INTRODUCTION

Bulletin 248B provides adjustments, lubrication, disassembly and reassembly procedures for the Model 28 Tape Handling Stand (LTHS) and Reperforator Transmitter Base (LRXB).

The bulletin is made up of a group of appropriate, independent sections. They are separately identified by title and section number, and the pages of each section are numbered consecutively, independent of other sections.

The identifying number of a section, a 9-digit number, appears at the top of each page of the section, in the left corner of left-hand pages and right corner of right-hand pages. The sections are placed in the manual in ascending numerical order.

To locate specific information refer to the table of contents on the following page. Find the name of the involved component in column one and the title of section in column two. The correct 9-digit section number will then be found in column three. Turn to page one of the section indicated where the contents of that section will be found (except where a section is small and does not require a listing of contents).

Note: Individual copies of the sections in this bulletin are available upon request.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Title</th>
<th>Section</th>
<th>Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 Tape Handling Stand (LTHS) and Reperforator Transmitter Base (LRXB).</td>
<td>Adjustments</td>
<td>573-104-700</td>
<td>1</td>
</tr>
<tr>
<td>28 Tape Handling Stand (LTHS) and Reperforator Transmitter Base (LRXB).</td>
<td>Lubrication</td>
<td>573-104-701</td>
<td>1</td>
</tr>
<tr>
<td>28 Tape Handling Stand (LTHS) and Reperforator Transmitter Base (LRXB).</td>
<td>Disassembly and Reassembly</td>
<td>573-104-702</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: For information on Motor Units see Bulletin 295B.
28 TAPE HANDLING STAND (LTHS) AND
REPERFORATOR TRANSMITTER BASE (LRXB)

ADJUSTMENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. GENERAL</td>
<td>3</td>
</tr>
<tr>
<td>2. ADJUSTMENTS</td>
<td>5</td>
</tr>
<tr>
<td>STANDARD SPEED TAPE HANDLING STAND</td>
<td>5</td>
</tr>
<tr>
<td>Tape Bin</td>
<td></td>
</tr>
<tr>
<td>Storage bin detent springs</td>
<td>12</td>
</tr>
<tr>
<td>Tape storage bin support bracket</td>
<td>12</td>
</tr>
<tr>
<td>Tape Control Mechanism</td>
<td></td>
</tr>
<tr>
<td>Actuator spring</td>
<td>19</td>
</tr>
<tr>
<td>Bin full contact actuating arm</td>
<td>22</td>
</tr>
<tr>
<td>Blade position (motorized bins only)</td>
<td>13</td>
</tr>
<tr>
<td>Full take-up reel alarm</td>
<td>19</td>
</tr>
<tr>
<td>Full take-up reel switch</td>
<td>14</td>
</tr>
<tr>
<td>Low tape alarm</td>
<td>17</td>
</tr>
<tr>
<td>Separator position (motorized bins only)</td>
<td>13</td>
</tr>
<tr>
<td>Stop lever</td>
<td>8</td>
</tr>
<tr>
<td>Stop lever eccentric stud</td>
<td>8</td>
</tr>
<tr>
<td>Stop lever release arm</td>
<td>7</td>
</tr>
<tr>
<td>Stop lever spring</td>
<td>18</td>
</tr>
<tr>
<td>Tape arm</td>
<td>7</td>
</tr>
<tr>
<td>Tape arm clearance</td>
<td>21</td>
</tr>
<tr>
<td>Tape arm horizontal clearance</td>
<td>21</td>
</tr>
<tr>
<td>Tape arm spring</td>
<td>18</td>
</tr>
<tr>
<td>Tape bin full switch</td>
<td>19</td>
</tr>
<tr>
<td>Tape guide</td>
<td>9</td>
</tr>
<tr>
<td>Tight-tape and low tape switch</td>
<td>14</td>
</tr>
<tr>
<td>Tight-tape alarm - final</td>
<td>16</td>
</tr>
<tr>
<td>Tight-tape alarm - preliminary</td>
<td>15</td>
</tr>
<tr>
<td>Tape Drive Mechanism</td>
<td></td>
</tr>
<tr>
<td>Clutch torque</td>
<td>9</td>
</tr>
<tr>
<td>Drive shaft endplay</td>
<td>6</td>
</tr>
<tr>
<td>Drive shaft gear - intermediate gear mesh</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate gear alignment</td>
<td>5</td>
</tr>
<tr>
<td>Pinion, idler, tape gear mesh</td>
<td>20</td>
</tr>
<tr>
<td>Pinion reel drive gear mesh</td>
<td>5</td>
</tr>
<tr>
<td>Tape Reel Mechanism</td>
<td></td>
</tr>
<tr>
<td>Tape supply reel alignment</td>
<td>11</td>
</tr>
<tr>
<td>Tape supply reel shaft endplay</td>
<td>10</td>
</tr>
<tr>
<td>HIGH SPEED TAPE HANDLING STAND (FLAT BELT WINDER)</td>
<td>23</td>
</tr>
<tr>
<td>Tape Control Mechanism</td>
<td></td>
</tr>
<tr>
<td>Blade position</td>
<td>26</td>
</tr>
<tr>
<td>Contact leaf springs</td>
<td>28</td>
</tr>
<tr>
<td>Detent spring</td>
<td>29</td>
</tr>
<tr>
<td>End of tape</td>
<td>32</td>
</tr>
<tr>
<td>Low tape alarm</td>
<td>30</td>
</tr>
<tr>
<td>Oil reservoir</td>
<td>25</td>
</tr>
<tr>
<td>Separator position</td>
<td>26</td>
</tr>
<tr>
<td>Storage bin detent springs</td>
<td>26</td>
</tr>
<tr>
<td>Switch trip bracket</td>
<td>34</td>
</tr>
<tr>
<td>Tape arm</td>
<td>24</td>
</tr>
<tr>
<td>Tape arm clearance</td>
<td>24</td>
</tr>
<tr>
<td>Tape arm guide clearance</td>
<td>25</td>
</tr>
<tr>
<td>Tape arm weight clearance</td>
<td>24</td>
</tr>
<tr>
<td>Tape bin full</td>
<td>34</td>
</tr>
<tr>
<td>Tape storage bin support bracket</td>
<td>26</td>
</tr>
<tr>
<td>Tape supply reel alignment</td>
<td>26</td>
</tr>
<tr>
<td>Tape supply reel shaft endplay</td>
<td>26</td>
</tr>
<tr>
<td>Tape take-up reel alignment</td>
<td>27</td>
</tr>
<tr>
<td>Tight-tape alarm (flat belt drive)</td>
<td>31</td>
</tr>
<tr>
<td>Tight-tape alarm (high to low speed)</td>
<td>33</td>
</tr>
<tr>
<td>Tight-tape alarm - preliminary</td>
<td>29</td>
</tr>
<tr>
<td>Tape Drive Mechanism</td>
<td></td>
</tr>
<tr>
<td>Intermediate pulley alignment</td>
<td>23</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>PAGE</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Pinion-reel drive gear mesh</td>
<td>23</td>
</tr>
<tr>
<td>HIGH SPEED TAPE HANDLING STAND (V BELT WINDER)</td>
<td>35</td>
</tr>
</tbody>
</table>

Tape Control Mechanism

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chad depressor bail spring</td>
<td>42</td>
</tr>
<tr>
<td>End of tape contact</td>
<td>40</td>
</tr>
<tr>
<td>Low tape contact</td>
<td>40</td>
</tr>
<tr>
<td>Tape arm</td>
<td>36</td>
</tr>
<tr>
<td>Tape arm bail operating spring</td>
<td>42</td>
</tr>
<tr>
<td>Tape arm latch</td>
<td>37</td>
</tr>
<tr>
<td>Tape arm latch spring</td>
<td>42</td>
</tr>
<tr>
<td>Tape arm operating position</td>
<td>41</td>
</tr>
<tr>
<td>Tape guide and Chad depressor bracket</td>
<td>36</td>
</tr>
<tr>
<td>Tight-tape alarm (V belt drive)</td>
<td>39</td>
</tr>
</tbody>
</table>

Tape Drive Mechanism

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driven pulley belt guide roller</td>
<td>37</td>
</tr>
<tr>
<td>Driver pulley belt lower guide roller</td>
<td>38</td>
</tr>
<tr>
<td>Driver pulley belt upper guide roller</td>
<td>38</td>
</tr>
<tr>
<td>Tape supply reel alignment</td>
<td>38</td>
</tr>
<tr>
<td>Tape supply reel shaft endplay</td>
<td>38</td>
</tr>
<tr>
<td>Tape take-up reel assembly gear and idler gear mesh</td>
<td>35</td>
</tr>
</tbody>
</table>

