NAVELEX 0967-LP-438-9010
 TECHNICAL MANUAL
 DESCRIPTION, OPERATION AND MAINTENANCE

RADIO SETS

AN/SRC-20, AN / SRC. 20 A ,
AN/SRC.21, AN /SRC.21A
AND AN/URC-gA

FOR OFFICIAL USE ONLY

This publication supersedes NAVSHIPS 0967-LP-125-6010, dated 1 March 1967, NAVSHIPS 0967-LP-378-2010, dated 6 April 1970; and NAVELEX 0967-LP-125-6200, dated August 1970.

n

)

0

Reproduction for non-military use of the information or illustrations contained in this publication is not permitted. The policy for military use reproduction is established for the Army in AR380-5, for the Navy and Marine Corps in OPNAVINST 5510-1B, and for the Air Force in Air Force Regulation 205-1.

LIST OF EFFECTIVE PAGES

Insert latest changed pages, dispose of superseded pages in accordance with applicable regulations.
NOTE: On a changed page, the portion of the text affected by the latest change is indicated by a vertical line, or other change symbol, in the outer margin of the page. Changes to illustrations are indicated by miniature pointing hands. Changes to wiring diagrams are indicated by shaded areas.

Page	\#Change	Page		\#Change
No.	No.	No.		No.
Title	0	5-101/($5-102 \mathrm{blank}$)	0
A.	0	5-103/(5-104 blank)	0
B/(C blank).	0	5-105/(5-106 blank)	0
Change Record	0	5-107/(5-108 blank)	0
i thru xviii	0	5-109/(5-110 blank)	0
1-1 thru 1-20	0	5-111/(5-112 blank)		0
1-21/(1-22 blank)	0	5-113/(5-114 blank)		0
2-1/(2-2 blank)	0	5-115/(5-116 blank)		0
3-1 thru 3-6	0	5-117/(5-118 blank)	0
3-7/(3-8 blank)	0	5-119/(5-120 blank)	0
3-9 thru 3-16	0	5-121 thru 5-160. .		0
3-17/(3-18 blank).	0	5-161/(5-162 blank)		0
3-19/(3-20 blank).	0	5-163/(5-164 blank)		0
3-21 thru 3-26	0	5-165/(5-166 blank)		0
3-27/(3-28 blank).	0	5-167 thru 5-180. .		0
3-29 thru 3-44	0	5-181/(5-182 blank)	0
3-45/(3-46 blank).	0	5-183/(5-184 blank)		0
$3-47$ and 3-48.	0	5-185 thru 5-200.	0
3-49/(3-50 blank)	0	5-201/(5-202 blank)		0
3-51 thru 3-68	0	5-203/(5-204 blank)	0
3-69/(3-70 blank).	0	5-205/(5-206 blank)	-	0
3-71 and 3-72.	0	5-207/(5-208 blank)	-	0
3-73/(3-74 blank).	0	5-209/(5-210 blank)	0
3-75 thru 3-86	0	5-211/(5-212 blank)	-	0
3-87/(3-88 blank).	0	5-213/(5-214 blank)	0
3-89 and 3-90.	0	5-215/(5-216 blank)	-	0
3-91/(3-92 blank).	0	5-217/(5-218 blank)	-	0
3-93 and 3-94.	0	5-219/(5-220 blank)	-	0
3-95/(3-96 blank).	0	5-221/(5-222 blank)	-	0
3-97/(3-98 blank).	0	5-223/(5-224 blank)	-	0
3-99 thru 3-104	0	5-225/(5-226 blank)	0
3-105/(3-106 blank).	0	5-227/(5-228 blank)	-	0
4-1 and 4-2	0	5-229/(5-230 blank)	-	0
4-3/(4-4 blank).	0	5-231/(5-232 blank)	- . . . -	0
5-1 thru 5-94	0	5-233/(5-234 blank)	-	0
5-95/(5-96 blank).	0	5-235/(5-236 blank)	-	0
5-97/(5-98 blank).	0	5-237/(5-238 blank)		0
5-99/(5-100 blank) .	0	5-239/(5-240 blank)	0

Title 0
A. (C)

B/(Cblank).
Change Record 0
thru xviii

1/(2-2 blank)
3-1 thru 3-6......... 0
3-7 / (3-8 blank) 0
3-9 thru 3-16 0
3-17/(3-18 blank). 0
3-19/(3-20 blank). 0
3-21 thru 3-26 0
3-27/(3-28 blank). 0
3-29 thru 3-44 • 0
3-45/(3-46 blank). • • • • • •
$3-49 /(3-50$ blank) 0
3-51 thru 3-68 0
3-69/(3-70 blank). 0
3-71 and 3-72. 0
3-73/(3-74 blank). 0
3-75 thru 3-86 0
3-87/(3-88 blank). 0
3-89 and 3-90. 0
3-91/(3-92 blank). 0
3-93 and 3-94. 0
-95/(3-96 blank). • • • • • . 0
3-99 thru 3-104 0
3-105/(3-106 blank). 0
$4-1$ and 4-2 0
4-3/(4-4 blank). 0
5-1 thru 5-94 0
5-95/(5-96 blank). 0
5-97/(5-98 blank). 0
5-99/(5-100 blank) 0

5-239/(5-240 blank) 0
\#Zero in this column indicates an original page.

LIST OF EFFECTIVE PAGES (Continued)

,

0

0

CHANGE NO.	DATE	TITLE OR BRIEF DESCRIPTION	

TABLE OF CONTENTS

Chapter Page
VOLUME 1
LIST OF ILLUSTRATIONS
LIST OF TABLES
1 GENERAL INFORMATION 1-3
1-1. Scope 1-3
1-3. General Description 1-3
1-8. Description of Units 1-3
1-10. Radio Frequency Amplifier AM-1565/URC 1-3
1-12. Radio Set AN/URC-9 1-4
1-13. Receiver-Transmitter RT-581/URC-9 1-4
1-14. Power Supply PP-2702/URC-9 1-4
1-15. Receiver-Transmitter Case CY-2959/URC-9 1-4
1-16. Radio Set AN/URC-9A 1-4
1-17. Radio Set Control C-3866/SRC 1-4
1-20. Reference Data 1-8
1-22. Equipment Supplied 1-8
1-24. Equipment Required But Not Supplied 1-8
1-26. Field Change Index 1-18
1-28. Transmission Range 1-18
1-30. Preparation for Reshipment 1-18
2 OPERATION 2-1
3 FUNCTIONAL DESCRIPTION 3-1
3-1. Overal1 Functional Description 3-1
3-7. Modes of Operation. 3-1
3-8. Normal Mode 3-1
3-9. Retransmit 3-2
3-10. Tone Mode 3-3
3-11. Broadband Mode 3-3
3-12. Channe1 Selection 3-3
3-13. Transmit Function 3-3
3-14. Signal Path 3-3
3-15. Detailed Description 3-4
3-20. Stage and Special Circuit Description 3-5
3-21. Functional Relationship of Assemblies 3-5
3-22. Radio Set AN/URC-9() 3-5
3-23. Second IF Amplifier-AN/URC-9A. 3-5
3-27. Second IF Amplifier-AN/URC-9 3-9
3-30. First IF Amplifier 3-10
3-37. Frequency Multiplier-Oscillator 3-11

Chapter

Page
3-43. $\quad \mathrm{RF}$ and PA Amplifier 3-13
3-54. Audio Amplifier and Modulator 3-16
3-75. Directional Coupler 3-24
3-79. Radio Frequency Amplifier AM-1565/URC 3-25
3-81. Power Amplifier Subassembly 3-25
3-89. Servo Amplifier Subassembly 3-26
3-108. Receive Function 3-33
3-109. Signal Path 3-33
3-110. Detailed Description 3-34
3-113. Stage and Special Circuit Description 3-35
3-114. Functional Relationship of Assemblies 3-35
3-115. Radio Frequency Amplifier AM-1565/URC 3-35
3-116. Radio Set AN/URC-9() 3-35
3-117. Directional Coupler 3-35
3-118. $\quad \mathrm{RF}$ and PA Amplifier 3-35
3-123. Frequency Multiplier-Oscillator (FMO) 3-36
3-130. First IF Amplifier 3-38
3-135. Second IF Amplifier-AN/URC-9A 3-39
3-143. Second IF Amplifier-AN/URC-9 3-40
3-152. Third IF Amplifier 3-42
3-164. Audio Amplifier and Modulator 3-44
3-179. Metering Circuits 3-51
3-180. Radio Set AN/URC-9() 3-51
3-181. S Meter 3-52
3-182. SWR 3-52
3-183. PWR 3-52
3-184. DVRI 3-52
3-185. PA I 3-52
3-186. PA I_{b} 3-52
3-187. \% Mod 3-54
3-188. Bias 3-54
3-189. +26.5V 3-54
3-190. +125V 3-54
3-191. +325V 3-54
3-192. Radio Frequency Amplifier AM-1565/URC 3-54
3-193. HV 3-54
3-194. Bias 1 3-54
3-195. Bias 2 3-56
3-196. +300V 3-56
3-197. 27.5V 3-56
3-198. Delay 3-56
3-199. SWR 3-56
3-200. PWR Out 3-56
3-201. $\mathrm{PAI}_{b} 1$ 3-57
3-202. $\mathrm{PAI}_{b} 2$ 3-57
3-203. Atten 3-57
3-204. Power Distribution 3-57
3-205. AC Power Distribution 3-57
3-206. Radio Set AN/SRC-21() AC Power Distribution. 3-57
3-215. Radio Set AN/SRC-20().AC Power Distribution. 3-59
3-224. DC Power Distribution 3-61
Chapter Page
3-225. Radio Set AN/URC-9() DC Power Supply 3-61
3-226. +26.5-Volt DC Supply 3-61
3-227. +325-Volt and +275-Volt DC Supply 3-61
3-228. +125-Volt and -11-Volt DC Supply 3-61
3-229. Radio Set AN/URC-9() DC Power Distribution - Transmit 3-62
3-230. +325-Vo1t DC Distribution 3-62
3-234. +125-Volt DC Distribution 3-62
3-237. -11-Volt DC Distribution 3-63
3-239. +26.5-Volt DC Distribution 3-63
3-241. Radio Set AN/URC-9() DC Power Distribution - Receive 3-64
3-242. +275-Volt DC Distribution 3-64
3-245. +l25-Volt DC Distribution 3-64
3-247. -11-Volt DC Distribution 3-64
3-248. +26.5-Volt DC Distribution 3-65
3-249. Radio Frequency Amplifier AM-1565/URC DC Power Distribution 3-65
3-250. +1800-Volt High-Voltage DC Supply and Distribution 3-65
3-251. +300-Volt DC Supply and Distribution 3-65
3-257. 30-Volt DC Supply and Distribution. 3-65
3-261. -27.5-Volt DC Supply and Distribution 3-65
3-265. Radio Set Control C-3866/SRC DC Power Distribution 3-67
3-266. 24-Volt DC Supply and Distribution 3-67
3-267. -28-Volt DC Supply and Distribution. 3-67
3-268. 12-Volt DC Supply and Distribution 3-67
3-270. Frequency Selection 3-68
3-271. Frequency Conversion 3-68
3-277. Electromechanical Tuning Elements 3-71
3-285. Frequency Selector 3-72
3-286. General 3-72
3-288. Preset Channel Selection from Radio Set AN/URC-9 () 3-75
3-291. Automatic Frequency Selection 3-75
3-304. Manual Frequency Selection 3-78
3-307. Functional Description of Radio Set Control C-3866/SRC 3-78
3-308. Overall Functional Description 3-78
3-310. Ancillary Circuit Description 3-78
3-311. Local-Remote Switch S201 3-79
3-312. Audio Matching Transformers 3-80
3-313. Transmit-Receive Relay K207 3-80
3-314. Channel Dialing Circuit 3-80
3-315. Dialing Channels 1 through 10 3-81
3-330. Dialing channels 11 through 19 3-83
3-339. Stepping Relay K206 3-85
3-347. Synchro System 3-89
3-348. Basic Synchro System 3-89
3-349. Synchro System in Radio Sets AN/SRC-20() and AN/SRC-21() 3-89
3-361. System Channel Selection 3-94
3-363. Radio Set AN/SRC-20() Channel Selection 3-94
3-364. Preset Channel Selection from Radio Frequency Amplifier AM-1565/URC. 3-94
3-370. Manual Frequency Selection from Radio Frequency Amplifier AM-1565/URC 3-100
3-371. Local Preset Channel Selection from Radio Set Control C-3866/SRC 3-100
3-373. Remote Preset Channel Selection from Indicator Control C-3868/SRC. 3-101
3-375. Radio Set AN/SRC-21() Channel Selection 3-101
3-376. Local Preset Channel Selection from Radio Set Control C-3866/SRC 3-101
3-378. Remote Preset Chanrel Selection from Indicator Control C-3868/SRC 3-102
3-380. System Keying in the Normal Mode 3-102
3-382. Local Keying 3-102
3-383. Radio Set AN/SRC-21() 3-102
3-384. Radio Set AN/SRC-20() 3-102
3-391. Remote Keying 3-103
3-392. Radio Set AN/SRC-21() 3-103
3-394. Radio Set AN/SRC-20() 3-104
3-395. Key-Line Disabling 3-104
3-396. Radio Set AN/SRC-21() 3-104
3-398. Radio Set AN/SRC-20() 3-104
4 SCHEDULED MAINTENANCE 4-1
4-1. Introduction 4-1
4-3. Maintenance Schedule 4-1
4-5. In-Port Procedures 4-1
5 TROUBLESHOOTING AND CORRECTIVE MAINTENANCE 5-1
5-1. Organizational Maintenance Responsibility 5-1
5-4. General Information 5-2
5-5. Maintenance and Material Management (3-M) System 5-2
5-6. Reference Standards 5-2
5-7. List of Tables 5-2
5-8. Reference Data 5-3
5-9. UHF Maintenance 5-3
5-10. Alignment and Adjustment Procedure 5-3
5-11. Test Equipment 5-3
5-12. Test Points 5-8
5-13. RF Tuners 5-8
5-16. Safety 5-9
5-18. Radio Set Reference Designations 5-9
5-19. Troubleshooting Philosophy 5-10
5-20. Special Cables 5-10
5-21. Maintenance 5-10
5-22. Intra-assembly 5-11
5-23. Radio Set Overall Checkout and Troubleshooting Procedure 5-11
5-24. Preliminary Control Settings 5-11
5-25. Initial Setup for Alignment and Adjustment of RT-581 5-23
5-26. Equipment Setup 5-23
5-27. Radio Set AN/URC-9() Control Settings 5-24
5-28. Radio Set Control C-3866/SRC Control Settings 5-24
5-29. RT-581 Alignment, Adjustment, and Troubleshooting Procedures 5-24
5-31. Second IF Amplifier Alignment, Adjustment, and Troubleshooting 5-24
5-32. Second IF Amplifier Mechanical Check 5-25
5-33. Second IF Amplifier Mechanical Alignment 5-25
5-34. Second IF Amplifier Electrical Check 5-25
5-35. Second IF Amplifier Electrical Alignment 5-27
5-36. Second IF Amplifier Troubleshooting - (Transmit) 5-28
5-37. First IF Amplifier Alignment, Adjustment, and Troubleshooting 5-29
5-38. First IF Amplifier Mechanical Check 5-29
5-39. First IF Amplifier Mechanical Alignment 5-29
5-40. First IF Amplifier Electrical Check 5-29
5-41. First IF Amplifier Electrical Alignment 5-31
5-42. S Meter Zero Check 5-32
5-43. S Meter Zero Electrical Alignment 5-32
5-44. First IF Amplifier Troubheshooting - (Transmit) 5-33
5-45. Frequency Multiplier-Oscillator (FMO) Alignment, Adjustment and Troubleshooting 5-34
5-46. FMO Mechanical Check 5-34
5-47. FMO Mechanical Alignment 5-35
5-48. FMO Electrical Check 5-35
5-49. FMO Electrical Alignment 5-36
5-50. FMO Troubleshooting (Transmit) 5-40
5-51. FMO Intermittent Operation 5-40
5-52. RF and PA Alignment, Adjustment, and Troubleshooting. 5-43
5-53. RF and PA Mechanical Check 5-43
5-54. RF and PA Mechanical Alignment 5-44
5-55. RF and PA Electrical Check 5-44
5-56. RF and PA Electrical Alignment 5-45
5-57. RF and PA Troubleshooting (Transmit) 5-48
5-58. RF and PA Intermittent Operation 5-48
5-59. Audio Amplifier and Modulator Checks, Adjustments, and Troubleshooting 5-52
5-60. Modulator Audio Level Check 5-52
5-61. Modulator Audio Level Adjustment 5-53
5-62. Retransmit Audio Level Check and Adjustment 5-53
5-63. Audio Amplifier and Modulator Trouble- shooting (Transmit) 5-54
5-64. Frequency Selector Alignment and Adjustment 5-55
5-65. Frequency Selector Mechanical Check 5-55
Chapter Page

5-66. Frequency Selector Mechanical Adjustments.... 5-56
5-67. Third IF Amplifier and Audio Amplifier and
Modulator Check and Troubleshooting (Receive)........ 5-57
Modulator Check and Troubleshooting (Receive)......... 5-57
5-68. Third IF Amplifier and Audio Amplifier
and Modulator Check (Receive).................. 5-57
5-69. Third IF Amplifier and Audio Amplifier
and Modulator Troubleshooting (Receive)...... 5-58
5-70. Second IF Amplifier Check and Troubleshooting
(Receive).. 5-58

5-72. Second IF Amplifier Troubleshooting \quad 5...
5-73. First IF Amplifier Alignment, Adjustment, and
Troubleshooting (Receive)....................................... 5-61
5-74. First IF Amplifier Electrical Check (Receive) 5-61
5-75. First IF Amplifier Electrical Alignment (Receive)

5-61
5-76. First IF Amplifier Troubleshooting (Receive). 5-62
5-77. Frequency Multiplier-Oscillator (FMO) Alignment and Adjustment (Receive)

5-62
5-78. RF and PA Check and Troubleshooting (Receive)......... 5-62
5-79. RF and PA Electrical Check (Receive).......... 5-63
5-80. RF and PA Troubleshooting (Receive)........... 5-63

5-82. Carrier Squelch Level Check (Receive)........ 5-64
5-83. Carrier Squelch Level Electrical Aligninent (Receive)

5-64
5-84. Signal-Plus-Noise to Noise ($\mathrm{S}+\mathrm{N} / \mathrm{N}$) Squelch Check (Receive) 5-65
5-85. Signal-Plus-Noise to Noise (S+N/N) Squelch
Electrical Alignment (Receive)................ 5 5-65
5-86. Squelch Level Troubleshooting (Receive)...... 5-66
5-87. R/T Centrifugal Fan Strove Check and Troubleshooting. 5-67
5-88. R/T Centrifugal Fan Strobe Check............... 5-67
5-89. R/T Centrifugal Fan Troubleshooting........... 5-67

