right. The push levers and selector levers move in succession, starting with the inner lever no. 1, to the outer lever no. 8.

(g) Continue to rotate the main shaft until all operations initiated by the selector action clear through the unit.

1.07 Parts dismantled to facilitate checking or readjustment should be reassembled after the operation is completed. If a part mounted on shims is to be dismantled, the number of shims used at each mounting screw should be noted so that the same shim pile-ups can be replaced when the part is remounted. When parts removed are replaced, related adjustments which may have been affected should be checked.

1.08 Parts that are worn to the extent that they can no longer be made to meet the specified requirements by authorized adjustments or which are worn to the extent that it seems probable that early further wear might cause a loss of adjustment should be replaced by new parts. Springs which do not meet the requirements and for which there are no adjusting procedures should be discarded and replaced by new springs.

1.09 All contact points should meet squarely. Smaller points should fall wholly within the circumference of larger mating points. Points that are the same size should not be out of alignment more than 25 per cent of the point diameter. Avoid sharp kinks or bends in the contact springs.

Note: Keep all electrical contacts free of oil and grease.
1.10 Where a 35 tape printer is used as a component of a receive-only or a send-receive set, it is mounted on a base or keyboard base. Refer to the applicable sections for additional adjustment requirements.

2. BASIC UNIT

2.01 The following figures show the adjusting tolerances, position of parts and spring tensions. The illustrations are arranged so that the adjustments are in the sequence that would be followed if a complete readjustment of the apparatus were being made. In some cases, where an illustration shows interrelated parts, the sequence that should be followed in checking the requirements and making the adjustments is indicated by the letters (A), (B), (C), etc.
2.02 Selector and Function Mechanism

NOTE:
FOR GEAR MESH ADJUSTMENT, REFER TO
APPLICABLE SECTIONS COVERING BASE
OR KEYBOARD MOUNTING FACILITY.

(A) **CLUTCH SHOE LEVER**

NOTE:
THIS ADJUSTMENT SHOULD BE MADE FOR BOTH SELECTING AND
FUNCTION CLUTCHES.

TO CHECK

1. **DISENGAGE CLUTCH.** MEASURE CLEARANCE.
2. **ALIGN HEAD OF CLUTCH DRUM MOUNTING SCREW WITH STOP LUG.** ENGAGE CLUTCH. MANUALLY PRESS SHOE LEVER AND
STOP LUG TOGETHER AND ALLOW TO SNAP APART. MEASURE CLEARANCE.

REQUIREMENT
CLEARANCE BETWEEN SHOE LEVER AND STOP LUG:

- MIN. 0.055 INCH --- MAX. 0.085 INCH

GREATER WHEN CLUTCH ENGAGED (2) THAN WHEN DISENGAGED (1).

TO ADJUST
ENGAGE WRENCH OR SCREWDRIVER WITH LUG ON ADJUSTING DISK.
ROTATE DISK WITH CLAMP SCREWS LOOSENED.

NOTE: AFTER MAKING ADJUSTMENT, DISENGAGE CLUTCH. REMOVE DRUM MOUNTING SCREW. ROTATE DRUM IN NORMAL DIRECTION AND CHECK TO SEE IF IT DRAGS ON SHOE. IF IT DOES
REFINE ADJUSTMENT.

FUNCTION CLUTCH DRUM END PLAY

REQUIREMENT
WITH FUNCTION CLUTCH DISENGAGED:

- MIN. SOME --- MAX. 0.015 INCH

WHEN PLAY IS TAKEN UP TO MAKE CLEARANCE MAX.

TO ADJUST
WITH ITS MOUNTING SCREW LOOSENED,
MOVE DRUM TO EXTREME FRONT POSITION.
TIGHTEN DRUM MOUNTING SCREW,
POSITION COLLAR WITH MOUNTING SCREW LOOSENED.
2.03 Selector and Function Mechanism (Cont.)

NOTE:
THESE SPRING TENSIONS APPLY TO BOTH CLUTCHES.

(A) CLUTCH SHOE LEVER SPRING
TO CHECK ENGAGE CLUTCH. HOLD CAM DISK TO PREVENT ITS TURNING.
REQUIREMENT
MIN. 15 OZS. ------ MAX. 20 OZS.
TO PULL SHOE LEVER IN CONTACT WITH STOP LUG.

(B) CLUTCH SHOE SPRING
NOTE:
IN ORDER TO CHECK THIS SPRING TENSION, IT IS NECESSARY TO REMOVE THE CLUTCH FROM THE MAIN SHAFT. THEREFORE, IT SHOULD NOT BE CHECKED UNLESS THERE IS REASON TO BELIEVE IT WILL NOT MEET ITS REQUIREMENT.

TO CHECK REMOVE CLUTCH FROM DRUM.
REQUIREMENT
MIN. 3 OZS. ------ MAX. 5 OZS.
TO START PRIMARY SHOE MOVING.
2.04 Selector Mechanism

NOTE
TO FACILITATE MAKING THE FOLLOWING ADJUSTMENTS, REMOVE THE RANGE FINDER ASSEMBLY AND SELECTOR MAGNET ASSEMBLY. TO INSURE BETTER OPERATION, PULL A PIECE OF BOND PAPER BETWEEN THE ARMATURE AND THE POLE PIECES TO REMOVE ANY OIL OR FOREIGN MATTER THAT MAY BE PRESENT. MAKE CERTAIN THAT NO LINT OR PIECES OF PAPER REMAIN BETWEEN THE POLE PIECES AND THE ARMATURE.

SELECTOR ARMATURE

NOTE
THESE REQUIREMENTS NEED NOT BE MADE NOR CHECKED IF THE SELECTOR MAGNET BRACKET AND RECEIVING MARGIN REQUIREMENTS ARE MET.

(1) REQUIREMENT
CLEARANCE
MIN. 0.025 INCH
MAX. 0.045 INCH
BETWEEN ARMATURE CLAMP STRIP AND MAGNET BRACKET CASTING.

(2) REQUIREMENT
OUTER EDGE OF ARMATURE SHOULD BE FLUSH WITHIN 0.015 INCH WITH OUTER EDGE OF POLE PIECES.

(3) REQUIREMENT
START LEVER SHALL DROP FREELY INTO ARMATURE EXTENSION SLOT.

TO ADJUST
POSITION ARMATURE SPRING ADJUSTING NUT TO HOLD ARMATURE FIRMLY AGAINST PIVOT EDGE OF CASTING. POSITION ARMATURE WITH MOUNTING SCREWS LOOSENED.

SELECTOR ARMATURE DOWNSTOP BRACKET

REQUIREMENT
REMOVE OIL SHIELD. WITH MAGNET DE-ENERGIZED, LOCK LEVERS ON HIGH PART OF THEIR CAM, AND ARMATURE RESTING AGAINST ITS DOWNSTOP, CLEARANCE BETWEEN END OF ARMATURE AND LEFT EDGE OF LEFT POLE PIECE
MIN. 0.025 INCH MAX. 0.030 INCH.

TO ADJUST
POSITION DOWNSTOP BRACKET WITH MOUNTING SCREW LOOSENED. REPLACE OIL SHIELD AND CHECK OIL SHIELD ADJUSTMENT.
2.05 Selector Mechanism (Cont.)

NOTE: THE APPROPRIATE PRELIMINARY SELECTOR ARMATURE SPRING TENSION REQUIREMENT MUST BE MADE PRIOR TO THIS ADJUSTMENT. SEE 2.06.

(1) REQUIREMENT
SPACING LOCK LEVER ON HIGH PART OF CAM. ARMATURE IN CONTACT WITH POLE PIECE. CLEARANCE BETWEEN END OF ARMATURE EXTENSION AND SHOULDER ON SPACING LOCK LEVER
MIN. 0.020 INCH
MAX. 0.035 INCH

TO ADJUST
LOosen TWO MAGNET BRACKET MOUNTING SCREWS AND ADJUSTING LINK CLAMP SCREW. POSITION MAGNET BRACKET BY MEANS OF ADJUSTING LINK AND TIGHTEN LINK CLAMP SCREW ONLY.

(2) REQUIREMENT
SPACING LOCK LEVER ON HIGH PART OF CAM. ARMATURE IN CONTACT WITH POLE PIECE. SOME CLEARANCE BETWEEN UPPER SURFACE OF ARMATURE EXTENSION AND LOWER SURFACE OF SPACING LOCK LEVER WHEN LOCK LEVER IS HELD DOWNWARD.
MAX. 0.003 INCH

TO ADJUST
POSITION UPPER END OF MAGNET BRACKET. TIGHTEN TWO MAGNET BRACKET MOUNTING SCREWS. RECHECK REQUIREMENT (1).

NOTE
SEE FOLLOWING PAGE FOR REQUIREMENT (3).
2.06 Selector Mechanism (Cont.)

NOTE: SEE PRECEDING PAGE FOR SELECTOR MAGNET BRACKET ADJUSTMENTS (1) AND (2).