3. REPERFORATOR TRANSMITTER BASE

Tape Control Mechanism

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating lever spring</td>
<td>46</td>
</tr>
<tr>
<td>Tape arm</td>
<td>49</td>
</tr>
<tr>
<td>Taut-tape control</td>
<td>48</td>
</tr>
<tr>
<td>Tight-tape condition contact</td>
<td>46</td>
</tr>
<tr>
<td>Tight-tape condition contact gap</td>
<td>46</td>
</tr>
<tr>
<td>Tight-tape contact backstop</td>
<td>48</td>
</tr>
<tr>
<td>Tight-tape emergency contacts</td>
<td>47</td>
</tr>
</tbody>
</table>

Tape Drive Mechanism

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed speed gear alignment (receiving end)</td>
<td>45</td>
</tr>
<tr>
<td>Idler cross shaft driven gear mesh</td>
<td>45</td>
</tr>
<tr>
<td>Shift gear alignment (transmitting and receiving ends)</td>
<td>44</td>
</tr>
<tr>
<td>Shift gear key alignment</td>
<td>43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. INTERRELATED ADJUSTMENTS</td>
<td>50</td>
</tr>
<tr>
<td>STANDARD SPEED REPERFORATOR TRANSMITTER SET</td>
<td>50</td>
</tr>
<tr>
<td>Tape Bin</td>
<td></td>
</tr>
<tr>
<td>Tape guard (nonmotorized bins only)</td>
<td>57</td>
</tr>
<tr>
<td>Tape Control Mechanism</td>
<td></td>
</tr>
<tr>
<td>Rear tape guide bracket</td>
<td>56</td>
</tr>
<tr>
<td>Rear tape guide roller</td>
<td>56</td>
</tr>
<tr>
<td>Tape Drive Mechanism</td>
<td></td>
</tr>
<tr>
<td>Oil shield</td>
<td>57</td>
</tr>
<tr>
<td>Motor to Tape Winder</td>
<td></td>
</tr>
<tr>
<td>Idler gear motor pinion mesh</td>
<td>50</td>
</tr>
<tr>
<td>Transmitter Distributor to Reperforator</td>
<td></td>
</tr>
<tr>
<td>Code hole sensing pin alignment</td>
<td>58</td>
</tr>
<tr>
<td>Horizontal alignment of pivoted sensing head and punch</td>
<td>53</td>
</tr>
<tr>
<td>Last character contact switch</td>
<td>55</td>
</tr>
<tr>
<td>Tape depressor</td>
<td>54</td>
</tr>
<tr>
<td>Transmitter driving and distributor shaft driven gear mesh</td>
<td>52</td>
</tr>
<tr>
<td>Vertical alignment of pivoted sensing head and punch</td>
<td>51</td>
</tr>
<tr>
<td>LOW TO HIGH SPEED REPERFORATOR TRANSMITTER SET</td>
<td>59</td>
</tr>
<tr>
<td>Tape Bin</td>
<td></td>
</tr>
<tr>
<td>Chad chute clearance</td>
<td>61</td>
</tr>
<tr>
<td>Rear tape guide bracket</td>
<td>61</td>
</tr>
<tr>
<td>Rear tape guide roller</td>
<td>61</td>
</tr>
<tr>
<td>Motor to Transmitter Distributor</td>
<td></td>
</tr>
<tr>
<td>Idler gear motor pinion mesh</td>
<td>59</td>
</tr>
<tr>
<td>Unit gear - motor pinion mesh</td>
<td>59</td>
</tr>
<tr>
<td>Transmitter Distributor to Reperforator</td>
<td></td>
</tr>
<tr>
<td>Tape depressor</td>
<td>60</td>
</tr>
<tr>
<td>HIGH TO LOW SPEED REPERFORATOR TRANSMITTER SET</td>
<td>62</td>
</tr>
<tr>
<td>Cabinet Door Latch</td>
<td></td>
</tr>
<tr>
<td>Front door</td>
<td>66</td>
</tr>
</tbody>
</table>
1.02 The reperforator transmitter bases covered in this section are used on three different Reperforator Transmitter Sets. These are:

(a) A Standard Speed Reperforator Transmitter Set capable of sending and receiving data at standard line speeds of 60, 75, or 100 words per minute.

(b) A Low to High Speed Reperforator Transmitter Set for receiving data at standard line speeds of 60, 75, or 100 words per minute and transmitting at speeds of up to and including approximately 1000 words per minute.

(c) A High to Low Speed Reperforator Transmitter Set for receiving data at speeds of up to and including approximately 1000 words per minute and transmitting at standard line speeds of 60, 75, and 100 words per minute.

1.03 The standard speed tape handling stand is capable of winding tape at a speed of 200 words per minute and is used in conjunction with the Standard Speed Reperforator Transmitter Set. The high speed tape handling stand is capable of winding tape at a speed of 1000 words per minute and is used on both the Low to High and High to Low Reperforator Transmitter Sets.

Note: Remove power from unit before making any adjustments.

1.04 It is assumed that the mechanisms illustrated in this section are being viewed from a position in front of the equipment, unless the illustrations are specifically labeled otherwise. In the line drawings, fixed pivot points are shown by solid black circles and moveable points are shown by cross-hatched circles. References in the text to left, right, up, down, front, or rear apply to the unit in its normal operating position with the viewer facing the tape storage bin.

1.05 In the adjustments and spring tensions covered in this section, location of clearances, position of parts, and point and angle of scale applications are illustrated by drawings. Requirements and procedures are set forth in the texts that accompany the drawings. A complete adjusting procedure should be read before making the adjustment or checking the spring tension. The adjustments are arranged in a sequence that should be followed if a complete readjustment of the unit were undertaken.
1.06 Tools required to make the adjustments and check the spring tensions are not supplied with the equipment, but are listed in Section 570-005-800TC.

1.07 When a part mounted on shims is removed, the number of shims at each mounting screw should be noted so that the identical shim pile-up can be made when the part is remounted. Unless stated otherwise, all nuts and screws that were loosened should be tightened after an adjustment has been made.

1.08 The spring tensions given in this section are indicated values and should be checked with Teletype scales in the positions shown in the drawings. Springs which do not meet the requirements, and for which there are no adjusting procedures, should be discarded and replaced by new springs.

1.09 When rotating the drive shaft gear by hand, the rotation is counterclockwise as viewed from the exposed side of the drive shaft gear.

Model 28 Reperforator Transmitter Set
2. **ADJUSTMENTS**

STANDARD SPEED TAPE HANDLING STAND

2.01 Tape Drive Mechanism

![Diagram of Tape Drive Mechanism]

TAPE WINDER REEL

REEL DRIVE GEAR

PINION REEL DRIVE GEAR MESH

Requirement
With tape winder reel in position, there should be a barely perceptible backlash between pinion and reel drive gear at point where backlash is least.

To Adjust
Position bearing plate with mounting screws loosened. (Mounting screws are accessible through holes in intermediate gear.)

Note: This adjustment should be re-checked if tape winder reels are inter-changed between units.

BEARING PLATE

PINION

MOUNTING SCREWS

INTERMEDIATE GEAR

CLUTCH SHAFT

APPROXIMATELY PARALLEL

OUTER PLATE

INTERMEDIATE GEAR

INTERMEDIATE GEAR ALIGNMENT

Requirement
Intermediate gear should be approximately parallel to outer plate and the clutch shaft should run freely without binds.

To Adjust
Position mounting bracket with mounting screws loosened.
2.02 Tape Drive Mechanism (continued)

DRIVE SHAFT ENDPLAY

Requirement
Drive shaft should have
Min Some---Max 0.010 inch
endplay.

To Adjust
Position drive shaft gear hub with hub
mounting screws loosened.

DRIVE SHAFT GEAR - INTERMEDIATE
GEAR MESH

Requirement
There should be barely perceptible
backlash between drive shaft gear and
intermediate gear at point where
backlash is least.

To Adjust
Position drive shaft gear mounting
bracket with mounting screws
loosened.
2.03 Tape Control Mechanism

STOP LEVER RELEASE ARM

Requirement
Stop lever release arm should be approximately at right angle to outer plate.

To Adjust
Position stop lever release arm with locknut loosened.

OUTER PLATE

APPROXIMATELY RIGHT ANGLE

STOP LEVER RELEASE ARM

LOCKNUT

TAPE ARM

APPROXIMATELY PARALLEL

MOUNTING BRACKET

TAPE ARM

Requirement
Bottom of tape arm should be approximately parallel to mounting bracket.

To Adjust
Position tape arm with locknut loosened.
2.04 Tape Control Mechanism (continued)

STOP LEVER ECCENTRIC STUD

Requirement
Tape arm resting against mounting bracket. Clearance between high part of stop cam and top of stop lever projecting ear should be Min 0.005 inch --- Max 0.015 inch

To Adjust
Position stop lever eccentric stud (high part toward rear of unit) with its locknut loosened.