5-91. Adjustment of Programming Relays........................... 5-68
5-92. Adjustment of Stepping Relay K206......................... 5-68
5-93. Stepping Mechanism Adjustment................... 5-68
5-94. Off-Normal Contacts.................................. 5 . 68
5-95. Interruptef and Auxiliary Contacts............ 5-69
5-96. Radio Set Control C-3866/SRC Troubleshooting.......... 5-69
5-97. Radio Frequency Amp1ifier AM-1565/URC Alignment, Adjustment,
and Troubleshooting Procedures... 5-70
5-98. Power Amplifier Bias Voltage Check, Adjustment,
and Troubleshooting.. 5-70
$\begin{array}{ll}\text { and Troubleshooting.. } & 5-70 \\ 5-99 .\end{array}$
5-100. Power Amplifier Bias Voltage Adjustment...... 5-70
5-101. Power Amplifier Troubleshooting............... 5-71
5-102. Autopositioner Check, Alignment, and Troubleshooting. 5-71
5-103. Autopositioner Electro-Mechanical Check 5-71
5-104. Autopositioner Electro-Mechanical Alignment 5-72
5-105. Autopositioner Troubleshooting 5-72
5-106. Servo Amplifier Electrical Alignment 5-73
5-107. Servo Amplifier Troubleshooting 5-74
5-108. Automatic Drive Control Regulator Circuit Check, Alignment, and Troubleshooting 5-75
5-109. Automatic Drive Control Regulator Circuit Check 5-75
5-110. Automatic Drive Control Regulator Circuit Electrical Alignment 5-75
5-111. Automatic Drive Control Regulator Troubleshooting 5-76
5-112. Directional Coupler DC-201 Check, Alignment, and Troubleshooting 5-77
5-113. Directional Coupler DC-201 Electrical Check 5-77
5-114. Directional Coupler DC-201 Electrical Alignment 5-77
5-115. Directional Coupler DC-201 Troubleshooting 5-78
5-116. Repair Procedures for Radio Set AN/URC-9() 5-78
5-118. Power Supply PP-2702 5-79
5-119. Removal 5-79
5-120. Replacement 5-79
5-121. Receiver-Transmitter RT-581 ()/URC-9 5-79
5-122. Removal 5-79
5-123. Replacement 5-79
5-124. Second IF Amplifier 5-79
5-125. Removal 5-79
5-126. Crystal Replacement 5-86
5-127. Selector Switch Replacement (S401 and S402) 5-80
5-128. Lubrication 5-80
5-129. Replacement 5-80
5-130. First IF Amplifier 5-80
5-131. Removal. 5-80
5-132. Tuning Core Replacement (0301 through 0307) 5-81
5-133. Crystal Replacement (Y301 through Y310) 5-81
5-134. Replacement 5-81
5-135. Frequency Multip1ier-Oscillator (FMO) 5-81
5-136. Removal 5-81
5-137. General Maintenance 5-82
5-138. Crystal Replacement 5-83
5-139. Tube and Other Component Replacement 5-83
5-140. Replacement 5-83
5-141. RF and PA Amplifier 5-83
5-142. Removal 5-83
5-143. General Maintenance. 5-84
5-144. Tube and Other Component Replacement 5-84
5-145. Replacement 5-85
5-146. Audio Amplifier and Modulator 5-85
5-147. Removal 5-85
5-148. Replacement 5-85
5-149. Third IF Amplifier 5-85
5-150. Removal 5-85
5-151. Replacement 5-85
5-152. Relay-Filter 5-85
5-153. Remova1 5-85
5-154. Replacement 5-86
5-155. R/T Centrifugal Fan 5-86
5-156. Remova1 5-86
5-157. Lubrication and Repair 5-86
5-158. Replacement 5-87
5-159. 500 KHz Filter (FL901) and Lowpass Filter (FL1101) 5-87
5-160. Removal 5-87
5-161. Replacement 5-87
5-162. Broadband Sidetone Amplifier 5-87
5-163. Removal 5-87
5-164. Replacement 5-88
5-165. Front Panel 5-88
5-166. Removal 5-88
5-167. Replacement 5-88
5-168. Frequency Selector 5-88
5-169. Removal 5-88
5-170. Component Replacement 5-89
5-171. Lubrication 5-89
5-172. Replacement 5-89
5-173. Receiver-Transmitter Case CY-2959/URC-9 5-89
5-174. Removal of Case CY-2959/URC-9 Centrifugal Fan 5-89
5-175. Cleaning of Case and Fan 5-89
$5=176$. Replacement of Case Centrifugal Fan 5-90
5-177. Repair Procedures for Radio Set Control C-3866/SRC 5-90
5-179. Radio Set Control C-3866/SRC 5-90
5-180. C-3866 Removal 5-90
5-181. Replacement of C-3866 5-90
5-182. Removal of Rear Cabinet Panel 5-90
5-183. Replacement of Rear CabIinet Panel 5-90
5-184. Removal of Dust Cover for Relays K201 through K205 5-90
5-185. Replacement of Dust Cover for Relays K201 through K205 5-91
5-186. Removal of Dust Cover for Stepping Relay K206 5-91
5-187. Replacement of Dust Cover for Stepping Relay K206 5-91
5-188. Lubrication of Stepping Relay K206 5-91
5-189. Repair Procedures for Radio Frequency Amplifier AM-1565/URC 5-91
5-191. Radio Frequency Amplifier AM-1565 5-91
5-192. Removal 5-91
5-193. Replacement 5-92
5-194. Front Panel 5-92
5-195. Removal. 5-92
5-196. Replacement 5-92
5-197. Autopositioner 5-92
Chapter Page
5-198. Removal 5-92
5-199. Disassembly and Reassembly 5-93
5-200. Lubrication 5-93
5-201. Replacement 5-93
J-202. Power Amplifier 5-93
5-203. Removal 5-93
5-204. Automatic Drive Control Detector Diode (V203) Replacement 5-93
5-205. Cavity Tube (V201 and V202) Replacement 5-94
5-206. Lubrication 5-94
5-207. Replacement 5-94
5-208. Servo Amplifier 5-94
5-209. Removal 5-94
5-210, Replacement 5-95
5-211. Air Filter and Case Centrifugal Fan 5-95
5-212. Removal and Cleaning 5-95
5-213. Replacement 5-95
6 PARTS LIST 6-1
6-1. Introduction 6-1
6-3: List of Units 6-1
6-5. Maintenance Parts List 6-1
6-7. List of Manufacturers 6-1
6-9. Supply Support Information 6-1
7 INSTALLATION 7-1
7-1. Unpacking and Handling 7-1
7-2. General 7-1
7-3. Mechanical Check 7-1
7-4. Power Requirements 7-1
7-8. Site Selection 7-1
7-10. Installation Requirements 7-1
7-11. Ship Installation 7-1
7-12. Equipment Mounting 7-1
7-13. Interconnecting Cabling 7-2
7-14. Cable Assemblies 7-2
7-16. Inspection and Adjustment 7-2
7-17. Post Installation Check 7-2
7-18. Power Turn On. 7-7
7-19. Squelch Option 7-8
7-20. Overall Performance Check 7-8
7-21. Interference Reduction 7-8
VOLUME 2
LIST OF ILLUSTRATIONS ii
LIST OF TABLES 11
Chapter Page
2 OPERATION 2-1
2-1. Functional Operation 2-1
2-4. Radio Frequency Amplifier AM-1565/URC 2-1
2-5. Radio Set AN/URC-9 () 2-2
2-7. Radio Set Control C-3866/SRC 2-3
2-10. Radio Set Contro1 C-2383/URC-9 2-4
2-11. Operating Procedures 2-4
2-13. Description of Controls 2-4
2-14. Transmit Operation 2-4
2-15. Receive Operation 2-12
2-16. Local $\mathrm{S}+\mathrm{N} / \mathrm{N}$ Squeich Control 2-12
2-17. Local Carrier Squelch Control 2-12
2-18. Remote $\mathrm{S}+\mathrm{N} / \mathrm{N}$ and Carrier Squelch Control 2-12
2-20. Modes of Operation 2-12
2-21. Norma1 Mode 2-12
2-22. Retransmit Mode 2-13
2-23. Tone Mode 2-13
2-24. Broadband Mode 2-13
2-25. Frequency Selection 2-13
2-26. Manual Frequency Selection 2-13
2-27. Local Dialing of Preset Channels. 2-14
2-28. Remote Dialing of Preset Channels 2-14
2-29. Summary of Operating Procedures 2-14
2-31. Emergency Operation 2-17
2-33. Remote Operation 2-17
2-34. Local Operation 2-17
2-35. Jamming 2-18
2-36. Operator's Maintenance 2-18
2-37. Operator's Checks 2-18
2-38. Operator's Adjustments 2-18
<-39. Presetting Channel Frequencies on AN/SRC-20 () 2-18
2-40. Presetting Channel Frequencies on AN/SRC-21 () 2-20
2-41. Manual Frequency Adjustments on AN/SRC-20() 2-20
2-42. Setting Remote Squelch Controls 2-22
2-43. Emergency Maintenance 2-22
2-44. Procedure for Simple Repair 2-22
2-46. Fuse Location and Function 2-23
LIST OF ILLUSTRATIONS
Number Title Page
VOLUME 1
1-1. Radio Sets AN/SRC-20() and AN/SRC-21() 1-1
1-2. Radio Frequency Amplifier AM-1565/URC 1-4
Number Title Page
1-3. Units of Radio Set AN/URC-9() 1-6
1-4. Radio Set Control C-3866/SRC 1-7
1-5. Typical Remote Control Station 1-7
3-1. Radio Sets AN/SRC-20() and AN/SRC-21() Overall Functional Block Diagram 3-2
3-2. Radio Sets AN/SRC-20() and AN/SRC-21(), Transmit Function, Block Diagram 3-4
3-3. Radio Set AN/URC-9(), Functional Block Diagram. 3-7
3-4. Radio Set AN/URC-9(), Modulation Circuit, Simplified Schematic Diagram. 3-15
3-5. Radio Set AN/URC-9(), Retransmission and Duplex Transmission Modes, Simplified Schematic Diagram 3-17
3-6. Radio Frequency Amplifier AM-1565/URC, Functional Block Diagram 3-27
3-7. Radio Frequency Amplifier AM-1565/URC, Servo System, Simplified Schematic Diagram. 3-29
3-8. Radio Frequency Amplifier AM-1565/URC, Drive Control Regulator, Simplified Schematic Diagram. 3-31
3-9. Radio Set AN/SRC-20() and AN/SRC-21(), Receive Function, Block Diagram 3-34
3-10. Radio Set AN/URC-9(), 500-kHz,Filter, Schematic Diagram and Bandpass Characteristics 3-42
3-11. Radio Set AN/URC-9(), Detector, Noise Limiter, and AVC Circuits, Simplified Schematic Diagram. 3-45
3-12. AN/URC-9(), Squelch Amplifier and Signal-Plus-Noise to Noise Discriminator, Simplified Schematic Diagram. 3-49
3-13. Radio Set AN/URC-9(), Metering Circuits, Simplified Schematic Diagram 3-53
3-14. Radio Frequency Amplifier AM-1565/URC, Metering Circuits, Simplified Schematic Diagram. 3-55
3-15. Radio Set AN/URC-9A, Frequency Conversion System, Functional Block Diagram 3-69
3-16. Radio Set AN/URC-9 Frequency Conversion System, Functional Block Diagram 3-73
3-17. Radio Set Control C-3866/SRC, Functional Block Diagram 3-79
3-18. Radio Set Control C-3866/SRC, Channel Dialing Circuit Simplified Schematic Diagram and Operational Sequence Chart 3-87
3-19. Basic Synchro System, Simplified Schematic Diagram. 3-89
3-20. Radio Sets AN/SRC-20 and AN/SRC-21, Synchro System, Simplified Schematic Diagram 3-91
3-21. Radio Sets AN/SRC-20() and AN/SRC-21(), System Channel Selection Circuitry, Simplified Schematic Diagram 3-95
3-22. Radio Sets AN/SRC-20() and AN/SRC-21(), Normal Mode Keying Circuitry, Simplified Schematic Diagram 3-105
5-1. Radio Set AN/URC-9(), Transmit Function Troubleshooting Block Diagram 5-97
5-2. Radio Set AN/URC-9(), Receive Function Troubleshooting Block Diagram 5-99
5-3. Radio Set AN/URC-9(), Transmit Audio Function and Broadband Mode Troubleshooting Block Diagram. 5-101
Number Title Page
5-4. Radio Set AN/URC-9(), RF and PA Amplifier Assembly, Servicing Block Diagram. 5-103
5-5. Radio Set AN/URC-9(), Frequency Multiplier-Oscillator Assembly, Servicing Block Diagram 5-105
5-6. Radio Set AN/URC-9(), First IF Amplifier Assembly, Servicing Block Diagram 5-107
5-7. Radio Set AN/URC-9, Second IF Amplifier Assembly, Servicing Block Diagram 5-109
5-8. Radio Set AN/URC-9A, Second IF Amplifier Aseembly, Servicing Block Diagram. 5-111
5-9. Radio Set AN/URC-9(), Third IF Amplifier Assembly,Servicing Block Diagram.5-113
5-10. Radio Set AN/URC-9(), Audio Amplifier and Modulator Assembly, Servicing Block Diagram 5-115
5-11. Radio Frequency Amplifier AM-1565/URC, Power Amplifier Subassembly, Servicing Block Diagram 5-117
5-12. Radio Frequency Amplifier AM-1565/URC, Servo Amplifier Subassembly, Servicing Block Diagram 5-119
5-13. Receiver-Transmitter RT-581()/URC-9, Top View. 5-121
5-14. Receiver-Transmitter RT-581 ()/URC-9, Right Side 5-122
5-15. Receiver-Transmitter RT-581()/URC-9, Left Side. 5-122
5-16. Receiver-Transmitter RT-581()/URC-9, Bottom View. 5-123
5-17. Receiver-Transmitter RT-581()/URC-9, Rear View 5-123
5-18. Receiver-Transmitter RT-581()/URC-9, Top View, Subassembly Removal 5-124
5-19. Receiver-Transmitter RT-581()/URC-9, Right Side, Subassembly Removal 5-124
5-20. Receiver-Transmitter RT-581()/URC-9, Left Side, Subassembly Remova1. 5-125
5-21. Receiver-Transmitter RT-581()/URC-9, Bottom View, Subassembly Removal. 5-125
5-22. RT-581()/URC-9, RF and PA Amplifier Assembly, Right Side, Disassembly Points 5-126
5-23. RT-581()/URC-9, RF and PA Amplifier Assembly, Left Side, Disassembly Points 5-126
5-24. RT-581()/URC-9, RF and PA Amplifier Assembly, Top View 5-127
5-25. RT-581()/URC-9, RF and PA Amplifier Assembly, Right Side 5-127
5-26. RT-581 ()/URC-9, RF and PA Amplifier Assembly, Side View Showing Thermal Sensor 5-128
5-27. RT-581()/URC-9, RF and PA Amplifier Assembly, Left Side. 5-128
5-28. RT-581()/URC-9, RF and PA Amplifier Assembly, Bottom View 5-129
5-29. RT-581()/URC-9, RF and PA Amplifier Assembly, Power Amplifier Stage Removed 5-129
5-30. RT-581 ()/URC-9, O1dham Coupler Alignment 5-130
5-31. RT-581()/URC-9, RF and PA Amplifier and Frequency Multiplier- Oscillator, Tuner Capacitor Plates. 5-130
5-32. RT-581()/URC-9, RF and PA Amplifier Assembly, Tuner 2107 5-131
5-33. RT-581()/URC-9, RF and PA Amplifier Assembly, Tuner $Z 108$ 5-131
5-34. RT-518()/URC-9, Frequency Multiplier-Oscillator, DisassemblyPoints (A)5-132
5-35. RT-581 ()/URC-9, Frequency Multiplier-Oscillator, Disassembly Points (B) 5-132
Number Title Page
5-36. RT-581()/URC-9, Frequency Multiplier-Oscillator, Master Oscillator (V201), Rear View. 5-133
5-37. RT-581()/URC-9, Frequency Multiplier-Oscillator, Bottom View, Master Oscillator Removed. 5-133
5-38. RT-581()/URC-9, Frequency Multiplier-Oscillator Chassis, Bottom View 5-134
5-39. RT-581()/URC-9, Frequency Multiplier-Oscillator, Master Oscillator, Left Side. 5-134
5-40. RT-581 ()/URC-9, Frequency Multiplier-Oscillator, Master Oscillator, Right Side 5-135
5-41. RT-581()/URC-9, First IF Amplifier, Top View 5-135
5-42. RT-581 ()/URC-9, First IF Amplifier, Bottom View (A) 5-136
5-43. RT-581()/URC-9, First IF Amplifier, Bottom View (B) 5-136
5-44. RT-581()/URC-9, First IF Amplifier, Front View. 5-137
5-45. RT-581()/URC-9, First IF Amplifier, Synchronization. 5-137
5-46. RT-581 ()/URC-9, Second IF Amplifier, Top View. 5-137
5-47. RT-581()/URC-9, Second IF Amplifier, Bottom View. 5-138
5-48. RT-581()/URC-9, Second IF Amplifier, Front View. 5-138
5-49. RT-581()/URC-9, Third IF Amplifier, Top View. 5-139
5-50. RT-581 ()/URC-9, Third IF Amplifier, Bottom View (A) 5-139
5-51. RT-581()/URC-9, Third IF Amplifier, Bottom View (B) 5-140
5-52. RT-581 ()/URC-9, Audio Frequency Amplifier and Modulator Assembly, Top View 5-140
5-53. RT-581 ()/URC-9, Audio Frequency Amplifier and Modulator Assembly, Bottom View. 5-141
5-54. RT-581()/URC-9, Relay-Filter, Top View 5-141
5-55. RT-581()/URC-9, Relay-Filter, Left Side 5-142
5-56. RT-581 ()/URC-9, Relay-Filter, Right Side 5-142
5-57. RT-581()/URC-9, R/T Centrifugal Fan (Globe Industries) 5-1/3
5-58. RT-581 ()/URC-9, R/T Centrifugal Axiàl Fan (Collins Radio Company Contracts NObsr 87290 and NObsr 89509) 5-143
5-59. RT-581()/URC-9, R/T Centrifugal Axial Fan (Stewart-Warner Electronics Contract NObsr 91068) 5-144
5-60. RT-581 ()/URC-9, R/T Centrifugal Fan (DuBrow Electronics Industries Contracts NObsr 91149, 91284, and 93164) 5-145
5-61. RT-581 ()/URC-9, R/T Centrifugal Axial Fan (Contract NObsr 95140) 5-146
5-62. RT-581 ()/URC-9, Receiver-Transmitter Case CY-2959/URC-9, Front View. 5-147
5-63. RT-581()/URC-9, Receiver-Transmitter Case CY-2959/URC-9, Rear View. 5-148
5-64. RT-581 ()/URC-9, Case CY-2959/URC-9, Centrifugal Fan 5-148
5-65. RT-581()/URC-9, Front Panel, Front View. 5-149
5-66. RT-581()/URC-9, Front Panel, Rear View 5-150
5-67. RT-581()/URC-9, Frequency Selector, Top View 5-151
5-68. RT-581 ()/URC-9, Frequency Selector, Right Rear View. 5-152
5-69. RT-581 ()/URC-9, Frequency Selector, Front View 5-153
5-70. RT-581A/URC-9, Frequency Selector, Front View. 5-154
5-71. RT-581()/URC-9, Frequency Selector, Bottom View. 5-155
5-72. RT-581()/URC-9, Frequency Selector, Rear View. 5-156
5-73. RT-581/URC-9, Frequency Selector, Front View of Rear Plate 5-156
5-74. RT-581A/URC-9, Frequency Selector, Front View of Rear Plate. 5-157
Number Title
Page
5-75. RT-581/URC-9, Frequency Selector, Front View of Rear Plate, Small Gear Plate Removed 5-1585-76. RT-581A/URC-9, Frequency Selector, Front View of Rear Plate,Small Gear Plate Removed5-159
5-77. RT-581()/URC-9, Frequency Selector, Rear View of Front Plate 5-159
5-78. RT-581()/URC-9, Frequency Selector, Left Top View 5-160
5-79. RT-581A/URC-9, Frequency Selector, Front View, Set to Preselect 220 MHz 5-161
5-80. RT-581/URC-9, Frequency Selector, Exploded View. 5-163
5-81. RT-581A/URC-9, Frequency Selector, Exploded View. 5-165
5-82. Power Supply PP-2702/URC-9, Front View. 5-167
5-83. Power Supply PP-2702/URC-9, Top View. 5-168
5-84. Power Supply PP-2702/URC-9, Bottom View 5-168
5-85. Radio Frequency Amplifier AM-1565/URC, Extended on Slides 5-169
5-86. Radio Frequency Amplifier AM-1565/URC, Extended and Tilted 5-170
5-87. Radio Frequency Amplifier AM-1565/URC, Top View. 5-171
5-88. Radio Frequency Amplifier AM-1565/URC, Front View,Parts Location.5-172
5-89. Radio Frequency Amplifier AM-1565/ERC, Bottom View 5-173
5-90. Radio Frequency Amplifier AM-1565/URC, Inside of Case. 5-174
5-91. AM-1565/URC, Controls and Indicators 5-175
5-92. AM-1565/URC, Preset Tuning Potentiometers 5-176
5-93. AM-1565/URC, Location of Alignment Points 5-177
5-94. AM-1565/URC, Front Panel Rear View 5-178
5-95. AM-1565/URC, Output Loading Adjustment Subassembly,Exploded View.5-179
5-96. AM-1565/URC, Autopositioner. 5-179
5-97. AM-1565/URC, Autopositioner, Switch Section Orientation 5-180
5-98. AM-1565/URC, Autopositioner, Relay K501, Contact Adjustment 5-180
5-99. AM-1565/URC, Autopositioner, Exploded View,Disassembly Procedure5-181
5-100. AM-1565/URC, Autopositioner, Exploded View, Parts Location 5-183
5-101. AM-1565/URC, Power Amplifier Subassembly, Parts Location (A) 5-185
5-102. AM-1565/URC, Power Amplifier Subassembly, Parts Location (B) 5-185
5-103. AM-1565/URC, Power Amplifier Subassembly, Parts Location (C) 5-186
5-104. AM-1565/URC, Power Amplifier Subassembly, Parts Location (D) 5-186
5-105. AM-1565/URC, Power Amplifier Subassembly, Parts Location (E) 5-187
5-106. AM-1565/URC, Power Amplifier Subassembly, Parts Location (F) 5-187
5-107. AM-1565/URC, Power Amplifier Subassembly, Parts Location (G) 5-188
5-108. AM-1565/URC, Power Amplifier Subassembly, Parts Location (H) 5-188
5-109. AM-1565/URC, Power Amplifier Subassembly, Parts Location (I) 5-189
5-110. AM-1565/URC, Power Amplifier Subassembly, Parts Location (J) 5-190
5-111. AM-1565/URC, Power Amplifier Subassembly, Parts Location (K) 5-190
5-112. AM-1565/URC, Servo Amplifier Subassembly, Top View. 5-191
5-113. AM-1565/URC, Servo Amplifier Subassembly, Bottom View (A) 5-191
5-114. AM-1565/URC, Servo Amplifier Subassembly, Bottom View (B) 5-192
5-115. AM-1565/URC, Amplifier Blower Assembly 5-193
5-116. Radio Set Control C-3866/SRC, Removal of Chassis 5-193
5-117. Radio Set Control C-3866/SRC, Plug P201 Removed. 5-194
5-118. Radio Set Control C-3866/SRC, Top View. 5-195
5-119. Radio Set Control C-3866/SRC, Bottom View 5-196
Number Title Page
5-120. Radio Set Control C-3866/SRC, Rear View (A) 5-197
5-121. Radio Set Control C-3866/SRC, Rear View (B) 5-197
5-122. Radio Set Control C-3866/SRC, Rear View, Cover Plate Removed 5-198
5-123. C-3866/SRC, Controls and Indicators 5-198
5-124. C-3866/SRC, Squelch Control Board 5-199
5-125. C-3866/SRC, Stepping Relay K206, Front View. 5-199
5-126. C-3866/SRC, Stepping Relay K206, Top View 5-200
5-127. C-3866/SRC, Stepping Relay K206, Rear View. 5-201
5-128. Radio Set AN/SRC-20(), Interconnection Diagram 5-203
5-129. Radio Set AN/SRC-21(), Interconnection Diagram 5-205
5-130. Radio Set AN/URC-9(), Interconnection Diagram 5-207
5-131. Radio Set AN/SRC-20(), AC Power Distribution, Schematic Diagram 5-209
5-132. Radio Set AN/SRC-21(), AC Power Distribution, Schematic Diagram 5-211
5-133. Radio Set AN/URC-9(), DC Power Distribution, Transmit Function, Schematic Diagram. 5-213
5-134. Radio Set AN/URC-9(), DC Power Distribution, Receive Function, Schematic Diagram. 5-215
5-135. Radio Frequency Amplifier AM-1565/URC, DC Power Distribution, Schematic Diagram. 5-217
5-136. Power Supply PP-2702/URC-9, Schematic Diagram 5-219
5-137. Receiver-Transmitter Case CY-2959/URC-9, Schematic Diagram 5-221
5-138. Receiver-Transmitter RT-581/URC-9, Interconnection Diagram and Directional Coupler Schematic, (AN/URC-9 Only) 5-223
5-139. Receiver-Transmitter RT-581A/URC-9, Interconnection Diagram and Directional Coupler Schematic, (AN/URC-9A Only) 5-225
5-140. RT-581 ()/URC-9, RF and PA Amplifier Assembly, Schematic Diagram 5-227
5-141. RT-581 ()/URC-9, Frequency Multiplier-Oscillator Assembly, Schematic Diagram 5-229
5-142. RT-581()/URC-9, First IF Amplifier Assembly, Schematic Diagram 5-231
5-143. RT-581/URC-9, Second IF Amplifier Assembly, Schematic Diagram (AN/URC-9 Only) 5-233
5-144. RT-581A/URC-9, Second IF Amplifier Assembly, Schematic Diagram (AN/URC-9A Only) 5-235
5-145. RT-581()/URC-9, Third IF Amplifier Assembly, Schematic Diagram 5-237
5-146. RT-581 ()/URC-9, Audio Amplifier and Modulator Assembly, Schematic Diagram 5-239
5-147. RT-581 ()/URC-9, Broadband Sidetone Amplifier Assembly, Schematic Diagram 5-241
5-148. RT-581()/URC-9, Relay-Filter Assembly, Schematic Diagram 5-243
5-149. RT-581 ()/URC-9, Part of Front Panel Assembly, Schematic Diagram 5-245
5-150. RT-581/URC-9, Part of Front Panel Assembly and Frequency Selector Assembly, Schematic Diagram (AN/URC-9 Only) 5-247
5-151. RT-581A/URC-9, Part of Front Panel Assembly and Frequency Selector Assembly, Schematic Diagram (AN/URC-9A Only) 5-249
5-152. Radio Frequency Amplifier AM-1565/URC, Power Supply and Interconnection Schematic Diagram 5-251
5-153. AM-1565/URC, Front Panel Assembly, Schematic Diagram 5-253
5-154. AM-1565/URC, Autopositioner, Schematic Diagram 5-255
5-155. AM-1565/URC, Power Amplifier Subassembly, Schematic Diagram 5-257
5-156. AM-1565/URC, Servo Amplifier Subassembly, Schematic Diagram 5-259
Number ritle Page
5-157. Radio Set Control C-3866/SRC, Schematic Diagram 5-261
5-158. Radio Set Control C-2383/URC-9, Schematic Diagram 5-265
7-1. Radio Set AN/SRC-20(), Outline and Mounting Dimensions 7-3
7-2. Radio Set AN/SRC-21(), Outline and Mounting Dimensions. 7-5
VOLUME 2
2-1. Radio Frequency Amplifier AM-1565/URC, Controls and Indicators 2-2
2-2. Radio Set AN/URC-9 (), Controls and Indicators 2-3
2-3. Radio Set Control C-3866/SRC, Controls and Indicators 2-4
2-4. Radio Set AN/URC-9 (), Preset Channel Memory Drum 2-19
2-5. Radio Frequency Amplifier AM-1565/URC, Preset Tuning Potentiometers 2-21
2-6. Radio Set Control C-3866/SRC, Squelch Controls 2-23
2-7. Radio Frequency Amplifier AM-1565/URC, Fuse Location. 2-26
2-8. Radio Set AN/URC-9(), Fuse Location. 2-27
2-9. Radio Set Control C-3866/SRC, Fuse Location. 2-28

LIST OF TABLES

Number Title Page
VOLUME 1
1-1 Reference Data for Radio Frequency Amplifier AM-1565/URC 1-8
1-2 Reference Data for Radio Set AN/URC-9 () 1-9
1-3 Control Crystal Frequencies, Radio Set AN/URC-9 () 1-13
1-4 Reference Data for Radio Set Control C-3866/SRC 1-15
1-5 Equipment Supplied for Radio Sets AN/SRC-20() and AN/SRC-21 () 1-15
1-6 Equipment Required (Not Supplied) 1-17
1-7 Field Change Index for Radio Sets AN/SRC-20() and AN/SRC-21 () 1-18
1-8 Radio Path Transmission Distance as a Function of Antenna Height 1-21
3-1 Second IF Amplifier RF Injection Chart, AN/URC-9A Only 3-6
3-2 Second IF Amplifier RF Injection Chart, AN/URC-9 Only. 3-9
3-3 First IF Amplifier RF Injection Chart 3-10
3-4 Frequency Multiplier-Oscillator UHF Injection Chart 3-12
3-5 Five-Wire Channel Code Produced by Stepping Relay K206 3-86
3-6 Radio Frequency Amplifier AM-1565/URC SwitchContact Combinations for Channel Selection3-99
4-1 Recommended Periodic Maintenance Schedule 4-1
5-1 Test Equipment Required for Maintenance of Radio Sets AN/SRC-20 () and AN/SRC-21 () and AN/URC-9 () 5-3
5-2 Special Tools Required (Not Supplied) 5-5
5-3 Test Equipment to be Made Locally 5-5
5-4 Radio Set AN/URC-9 () Assembly Numerical Designation 5-9
5-5 Radio Set Contro1 C-3866/SRC Numerical Designation 5-10
5-6 Radio Frequency Amplifier AM-1565/URC Assembly Numerical Designation 5-10
5-7 Front Panel Checkout Procedure 5-12
5-8 Fuse Complement for Radio Sets AN/SRC-20(), AN/SRC-21 (), and AN/URC-9() 5-22
5-9 Second IF Amplifier Crystal Frequencies (Transmit) 5-26
5-10 Second IF Amplifier Troubleshooting Procedures (Transmit) 5-28
5-11 First IF Amplifier Crystal Frequencies (Transmit) 5-31
5-12 First IF Amplifier Troubleshooting Procedures (Transmit) 5-33
5-13 FMO Frequencies at Test Point J204 5-36
5-14 FMO Crystal Frequencies 5-38
5-15 FMO Tracking Tabs 5-39
5-16 FMO Troubleshooting Procedures (Transmit) 5-40
5-17 FMO Intermittent Operations (Transmit) 5-43
5-18 RF and PA Tracking Tabs 5-48
5-19 RF and PA Troubleshooting Procedures (Transmit) 5-48
5-20 RF and PA Intermittent Operations (Transmit) 5-51
5-21 Audio Amplifier and Modulator Troubleshooting Procedures (Transmit) 5-54
Number Title Page
5-22 Third IF Amplifier and Audio Amplifier and Modulator Troubleshooting Procedures (Receive) 5-58
5-23 Second IF Amplifier Frequencies at J404 Output. 5-59
5-24 Second IF Amplifier Troubleshooting Procedures (Receive) 5-60
5-25 First IF Amplifier Troubleshooting Procedures (Receive) 5-62
5-26 RF and PA Troubleshooting Procedures (Receive) 5-64
5-27 Squelch Level Troubleshooting Procedures (Receive) 5-66
5-28 R/T Centrifugal Fan Troubleshooting Procedures 5-67
5-29 Radio Set Control C-3866/SRC Troubleshooting Procedures 5-69
5-30 Power Amplifier Troubleshooting Procedures 5-71
5-31 Autopositioner Troubleshooting Procedures 5-72
5-32 Servo Amplifier Troubleshooting Procedures 5-74
5-33 Automatic Drive Control Regulator Troubleshooting Procedures 5-76
5-34 Directional Coupler Troubleshooting Procedures 5-78
6-1 Equipment Units of Radio Sets AN/SRC-20() and AN/SRC-21() 6-2
6-2 Maintenance Parts List 6-3
6-3 Manufacturer's Name and Code 6-117
7-1 Cable Assemblies for Radio Set AN/SRC-20() and AN/SRC-21() 7-2
VOLUME 2
2-1 Description of Controls for Radio Sets AN/SRC-20() and AN/SRC-21() 2-5
2-2 Summary of Operating Procedures for Radio Sets AN/SRC-20() and AN/SRC-21() 2-14
2-3 Operator's Troubleshooting Procedure 2-23
2-4 Fuse Complement for Radio Sets AN/SRC-20() and AN/SRC-21() 2-24

A. Radio Set AN/SRC-20()

Figure 1-1. Radio Sets AN/SRC-20() and AN/SRC-21() (Sheet 1 of 2)

A. Radio Set AN/SRC-20()

Figure 1-1. Radio Sets AN/SRC-20() and AN/SRC-21() (Sheet 1 of 2)

b. Radio Set AN/SRC-21()

Figure 1-1. Radio Sets AN/SRC-20() and AN/SRC-21() (Sheet 2 of 2)

CHAPTER 1

GENERAL INFORMATION

1-1. SCOPE.
1-2. This Technical Manual contains installation and operating instructions, operating principles, maintenance procedures, and a parts list for Radio Sets AN/SRC-20, AN/SRC-20A, AN/SRC-21, and AN/SRC-21A. This manual is effective upon receipt. Extracts from this publication may be made to facilitate the preparation of other Department of Defense publications.

NOTE
The expression, (), following an equipment nomenclature indicates both models (i.e., AN/SRC-20() includes AN/SRC 20 and AN/SRC-20A; AN/SRC-21 () includes $\operatorname{AN} /$ SRC-21 and AN/SRC 21A; AN/URC-9() includes AN/URC-9 and AN/URC-9A, and RT-581() includes RT-581/ URC-9 and RT-581A/URC-9).

1-3. GENERAL DESCRIPTION.
1-4. Radio Sets AN/SRC-20() and AN/ SRC-21(), shown in figure $1-1 A$ and B, respectively, are designed for shipboard or fixed station operation. The AN/SRC-20 and AN/SRC-21 provide amplitude modulated (am) voice and tone signals on any of 1750 channels spaced 0.1 MHz apart in the 225.0 to $399.9-\mathrm{MHz}$ frequency range. Nineteen of the 1750 channels can be preset. The AN/SRC-20A and AN/SRC-21A provide am voice and tone signals on any of 3500 channels spaced 0.01 MHz apart in the 225.00 to $399.95-$ MHz frequency range.

1-5. Complete control, including the selection of preset channels, can be exercised from a maximum of four remotecontrol points. In addition, circuits are incorporated which permit the con-
nection of two sets for two-way automatic retransmission and broadband transmit and receive operation.

1-6. The AN/SRC-20 is composed of three basic units: Radio Frequency Amplifier AM-1565/URC, Radio Set AN/URC-9, and Radio Set Control C-3866/SRC. The AN/ SRC-20A is composed of the same units as the AN/SRC-20, except that Radio Set AN/ URC-9 is replaced with Radio Set AN/URC9A. The AN/SRC-21 is composed of two basic units: Radio Set AN/URC-9 and Radio Set Control C-3866/SRC. The AN/ SRC-21A is composed of the same units as the AN/SRC-21 except that Radio Set AN/ URC-9 is replaced by Radio Set AN/URC-9A.

1-7. To provide the control and selection of preset channels from the remote control stations, the AN/SRC-20() and AN/SRC-21() systems require remote control units Radio Set Control C-1138/UR or C-1207/UR and Indicator Control C-3868/SRC. These remote station control units are not supplied with the AN/SRC-20 and AN/SRC-21() systems.

1-8. DESCRIPTION OF UNITS.

1-9. The basic units which comprise Radio Sets AN/SRC-20() and AN/SRC-21() are briefly described in the following paragraphs.

1-10. RADIO FREQUENCY AMPLIFIER AM-1565/ URC. Radio Frequency Amplifier AM-1565/ URC, shown in figure 1-2, is an automatically tuned, fixed-station, 100 -watt uhf linear power amplifier operating class $A B$ in the frequency range of 225.00 to 399.95 MHz . The AM-1565/URC is continuously tunable over the frequency range, with provisions for presetting 19 channels for remote or local selection; a twentieth channel allows manual tuning. A dial calibrated in frequency, and a
logarithmically calibrated dial are provided to assist in the presetting of channels. All channel information is made available to Radio Set AN/URC-9().

The rf input can be controlled automatically by a variable ferrite attenuator which compensates for variation in the rf output of Radio Set AN/URC-9().

Figure 1-2. Radio Frequency Amplifier AM-1565/URC

1-11. The AM-1565/URC has an internal power supply operating from a $115 / 230$ volts, $50 / 60 \mathrm{~Hz}$ ac power source. The AM1565/URC, with integral power supply, is contained in the equipment case on a tilting slide mechanism; this slide mechanism allows the unit to be withdrawn from the case for servicing (see figures 5-85 and 5-86). Major subassembiias such as the Power Amplifier and Servo Amplifier, can be removed from the chassis. An internal blower provides forced air cooling. Connections for an antenna coupler, radio set exciter, ac power, and remote control are provided at the rear of the case; all fuses, except for
voltage fuse F301, arn located on the front panel (see figure 1-2).

CAUTION

The servo system in Radio Frequency Amplifier AM1565/URC is factory tuned for 60 Hz ; wher Radio Set AN/SRC-20 () is used on 50 Hz , the system must be retuned to 50 Hz using the procedure in Chapter 5 , paragraph 5-106.

1-12. RADIO SET AN/URC-9. Radio Set AN/URC-9 is the major unit of both the

AN/SRC-20 and the AN/SRC-21. The unit, shown in figure 1-3, functions as a triple conversion, superheterodyne receiver during non-transmitting conditions. When the microphone push-to-talk switch is activated, a series of t / r (transmit-receive) relays convert the unit to a transmitter. Three crystal controlled oscillators provide stable radio and intermediate frequencies (rf and if) in both transmit and receive. When operating independently (outside the AN/SRC 20() or AN/SRC-21()), Radio Set Control C-2383/URC-9 provides remote control of Radio Set AN/URC-9().

1-13. Receiver-Transmitter RT-581/URC-9. The Receiver-Transmitter RT-581/URC-9 operates on any of 1750 channels spaced at 0.1 MHz intervals within the 225.0 to $399.9-\mathrm{MHz}$ frequency range. Frequency selection is determined by the position of the CHAN SEL switch, which has 19 preset channel positions, a MANUAL position and a REMOTE PRESET position. The 19 preset channel frequencies can be set on a memory drum, accessible through a door in the front panel. When the CHAN SEL switch is in the MANUAL position, any one of the 1750 channels can be selected using the MANUAL FREQUENCY TENS, UNITS, and TENTHS controls on the front panel of the AN/URC-9. When the CHAN SEL switch is in REMOTE PRESET, channel selection is exercised from a fixed control station.