SELECTOR MAGNET BRACKET (continued)

(3) REQUIREMENT
MARKING LOCK LEVER ON LOW PART OF CAM. MAGNET ENERGIZED. ARMATURE IN CONTACT WITH LEFT POLE PIECE. SOME CLEARANCE BETWEEN LOWER SURFACE OF ARMATURE EXTENSION AND UPPER SURFACE OF MARKING LOCK LEVER.

TO ADJUST
POSITION UPPER END OF MAGNET BRACKET WITH MOUNTING SCREWS LOOSENED. TIGHTEN MOUNTING SCREWS AND RECHECK (1) AND (2), MARKING LOCK LEVER.

MARKING LOCK LEVER SPRING REQUIREMENT
RUBOUT COMBINATION (12345678) SELECTED. MAIN SHAFT ROTATED UNTIL SELECTOR CLUTCH IS DISENGAGED. PUSH SCALE APPLIED TO LOWER EXTENSION OF LOCK LEVER, MIN. 1-1/2 OZS, MAX. 3 OZS. TO START LEVER MOVING.
SECTION 574-231-700

2.07 Selector Mechanism (Cont.)

SELECTOR ARMATURE SPRING
(FOR UNITS EMPLOYING SELECTOR ARMATURE WITH TWO ANTI-FREEZE BUTTONS ONLY).
REQUIREMENT (PRELIMINARY)
WITH LOCKING LEVERS AND START LEVER ON HIGH PART OF THEIR CAMS, SCALE APPLIED AS NEARLY VERTICAL AS POSSIBLE UNDER END OF ARMATURE EXTENSION. IT SHALL REQUIRE APPROXIMATELY THE FOLLOWING TENSIONS TO MOVE THE REAR ANTI-FREEZE BUTTON AGAINST THE MAGNET CORE:

- 0.060 AMPERE - APPROXIMATELY 3/4 OZ.
- 0.500 AMPERE - APPROXIMATELY 1-1/8 OZS.

TO ADJUST POSITION ADJUSTING NUT.

(SEE SELECTOR RECEIVING MARGIN ADJUSTMENT)

SELECTOR ARMATURE SPRING
REQUIREMENT (FINAL)
WHEN A DISTORTION TEST SET IS AVAILABLE, THE SELECTOR ARMATURE SPRING TENSION SHOULD BE REFINED, IF NECESSARY, TO OBTAIN SATISFACTORY RECEIVING MARGINS. THE FRONT ANTI-FREEZE BUTTON MUST CONTACT THE MAGNET CORE WHEN THE MAGNET COILS ARE ENERGIZED.

(SEE SELECTOR RECEIVING MARGIN ADJUSTMENT)
SELECTOR ARMATURE SPRING
(FOR UNITS EMPLOYING SELECTOR ARMATURE WITH SINGLE ANTI-FREEZE BUTTON ONLY).
REQUIREMENT (PRELIMINARY)
WITH LOCKING LEVERS AND START LEVER ON HIGH PART OF THEIR CAMS, SCALE APPLIED AS NEARLY VERTICAL AS POSSIBLE UNDER END OF ARMATURE EXTENSION. IT SHALL REQUIRE THE FOLLOWING TENSIONS TO MOVE ARMATURE TO MARKING POSITION:

- 0.060 AMPERE - MIN. 2-1/2 OZS. --- MAX. 3 OZS.
- 0.500 AMPERE - MIN. 4-1/2 OZS. --- MAX. 5-1/2 OZS.

NOTE

THIS SPRING CAN BE ADJUSTED FOR MAXIMUM SELECTOR PERFORMANCE ONLY WHEN PRINTER IS CONNECTED TO THE SPECIFIC CIRCUIT OVER WHICH IT IS TO OPERATE UNDER SERVICE CONDITIONS. SINCE THERE ARE SEVERAL OPERATING SPEEDS AND SINCE CIRCUITS VARY WIDELY, IT IS IMPOSSIBLE TO ADJUST SPRING FOR MAXIMUM PERFORMANCE AT THE FACTORY. THE FOREGOING SPRING TENSION REQUIREMENT IS GIVEN TO PERMIT OPERATION PRIOR TO MEASUREMENT OF RECEIVING MARGINS. READJUSTMENT MADE TO OBTAIN SATISFACTORY RECEIVING MARGIN SHOULD NOT BE DISTURBED IN ORDER TO MEET REQUIREMENTS OF THIS ADJUSTMENT.

TO ADJUST
POSITION ADJUSTING NUT.

REQUIREMENT (FINAL)
SEE SELECTOR RECEIVING MARGIN ADJUSTMENT (PARAGRAPH 2.12)
2.09 Selector Mechanism (Cont.)

SELECTOR LEVER

SELECTOR PUSH LEVER SPRING

REQUIREMENT
PUSH LEVER IN SPACING POSITION
MIN. 1 OZ. --- MAX. 2 OZS.
FOR ALL EXCEPT FIRST IN SEQUENCE
MIN. 2 OZS. --- MAX. 3 OZS.
FOR FIRST IN SEQUENCE (COPPER COLORED)
TO MOVE PUSH LEVER FROM SELECTOR LEVER, CHECK EIGHT SPRINGS.

SELECTOR LEVER SPRING

REQUIREMENT
TYING UNIT UPSIDE DOWN.
RESET BAIL ON PEAK OF ITS CAM.
MIN. 1-1/2 OZS.
MAX. 3 OZS.
TO START EACH LEVER MOVING
CHECK EIGHT SPRINGS. IF NECESSARY,
UNHOOK START LEVER SPRING TO CHECK
NO. 4 SELECTOR LEVER SPRING.

CLUTCH DRUM

MOUNTING SCREW

CAM-CLUTCH ASSEMBLY

MAIN SHAFT

SELECTOR CLUTCH DRUM END PLAY

REQUIREMENT
CLUTCH LATCHED IN STOP POSITION. CAM ASSEMBLY SHOULD HAVE SOME END PLAY, NOT MORE THAN 0.010 INCH.

TO ADJUST
POSITION CLUTCH DRUM ON MAIN SHAFT WITH MOUNTING SCREW LOOSENED.
2.10 Selector Mechanism (Cont.)

PUSH LEVER RESET BAIL SPRING REQUIREMENT
- Push lever reset bail on low part of cam. 32 oz. Scale applied to reset bail.
- Min. 4 ozs.
- Max. 8 ozs.
- To move bail from cam.

SELECTOR CLUTCH LATCH LEVER SPRING REQUIREMENT
- Latch resting on low part of its cam disk.
- Min. 2 ozs.
- Max. 3-1/2 ozs.
- To start latch moving.

SPACING LOCK LEVER SPRING REQUIREMENT
- Selector armature released. Spacing lock lever on low part of its cam.
- Spring scale applied to lower end of spacing lock lever.
- Min. 3 ozs.
- Max. 6 ozs.
- To move spacing lock lever from its pivot shaft.
2.11 Selector Mechanism (Cont.)

(A) RANGE FINDER KNOB PHASING

REQUIREMENT
WITH RANGE FINDER KNOB TURNED TO EITHER END OF RACK, ZERO MARK ON SCALE SHOULD BE IN LINE WITH Scribed LINE ON RANGE FINDER PLATE ± 3 POINTS.

TO ADJUST
REMOVE MOUNTING NUT, DIS- ENGAGE KNOB FROM RACK AND POSITION KNOB. RE-ENGAGE KNOB WITH RACK AND REPLACE MOUNTING NUT.

NOTE: REPLACE RANGE FINDER AND SELECTOR MAGNET ASSEMBLY BEFORE CHECKING THESE ADJUSTMENTS

(B) SELECTOR CLUTCH STOP ARM

REQUIREMENT
RANGE SCALE SET AT 60°. SELECTOR CLUTCH DIENGAGED. ARMATURE IN MARKING POSITION. CLUTCH STOP ARM SHOULD ENGAGE CLUTCH SHOE LEVER BY APPROXIMATELY FULL THICKNESS OF STOP ARM.

TO ADJUST
POSITION STOP ARM ON STOP ARM BAIL WITH CLAMP SCREW LOOSENED.
START LEVER SPRING REQUIREMENT
LATCH LEVER SPRING UNHOOKED, STOP ARM BAIL IN INDENT OF ITS CAM. RANGE SCALE SET AT 60°.
MIN. 2-1/2 OZS.
MAX. 4-1/2 OZS.
TO START STOP ARM MOVING.

SELECTOR RECEIVING MARGIN REQUIREMENT (FOR UNITS EMPLOYING ARMATURE WITH ONE ANTI-FREEZE BUTTON)
WHEN A SIGNAL DISTORTION TEST SET IS USED FOR DETERMINING THE RECEIVING MARGINS OF THE SELECTOR, AND WHERE THE CONDITION OF THE COMPONENTS IS EQUIVALENT TO THAT OF NEW EQUIPMENT, THE RANGE AND DISTORTION TOLERANCES BELOW SHOULD BE MET.
REQUIREMENT (FOR UNITS EMPLOYING ARMATURE WITH TWO ANTI-FREEZE BUTTONS)
WHEN A DISTORTION TEST SET IS AVAILABLE, THE SELECTOR ARMATURE SPRING TENSION SHOULD BE REFINED, IF NECESSARY, TO OBTAIN SATISFACTORY RECEIVING MARGINS. THE FRONT ANTI-FREEZE BUTTON MUST CONTACT THE MAGNET CORE WHEN THE MAGNET COILS ARE ENERGIZED.