Note 1: Check that there is some clearance between bottom of slot in stop lever guide and stop lever. If necessary, lower stop lever guide with mounting screws loosened.

Note 2: If the 0.005 inch to 0.015 inch clearance cannot be met refine stop lever release arm adjustment above.

STOP LEVER ECCENTRIC STUD

Requirement
Face of stop can should be parallel to mating surface of stop levers projecting ear when stop lever is in engagement with stop cam.

To Adjust
Position post with stop lever mounting post nut loosened. High part of eccentric post must be toward rear of unit. Tighten nut.
2.05 Tape Drive Mechanism (continued)

CLUTCH TORQUE

Requirement

Power applied to unit. Stop lever held out of engagement with stop cam.

Min 12 oz --- Max 16 oz
to keep clutch friction disc from moving.

To Adjust

Position capstan nut with locknut loosened; clockwise to increase tension, counterclockwise to decrease tension.

Note: This measurement should be made when unit is warm from operation.

2.06 Tape Control Mechanism (continued)

Requirement

Min 9 oz --- Max 11 oz

*Min 2 oz --- Max 6 oz
to start depressor moving away from depressor stud.

To Adjust

Position spring post with locknut loosened.

*For units using fully perforated tape.
2.07 Tape Reel Mechanism

Requirement
With tape supply reel in place, shaft endplay should be
- Min Some---Max 0.100 inch
- *Min Some---Max 0.062 inch

To Adjust
Position outer bearing plate bracket with mounting screws loosened.

*Units with V belt drive.
2.08 Tape Reel Mechanism (continued)

TAPE SUPPLY REEL ALIGNMENT

Requirement
Tape supply reel should be parallel to frame cross member in both horizontal and vertical planes.

To Adjust (Horizontal)
Position outer bearing plate to left or right with mounting screws loosened.

To Adjust (Vertical)
Position outer bearing plate up or down with mounting screws loosened.

Note: If these requirements cannot be met by positioning outer bearing plate, position inner bearing plate in similar manner. Check supply reel endplay.
2.09 Tape Bin

Tape Storage Bin

Requirement
- Tape storage bin in place
- Min Some---Max 0.030 inch clearance between tape storage bin and right support bracket.

To Adjust
- Position right support bracket with mounting screws loosened

Storage Bin Detent Springs

Requirement
- Detent springs aligned approximately vertical. Detent springs should be horizontally centered on their corresponding detent knobs.

To Adjust
- Position detent spring with its locknut loosened.

Locknut

Detent Spring

Detent Knob

Tape Storage Bin
SEPARATOR POSITION *(Motorized Bins Only)*

Requirement
Hub approximately centered within curved portion of separator.

To Adjust
Position separator with mounting screws loosened.

Note: Units using a TPI76402 flat washer do not require the above adjustment.

BLADE POSITION *(Motorized Bins Only)*

Requirement
Blades should be approximately centered in slot in separator. Check four blades.

To Adjust
Position blades with mounting screws loosened.
2.11 Tape Control Mechanism (continued)

SWITCH TRIP BRACKET

TIGHT-TAPE AND LOW TAPE SWITCH

Requirement
With center leaf spring in neutral position and approximately parallel to mounting bracket
Min 0.015 inch --- Max 0.030 inch

gap between both left and right spring contacts and center spring contact.

To Adjust
Bend leaf springs.

CENTER LEAF SPRING

MOUNTING BRACKET

FULL TAKE-UP REEL SWITCH

Requirement
With leaf springs approximately parallel to mounting bracket and take-up reel empty
Min 0.015 inch --- Max 0.030 inch
gap between both left and right spring contacts and center spring contact.

To Adjust
Bend leaf springs

APPROXIMATELY PARALLEL

CENTER SPRING

MOUNTING BRACKET
2.12 Tape Control Mechanism (continued)

TIGHT-TAPE ALARM - PRELIMINARY

Requirement
With tape supply arm positioned so tape roller and trip bracket locknut are on same horizontal level, top of switch trip bracket should be approximately horizontal.

To Adjust
Position switch trip bracket with locknut loosened.
TIGHT-TAPE ALARM - FINAL

Requirement
With tape supply arm positioned so there is clearance between edge of tape reel and tape supply arm
Min 3/4 inch---Max 1 inch
Tight-tape adjusting screw should just close tape alarm switch.

To Adjust
Position tight-tape adjusting screw with locknut loosened.
2.14 Tape Control Mechanism (continued)

LOW TAPE ALARM

Requirement
With tape supply arm positioned so there is clearance between empty tape reel core and tape supply arm
Min 1/2 inch---Max 3/4 inch
Low tape adjusting screw should just close tape alarm switch.

To Adjust
Position low tape adjusting screw with locknut loosened.
2.15 Tape Control Mechanism (continued)

TAPE ARM SPRING

Requirement
Stop lever held against bottom of slot in stop lever guide.
Min 1-1/2 oz --- Max 2-1/2 oz to start tape arm moving.

STOP LEVER SPRING

Requirement
Tape arm held up and stop lever resting on low part of stop cam.
Min 1 oz --- Max 2 oz to start stop lever moving away from stop cam.
2.16 Tape Control Mechanism (continued)

FULL TAKE-UP REEL ALARM

Requirement
With arm positioned so there is approximately 1/2 inch between portion of arm that rests on tape and edge of take-up reel, adjusting screw should just close contacts of alarm switch.

To Adjust
Position adjusting screw with its locknut loosened.

ACTUATOR SPRING

Requirement
With actuator spring hooked in first hole
Min 2-1/4 oz—Max 2-1/2 oz
to separate actuator extension from leaf spring operating button. If requirement cannot be met replace spring.

TAPE BIN FULL SWITCH

Requirement
With leaf spring approximately parallel to mounting bracket and actuator extension held away from operating button
Min 3/4 oz—Max 1-1/4 oz
*Min 1 oz—Max 1-1/2 oz
to open contacts.

To Adjust
Bend leaf springs.

*For units using fully perforated tape.
2.17 Tape Drive Mechanism (continued)

Note: This adjustment is used when replacing the felt clutch on the low speed tape handling stand with a belt drive mechanism.

(1) Requirement
With take-up reel in position there should be a barely perceptible amount of backlash between take-up reel gear and idler gear and between idler gear and pinion at point where backlash is least.

(2) Requirement
Clearance between outside diameters of take-up reel gear and pinion at closest point on their peripheries
Min 0.015 inch.

To Adjust
With pinion bracket and idler bracket mounting screws loosened, position both brackets to meet requirements.
2.18 Tape Control Mechanism (continued)

Note: These two adjustments are used when replacing the felt clutch on the low speed tape handling stand with a belt drive mechanism.

TAPE ARM CLEARANCE

Requirement
With take-up reel removed
Min 3/4 inch --- Max 1 inch
from top edge of tape arm to top of mounting bracket.

To Adjust
Loosen mounting screws. Insert screwdriver in adjusting slot and position mounting plate so top of tape arm is approximately 1-1/4 inches above bar. Tighten mounting screws. Push tape arm down until it touches mounting bracket and let it rise slowly. Arm should come to rest as per requirement. If necessary, refine adjustment.

TAPE ARM HORIZONTAL CLEARANCE

Requirement
Tape arm should be
Min 1/2 inch --- Max 3/4 inch
from chad depressor bracket.

To Adjust
Bend arm to meet requirement.
2.19 Tape Control Mechanism (continued)

BIN FULL CONTACT ACTUATING ARM

Requirement
The bin full contact actuator arm should be on a line through the center of the tape stuffer blade hub, as gauged by eye.

To Adjust
Bend contact actuator arm.
HIGH SPEED TAPE HANDLING STAND (FLAT BELT WINDER)

2.20 Tape Drive Mechanism

FINION-REEL DRIVE GEAR MESH

Requirement
With take-up reel in position, there should be barely perceptible backlash between pinion and reel drive gear at point where backlash is least.

To Adjust
With mounting screws loosened, position bearing plate by pivoting it about right hand mounting screw.

Note: This adjustment should be re-checked if take-up reels are interchanged between units.

INTERMEDIATE PULLEY ALIGNMENT

Requirement
Intermediate pulley should be approximately parallel to outer plate and clutch shaft should run free without binds.

To Adjust
Position mounting bracket with mounting screws loosened.
2.21 Tape Control Mechanism

TAPE ARM

Requirement
Upper edge of tape arm should be approximately parallel to top of crossbars.

To Adjust
Position tape arm with locknut loosened.

TAPE ARM CLEARANCE

Requirement
With take-up reel removed
- Min 1 inch
- Max 1-1/2 inch
from top edge of tape arm to top of bar.

To Adjust
Loosen mounting screws. Insert screwdriver in adjusting slot and position mounting plate so top of tape arm is approximately 1-3/4 inches above bar. Tighten mounting screws. Push tape arm down to bar and let rise slowly. Arm should come to rest in required position. If necessary, refine adjustment.