1-14. Power Supply PP-27.02/URC-9. Power Supply PP-2702/URC-9 provides all operating voltages required by the receiv-er-transmitter. The power supply operates on 115 or 230 volts, 50 or $60 \mathrm{~Hz} \mathrm{ac}$. The power supply provides 115 volts ac to a blower within Receiver-Transmitter Case CY-2959/URC-9. The power supply also provides 115 volts ac to a centrifugal fan which mounts on the Receiver-Transmitter RT-581 ()/URC-9 main frame. The centrifugal fan supplies cooling air to the receiver-transmitter subassemblies, In particular, the $R F$ and PA Amplifier and Audio Amplifier and Modulator output tubes.

1-15. Receiver-Transmitter Case CY-2959/ URC-9. Receiver-Transmitter Case CY-2959/URC-9 contains two compartments (see figure 1-3) ; one for Power Supply PP-2702 /URC-9, and one for Receiver-Transmitter RT-581/URC-9. The blower in the top of the power supply compartment circulates cooling air around the heat exchanger case and through the power supply compartment. The louvered ports on each side of the case are covered with plates to make the equipment immersion-proof during transmit. During operation, the plates are detached and relocated above the louvered ports.

1-16. RADIO SET AN/URC-9A. Radio Set AN/URC-9A is the major unit of both the AN/SRC-20A and AN/SRC-21A. The AN/URC9 A is functionally identical to the AN/ URC-9 except that Receiver-Transmitter RT-581A/URC-9 is used instead of RT-581/ URC-9. The RT-581A/URC-9 operates on any of 3500 channels spaced at 0.01 MHz intervals within the 225.00 to $399.95-$ MHz frequency range.

1-17. RADIO SET CONTROL C-3866/SRC. Radio Set Control C-3866/SRC, shown in figure 1-4, provides all the necessary control functions for both local and remote control of Radio Set AN/SRC-20() or Radio Set AN/SRC-21 () when either of these sets is operated in the preset mode. The $C-3866 / S R C$ enables the operator to select any one of 19 preset radio channels on Radio Set AN/SRC-20() or Radio Set AN/SRC-21() and Antenna Coupler Group AN/SRA-33 (when used in either radio set). When used in conjunction with Indicator Control C-3868/SRC and Radio Set Control C-1138/UR or C-1207 /UR (figure $1-5$), the $\mathrm{C}-3866 / \mathrm{SRC}$ provides receive-transmit and channel selection from as many as four remote control stations. Audio transformers in the C-3866/ SRC convert the unbalanced inputs from Radio Set AN/SRC-20() or AN/SRC-21 () to the balanced outputs required by the remote stations.

1-18. When Radio Set AN/SRC-20() or AN/SRC-21() is set for remote preset

NOTE: TENTHS-HUNDREDTHS control graduated in TENTHS on RT-581/URC-9
Figure 1-3. Units of Radio Set AN/URC-9()

Figure 1-4. Radio Set Control C-3866/SRC

TYPICAL REMOTE CONTROL ROUIPNENT (NOT SUPFLIED)

Figure 1-5. Typical Remote Control Station
channel operation, any one of the preset channels can be selected locally from the $\mathrm{C}-3866 /$ SRC or from the $\mathrm{C}-3868 / \mathrm{SRC}$ at the remote control station on a telephone type dial. The C-3866/SRC contains a stepping relay and programming relay which converts the dial pulses into 5wire channel information for Radio Set AN/URC-9(), Radio Frequency Amplifier AM-1565/URC, and Antenna Coupler Group AN/SRA-33. Channel information is also supplied to the $\mathrm{C}-3868 / \mathrm{SRC}$ at the remote control station. A separate squelch level control is provided for each remote preset channe1. These controls are accessible through a door in the C-3866/ SRC front panel.

1-19. The $\mathrm{C}-3866 / \mathrm{SRC}$ contains a pushbutton start-stop circuit which controls primary power delivered to the AN/URC-9 (), and the AM-1565/URC. A11 primary power is fused within this unit. In addition, the C-3866/SRC contains three relay power supplies which provide the energizing voltages for relays located therein.

1-20. REFERENCE DATA.

1-21. Detailed reference data for Radio Sets AN/SRC-20() and AN/SRC-21() are given in the following tables:
a. Table 1-1 - Reference data for Frequency Amplifier AM-1565/URC (AN/SRC20() only).
b. Table 1-2 - Reference data for Radio Set AN/URC-9().
c. Table 1-3 - Control Crystal Frequencies, Radio Set AN/URC-9().
d. Table 1-4 - Reference data for Radio Set Control C-3866/SRC.

1-22. EQUIPMENT SUPPLIED.
1-23. Table 1-5 lists the equipment supplied with Radio Sets AN/SRC-20() and AN/SRC-21 ().

NOTE
Cables required for installation, 1 isted in table 7-1, are also supplied with the radio sets.

1-24. EQUIPMENT REQUIRED BUT NOT SUPPLIED.

1-25. Table 1-6 lists the equipment required, but not supplied, for Radio Sets AN/SRC-20() and AN/SRC-21 ().

Table 1-1. Reference Data for Radio Frequency Amplifier AM-1565/URC

CHARACTERISTIC	NUMBER-RANGE-VALUE
FREQUENCY	225.00 to 399.95 MHz
WAVELENGTH	1.33 to 0.75 meters
TUNING:	
Channel spacing	Continuously tuned
Preset channels	19 plus one manual
Channel selection time	10 seconds maximum
Excitation required	16 to 24 watts
Impedance	50 ohms

Table 1-1. Reference Data for Radio Frequency Amplifier AM-1565/URC (Continued)

CHARACTERISTIC	NUMBER-RANGE-VALUE
OUTPUT DATA:	
Minimum power	100 watts, average carrier
Impedance	50 ohms
Envelope distortion	4\% maximum above drive signal distortion at 80% modulation
Noise modulation	Not less than 30 db when driven by a source having a noise modulation at least 35db below 80% modulation at 1000 Hz
AMBIENT TEMPERATURE RANGE:	
Operating	$-54^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}\left(-65^{\circ} \mathrm{F}\right.$ to $\left.+149{ }^{\circ} \mathrm{F}\right)$
Storage	$-62^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}\left(-79^{\circ} \mathrm{F}\right.$ to $\left.+167^{\circ} \mathrm{F}\right)$
AMBIENT HUMIDITY	0\% to 95\%
ALTITUDE	Up to $10,000 \mathrm{ft}$
Table 1-2. Reference Data for Radio Set AN/URC-9()	
CHARACTERISTIC	NUMBER-RANGE-VALUE
FREQUENCY:	
Range Selection	225.0 to 399.9 MHz 1750 automatically selectable channels spaced 0.1 MHz apart for AN/URC-9 225.00 to 399.95 MHz 3500 automatically selectable channels spaced 0.05 MHz apart for AN/URC-9A
CHANNEL PRESETTING	19 preset channels available on local or remote control; manual frequency selection on local control
ACCURACY	At $150^{\circ} \mathrm{F}, \pm 12 \mathrm{kHz}$; at $100^{\circ} \mathrm{F}, \pm 10 \mathrm{kHz}$; at ambient temperature, $\pm 10 \mathrm{kHz}$; at $-40^{\circ} \mathrm{F}$, $\pm 15 \mathrm{kHz}$; at $-65^{\circ} \mathrm{F}, \pm 20 \mathrm{kHz}$

Table 1-2. Reference Data for Radio Set AN/URC-9() (Continued)

CHARACTERISTIC	NUMBER-RANGE-VALUE
CRYSTAL CONTROL:	
First IF Amplifier;	
: crystal designation	Type CR-55/U
type of cut	AT-cut
frequency range of crystal circuit	17.0 to 26.0 MHz
oscillation frequency	(see table 1-3)
temperature coefficient	Classed as 0
operating temperature	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}\left(-67^{\circ} \mathrm{F}\right.$ to $\left.+221^{\circ} \mathrm{F}\right)$
accuracy	$\pm 0.005 \%$
stability	$\pm 0.0005 \%$ over temperature range
Second IF Amplifier;	
crystal designation	CR-18A/U for AN/URC-9
	Similar to type CR-18A/U, with two crystal circuits in each mounting for AN/URC-9A
type of cut	AT-cut
frequency range of	3.0 to 3.9 MHz for AN/URC-9
	3.00 to 3.95 MHz for AN/URC-9A
oscillation frequency	(see table l-3)
temperature coefficient	Classed as 0
operating temperature	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}\left(-67^{\circ} \mathrm{F}\right.$ to $\left.+221^{\circ} \mathrm{F}\right)$
accuracy	$\pm 0.005 \%$
stability	$\pm 0.0005 \%$ over temperature range
Frequency Multiplior-	
crystal designation	Type CR-76/U

Table 1-2. Reference Data for Radio Set AN/URC-9() (Continued)