TO ADJUST: REFINE THE SELECTOR ARMATURE SPRING ADJUSTMENT

SELECTOR RECEIVING MARGIN MINIMUM REQUIREMENTS

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>SPEED</th>
<th>POINTS RANGE</th>
<th>PERCENTAGE OF MARKING AND SPACING BIAS</th>
<th>END DISTORTION TOLERATED WITH SCALE AT BIAS OPTIMUM SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.500 AMP (WINDINGS SERIES)</td>
<td>100 W.P.M.</td>
<td>72 WITH ZERO DISTORTION</td>
<td>38</td>
<td>35</td>
</tr>
</tbody>
</table>
2.13 Selector Mechanism (Cont.)

OIL SHIELD REQUIREMENT

1. Magnet de-energized. Stop arm bail on low part of its cam. Clearance between start lever and oil shield. Min. 0.020 inch

2. Magnet energized. Stop arm bail on high part of its cam. Clearance between end of armature and oil shield. Min. 0.010 inch

To adjust:
Position shield with mounting screw loosened. Make sure oil shield mounting stud is secure before making adjustment.

SELECTOR CAM LUBRICATOR REQUIREMENT

High part of selector lever cams should contact leather wick but should not deflect wick more than 1/32 inch gauged visually.

To adjust:
Position lubricator assembly around lower screw with mounting screws loosened.
2.14 Function Mechanism

(A)
FUNCTION CLUTCH TRIP LEVER
REQUIREMENT
(1) WITH RELEASE RESTING ON MAIN TRIP LEVER (SEE BELOW), FUNCTION CLUTCH TRIP LEVER SHOULD ENGAGE FULL THICKNESS OF SHOE LEVER.
(2) MIN. SOME——MAX. 0.006 INCH END PLAY IN TRIP LEVER.

TO ADJUST
POSITION TRIP LEVER ON ITS SHAFT WITH CLAMP SCREW LOOSENED.

(B)
RESET ARM
TO CHECK
TRIP FUNCTION CLUTCH AND POSITION MAIN SHAFT SO THAT RESET ARM IS HELD IN ITS HIGHEST POSITION BY CAM PIN.

REQUIREMENT
(1) CLEARANCE BETWEEN RELEASE AND MAIN TRIP LEVER:
 MIN. 0.010 INCH——MAX. 0.030 INCH
(2) LATCH LEVER END PLAY:
 MIN. SOME——MAX. 0.010 INCH

TO ADJUST
POSITION RESET ARM WITH CLAMP SCREW LOOSENED.
NOTE: FOR UNITS EQUIPPED WITH AUTOMATIC NON-INTERFERING RUBOUT TAPE FEED-OUT MECHANISM, SUBSTITUTE ADJUSTMENT IN VARIABLE FEATURES, PART 3.

(A) FOLLOWER LEVER REQUIREMENT

WITH FOLLOWER LEVER ON HIGH PART OF CAM:
(1) CLEARANCE BETWEEN RELEASE AND MAIN TRIP LEVER:
 MIN. 0.010 INCH --- MAX. 0.000 INCH
(2) SOME CLEARANCE BETWEEN MAIN TRIP LEVER AND DOWNSLOPE BRACKET.

TO ADJUST BY MEANS OF PRY POINT, POSITION ADJUSTING ARM ON FOLLOWER LEVER WITH LOCK NUT LOOSENED.

(C) MAIN TRIP LEVER SPRING (LATEST DESIGN)

REQUIREMENT
TRIP RESET BAIL TRIP LEVER EXTENSION.
PULLING AT TOP OF LEVER
MIN. 1 OZ. --- MAX. 4 OZS.
TO START LEVER MOVING.

NOTE
IT MAY BE NECESSARY TO REMOVE RIBBON FEED MECHANISM WHEN CHECKING THIS TENSION.

MAIN TRIP LEVER SPRING (EARLY DESIGN)

REQUIREMENT
WITH FOLLOWER LEVER ON HIGH PART OF TRIP CAM:
MIN. 2-1/2 OZS. --- MAX. 4-1/2 OZS.
TO START TRIP LEVER MOVING.

(B) ADJUSTING ARM SPRING REQUIREMENT (EARLY DESIGN)
WITH FOLLOWER LEVER ON HIGH PART OF TRIP CAM AND MAIN TRIP LEVER HELD AWAY FROM ADJUSTING ARM:
MIN. 2-1/2 OZS. --- MAX. 4 OZS.
TO START ADJUSTING LEVER MOVING.
2.16 Function Mechanism (Cont.)

(A) CAM FOLLOWER ROLLER
REQUIREMENT
WITH ROCKER BAIL POSITIONED TO ITS EXTREME LEFT AND UPPER ROLLER IN CONTACT WITH FUNCTION CAM:
MIN. SOME MAX. 0.004 INCH CLEARANCE BETWEEN CAM AND LOWER ROLLER AT POINT OF LEAST CLEARANCE.
TO ADJUST
POSITION LOWER ROLLER MOUNTING SCREW IN ELONGATED SLOT WITH LOCK NUT LOOSENED.

(B) CAM FOLLOWER ROLLER ALIGNMENT
REQUIREMENT
(1) ROCKER BAIL ROLLERS SHOULD ENGAGE FULL THICKNESS OF FUNCTION CAM.
(2) LIFTER ROLLER IN FULL ENGAGEMENT WITH ROCKER BAIL CAMMING SURFACE.
TO ADJUST
POSITION ROCKER BAIL AND GUIDE BRACKET WITH GUIDE BRACKET MOUNTING SCREWS LOOSENED.
Function Mechanism (Cont.)

ADJUSTING ARM TORSION SPRING (LATEST DESIGN)
WITH FOLLOWER LEVER ON LOW PART OF TRIP CAM AND MAIN TRIP LEVER HELD AWAY FROM ADJUSTING ARM
MIN. 1 OZ., --- MAX. 4 OZS.
TO START ADJUSTING LEVER MOVING.
PERFORATOR POSITION (PRELIMINARY)

REQUIREMENT

THE PERFORATOR MECHANISM MOUNTING SCREW BENEATH PUNCH BLOCK AND MOUNTING SCREW AT LOWER EDGE OF PERFORATOR MECHANISM BACKPLATE SHALL BE LOCATED CENTRALLY WITHIN THEIR RESPECTIVE MOUNTING HOLES.

NOTE

THE MOUNTING HOLES ARE OVERSIZE TO FACILITATE USE OF PERFORATOR MECHANISM ON THE TYPING REPERFORATOR TO ADJUST

REMOVE MOUNTING SCREW AT THE LOWER EDGE OF PERFORATOR MECHANISM BACKPLATE, WITH THE TWO REMAINING BACKPLATE MOUNTING SCREWS AND MOUNTING BRACKET SCREW FRICITION TIGHT, POSITION PERFORATOR MECHANISM SO THAT THE TAPPED HOLE OF THE FRAME IS CENTRALLY LOCATED (AS GAUGED BY EYE) WITHIN LARGE BODY HOLE OF PUNCH MECHANISM BACKPLATE. TIGHTEN THE TWO BACKPLATE MOUNTING SCREWS AND RECHECK TO SEE THAT REQUIREMENT IS MET. REPLACE AND TIGHTEN THE LOWER BACKPLATE MOUNTING SCREW. TIGHTEN THE BRACKET MOUNTING SCREW.
Before proceeding with the punch mechanism adjustments, check the rocker bail lower roller adjustment and loosen the punch slide downstop mounting nut and guide mounting stud.

(A) **Toggle Bail Eccentric (Preliminary)**

- Requirement: The indent (high side of eccentric) shall be in its uppermost position.
- To adjust: With the toggle eccentric shaft lock nut friction tight position eccentric.

(B) **Toggle Operating Arm**

1. Requirement: Trip function clutch and rotate main shaft until the upper rocker bail roller is on high part of its cam.
 - Min. 0.002 inch --- Max. 0.005 inch clearance between feed pawl stud and the TP 159926 gauge.

2. Requirement: Clearance between arm and oscillating shaft bearing hub.
 - Min. 0.002 inch --- Max. 0.015 inch with play taken up in direction to make clearance minimum.
 - To adjust: With lock screw friction tight, position toggle bail and operating arm.

Page 22
2.20 Punch Mechanism (Cont.)

PUNCH SLIDE DOWNSTOP POSITION
REQUIREMENT
WITH FUNCTION CLUTCH DISENGAGED AND
LATCHED. PLAY TAKEN UP TOWARD THE TOP,
CLEARANCE BETWEEN BOTH THE FRONT AND
REAR PUNCH SLIDES AND THE DOWNSTOP PLATE
MIN. --- MAX. 0.008 INCH
ALL OTHER PUNCH SLIDES SHALL HAVE SOME
CLEARANCE.