TAPE ARM WEIGHT CLEARANCE

Requirement
With tape arm in uppermost position
- Min Some
- Max 3/16 inch
clearance between weight and guides.

To Adjust
Position weights on arm with their lock-screws loosened. Maintain contact between weights.
2.22 Tape Control Mechanism (continued)

TAPE ARM GUIDE CLEARANCE

1. Requirement
 With tape arm held against rear guide
 Min 1/16 inch clearance between weight and outer plate.

 To Adjust
 Bend rear guide plate.

2. Requirement
 Tape arm should be approximately centered between guides.

 To Adjust
 Bend tape arm.

OIL RESERVOIR

1. Requirement
 Wick retainer should be approximately centered on intermediate pulley groove.

 To Adjust
 Position oil reservoir with mounting screw loosened.

2. Requirement
 With retainer in its normal position at bottom of reservoir there should be some clearance between wick and top of reservoir.

3. Requirement
 Portion of wick which rides pulley should protrude approximately 7/8 inch.

 To Adjust
 Remove wick from retainer notches and position to meet requirements.

4. Requirement
 Min 0.125 inch --- Max 0.250 inch clearance between wick retainer and intermediate pulley.

 To Adjust
 Form wick retainer.
2.23 Tape Control Mechanism (continued)

SEPARATOR POSITION

Requirement
Hub approximately centered within curved portion of separator.

To Adjust
Position separator with mounting screw loosened.

Note: Units using a TP176402 flat washer do not require this adjustment.

BLADE POSITION

Requirement
Blades should be approximately centered in slot in separator. Check four blades.

To Adjust
Position blades with mounting screws loosened.
2.24 Tape Control Mechanism (continued)

TAPE TAKE-UP REEL ALIGNMENT

Requirement
Tape take-up reel should be parallel to rear plate in both horizontal and vertical planes.

To Adjust
Position outer bearing plate to left or right with mounting screws loosened.
CONTACT LEAF SPRINGS

Note: While making the following adjustments position detent bracket so protruding posts do not interfere with bakelite extension on leaf spring "D."

(1) Requirement
Leaf spring "D" should be approximately parallel to switch bracket.

To Adjust
Bend leaf spring "D."

(3) Requirement
Gap between nylon button on leaf spring "B" and bakelite extension on leaf spring "D"
Min Some---Max 0.015 inch

To Adjust
Bend leaf spring "B."

(2) Requirement
Gap between leaf spring contacts "C-D" and "D-E"
Min 0.035 inch---Max 0.045 inch

To Adjust
Bend leaf springs "C" and "E."

(4) Requirement
When bakelite extension on leaf spring "D" is moved to left, contacts "A-B" and "C-D" should close simultaneously (within 0.010 inch).

To Adjust
Bend leaf spring "A."
2.26 Tape Control Mechanism (continued)

DETENT SPRING

Note: Preceding adjustments should be made prior to following adjustments.

(1) Requirement
With detent roller in neutral position (roller on low portion of detent lever camming surface), gap between contacts "A-B" and "C-D"

Min 0.010 inch --- Max 0.020 inch

To Adjust
Position by moving detent spring vertically with its mounting screws loosened.

CAUTION: PRIOR TO TIGHTENING DETENT SPRING MOUNTING SCREWS, CHECK THAT ROLLER RIDES FULLY ON DETENT LEVER CAMMING SURFACE.

(2) Requirement
When roller is on peak of detent lever camming surface, gap between leaf spring contacts "D-E"

Min 0.010 inch --- Max 0.035 inch

To Adjust
Bend leaf spring "E."

TIGHT-TAPE ALARM-PRELIMINARY - SEE 2.12
LOW TAPE ALARM

Requirement
When low tape adjusting screw just closes contacts "D-E" through detent action (roller on peak of detent lever camming surface)
Min 1/2 inch---Max 1-1/4 inch
clearance between empty tape reel core and tape supply arm.

To Adjust
Position low tape adjusting screw with locknut loosened.

Old and new style tape arms.
2.28 Tape Control Mechanism (continued)

TIGHT-TAPE ALARM (Flat Belt Drive)

Requirement
When tight-tape adjusting screw just closes contacts "A-B" and "C-D" of switch
Min 3/4 inch---Max 1 inch
*Min 2-1/4 inch---Max 2-1/2 inch
clearance between edge of tape reel and tape supply arm.

To Adjust
Position tight-tape adjusting screw with locknut loosened.

*Units using new style tape arm.
2.29 Tape Control Mechanism (continued)

Requirement
With 1/4 inch ± 1/8 inch clearance between tape supply arm and empty reel core, tape arm bracket should just touch upper edge of mounting bracket approximately 1/4 inch from edge of mounting bracket.

To Adjust
With mounting screws loosened, position mounting bracket up or down to meet requirement. Slight bending of tape arm may be necessary.
2.30 Tape Control Mechanism (continued)

TIGHT-TAPE ALARM (HIGH-TO-LOW SPEED)

(1) Requirement
With tape routed as in 5.03, HIGH TO LOW SPEED REPERFORATOR TRANSMITTER SET, cause a taut tape condition between upper roller and empty roll of tape on the tape supply reel. Lower tape supply arm by loosening tape held at upper tape roller by about five character lengths (5/10 inch). At this position, tight-tape alarm contacts must be closed. Loosen tape an additional three character lengths (3/10 inch). Contacts should open.

To Adjust

(2) Requirement
Tight-tape alarm condition should not occur when the reperforator pulls tape from a full tape supply reel.

To Adjust
Loosen screw on weight. Position weight toward roller to meet requirement. Tighten screw.
2.31 Tape Control Mechanism (continued)

SWITCH TRIP BRACKET

Requirement
With tape supply arm resting on supply reel core the low tape adjusting screw ear should be approximately vertical.

To Adjust
With locknut loosened position switch trip bracket to meet requirement. Tighten locknut.

TAPE BIN FULL

Requirement
Pressure applied perpendicular to upper flat surface of pressure plate
- Min 1-1/2 oz --- Max 2 oz
- *Min 75 grams --- Max 90 grams to close switch.

To Adjust
Insert wrench into socket. Turn left or right to increase or decrease force bearing against pressure plate.

*Units with V belt drive.
HIGH SPEED TAPE HANDLING STAND (V BELT WINDER)

2.32 Tape Drive Mechanism

(Tight Side View)

TAPE TAKE-UP REEL ASSEMBLY GEAR AND IDLER GEAR MESH

Requirement
With take-up reel in position, there should be a barely perceptible amount of backlash between tape reel assembly gear and idler gear at point where backlash is least.

To Adjust
With mounting screws loosened, position bearing bracket (attached to left side frame) to meet requirement.
2.33 Tape Control Mechanism

TAPE ARM

Requirement
Tape guiding edge of tape arm should be approximately parallel to tape guide posts.

To Adjust
Bend tape guide arm to meet requirement.

TAPE GUIDE AND CHAD DEPRESSOR BRACKET

Requirement
Align tape guiding edges of tape arm with chad depressor post and tape guide post. The edges of tape arm and posts should be equally spaced from each other, as gauged by eye.

To Adjust
Loosen tape guide post mounting nut. Position tape guide post to meet requirement. If requirement cannot be met, loosen tape guide and latch assembly mounting screws and move assembly up or down to meet requirement. Recheck tape arm latch adjustment.
2.34 Tape Control Mechanism (continued)

![Diagram of Tape Control Mechanism]

TAPE ARM LATCH

 Requirement
 When tape arm is moved upward against its stop and then released, the tape arm should be fully engaged by its latch.

 To Adjust
 With tape arm mounting screws loosened, slide tape arm in or out to obtain full engagement.

(Right Side View)

2.35 Tape Drive Mechanism (continued)

DRIVEN PULLEY BELT GUIDE ROLLER

Requirement
 With V belt held taut, top driven pulley belt guide roller should just touch outer surface of belt.

To Adjust
 Loosen guide roller arm mounting screws.
 Rotate roller arm to meet requirement.

(Right Side View)
2.36 Tape Drive Mechanism (continued)

ROLLER MOUNTING NUT

UPPER ROLLER

LOWER ROLLER

DRIVER PULLEY BELT UPPER
GUIDE ROLLER

Requirement
With V belt held taut, upper driver pulley belt guide roller should just touch outer surface of belt.

To Adjust
Loosen roller mounting nut. Position roller to meet requirement.

DRIVER PULLEY BELT LOWER
GUIDE ROLLER

Requirement
With V belt held taut, driver pulley belt lower guide roller should be approximately 1/16 inch from outer surface of belt.

To Adjust
Loosen roller mounting nut. Position roller to meet requirement.