CHARACTERISTIC	NUMBER-RANGE-VALUE
Frequency MultiplierOscillator (cont);	
type of cut	AT-cut
frequency range of crystal circuit	31.1 to 45.0 MHz
oscillation frequency	(see table 1-3)
temperature coefficient	Classed as 0
operating temperature	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}\left(-67^{\circ} \mathrm{F}\right.$ to $\left.+221^{\circ} \mathrm{F}\right)$
accuracy	$\pm 0.0025 \%$
stability	$\pm 0.0005 \%$
RECEIVER CHARACTERISTICS:	
Type	Triple-conversion superheterodyne, with automatic noise limiting and carrier-operated squelch relay circuits
Input impedance	50 ohms
Sensitivity	6 uv or less for 10 db signal-plus-noise to noise ratio
Selectivity (third if bandwidth)	80 Hz minimum at 6 db attenuation, 150 Hz maximum at 60 db attenuation
Intermediate frequencies	20.0 to 29.9 MHz (variable), 3.0 to 3.9 MHz (variable), 500 kHz (fixed) for AN/URC-9
	```20.00 to 39.95 MHz (variable), 3.00 to 3.95 MHz (variable), 500 kHz (fixed) for AN/URC-9A```
AVC characteristics	Audio output constant within $\pm 2 \mathrm{db}$ from 10 uv to 0.25 v with 100 uv , modulated $30 \%$ at 1000 Hz 500 mw audio output level as reference
Frequency response:	
normal	```300 Hz; \pm5db; 500 Hz; \pm4db; 100 Hz; 0db; 3500 Hz; \pm4db```

Table 1-2. Reference Data for Radio Set AN/URC-9( ) (Continued)

CHARACTERISTIC	NUMBER-RANGE-VALUE
Frequency response (cont); broadband	Within -3 db at 100 Hz to -7 db at $25,000 \mathrm{~Hz}$, 1000 Hz reference
Audio outputs;	
local output	< watts, 600 ohms
remote output	2 watts, 600 ohms
audio distortion	10\% maximum
Squelch;	
S+N/N squelch	3 db signal-plus-noise to noise ratio
carrier squelch	3 uv carrier level
'TRANSMITTER   CHARACTERISTICS:	
Power output	16 watts uinimum into 50 ohm resistive load
Modulation	Amplitude modulation
Frequency response;	
normal	Within $\pm 3 \mathrm{db}$ from 300 to $3500 \mathrm{~Hz}, 1000 \mathrm{~Hz}$ reference
broadband	$\begin{aligned} & 300 \mathrm{~Hz}=+0.0 \text { to }-3.0 \mathrm{db} \\ & 1000 \mathrm{~Hz}=0.0 \text { (ref) } \\ & 10,000 \mathrm{~Hz}=1 \pm \pm 1.0 \mathrm{db} \\ & 25,000 \mathrm{~Hz}=+0 \text { to }-6 \mathrm{db} \end{aligned}$
audio distortion	Less than $7.5 \%$ at 3 db below $80 \%$ modulation
broadband sidetone	$175 \mathrm{mw}, 300$ to 3000 Hz into 600 ohms
Spurious radiation	-All spurious radiation suppressed 60 db below carrier level from 245.0 to 380.0 MHz . On any frequency outside this range, not more than one spurious radiation which must be at least 30 db below carrier
Operating temperature	$-54^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}\left(-67^{\circ} \mathrm{F}\right.$ to $\left.+149^{\circ} \mathrm{F}\right)$
Types of emission	Radio telephone (A3) ; tone (A2)

Table 1-2. Reference Data for Radio Set AN/URC-9( ) (Continued)

CHARACTERISTIC	NUMBER-RANGE-VALUE
TRANSMITTER CHARACTERISTICS (Continued) :	
Audio inputs;	
microphone	0.08 volt, 82 ohms
retransmission	0.31 volt
broadband	1.55 volts peak-to-peak
Sidetone output	$175 \mathrm{mw}, 300$ to 3500 Hz , from 600 ohm receiver audio output
Fidelicy	Within $\pm 3 \mathrm{db}$ froti 300 to $3500 \mathrm{~Hz}, 100 \mathrm{~Hz}$ reference
Duty cycle	Continugus transmission with $80 \%$ modulation at $+65^{\circ} \mathrm{C}\left(+149^{\circ} \mathrm{F}\right)$
PRIMARY VOLTAGE REQUIREMENTS	$115 \mathrm{vac}, 50 / 60 \mathrm{~Hz}$ single phase or 230 vac , $50 / 60 \mathrm{~Hz}$ single phase
POWER REQUIREMENTS	210 watts on receive
	360 watts on transmit

Table 1-3. Control Crystal Frequencies, Radio Set AN/URC-9( )

SUBUNIT	CRYSTAL	FREQUENCY	
		AN/URC-9A	AN/URC-9
First IF Amplifier:	Y301	17.00	17.0
20.00 to 29.95 MHz	Y302	18.00	$18.0^{\circ}$
AN/URC-9A	Y303	19.00	19.0
20.0 to 29.9 MHz   AN/URC-9	Y304	20.00	20.0
	Y305	21.00	21.0
	Y306	22.00	22.0
	Y307	23.00	23.0
		24.00	24.0

NAVELEX 0967-438-9010

Table 1-3. Control Crystal Frequencies, Radio Set AN/URC-9 ( ) (Continued)

SUBUNIT	CRYSTAL	FREQUENCY (MHz)	
		AN/URC-9A	AN/URC-9
First IF Amplifier (Continued)	Y309	25.00	25.0
	Y310	26.00	26.0
Second IF Amplifier:   3.00 to 3.95 in AN/URC-9A   3.0 to 3.9 MHz in AN/URC-9	Y401	3.00/3.05	3.0
	Y402	3.10/3.15	3.1
	Y403	3.20/3.25	3.2
	Y404	3.30/3.35	3.3
	Y405	3.40/3.45	3.4
	Y406	3.50/3.55	3.5
	Y407	3.60/3.65	3.6
	Y408	3.70/3.75	3.7
	Y409	3.80/3.85	3.8
	Y410	3.90/3.95	3.9
Frequency MultiplierOscillator:$200 \text { to } 370 \mathrm{MHz}$	Y202	35.00000	35.00000
	Y204	38.33333	38.33333
	Y206	41.66666	41.660666
	Y207	43.33333	43.33333
	Y208	45.00000	45.00000
	Y209	31.11111	31.11111
	Y210	32.22222	32.22222
	Y211	33.33333	33.33333
	Y212	34.44444	34.44444
	Y213	35.55555	35.55555
	Y214	36.66666	36.66666
	Y215	37.77777	37.77777

Table 1-3. Control Crystal Frequencies, Radio Set AN/URC-9 ( ) (Continued)

SUBUNIT	CRYSTAL	EREQUENC7 (MAHz)	
		AN/URC-9A	AN/URC-9
Frequency Multiplier-   Oscillator (continued) :	Y216	38.88888	38.88888
	Y217	40.00000	40.00000
	Y218	41.11111	41.11111

Table 1-4. Reference Data for Radio Set Control C-3866/SRC

CHARACTERISTIC	NUMBER-RANGE-VALUE
Number of channels	19
Channel code	5-wire (plus ground)
Channel selection	By telephone dial
Duty cycle	Continuous, unattended
Operating modes	Local or remote
Maximum primary power switching	SRC-20() 1550 watts
	SRC-21() 455 watts
Output voltage and power	12 vdc positive ground optional
	24 watts maximum
Ambient temperature range	$-54{ }^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ ( $-65^{\circ} \mathrm{F}$ to +149 ${ }^{\circ} \mathrm{F}$ )
Ambient humidity	Up to 95\% rh
Power requirements	20 watts on standby
	60 watts on channeling

Table 1-5. Equipment Supplied for Radio Sets AN/SRC-20( ) and AN/SRC-21( )

QTY   PER   EQUIP	NOMENCLATURE			OVERALL DIMENSIONS (in.)	VOL   (cu   fit)	WT   (1b)	
1	*Radio Frequency   Amplifier; including   Installation Kit	AM-1565/URC   MK-621/UR	16	$19-5 / 8$	$25 / 7-8$	4.7	222

Table 1-5. Equipment Supplied for Radio Sets AN/SRC-20( ) and AN/SRC-21( ) (Cont)

QTY	NOMENCLATURE		OVERALL DIMENSIONS (in.)			VOL   (cu   ft)	$\begin{aligned} & \text { WT } \\ & (1 \mathrm{~b}) \end{aligned}$
EQUIP	NAME	DESIGNATION	HEIGHT	WIDTH	DEPTH		
1	Radio Set   Including:   Receiver-Transmitter   Power Supply   Receiver-Transmitter   Case   Installation Kit	$\begin{aligned} & \text { AN/URC-9 ( ) } \\ & \text { RT-581( )/ } \\ & \text { URC-9 } \\ & \text { PP-2702/ } \\ & \text { URC-9 } \\ & \text { CY-2959/ } \\ & \text { URC-9 } \\ & \text { MK-620/UR } \end{aligned}$	13-13/16	19	19-1/2	3.1	157
1	Maintenance Cable, Receiver-Transmitter	$\begin{aligned} & \text { CX-7260/ } \\ & \text { URC-9 } \end{aligned}$			$\begin{aligned} & 3 \mathrm{ft} \\ & \text { long } \end{aligned}$		
1	Maintenance Cable, Power Supply	$\begin{gathered} \text { CX-7300/ } \\ \text { URC-9 } \end{gathered}$			$\begin{aligned} & 3 \mathrm{ft} \\ & \text { long } \end{aligned}$		
1	Retransmission Cable	$\begin{aligned} & \text { CX-7259/ } \\ & \text { URC-9 } \end{aligned}$			$\begin{aligned} & 5 \mathrm{ft} \\ & \text { long } \end{aligned}$		
1	Receiver-Transmitter RT-581 ( )/URC-9 Relay Unit Extension Cable	$\begin{aligned} & \text { CX-8521/ } \\ & \text { URC-9 } \end{aligned}$			$\begin{aligned} & 2 \mathrm{ft} \\ & \text { long } \end{aligned}$		
1	Radio Set Control: including;   Installation Kit	C-3866/SRC MK-622/UR	9-11/16	19	19-5/16	2.40	66
$1$   or	*Rack, Electrical Equipment (for AN/SRC-20( ))	MT-2299/UR	$52-23 / 32$	$22-1 / 16$	$23-7 / 32$		
1	Rack, Electrical Equipment, (for AN/SRC-21( ))	MT-2300/UR	35-7/32	$22-1 / 15$	23-7/32		72
2 ea	```Technical Manual VOL I VOL II```	$\begin{aligned} & \text { NAVELEX } \\ & 0967-438- \\ & 9010 \\ & 0967-438- \\ & 9020 \end{aligned}$	11.5	9.5	2		
1	Reference Standards Book	$\begin{aligned} & \text { NAVELEX } \\ & 0967-438- \\ & 9050 \end{aligned}$	11	8.5			

Table 1-5. Equipment Supplied for Radio Sets AN/SRC-20() and AN/SRC-21( ) (Cont)

QTY   PER   EQUIP	NOMENCLATURE			OVERALL DIMENSIONS (in.)		VOL	
	WT   $(1 b)$						
1	Operator's   Instruction Chart	NAVELEX   $0967-438-$   9030	11	8.5			
1	Performance   Standards Sheet	NAVELEX   $0967-438-$   9040	11	8.5			

* Not included with Radio Set AN/SRC-21( )

Table 1-6. Equipment Required (Not Supplied)

QTY PER EQUIP	NOMENCLATURE		REQUIRED USE	REQUIRED CHARACTERISTICS
	NAME	DESIGNATION		
$\begin{array}{r} 1 \\ \text { and } \\ 1 \\ \text { or } \\ 1 \end{array}$	Headset   Microphone   Headset	$\begin{aligned} & \text { NT-49985-A } \\ & \text { M-58/U } \\ & \text { H-169/U } \end{aligned}$	```Local operation of AN/SRC-20( ) or AN/SRC-21( )```	600 ohms   Carbon microphone   82 ohms, with push-to-talk button
$\begin{gathered} \text { as } \\ \text { reqd } \end{gathered}$	Radio Set Control	$\begin{aligned} & \text { C-1138/UR } \\ & \text { or } \\ & \text { C-1207/UR } \end{aligned}$	Remote control-	(see applicable Technical Manual)
1	Indicator Control	C-3868/SRC	Remote Control	
$\begin{array}{r} 1 \\ \text { and } \\ 1 \end{array}$	Radio Frequency Wattmeter	$\begin{gathered} \mathrm{TS}-1771 / \mathrm{U} \\ \text { and } \\ \text { AN/URM-120 } \end{gathered}$	Radio frequency wattage check	(see table 5-1)
1	Electronic Multimeter	AN/USM-116	Voltage check	
1	Electronic Voltmeter	AN/USM-143	Voltage check	
$\begin{array}{r} 1 \\ \text { and } \\ 1 \end{array}$	Signa1   Generator	$\begin{aligned} & \text { AN/USM-44A } \\ & \text { and } \\ & \text { AN/USM-25D } \end{aligned}$	Signal generation, for checking	

Table 1-6. Equipment Required (Not Supplied) (Continued)

QTY   PER   EQUIP	NOMENCLATURE		REQUIRED USE	REQUIRED   CHARACTERISTICS
1	Audio   Oscillator	DESIGNATION		Signal generator   for checking
1	Dummy Load	DA-91A/U	Antenna   termination	
1	Multimeter	AN/PSM-4	Troubleshooting	
1	Frequency   Counter	AN/USM-207	Troubleshooting   and alignment	

1-26. FIELD CHANGE INDEX.
1-27. Table 1-7 lists the field changes applicable to Radio Sets AN/SRC-20( ) and AN/SRC-21( ). For the complete field change identification guide index, refer to Section 3 of the Electronics Installation and Maintenance Book (EIMB), NAVSHIPS 0967-000-0100.

## 1-28. TRANSMISSION RANGE.

1-29. The transmission range of Radio Sets AN/SRC-20( ) and AN/SRC-21( ) is a function of the heights of the transmitting and receiving antennas. The monogram in table 1-8 provides the radio-path
length and tangential distance for transmission between the transceiver and receiving equipment as a function of the heights of the antennas.

1-30. PREPARATION FOR RESHIPMENT.
1-31. The reshipment preparation of Radio Sets AN/SRC-20( ) and AN/SRC-21( ) does not require any extraordinary precautions. The equipment should be placed in an aircell padded carton with a sufficient amount of silica-gel desiccant.

1-32. This package should be placed in a water-resistant carton and sealed. For final packaging, the equipment is placed in a wooden crate which is nailed closed.

Table 1-7. Field Change Index for Radio Sets AN/SRC-20( ) and AN/SRC-21( )

FIELD CHANGE NO.				PURPOSE
RADIO SET AN/SRC-				
20	20A	21	21A	
1	*	1	*	1. Deletes remote start-stop function   2. Stops power leak through power-on light of C-1138 when equipment is off   3. Stops carrier-on light from energizing when power is off (EIB $658 \& E I B 667$ )

Table 1-7. Field Change Index for Radio Sets AN/SRC-20() and AN/SRC-21 ( ) (Cont)


* Included in radio sets during manufacture

Table 1-8. Radio-Path Transmission Distance As a Function of Antenna Height


EXAMPLE SHOWN: HEIOHT OF RECEIVING-ANTENMA AIRPLANE 4000 FEET ( 0.76 MILES), HEIOHT OF TRANSMITTINO-ANTENNA IES FEET (O.OR): MAXIMUM RADIO-PATH DISTANCE = 100 MILES.
)
,

## CHAPTER 2

## OPERATION

2-1. Refer to Volume 2, Operator's Manual for Radio Sets AN/SRC-20( ) and AN/ SRC-21, for a description of the:
(1) operating principles, (2) controls and indicators, (3) operating procedures, and (4) operator maintenance instructions.

## CHAPTER 3

## FUNCTIONAL DESCRIPTION

3-1. OVERALL FUNCTIONAL DESCRIPTION.
3-2. Radio Sets AN/SRC-20 and AN/SRC-21 are shipboard units designed to operate in the ultra-high-frequency (uhf) range. These units are transceivers capable of both transmitting and receiving ampli-tude-modulated telephone signals (A3) and tone modulated signals (A2), in a frequency range of 225.0 to 399.9 MHz . This range is covered in $0.1-\mathrm{MHz}$ steps by 1750 crystal-controlled channels.

3-3. Radio Sets AN/SRC-20A and AN/SRC21 A are identical to the $\mathrm{AN} / \mathrm{SRC}-20$ and AN/SRC-21 in design and capability with the exception that they operate in a frequency range of 225.00 to 399.95 MHz . This range is covered in 0.05 MHz steps by 3500 crystal-controlled channels.

3-4. The AN/SRC-20 is composed of three basic units: Radio Frequency Amplifier AM-1565/URC, Radio Set AN/URC-9, and Radio Set Control C-3866/SRC. The AN/SRC20 A is composed of the same units as the AN/SRC-20 except that Radio Set AN/URC-9 is replaced with an AN/URC-9A. The AN/ SRC-21 is compoeed of two basic units: Radio Set AN/URC-9 and Radio Set Control C-3866/SRC. The AN/SRC-21A is composed of the same units as the AN/SRC-21 except that Radio Set AN/URC-9 is replaced with an AN/URC-9A.

NOTE
The expression, ( ), following an equipment nomenclature indicates both models (e.g., AN/ SRC-20( ) includes AN/SRC-20 and SRC-20A, etc.).

3-5. The minimum carrier output of Radio Set AN/SRC-20( ) is 100 watts. The minimum carrier output of Radio Set AN/

SRC-21( ) is 16 watts. All models of both radio sets have a modulation capability of $80 \%$.

3-6. An overall block diagram of the radio sets is shown in figure $3-1$. The figure illustrates the relationship of the basic units to each other, and to external equipment. Refer to paragraphs 1-8 through 1-19 for a description of the basic units comprising the radio sets.

3-7. MODES OF OPERATION. Radio Sets AN/ SRC-20( ) and AN/SRC-21( ) each have four modes of operation. These are: normal, retransmit, tone, and broadband. The operating mode is determined by the position of the AN/URC-9( ) front panel MODE selector switch and the PLAIN-BROADBAND switch at the rear of the unit.

3-8. Normal Mode. With the MODE switch on the Radio Set AN/URC-9 ( ) front panel in the NOR (normal) position and PLAINBROADBAND switch on the rear of the AN/ URC-9( ) in the PLAIN position, the radio set receives. Squelch control is available at the front panel of the AN/ URC-9( ) when the CHAN SEL switch is in the MANUAL or any of the 19 preset positions. Squelch control is available at Radio Set Control C-3866/SRC when the CHAN SEL switch is in the REMOTE PRESET position. Either signal-plus-noise or carrier-operated sque1ch may be selected by a wire link in the Audio Amplifier and Modulatdr assembly of the AN/URC-9( ). The local audio output level is controlled by a front panel VOLUME control. When the local or remote microphone push-to-talk button is pressed, or, in the case of an AN/SRC-20( ) installation, when the TEST KEY on the AM-1565/URC is set to ON or LOCK ON, the radio set is keyed to transmit.


Figure 3-1. Radio Sets AN/SRC-20( ) and AN/SRC-21( ), Overall Functional Block Diagram

3-9. Retransmit Mode. When the AN/SRC20( ) or AN/SRC-21( ) is properly connected to a similar set, automatic relaying is performed by setting the MODE selector on the front panel of each AN/ URC-9 ( ) to RETRANS (retransmit). The radio sets will then automatically relay signals in either direction. Both radio sets operate as receivers until one of the sets receives a signal strong enough to operate the carrier-controlled squelch circuit. The squelch circuit of the receiving set keys the other set to transmit, and the audio of the receiving set is applied to the transmit audio input of the transmitting set. A normal audio
signal is heard in the headset of the receiving set and a sidetone audio signal is heard in the headset of the transmitting set. When the signal is no longer present, the transmitting set returns to receive operation. When the microphone push-to-talk switch on either set is actuated, both sets are keyed to transmit and the microphone audio signal is applied to both radio sets for simultaneous (duplex) transmission.

NOTE
When operating in the RETRANS mode, avoid using the same channel frequency on both sets
as feedback between the respective antennas will prevent relaying of signals; a 5 MHz channel separation is recommended. Also, automatic keying of the radio sets depends on proper adjustment of the squelch controls; for adjustment, refer to Volume 2, Operator's Manual for Radio Sets AN/SRC-20( ) and AN/SRC-21( ).

3-10. Tone Mode. With the MODE switch on Radio Set AN/URC-9 ( ) in the TONE position, a $1000 \mathrm{~Hz}(1 \mathrm{kHz})$ tone oscillator is connected in place of the normal microphone circuit. Keying the transmitter results in the emission of a carrier modulated not less than $70 \%$ at 1 kHz . A 1 kHz tone is audible in the headset, and the percent of modulation indicated on the meter should be at midscale. In equipments modified for homing beacon operation, the 1000 Hz tone oscillator can be keyed to modulate the carrier, thereby providing a modulated continuous wave (mcw) output during transmit.

3-11. Broadband Mode. Broadband operation, selected by setting the PLAINBROADBAND switch at the rear of the re-ceiver-transmitter to BROADBAND, is similar to normal (NOR) operation except for the following:
a. During receive, the audio signals are rerouted through broadband equipment and the squelch function is not performed by the AN/URC-9( ). The decoded broadband audio is then applied to the headsets through the Audio Amplifier and Modulator assembly.
b. During transmit, the microphone signal is applied to the broadband equipment, and the encoded output of the broadband equipment is connected to the Audio Amplifier and Modulator assembly; the resultant signal is then transmitted in the normal manner.
c. Normal sidetone is replaced by unencoded sidetone from the broadband
equipment and amplified by the broadband sidetone amplifier in the AN/URC-9().

3-12. CHANNEL SELECTION. Local channel selection is accomplished by direct dial from Radio Set Control C-3866/SRC. Nineteen channel frequencies are preset on the 19 -channel memory drum which is accessible through a door in the front panel of the AN/URC-9 ( ). When the CHAN SEL switch is in the MANUAL position, the frequency of operation is controlled by the MANUAL FREQUENCY TENS, UNITS, AND TENTHS (or TENTHS-HUNDREDTHS) switches on the front panel of the AN/URC-9( ). When the CHAN SEL switch is in the REMOTE PRESET position, channel information is received from Radio Set Control C-3866/ SRC. The C-3866/SRC also provides channel selection from as many as four remote control stations. Any one of the 19 preset channels can be selected from the remote control stations on a telephonetype dial. The C-3866/SRC contains a stepping relay and programming relays which convert the dial pulses into 5wire channel information for Radio Set AN/URC-9 ( ), Radio Frequency Amplifier AM-1565/URC, and Antenna Coupler Group AN/SRA-33. Channel information is also supplied to the remote Indicator Control C-3868/SRC. A separate sque1ch-level control is provided for each channel. These controls are located on the front pane1 of the $\mathrm{C}-3866 /$ SRC.

## 3-13. TRANSMIT FUNCTION.

NOTE
Frequencies in the following description are applicable to the AN/SRC-20A and AN/SRC-21A; frequencies for the AN/SRC-20 and AN/SRC-21 are the same less the hundredths position, (e.g., 399.95 MHz becomes 399.9 MHz for the AN/SRC-20 and AN/SRC21.)

3-14. SIGNAL PATH. (Figure 3-2.) The transmit rf signal originates in a 3.00 to $3.95-\mathrm{MHz}$ crystal-controlled oscillator in the Second IF Amplifier. This signal is amplified and sent to the First

IF Amplifier where it is heterodyned with a 17 to $26-\mathrm{MHz}$ signal from a crystal-controlled oscillator, producing a sum frequency of one of 200 frequencies in the 20.00 to $29.95-\mathrm{MHz}$ range. This signal is amplified and passed to the Radio Frequency and Power Amplifier (RF and PA amplifier) where it is mixed with one of 18 frequencies in the 200 to $370-\mathrm{MHz}$ range as injected by the Frequency Mul-
tiplier-Oscillator (FMO). The resultant signal, in the range of 225.00 to 399.95 MHz , is applied to the power amplifier. The rf power output is modulated by a signal from the Audio Amplifier and Modulator and is routed through a low-pass filter and directional coupler to Radio Frequency Amplifier AM-1565/URC in Radio Set AN/SRC-20( ), or directly to the antenna in Radio Set AN/SRC-21().


NOTES:

1. THE AM-1565/URC IS NOT INCLUDED IN RADIO SET AN/SRC-21().
2. IN RADIO SET AN/SRC-21() CONNECTION FROM THE AN/URC-9 ( ) IS MADE DIRECTLY TO THE ANTENNA.
3. FREQUENCIES SHOWN ARE FOR THE AN/SRC-2OA AND AN/SRC-21A. FREQUENCIES FOR THE AN/SRC-20 AND AN/SRC-2I ARE THE SAME LESS THE HUNDREDTHS DIGIT.

Figure 3-2. Radio Sets AN/SRC-20( ) and AN/SRC-21( ), Transmit Function, Block Diagram

3-15. DETAILED DESCRIPTION. The transmit function encompasses part of all assemblies (except the Third IF Amplifier) in Receiver-Transmitter RT-581( )/ URC-9 of Radio Set AN/URC-9 ( ). In addition, the transmit signal for Radio Set AN/ SRC-20( ) passes from the output of Radio Set AN/URC-9 ( ) through Radio Frequency Amplifier AM-1565/URC to the antenna.

3-16. The initial frequency, in the range of 3.00 to 3.95 MHz , is generated in the Second IF Amplifier of Radio Set AN/URC-9 ( ) (see figure 5-1). The signal is generated by third oscillator V401B and amplified by V401A, which functions as a buffer amplifier during transmit. The signal is then sent to first transmit
mixer V304 in the First IF Amplifier where it is mixed with a frequency in the range of 17 to 26 MHz which is generated by second oscillator V305. The resultant sum frequency, in the 20.00 to $29.95-\mathrm{MHz}$ range is then sent to if amplifiers v301 and V302 for amplification.

3-17. After amplification, the signal passes to second transmit mixer V101 in the RF and PA Amplifier. Here it is heterodyned with the 200 to $370-\mathrm{MHz}$ signal from the FMO (comprised of first oscilla-tor-multiplier V201; frequency tripler V202; and injection amplifiers V203, V204, and V205) to produce a frequency in the range of 225.00 to 399.95 MHz . This signal is then sent to rf amplifiers V102, V103, and V104. Following
amplification, the 225.00 to $399.95-\mathrm{MHz}$ signal is applied through transmit driver V105 to transmit power amplifier V106.

3-18. The audio input from the microphone (figure 5-3) is applied to audio amplifier V803 in the Audio Amplifier and Modulator through MODE switch S702 and microphone transformer T601. After amplification, the signal is routed through audio and modulator driver V804 and phase-splitting transformer T801 to audio output amplifiers V805 through V808. The amplifier audio signal is then applied to the plate of transmit driver V105, and to the plate and screen grid of transmit power amplifier V106 where it modulates the 225.00 to $399.95-\mathrm{MHz}$ rf carrier. The modulated rf output of V106 (figure 5-1), a minimum of 16 watts, passes through low-pass filter FL1101 and the directional coupler to the antenna for Radio Set AN/SRC-21( ), or through Radio Frequency Amplifier AM1565/URC for Radio Set AN/SRC-20 ( ).

3-19. When the AN/SRC-20( ) is keyed to transmit, the 225.00 to $399.95-\mathrm{MHz}$ signal from the AN/URC-9( ) passes through input coaxial relay K201 in the AM-1565/ URC Power Amplifier subassembly (figure 5-11) to variable magnetic ferrite attenuator AT401, which aids in compensating for variations in the AN/URC-9 ( ) output and drive requirements over the entire frequency range. The signal is then amplified in rf amplifiers V201 and V202 and passed through directional coupler DC201 (used to monitor forward and reverse antenna power), low-pass filter FL201 (used to minimize harmonic radiation), and output coaxial relay K 202 to the antenna for transmission.

3-20. STAGE AND SPECIAL CIRCUIT DESCRIPTION. The conventional taansmitter electronic circuits are briefly described at the stage level; special and unique circuits are described in greater detail. Block diagrams and simplified schematics in this chapter and the maintenance schematic diagrams in Chapter 5, are used to support the descriptive text.

3-21. Functional Relationship of Assemblies. The overall functional relationship of the assemblies within Radio Sets AN/SRC-20 ( ) and AN/SRC-21 ( ) for the. transmit function is illustrated in figure 3-1.

3-22. Radio Set AN/URC-9( ). The overall functional relationship of the assemblies within Radio Set AN/URC-9( ), for both the transmit and receive functions, are illustrated in figure 3-3. The Frequency Selector controls the tuning of the Second IF Amplifier, First IF Amplifier, RF and PA Amplifier, and FMO assemblies. The mode of operation (NOR, RETRANS, OR TONE) is selected by the MODE switch. When in the TONE position, the MODE switch substitutes the output of the 1 kHz tone oscillator in place of the normal microphone or retransmit audio inputs. Broadband or plain operation is selected by placing the BROADBAND-PLAIN switch, S1401, in the desired position. All operating voltages for the circuits within Receiver-Transmitter RT-581( )/ URC-9 for Radio Set AN/URC-9( ) are furnished by Power Supply PP-2702/URC-9.

3-23. Second IF Amplifier-AN/URC-9A. The Second IF Amplifier generates the initial frequency that is eventually converted to the final rf carrier. The Second IF Amplifier (figure 5-8) in Radio Set AN/URC-9A, consists of third oscillator V401B and crystals Y401 (A and B) through $Y 410$ ( $A$ and $B$ ) that range from 3.00 to 3.95 MHz in $0.05-\mathrm{MHz}$ steps. Tube V401A, a buffer amplifier at transmit, functions as a mixer at receive. The tuning of all stages of this assembly is controlled by the 10 -position, $0.1-\mathrm{MHz}$ shaft of the Frequency Selector.

3-24. Refer to figure 5-144 during the following discussion. When the radio set is keyed to transmit, $t / r$ relay $K 401$ energizes and transfers the control grid circuit of third oscillator V401B from contact 8 to contact 4 of hundredths relay K402, thus enabling the selection of crystals relative to the frequency in use. (Refer to table 3-1.) Relay K402
provides a connection through contacts 6 or 7 to S 401 or S402, depending on whether the last digit of the frequency selected is $x . x 0$ or $x . x 5$, respectively. Switches S401 and S402, driven by the 10position, $0.1-\mathrm{MHz}$ shaft, select crystals corresponding to the next to the last digit of the frequeacy selected (x.0x
through x.9x). For example, when the radio set is tuned to a frequency with the last digits of xxx .90 , the $3.90-\mathrm{MHz}$ crystal Y410A is connected between ground and the grid of V401B through contacts 6 and 5 of S401, contacts 6 and 4 of K402, and contacts 3 and 8 of K401 (energized on transmit).

Table 3-1. Second IF Amplifier RF Injection Chart, AN/URC-9A Only

SELECTED	TRANSMIT		RECEIVE		
	SELECTED	INJECTION	SELECTED	INJECTION	INPUT FROM
CHANNEL	CRYSTAL	T0 1ST	CRYSTAL	TO 3RD	1ST IF AMPL
FREQUENCY	FREQUENCY	TRANSMIT	FREQUENCY	RECEIVE	$(\mathrm{MHz})$
(MHz)	(MHz)	MIXER   (MHz)	(MHz)	MIXER   (MHz)	
xxx. 95	3.95	3.95	3.45	3.45	3.95
xxx. 90	3.90	3.90	3.40	3.40	3.90
xxx. 85	3.85	3.85	3.35	3.35	3.85
xxx. 80	3.80	3.80	3.30	3.30	3.80
xxx. 75	3.75	3.75	3.25	3.25	3.75
xxx. 70	3.70	3.70	3.20	3.20	3.70
xxx. 65	3.65	3.65	3.15	3.15	3.65
xxx. 60	3.60	3.60	3.10	3.10	3.60
xxx. 55	3.55	3.55	3.05	3.05	3.55
xxx. 50	3.50	3.50	3.00	3.00	3.50
xxx. 45	3.45	3.45	3.95	3.95	3.45
xxx. 40	3.40	3.40	3.90	3.90	3.40
xxx. 35	3.35	3.35	3.85	3.85	3.35
xxx. 30	3.30	3.30	3.80	3.80	3.30
xxx. 25	3.25	3.25	3.75	3.75	3.25
xxx. 20	3.20	3.20	3.70	3.70	3.20
xxx. 15	3.15	3.15	3.65	3.65	3.15
xxx. 10	3.10	3.10	3.60	3.60	3.10
xxx. 05	3.05	3.05	3.55	3.55	3.05
xxx. 00	3.00	3.00	3.50	3.50	3.00

3-25. A voltage divider consisting of series-connected capacitors C412 and C413 determines the electrical position of the cathode of third oscillator V401B relative to the grid of V401B. The tuned circuit of the third oscillator consists of the selected crystal (Y410A in this case), capacitors C412 and C413, plus the grid-to-ground and cathode-to-ground capacitance of V401B. The third oscillator is a Colpitts type with the crystal acting as an inductance. The value of the total capacitance is such that oscillation is maintained at the fundamental frequency of the crystal. Cathode resis-
tor R404 provides additional bias to protect V 401 B in case oscillation stops. Coil L407 isolates bias resistor R404 from the crystal circuit. Plate voltage is from the +125 vdc supply through R407 and filter FL404. Test point J404 provides for measuring the voltage developed across third oscillator grid resistor R403. Resistor R402 isolates J 404 from the crystal circuit. Coupling capacitor C417 couples the signal from the cathode of $V 401 B$ to the control grid of V401A.

3-26. On transmit, V401A functioning as a buffer amplifier, amplifies the output


Figure 3-3. Radio Set AN/URC-9( ), Functional Block Diagram
of third oscillator V401B. Resistor R409 is disconnected from the plate circuit by contacts 4 and 6 of relay K401 (energized on transmit). This increases the plate voltage applied to V401A and, in turn, plate current and the level of the output signal developed across cathode load resistor R405. The output voltage, taken across cathode resistor R405 is coupled through C411, and bandpass filters Z403, Z402, and $Z 401$ to first transmit mixer V304 of the First IF Amplifier. The three parallelresonant tank circuits ( 2403,2402 , and Z401) form a 3.00 to $3.95-\mathrm{MHz}$ bandpass filter. Test point $J 402$ provides for measuring the 3.00 to $3.95-\mathrm{MHz}$ output signal and resistor R406 provides the grid return for V401A.

3-27. Second IF Amplifier-AN/URC-9. The Second IF Amplifier (figure 5-7) in Radic Set AN/URC-9 consists of third oscillator $V 401 B$ and crystals $Y 401$ through Y410 which range from 3.0 to 3.9 MHz in $0.1-\mathrm{MHz}$ steps. Tube V401A, a buffer amplifier at transmit, functions
as a mixer at receive. The 10 -position, $0.1-\mathrm{MHz}$ shaft of the Frequency Selector, controls the tuning of this assembly during both the receive and transmit functions.

3-28. Refer to figure 5-143 during the following discussion. When the radio set is keyed to transmit, $\mathrm{t} / \mathrm{r}$ relay K 401 energizes and transfers the control-grid circuit of third oscillator V401B from selector switch S 401 to S402, thus enabling the selection of crystals relative to the frequency in use. (Refer to table 3-2.) Switch S402, driven by the 10 -position, $0.1-\mathrm{MHz}$ shaft, selects a crystal that corresponds to the frequency to which filter network $2401, \mathrm{Z402}$, and Z 403 are tuned. Thus, when the radio set is tuned to $x x x .9 \mathrm{MHz}$, the $3.9-\mathrm{MHz}$ crystal (Y410) is connected across the grid of V 401 B through contacts 9 and 10 of switch 5402 and contacts 3 and 2 of relay K401 (energized on transmit). The $3.9-\mathrm{MHz}$ output of V 401 B is coupled
through C417 and across R406 of the V401A grid circuit.

Table 3-2. Second IF Amplifier RF Injection Chart, AN/URC-9 Only

	TRANSMIT		RECEIVE		
SELECTED	SELECTED	INJECTION	SELECTED	INJECTION	INPUT FROM
CHANNEL	CRYSTAL	TO 1ST	CRYSTAL	TO THIRD	1ST IF AMPL
FREQUENCY	FREQUENCY	TRANSMIT	FREQUENCY	RECEIVE	( MHz )
(MHz)	(MHz)	MIXER   (MHz)	(MHz)	MIXER (MH2)	
xxx. 9	3.9	3.9	3.4	3.4	3.9
xxx. 8	3.8	3.8	3.3	3.3	3.8
xxx. 7	3.7	3.7	3.2	3.2	3.7
xxx. 6	3.6	3.6	3.1	3.1	3.6.
xxx. 5	3.5	3.5	3.0	3.0	3.5
xxx. 4	3.4	3.4	3.9	3.9	3.4
xxx. 3	3.3	3.3	3.8	3.8	3.3
xxx. 2	3.2	3.2	3.7	3.7	3.2
xxx. 1	3.1	3.1	3.6	3.6	3.1
xxx. 0	3.0	3.0	3.5	3.5	3.0

3-29. During transmit, resistor R 409 is disconnected from the plate circuit of V401A by contacts 4 and 5 of relay K401. This action increases plate voltage and, in turn, plate current, thereby, amplifying the output signial developed across
cathode load resistor R405. The output signal is then coupled through C411 and bandpass filters 2403, Z402, and 2401 and applied to first transmit mixer V304 of the First IF Amplifier.

NOTE
The remaining components operate as described in paragraphs 3-25 and 3-26.

3-30. First IF Amplifier. The First IF Amplifier generates a signal in the 17 to $26-\mathrm{MHz}$ range that is mixed with the input signal from the Second IF Amplifier. The resultant sum signal of 20.00 to 29.95 MHz is then amplified and applied to the RF and PA Amplifier (see figure 5-6).

3-31. The First IF Amplifier, on transmit, consists of stages V301, V302, V304 and V305, and crystals Y301 through Y310 ranging from 17 to $26-\mathrm{MHz}$ in $1-\mathrm{MHz}$ steps. On transmit, the 3.00 to $3.95-\mathrm{MHz}$ signal from the Second IF Amplifier is applied to the control grid of first transmit mixer V304 where it is mixed with the 17 to $26-\mathrm{MHz}$ signal injected from second oscillator V305. The subsequent 20.00 to $29.95-\mathrm{MHz}$ signal, the first if signal,
is amplified by V301 and V302 and then applied to the RF and PA Amplifier. The 100 -position, $0.1-\mathrm{MHz}$ shaft of the Frequency Selector controls the tuning of V301 and V302; the 10 -position, $1-\mathrm{MHz}$ shaft controls frequency selection and the tuning of V304 and V305.

3-32. Refer to figure 5-142 during the following discussion. On transmit, first transmit mixer V 304 heterodynes the 3.00 to $3.95-\mathrm{MHz}$ signal from the Second IF Amplifier with the 17 to $26-\mathrm{MHz}$ output of the second oscillator $V 305$ to produce the first if signal between 20.00 and 29.95 MHz (see table 3-3). Capacitor C339 couples the 3.00 to $3.95-\mathrm{MHz}$ signal from the Second IF Amplifier to first transmitter mixer V304. Test point J304 provides means for measuring the 3.00 to $3.95-\mathrm{MHz}$ injection signal. Resistor R319 provides grid leak for V304, and inductors L318 and L319 are harmonic suppressors on the input line.

Table 3-3. First IF Amplifier RF Injection Chart

SELECTED	17 to 26-MHZ OSCILLATOR		INPUT/OUTPUT
	SELECTED	INJECTION TO SECOND	
CHANNEL	CRYSTAL	RECEIVE MIXER OR TO	IF
FREQUENCY $(\mathrm{MHz})$	$\begin{gathered} \text { FREQUENCY } \\ (\mathrm{MHz}) \end{gathered}$	$\underset{(\mathrm{MHz})}{\text { FIRST TRANSMIT MIXER }}$	(MHz)
xx9.xx	26	26	29.xx
xx8.xx	25	25	28.xx
xx7.xx	24	24	27.xx
xx6.xx	23	23	26.xx
xx5.xx	22	22	25.xx
xx4.xx	21	21	24.xx
$\mathrm{xx} 3 . \mathrm{xx}$	20	20	23.xx
xx2.xx	19	19	22.xx
xx1.xx	18	18	21.xx
xx0.xx	17	17	20.xx