NOTE
TO CHECK FOR SOME CLEARANCE, PLACE
UNIT IN STOP POSITION, TRIP FUNCTION TRIP
MECHANISM AND LATCHES, THE PUNCH SLIDES
SHALL MOVE FULLY TO THEIR OPERATED POSITION.

TO ADJUST
WITH UNIT IN STOP POSITION, LOOSEN THE
TWO DOWNSTOP PLATE MOUNTING LOCK NUTS
AND LOCATE THE DOWNSTOP PLATE TO
MEET THE REQUIREMENT.

PUNCH SLIDE LATCH SPRINGS
TO CHECK
SELECT RUBOUT CODE COMBINATION
(12345678). POSITION ROCKER BAIL TO
EXTREME LEFT. STRIP PUSH LEVERS
FROM SELECTING LEVERS.

REQUIREMENT
FOR ONE-SHAFT UNIT
MIN. 1 OZ.
MAX. 3 OZS.
TO START LATCH MOVING.

FOR TWO-SHAFT UNIT
MIN. 3/4 OZS,
MAX. 2 OZS.
TO START LATCH MOVING.

PUNCH SLIDE SPRING
REQUIREMENT
RUBOUT COMBINATION SET UP, AND
PUNCH SLIDES IN SELECTED POSITION,
MIN. 2-1/4 OZS.
MAX. 3-1/4 OZS.
TO START EACH SLIDE MOVING.
SECTION 574-231-700

2.21 Punch Mechanism (Cont.)

PERFORATOR POSITION----FINAL

(1) TO CHECK

SELECT RUBOUT CODE COMBINATION (12345678). ROTATE UNTIL FUNCTION CLUTCH TRIPS WITH PUNCH LEVERS IN EXTREME LEFT-HAND POSITION.

REQUIREMENT
CLEARANCE BETWEEN PUNCH SLIDE AND PUNCH SLIDE LATCH:
MIN. 0.015 INCH—MAX. 0.045 INCH
AT SLIDE WHERE CLEARANCE IS LEAST.

TO ADJUST
LOosen PERFORATOR MOUNTING SCREWS, ADJUSTING CLAMP LOCK SCREW, ADJUSTING CLAMP PIVOT SCREW AND ANCHOR BRACKET SCREW UNTIL FRICTION TIGHT. PLACE TIP OF SCREW DRIVER BETWEEN SCREW AND RIM OF PRY HOLE AND PRY PERFORATOR UP OR DOWN. TIGHTEN ONLY ADJUSTING CLAMP LOCK SCREW.

(2) TO CHECK

SELECT "L" CODE COMBINATION (134-78). TRIP FUNCTION CLUTCH AND MOVE ROCKER BAIL TO EXTREME LEFT.

REQUIREMENT
CLEARANCE BETWEEN STRIPPER PLATE AND TYPEWHEEL CHARACTER "L":
MIN. 0.075 INCH—MAX. 0.085 INCH

TO ADJUST
REMOVE RIBBON FROM CARRIER, POSITION PERFORATOR WITH TWO MOUNTING SCREWS, ADJUSTING CLAMP PIVOT SCREW AND ANCHOR BRACKET SCREW LOOSENED. CHECK RESET BAIL TRIP LEVER REQUIREMENT FOR SOME CLEARANCE AND ADJUST IF NECESSARY.

--- DIAGRAM ---

PERFORATOR MOUNTING SCREW
TYPEWHEEL CHARACTER "L"
STRIPPER PLATE
ADJUSTING CLAMP LOCK SCREW
ADJUSTING CLAMP PIVOT SCREW
PUNCH SLIDE
PUNCH SLIDE LATCH
ANCHOR BRACKET SCREW
ANCHOR BRACKET SCREW (ALTERNATE POSITION)
2.22 Punch Mechanism (Cont.)

RESET BAIL TRIP LEVER

REQUIREMENT

(1) MANUALLY SELECT AN ALL SPACING COMBINATION. MANUALLY ROTATE RESET BAIL TRIP LEVER. THE PUNCH SLIDE RESET BAIL SHALL TRIP BEFORE THE FUNCTION CLUTCH IS TRIPPED.

(2) WITH FUNCTION AND SELECTOR CLUTCHES DIS- ENGAGED AND LATCHED, THE PUNCH SLIDE RESET BAIL SHALL FULLY ENGAGE THE PUNCH SLIDE LATCHING SURFACE WHEN PLAY IN PARTS IS TAKEN UP IN DIRECTION TO MAKE THE ENGAGEMENT THE LEAST.

TO ADJUST

(1) WITH TRIP LEVER EXTENSION LOCK SCREW FRICITION TIGHT AND DELETE (RUBOUT) COMBINATION SELECTED, POSITION RESET BAIL AGAINST PUNCH SLIDES. TAKE UP PLAY BETWEEN RESET BAIL AND TRIP LEVER IN A COUNTER CLOCKWISE DIRECTION. POSITION TRIP LEVER BY MEANS OF ITS PRY POINT.

(2) RECHECK REQUIREMENT (1) ABOVE AND REFINE ADJUSTMENT IF NECESSARY.
2.23 Punch Mechanism (Cont.)

(A) PUNCH SLIDE RESET BAIL

REQUIREMENT
WITH FUNCTION CLUTCH DISENGAGED:
MIN. 0.005 INCH—MAX. 0.015 INCH
BETWEEN PUNCH SLIDE AND PUNCH SLIDE LATCH.

TO ADJUST
ROTATE THE RESET BAIL ECCENTRIC SHAFT WITH ITS LOCK NUT LOOSEned.
KEEP THE INDENTATION IN THE ECCENTRIC ABOVE CENTER OF SHAFT.

(B) FEED PAWL

REQUIREMENT
FUNCTION CLUTCH DISENGAGED, INDENTATION IN DETENT LEVER ECCENTRIC AT RIGHT ANGLE TO LEVER, DETENT ROLLER IN CONTACT WITH RATCHET WHEEL, HIGH PART OF FEED PAWL ECCENTRIC TO THE RIGHT OF ITS LOCK SCREW:
THE FEED PAWL SHOULD ENGAGE THE FIRST TOOTH BELOW A HORIZONTAL CENTERLINE THROUGH THE RATCHET WHEEL WITH NO PERCEPTIBLE CLEARANCE.

TO ADJUST
ROTATE THE FEED PAWL ECCENTRIC WITH LOCK SCREW LOOSEned.
2.24 Punch Mechanism (Cont.)

FEED PAWL SPRING

REQUIREMENT
FUNCTION CLUTCH DISENGAGED AND LATCHED, DETENT SPRING UNHOOKED FROM TOGGLE BAIL
MIN. 3 OZS.
MAX. 4-1/2 OZS.
TO START THE DETENT LEVER MOVING

DETENT SPRING
TOGGLE BAIL

DETENT LEVER SPRING

REQUIREMENT
FUNCTION CLUTCH DISENGAGED AND LATCHED, FEED PAWL SPRING UNHOOKED.
MIN. 7 OZS.
MAX. 10 OZS.
TO START THE DETENT LEVER MOVING.

DETENT LEVER SPRING
2.25 Punch Mechanism (Cont.)

PUNCH SLIDE SPRING

REQUIREMENT
RUBOUT COMBINATION SET UP, AND
PUNCH SLIDES IN SELECTED POSITION.

MIN. 2-1/4 OZS.
MAX. 3-1/4 OZS.
TO START EACH SLIDE MOVING.

TAPE GUIDE ASSEMBLY SPRING

REQUIREMENT
1. MIN. 16 OZS TO PULL TAPE
GUIDE ASSEMBLY AWAY
FROM TAPE GUIDE BLOCK.
2. TAPE GUIDE ASSEMBLY SHOULD
MOVE FREELY ON SHAFT.
TO ADJUST
POSITION MOUNTING POST.

TAPE GUIDE SPRING

REQUIREMENT
WITH SELECTOR AND FUNCTION CLUTCHES DISENGAGED AND
LATCHED, TAPE THREADED THROUGH PUNCH MECHANISM, IT
SHOULD REQUIRE

MIN. 1-1/4 OZS.
MAX. 2-1/4 OZS.
TO JUST MOVE THE SPRING AWAY FROM THE TAPE.
TO ADJUST
BEND THE SPRING.

NOTE
IT IS NECESSARY TO REMOVE SEVERAL PARTS, ON UNITS EQUIPPED
WITH BACK SPACE MECHANISM, IN ORDER TO CHECK THIS SPRING
TENSION. IT SHOULD NOT BE CHECKED UNLESS THERE IS GOOD
REASON TO BELIEVE THAT REQUIREMENTS ARE NOT MET.
2.26 Typing Mechanism

No. 7 Pulse Beam

No. 5 Pulse Beam

No. 5 Pulse Beam Spring
Requirement
Min. 10 OZS. --- Max. 15 OZS.
To pull spring to length of 7/16 inch.