Tape Supply Reel Alignment - See 2.08

Tape Supply Reel Shaft Endplay - See 2.07
2.37 Tape Control Mechanism (continued)

TIGHT-TAPE ALARM (V Belt Drive)

Requirement
Tight-tape alarm contacts should close
Min 3 3/4 inches---Max 4 1/4 inches
clearance between edge of tape reel and tape
brake arm.

To Adjust
With tight-tape contact operating post collar
lock screw loosened, position pos. so that
swinger contact transfers from front contact
to rear contact. Tighten lock screw.
END OF TAPE CONTACT

Requirement
End of tape alarm contacts should close when clearance between empty supply reel core and tape brake arm is 3/8 + 1/8 inch.

To Adjust
With end of tape contact operating post collar lock screw loosened, position post so that swinger contact transfers from rear contact to front contact. Tighten lock screw.

LOW TAPE CONTACT

Requirement
Low tape alarm contacts should close
Min 1/2 inch---Max 1-1/4 inches
Clearance between empty supply reel core and tape brake arm.

To Adjust
With low tape contact operating post collar lock screw loosened, position post so that swinger contact transfers from rear contact to front contact. Tighten lock screw.
2.39 Tape Control Mechanism (continued)

Requirement
With empty take-up reel in its driving position and tape arm latched, take-up reel should not rotate. Release tape arm from its latch, the reel should begin to rotate when front of tape arm is approximately 17 inches from base of stand.

To Adjust
With front plate bracket mounting screws loosened, position bracket to meet requirement. If requirement cannot be met it may be necessary to bend tape arm. Recheck tape arm adjustments.

(Right Side View)
2.40 Tape Control Mechanism (continued)

Chad Depressor

Chad Depressor Post
Left Side View

Chad Depressor Bail Spring

Requirement
Min 6 oz---Max 10 oz
to pull depressor away from
downstop post.

Tape Arm Latch

Tape Arm Latch Spring

Requirement
Min 1-1/2 oz---Max 2-1/2 oz
to start latch moving.

Tape Arm

Tape Arm Bail Operating Spring

Requirement
Min 18 oz---Max 22 oz
to pull spring to its operating
length.

Right Side View
3. REPERFORATOR TRANSMITTER BASE

3.01 Tape Drive Mechanism

SHIFT GEAR KEY ALIGNMENT

Requirement
Shift gear assembly should slide freely on its shaft.

To Adjust
Position keybar with mounting screws loosened while sliding gear assembly along shaft.
3.62 Tape Drive Mechanism (continued)

SHIFT GEAR ALIGNMENT (Transmitting and Receiving Ends)

Requirement
Driven shift gear assembly gears should align approximately centered on their respective driving gears on cross shaft assembly.

To Adjust
Position locating plate with mounting screws loosened. Check three shift positions.

Note: Make certain that the two portions of the shift gears on the cross shaft assembly are mounted with no clearance between them. If there is clearance, loosen dual gear mounting screw and eliminate clearance before making above adjustment.
3.03 Tape Drive Mechanism (continued)

FIXED SPEED GEAR ALIGNMENT (Receiving End)

Requirement
Fixed speed driven gear should be approximately centered on fixed speed driving gear.

To Adjust
Position fixed speed driven gear with hub mounting screw loosened.

IDLER CROSS SHAFT DRIVEN GEAR MESH

Requirement
Min Some---Max 0.003 inch backlash between idler gear and cross shaft driven gear throughout one revolution of idler gear.

To Adjust
Add or remove shims between base and tape winder drive bracket. Keep equal number of shims on each side.
3.04 Tape Control Mechanism

Note: Adjustments on this page pertain only to high to low speed units, i.e., those capable of receiving data at 1000 wpm and transmitting at standard line speeds of 60, 75, or 100 wpm.

(C) TIGHT-TAPE CONDITION CONTACT GAP

(1) Requirement
With operating lever resting against nylon button
Min 0.010 inch
Max 0.050 inch
gap between contacts.

(2) Requirement
With operating lever forced against backstop
Max 0.050 inch
gap between contacts.

To Adjust
Position contact assembly with its mounting screws loosened.

(B) TIGHT-TAPE CONDITION CONTACT

(1) Requirement
Leaf springs should be approximately parallel to mounting bracket (gauge by eye).

(2) Requirement
Min 1 oz---Max 1-1/2 oz
to just separate each pair of contacts.

Note: Hold off other pair of contacts when measuring.

To Adjust
Bend contact leaf springs.

(A) OPERATING LEVER SPRING

Requirement
Min 9 oz---Max 11 oz
to pull spring to installed length.

(View From Rear of Unit)
3.05 Tape Control Mechanism (continued)

Note: Adjustments on this page pertain only to high to low speed units, i.e., those capable of receiving data at 1000 wpm and transmitting at standard line speeds of 60, 75, or 100 wpm.

TIGHT-TAPE EMERGENCY CONTACTS

1. Requirement
 Leaf springs should be approximately parallel to mounting bracket (gauge by eye).

2. Requirement
 Min 2 oz---Max 3 oz
to just separate contacts.

To Adjust
Bend contact leaf springs.
3.06 Tape Control Mechanism (continued)

TIGHT-TAPE CONTACT BACKSTOP

Requirement
When tight-tape contact operating post is moved against insulator on operating swinger so that contacts transfer from left (unoperated) to right (operated) position, there should be

Min SOME---Max 0.010 inch clearance between contact operating post and its backstop.

To Adjust
With mounting screws loosened, position backstop to meet requirement.

TAUT-TAPE CONTROL

Requirement
When taut-tape contact operating post is moved against insulator on swinger so that contacts transfer from their right (operated) to the left (unoperated) position, clearance should be

Min SOME---Max 0.010 inch between contact operating post and its backstop.

To Adjust
With mounting screws loosened, position backstop to meet requirement.
3.07 Tape Control Mechanism (continued)

TAPE ARM

Requirement
Tape arm should extend beyond the long formed section of the bracket by approximately 1/16 inch. Tape follower end of tape arm should be in line with center of bearing holes in bracket.

To Adjust
With contact operating post collar clamp screw loosened, hold taut-tape contact operating post against its backstop as far as it will go toward the long formed end of the bracket. Position tape arm to meet requirement. Tighten contact operating post collar clamp screw.
4. INTERRELATED ADJUSTMENTS

STANDARD SPEED REPERFORATOR TRANSMITTER SET

4.01 Motor to Tape Winder

Note: The adjustments in this paragraph cover the relationship between the transmitter distributor and the typing or nontyping reperforator.

![Diagram of motor and tape winder setup]

Requirements:

- **IDLER GEAR MOTOR PINION MESH**
 - Min Some --- Max 0.003 inch between idler gear and motor pinion throughout one revolution of idler gear.

To Adjust:
- Position tape winder drive bracket with mounting screws loosened.
4.02 Transmitter Distributor to Reperforator

VERTICAL ALIGNMENT OF PIVOTED SENSING HEAD AND PUNCH

Requirement
With pivoted sensing head against punch block, top plate of sensing head should be
- Min Flush---Max 0.010 inch
- below bottom surface of tape slot in punch block.

To Adjust
- Position height adjusting screw, on sensing end of unit, with locknut and mounting screw loosened.
4.03 Transmitter Distributor to Reperforator (continued)

TRANSMITTER DRIVING AND DISTRIBUTOR SHAFT DRIVEN GEAR MESH

Requirement
Min Some---Max 0.003 inch backlash between distributor shaft driven gear on transmitter and transmitter driving gear on base. Check throughout one complete revolution of larger gear.

To Adjust
Position two height adjusting screws, on distributor end of unit, with locknuts and mounting screws loosened. Turn screws evenly to maintain parallelism between units. Recheck VERTICAL ALIGNMENT OF PIVOTED SENSING HEAD AND PUNCH adjustment 4.02.
4.04 Transmitter Distributor to Reperforator (continued)

HORIZONTAL ALIGNMENT OF PIVOTED SENSING HEAD AND PUNCH

Requirement
When one tape lid extension is centered on respective area between punch pin slots, remaining extensions should be fully within their respective areas.

To Adjust
Loosen transmitter distributor and horizontal positioning eccentric mounting screws. Shift unit to meet requirement. Tighten unit mounting screws. Position eccentric against rear plate of transmitter distributor and tighten its mounting screw.

Note: It may be necessary to position the reperforator unit if the requirement cannot be met by the adjustment of the transmitter distributor. If necessary, position the reperforator in the same manner as the transmitter distributor.
4.05 Transmitter Distributor to Reperforator (continued)

TAPE DEPRESSOR

1. **Requirement**
 Tip of depressor extension should be centered between #2 and #3 punch pin slots in punch block.

 To Adjust
 Position depressor extension with its two adjusting screws loosened.

2. **Requirement**
 Depressor extension should be positioned
 - Min Flush---Max 0.060 inch below top surface of punch block.

 To Adjust
 Position by moving tape depressor extension angularly and/or horizontally with locknut on depressor loosened.