3-33. Second oscillator V305 is controlled by crystals Y301 through Y310. Crystal switches S301 and S302 select the proper crystal according to the setting of the Frequency Selector. One half (pins 6, 7, and 8) of tube V305A is a grounded-grid amplifier working into parallel-tuned tank 2307 , which constitutes its plate load. The tank is ganged with the crystal switches driven by the

- 10 -position, $1-\mathrm{MHz}$ shaft of the Frequency Selector. Capacitor C343 couples the output from the plate (pin 6) of grounded -grid amplifier V305A to the control grid (pin 3) of cathode follower V305B, the other half of the tube. The crystal couples the output (pin 2) of the cathode follower to the cathode (pin 8) of the grounded-grid amplifier. The crystals operate at series resonance to
provide low impedance coupling with zero phase shift. The phase shift through the cathode follower is also zero. Thus, an in-phase voltage is routed back to the cathode of the grounded-grid amplifier sustaining conditions for oscillation. Coil L311 resonates the crystal socket capacitance and prevents it from affecting the operation of the circuit. Resistors R321 and R322 provide the coupling impedance at the cathodes and bias for the two sections of the tube.
$3-34$. The 17 to $26-\mathrm{MHz}$ output of second oscillator V305 is coupled to the cathode of V304 from oscillator plate load Z307 through capacitive voltage divider C337 and C338. Cathode resistor R317 provides bias for V304 and coupling impedance for the 17 to $26-\mathrm{MHz}$ signals; inductors L314, and L315 and capacitor C348 form a harmonic suppression network. Plate and screen-grid voltages for the first transmit mixer are supplied from the $+125-v d c$ supply via contacts 19 and 20 (closed on transmit) of $t / r$ relay K602 in the Relay-Filter (figure 5-133), and feed-through capacitor C334. Capacitors C334, C331, C341, and C342 provide a low-impedance path to ground for rf in the plate and screen-grid circuits.

3-35. The signal (between 20.00 and 29.95 MHz ) developed across first transmit mixer plate load L309, is coupled to the control grid of if amplifier V301 through capacitors C335 and C305 and parasitic suppressor R324; inductors L316 and L317 are harmonic suppressors in the coupling path. The if avc bus input to the grid circuit of V301 is grounded by contacts 19 and 20 (closed on transmit) of relay K 802 in the Audio Amplifier and Modulator (figure 5-146), and the ground is removed from V301 screen-grid voltage divider resistor R303 by contacts 15 and 16 (open on transmit) of relay K 602 in the Relay-Filter (see figure 5-148). The latter action causes the screen-grid voltage of V301 to rise to a value higher on transmit than on receive. Capacitor C319 grounds the cathode of V301 for rf. Series resistors R304, R 505 , and R303 form a voltage divider that provides
proper plate and screen-grid voltages to V301. Resistor R304 is also connected to the $+125-v d c$ supply.

3-36. Parallel-tuned tank 2303 is the plate load for V301. Capacitor C308 couples the if signal to the next par-alle1-tuned tank, 2304. Capacitor C311 couples the if signal to the control grid of second if amplifier V302 through parasitic suppressor R307. A similar network (Z305, C314, Z306, and C315) couples the amplified 20.00 to $29.95-\mathrm{MHz}$ signal to V101 in the RF and PA Amplifier (see figure 5-140). Series resistors R309, R325, and R326 form a voltage divider that provides proper plate and screengrid voltages to V302. The dc voltage developed across R308 is applied to the S meter circuit (figure 5-149) to provide an indication of the input signal strength. . Parallel tank circuits Z303 and $Z 304$, are tuned by the 100 -position, $0.1-\mathrm{MHz}$ shaft of the Frequency Selector. Trimmer capacitors C306 and C309 are adjusted to set the inductance-to-capacitance ratio for proper tracking.

3-37. Frequency Multiplier-Oscillator. The FMO (figure 5-5) generates frequencies in the 200 to $370-\mathrm{MHz}$ range. These frequencies are injected into the RF and PA Amplifier during both transmit and receive operations. Operation of the FMO is identical during both transmit and receive operations.

3-38. First oscillator-multiplier V201 is a crystal-controlled, cathode-coupled oscillator especially designed for use with overtone crystals (see figure 5141). The rigat half of the twin triode tube operates as a grounded-grid amplifier and is capacitively coupled to the left half, which acts as a cathode follower. Capacitor C207 couples the signal from the plate (pin 4) of the ground-ed-grid amplifier to the control grid (pin 7) of the cathode follower. The crystal, which couples the output of the cathode follower to the cathode (pin 2) of the amplifier, operates at series resonance to provide low impedance. coupling with zero phase shift. The phase
shift through the amplifier is also zero; thus, an in-phase signal is fed back to the grounded-grid amplifier satisfying the conditions required for sustained oscillation.

3-39. Crystals Y202, Y204, and Y206 through Y218 have one common side connected through C204 to pin 2 of V201. The grounded crystal cases produce a large capacitance to ground at pin 2 of V201; however, L219 resonates with this capacitance and cancels its effect on the circuit. In a similar manner, L 220 resonates with the crystal socket capacitance, thereby cancelling its effect on the operation of the circuit. Trimmer coils L201 through L218, inclusive, are used with their respective crystals to tune the plate of the grounded-grid amplifier to resonance. Capacitor C201 prevents the plate voltage of pin 4 of V201 from being grounded through the trimmer coils. Capacitor C236 is a tem-perature-compensating capacitor. The
grid (pin 3) of the grounded-grid amplifier is grounded through parasitic suppressor R202; resistors R203 and R204 provide the coupling impedances (and bias) at the cathodes for the two halves of V201.

3-40. Plate voltage for the cathode follower is supplied through step tuner 2201, trimmer coil L222, and parasitic suppressor R206. The step tuner in the oscillator output tank is tune to the second harmonic of the crystal frequency by the 18 -position, $10-\mathrm{MHz}$ shaft of the Frequency Selector when the set operates in the 220 to $299.95-\mathrm{MHz}$ range. When the radio set operates in the 300 to $399.95-$ MHz range, the tank circuit is tuned to the third harmonic. Thus, the output of the crystal oscillator is efther two or three times the crystal frequency, depending upon the operating frequency of the set (see table 3-4). Capacitor C208 and coil L222 are trimmers for oscillator output tank 2201.

Table 3-4. Frequency Multiplier-Oscillator UHF Injection Chart


* These crystals used for two frequencies each.

3-41. Capacitor C210 couples the first oscillator-multiplier output signal to the control grid of V202, which operates as a frequency tripler. The tripling action is accomplished by tuning plate tank Z 202 to the third harmonic ( 200 to 370 MHz ) of the signal applied to the grid. Thus, the signal in the plate tank is either six times or nine times that of the selected crystal frequency in the first oscillator-multiplier V201. Test point J201 provides an indication of the drive to V202, and capacitor C211 bypasses rf signals to ground preventing them from interfering with dc measurements being made at J201. The cathode of V202 is grounded; therefore, the tube depends entirely upon the voltage developed across the grid-leak circuit for bias. Plate voltage of +125 vdc is supplied to V202 through R213 and L224. Capacitor C214 couples the rf signal to paralleltuned plate tank Z202; trimmer C215 sets the minimum capacitance point of the plate tank circuit. Capacitor C216 couples the rf signal from the plate tank to the cathode of grounded-grid amplifier V203, the first of three injection amplifiers.

3-42. The cathode circuit of first injection amplifier $V 203$ consists of resistor R215, which provides cathode bias. Plate voltage for V203 is supplied from the +125 -vdc supply through R 210 and L226. Capacitor C220 couples the rf signal from the plate of V 203 to paralleltuned tank circuit Z204. Capacitor C222 couples the signal to the cathode of second injection amplifier V204. Injection amplifiers V204 and V205 each provide a stage of amplification identical to that of V203. Capacitors C234 and C235 form a voltage divider from which the 200 to $370-\mathrm{MHz}$ uhf signal is injected through J205 to contact 6 of injection relay K102 in the RF and PA Amplifier (see figure 5-140). Test points J202, J203, and J204 are used to measure the rf signals at the cathodes of the injection amplifiers during alignment or to inject a signal during troubleshooting. Tank circuits Z202, Z204, Z2O6 and Z208 are tuned by the 18 -position, $10-\mathrm{MHz}$
shaft of the Frequency Selector. (When the tank circuits are tuned, both capacitance and inductance are varied, improving stage gain by maintaining a good inductance to capacitance ratio.)

3-43. RF and PA Amplifier. The RF and PA Amplifiex (figure 5-4) contains second transmit mixer V101; rf amplifiers V102, V103, and V104; transmit power amplifier V106 and its output load, resonant cavity Z108. (Tube V104 functions as the first receive mixer during the receive function of the radio set.) On transmit, injection relay K102 is energized and the 200 to $370-\mathrm{MHz}$ signal from the FMO is injected into second transmit mixer V101 where it heterodynes with the 20.00 to $29.95-\mathrm{MHz}$ signal from the First IF Amplifier. The output of the second transmit mixer, in the frequency range of 225.00 to 399.95 MHz , is coupled to V102, the first of three amplifiers. After amplification in V102, V103, and V104, the rf signal is applied through transmit driver V105 to transmit power amplifier V106. Audio modulation signals from the Audio Amplifier and Modulator are applied to V105 and V106; hence, the output from V106 is audiomodulated rf in the operating range of 225.00 to 399.95 MHz . This signal is coupled from resonant cavity 2108 through low-pass filter FLl101 (not part of the RF and PA Amplifier) and contacts 1 and 2 (closed on transmit) of antenna relay K101 to the directional coupler.

3-44. Refer to figure $5-140$ during the following discussion. The 200 to $370-\mathrm{MHz}$ signal from the FMO is applied to the cathode of second transmit mixer V101 through contacts 6 and 8 (closed on transmit) of injection relay K102. Concurrently, the 20.00 to $29.95-\mathrm{MHz}$ signal from the First IF Amplifier is applied to the plate of V101 through rf choke L102. Choke coil Ll02 presents a low impedance to the signal from the First IF Amplifier and high impedance to the mixer output frequency. Plate voltage for V101 is supplied from the $+125-\mathrm{vdc}$ supply through choke coils L102 and L103, feedthrough capacitor C104, resistor R115,
and contacts 19 and 20 (closed on transmit) of t/r relay K 602 in the RelayFilter (see figure 5-133).

3-45. Test jack J103 provides a means for measuring the plate voltage or the 20.00 to $29.95-\mathrm{MHz}$ signal applied to the plate of V101 , rf choke L103 and C104 decouples the rf from the $+125-v d c$ supp1y. Resistors R101 and R102 form the grid-1eak circuit to ground. J104 is a test point for measuring the grid bias on V101. Capacitors C101 and C102 ground rf at the grid. Cathode bias resistor R103 is wirewound the thereby also provides an rf choke in the cathode circuit. Resistor R114, in the cathode input line from the FMO, provides the correct termination for the injection cable.
$3-46$. The 200 to $370-\mathrm{MHz}$ signal and the 20.00 to $29.95-\mathrm{MHz}$ signal mix in V101 to produce sum frequencies, rariging from 225.00 to 399.95 MHz , in the plate circuit. Capacitor C105 couples the 225.00 to $399.95-\mathrm{MHz}$ rf signal to a paralleltuned tank, Z101, and capacitor C110 couples the rf signal developed across 2101 to the cathode of rf amplifier V102. The cathode of V102 consists of network Z102, which provides a high coupling impedance for the rf signal and resistor R122 which provides cathode bias for the tube. On transmit, contacts 1 and 2 of injection relay Kl02 ground the con-trol-grid rf avc bus. Plate voltage of +125 vdc is supplied through L105 and dropping resistor R116. Capacitor C113 isolates rf signals from the $+125-v d c$ supply. Capacitor Cll4 couples the rf signal to plate tank Z103. Capacitor C117 couples the rf signal developed across $\mathrm{ZlO3}$ to rf amplifier V103 which provides a stage of rf amplification similar to that of V102. Test jack J105 provides for measuring the bias developed by the rf input to V103, and test jack Jllo allows for measuring the rf signal voltage on the cathode of V103.

3-47. After amplification in V103, the rf signal is coupled through C121, Z105,
and C123 to the cathode of transmit rf amplifier V104. On transmit, V104 receives plate voltage from the $+125-\mathrm{vdc}$ supply through L109, Lll3, and contacts 5 and 4 (closed on transmit) of $t / r$ relay K602 in the Relay-Filter (see figure 5-133). Coil L113 and capacitor C134 isolate rf signals from the $+125-\mathrm{vdc}$ supply. Output jack J102, used during receive, is disconnected from the plate circuit of V104 and grounded by contacts 3 and 4 (closed on transmit) of injection relay K102. Test jack J106 provides for measuring the grid bias developed by the rf drive to V104.

3-48. The amplified 225.00 to 399.95MHz rf output of V104 is coupled by C126 to parallel-tuned network Z106 which offers a high impedance to the rf signal. Capacitor Cl27 is a trimmer for network Z106. The signal developed across Z106 is coupled through C139 to the cathode of transmitter driver V105, which functions as a grounded-grid amplifier. Coil Lll5 provides the cathode impedance for the input signal and R112 provides cathode bias for V105. Capacitor Cl29 is a cathode bypass capacitor. Capacitor Cl40 provides rf ground for the the grid of V104, and R120 is a gridreturn circuit to ground. Test point J114 is used to measure grid bias developed on V105 by the rf signal.

3-49. Transmit driver V105 (figure 3-4) receives audio-modulated plate voltage from the $+325-v d c$ supply. The audio modulation is impressed on the platevoltage line in the primary (pin 2) of output transformer T 802 by audio power amplifiers V805 through V808 in the Audio Amplifier and Modulator. The amplifier output of V105 is developed across tuned circuit 2107 which (in parallel with C145 and trimmer capacitor C141) is tuned to present a high impedance to rf signals in the 225.00 to $399.95-\mathrm{MHz}$ range. Coil L119 and capacitor C142 are an rf choke which acts as a plate-decoupling network for V105. Resistor R121 is a meter shunt for metering the plate current of driver V105.


Figure 3-4. Radio Set AN/URC-9( ), Modulation Circuit, Simplified Schematic Diagram

3-50. The output of transmit driver V105, developed across $\mathrm{Z107}$, is coupled by C128 to the grid of transmit power amplifier V106. An rf choke, L114, provides a high impedance for the rf driving signal. Resistor R108 and capacitor C146 provide grid-1eak bias for V106; R108 provides a means for adjusting the fixed protective bias from the $-11-v d c$ supply and grid-leak bias for the desired power amplifier grid current. Resistor R109 is a meter shunt for metering the grid current of transmit power amplifier Vl06. Test jack Jlll provides a means for measuring the fixed bias of V106.

3-51. The screen-grid voltage for V106 is obtained from a variable bleeder circuit in the Relay-Filter consisting of R601, R602, and R603. This circuit is connected between the +125 and $+325-\mathrm{vdc}$ supplies. Audio modulation is impressed on the screen-grid voltage line in the primary (pin 4) of output transformer T802 by audio power amplifiers V805 through V808 in the Audio Amplifier and Modulator. Capacitor C138 and coil L121 form a screen-grid rf decoupling network; C601 is a dc blocking capacitor. Power amplifier V106 receives modulated plate voltage through the insulated inner conductor of resonant cavity Z108 and feedthrough rf bypass capacitor C133; the audio modulation is impressed on the plate voltage line in the primary (pin 1) of output transformer T802 in the Audio Amplifier and Modulator.

3-52. The output signal of power amplifier V106 (figure 5-140) is developed across plate tank 2108 , a coaxial resonant cavity. The rotor of the cavity tuning capacitor is ganged with the rf amplifier tank circuits and is tuned by the 1750 -position, $0.1-\mathrm{MHz}$ shaft of the Frequency Selector. Blocking capacitor C131 insulates the stator of the cavity tuning capacitor and prevents grounding of dc plate voltage on V106. Trimmer capacitor C132 sets the minimum capacitance point of 2108. Coupling loop Llll is adjusted and locked for optimum coupling at a frequency of 399.95 MHz .

3-53. The modulated 225.00 to $399.95-$ MHz rf signal coupled from 2108 by L111 is applied to low-pass filter FLllol through Jl15-P11. Low-pass filter. FLll01 attenuates all frequencies above 400 MHz to reduce harmonic output. After passing through the low-pass filter, the 225.00 to $399.95-\mathrm{MHz} \mathrm{rf}$ signal is returned through P1101-J108 to the RF and PA Amplifier where it is coupled through contacts 1 and 2 (closed on transmit) of antenna relay Klol to the directional coupler.

3-54. Audio Amplifier and Modulator. The Audio Amplifier and Modulator (figure 5-10) contains audio amplifier V803, audio modulator and driver V804, and audio output amplifiers V805 through V808 which provide audio-modulated $\mathrm{B}+$ to the RF and PA Amplifier during the transmit function. In addition, the Audio Amplifier and Modulator contains compression rectifier V802B, broadband relay K803, and $t / r$ relay $K 802$ which are utilized during the normal transmit, retransmit, duplex transmit, and broadband transmit functions.

3-55. The audio signal during the normal (NOR) mode passes through parts of the Front Pane1, the Relay-Filter, and the Audio Amplifier and Modulator. In addition, the audio modulation signal is applied to the transmit driver and power amplifier in the RF and PA Amplifier.

3-56. Refer to the normal mode transmit audio circuits in figure 5-3 during the following discussion. The normal transmit audio from the Front Panel assembly passes through FL702 to contact 1 (NOR) of MODE switch S702A. (Remote transmit audio is applied to this same contact through pin $U$ ' of $P 701$.$) The audio signal$ is routed through contact 4 of S702A to the $10-\mathrm{ohm}$ (dc resistance) primary winding of transformer T601. The voltage for the operation of the microphone is obtained from the $-l 1-\mathrm{vdc}$ bias supply across R611 in the primary circuit of T601. The audio signal, transformer-coupled to the secondary of T 601 , is routed through



R605, contacts 9 and 12 of S 702 B , pin F of P801, contacts 17 and 16 (closed on transmit) of $t / r$ relay K 802 , contacts 3 and 8 (closed in PLAIN operation) of broadbend relay K 803 to the grid input circuit of audio amplifier V803 (see figure 5-146). The input, developed across resistor R826, is coupled to the control grid of V803 through C809, the parallel combination of C817 and R847, and R854. Jack J805 is a test point used either to measure audio signals or to inject audio signals at the control grid of V803 during test and troubleshooting. Plate and screen voltages for V 803 are obtained from the +125 -vdc supply through a voltage divider consisting of resistors R828 and R829 of this assembly, and resistors R616, R617, and R618 of the Relay-Filter assembly.

3-57. Audio and modulator driver V804 is a parallel-operated dual-triode. The cathode bias for both sections is obtained from R832 which is bypassed by C815. The V803 audio output is developed across resistor R 830 and is coupled through C814 to potentiometer R831 which adjusts the input level to audio and modulator driver V804 during normal operation. The audio level determined by the setting of R831 is coupled to the parallel-connected grids of V804 through C818 and parasitic suppressors R855 and R856. Test point J802 is used to measure audio signals or to inject audio signals at the control grid of V804. Plate voltage for the stage is obtained from the $+325-\mathrm{vdc}$ supply through contacts 13 and 14 (closed on transmit) of the $\mathrm{t} / \mathrm{r}$ relay K 802 and transformer T 801.

3-58. Audio output amplifiers V805 through V808 are parallel-connected and push-pull operated. Tubes V805 and V807 comprise a parallel pair, as do tubes V806 and V808. The output signal of audio and modulator driver V 804 is developed across T801 and applied to the control grids of the audio output amplifiers. The signal at pin 3 of the secondary winding is coupled directly to the parallel-connected grids of V805 and V807; and the signal at pin 5 of the
transformer, which is 180 degrees out of phase with the pin 3 signal, is coupled directly to the control grids of V806 and V808. A fixed bias of -11 vdc is applied to the control grids through the transformer center tap, pin 4. Cathode resistor R834 of audio output amplifiers V805 through V808, in conjunction with the front panel meter, provides an indication of the percentage of modulation. Screen-grid voltages for the output amplifiers are supplied from the $+125-v d c$ supply through parasitic suppressers R843 through R846. Test points J803 and J804 are used to measure the audio modulation and the input to V806, respective$1 y$. Modulation $B+$ voltages of transmit driver V105, and the plate and screen grid of transmit power amplifier V106 in the RF and PA Amplifier are obtained from the primary of modulation transformer T802. (The manner in which the audio signal is superimposed on the carrier and transmitted is described in paragraph 3-43.)

3-59. The transmit sidetone audio output is coupled from pin 8 of T802 (figure 5-3) through audio-level control network R610 and R609, and contacts 7 and 4 (closed in PLAIN operation) of broadband relay K 803 to contacts 11 and 10 (closed on transmit) of $t / r$ relay K602. From contact 10 of K 602 , the sidetone audio is then applied through FL17 to the remote station headset or speakers; and through R3, R717 (VOLUME control), R705, and FL703 to HEADSET jack J702B and AUDIO jacks J703 and J704 on the front panel.

3-60. During transmit, the compression rectifier circuit maintains $80 \%$ to $90 \%$ modulation by compensating for variations in voice level applied to the microphone. High voice levels, which cause overmodulation and distortion, are reduced while low voice levels are passed unchanged. During receive, the compression circuit compensates for variations in output loading caused by parallel operation of local and remote receive audio stations.

3-61. During transmit, a delay bias voltage from the +125-vdc supply is developed by R840 and CR803 (figure 5-146) and passed through R838 and the center tap of R839 to the cathode of compression rectifier V802B. During receive, the bias is reduced by applying a ground to R841 through contacts 3 and 4 of $t / r$ relay K302. Reducing the bias allows the compression rectifier to operate at a lower level during receive.

3-62. Durirg both transmit and receive, terminals 10 and 11 of $T 802$ sample the output of the Audio Amplifier and Modulator and apply an audio voltage across compression control potentiometer R839. Capacitor C816 presents a low impedance to audio from terminal 11 to ground. Part of the sample audio, from the center tap of R839, is applied to the cathode of compression rectifier V802B. When the output of the Audio Amplifier and Modulator rises above a pre-determined level, the sample audio overcomes the delay bias and V802B develops a negative bias voltage across R824. The negative bias voltage is filtered by C811 and applied to the control grid of V803 which holds the output of the modulator nearly constant.

3-63. Refer to the retransmit mode circuit in figure 3-5 during the following discussion. Operation of the Audio Amplifier and Modulator in the retransmission (RETRANS) mode is the same as in the normal (NOR) transmit mode. However, operation in the RETRANS mode requires that two radio sets be interconnected. The same channel frequency should not be used for each set as feedback between the respective antennas will prevent relaying of signals. A minimum of 5 MHz channel separation is recommended.

3-64. The following example describes the retransmission circuits. In this example, radio set 1 (sheet 1 ) is the receiving set and radio set 2 (sheet 2 ) is the transmitting set. The following conditions are established by placing MODE switch 5702 (on both sets) in the RETRANS position:
a. Connects the microphone push-totalk switch to the solenoid of duplex relay 6603 through contacts 6 and 8 of S702A. This permits duplex operation (see paragraph 3-68) of both radio sets.
b. Connects $t / r$ control relay $K 601$ key line to the retransmit key-in line through contacts 6 and 8 of 5702 B .
c. Connects squelch dc amplifier V801 to the carrier squelch input from the audio detector load through contacts 2 and 4 of S702B.
d. Connects the Audio Amplifier and Modulator input to the retransmit audio input through contacts 10 and 12 of S702B.

3-65. In the quiescent state (no signal input) both sets operate as receivers. For purposes of explanation, assume that an rf signal is received by set 1 ; the signal is detected and amplified as described under the receive function. The carrier squelch from the detector load in the Third IF Amplifier is coupled through contacts 2 and 4 of S702B to squelch dc amplifier V801, causing V801 to conduct and energize squelch relay K801. When K 801 energizes, contacts 5 and 12 couple the receive audio input to the grid of audio amplifier V803 where it is processed as the normal receive audio signal of set 1 . Energized relay K801 also applies a ground (through contacts 6 and 13) to the retransmit keyout line in set 1 and the retransmit keyin line in set 2 . The input to set 2 energizes $t / r$ control relay K 601 . Contacts 3 and 8 of K 601 close and energize K602, K802, and K2 which, in turn, key set 2 to transmit.

3-66. The receiver audio signal of set 1 is routed from sidetone output pin 8 of T802 through R615, retransmit audio level control R608, contacts 12 and 13 of K 602 and out on the retransmit audio output line. At set 2 (sheet 2 ), the signal is routed over the retransmit audio input line through contacts 10 and 12 of $\mathrm{S702B}$, contacts 17 and 16 of K 802 ,
and contacts 3 and 8 of K 803 to the Audio Amplifier and Modulator where it is processed as the normal transmit modulation signal of set 2. Thus, the receiver audio signal from set 1 modulates the transmitter output of set 2 . Full receiver audio output is available at the headset jack of set 1 while sidetone output appears at the headset jack of set 2.

3-67. If the input signal is received first by set 2 , then set 2 functions as the receiver and set 1 acts as the transmitter. The operation described in the foregoing paragraphs will be the same except that the carrier squelch and squelch relay of set 2 will key set 1 to transmit, and the received output of set 2 will modulate the rf carrier of set 1. Also, full receiver audio output will be available at the headset jack of set 2 , and sidetone output will appear at the headset jack of set 1 .

3-68. Refer to the duplex transmission circuit in figure 3-5 during the following discussion. As in the retransmit mode, duplex operation requires that two radio sets be interconnected and the MODE switch of both radio sets be set to the RETRANS position. When the push-totalk switch of either set is closed, both sets are keyed to transmit and the microphone audio signal modulates the output of both sets. The microphone push-totalk switch applies a ground to duplex relay K603 which, in turn, applies a ground to the retransmit key-in and retransmit key-out lines through contacts 2 and 3, and 12 and 11 , respectively. This energizes $t / r$ control relay K 601 of both sets which, in turn, energize relays K602, K802, and K2, thereby keying both sets to transmit.

3-69. The microphone input is fed to audio input amplifier V803 through contacts 2 and 4 of S702A, modulation transformer T601, contacts 9 and 8 of K603, contacts 10 and 12 of 5702 B , contacts 16 and 17 of K 802 , and contacts 3 and 8 of broadband relay K803. This same microphone signal is also routed through
contacts 6 and 5 of K 603 , retransmit audio output line, retransmit audio input line, contacts 10 and 12 of S702B, contacts 17 and 16 of K 802 , and contacts 3 and 8 of K 803 , thus modulating set 2 : Sidetone audio appears at the headset of both sets. It should be noted that duplex relay $K 603$ is energized during duplex operation only.

3-70. Refer to the broadband transmit circuit in figure 5-3 during the following discussion. For operation with the broadband equipment, relay K 803 is deenergized by placing PLAIN-BROADBAND switch S1401 (on the rear of the re-ceiver-transmitter case) to the BROADBAND position. During broadband transmit operation, the microphone output from contact 12 of $S 702 B$ is connected to the input of the broadband transmit equipment through filter FL30 and pin $j$ of P1. The transmit output of the broadband equipment is routed to audio amplifier V803 through pin $k$ of P1, FL28, pin $n$ of P801, resistor network R851, R852, and R853, contacts 10 and 11 (closed on transmit) of $t / r$ relay K 802 , and contacts 2 and 8 (normally closed on BROADBAND) of K803. The remainder of the circuits in the Audio Amplifier and Modulator operate in the same manner as for normal transmit operation except that broadband sidetone is obtained from the broadband sidetone amplifier; this signal is coupled to the headset through contacts 4 and 6 (closed on BROADBAND) of broadband relay K803.

3-71. The broadband sidetone, supplied by the broadband equipment, is routed to the primary of Tl 601 via pin H of P1601, R1602, and potentiometer R1601 (see figure 5-147). The secondary of phasesplitting transformer T1601 is connected to the base of push-pull amplifier Q1601 and Q1602. The outputs of Q1601 and Q1602 are connected to the primary of T1602; the amplified signal is routed from the secondary of T1602 to the Audio Amplifier and Modulator via pin M of Pl601. Transistor base bias voltage is supplied from the $+26.5-v d c$ supply via R612 and CR601 in the Relay-Filter
(figure 5-148), pin F of P1601, R1606, R1604, and R1603 to the center tap of T1601. Collector bias is supplied via the center tap of T1602. Resistor R1607 and thermistor RT1601 act as a voltage regulating circuit to maintain the voltage supplied to the bases of $Q 1601$ and Q1602 at a fairly constant level. Capacitor C1603 filters the power supplied to the collectors of Q1601 and Q1602, and C1602 is used to filter transients. Resistor R1605 is the common load for the transistor emitters, and R1601 is used to vary the level of the input signal.

3-72. Refer to the tone mode circuit in figure 5-3 during the following discussion. Although the 1 kHz tone oscillator (Q701) is a part of the Front Panel assembly (figure 5-149), its application is covered at this time in order to complete the discussion of the Audio Amplifier and Modulator during the transmit function of the equipment.

3-73. In the tone mode, the 1 kHz tone oscillator is substituted in place of the normal transmit microphone input (see figure 5-3). By setting MODE switch S702 to the TONE position, the collector of Q701 is grounded through contacts 5 and 4 (closed in transmit) of $t / r$ relay K802. The 1 kHz tone output from the emitter of $Q 701$ is routed to the grid of audio Amplifier V803 through contacts 3 and 4 of S702A and over the same conmon audio line used on the normal transmit and retransmit modes of operation. The remainder of the circuits in the Audio Amplifier and Modulator operate as described in the normal transmit and retransmit modes.

3-74. In equipments modified for homing beacon operation, the ground for the collector of Q701 is not provided by $t / r$ relay K 802 but, instead, is routed to an external keyer which provides mcw keying.

3-75. Directional Coupler. (Figure 5139). Transmit and receive rf signals travel to and from the AN/URC-9 ( ) an-
tenna fack J701 on a transmission line through the directional coupler. The Directional Coupler samples the incident waves of transmitter power (traveling toward the antenna) and the reflected waves of transmitter power (traveling toward the RF and PA Amplifier) and provides a front panel meter indication of power. (The SWR and PWR metering circuits are discussed in paragraphs 3-182 and $3-183$, respectively). Both Directional Coupler circuits are identical except for reference symbols.

3-76. Current flowing in the short section of transmission line is a result of inductive and capacitive soupling with the main transmission line. The inductive current is reinforced in one direction and cancelled in the other by the capacitive current. In the swr directional coupler, R1002 terminates the transmitter end of the swr line in its characteristic impedance and absorbs the currents induced by the incident wave. Crystal diode CR1301, at the antenna end of the swr line, rectifies the currents induced by the reflected wave. The voltage developed across diode load resistor R1301 and applied to the metering circuits is proportional to the reflected power.

3-77. Resistor R1301 terminates the antenna end of the pwr line. in its characteristic impedance and absorbs the currents induced by the reflected wave. Diode CR1302, at the transmitter end of the pwr line, rectifies the currents induced by the incident wave. The voltage developed across load resistor R1304 and coupled to the metering circuit is proportional to the power output. Capacitors C1301 and C1304 are rf filters. Capacitors C1302 and C1303 compensate for the variations in the output frequency which inherently varies directly with frequency and power.
$3-78$. The 225.00 to $399.95-\mathrm{MHz}$ rf signal output from the AN/URC-9 ( ) antenna jack (ANT. J701) is coupled to the antenna for transmission in Radio Set

AN/SRC-21( ) and to Radio Frequency Amplifier AM-1565/URC in Radio Set AN/ SRC-20(). The manner in which the rf signal is processed is described in the following paragraphs.

3-79. Radio Frequency Amplifier AM-1565/ URC. When Radio Set AN/SRC-20( ) is operating on the transmit function, the signal at AN/URC-9 ( ) ANT jack $J 701$ is coupled to the input of the AM-1565/URC. When Radio Set AN/SRC-21( ) is operating on the transmit function, the signal at ANT jack J701 of the AN/URC-9( ) is coupled directly to the antenna for transmission.