No. 7 Pulse Beam Spring
Requirement
Min. 20 OZS. --- Max. 25 OZS.
To pull spring to length of 7/16 inch.

(Top View)
2.27 Tape Feed Mechanism

FEED WHEEL

REQUIREMENT (PRELIMINARY)
(1) CLEARANCE BETWEEN FEED WHEEL
RATCHET AND FRONT PLATE:
MIN. 0.085 --- MAX. 0.095 INCH

(2) (FINAL)
PRINTING CENTRALLY LOCATED ON TAPE
TO ADJUST
TURN ADJUSTING SCREW WITH LOCK NUT LOOSENED.

TAPE GUIDE

REQUIREMENT
THE TAPE SHALL "RUN" IN THE CENTER OF TAPE GUIDE (GAGE BY EYE).

TO ADJUST
WITH MOUNTING NUTS FRICTION TIGHT,
POSITION TAPE GUIDE WITH ROLLER UP OR DOWN TO MEET REQUIREMENT.

SPECIAL REQUIREMENT
IF THE TAPE PRINTER IS USED ON A TYPING REPERFORATOR SINGLE OR DOUBLE PLATE BASE,
A TAPE REEL WILL HAVE TO BE USED TO ACCOMMODATE THE 3/8 INCH TAPE. THIS TAPE REEL
CONSISTS OF A DISC W/HUB AND A DISC W/NUT.
2.28 Function Mechanism

(A) FUNCTION CLUTCH RELEASE SPRING
REQUIREMENT
TRIP FUNCTION CLUTCH. ROTATE MAIN
SHAFT UNTIL RELEASE IS RESET ON MAIN
TRIP LEVER.
MIN. 5 OZS. --- MAX. 8 OZS.
TO START RELEASE MOVING.

(B) RELEASE DOWNSTOP BRACKET
REQUIREMENT
WITH FUNCTION CLUTCH TRIPPED, ROTATE SHAFT
UNTIL CLEARANCE BETWEEN FUNCTION CLUTCH
DISK STOP LUG AND CLUTCH STOP LEVER IS AT A
MINIMUM. RELEASE RESTING AGAINST DOWN-
STOP BRACKET. CLEARANCE BETWEEN FUNCTION
CLUTCH DISK STOP LUG AND STOP LEVER:
MIN. 0.002 INCH --- MAX. 0.045 INCH
TO ADJUST
REMOVE TAPE GUIDE. WITH DOWNSTOP BRACKET
MOUNTING SCREWS FRICITION TIGHT POSITION
BRACKET.
(A) PUSH BAR OPERATING BLADE (PRELIMINARY)
TO CHECK
MANUALLY SELECT RUBOUT CODE COMBINATION (12345678),
ROTATE MAIN SHAFT UNTIL FUNCTION CLUTCH TRIPS. HOLD
NO. 2 AND 3 BELL CRANKS AGAINST STOP POST.
REQUIREMENT
OPERATING BLADE PARALLEL TO (NOT NECESSARILY FLUSH WITH)
NO. 2 AND 3 PUSH BARS.
TO ADJUST
WITH ITS MOUNTING SCREWS FRICTION TIGHT, PRY TRANSFER
MOUNTING BRACKET ALL THE WAY TO THE RIGHT. ADD OR
REMOVE SHIMS UNDER THE REAR LEG OF THE OPERATING
BLADE. PLACE EXTRA SHIMS ON REAR MOUNTING SCREW
BETWEEN BLADE AND FLAT WASHER.

(B) BELL CRANK SPRINGS 1 TO 5
TO CHECK
SELECT RUBOUT CODE COMBINATION
(12345678). ROTATE MAIN SHAFT UNTIL
FUNCTION CLUTCH TRIPS.
REQUIREMENT
MIN. 1 OZ. --- MAX. 3 OZS.
TO START PUSH BAR MOVING
NOTE:
CHECK ALL FIVE SPRINGS.

(C) BELL CRANK SPRING 8
TO CHECK
SELECT RUBOUT COMBINATION (12345678). ROTATE MAIN SHAFT UNTIL
FUNCTION CLUTCH TRIPS. WITH SCALE APPLIED HORIZONTALLY OVER
END OF THE TOOTH SECTION.
REQUIREMENT
MIN. 3 OZS. --- MAX. 5 OZS.
TO START BELL CRANK MOVING.

NOTE: THIS ADJUSTMENT IS COMPLETED ON THE
FOLLOWING PAGE.
2.30 Typing Mechanism (Cont.)

(D) BELL CRANK SPRINGS 6 AND 7
TO CHECK
SELECT RUBOUT COMBINATION (12345678).
ROTATE MAIN SHAFT UNTIL FUNCTION
CLUTCH TRIPS.

(1) REQUIREMENT (BELL CRANK SPRING 6)
WITH SCALE APPLIED VERTICALLY TO BALL
END OF BELL CRANK CONTACT OPERATING ARM.

- MIN. 2 OZS. --- MAX. 4 OZS.
TO START BELL CRANK MOVING

(2) REQUIREMENT (BELL CRANK SPRING 7)
WITH SEVEN-PULSE BEAM SPRING REMOVED
AND SCALE APPLIED VERTICALLY TO BALL
END OF BELL CRANK OPERATING ARM.

- MIN. 3 OZS. --- MAX. 6 OZS.
TO START BELL CRANK MOVING.

PUSH BAR OPERATING BLADE (FINAL)
(1) TO CHECK
MANUALLY SELECT RUBOUT CODE COMBINATION (12345678).
ROTATE MAIN SHAFT UNTIL
FUNCTION CLUTCH TRIPS. MANUALLY SEAT PUSH BARS IN DETENTED POSITION.
IN BAR
WHICH IS NEAREST LEFT EDGE OF BLADE, TAKE UP PLAY TO LEFT AND REAR, AND THEN RELEASE.

REQUIREMENT
CLEARANCE BETWEEN BAR AND LEFT EDGE OF BLADE:

- MIN. 0.015 INCH --- MAX. 0.030 INCH

(2) REQUIREMENT
SOME CLEARANCE BETWEEN RIGHT EDGE OF BLADE AND PUSH BARS WHEN PLAY IN BARS
HAS BEEN TAKEN UP TO RIGHT AND RELEASED.

(3) REQUIREMENT
WITH UNIT IN STOP POSITION, SOME CLEARANCE BETWEEN RIGHT EDGE OF BLADE AND
BARS WHEN PLAY IN BARS HAS BEEN TAKEN UP TO RIGHT AND RELEASED.

TO ADJUST
WITH MOUNTING SCREWS LOOSENED, POSITION OPERATING BLADE IN ELONGATED HOLES.

NOTE:
IT MAY BE NECESSARY
TO REFINE THIS AD-
JUSTMENT AFTER ROCK-
ER BAIL PILOT STUD AD-
JUSTMENT.
2.31 Function and Typing Mechanisms

(A) ROCKEY BAIL PILOT STUD
TO CHECK
SELECT SPACE COMBINATION. POSITION ROCKEY BAIL THROUGH A COMPLETE CYCLE TO INSURE THE CLEARANCE IS A MINIMUM. REQUIREMENT
CLEARANCE BETWEEN FUNCTION BOX REAR PLATE AND PUSH BAR OPERATING BLADE:
MIN. 0.005 INCH ------ MAX. 0.020 INCH
AT A POINT IN THE CYCLE WHERE PLAY IS TAKEN UP TO MAKE CLEARANCE MINIMUM.
TO ADJUST
POSITION ROCKEY BAIL PILOT STUD IN ELONGATED HOLE WITH LOCK NUT LOOSENED.

(B) FUNCTION CLUTCH LATCH LEVER SPRING
REQUIREMENT
WITH FUNCTION CLUTCH TURNED TO STOP POSITIONS AND LATCH LEVER UNLATCHED
MIN. 12 OZS.
MAX. 15 OZS.
TO START LATCH LEVER MOVING.
2.32 Typing Mechanism

FUNCTION BOX
REQUIREMENT
WITH LETTERS (RUBOUT) PUSH BAR TO EXTREME RIGHT AND FULLY DETENTED, RUBOUT CODE (12345678)
SELECTED, PUNCH SLIDES DISENGAGED AND FUNCTION CLUTCHED TRIPPED, ELIMINATE PLAY IN DOWN-
WARD DIRECTION, THEN RELEASE. KEEP OPERATING BLADE PARALLEL WITH NO. 2 AND NO. 3 PUSH BARS
AND TAKE-UP FUNCTION BOX PLAY IN A CLOCKWISE DIRECTION. THE TOP OF THE OPERATING BLADE
SHALL BE
MIN. FLUSH --- MAX. 0.020 INCH
ABOVE TOP RUBOUT PUSH BARS.

TO ADJUST
(1) LOOSEN TWO SCREWS MOUNTING FUNCTION BOX TO FRONT PLATE SPACER POSTS
(2) USING PRY POINT, ROTATE ENTIRE FUNCTION BOX.
(3) TAKE UP SPACER POST PLAY TO RIGHT AND TIGHTEN SCREWS.