3. **Requirement**
 Clearance between tape depressor extension and punch block
 - Min 0.040 inch---Max 0.080 inch

 To Adjust
 Position by moving tape depressor extension angularly and/or horizontally with locknut on depressor loosened.

 Note: If requirement (2) is still not met, rotate bar at top of transmitter distributor (to which depressor bracket is secured) with four mounting screws of bar assembly loosened. Make sure clearance between punch block and depressor extension (at mounting stud) is maximum possible while still meeting requirement.

4. **Requirement**
 With tape following normal path, and pivoted head approximately 15 characters from punch block, tape edge should not touch depressor.

 To Adjust
 Refine TAPE DEPRESSOR adjustment as prescribed in Section 573-127-700TC.
4.06 Transmitter Distributor to Reperforator (continued)

LAST CHARACTER CONTACT SWITCH

(1) Requirement
With contact switch cover removed, tape inserted in punch unit and pivoted sensing head, and pivoted sensing head positioned one character away from punch block, there should be
Min 0.010 inch --- Max 0.015 inch clearance between tape deflector ear and insulator on long contact spring.

(2) Requirement
With pivoted sensing head against punch block, there should be
Min 0.005 inch gap between contacts.

To Adjust
Position contact bracket with mounting screws loosened.
4.07 Tape Control Mechanism

(A) REAR TAPE GUIDE BRACKET

Requirement
With reperforator operating under power and drawing tape from supply reel, tape should squarely enter center of tape chute (tape twisted a quarter-turn clockwise as it enters chute).

To Adjust
Position rear tape guide bracket with its mounting screws loosened.

(B) REAR TAPE GUIDE ROLLER

Requirement
Tape should ride approximately centered on tape rollers when reperforator is operating under power as in (A) REAR TAPE GUIDE BRACKET.

To Adjust
Loosen roller bracket locknut and position bracket while tape is in motion.

Note: Recheck REAR TAPE GUIDE BRACKET adjustment.
4.08 Tape Drive Mechanism

Requirement
Oil shield should be approximately centered between motor shaft and tape winder drive belt.

To Adjust
Position oil shield with its mounting screws loosened.

4.09 Tape Bin

Requirement
Clearance between tape guard and tape chute (gauged by eye)
Min 1/8 inch --- Max 1 4 inch

To Adjust
Position tape guard with its mounting screws loosened.
4.10 Transmitter Distributor to Reperforator (continued)

Note: All preceding adjustments between transmitter distributor and typing or nontyping reperforator should be completed and requirements met before proceeding with following final adjustments.

CODE HOLE SENSING PIN ALIGNMENT

To Check
With a loop of letters tape (perforated under power by the reperforator) between reperforator and transmitter distributor, and pivoted sensing head resting against its backstop, manually trip sensing shaft clutch and rotate shaft until sensing pins are in their uppermost position.

1. Requirement
The sensing pins should be approximately centered laterally on code holes.

To Adjust
Refine punch FEED HOLE LATERAL ALIGNMENT as prescribed in Section 573-118-700TC.

2. Requirement
Sensing pins should be positioned toward rear edge of code hole.
- Min 0.008 inch clearance between pin and rear edge. Check five places.

To Adjust
Check tape quality for compliance with TP156011 tape gauge and, if necessary, refine DETENT adjustment as prescribed in Section 573-118-700TC.

Note: If requirement still is not met, position pivoted sensing head top plate in required direction with its mounting screws loosened. Recheck LAST CHARACTER CONTACT SWITCH (4.06) adjustment.

3. Requirement
As code holes are opened by sensing pins, there should be some clearance between sides of chad and tape lid extensions. Check ten places.

To Adjust
Position pivoted sensing head top plate laterally with its mounting screws loosened. Recheck requirement (2).
LOW TO HIGH SPEED REPERFORATOR TRANSMITTER SET

4.11 Motor to Transmitter Distributor

IDLER GEAR MOTOR PINION MESH - SEE 4.01

UNIT GEAR - MOTOR PINION MESH

Requirement

- Min Some = Max 0.003 inch backlash between unit gear and motor pinion throughout one revolution of unit gear.

To Adjust

- Position high speed tape reader and its motor with mounting screws loosened.
4.12 Transmitter Distributor to Reperforator

TAPE DEPRESSOR

(1) Requirement
With tape in punch block, there should be approximately 1/16 inch between edges of tape and depressor extension.

To Adjust
Position tape depressor extension with its adjusting screws loosened.

(2) Requirement
Min Some---Max 0.040 inch clearance between tape depressor extension and chad chute.

(3) Requirement
Shoulder of tape depressor extension should be above a piece of tape as the leading edge is fed straight out of the punch block.

To Adjust
Position tape depressor extension angularly and/or horizontally with its locknut loosened.
4.13 Tape Bin

REAR TAPE GUIDE BRACKET - SEE 4.07

REAR TAPE GUIDE ROLLER - SEE 4.07

CHAD CHUTE CLEARANCE

Requirement
Tape bin chad chute and its mating chad chute should not touch when tape bin is snapped in or out of detent springs.

To Adjust
Position bin chad chute with mounting screws friction tight. If necessary, position mating chad chute also.
HIGH TO LOW SPEED REPERFORATOR TRANSMITTER SET

4.14 Sprocket to Motor

IDLER GEAR MOTOR PINION MESH - SEE 4.01

MOTOR SPROCKET CLEARANCE

Requirement
Clearance between sprocket and motor vibration mount
Min 0.031 inch --- Max 0.062 inch

To Adjust
Position sprocket with locknut loosened.

4.15 Motor to Reperforator

TIMING BELT

Requirement
A 5 ounce pressure at center of span should deflect belt 0.250 inches.

CAUTION: BELT SHOULD NOT BE TIGHT.

To Adjust
Position motor unit with mounting screws loosened.
4.16 Sprocket to Reperforator

(A) SPROCKET CLEARANCE

Requirement
Clearance between threaded shoulder on drive shaft and sprocket
Min Some --- Max 0.031 inches

To Adjust
Position sprocket with sprocket lock nut loosened.

(B) DRIVE SHAFT ALIGNMENT

Requirement
Reperforator drive shaft should be in line with sprocket drive shaft on opposite side of rubber coupling.

To Adjust
Position bearing bracket with its three mounting screws loosened (gauge by eye from top of unit).

4.17 Tape Control Mechanism

TIGHT-TAPE EMERGENCY CONTACT GAP

To Check
Thread length of perforated tape between transmitter distributor and reperforator. Place transmitter distributor in free wheeling position and manually draw tape through head until tight-tape arm begins to lift.

(1) Requirement
With operating lever forced against contact assembly backstop
Max 0.050 inch
gap between contacts.

(2) Requirement
Moving the tape an additional 5 or 7 characters should just separate contacts.

To Adjust
Position bracket by moving it in slotted holes with its mounting screws loosened.
4.18 Tape Drive Mechanism

Transmitter Driveing and Distributor Shaft Driven Gear Mesh

Requirement
Min S---Max 0.003 inch backlash between distributor shaft driven gear on transmitter and transmitter driving gear on base. Check throughout one complete revolution of larger gear.

To Adjust
Position two height adjusting screws, on distributor end of unit, with locknuts and mounting screws loosened. Turn screws evenly to maintain parallelism between units.

4.19 Tape Bin

Chad Chute

Requirement
Tape bin chad chute and its mating chad chute should not touch when tape bin is snapped in or out of detent springs.

To Adjust
Position bin chad chute with mounting screws friction tight. If necessary, position mating chute by lifting up on plate assembly and moving chute manually.
4.20 Cabinet to Tape Handling Stand

CONTACT SPRINGS

1 2 3 4

LINE SHUNT CONTACTS

Requirement
With bakelite plunger held flush with relay mounting plate, there should be a gap between the #1 and #2 contacts and between the #3 and #4 contacts.
Min 0.010 inch---Max 0.015 inch

To Adjust
Bend the #2 and #3 contact springs.

PLUNGER

RELAY MOUNTING PLATE

CONTACT SPRINGS

1 2 3 4

LINE SHUNT CONTACTS SPRING

Requirement
Min 5 oz---Max 7 oz
to separate contacts.

To Adjust
Bend #1 and #4 contact springs.

RELAY MOUNTING PLATE
4.21 Cabinet Door Latch

FLANGE

MAGNETIC DOOR CATCH

MOUNTING SCREWS

FRONT DOOR

Requirement
When fully closed, doors should be flush with structural members of cabinet.

To Adjust
Bend flange at upper and/or lower right-hand corner of left door.

FRONT DOOR CATCHES

Requirement
When closed, doors should fit firmly against magnetic catches.