3-80. Refer to figure 3-6 for the functional block diagram of Radio Frequency Amplifier AM-1565/URC. The circuits directly relating to the transmit signal flow include the input and output coaxial relays, variable magnetic ferrite attenuator, rf amplifiers, directional coupler, and low-pass filter. The automatic drive control detector circuits, in conjunction with the variable magnetic ferrite attenuator and front panel controls, compensate for variations in AN/ URC-9( ) exciter output and drive requirements over the required frequency range. Automatic tuning of the rf amplifiers is performed by a servo system, together with the 20 -channel autopositioner and preset channel potentiometers. All operating voltages for the circuits within Radio Frequency Amplifier AM1565/URC are furnished by an internal power supply.

3-81. Power Amplifier Subassembly. The servicing block diagram for the Power Amplifier subassembly is shown in figure 5-11. The functional blocks contained within this subassembly are rf amplifiers V201 and V202, automatic drive control detector V203, and electromechanical parts (follow-up potentiometer R203 and servo motor-rate generator MG201) of the servo system. During transmit operation of Radio Set AN/SRC-20( ), the 16 to 24watt rf input signal from the AN/URC-9 ( ) is coupled through the contacts (closed on transmit) of input coaxial relay K 201
and variable magnetic ferrite attenuator AT401 to the rf amplifiers. After amplification, the 100 -watt signal passes through directional coupler DC201, lowpass filter FL201, and the contacts (closed on transmit) of output coaxial relay K 202 to the antenna for transmission. (In receive operation of Radio Set AN/SRC-20( ), the signal passes from the antenna through the output and input coaxial relays, which are normally deenergized on receive, to the input of the AN/URC-9 ( ).)

3-82. On Radio Set AN/SRC-20( ), actuating the push-to-talk switch on the microphone or setting the TEST KEY to ON or LOCK ON transfers equipment operation from receive to transmit (see figure 5155). The 225.00 to $399.95-\mathrm{MHz}, 16$ to 24-watt signal from Radio Set AN/URC-9( ) is coupled through the contacts (closed on transmit) of input relay K 201 and variable magnetic ferrite attenuator AT401 to the cathodes of rf power amplifiers V201 and V202 through capacitors C212 and C213, respectively. Capacitor C214 and inductor L201 aid in maintaining an input impedance that is essentially constant from 225.00 to 399.95 MHz .

3-83. Power amplifiers V201 and V202 are ceramic tetrodes operated in a parallel, grounded-grid configuration. The cathode (input) and plate (output) tuned circuits are high-Q coaxial cavities ganged and tuned to the desired frequency by motor-tachometer generator MG201 servo motor. The input resonant cavity is connected between the cathodes and grids and the output resonant cavity is connected between the plates and grids of the two power amplifier tubes. The cavities are tuned by a movable contact ring to represent a quarter-wave transmission line; the rf signal is coupled into and out of the cavities by means of coaxial coupling devices. Capacitors C217 and C218 are connected across the input cavity to ensure proper tracking between the input and output cavities.

3-84. The rf signal, amplified by tubes V201 and V202, is app1ied to the high-Q
output resonant cavity through capacitors C2O2 and C203. The signal is coupled from the output cavity through impedance-matching network C208 and C209, which transforms the plate-cavity impedance into the 50 -ohm output line impedance. Capacitor C209 allows proper loading at any frequency (within the 225.00 to $399.95-\mathrm{MHz}$ range) or into loads that present a vswr of up to 2 to 1 on the coaxial cable. Capacitor C209 is made variable by the spring loaded plunger of L209 assuming the proper position as determined by the setting of any one of the 20 output loading screws (manual channel and 19 preset channels).

3-85. When a new channel is selected (figure 3-21), L209 energizes and pulls its springloaded plunger clear of the output loading screws, closes S201, and applies a ground to autopositioner motor B501 allowing the motor to position switch S503 and the output loading screws to the proper channel.

3-86. The amplified rf signal, now 100 watts, passes from the output cavity (figure 5-155) through directional coupler DC201, low-pass filter FL201, and the contacts (closed on transmit) of output coaxial relay K202 to the antenna for transmission. The directional coupler serves to monitor forward and reverse antenna power, and the low-pass filter minimizes harmonic radiation.

3-87. Plate voltage for rf amplifiers V201 and V202 is obtained from the +1800 -vdc supply through inductor L208 (see figure 5-135). Screen voltage for V201 and V202 is obtained from the $+300-\mathrm{vdc}$ supply through inductors L202 and L203, respectively, and contacts 6 and 8 of screen protection relay K 304 which is energized by the $+1800-\mathrm{vdc}$ power supply during transmit. Bias voltage for the control grids of V201 and V2O2 is obtained from the $-60-v d c$ supply; potentiometers R304 and R303 adjust the con-tro1-grid bias of V201 and V202, respectively.

3-88. Automatic drive control detector diode V203 is used when automatic control of the rf excitation by variable magnetic ferrite attenuator AT401 is desired. For this purpose, a portion of the output from V201 and V202 is coupled via capacitor C207 to the plate of diode V203. The complete operation of the automatic drive control circuits is discussed in paragraph 3-95.

3-89. Servo Amplifier Subassembly. Refer to figure 5-12, the servicing block diagram for the Servo Amplifier subassembly. The functional blocks contained within this assembly include servo system circuits V401, V402, V403, and V404; and the automatic drive control circuits, V405 and V406. Voltage regulator V407 is used to regulate the plate voltage of V405 and V406. Automatic tuning of the resonant cavities of rf amplifiers V201 and V202 in the Power Amplifier subassembly is performed by the servo system in comnection with the autopositioner and preset channel potentiometers on the front panel. Variations in exciter output and drive requirements over the applicable frequency range are compensated for by the automatic drive control circuits.

3-90. A simplified schematic diagram of the servo system is shown in figure 3-7; the detailed circuitry of servo amplifiers V401 through V404 is shown in figure $5-156$. The servo system is of the rategenerator feedback type. As the servo motor rotates, it drives the rate generator and a follow-up potentiometer. The output of the rate generator is applied to the servo amplifiers in opposition to the original input from the follow-up potentiometer; this action prevents hunting and overshoot.

3-91. Motor-tachometer generator MG201, used to tune the resonant cavities of rf power amplifiers V201 and V202, operates on power supplied by servo amplifiers V401 through V404. The normal input to the servo amplifiers is obtained from


Figure 3-6. Radio Frequency Amplifier AM-1565/URC, Functional Block Diagram


NOTES
a heavy lines indicate main signal path, light lines indicate AUXILIARY OR SECONDARY SIGNAL PATHS, ANO LIGHT BROKEN LINES INDICATE MECHANICAL LINKAGE.
b. Letters and numbers outsioe circuit blocks indicate ELEMENT AND PIN NUMGERS NUMBERS ON COMPONENTS indicate terminal numbers

Figure 3-7. Radio Frequency Amplifier AM-l565/URC, Servo System, Simplified Schematic Diagram
follow-up potentiometer R203, which is part of an ac bridge circuit that is balanced when the AM-1565/URC is operating on a given channel. For example, when the equipment is operating on channel 1 , preset channel 1 potentiometer R525 and follow-up potentiometer 203 form the bridge circuit, which is excited by a $60-v a c$ sig.al. As long as the equipment operates on channel 1, the bridge will be in balance (at a null position) and the servo system will be inactive; the resonant cavities of the rf amplifiers will remain tuned to the frequency of channel 1.

3-92. When a different preset channel is selected, auto-positioner switches S503F and S503G both move to the position corresponding to that channel. For example, when channel 2 is selected, potentiometer R 524 is placed in the bridge circuit, thereby causing the bridge to become unbalanced and produce an output voltage that activates the servo system. The MG201 servo motor drives the rate generator directly; it also drives the tuning elements in the resonant cavities of the rf amplifiers and the wiper arm of follow-up potentiometer R203 through a gear train. As the servo motor rotates, the wiper arm of R203 seeks the null point. When the null is reached and the bridge is again balanced, the servo system comes to rest; the tuning elements in the rf amplifier resonant cavities are then set to the proper position to tune the amplifier resonant cavities to the frequency of channel 2.

3-93. Refer to figure $5-156$ for the following description of the servo amplifier circuit operation. The unbalanced voltage developed across follow-up potentiometer R203 in the bridge circuit is clipped by diodes CR401 and CR402 and applied to the control grid of V401A. Servo amplifier V401A, R405, and C403 cause the signal applied across AMP GAIN control R410 to be $90^{\circ}$ out of phase with the signal applied to the grid of V401A and the voltage applied to the fixed phase winding of the servo motor. The
phase of the rate generator output is shifted by the network consisting of DAMP GAIN control R409, DAMP PHASE control R411, resistors R412 and R413, and capacitor C405; thus, the shifted signal is $180^{\circ}$ out of phase with the signal from V401A. These two signals are passed through isolation resistors R407 and R408 and are added across AMP GAIN control R410. Sufficient rate feedback from the rate generator is added to the signal to prevent the servo system from hunting. The resulting signal is applied to the grid of servo amplifier V401B.

3-94. The signal is amplified by V401B and applied to the grid of phase inverter V402. The output of V402A is applied to the grid of $V 402 \mathrm{~B}$ and to the grid of power amplifier $V 403$. The output of V402B is applied to the grid of power amplifier V404. The plates of V403 and V404 are connected to the control winding of the servo motor part of MG201 in the Power Amplifier subassembly through which the tubes are supplied $B+$; thus, the ac output of these tubes causes the servo motor to run. The plates of $V 401$ through V404 and the screens of V403 and V404 are furnished an operating voltage from the $+300-v d c$ supply (see figure 5-135).

3-95. The rf input to the Power Amplifier subassembly from Radio Set AN/URC-9 ( ) is controlled by the drive control regulator circuit. This circuit, which is controlled automatically or manually through front panel controls, varies the rf conducting properties of variable. magnetic ferrite attenuator AT401 through which the rf signal must pass before being amplified. The drive control regulator circuit will maintain effective control of the AM-1565/URC output power in the range of 50 to 130 watts by controlling the rf input from the AN/URC-9 ( ). When the output power of the AM1565 /URC is 50 watts or below, the attenuation of the rf input from the AN/URC9() is minimum. When the output power is 130 watts or above, the attenuation of the rf input is maximum.

3-96. A simplified schematic diagram of the drive control regulator circuit is shown in figure 3-8; refer to the schematic diagrams in figures 5-155 and 5156 for locations of the particular tubes in this circuit. Due to the multiple
voltage dividers and feedback paths, various voltages under certain conditions will be utilized in the text discussion. The voltages given with respect to ground can be used as a guide; they are not absolute values.


Figure 3-8. Radio Frequency Amplifier AM-1565/URC, Drive Control Regulator, Simplified Schematic Diagram

3-97. When both sections of drive control amplifier V406 are cut off (V406 effectively removed from the circuit), the -60 vdc divides equally across resistors R430 and R431 causing the cathode of V406 to be at -30 vdc with respect to ground. Also, the bias is removed from drive control power amplifier V405 thereby producing maximum conduction and maximum current through variable magnetic
ferrite attenuator AT401 causing the attenuation of AT401 to be minimum.

3-98. When V406A is allowed to conduct, the grid assumes control and the conduction is determined by the setting of HIGH-LOW control R527 in MANUAL operation. In automatic (AUTO) operation, the conduction of V406A is determined by the setting of diode delay potentiometer

R436 in conjunction with a sampling of the rf from the output cavity of rf amplifiers V2O1 and V202; the sampled rf is detected by automatic drive control detector V203. A difference in potential of 19 vdc (the Zener voltage of diode CR346) is maintained across voltage divider resistors R526, R527, and R528 (manual operation) and voltage divider resistors R435 and R436 (automatic operation). Zener diode CR346, in series with R311, is connected directly across the 30 -vdc supply. When the 19 -vdc potential tends to change, the current through CR346 causes a corresponding voltage drop across R311 and maintains the $19-v d c$ potential across the voltage dividers.

3-99. The plate voltage of V406A and one side of variable magnetic ferrite attenuator AT401 is held at +150 vdc by voltage regulator V407. When V406A is allowed to conduct, it forms a voltage divider between the +150 -vdc level and the $-60-v d c$ supply.

3-100. When EXCITATION MANUAL-AUTO switch S 507 is in the MANUAL position, drive control regulator circuit operation is controlled manually by HIGH-LOW control R527 which, along with R526 and R528 forms a voltage divider network. The function of Zener diode CR346 is to hold the voltage constant across the voltage divider network; it does not establish a reference to ground. The ground reference is established at the cathode of drive control amplifier V406 by the conduction of $V 406 \mathrm{~A}$ which is controlled by the setting of HIGH-LOW control R527.

3-101. When R527 is set to the HIGH (cw) position, the cathode of V406 will be +18 vdc with respect to ground. When R527 is set to the LOW (ccw) position, the cathode voltage of $V 406$ will be -13 vdc with respect to ground. The grid of V406A will always be from 1.5 to 2.5 vdc negative with respect to the cathode due to the voltage drip across R528 and R527.

3-102. Although the cathode voltage range of drive control amplifier V406 is quite broad ( +18 to -13 vdc ), only a small range of voltage (from 0 to -5 vdc ) will affect the attenuation of variable magnetic ferrite attenuator AT401. When the setting of $R 527$ is such that the cathode voltage of $V 406$ is zero or positive with respect to ground, V406B will be cut off. Drive control power amplifier $V 405$ will conduct maximum and the current through AT401 will cause minimum attenuation of the rf drive from the AN/ URC-9 ( ). The power output of the AM1565/URC then will be maximum when the radio set is in the keyed position.

3-103. When the setting of HIGH-LOW control R527 causes the cathode voltage of V406 to become negative with respect to ground, V406B conducts and the current through $R 432$ develops bias on the control grids of drive control power amplifier V405. The bias on V405 decreases its conduction thereby decreasing current flow through variable attenuator AT401 causing the attenuation of AT401 to increase. Continued rotation of HIGH-LOW control R527 in the LOW (ccw) direction causes a corresponding increase in current through V406B and decrease in current through V405 and AT401 which results in a further increase in attenuation of AT401. When the setting of R527 is such that the cathode of V 406 is -5 vdc with respect to ground, the attenuation of AT401 will be maximum and any further rotation of R 527 in the LOW (ccw) direction will not affect the attenuation of AT401. When the radio set is in the keyed condition, the power output of the AM-156.5/URC will be minimum.

3-104. When EXCITATION MANUAL-AUTO switch S 507 is in the AUTO position, the drive control regulator circuit is controlled automatically by the rectified .output of automatic drive control detector V203 in the Power Amplifier subassembly. Automatic operation is similar to that discussed for manual operation with two exceptions. In AUTO operation, the
cathode of drive control amplifier V406 is connected to the more-negative side of the voltage divider, R435 and R436, across Zener diode CR346. Also when the radio set is in the unkeyed condition, the cathode of $V 406$ remains positive with respect to ground. (When $R 436$ is in the ccw position, the voltage is +63 vdc , and when R 436 is in the cw position, the voltage is +50 vdc. )

3-105. When the radio set is in the keyed condition, a portion of the output from rf amplifiers V201 and V202 is applied through capacitor C207 to the plate of automatic drive control detector V203 and is rectified (see figures $3-8$ and 5-155). The rectified voltage across V203 and R201 is filtered by R202, C414, R428 and C415 and coupled (via contacts 4 and 2 of 5507 in the AUTO position) to the control grid of drive control amplifier V406A. When the rf power output increases, the grid of V406A becomes more negative with respect to the cathode and reduces the conduction of V406A.

3-106. When diode delay potentiometer R436 is in the ccw position (corresponding to the HIGH position in manual operation), the cathode voltage of $V 406$ is +56 vdc with respect to ground, the attenuation of variable attenuator AT4O1 is minimum, and the power output of the AM-1565/URC is 130 watts. When R436 is in the cw position (corresponding to the LOW position in manual operation), the cathode voltage of V 406 with respect to ground is -27 vdc; $V 406 \mathrm{~B}$ conducts, developing a bias in the grid circuits that will cut off drive control power amplifier V405; the attenuation of AT401 is maximum and the power output of the AM$1565 /$ URC is 50 watts or less.

3-107. As in manual operation, only a small range of voltages applied to the cathode of drive control amplifier V406 will affect the attenuation of attenuator AT401. A combination of approximately 50 watts output from the AM-1565/ URC (caused by low rf input from the AN/ URC-9( ) and a setting of diode delay potentiometer R436, that will cause the
cathode voltage of $V 406$ to be zero with respect to ground will cut off $V 406 \mathrm{~B}$ thereby removing the bias from V 405 and allowing maximum conduction, in turn, causing the attenuation of AT401 to be minimum. As the power output of the AM1565/URC increases toward 130 watts (caused by an increase in rf input from the AN/URC-9 ( )), the rectified voltage at the cathode of automatic drive control detector $V 203$ has the effect of applying a negative-going potential to the grid of V406A, which causes the cathode of $V 406$ to go negative with respect to ground. With a negative-going potential on the cathode, V406B conducts and develops a bias in the grid circuits of V405 which reduces the conduction of V405, thereby causing the attenuation of AT401 to increase. When the voltage at the cathode of $V 406$ reaches -5 vdc , the attenuation of AT401 will be maximum and any further increase in rf output of the AM-1565/URC will not affect the attenuation of AT401.

3-108. RECEIVE FUNCTION.
NOTE
Frequencies in the following description are applicable to Radio Sets AN/SRC-20A and AN/SRC-21A; frequencies for the $\mathrm{AN} / \mathrm{SRC}-20$ and AN/SRC-21 are the same, less the hundredths digit.

3-109. SIGNAL PATH. (Figure 3-9.) During receive operation, the 225.00 to $399.95-\mathrm{MHz}$ signal from the antenna is applied through the Directional Coupler to the RF and PA Amplifier in Radio Set AN/URC-9( ). In Radio Set AN/SRC-20( ) only, the signal passes through Radio Frequency Amplifier AM-1565/URC before routing to the AN/URC-9( ). The signal applied to the RF and PA Amplifier is mixed with a frequency in the 200 to $370-\mathrm{MHz}$ range (injected by the FMO) to obtain a difference frequency in the 20.00 to $29.95-\mathrm{MHz}$ range. This signal is passed to, and amplified in, the First IF Amplifier; the amplified 20.00 to $29.95-$ MHz signal is mixed with a frequency in
the range of 17 to 26 MHz which is generated by a crystal-controlled oscillator in the First IF Amplifier. The difference frequency, in the range of 3.00 to 3.95 MHz , is passed to the Second IF Amplifier where it is mixed with a crys-tal-controlled oscillator frequency which is removed 500 kHz from the difference frequency, thereby producing a 500
kHz output signal. This output signal is routed through a $500-\mathrm{kHz}$ if filter to the Third IF Amplifier where it is demodulated, passed through a noise limiter, amplified, and then applied to the Audio Amplifier and Modulator. The amplified audio signal is sent to the local and remote headsets (or speakers), or to the broadband audio output jack.


Figure 3-9. Radio Set AN/SRC-20( ) and AN/SRC-21( ), Receive Function, Block Diagram

3-110. DETAILED DESCRIPTION. (Figure $5-2$ ). The 225.00 to $399.95-\mathrm{MHz}$ received signal is coupled from either the Radio Frequency Amplifier AM-1565/URC (for Radio Set AN/SRC-20( )) or the antenna (for Radio Set AN/SRC-21( )) through the Directional Coupler to rf amplifiers V102 and V103 in the RF and PA Amplifier. The amplified signal, one of 3500 in the range of 225.00 to 399.95 MHz , is mixed in first receive mixer V104 with one of the frequencies between 200 to 370 MHz which is injected by the FMO. The FMO is composed of first oscillator multiplier V201, frequency tripler V202, and injection amplifier comprised of V203, V204 and V205. The difference fre-
quency output (in the range of 20.00 to 29.95 MHz ) of first receive mixer V104, is applied through if amplifiers V301 and V302 in the First IF Amplifier to second receiver mixer V303. In V303, the signal is mixed with a frequency in the range of 17 to 26 MHz from second oscillator V305.

3-111. The resultant difference frequency output of second receive mixer V303 (in the range of 3.00 to 3.95 MHz ) is then sent to the Second IF Amplifier, where the doubly converted signal is applied to the third receiver mixer, V401A. There, the signal is mixed with a selected frequency from third oscillator

V401B. The selected frequency is based on the value of the received signal. For example, when the converted incoming signal is from 3.00 to 3.45 MHz , it is mixed with a frequency selected from the 3.50 to $3.95-\mathrm{MHz}$ range; when the incoming signal is from 3.50 to 3.95 MHz , it is mixed with a frequency within the 3.00 to $3.45-\mathrm{MHz}$ range. In either case, the resultant signal of 500 kHz is obtained at the output of the third receive mixer in the Second IF Amplifier.

3-112. The triply converted signal is sent through $500-\mathrm{kHz}$ if filter FL901 to the Third IF Amplifier where the signal is amplified by if amplifiers V501, V502, and V503 and passed to detector CR501, series noise limiter CR503, and audio amplifier V504. The amplified audiofrequency signal is then applied to the Audio Amplifier and Modulator. Following amplification in V803, the signal is sent through audio and modulator driver V804 to phase-splitting transformer T801 where it is split and applied in pushpull to audio output amplifiers V805 through V808. The audio output signal is then transformer-coupled through output transformer T802 to the receivertransmitter front panel headset or speaker jacks.

3-113. STAGE AND SPECIAL CIRCUIT DESCRIPTION. The conventional receiver electronic circuits are briefly described at the stage level; special and unique circuits are described in greater detail. Block diagrams and simplified schematics in this chapter and the maintenance schematic diagrams in Chapter 5 are used to support the descriptive text.

3-114. Functional Relationship of Assemblies. The overall functional relationship of the assemblies within Radio Sets AN/SRC-20( ) and AN/SRC-21( ) are illustrated in figure 3-1.

3-115. Radio Frequency Amplifier AM1565/URC. Radio Frequency Amplifier AM1565/URC is used only with Radio Set AN/ SRC-20( ). Thus, when Radio Set AN/SRC20() is operating on the receive func-
tion, the signal received at the antenna is coupled through the contacts of the output and input coaxial relays, respectively (figure 3-6), in the AM-1565/URC to antenna input jack J 701 of Radio Set AN/URC-9( ). When Radio Set AN/SRC-21( ) is operating on the receive function, the signal received at the antenna is coupled directly to the antenna input jack of Radio Set AN/URC-9( ). The remainder of the circuits in Radio Frequency Amplifier AM-1565/URC are used during the transmit function; their operation is described in paragraph 3-79.

3-116. Radio Set AN/URC-9( ). Refer to figure 3-3, a functional block diagram illustrating the overall relationship of the assemblies within Radio Set AN/URC-9 ( ) for both the receive and transmit functions. The signal flow for the received signal is as described in paragraph 3-109. Note that the Third IF Amplifier supplies an if avc signal to the First IF Amplifier and an rf avc signal to the RF and PA Amplifier. The Frequency Selector controls the tuning of the Second IF Amplifier, First IF Amplifier, RF and PA Amplifier, and Frequency Multiplier-Oscillator assemblies. Broadband or plain operation is selected by placing BROADBAND-PLAIN switch S1401 in the desired position. All operating voltages for the circuits within Re-ceiver-Transmitter RT-581( )/URC-9 are furnished by Power Supply PP-2702/URC-9.

3-117. Directional Coupler. Since the major function of the Directional Coupler is to sample the incident and reflected waves of the transmitted rf power, the description of Directional Coupler operation is given in the discussion of transmitter operation in paragraph 3-75. During the receive function, the received rf signal is coupled from the Radio Set AN/URC-9 ( ) front-panel mounted antenna jack J701 through the directional coupler to input jack J109 on the RF and PA Amplifier.

3-118. RF and PA Amplifier. The RF and PA Amplifier active circuits during receive are rf amplifiers V102 and V103
and first receive mixer V104. (Refer to figure 5-4.) On receive, a signal in the 225.00 to $399.95-\mathrm{MHz}$ range is applied to rf amplifiers V102 and V103 through deenergized relay K101. The first receive mixer V104, heterodynes the amplified rf input signal (in the 225.00 to $399.95-\mathrm{MHz}$ range) with the 200 to $370-\mathrm{MHz}$ injection frequency signal from the Frequency Multiplier-Oscillator. The result of this heterodyning action is the generation of the first if signal in the 20.00 to $29.95-\mathrm{MHz}$ range which is coupled to the First IF Amplifier. The 1750 -position $0.1-\mathrm{MHz}$ shaft of the Frequency Selector controls the tuning of the rf amplifiers and first receive mixer stages during the receive function. The remainder of the circuits in the RF and PA Amplifier are used during the transmit function; the operation of these circuits is described in paragraph 3-43.

3-119. The signal in the 225.00 to 399. $95-\mathrm{MHz}$ range from the Directional Coupler is applied to J109 of the RF and PA Amplifier (see figure 5-140). Contacts 1 and 3 of antenna relay Kl01 (deenergized on receive) couple the received signal to parallel-tuned rf input tank $Z 101$ through a network consisting of capacitors C106 and C108. Resistor R117 provides a dc path to ground for static charges developed on the antenna. Capacitor Cllo couples the signal voltage developed across parallel-tuned rf input tank Z10o to the cathode of rf amplifier V102. The cathode circuit of V102 consists of, network Z102, which provides a high coupling impedance for the rf signal, and resistor R122, which provides a cathode bias for the tube. Resistor R104 connects the control grid of V102 to the rf avc bus and, in conjunction with capacitor C109, isolates rf signals from the rf avc bus. Plate voltage of +125 vdc is supplied through coil L105 and dropping resistor R116. Capacitor C113 isolates rf signals from the $+125-\mathrm{vdc}$ supply. Capacitor C114 couples the rf signal to plate tank Z103. Capacitor Cl17 couples the rf signal developed across plate tank $Z 103$ to rf amplifier

V103 which provides a stage of rf amplification similar to that of V102.

3-120. The network (C121, Z105, and C123) between V103 and V104 couples the amplified rf signal to the cathode of first receive mixer V104. The cathode circuit of V104 consists of rf coupling choke L110, cathode bias resistor R111, and C125, the bypass capacitor for R111. Capacitor Cl37 grounds the control grid of V104 for rf and capacitor C144 provides additional filtering in the grid circuit.
$3-121$. The cathode of V104 also receives a signal in the 200 to $370-\mathrm{MHz}$ range from the FMO through contacts 6 and 7 of injection relay K102 and capacitor C135. This signal mixes with the rf signal to produce a difference frequency in the range of 20.00 to 29.95 MHz . The difference frequency, developed at the plate of V104, is coupled to J102 through L109 and contacts 4 and 5 of injection relay K102 (deenergized in receive). First receive mixer V104 receives plate voltage from the $+125-v d c$ supply through L109, L113, in the RF and PA Amplifier, and resistor R607 in the Relay-Filter (see figure 5-134).

3-122. When the tank circuits (Z101, Z103, and 2105) are tuned by the Frequency Selector, both capacitance and inductance are varied. This improves the sensitivity by maintaining a high tank efficiency over the 225.00 to $399.95-\mathrm{MHz}$ frequency range. Trimmer capacitors C107, C115, and C122 set the minimum capacitance points of the tank circuits.

3-123. Frequency Multiplier-Oscillator (FMO). The FMO (figure 5-5) generates frequencies in the 200 to $370-\mathrm{MHz}$ range. These frequencies are injected into the RF and PA Amplifier during both receive and transmit operations. Operation of the FMO is identical during both receive and transmit operation. The 18 -position, $10-\mathrm{MHz}$ shaft of the Frequency Selector controls the tuning of all stages within this assembly.

3-124. First oscillator-multiplier V201 is a crystal-controlled, cathode-coupled oscillator especially designed for use with overtone crystals (see figure 5141). The right half of the twin triode tube operates as a grounded-grid amplifier and is capacitively coupled to the left half, which acts as a cathode follower. Capacitor C207 couples the signal from the plate (pin 4) of the groun-ded-grid amplifier to the control grid (pin 7) of the cathode follower. The crystal, which couples the output of the cathode follower to the cathode (pin 2) of the amplifier, operates at series resonance to provide low impedance coupling with zero phase shift. The phase shift through the amplifier is also zero; thus, an in-phase signal is fed back to the grounded-grid amplifier satisfying the conditions required for sustained oscillation.

3-125. Crystals Y202, Y204, and Y206 through Y218 have one common side connected through C204 to pin 2 of V201. The grounded crystal cases produce a large capacitance to ground at pin 2 of V201; however, L219 resonates with this capacitance and cancels its effect on the circuit. In a similar manner, L220 resonates with the crystal socket capacitance, thereby canceling its effect on the operation of the circuit. Trimmer coils L201 through L218, inclusive, are used with their respective crystals to tune the plate of the grounded-grid amplifier to resonance. Capacitor C201 prevents the plate voltage on pin 4 of V201 from being grounded through the trimmer coils. Capacitor C236 is a temperature-compensating capacitor. The grid (pin 3) of the grounded-grid amplifier is grounded through parasitic suppressor R202; resistors R203 and R204 provide the coupling impedances (and bias) at the cathodes for the two halves of V201.

3-126. Plate voltage for the cathode follower is supplied through step tuner Z201, trimmer coil L222, and parasitic suppressor R206. The step tuner in the oscillator output tank is tuned to the
second harmonic of the crystal frequency by the 18 -position; $10-\mathrm{MHz}$ shaft of the Frequency Selector when the set operates in the 220 to $299.95-\mathrm{MHz}$ range. When the radio set operates in the 300 to $399.95-\mathrm{MHz}$ range, the tank circuit is tuned to the third harmonic. Thus, the output of the crystal oscillator is either two or three times the crystal frequency, depending upon the operating frequency of the set (see table 3-4). Capacitor C208 and coil L222 are trimmers for oscillator output tank 2201.

3-127. Capacitor C210 couples the first oscillator-multiplier output signal to the control grid of V202, which operates as a frequency tripler. The tripling action is accomplished by tuning plate tank Z202 to the third harmonic ( 200 to 370 MHz ) of the signal applied to the grid. Thus, the signal in the plate tank is either six times or nine times that of the selected crystal frequency in first oscillator-multiplier V201. Test point $J 201$ provides an indication of the drive to V202, and capacitor C211 bypasses rf signals to ground preventing them from interfering with dc measurements being made at J201. The cathode of V 202 is grounded; therefore, the tube depends entirely upon the voltage developed across the grid-1eak circuit for bias. Plate voltage of +125 vdc is supplied to V202 through R213 and L224. Capacitor C214 couples the rf signal to parallel-tuned plate tank 2202 ; trimmer C215 sets the minimum capacitance point of the plate tank circuit. Capacitor C216 couples the rf signal from the plate tank to the cathode of grounded-grid amplifier V203, the first of three injection amplifiers.

3-128. The cathode circuit of first injection amplifier $V 203$ consists of resistor R215, which provides cathode bias. Plate voltage for $V 203$ is supplied from the $+125-v d c$ supply through R210 and L226. Capacitor C220 couples the rf signal from the plate of V 203 to parallel -tuned tank circuit Z204. Capacitor C222 couples the signal to the cathode of second injection amplifier V204.