TO CHECK
(1) FUNCTION BOX SHALL BE FREE TO ROTATE AT LEAST 0.010 INCH IN ITS MOUNTING AS MEASURED
AT LIFTER MOUNTING PLATE SHOULDER SCREWS.
(2) SELECT ALL MARKING CODE COMBINATIONS, TRIP FUNCTION CLUTCH AND CHECK FOR FREE
MOVEMENT OF FUNCTION BOX PLATE.
2.33 Typing Mechanism (Cont.)

TRANSFER MOUNTING BRACKET

TO CHECK
MANUALLY SELECT ALL SPACE CODE COMBINATIONS.
ROTATE MAIN SHAFT UNTIL FUNCTION CLUTCH
TRIPS,

REQUIREMENT
WITH PUNCH SLIDES LATCHED, CLEARANCE BETWEEN
THE LEFT EDGE OF ALL BELL CRANK SLOTS AND THE
LEFT FLAT OF BELL CRANK STOP POST SHALL BE
MAX. 0.007 INCH*
(PRELIMINARY FOR NO. 6 AND NO. 7 BELL CRANKS.)

TO ADJUST
WITH MOUNTING SCREWS FRICTION TIGHT,
PRY TRANSFER BEAM BRACKET TO LEFT UNTIL
CLOSEST BELL CRANK TOUCHES STOP POST.
TIGHTEN MOUNTING SCREWS AND CHECK
REQUIREMENT.
CAUTION: BELL CRANK THAT YIELDS MOST
SHOULD NOT YIELD MORE THAN 0.007 INCH
MEASURED AT POST.

*NOTE:
REMOVAL OF FUNCTION BLADES WILL
FACILITATE MEASURING CLEARANCE.
2.34 Ribbon Shift and Print Suppression Mechanism

NOTE: REFER TO VARIABLE FEATURES (PART 3) FOR ADDITIONAL ADJUSTMENTS APPLYING TO PRINT SUPPRESSION ONLY.

RIBBON SHIFT AND PRINT SUPPRESSION CONTACTS

REQUIREMENT
DISCONNECT ALL POWER FROM UNIT. REMOVE CONTACT ASSEMBLY FROM FUNCTION BOX.

(1) CLEARANCE BETWEEN SWINGER CONTACT POINTS AND NORMALLY OPEN CONTACT POINTS SHALL BE MIN. 0.015 INCH --- MAX. 0.020 INCH.

(2) IT SHALL TAKE MIN. 2 OZS. --- MAX. 3 OZS. TO START SWINGER MOVING.

(3) IT SHALL TAKE MIN. 2 OZS. --- MAX. 3 OZS. TO START NORMALLY OPEN CONTACT MOVING.

TO ADJUST REMOVE COVER AND REPLACE COVER SCREWS. BEND CONTACTS WITH CONTACT ADJUSTING TOOL.
2.35 Ribbon Shift and Print Suppression Mechanism (Cont.)

RIBBON SHIFT AND PRINT SUPPRESSION CONTACT POSITION

REQUIREMENT
MANUALLY SELECT ALL SPACING COMBINATION (-----) AND TRIP FUNCTION CLUTCH. TAKE UP FUNCTION BOX PLAY IN CLOCKWISE DIRECTION.
MIN. SOME-MAX. 0.004 INCH CLEARANCE BETWEEN SPACING CONTACT AND STIFFENER.

TO ADJUST POSITION CONTACT MOUNTING BRACKET WITH ITS MOUNTING SCREWS LOOSENED.
2.36 Typing Mechanism

(A) LIFTER ARM

TO CHECK
TRIP FUNCTION CLUTCH. MOVE ROCKER BAIL TO EXTREME LEFT POSITION AND OBSERVE TRAVEL OF LIFTER ROLLER ON RIGHT DWELL SURFACE. MOVE ROCKER BAIL TO EXTREME RIGHT POSITION AND OBSERVE TRAVEL OF ROLLER ON LEFT DWELL SURFACE.

REQUIREMENT
APPROXIMATELY EQUAL TRAVEL ON EACH DWELL SURFACE.

TO ADJUST
LOosen LOCK PLATE SCREW UNTIL FRICTION TIGHT. WITH ECCENTRIC SCREW LOCK NUT FRICTION TIGHT, POSITION LIFTER ARM ON LIFTER. TIGHTEN LOCK PLATE SCREW. DO NOT TIGHTEN LOCK NUT.

(B) LIFTER ARM ECCENTRIC SCREW

REQUIREMENT
WITH FUNCTION CLUTCH DISENGAGED, CLEARANCE BETWEEN CLOSEST PROJECTION OF BELL CRANKS AND ASSOCIATED FUNCTION BLADE PROJECTION
MIN. 0.008 INCH----MAX. 0.020 INCH

TO ADJUST
POSITION LIFTER ARM ECCENTRIC SCREW WITH LOCK NUT LOOSENED.
TOGGLE LINK

REQUIREMENT
(1) WITH RUBOUT CODE COMBINATION (12345678) SELECTED AND ROCKER BAIL TO EXTREME LEFT, TOGGLE LINKAGE SHOULD MOVE THROUGH POINT WHERE TOGGLE LINK AND LOCK LEVER ARE IN STRAIGHT LINE WITHOUT RAISING LIFTER.
(2) WITH TOGGLE LINK AND LOCK LEVER IN STRAIGHT LINE, CLEARANCE BETWEEN TOGGLE LINK AND LIFTER PIN MIN. SOME----MAX. 0.015 INCH.

TO ADJUST
POSITION LOCK LEVER ON LOCK ARM ASSEMBLY WITH CLAMP SCREW FRICITION TIGHT.

NOTE
TO AVOID INTERFERENCE WITH LOCK LEVER, IT MAY BE NECESSARY TO MOVE HIGH PART OF CORRECTING DRIVE LINK ECCENTRIC BEARING ABOVE HORIZONTAL CENTER LINE.
2.38 Typing Mechanism (Cont.)

NOTE:
PRELIMINARY WHEN NO FUNCTION BLADES ARE USED.

TOGGLE TRIP ARM

REQUIREMENT
AS ROCKER BAIL APPROACHES EXTREME RIGHT POSITION, TOGGLE LINKAGE SHOULD BREAK AND LIFTER ROLLER SHOULD DROP ONTO RIGHT DWELL SURFACE.

TO ADJUST
BY MEANS OF PRY POINTS, POSITION LOCK LEVER TRIP POST WITH CLAMP SCREW LOOSENED.

(REAL VIEW)
Function Blade Spring (2 or more) Requirement (if so equipped) with unit in stop position:
- Min. 7 ozs. --- Max. 10 ozs.
To start function blade moving.

Lifter Toggle Link Spring Requirement with unit in stop position:
- Min. 1-1/2 ozs. --- Max. 2-1/4 ozs.
To pull spring to installed length.

Correcting Drive Link Spring Requirement with unit in stop position:
- Min. 5 ozs. --- Max. 9 ozs.
To start drive link moving.

Lifter Spring Requirement with unit in stop position:
- Min. 7 ozs. --- Max. 9 ozs.
To pull spring to installed length.

Correcting Drive Link
(A) OSCILLATING DRIVE LINK

TO CHECK
POSITION ROCKER BAIL TO ITS EXTREME LEFT.

REQUIREMENT
SECTOR MOUNTING STUD, TOGGLE PIVOT SCREW AND OSCILLATING DRIVE BAIL MOUNTING SCREW SHOULD APPROXIMATELY LINE UP.

TO ADJUST
POSITION OSCILLATING DRIVE LINK BY MEANS OF ITS ECCENTRIC BUSHING.

(B) AXIAL CORRECTOR (NON-YIELDING)

TO CHECK
MANUALLY SELECT ALL SPACING CODE COMBINATION. ROTATE MAIN SHAFT UNTIL ROCKER BAIL IS TO EXTREME LEFT.

REQUIREMENT
ROLLER ON AXIAL CORRECTING PLATE SEATED FIRMLY IN CENTER OF FIRST NOTCH OF AXIAL SECTOR.

TO ADJUST
(1) LOOSEN DRIVE LINK ADJUSTING SCREWS. FIRMLY SEAT AXIAL CORRECTOR ROLLER INTO FIRST NOTCH OF SECTOR BY MANUALLY APPLYING AND HOLDING THIS POSITION FOR NEXT PART OF ADJUSTMENT.
(2) APPLY MANUAL PRESSURE ON DRIVE LINK TO BOTTOM ITS SLOT AGAINST ROCKER BAIL BUSHING.
(3) MAINTAIN PRESSURE AT THESE TWO PLACES. TIGHTEN ADJUSTING SCREWS.
2.41 Typing Mechanism (Cont.)

CORRECTOR DRIVE LINK (YIELDING)
EXTENSION SPRING TENSION

REQUIREMENT
WITH ALL SPACING CODE COMBINATION SELECTED, THE FUNCTION CLUTCH TRIPLED, AND THE ROCKER BAIL IN ITS EXTREME LEFT POSITION, PLACE A 32 OZS. SPRING HOOK ON THE END OF THE CORRECTOR AXIAL PLATE. IT SHOULD TAKE MIN. 16 OZS. --- MAX. 32 OZS. TO MOVE THE ROLLER FROM THE NOTCH IN THE SECTOR.