To Adjust
Position catches with mounting screws loosened.
5. TAPE ROUTING

5.01 Standard Speed Reperforator Transmitter Set
5.02 Low to High Speed Reperforator Transmitter Set
5.03 High to Low Speed Reperforator Transmitter Set

- Reading Head
- Tape Guide
- Punch Block
- Tape Supply Reel
- Take-Up Reel
- Brake Arm
- Tape Lever
5.04 High to Low Speed Reperforator Transmitter Set (V Belt Drive)
5.05 Low to High Speed Reperforator Transmitter Set (V Belt Drive)

- TAPE GUIDE
- HIGH SPEED READER
- TAPE ARM
- TAKE-UP REEL
- TAPE SUPPLY REEL
28 TAPE HANDLING STAND (LTHS) AND
REPERFORATOR TRANSMITTER BASE (LRXB)

LUBRICATION

CONTENTS

1. GENERAL ... 1

2. TAPE HANDLING STANDS 3
 Clutch shaft and intermediate
 gear assembly 3
 Drive shaft assembly 3
 Stop lever and tape arm mechanism 3
 Tape alarm mechanism 3

3. TAPE HANDLING STAND
 (HIGH SPEED ONLY). 4
 Drive shaft assembly 4
 Oil reservoir 4
 Reel drive shaft assembly 4
 Tape alarm mechanism 4
 Tape winder reel assembly 4

4. TAPE HANDLING STAND
 (V BELT DRIVE) 5
 Lower pulley assembly 6
 Supply reel 7
 Take-up reel 5
 Tape arm bail 7
 Tape arm latch 6
 Upper pulley assembly 5

5. REPERFORATOR TRANSMITTER
 BASE ... 8
 Cross shaft assembly 8
 Fixed gear shaft 8
 Gear shift arm assembly 8
 Shift gear shaft assembly 8
 Tape bracket rollers and shaft 9
 Tape winder drive bracket assembly 9

6. CABINET .. 10
 Cabinet hinges and slides 10

1. GENERAL

 1.01 The tape handling stand and reperforator
 transmitter base should be lubricated as
 directed in this section. The figures indicate
 points to be lubricated and the kind and quantity
 of lubricant to be used. Lubricate the tape
 handling stand and reperforator transmitter base
 prior to storing or placing it in service. After
 a few weeks in service relubricate to make cer-
 tain that all points receive lubrication. There-
 after, the following schedule should be followed:

 | Operating Speed (WPM) | Lubrication Interval |
 |------------------------|---------------------|
 | 60 | 3000 hr or 1 yr* |
 | 75 | 2400 hr or 9 mo* |
 | 100 | 1500 hr or 6 mo* |
 | 1000 | 150 hr or 1 mo* |

 *Whichever occurs first.

 1.02 Use KS7470 oil at all locations where
 the use of oil is indicated. Use KS7471
 grease on all surfaces where grease is indicated.

 1.03 All spring wicks and felt oilers should be
 thoroughly lubricated. However, over-
 lubrication, which will permit oil or grease to
 drip or be thrown on other parts, should be
 avoided.

 CAUTION: DO NOT LUBRICATE THE TAPE
 WINDER REEL DRIVE GEAR OR PINION,
 OR THE TAPE WINDER AND TAPE SUPPLY
 REEL SHAFT BEARINGS ON THE TAPE
 HANDLING STAND. DO NOT LUBRICATE
 THE TAPE PULLER SHAFT NYLON BEAR-
 INGS IN THE TAPE STORAGE BIN.

 1.04 Apply a thick film of grease to all gears
 and the spacing clutch reset cam plate.

 1.05 Apply oil to all cams, including the
 camming surfaces of each clutch disc.

 CAUTION: SPECIAL CARE MUST BE TAKEN
 TO PREVENT ANY OIL OR GREASE FROM
GETTING BETWEEN THE SELECTOR ARMATURE AND ITS MAGNET POLE FACES. KEEP ALL ELECTRICAL CONTACTS FREE OF OIL AND GREASE.

1.06 The photographs show the paragraph numbers referring to particular line drawings of mechanisms and where these mechanisms are located on the unit. Parts in the line drawings are shown in an upright position unless otherwise specified.

Note: References made to left, right, top, bottom, front, or rear apply to the typing unit in its normal operating position as viewed by the operator facing the unit.

1.07 The following list of symbols apply to the specific lubrication instructions given in each paragraph.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>Apply one drop of oil.</td>
</tr>
<tr>
<td>O2</td>
<td>Apply two drops of oil.</td>
</tr>
<tr>
<td>O3</td>
<td>Apply three drops of oil, etc.</td>
</tr>
<tr>
<td>G</td>
<td>Apply thin film of grease.</td>
</tr>
<tr>
<td>SAT</td>
<td>Saturate (felt oilers, washers, wicks) with oil.</td>
</tr>
</tbody>
</table>

Model 23 Reperforator Transmitter Set
2. TAPE HANDLING STANDS

2.01 Drive Shaft Assembly

2.02 Clutch Shaft and Intermediate Gear Assembly

2.03 Stop Lever and Tape Arm Mechanism

2.04 Tape Alarm Mechanism
3. TAPE HANDLING STAND (HIGH SPEED ONLY)

3.01 Drive Shaft Assembly

3.02 Reel Drive Shaft Assembly

3.03 Oil Reservoir

3.04 Tape Winder Reel Assembly

3.05 Tape Alarm Mechanism - See 2.04, Tape Alarm Mechanism
4. TAPE HANDLING STAND (V BELT DRIVE)

4.01 Take-Up Reel

4.02 Upper Pulley Assembly
SECTION 573-104-701TC

4.03 Tape Arm Latch

4.04 Lower Pulley Assembly
4.05 Supply Reel

4.06 Tape Arm Bail

(Right Side View)
5. REPERFORATOR TRANSMITTER BASE

5.01 Shift Gear Shaft Assembly

Guiding Surfaces
Grey Bar

Ball Bearings
(2 Places)

Gear Teeth
(4 Gears)

Keybar
Shift Gear Shaft Bearings
Shift Gear Shaft Gears

5.02 Cross Shaft Assembly

Gear Teeth
(5 Gears)

Cross Shaft Gears

Ball Bearings
(2 Places)

Cross Shaft Bearings

5.03 Fixed Gear Shaft

Gear Teeth
(2 Gears)

Fixed Gear Shaft Gears

Ball Bearings
(2 Places)

Fixed Gear Shaft Bearings

5.04 Gear Shift Arm Assembly

Felt Oilier
Gear Shift Arm Roller

Bearing Surfaces
Gear Shift Arm Stud

Pivot
Gear Shift Arm
5.05 Tape Winder Drive Bracket Assembly

5.06 Tape Bracket Rollers and Shaft
6. CABINET

6.01 Cabinet Hinges and Slides

- Hinge
- Electrical Mounting Frame
- Hinges (4) Door Hinges (Front and Rear)
- Lubriplate Sliding Surfaces
- Slides
CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. GENERAL</td>
<td>1</td>
</tr>
<tr>
<td>2. DISASSEMBLY AND REASSEMBLY</td>
<td>2</td>
</tr>
<tr>
<td>REPERFORATOR TRANSMITTER - STANDARD SPEED SET</td>
<td>2</td>
</tr>
<tr>
<td>REPERFORATOR TRANSMITTER BASE - LOW TO HIGH SPEED SET</td>
<td>3</td>
</tr>
<tr>
<td>REPERFORATOR TRANSMITTER BASE - HIGH TO LOW SPEED SET</td>
<td>3</td>
</tr>
<tr>
<td>REPERFORATOR TRANSMITTER BASE - HIGH TO LOW SPEED SET (UNITS WITH V BELT DRIVE)</td>
<td>4</td>
</tr>
<tr>
<td>STANDARD SPEED TAPE HANDLING STAND</td>
<td>4</td>
</tr>
<tr>
<td>HIGH SPEED TAPE HANDLING STAND</td>
<td>5</td>
</tr>
</tbody>
</table>

1. **GENERAL**

1.01 This section is issued to describe the disassembly and reassembly procedures for the 28 tape handling stand and reperforator transmitter base. Disassembly covers a procedure for removing the principal subassemblies which make up the unit.

1.02 Reference should be made to the exploded views found in the appropriate parts literature for an illustration of the mechanism to be disassembled, for location and visual identification of parts, and detailed disassembly and reassembly features.

1.03 Disassembly should be confined to subassemblies, which can, in some cases, be removed without disturbing adjustments.

When reassembling the subassemblies, be sure to check all associated adjustments, clearances, and spring tensions.

1.04 If a part that is mounted on shims is removed, the number of shims used at each of its mounting screws should be noted so that the same shim pile-up can be replaced when the part is remounted.
1.05 Retaining rings are made of spring steel and have a tendency to release suddenly when attempting to remove them. Loss of these retainers can be minimized as follows: Hold the retainer with the left hand to prevent it from rotating. Place the blade of a suitable screwdriver in one of the slots of the retainer. Rotate the screwdriver in a direction to increase the diameter of the retainer for removal.