Injection amplifiers V204 and V205 each provide a stage of amplification identical to that of V203. Capacitors C234 and C235 form a voltage divider from which the 200 to $370-\mathrm{MHz}$ uhf signal is injected through J205 to contact 6 of injection relay K 102 in the RF and PA Amplifier (see figure 5-140).

3-129. Test points J202, J203, and J204 are used to measure the rf signals at the cathodes of the injection amplifiers during alignment or, during troubleshooting, to inject a signal to locate a defective stage. Tank circuits Z2O2, Z204, Z206, and Z208 are tuned by the 18 -position, $10-\mathrm{MHz}$ shaft of the Frequency Selector. When the tank circuits are tuned, both capacitance and inductance are varied, improving stage gain by maintaining a good inductance to capacitance ratio.

3-130. First IF Amplifier. On receive, a signal in the 20.00 to $29.95-\mathrm{MHz}$ range from the RF and PA Amplifier is applied to the control grid of V301 in the First IF Amplifier (see figure 5-6). After amplification by V301 and V302, the 20.00 to $29.95-\mathrm{MHz}$ signal is applied to the control grid of second receive mixer V303 where it is heterodyned with a 17 to $26-\mathrm{MHz}$ signal injected from second oscillator V305. The output of the second receive mixer is a signal in the 3.00 to $3.95-\mathrm{MHz}$ range which is coupled to the Second IF Amplifier. The 100position, $0.1-\mathrm{MHz}$ shaft of the Frequency Selector controls the tuning of if amplifiers V301 and V302 and second receive mixer V303 during the receive function; crystal selection and second oscillator V305 tuning are controlled by the 10position, $1-\mathrm{MHz}$ shaft.

3-131. Refer to figure 5-142 during the following discussion. The 20.00 to 29. $95-\mathrm{MHz}$ input signal from V104 in the RF and PA Amplifier is coupled through capacitor C301 to parallel-tuned tank $Z 301$. Capacitor C 303 couples the if signal to the adjacent parallel-tuned tank, 2302 and avc blocking capacitor C302 couples the signal to the control grid of if am-
plifier V301 through parasitic suppressor R324. Resistor R301, in conjunction with bypass capacitor C326, isolates the if signal from the if avc bus. Capacitor C319 grounds the cathode of V301 for rf. Series resistors R304, R305, and R303 form a voltage divider that provides proper plate and screen-grid voltages to V301. Resistor R304 is connected to the $+125-$ vdc supply, and R303 is grounded by contacts 15 and 16 of $t / r$ relay K 602 in the Relay-Filter (see figure 5-134).

3-132. Parallel-tuned tank 2303 is the plate load for V301. Capacitor C308 couples the if signal to the next paral-1el-tuned tank, z304. Capacitor C311 couples the if signal to the control grid of second if amplifier V302 through parasitic suppressor R307. A similar network (Z305, C314, 2306 and C316) couples the amplifier 20.00 to $29.95-\mathrm{MHz}$ signal to the control grid of second receiver mixer V303. Series resistors R309, R325, and R326 form a voltage divider that provides proper plate and screen-grid voltages to V302. The dc voltage developed across R308 is app1ied to the S METER circuit (figure 5-149) to provide an indication of the input signal strength. Paralle1 tank circuits Z 301 through 2306 are tuned by the 100 -position, $0.1-\mathrm{MHz}$ shaft of the Frequency Selector. Trimmer capacitors C302, C304, C305, C309, C312, and C317 are adjusted to set the inductance to capacitance ratio for proper tracking. Test points J301 and J302 provide for measuring if avc voltage at the control grids of V301 and V302, respectively. Test point J303 provides for measuring the bias developed by the 20.00 to $29.95-\mathrm{MHz}$ signal on the control grid of V303.

3-133. Second oscillator V305 is controlled by crystals Y301 through Y310. Crystal switches S 301 and S 302 select the proper crystal according to the setting of the Frequency Selector. One half (pins 6, 7, and 8) of tube V305A is a grounded-grid amplifier working into parallel-tuned tank Z307, which constitutes its plate load. The tank is ganged with the crystal switches driven
by the 10 -position, $1-\mathrm{MHz}$ shaft of the Frequency Selector. Capacitor C343 couples the output from the plate (pin 6) of grounded-grid amplifier V305A to the control grid (pin 3) of cathode follower V305B, the other half of the tube. The crystal couples the output (pin 2) of the cathode follower to the cathode (pin 8) of the grounded-grid amplifier. The crystals operate at series resonance to provide low impedance coupling with zero phase shift. The phase shift through the cathode follower is also zero. Thus, an in-phase voltage is routed back to the cathode of the grounded-grid amplifier sustaining conditions for oscillation. Coil L311 resonates the crystal socket capacitance and prevents it from affecting the operation of the circuit. Resistors R321 and R322 provide the coupling impedance at the cathodes and bias for the two sections of the tube. Test point J305 provides for measuring the dc bias developed across R320. Resistor R318 isolates J305 from the control grid, pin 3, of the cathode follower and prevents loading of the grid circuit by test instruments. The plate, pin 4 , of the cathode follower receives voltage from the $+125-v d c$ supply through isolation resistor R315. The plate, pin 6 , of the grounded-grid amplifier receives voltage from the +125-vdc supply through R313 and L310.

3-134. The 17 to $26-\mathrm{MHz}$ output of second oscillator $V 305$ is taken from the cathode, pin 2, of the cathode follower section, V305B, and routed to the cathode of second receive mixer V303 through coupling capacitor C325. The 17 to 26MHz oscillator signal mixes with the 20.00 to $29.95-\mathrm{MHz}$ if signal applied to the grid of $V 303$, producing a difference frequency in the range 3.00 to 3.95 MHz . This difference frequency is coupled to the Second IF Amplifier through plug P304. Plate voltage for V303 is supplied from the $+125-v d c$ supply through L312, P304, J401, $2401, \mathrm{C} 406$, and R 401 in the Second IF Amplifier, and contacts 18 and 19 of $t / r$ relay $K 602$ in the Relay-Filter (see figure 5-134). (Table 3-3 shows
how frequencies in the 17 to $26-\mathrm{MHz}$ range are used with a particular channel frequency by the First IF Amplifier.)

3-135. Second IF Amplifier-AN/URC-9A. The Second IF Amplifier generates a signal at a frequency which, when mixed with the received signal, produces a $500-\mathrm{kHz}$ signal.

3-136. The Second IF Amplifier (figure 5-8) consists of V401 and crystals Y401 (A and B) through Y410(A and B) which range from 3.00 to 3.95 MHz in $0.05-\mathrm{MHz}$ steps. At receive, third oscillator V401B and its associated crystals provide frequencies which are mixed in third receive mixer V401A with the 3.00 to $3.95-\mathrm{MHz}$ input'signal from the First IF Amplifier. This mixing action produces a $500-\mathrm{kHz}$ signal which is coupled through $500-\mathrm{kHz}$ if filter FL901 to the Third IF Amplifier. The 10-position, $0.1-\mathrm{MHz}$ shaft of the Frequency Selector controls the tuning of all stages during receive and transmit.

NOTE
The input frequency and the crystal-controlled oscillator frequency both range from 3.00 to 3.95 MHz . However, by displacing the two signals by 500 kHz at the third receiver mixer, a difference frequency of 500 kHz is obtained.

3-137. Refer to figure $5-144$ during the following discussion. The 3.00 to 3.95MHz signal is applied through $J 401$ to parallel-resonant tank circuit 2401. This tank circuit is the plate load for second receive mixer V303 in the First If Amplifier. The signal is coupled through two more parallel-resonant tank circuits ( 2402 and $\mathrm{Z403}$ ) by C403 and C407, respectively. The signal is then applied through C411 to the cathode of third receive mixer V401A. The three parallel-resonant tank circuits, Z401 through $\mathrm{Z403}$, form a 3.00 to $3.95-\mathrm{MHz}$ bandpass filter. The l0-position, 0.1MHz shaft of the Frequency Selector tunes
this filter by positioning powdered-iron cores in main tuning coils L401, L403, and L405. Trimmer coils L402, L404, and L406 are adjustable for proper tracking.

3-138. Third oscillator $V 401 \mathrm{~B}$ is controlled by crystals Y401 (A or B) through Y410 (A or B). The $t / r$ relay, $K 401$ (deenergized at receive), connects the control grid of $V 401 B$ to the proper crystal switching network. Switches S401 and S402 are driven by the 10 -position, 0.1 MHz Frequency Selector shaft. Each switch selects one of ten crystals spaced in $0.10-\mathrm{MHz}$ steps. At each switch position, the crystal frequency selected by S 402 is $0.05 \mathrm{MHz}(50 \mathrm{kHz})$ above that selected by 5401 . For example, when S401 is positioned to select the $3.40-\mathrm{MHz}$ crystal, S 402 is positioned to select the $3.45-\mathrm{MHz}$ crystal so that there is always a 0.05 MHz difference in the frequency of the crystals selected. Hundredths relay K 402 connects either switch S 401 or 5402 to the control grid of V401B through the contacts of relay K 401 .

3-139. The crystal switching network selects crystals of a value that provides a $500 \mathrm{kHz}(0.5 \mathrm{MHz})$ difference between the third oscillator frequency and the if signal (ranging from 3.00 to 3.95 MHz ) applied to the cathode of V401A. For example, when the radio set is tuned to receive a frequency, the last two digits of which are xxx.95, the if signal is 3.95 MHz . Selector switches S 401 and S402 are positioned by the $0.1-\mathrm{MHz}$ tuning shaft so that they are making contact (through contacts 12 and 11 of each switch) with the 3.40 and $3.45-\mathrm{MHz}$ crystals, respectively. Relay K 402 is energized in this case to complete the circuit between S 402 and the oscillator control grid (through contacts 3 and 8 of K401) so that the $500-\mathrm{kHz}$ difference in frequency is maintained. Table 3-1 shows how frequencies in the 3.00 to $3.95-\mathrm{MHz}$ range are used by the Second IF Amplifier.

3-140. A voltage divider consisting of series-connected capacitors C412 and C413 determines the electrical position of
the cathode of third oscillator V401B relative to the grid of V401B. The tuned circuit of the third oscillator consists of the selected crystal (Y405A in this case), capacitors C412 and C413, plus the grid-to-ground and cathode-toground capacitance of V401B. The third oscillator is a Colpitts type with the crystal acting as an inductance. The value of the total capacitance is such that osciallation is maintained at the fundamental frequency of the crystal. Cathode resistor R 404 provides additional bias to protect V401B in case oscillation stops. Coil 4407 isolates bias resistor R404 from the crystal circuit.

3-141. Third oscillator $V 401 \mathrm{~B}$ receives plate voltage from the $+125-v d c$ supply through R407 and filter FL404. Test point $J 404$ provides for measuring the voltage developed across third oscillator grid resistor R403. Resistor R402 isolates $J 404$ from the crystal circuit. Coupling capacitor $C 417$ couples the signal from the cathode of $V 401 B$ to the control grid of V401A.

3-142. The incoming if and third oscillator signals mix in second receive mixer V401A to produce the $500-\mathrm{kHz}$ difference frequency. Third receive mixer V401A receives plate voltage from FL404 and voltage dividers $R 410$ and $R 409$, via $R 408$. Resistor R405 provides cathode bias and the coupling impedance for the injection signal from the 3.00 to $3.95-\mathrm{MHz}$ bandpass filter ( $\mathrm{Z} 401, \mathrm{Z402}$, and Z403) . Test point $J 402$ provides for measuring the 3.00 to $3.95-\mathrm{MHz}$ injection signal. Resistor R406 provides the grid return for V401A.

3-143. Second IF Amplifier-AN/URC-9. (Figure 5-7.) The Second IF Amplifier consists of V401 and crystals Y401 through Y 410 which range from 3.0 to 3.9 MHz in $0.1-\mathrm{MHz}$ steps. At receive, V401A is used as the third receive mixer which produces a $500-\mathrm{kHz}$ signal by mixing the input signal with the output of oscillator V401B. The 10 -position, $0.1-\mathrm{MHz}$ shaft of the Frequency Selector controls the tuning of all stages during both the
receive and transmit conditions. V401A, which is a mixer at receive, functions as a buffer amplifier at transmit.

NOTE
The input frequency and the selfcontained oscillator frequency both range from 3.0 to 3.9 MHz . However, by displacing the two signals by 500 kHz at the third receiver mixer, a difference frequency of 500 kHz is obtained.

3-144. Refer to figure 5-143 during the following discussion. The 3.0 to 3.9MHz signal is applied to parallel-resonant tank circuit $Z 401$ via J401. This tank circuit is the plate load for the second receive mixer in the First IF Amplifier. The signal is coupled through two more paralle1-resonant tank circuits, Z402, and 2403 , by C403 and C407, respectively. The signal is then applied to the cathode of third receive mixer V401A via C41l. The three paralle1resonant tanks, 2401 through 2403 , form a 3.0 to $3.9-\mathrm{MHz}$ bandpass filter. The $10-$ position, $0.1-\mathrm{MHz}$ shaft of the Frequency Selector tunes this filter by positioning powdered-iron cores in main tuning coils L401, L403, and L405. Trimmer coils L402, L404, and L406 are adjustable for proper tracking.

3-145. Third oscillator V401B is controlled by crystals Y401 through Y410. The $t / r$ relay $K 401$ (deenergized at receive), connects crystal selector switch S401 to the control grid of V401B. The switch, in turn, is driven by the 10position, $0.1-\mathrm{MHz}$ shaft of the Frequency Selector. The switch selects a crystal of a value that provides a $500-\mathrm{kHz}$ difference between the third oscillator frequency and the 3.0 to $3.9-\mathrm{MHz}$ if input signal. For example, when the radio set is tuned to receive a frequency of xxx.9, the resultant if signal is 3.9 MHz . Selector switch S401 is positioned by the $0.1-\mathrm{MHz}$ tuning shaft so that the rotor of S 401 is in contact with terminal 4. With switch $S 401$ in position and with relay K401 deenergized, the 3.4 -MHz crystal, Y 405 , is connected through
contacts 1 and 2 of the relay to the grid circuit of third oscillator V401B.

3-146. Table 3-2 illustrates frequency development for the Second IF Amplifier. When the $0.1-\mathrm{MHz}$ shaft of the Frequency Selector is set to a frequency in the x .0 to $\mathrm{x} .4-\mathrm{MHz}$ range, the oscillator frequency during receive is in the 3.5 to $3.9-\mathrm{MHz}$ range and the if signal is in the 3.0 to $3.4-\mathrm{MHz}$ range ( 500 kHz difference). When the $0.1-\mathrm{MHz}$ shaft of the Frequency Selector is set to a frequency in the x .5 to $\mathrm{x} .9-\mathrm{MHz}$ range, the oscillator frequency during receive is in the 3.0 to $3.4-\mathrm{MHz}$ range and the if signal is in the 3.5 to $3.9-\mathrm{MHz}$ frequency range ( 500 kHz difference).

3-147. A voltage divider consisting of series-connected capacitors C412 and C413 determines the electrical position of the cathode of third oscillator V401B relative to the grid of V401B. The tuned circuit of the third oscillator consists of the selected crystal, capacitors $C 412$ and C413, plus the grid-to-ground and cathode-to-ground capacitance of V401B. The third oscillator is a Colpitts type with the crystal acting as an inductance. The value of the total capacitance is such that oscillation is maintained at the fundamental frequency of the crystal. Cathode resistor R 404 provides additional bias to protect $V 401 \mathrm{~B}$ in case oscillation stops. Coil 4407 isolates bias resistor R404 from the crystal circuit.

3-148. Third oscillator V401B receives plate voltage from the $+125-\mathrm{vdc}$ supply through R407 and filter FL404. Test point J404 is used to measure the voltage developed across third oscillator grid resistor R403. Resistor R402 isolates J 404 from the crystal circuit. Coupling capacitor C417 couples the signal from the cathode of $V 410 B$ to the control grid of V401A.

3-149. The incoming if and third osci1lator signals mix in second receive mixer V401A to produce the $500-\mathrm{kHz}$ difference frequency. Third receive mixer V401A receives plate voltage from
voltage dividers R 410 and R 409 via R408. Resistor R405 provides cathode bias and the coupling impedance for the injection signal from the 3.0 to $3.9-\mathrm{MHz}$ bandpass filter (Z401, Z402, and Z403). Test point $J 402$ is used to measure the 3.0 to $3.9-\mathrm{MHz}$ injection signal. Resistor R406 provides the grid return for V401A.
$3-150$. The $500-\mathrm{kHz}$ if filter (figure $3-10$ ) provides the filtering in the Second IF Amplifier that establishes the
receiver selectivity; in turn, the filter output is applied to the Third IF Amplifier.

3-151. The filter consists of ten par-allel-tuned, cascaded circuits which are capacitively coupled. (Since each section is identical, only three elements are shown in figure 3-10.) The filter is factory-tuned to the bandpass characteristics shown in figure 3-10. On transmit, the filter is non-operational.


B. BANDPASS CHARACTERISTICS

Figure 3-10. Radio Set AN/URC-9( ), $500-\mathrm{kHz}$ Filter, Schematic Diagram and Bandpass Characteristics

3-152. Third IF Amplifier. The Third IF Amplifier (operational only during receive operation) amplifies the final if signal and detects and amplifies the audio component (see figure 5-9). The Third IF Amplifier consists of three stages of if amplification (V501, V502, and V503), diode detector CR501, a series noise filter, and first audio amplifier V504. In addition, the assembly contains an if avc gate, CR504, and an rf avc gate, CR505.

3-153. Refer to figure 5-145 during the following discussion of the input stages. The $500-\mathrm{kHz}$ if signal from the plate of second receive mixer V401A in the Second IF Amplifier is applied through filter FL901 to the control grid of first if amplifier V501. Resistor R501 connects the control grid of stage to the if avc bus, and capacitor C504 provides a low impedance rf path from the screen grid to the cathode. The plate of V501 receives voltage through L501 and R504
from the $+125-v d c$ supply. Capacitor C502 couples the $500-\mathrm{kHz}$ if signal to the control grid of if amplifier V502. Resistor R505 connects the control grid of V502 to the if avc bus.

3-154. Capacitor C503 couples the 500kHz if signal to the control grid of if amplifier V503. The control grid of V503 is connected to ground through gridleak resistor R509. The if amplifier receives plate voltage through R512 and the primary of if output transformer T501 from the $+125-v d c$ supply. The output of $V 503$ is coupled through transformer T501 to detector CR501, series noise limiter CR503, and first audio amplifier V504. Test points J503 and J505 are used to inject a signal into V501 and V503, respectively, for troubleshooting.

3-155. The if signal is coupled from V503 to audio detector CR501 (figure 311) by transformer T501. Capacitor C520 is an rif filter and resistor R539, connected across the secondary of $T 501$, improves the frequency response of the transformer. Detector CR501 demodulates the input signal and produces an audio signal across load resistors R516, R517, and R518. The detected audio is coupled from the junction of resistors R518 and R517 through resistor R538, series noise 1imiter diode CR503, and capacitor C522 to the grid circuit of first audio amplifier V504. Capacitor C524 grounds the cathode of detector CR501 for audio and rf voltages. Resistor R538 and capacitor C521 filter rf components (from the $500-\mathrm{kHz}$ if signal) from the audio signal.

3-156. The audio and dc voltage developed across the diode load is applied as the carrier squelch through resistors R515 and R541, and through MODE switch S702B to the squelch amplifier of the Audio Amplifier and Modulator; it is also applied to the broadband audio amplifier of the Audio Amplifier and Modulator, as the broadband audio output. Test point J508 is used to measure the detected audio as well as the broadband audio output. Resistor R532 prevents loading of the detector circuit by test instruments. A
low-impedance path to ground for the 500kHz if components is provided by C528 and L503.

3-157. Series noise limiter CR503 (figure 3-11) clips audio peaks exceeding $60 \%$ modulation. The series noise limiter does not affect that part of the signal produced by modulation troughs. The cathode of the noise limiter is connected to the negative end of the detector load (bottom of R516) through resistors R519 and R520. Resistor R519, in conjunction with capacitor C523, filters the audio signal and produces, at the junction of resistors R519 and R520, a negative dc voltage proportional to the voltage at the negative end of the detector load. The peak audio signal voltage at the anode of CR503 is approximately $90 \%$ of the average (or dc) voltage at the negative end of the detector load. Thus, at modulation percentages up to approximate1y $60 \%$, the cathode of series noise limiter CR503 is negative with respect to its anode, and the audio signal is faithfully reproduced across series noise -limiter load resistor R520. When modulation peaks exceed a value representing $60 \%$ modulation, the anode of CR503 goes negative with respect to its cathode and the diode stops conducting. Thus, that part of the signal representing more than $60 \%$ modulation is clipped off.

3-158. Refer to the if avc circuit in figure $3-11$ during the following discussion. During receive, approximately +4.5 vdc is applied to the cathode of audio detector CR501. This bias voltage delays the development of the avc voltage until the signal reaches an amplitude sufficient to overcome it. The bias voltage is obtained from the +275 -vdc supply by way of a voltage divider which consists of Audio Amplifier and Modulator resistors R813, R814, and R816.

3-159. The voltage at the negative end of the audio detector load (bottom of R516) is the algebraic sum of the positive bias voltage and a negative voltage of approximately equal to the average rms voltage of the if signal. Since the
cathode of if avc gate diode CR504 is returned to the negative end of the audio detector load through R529, CR504 cannot conduct until the algebraic sum of the positive bias voltage and the negative voltage developed across the detector load results in a net negative voltage at its cathode. When the input signal amplitude causes the voltage at the bottom of R516 to become more negative than -4.5 vdc , the cathode of if avc gate CR504 becomes negative; the diode conducts and develops a voltage across load resistor R531. This voltage controls the gain of if amplifiers V301 and V302 in the First IF Amplifier, and if amplifiers V501 and V502 in the Third IF Amplifier. Test point J 504 is used to measure the if avc voltage developed by if avc gate CR504.

3-160. The if avc gate, CR504, isolates the if avc line from the positive bias voltage applied to the cathode of CR501. Resistors R529 and R530, in conjunction with capacitors C514 and C515, filter the audio signal from the if avc line. A bias voltage is applied to the if avc line through if avc gate load resistor R531 from the -11-vdc supply by a voltage divider consisting of R 715 in series with R716 and SQUELCH control R702. In local operation, the bias level is set by SQUELCH control R702 on the front panel (see figure 5-151). In remote operation, 5705 C connects to the S 9 SQUELCH controls in the C-3866/SRC. Each squelch control is adjusted for operation with its assigned channel. The exact voltage that causes if gate CR504 to conduct can be varied by means of the remote squelch circuit.

3-161. Refer to rf avc circuit in figure 3-11 during the following discussion. A portion of the audio signal developed across audio detector load resistors R516, R517, and R518 is coupled from the junction of R516 and R517 to the cathode of rf avc gate CR505 via R537. Although connected to a less negative voltage level (the top of R516), the rf avc gate serves the same purpose as the if avc gate.

3-162. The voltage appearing at the cathode of the rf avc gate is always more positive than the voltage at the cathode of if avc gate CR504. Thus, the signal amplitude must be higher to overcome the delay bias. This results in more delay for rf avc and improves the sensitivity of the radio set. Resistor R533 is the load resistor for rf avc gate CR505; resistor R537 with capacitor C526 filters the audio signal from the rf avc lkne. The rf avc voltage developed across load resistor R533 is used to control the gain of the rf amplifier ers, V102 and V103, in the RF and PA Amplifier.

3-163. Refer to the audio amplifier circuit in figure 3-11 during the following discussion. Audio signals developed across series noise-limiter load resistor R520 are coupled to the grid of audio amplifier V504 through coupling capacitors C522 and C530, and resistors R514 and R525. These resistors form a voltage divider which decreases the amplitude of the input signals thereby decreasing distortion. Cathode resistor R526 is bypassed by capacitor C529. Capacitor C516 provides a low-impedance path to ground for audio signals on the screen grid of audio amplifier V504. Plate and screen voltages are supplied from the $+125-v d c$ supply through plate load resistor R527 and screen dropping resistor R528. The audio output is developed across resistor R527 and coupled through capacitor C517 to the normal receiver volume control, R819, in the Audio Amplifier and Modulator (see figure 5-146).

3-164. Audio Amplifier and Modulator. During receive operation, tubes V803 through V808 amplify the received and detected audio signals to the level necessary to drive both the local and remote headsets; during transmit, these, amplifier stages are used to modulate the carrier in the RF and PA Amplifier (see figure 5-10). In addition to the basic amplifier and modulator circiuts, the Audio Amplifier and Modulator contains dc squelch amplifiers V801A and


Figure 3-11. Radio Set AN/URC-9( ), Detector, Noise Limiter, and AVC Circuits, Simplified Schematic Diagram

V801B and squelch relay K801, signal-plus-noise to noise ( $\mathrm{S}+\mathrm{N} / \mathrm{N}$ ) squelch discriminator CR801 and CR802, broadband cathode follower V802A, and compression rectifier V802B.

3-165. Refer to the audio amplifier and driver circuits in figure 5-146 during the following discussion. The audio input from the Third IF Amplifier is applied to the control grid of audio amplifier V803. The signal is applied through closed contacts 12 and 5 of squelch relay K 801 , contacts 15 and 16 of $t / r$ relay K 802 , and contacts 3 and 8 of broadband relay K 803 . (This latter relay is closed when the PLAIN-BROADBAND switch is in the PLAIN position.) The input is developed across resistor R826 and is coupled to the control grid of V803 through C809, the parallel combination of C817 and R847, and R854. Jack J805 is a test point used either to measure audio signals or to inject audio signals at the control grid of V803 during test and troubleshooting. Plate and screen voltages for V 803 are obtained from the $+125-\mathrm{vd}$ c supply through a voltage divider consisting of resistors R828 and R829 of this assembly, and resistors R616, R617, and R618 of the Relay-Filter.

3-166. Audio and modulator driver $V 804$ is a parallel-operated dual-triode. The cathode bias for both sections is obtained from R832 which is bypassed by C815. The V803 audio output is developed across resistor R830 and is coupled through C814 to potentiometer R831 which adjusts the input level to audio and modulator driver V804 during normal operation. The audio level determined by the setting of R831 is coupled to the parallel-connected grids of V804 through C818 and parasitic suppressors R855 and R856. Test point J802 is used to measure audio signals or to inject audio signals at the control grid of V804. Plate voltage for the stage is obtained from the $+275-v d c$ supply through the primary of phase-splitting transformer T801.

3-167. Audio output amplifiers V805 through V808 are parallel-connected and push-pull operated. Tubes V805 and V807 comprise a parallel pair, as do tubes V806 and V808. The output signal of audio and modulator driver V804 is developed across T801 and applied to the control grids of the audio output amplifiers. The signal at pin 3 of the secondary winding is coupled directly to the paralle1-connected grids of V805 and V807; and the signal at pin 5 of the transformer, which is 180 degrees out of phase with the pin 3 signal, is coupled directly to the control grids of V806 and V808. A fixed bias of -11 vdc is applied to the control grids through the transformer center tap, pin 4. The cathodes of V805 through V808 are returned to ground through R834 which is a meter shunt. (The voltage developed across the resistor during transmit indicates the percentage of modulation.) Screen grid voltages for the output amplifiers are supplied from the $+125-v d c$ supply through parasitic suppressors R843 through R846. Plate voltages are supplied from the $+275-v d c$ supply through the primary of the output transformer. Test points J 803 and J 804 are used to measure the audio modulation (during transmit) and the input to V 806 , respectively.

3-168. The receive audio output signal is obtained from the tapped secondary winding (pins 7, 8, and 9) of T802 (see figure 3-5). The normal receive audio output is coupled from pin 7 of T802 to contacts 9 and 10 of $t / r$ relay K 602 of the Relay-Filter. The remote audio from pin 10 of K 602 is coupled directly to the remote audio output jack; the local audio is routed through the parallel combination of resistor R3 and VOLUME control R117, and resistor R705 to local HEADSET J702B and AUDIO output jacks J703 and J704.

3-169. Refer to the squelch circuit in figure 3-12 during the following discussion. The squelch circuit deenergizes
the audio stages when the input signal level drops below the squelch threshold level. The front panel SQUELCH control enables the circuit and controls the gain of the receiver by applying a negative bias to the if avc line. Thus, the setting of the SQUELCH control determines the input signal level that deactivates the squelch circuit.

3-170. With reference to figure 3-12, note the MODE switch S702B is modified by link connections. When the link is connected across pins 1 and 2 , the equipment is connected for $\mathrm{S}+\mathrm{N} / \mathrm{N}$ squelch; and when the link is connected across pins 1 and 3 , the equipment is connected for carrier squelch. Thus, the squelch dc amplifiers receive a grid voltage from a route determined by the setting of MODE switch S702B and the sque1ch connections. At the NOR (normal) and TONE settings of the MODE switch, and with the link connected between 1 and 2 , grid voltage is applied to V801A from S+N/N discriminator control R804 through R805 and contacts 1 or 3 of the MODE switch. In the RETRANS (retransmit) mode, the grid of V801A is connected to the negative side of audio detector load (R516, R517, and R518) through R515, R514, and contact 2 of the MODE switch.

NOTE
Regardless of the link connection, in RETRANS mode, the equipment is set for carrier squelch; and when the link is connected between pins 1 and 3, the grid of V801A is always connected to the negative side of the detector load.

3-171. Resistors R806, R807, and R808 comprise a voltage divider that provides operating voltages for squelch dc amplifiers V801A and V801B. The cathode of v801B is connected to the junction of resistors R807 and R808. Thus, the cathode of v 801 B is at a much higher positive potential than the cathode of V801A. The control grid of V 801 B and the plate of V801A are connected to the cathode of v801B through resistor R809. The plate
of $V 801 B$ is connected to the $+275-v d c$ supply through the coil of squelch relay K801, contacts 3 and 2 of work relay K1, and contacts 12 and 13 of $\mathrm{t} / \mathrm{r}$ relay K 802 (see figure 5-134).

3-172. With no received signal,there is a positive bias on the control grid of V801A. This bias is the result of the delay bias on the detector load provided by R813, R814, and R816 during carrier squelch operation and during $\mathrm{S}+\mathrm{N} / \mathrm{N}$ operation, it is the reference bias developed by sensing diodes CR801 and CR802. With conditions as stated, tube V801A conducts, drawing current through R809 which causes the control grid of V801B to go negative with respect to the cathode. Tube V801B cannot conduct because of the negative bias on its control grid. Squelch relay K801 is deenergized and the audio line from audio amplifier V504 to audio amplifier V803 is open because contacts 12 and 5 of the squelch relay are open.

3-173. When a signal is received, the negative voltage developed by the carrier across the detector load (carrier squelch), or the negative voltage developed in the sensing circuit ( $\mathrm{S}+\mathrm{N} / \mathrm{N}$ squelch) biases V801A to cutoff. With no current through V801A, there is no voltage drop across plate load resistor R809, and the grid of V801B approaches the same potential as the cathode. This causes V801B to conduct and squelch relay K801 to energize, thereby completing the circuit from audio amplifier V504 to audio amplifier V803 through contacts 5 and 12 of K801.

3-174. SQUELCH contro1 R702 is normally adjusted for threshold at the frequency of minimum received signal strength. Weak signals or noise may cause squelch relay K 801 to operate intermittently; this intermittent operation will be indicated by CALL LIGHT DS703 which will flicker on and off. SQUELCH DISABLE switch S 704 may be used to determine whether noise or signals are causing the intermittent operation. When pressed,this switch provides a ground return for


Figure 3-12. AN/URC-9( ), Squelch Amplifier and Signal-Plus-Noise to Noise Discriminator, Simplified Schematic Diagram
squelch relay K 801 , thus energizing K 801 . Relay K 801 will remain energized as long as switch S 703 is in the off position, or switch 5704 is pushed. The audio output from the headset permits identification of the input signal