SECTOR

OSCILLATING BAIL

OSCILLATING BAIL ADJUSTING SCREW
(MOUNTED IN AN ELONGATED HOLE)

DRIVE LINK EXTENSION ADJUSTING SCREWS

DRIVE LINK EXTENSION

AXIAL CORRECTOR

AXIAL CORRECTOR (YIELDING)

REQUIREMENT
WITH ALL SPACING CODE COMBINATION SELECTED, FUNCTION CLUTCH TRIPLED AND ROCKER BAIL IN ITS EXTREME LEFT POSITION, THE AXIAL CORRECTOR ROLLER SHOULD SEAT IN THE FIRST SECTOR NOTCH AND THERE SHOULD BE MIN. 0.005 INCH BETWEEN THE ENDS OF THE SLOT AND THE SPRING POST. CHECK BOTH SIDES AND CHECK SEATING IN FOURTH NOTCH (LETTERS SELECTION). TURN THE RETAINING RING THAT FASTENS THE DRIVE LINK EXTENSION TO THE CORRECTOR PLATE TO CHECK THE MINIMUM REQUIREMENT.

TO ADJUST
LOosen TWO DRIVE LINK ADJUSTING SCREWS, POSITION DRIVE LINK TO MEET THE REQUIREMENT AND RETIGHTEN THE SCREWS.
(A) AXIAL SECTOR ALIGNMENT
REQUIREMENT
(1) TEETH OF AXIAL SECTOR AND AXIAL OUTPUT RACK SHOULD ENGAGE BY THEIR FULL THICKNESS.
(2) GUIDE ROLLER FREE TO ROTATE.
TO ADJUST
LOosen lock nut, disengage rack, remove retaining ring and guide roller. Add or remove shims. Place extra shims on top of shim used to retain felt washer.

NOTE:
ON UNITS EQUIPPED WITH LARGER (.594 INCH DIAMETER) ROLLER, NO ADJUSTMENT IS REQUIRED.

(Front View)

(B) ECCENTRIC SHAFT
DETENT LEVER Springs (6)
MIN. 7 OZS. --- MAX. 10 OZS.
TO START DETENT LEVER MOVING.

NOTE:
CHECK ALL 6 SPRINGS. THERE ARE TWO ON THE AXIAL POSITIONING MECHANISM AND FOUR ON THE ROTARY POSITIONING MECHANISM.
2.43 Typing Mechanism (Cont.)

(A) AXIAL OUTPUT RACK GUIDE ROLLER
TO CHECK
SELECT LINE FEED CODE COMBINATION
(-2-4---8). ROTATE MAIN SHAFT UNTIL
ECCENTRIC HAS ROTATED 90 DEGREES.
TAKE UP PLAY TO MAKE CLEARANCE BE-
WEEN OUTPUT RACK AND GUIDE ROLLER
MAXIMUM.
REQUIREMENT
MIN. SOME --- MAX. 0.008 INCH
TO ADJUST
POSITION GUIDE ROLLER MOUNTING
STUD IN ELONGATED HOLE WITH LOCK
NUT LOOSENED.

(TOP VIEW)

(NO. 4 PUSH BAR

GUIDE BRACKET

MOUNTING SCREWS

(B) PUSH BAR GUIDE BRACKET
TO CHECK
MANUALLY SELECT CARRIAGE RETURN CODE COMBINATION
(1-34---8). ROTATE MAIN SHAFT SO THAT NO. 4 PUSH BAR
MOVES THROUGH COMPLETE RANGE OF TRAVEL.
REQUIREMENT
WHEN PLAY IS TAKEN UP TO MAKE CLEARANCE
MAXIMUM:
MIN. SOME --- MAX. 0.008 INCH
BETWEEN NO. 4 PUSH BAR AND GUIDE BRACKET
THROUGHOUT COMPLETE TRAVEL OF BAR.
TO ADJUST
POSITION GUIDE BRACKET WITH MOUNTING SCREWS
LOOSENED.
2.44 Typing Mechanism (Cont.)

(A) **CORRECTING DRIVE LINK**

(1) **TO CHECK**
- Select space code combination, trip function clutch and move rocker bail to extreme left.
- Requirement: Roller on axial correcting plate firmly seated in first notch of axial sector.

(2) **TO CHECK**
- Select rubout code combination (12345678), trip function clutch and move rocker bail to extreme left.
- Requirement: Roller on axial correcting plate firmly seated in fourth notch of axial sector.

TO ADJUST
- Loosen drive link adjusting screws. Holding roller firmly seated in first notch and holding drive link down (bottomed) against bushing, tighten adjusting screws.

(B) **IDLER GEAR ECCENTRIC SHAFT**

REQUIREMENT
- With unit in rubout condition and function clutch disengaged;
- Min. some — Max. 0.015 inch
- Clearance between typewheel rack tooth and idler gear tooth.

TO ADJUST
- With mounting screw loosened, position idler gear eccentric shaft by means of three adjusting holes. Check rack throughout its travel for binds.
2.45 Typing Mechanism (Cont.)

ROTARY CORRECTING LEVER

(1) TO CHECK

LOOSEN CORRECTING CLAMP ADJUSTING SCREW. WITH UNIT IN FIGURES CONDITION
SELECT "X" CODE COMBINATION (---45--78), TRIP FUNCTION CLUTCH AND POSITION
ROCKER BAIL TO EXTREME LEFT. MANUALLY SEAT ROTARY CORRECTING LEVER IN
TYPEWHEEL RACK.

REQUIREMENT
SECOND TOOTH FROM TOP OF RACK SEATED BETWEEN LOBES OF CORRECTING LEVER.

TO ADJUST

LOOSEN ECCENTRIC BUSHING LOCK NUT. WITH CLAMP ADJUSTING SCREW LOOSENED
AND CORRECTING LEVER PIVOT TO RIGHT OF CENTER LINE, POSITION CORRECTING
LEVER. TIGHTEN BUSHING LOCK NUT. DO NOT TIGHTEN CLAMP ADJUSTING SCREW
AT THIS TIME.

(2) TO CHECK

IN A MANNER SIMILAR TO THAT DESCRIBED ABOVE, CHECK ENGAGEMENT OF FIFTH
TOOTH (---34--78), NINTH TOOTH (---4---8) AND SIXTEENTH TOOTH (---3-5--8).

TO ADJUST

REFINE ADJUSTMENT UNDER (1) ABOVE.

NOTICE

THIS ADJUSTMENT IS CONTINUED ON NEXT PAGE.
2.46 Typing Mechanism (Cont.)

(3) TO CHECK
WITH UNIT IN LETTERS CONDITION, SELECT RUB-
OUT CODE COMBINATION (12345678), POSITION
ROCKER BAIL TO EXTREME LEFT, MANUALLY SEAT
CORRECTING LEVER IN RACK.

REQUIREMENT
A. LOBES OF ROTARY CORRECTING LEVER FIRMLY SEATED
 IN TYPEWHEEL RACK.
B. END PLAY BETWEEN CORRECTING CLAMP AND
 ECCENTRIC BUSHING WITH UNIT IN STOP POSITION:
 MIN. SOME ---- MAX. 0.006 INCH

TO ADJUST
WITH CORRECTING ARM CLAMP ADJUSTING
SCREW LOOSENEP, TRIP FUNCTION CLUTCH
AND ROTATE MAIN SHAFT UNTIL ROLLER ON
AXIAL CORRECTING PLATE APPROACHES
SEATED POSITION IN NOTCH OF AXIAL
SECTOR. WHEN CLEARANCE BETWEEN
ROLLER AND SECTOR IS
MIN. SOME
MAX. 0.005 INCH
POSITION CORRECTING LEVER FINGER-
TIGHT AGAINST RACK. TIGHTEN CORRECT-
ING CLAMP SCREW.

NOTE
THIS ADJUSTMENT BEGINS
ON PRECEDING PAGE.
2.47 Ribbon Shift and Print Suppression Mechanism

RIBBON CARRIER SPRING REQUIREMENT
WITH UNIT IN STOP POSITION
MIN. 7 OZS, --- MAX. 10 OZS,
TO START CARRIER MOVING.

RIBBON CARRIER REQUIREMENT
WITH FUNCTION CLUTCH DISENGAGED:
MIN. 0.040 INCH
MAX. 0.055 INCH
CLEARANCE BETWEEN BLOCKING LINK AND RIBBON CARRIER.
TO ADJUST
LOosen LOCK SCREW, POSITION RIBBON OSCILLATING LEVER, USING ADJUSTING SLOT.

RIBBON RED AND BLACK
NOTE: REFER TO VARIABLE FEATURES (PART 3) FOR ADDITIONAL PRINT SUPPRESSION ADJUSTMENTS.