1.06 Avoid loss of springs in disassembly by holding one spring loop with the left hand while gently removing the opposite loop with a spring hook. Do not stretch or distort springs when removing them.

Note: Disconnect power before starting any disassembly procedures.

1.07 When removing a subassembly from the unit, the procedure followed and the location from which parts are removed must be carefully noted so that reassembly can be done correctly. Where no specific instructions are given for reassembly, reverse the procedure used in removing it.

Note: Check the adjustments outlined in Section 573-104-700TC, whenever the reperforator or transmitter distributor has been remounted to the base.

2. DISASSEMBLY AND REASSEMBLY

REPERFORATOR TRANSMITTER - STANDARD SPEED SET

2.01 To remove reperforator unit from the base:

(a) Remove the mounting screw that secures the tape alarm cable clamp.

(b) Remove the hex mounting nut that secures the reperforator cable clamp adjacent to the reperforator 32-point connector.

(c) Remove the mounting screws that secure the 32-point connector.

(d) Remove the mounting screw that secures the TP156183 or TP156184 anchor bracket to the base. Remove the three mounting screws that secure the reperforator frame to the base. Lift the reperforator from the base.

(e) To replace the reperforator unit on its base:

(1) Place the reperforator unit on its base so that its three mounting holes line up with those in the base. Loosen the screw that secures the TP156183 or TP156184 anchor bracket to the punch assembly frame. Thread the previously removed mounting screw through the anchor bracket and into the tapped hole in the base, but do not tighten the screw. Start the remaining three mounting screws through the reperforator frame mounting holes into the tapped holes in base, but do not tighten the screws. Press the anchor bracket against the base and tighten the screw that secures the bracket to the punch assembly frame. Tighten the screw that secures the bracket to the base. Tighten the three screws that secure the reperforator frame to the base.

(2) Replace the 32-point connector and cable clamps removed during disassembly.

2.02 To remove transmitter distributor from the base:

(a) Disconnect the line shunt cable connectors.

(b) Remove the two screws that secure the two transmitter distributor cable clamps.

(c) Remove the mounting screws that secure the 32-point connector.

(d) Remove the transmitter gear guard from the base.

(e) Remove the three mounting screws that secure the transmitter to the base. Lift the transmitter from the base.

(f) To replace the transmitter distributor, reverse the disassembly procedure. See 1.07 note before replacing cable clamps and 32-point connector.

Note: If it is necessary to readjust the vertical alignment of pivoted sensing head and punch, do not replace the cable clamps and 32-point connector for the transmitter distributor until the adjustment is completed.

2.03 To remove the reperforator transmitter base from the tape handling stand:

(a) Remove the tape winder drive belt from the tape winder drive pulley.
(b) Disconnect all plugs from their connectors on the tape handling stand frame.

(c) Loosen the three captive screws securing the base to the stand, and lift the base from the stand.

2.04 To remove tape winder drive bracket assembly:

(a) Remove the four mounting screws, lockwashers, and flat washers that secure the TP158748 tape winder drive bracket to the base.

(b) Remove the bracket and note the number of TP158750 shims between the bracket and the base.

2.05 To remove the cross shaft assembly:

(a) Remove the screw and lockwasher that secure the TP158745 bearing clamp.

(b) Remove the cross shaft bearing retaining screws, washers, and nuts.

(c) Remove the cross shaft driven gear hub mounting screw and lockwasher.

(d) Slide cross shaft assembly sideways out of bearing seats and remove shaft assembly from base.

2.06 To remove gear bracket assembly (fixed speed or shift gears):

(a) Remove the transmitter and reperforator gear covers.

(b) Remove the three gear bracket mounting screws and washers, and remove the gear bracket assembly.

REPERFORATOR TRANSMITTER BASE - LOW TO HIGH SPEED SET

2.07 To remove reperforator unit from the base:

(a) Remove the 36-point connector.

(b) Remove the two mounting screws and washers that secure the gear cover, and remove the gear cover.

(c) Remove the three mounting screws and washers securing the reperforator.

(d) Lift the reperforator from the base.

(e) To replace the reperforator unit, reverse the disassembly procedure.

2.08 To remove high speed tape reader from the base:

(a) Remove the three mounting screws and washers that secure the gear guard, and remove the gear guard.

(b) Remove the three mounting screws and lockwashers that secure the casting to its mounting plate.

(c) Remove the reader from the base.

(d) To replace the high speed tape reader, reverse the disassembly procedure.

2.09 To remove the reperforator transmitter base from the tape handling stand:

(a) Remove the four screws and washers securing the alarm plug to the tape handling stand connector plate.

(b) Remove the four screws, spacers, and washers that secure the connector plate to the tape handling stand.

(c) Remove the tape winder drive belt from the tape winder drive pulley.

(d) Remove the tape bin motor plug and loosen the three captive base mounting screws. Lift the base from the stand.

2.10 To remove tape winder drive bracket assembly: See 2.04 in this section.

2.11 To remove cross shaft assembly: See 2.05 in this section.

2.12 To remove gear bracket assembly: See 2.06 in this section.

REPERFORATOR TRANSMITTER BASE - HIGH TO LOW SPEED SET

2.13 To remove high speed reperforator unit from the base:

(a) Remove the 36-point male plug.

(b) Remove the two screws and washers that secure the 36-point female plug to its mounting bracket.
(c) Loosen the setscrews securing the rubber
coupling between the sprocket drive shaft
and the high speed reperforator drive shaft.

(d) Remove the five mounting screws and
washers securing the reperforator to its
mounting bracket and remove the reperfora-
tor.

(e) To replace the reperforator unit, reverse
the disassembly procedure.

2.14 To remove transmitter distributor from
the base:

(a) Loosen the screw that secures the mount-
ing bracket at the reader end of the
transmitter distributor, and swing the bracket
clear of the casting.

(b) Remove the three screws and washers
that secure the gear housing.

(c) Remove the two mounting screws and
washers at the distributor end of the unit,
and lift the transmitter distributor from the
base.

2.15 See 2.09, 2.10, 2.11, and 2.12 in this
section for remaining disassembly pro-
cedure.

REPERFORATOR TRANSMITTER BASE - HIGH
TO LOW SPEED SET (UNITS WITH V BELT
DRIVE)

2.16 To remove high speed reperforator unit
from the base:

(a) Remove the 25-point male plug.

(b) Remove the two screws and washers that
secure the 25-point female plug to its
mounting bracket.

(c) Remove the four mounting screws and
washers securing the reperforator to its
mounting bracket, and remove the reperfora-
tor.

(d) To replace the reperforator unit, reverse
the disassembly procedure.

2.17 To remove transmitter distributor from
the base:

(a) Loosen the screw that secures the mount-
ing bracket at the reader end of the trans-
mitter distributor, and swing the bracket
clear of the casting.

(b) Remove the three screws and washers
that secure the gear housing.

(c) Remove the two mounting screws and
washers at the distributor end of the unit,
and lift the transmitter distributor from the
base.

2.18 See 2.09, 2.10, 2.11, and 2.12 of this
section for remaining disassembly pro-
cedure.

STANDARD SPEED TAPE HANDLING STAND

2.19 Remove the tape supply and take-up reels
and the intermediate tape storage bin.

2.20 To remove tape winder assembly:

(a) Remove the two screws and lockwashers
that secure the TP158995 capacitor
bracket to the tape winder base plate.

(b) Remove the two screws, lockwashers, and
flat washers that secure the TP159214
support bracket to the TP158972 bracket.

(c) Remove the four screws, lockwashers,
and flat washers that secure the tape
winder assembly to stand frame.

(d) Unhook the tape supply arm.

(e) Remove the tape winder assembly from
the stand.

2.21 To remove clutch shaft assembly:

(a) Remove the intermediate gear hub mount-
ing screw and lockwashers, and remove
the intermediate gear and hub.

(b) Remove the drive belt.

(c) Unhook the stop lever spring.

(d) Remove the two screws, lockwashers,
and flat washers that secure the TP158983
intermediate gear bracket to the TP158972
bracket and remove the intermediate gear
bracket with stop lever attached.

(e) Remove the two screws, lockwashers,
and flat washers that secure the TP158986
outer clutch bearing bracket to the TP126902
outer plate, and remove the bracket.
(f) Remove the two screws, lockwashers, and flat washers that secure the TP160191 inner bearing plate to the TP126902 outer plate and remove the clutch shaft assembly.

2.22 Remove the tape supply and take-up reels and the intermediate tape storage bin.

2.23 To remove tape winder assembly:

(a) Remove the four screws and washers that secure the two TP170828 crossbars to the tape handling stand frame.

(b) Remove the two screws and washers that secure the TP170827 "U" bracket to the TP170826 bracket at the rear of the winder assembly.

(c) Remove the tape winder assembly.