ARMATURE SPRING

REQUIREMENT
WITH SPRING DISCONNECTED
MIN. 3-1/2 OZS. -- MAX. 4-1/2 OZS.
WHEN PULLED TO INSTALLED LENGTH.

(B) ARMATURE AIR GAP

REQUIREMENT
WITH ARMATURE ON DOWNSTOP SCREW
MIN. 0.015 INCH -- MAX. 0.020 INCH
CLEARANCE BETWEEN MAGNET CORE AND ARMATURE AT CLOSEST POINT AND
MIN. SOME -- MAX. 1/32 INCH
CLEARANCE BETWEEN REAR OF ARMATURE SLOT AND BLOCKING LINK AS GAGED
BY EYE.

TO ADJUST
POSITION MAGNET BRACKET WITH SCREWS LOOSENED, CHECK FOR BINDS.

NOTE: SEE ARMATURE UPSTOP ADJUSTMENT (PARAGRAPH 2.53).

(A) ARMATURE DOWNSTOP

REQUIREMENT
WITH ROCKER BAIL IN EXTREME LEFT POSITION
AND RIBBON CARRIER BIASED DOWNWARD (*UPWARD)
MIN. SOME -- MAX. 0.005 INCH
(*MIN. SOME -- MAX. 0.008 INCH)
CLEARANCE BETWEEN TOP SURFACE OF BLOCKING LINK AND LOWER SURFACE OF RIBBON CARRIER

TO ADJUST
POSITION ARMATURE DOWNSTOP SCREW WITH
LOCK NUT LOOSENED.

* FOR UNITS WITH LAST CHARACTER VISIBILITY FEATURE.
NOTE: REFER TO VARIABLE FEATURES (PART 3) FOR ADDITIONAL PRINT SUPPRESSION ADJUSTMENTS.

NOTE: THIS ADJUSTMENT IS TO BE PRECEDED BY ARMATURE DOWNSTOP AND ARMATURE AIR GAP ADJUSTMENTS (PARAGRAPH 2.48).

ARMATURE UPSTOP

REQUIREMENT
WITH ARMATURE HELD AGAINST UPSTOP SCREW (MAGNET IS NOT TO BE ENERGIZED)
MIN. 0.004 INCH --- MAX. 0.007 INCH
(*MIN. 0.005 INCH --- MAX. 0.010 INCH)
CLEARANCE BETWEEN MAGNET CORE AND ARMATURE AT CLOSEST POINT.

TO ADJUST
POSITION UPSTOP SCREW WITH LOCK NUT LOOSENED.

* FOR UNITS WITH LAST CHARACTER VISIBILITY FEATURE.
2.50 Typing Mechanism

PRINTING TRIP LINK

TO CHECK
TRIP FUNCTION CLUTCH AND POSITION ROCKE BAIL TO EXTREME LEFT, MANUALLY LIFT ACCELERATOR SO THAT LATCHING SURFACES OF PRINTING LATCH AND ACCELERATOR ARE EVEN.

REQUIREMENT
MIN. 0.015 INCH CLEARANCE BETWEEN ACCELERATOR AND LATCH.

TO ADJUST
WITH LOCK NUT LOOSENED, POSITION PRINTING TRIP LINK BY MEANS OF ECCENTRIC MOUNTING SCREW. KEEP HIGH PART OF SCREW TO LEFT OF CENTER LINE.

ACCELERATOR SPRING

REQUIREMENT
WITH UNIT IN STOP CONDITION
MIN. 26 OZS.
MAX. 32 OZS.
TO PULL SPRING TO INSTALLED LENGTH.
2.51 Typing Mechanism (Cont.)

PRINT HAMMER SPRING

REQUIREMENT

WITH UNIT IN STOP CONDITION

MIN. 1 OZ. ----- MAX. 3 OZS.

PUSH PRINT HAMMER LEVER UNTIL TOP OF HAMMER HEAD IS LEVEL WITH TYPE WHEEL

ACCELERATOR

SPRING

HAMMER HEAD

TYPE WHEEL

PRINT HAMMER LEVER
2.52 Typing Mechanism (Cont.)

To check
Select "M" code combination (-345--8), place rocker bail to extreme left. Correcting lever should be firmly seated in typewheel rack.

Requirement
Type wheel aligned so that full character is printed uniformly and 6-1/2 code hole spaces behind its perforated code hole.

To adjust
Position type wheel with lock nut loosened. Check printing by manually lifting accelerator to latched position and releasing it.

Note
For best results, it may be necessary to make print hammer adjustment and then refine this adjustment.
2.53 Typing Mechanism (Cont.)

FEED PAWL SPRING REQUIREMENT
WITH ROCKER BAIL TO EXTREME RIGHT:
MIN. 4 OZS., --- MAX. 6 OZS.
TO PULL FEED PAWL SPRING TO INSTALLED LENGTH.

RATCHET WHEEL TORQUE SPRING REQUIREMENT
MIN. 1 OZS., --- MAX. 3 OZS.
APPLIED TANGENTIALLY TO THE RATCHET WHEEL TO START IT TO ROTATE.

DRIVE ARM

TO CHECK
POSITION ROCKER BAIL TO EXTREME LEFT,
HOLD THE RIBBON REVERSING ARM UNDER LOWER
REVERSING EXTENSION OF FEED PAWL.
REQUIREMENT
1. CLEARANCE BETWEEN BLOCKING EDGE OF RIBBON REVERSE ARM AND REVERSING EXTENSION OF FEED PAWL:
 MIN. SOME
2. CLEARANCE SHALL NOT BE SO GREAT AS TO ALLOW FEED PAWL TO FEED MORE THAN TWO TEETH AT A TIME.
3. FEED PAWL DETENTED IN BOTH ITS RIGHT AND LEFT POSITION.
 TO ADJUST
 POSITION DRIVE ARM ADJUSTABLE EXTENSION LEVER WITH ITS MOUNTING SCREW LOOSENED.
DRIVE ARM SPRING
REQUIREMENT
WITH ROCKER BAIL TO EXTREME RIGHT
MIN. 9 OZS. --- MAX. 14 OZS.
TO PULL DRIVE ARM SPRING TO
INSTALLED LENGTH.

DETENT SPRING
REQUIREMENT
WITH REVERSING ARM IN ITS EXTREME
RIGHT OR LEFT POSITION:
MIN. 2 OZS. --- MAX. 4 OZS.
TO PULL DETENT SPRING TO ITS
INSTALLED LENGTH.
3. VARIABLE FEATURES

3.01 Manual Interfering Rubout Tape Feed-Out Mechanism

(b) DRIVE ARM SHAFT REAR BEARING

REQUIREMENT
DRIVE ARM SHAFT FINGER FREE IN ITS BEARINGS.

TO ADJUST
POSITION REAR BEARING WITH MOUNTING SCREWS LOOSENED.

HAND LEVER

DRIVE ARM SHAFT

MOUNTING SCREWS

REAR BEARING

(REAR VIEW)

STOP LEVER

CASTING

CLAMP SCREW

(A)

TRIP LEVER - MANUALLY OPERATED

TO CHECK
WITH UNIT IN STOP POSITION, TRIP SELECTOR CLUTCH BY POSITIONING HAND LEVER TO LEFT UNTIL STOP LEVER RESTS AGAINST CASTING.

REQUIREMENT
(1) MIN. SOME --- MAX. 0.015 INCH BETWEEN START LEVER AND ARMATURE AT POINT OF MIN. CLEARANCE. (2) START LEVER ENGAGING APPROX. CENTER OF TRIP LEVER'S OPERATING SURFACE.

TO ADJUST
WITH CLAMP SCREW LOOSENED, POSITION TRIP LEVER ON SHAFT SO THAT HAND LEVER CLEAR SELCTOR PUSH LEVER PIVOT POST BY 0.010 INCH MIN.

TRIP LEVER SPRING

REQUIREMENT
MIN. 3/4 OZS.
MAX. 2 OZS.
TO PULL SPRING TO ITS INSTALLED LENGTH.
3.02 Print Suppression Mechanism

(A) PRINT SUPPRESSION LINK

REQUIREMENT
WITH RIBBON SHIFT BLOCKING LINK IN ITS BLOCKING POSITION AND ACCELERATOR LATCHED THERE SHOULD BE
MIN. 0.065 INCH --- MAX. 0.095 INCH CLEARANCE BETWEEN ACCELERATOR LEVER AND PRINT SUPPRESSION LINK.

TO ADJUST
REMOVE ACCELERATOR LATCH LEVER SPRING, TRIP FUNCTION CLUTCH, AND ROTATE MAIN SHAFT UNTIL ROCKER BAIL IS IN EXTREME LEFT POSITION. WITH SCREWS LOOSENED POSITION PRINT SUPPRESSION LINK HORIZONTALLY AND UPWARD AGAINST RIBBON CARRIER TO MEET REQUIREMENT.

NOTE: REFER TO PART 2 FOR PRELIMINARY ADJUSTMENTS IN COMMON WITH RIBBON SHIFT ADJUSTMENTS IN ALL UNITS.