3-175. Refer to the $S+N / N$ squelch discriminator circuit in figure $3-12$ during the following discussion. The $S+N / N$ squelch is put into operation automatically in the NOR (normal) and TONE modes when the grid of V801A is connected to the wiper arm of potentiometer R804. The voltage divider, consisting of resistors R 816 and R814, provides a positive bias of approximately 2 vdc on receive, which is applied to the junction of diode rectifiers CR801 and CR802. The low-pass filter consisting of resistors R802 and capacitor $C 803$ passes the audio signal to dc blocking capacitor C804 which couples the audio signal to CR801. Diode rectifier CR801 rectifies the signal and develops a negative voltage at the right end of R804. The high-pass filter consisting of capacitor C802 and resistor R803 passes the high frequency noise and develops a positive voltage at the left end of R804. Thus, the voltage distribution across R804 is dependent upon the ratio of the amplitude of the audio signal to the amplitude of the noise ( $\mathrm{S}+\mathrm{N} / \mathrm{N}$ ratio).

3-176. The $S+N / N$ ratio that will cut off V801A and open the squelch is determined by the setting of potentiometer R804. When squelch relay $K 801$ is energized, contacts 8 and 14 connect $C 808$ across the output of the $S+N / N$ sensing circuit through R805. This switching of C808 provides a fast attack and slow release in the squelch operation. When C808 is not in the squelch circuit (i.e., K801 deenergized) it is discharged through contacts 9 and 14 of K801. Diode CR805 is a blocking diode used to prevent charge leakage on C 808 ; Zener diode CR806 controls the charging of C808. Diode CR807 prevents the charging voltage from being grounded, and Zener CR808 limits the amount of charge across $C 808$.

3-177. Refer to the carrier squelch circuit in figure 3-12 during the following discussion. When the link connection is made between 1 and 3 the control grid of squelch dc amplifier V801A is connected to the negative side of the diode detector load regardless of the setting of MODE switch S702B. Carrier squelch functions as previously described in paragraph 3-169.

3-178. Refer to the broadband receiving circuit in figures $5-3$ and 5-146 during the following discussion. Operation with broadband equipment requires broadband relay K 803 to be maintained in the deenergized condition. This is accomplished by placing the PLAIN-BROADBAND switch at BROADBAND which removes the ground return from K803 (see figure 5-3). The control grid of broadband cathode follower V802A is supplied by the broadband receive audio signal from T501 in the Third IF Amplifier. Capacitor C801 couples the input signal to the grid of V802A, and capacitor C806 couples the output signal from the cathode of the stage to the broadband equipment. Broadband cathode follower V802A receives plate voltage from the $+275-v d c$ supply through contacts 12 and 13 of $t / r$ relay K802. Bias for the control grid is provided through R810 from the junction of cathode resistors R811 and R818. The broadband receive audio input signal from the broadband equipment is applied to the grid of the audio amplifier V803. The path of the input signal is through contacts 9 and 10 of $t / r$ relay K 802 , contacts 2 and 8 of broadband relay K 803 , coupling capacitor C 809 , and the network consisting of $\mathrm{C} 817, \mathrm{R} 847$, and R854. The subsequent amplification of the broadband signals is provided by conventional amplifying circuits.

## 3-179. METERING CIRCUITS.

3-180. RADIO SET AN/URC-9( ). Meter M701, together with switch S 701 , permits measurement of critical current and voltage levels throughout Radio Set AN/URC-9 ( ). METER switch S701 selects the
circuits to be monitored and conditions the meter circuits. The metering circuits are designed such that normal outputs of the monitored circuits register in the NORMAL range on the meter scale. There are eleven active switch positions; the schematic of each position is shown in figure 3-13. The circuit for each switch position is described in the following paragraphs.

## NOTE

Resistor R707 is connected in series with M701 in all switch positions (less SWR and PWR) to minimize the effect of temperature variations on meter accuracy.

3-181. S METER. When METER switch S701 is in the S METER position, meter M701 indicates the strength of the received signal. Switch S701A connects the negative side of meter M701 to resistor R308 which is part of the cathode-bias circuit for if amplifier $V 302$ in the First IF Applifier. Switch S701B connects the positive side of the meter to a voltage divider comprised of resistors R710 and R712. Resistors R712 is adjusted to provide a voltage which balances the no-signal voltage developed across R308. Upon receipt of a signal, current flow through V302 is decreased through ave action. This results in a reduction of voltage across R308 that is proportional to the amplitude of the received signal.

3-182. SWR. When METER switch S701 is in the SWR position, meter M701 indicates the reflected power on the transmission line from the antenna. Switch S701A connects the negative side of the meter M701 to RI301 in the directional coupler; and switch S701B connects the positive side of the meter to ground. The rectified voltage drop across SWR detector load resistor Rl301 causes current to flow through meter M701. Therefore, the applied voltage is proportional to the reflected power at the antenna.

3-183. PWR. When METER switch S701 is in the PWR position, meter M701 indicates the power delivered to the antenna. Switch S701A connects the negative side of meter M701 to Rl 304 in the directional coupler; and switch S701B connects the positive side of the meter to ground. The rectified voltage drop across PWR detector load resistor R1304 causes a current to flow through the meter. The amount of current flow is controlled by the voltage across R1304 and is proportional to the power delivered to the antenna.

3-184. DVR $I_{b}$. When METER switch 5701 is in the DVR $I_{b}$ position, meter M701 indicates the plate current of transmit driver V105 in the RF and PA Amplifier. Switch S701 connects meter M701 across shunt resistor R121. The negative side of the meter is connected through S701A to the plate of transmit driver V105A; the positive side is connected through S701B to the $+325-\mathrm{vdc}$ supply. The flow of V105 plate current through R121 produces a voltage which is proportional to the amount of plate current.

3-185. PA $I_{g}$. When METER switch S701 is in the PA $I_{g}$ position, meter M701 indicates the grid current of transmit power amplifier V106 in the RF and PA Amplifier. Switch 5701 connects the meter across shunt resistor R109, which is part of the grid-leak circuit for transmit power amplifier Vl06. Thus, the voltage developed across R109 is proportional to the power amplifier grid current. The negative side of the meter is connected through S701A to the control grid of v106; the positive side is connected through S701B to the $-11-\mathrm{vdc}$ bias supply. Resistor R108 provides a means for adjusting the plate current of V106.

3-186. PA $\mathrm{I}_{\mathrm{b}}$. When METER switch S701 is in the PA $I_{b}$ position, meter M701 indicates the plate current of transmit power amplifier V106 in the RF and PA Amplifier. Switch 5701 connects the meter across shunt resistor R 706 . The


Figure 3-13. Radio Set AN/URC-9( ), Metering Circuits, Simplified Schematic Diagram
plate current of transmit power amplifier V106 develops a voltage across R706 which is proportional to the current through the tube. The negative side of the meter is connected through S701A to the plate of V106; the positive side is connected through S701B to the $+325-$ vdc supply.

3-187. \% MOD. When METER switch S701 is in the \% MOD position, meter M701 indicates the percentage of modulation during transmit. Switch 5701 connects meter M701 across shunt resistor R834, which is also the cathode return-toground for audio output amplifiers V805 through V808 in the Audio Amplifier and Modulator. The negative side of the $m$ meter is connected to ground through S701A, and the positive side of the meter is connected to shunt resistor R834 through S701B. Modulator cathode current develops a voltage across R834 which is proportional to the amount of current flow. The meter reading, therefore, is proportional to the modulation cathode current.

3-188. BIAS. When METER switch S701 is in the BIAS position, meter M701 indicates the output voltage of the $-11-v d c$ supply. The negative side of the meter is connected to the -11 -vdc line through switch S701A, series resistor R711, and line filter FL13; the positive side is connected to ground through switch S701B.

3-189. +26.5 V . When METER switch S701 is in the +26.5 V position, meter M701 indicates the output voltage of the $+26.5-v d c$ supply. The negative side of the meter is connected to ground through switch S701A; the positive side is connected to the $+26.5-\mathrm{vdc}$ line through switch S701B, series resistor R704, and line filter FL1.

3-190. +125 V . When METER switch 5701 is in the +125 V position, meter M701 indicates the output voltage of the $+125-$ vdc supply. The negative side of the meter is connected to ground through
switch S701A; the positive side is connected to the junction of resistors R713 and R708 through switch S701B. Resistors R713 and R708 form a voltage divider that is series connected from the $+125-v d c$ supply to ground through line filter fl5.
$3-191$. +325 V . When METER switch S 701 is in the +325 V position, meter M701 indicates the output voltage of the $+325-$ vdc supply on transmit and the output voltage of the $+275-v d c$ supply in receive. The negative side of the meter is connected to the ground through switch S701A; the positive side is connected to the function of resistors R714 and R709 through switch S701B. In transmit, resistors R714 and R709 form a voltage divider that is series connected from the $+325-v d c$ supply to ground through contacts 13 and 14 of energized $t / r$ relay K802 and line filter FL3. In receive, resistors R 714 and R 709 are in series from the $+275-v d c$ supply to ground through line filter FL6.

3-192. RADIO FREQUENCY AMPLIFIER AM1565/URC. Meter M501, together with METER switch S502, permits measurement of critical current and voltage levels throughout the AM-1565/URC. The meter is set into the front panel assembly (see figures 5-88 and 5-153); METER switch S 502 connects the meter to the various circuits in order to obtain the proper readings. Resistor R533 is connected permanently in series with meter M501 to reduce the effects of temperature on metering-circuit accuracy. Figure 314 contains simplified schematic diagrams for the metering circuits connected in the various positions of METER switch S502; the circuitry for the various switch positions is described in the following paragraphs.

3-193. HV. When METER switch S502 is in the HV position, meter M501 indicates the output of the $+1800-\mathrm{vdc}$ supply. The negative side of the meter is connected to ground through METER switch S502A, and the positive side of the meter is connected in series with screen protection


Figure 3-14. Radio Frequency Amplifier AM-1565/URC, Metering Circuits, Simplified Schematic Diagram
relay K304 and R301 to the +1800 -vdc line through METER switch S502B; these connections place meter M501 across resistor R302. The voltage drop across R302 provides the voltage necessary to give an indication of the $+1800-v d c$ supply operation.

3-194. BIAS 1. When METER switch S501 is in the BIAS 1 position, meter M501 indicates the negative voltage applied to the control grid of rf amplifier V201 in the Power Amplifier subassembly. The positive side of the meter is connected to ground through METER switch S502B and R505; the negative side of the meter is connected through METER switch S502A to the junction of the control grid of V201 and the wiper arm of R304. Potentiometers R304 and R303 and fixed resistor R306 form a voltage divider in the $-60-v d c$ supply line to ground. The BIAS 1 reading on meter M501 is the negative voltage measured at the wiper arm of R304.

3-195. BIAS 2. When METER switch S502 is in the BIAS 2 position, meter M501 indicates the negative voltage applied to the control grid of rf amplifier V202 in the Power Amplifier subassembly. The positive side of the meter is connected to ground through METER switch S502B and R505; the negative side of the meter is connected through METER switch S502A to the junction of the control grid of V202 and the wiper arm of R303. Potentiometers R303 and R304 and fixed resistor R306 form a voltage divider in the $-60-\mathrm{vdc}$ supply line to ground. The BIAS 2 reading on meter M501 is the negative voltage measured at the wiper arm of R303.

3-196. +300V. When METER switch S502 is in the +300 V position, meter M501 indicates the output voltage of the $+300-$ vdc supply. The negative side of the meter is connected to ground through METER switch S502A, and the positive side of the meter is connected to the junction of resistors R503 and R504 through METER switch S502B. Resistors R503 and R504 form a voltage divider connected in
series from the +300 -vdc supply to ground.

3-197. 27.5V. When METER switch S502 is in the 27.5 V position, meter M501 indicates the output voltage of the $-27.5-\mathrm{vdc}$ supply. The positive side of the meter is connected to ground through METER switch S502B, and the negative side of the meter is connected to the junction of resistors R502 and R530 through METER switch S502A. Resistors R502 and R530 form a voltage divider connected in series from the $-27.5-v d c$ supply to ground.

3-198. DELAY. When METER switch S502 is in the DELAY position, meter M501 indicates the output voltage of the $30-$ vdc supply across Zener diode CR346 (see figure 5-135). This voltage (19 vdc ) is applied as a delay bias for automatic drive control detector V203 in the Power Amplifier subassembly. The negative side of the meter is connectd to the $19-v d c$ supply common line through METER switch S502A, and the positive side of the meter is connected to the junction of resistors R534 and R535 through METER switch S502B. Resistors R534 and R535 form a voltage divider connected in series from the positive side to the common side of the $19-\mathrm{vdc}$ line.

3-199. SWR. When METER switch S502 is in the $\overline{S W R}$ position, meter M501 indicates the reflected power on the transmission line from the antenna. METER switch S502A connects the negative side of meter M501 through potèntiometer R532 to the directional coupler in the Power Amplifier subassembly, and METER switch S502B connects the positive side of the meter to ground. Potentiometer R532 is used to calibrate meter M501 for the SWR measurement.

3-200. PWR OUT. When METER switch S502 is in the PWR OUT position, meter M501 indicates the output power delivered to the antenna. METER switch S502A connects the negative side of the meter M501 through potentiometer R531 to the directional coupler in the Power

Amplifier subassembly, and METER switch S502B connects the positive side of the meter to ground. Potentiometer R531 is used te calibrate meter M50l for the po-wer-output measurement.

3-201. PAI ${ }_{b 1}$. When METER switch 5502 is in the PAIbl position, meter M501 indicates the plate current of rf amplifier V201 in the Power Amplifier subassembly. METER switch S502 connects the meter across shunt resistor R305, which is also the cathode return to ground for rf amplifier V201. The negative side of the meter is connected to ground through METER switch S502A, and the positive side of the meter is connected to shunt resistor R305 through METER switch S502B. The plate current of rf amplifier V201 flows through R305, developing across it a voltage which is proportional to the current through the tube.

3-202. PAI $_{\mathrm{h} 2}$. When METER switch S502 is in the $\mathrm{PAI}_{\mathrm{b} 2}$ position, meter M501 indicates the plate current of rf amplifier V202 in the Power Amplifier subassembly. METER switch S502 connects the meter across shunt resistor R307, which is also the cathode return to ground for rf amplifier V202. The negative side of the meter is connected to ground through METER switch S502A, and the positive side of the meter is connected to shunt resistor R307 through METER switch S502B. The plate current of rf amplifier V202 flows through R307, developing across it a voltage which is proportional to the current through the tube.

3-203. ATTEN. When METER switch S502 is in the ATTEN position, meter M501 indicates the current through the winding in variable magnetic ferrite attenuator AT401. METER switch S 502 connects the meter across shunt resistor R536. The positive side of the meter is connected through METER switch S502B to the $+150-$ volt-regulated dc line, and the negative side of the meter is connected through METER switch S502A and the winding of attenuator AT401 to the plates of drive
control power amplifier $V 405$ in the Servo Amplifier subassembly.

3-204. POWER DISTRIBUTION.
3-205. AC POWER DISTRIBUTION. Radio Sets AN/SRC-20( ) and AN/SRC-21( ) operate from a primary power source of 115 or 230 volts, 50 or 60 Hz , single-phase ac. The primary windings of the power transformers are connected in parallel for $115-\mathrm{volt}$ operation and in series for 230-volt operation. Except for the tube filaments, all other components (blower motors, servo motor, rate generator, etc.) requiring ac operate on 115 volts. When such a component is connected across the 230 -vac line, a series dropping resistor or a switching arrangement is used to limit the voltage to 115 vac. All power transformer lines are fused, as are the main primary power lines in Radio Set Control C-3866/SRC, Radio Set AN/URC-9 ( ), and Radio Frequency Amplifier AM-1565/URC. The following paragraphs describe the ac power distribution for Radio Sets AN/SRC-21( ) and AN/SRC20 () .

3-206. Radio Set AN/SRC-21() AC Power Distribution. The ac power distribution for Radio Set AN/SRC-21( ) is illustrated in the schematic diagram of figure 5-132. Primary ac power is applied to the equipment by setting EMERGENCY POWER switch S206 (on the front panel of Radio Set Control C-3866/SRC) to the on (up) position and pressing RADIO SET POWER START button S204 (also located on the front panel of the $\mathrm{C}-3866 / \mathrm{SRC}$ ). EMERGENCY POWER indicator DS202 is connected to secondary winding 9-10 of power transformer T202, and is illuminated (red) when primary ac power is applied to the primary winding of T202. RADIO SET POWER indicator DS201 is connected to secondary winding 5-6 of start-stop transformer T201, and is illuminated (red) when primary ac power is applied to the primary winding of T201. R250 limits the current through DS201 and DS202. CONTROL fuse F2O5 protects the primary circuit of transformer T202, and
thereby protects Radio Set Control C3866/SRC; START-STOP fuse F203 protects the primary circuit of start-stop transformer T201; RADIO SET fuse F206 protects the controlled Radio Set AN/URC-9 ( ) ; and MAIN fuse F204 protects the entire installation.

3-207. The primary power (either 115 or 230 vac ) is applied through power input jack Jl08 on Radio Set Control C-3866/ SRC and P201-J201 to EMERGENCY POWER switch S206. When EMERGENCY POWER switch S206 is closed and RADIO SET POWER START button S204 is pressed, the primary ac power is applied to the primary windings of power transformer T202 through MAIN fuse F204, CONTROL fuse F205, the normally closed contacts of RADIO SET POWER STOP button S205, the normally open (now closed) contacts of RADIO SET POWER START button S204, and line filters FL201 and FL202. Links on terminal board TB2O2 connect the primary windings of T202 in parallel for 115 volt operation (shown in the figure), and in series for 230 vac operation.

3-208. In addition to the foregoing, closing RADIO SET POWER START button S204 applies the primary ac power to the primary winding of start-stop transformer T201. The path of this line for 115 vac operation is through MAIN fuse F204 and CONTROL fuse F205, the normally closed contacts of RADIO SET POWER STOP button S205, the normally open contacts (now closed) of RADIO SET POWER START button S204, the primary of T 201 , resistor R227, the link connecting terminals 4 and 1 of TB202, and START-STOP fuse F203. Resistor R228, shorted out for 115 vac operation, drops the primary winding voltage of T201 to 115 vac when the equipment is operated on 230 vac.

3-209. The 115 -vac on the primary of start-stop transformer T201 is coupled to secondary winding $3-4$, where it is then applied to bridge-rectifier diodes CR201 through CR204 of the $24-\mathrm{vdc}$ supply. The rectified output of the $24-\mathrm{vdc}$ supply energizes start-stop relay K 208. Contacts L3-T3 of K 208 are holding con-
tacts that maintain the primary ac power on the primary windings of T 201 and T 202 after RADIO SET POWER START button S204 is released. Contacts L1-T1 and L2-T2 of K208 couple the primary ac power to Radio Set AN/URC-9 ( ) ; primary power cable W1902 connects output jack J106 of the C-3866/SRC to input jack J1404 of the AN/URC-9( ). The primary ac power, for the REMOTE POWER ON indicator, is simultaneously provided at pins $K$ and $N$ of J104 through REMOTE fuse F207 when LOCAL-REMOTE switch S 201 is in the REMOTE position.

3-210. Power Supply PP-2702/URC-9 in the AN/URC-9 ( ) receives primary ac power through input jack J1404, line filter FL1401, and pins 13 and 14 of J1402P1501. MAIN fuse F1501 provides protection for the AN/URC-9 ( ) primary power circuit; T1501 PRI fuse Fl501 provides protection for the primary circuit of power transformer T1501; and T1502 PRI fuse F1503 provides protection for the primary circuit of power transformer T1502.

3-211. When POWER switch S1503 on Power Supply PP-2702/URC-9 is closed, the primary ac power is applied to the primary windings of power transformers T1501 and T1502. Each transformer has two primary windings, which are connected in parallel for 115 vac operation (shown in the figure) or in series for 230 vac operation. The position of switch Sl501 determines whether the primary windings of Tl501 are connected in parallel or in series; switch S1502 connects the primary windings of T1502 in parallel or in series for 115 vac or 230 vac operation.

3-212. The primary ac power for operation of $\mathrm{r} / \mathrm{t}$ centrifugal fan B1051 and case centrifugal fan B1401 are obtained from the primary windings of T1501. Primary winding 1-2 of Tl 501 is connected through contact Cl-C2 of POWER switch S1503 and pins 14 and 6 of P1501 to the case centrifugal fan; primary winding 34 of T 1501 is connected through pins 13 and 16 of P1501, and line filters FL32 and FL33 in the receiver-transmitter,
to the r/t centrifugal fan, B1051. In this manner the fans are supplied with 115 vac of primary power for both 115 vac and 230 vac operation.

3-213. The filament voltage supply for the RT-581( )/URC-9 is obtained from secondary winding $7-8$ of power transformer T1502. Line filters FL22 through FL25 in the RT-581( )/URC-9 are in series with the transformer winding and the filaments. Although all tubes in the re-ceiver-transmitter operate on 6.3 vac , the filament supply provides 6.7 vac to account for line drop. The filament voltage for transmit power amplifier V106 is routed through a centrifugal sensing switch located on the centrifugal fan assembly of the RT-581( )/URC-9 and a thermal sensing switch S101 located on the RF and PA Amplifier. (See figures 5-139 and 5-140.) In this manner, the filament voltage for V106 can be removed thereby shutting down the equipment in the transmit mode if the centrifugal fan fails to operate or if V106 should overheat.

NOTE
The centrifugal sensing switch is not included in all models of the centrifugal fan assembly. Refer to the notes on figure 5-138 to identify the fans that incorporate the sensing switch.

3-214. To turn off the power to Radio Set AN/SRC-21( ), first RADIO SET POWER STOP button 5205 (on the $\mathrm{C}-3866 / \mathrm{SRC}$ ) is pressed and the EMERGENCY POWER switch S206 (also on the C-3866/SRC) is set to OFF. Pressing RADIO SET POWER STOP button S 205 shorts out primary winding 1-2 of start-stop transformer T201 which, in turn, removes the primary ac power applied to bridge rectifier diodes CR201 through CR204 of the 24 -vdc supply thereby deenergizing start-stop relay K208. When K208 deenergizes, the primary ac power line to the AN/URC-9 ( ) is opened and the holding action of L3-T3 is removed. Setting EMERGENCY POWER switch S206 to OFF removes the primary
ac power from Radio. Set Control C-3866/ SRC, and thereby turns off all power to Radio Set AN/SRC-21( ).

3-215. Radio Set AN/SRC-20( ) AC Power Distribution. The ac power distribution for Radio Set AN/SRC-20( ) is illustrated in the schematic diagram of figure 5-131. The power distribution for Radio Set Control C-3866/SRC and Radio Set AN/URC-9( ) is the same as described in paragraph 3206; refer to figure 5-132 for the detailed circuitry of the ac power distribution within Radio Set AN/URC-9( ). The complete circuitry for the ac power distribution within Radio Set Control C$3866 /$ SRC is included in figure 5-131 to illustrate the overall equipment tie-in between the C-3866/SRC and Radio Frequency Amplifier AM-1565/URC.

3-216. The primary power (either 115 or 230 vac ) is applied through power input jack J108 on Radio Set Control C-3866/ SRC. When EMERGENCY POWER switch S206 is closed and RADIO SET POWER START button S204 is pressed, the primary ac power is applied to the primary windings of power transformer T202 and start-stop transformer T201 in the C-3866/SRC. The rectified output of the $24-v d c$ supply energizes start-stop relay K208; contacts L1-T1 and L2-T2 of K208 couple the primary ac power through J106 and cable W1901 to Radio. Set AN/URC-9 ( ), and through J107 and cable W1905 to Radio Frequency Amplifier AM-1565/URC. Refer to paragraph 3-206 for a detailed description of the primary ac power distribution within the C-3866/SRC and the AN/ URC-9 ( ) .

3-217. The AM-1565/URC receives primary ac power through input jack J101 (at the rear of the case), line filters FL101 and FL102, and P103-J8. Application of power to the unit is controlled by front panel-mounted POWER switch S501 and the normally closed contacts of safety interlock switch S303. (When the chassis is extended on its slides, the normally closed contacts of interlock switch S303 open and the power is removed from the equipment; however, the interlock switch
can be manually bypassed to facilitate maintainance.) MAIN fuse 5501 provides protection for the AM-1565/URC primary power circuit; T301 PRI fuses F502 and F503 provide protection for the primary circuit of high-voltage power transformer T301; and T302 PRI fuses F504 and F505 provide protection for the primary circuit of low-voltage power transformer T302. Power transformers T301 and T302 each have two primary windings. The two windings are connected in series for operation from a $230-\mathrm{vac}$ primary source, and in paralle1 for operation from a 115-vac primary source (shown in the figure). Power selector switch S301C permits the selection of either 115 vac or 230 vac operation for the primary of T301; power selector switch S301B serves the same purpose for the primary of T302.

3-218. When POWER switch S 501 is closed, primary ac power is applied to the primary windings of low-voltage power transformer T302 from contact 1 of S501 through MAIN fuse F501, and also from contact 3 of S 501 through thermostat switch S1101, contacts 3 and 4 of time delay relay K 302 , and primary winding fuses F504 and F505. (Thermostat switch S1101 is closed unless the temperature inside the AM-1565/URC case exceeds $100^{\circ} \mathrm{C}$, or $212^{\circ} \mathrm{F}$.) At the same time, case blower B1101, which is in parallel with primary terminals 1 and 2 of T302, is energized by 115 vac , as are Power Amplifier subassembly servo motor rate generator unit MG201 and blower B1001, both of which are in parallel with primary winding terminals 3 and 4 of T302.

3-219. In addition to the foregoing, closing POWER switch S501 applies ac power to the time delay relay motor and clutch (winding of relay K302). Relay K302 has a 60 second delay, after which the delay motor is removed from the circuit and the power connection to it is broken. Air-actuated switch S1001, which is closed by the air stream of Power Amplifier subassembly blower B1001 before the time delay relay contacts open, is paralleled by contacts 3 and 4
of the time delay relay. This configuration allows primary ac power to be applied to the primary windings of transformer T302 and blower B1101 prior to the closing of S1001. After the time delay, if Power Amplifier subassembly blower B1101 stops, switch S1001 opens, breaking the low-voltage power transformer primary circuit and removing all power from the tubes in the other assemblies of the AM-1565/URC. When power selector switch S301A is set for 230 vac operation tion, resistor R313 is placed in series with time delay relay K 302 , and, upon operation of contacts 3 and 5 of time delay relay K 302 , resistor R 312 is connected in place of the time delay motor to maintain a constant 115 vac across the time delay clutch.

3-220. After the 60 second time delay, contacts 6 and 8 of K 302 close and apply -27.5 vdc to contact 6 of $\mathrm{t} / \mathrm{r}$ relay K303. When the AM-1565/URC is keyed relay K303 energizes and routes -27.5 vdc through contacts 6 and 7 to relay K301. When K301 energizes and the contacts close, the primary ac power is applied from POWER switch 5501 to the primary windings of high-voltage power transformer T301 through MAIN fuse F501 and primary winding fuses F502 and F503.

3-221. The filament voltage supply for the AM-1565/URC is obtained from secondary windings of low-voltage power transformer T302. Secondary winding terminals 5 and 6 supply 6 vac for the filament of rf amplifięr V201 in the Power Amplifier subassembly, and secondary winding terminals 7 and 8 supply 6 vac for the filament of rf amplifier V202. Secondary winding terminals 9,10 , and 11 supply 6.3 vac for the filament of the following tubes: automatic drive control detector V203 in the Power Amplifier subassembly, servo amplifier V401, phase splitter V402, power amplifiers V403 and V404, and drive-control amp1ifiers V405 and V406 in the Servo Amplifier subassembly. Center tap terminal 10 of T 302 is grounded to reduce hum.

3-222. The ac bridge network in the AM1565/URC servo system is excited by 60 vac from secondary winding terminals 12 and 13 of T302. This ac voltage is applied across follow-up potentiometer R203 in the Power Amplifier subassembly and one of the channel potentiometers (R525, CHAN 1, in this case) of the Front Panel assembly.

3-223. The power of Radio Set AN/SRC-20 ( ) is turned off in the same manner as the power to Radio Set AN/SRC-21( ) (see paragraph 3-215). Pressing RADIO SET POWER STOP button S205 on the C-3866/SRC stops the power to the AN/URC-9 ( ) and the AM-1565/URC, and setting EMERGENCY POWER switch S206 (also on the C-3866/ SRC) to OFF removes all power from Radio Set AN/SRC-20( ).

3-224. DC POWER DISTRIBUTION. Each of the units that make up Radio Sets AN/ SRC-20( ) and AN/SRC-21() has its own power supply to provide the required dc operating voltages throughout that unit. Power Supply PP-2702/URC-9 provides the dc voltages for Receiver-Transmitter RT581( )/URC-9 of Radio Set AN/URC-9 ( ); Radio Frequency Amplifier AM-1565/URC and Radio Set Control C-3866/SRC have self-contained power supplies that serve their needs. Each power supply uses semiconductor diodes in a full-wave bridge rectifier circuit configuration; also, most of the power supplies are fused for overload protection. The following paragraphs describe the circuitry of the $d c$ power supplies and the $d c$ power distribution for the AN/URC-9( ), the AM-1565/URC, and the C-3866/SRC.

3-225. Radio Set AN/URC-9( ) DC Power Supply. Power Supply PP-2702/URC-9 provides dc voltages for Receiver-Transmitter RT-581( )/URC-9 of Radio Set AN/ URC-9( ). The power supply provides dc operating voltages of +26.5 volts, +325 volts, +275 volts, +125 volts, and -11 volts required by the receiver-transmitter. Although five different operating voltages are supplied, the power supply uses only three semiconductor-diode, full -wave, bridge-rectifier circuits to pro-
vide the voltages. Refer to figure 5-136 during the following discussion.
$3-226$. +26.5-Volt DC Supply. The +26.5vdc supply consists of T1501 secondary winding 7-8 and diodes CR1505 through CR1508 which are connected in a conventional full wave bridge-rectifier circuit. Overload protection is provided by RECT 26.5 V fuse F1505. In addition to the $+26.5-\mathrm{vdc}$ unfiltered output, a panel and indicator light output is provided through DIMMER control R1506. POWER indicator light DS1501 is illuminated (red) when power switch Sl503 is set to on (up) position.

3-227. +325-Volt and $+275-$ Volt DC Supply. The +325 and $+275-v d c$ supplies are furnished by the same bridge-rectifier circuit. This circuit consists of T1501 secondary winding 5-6, full-wave bridgerectifier diodes CR1501 through CR1504, and the $+26.5-v d c$ supply. The bridgerectifier develops approximately 300 vdc ; the negative output of this circuit is connected to the positive output of the $+26.5-v d c$ supply, thus placing the positive output of the $300^{-} \mathrm{vdc}$ rectifier at 325 vdc above ground. The output of the $+325-v d c$ supply is filtered by chokeinput filter L1501-C1501 and L1502-C1502. Diode CR1513 provides suppression of transient signals developed across L1502 when the radio set is changed from transmit to receive. Resistors R1501 through R1504 form a bleeder network for the rectifier. Overload protection for the $+325-\mathrm{vdc}$ line is provided by 325 v B+ fuse F1504 (on both transmit and receive). Resistor R1505 reduces the $+325-\mathrm{vdc}$ output to +275 vdc in receive. Overload protection for the $+275-\mathrm{vdc}$ line is provided by 325 V B+ fuse F1507 (receive only).

3-228. +125-Volt and -11-Volt DC Supply. The +125 and $-11-v d c$ supplies are furnished by the same bridge-rectifier circuit. This circuit consists of T1502 secondary winding $5-6$ of full-wave bridge-rectifier diodes CR1509 through CR1512. The +125 and -11 -vdc outputs
are filtered by double-section choke-input filters L1503-Cl50s and L1504-C1505. Capacitors C1503 and C1506 resonate with choke coils L1503 and L1504, respectively, to present a high impedance to the 120 Hz ripple. Resistor R1507 is the bleeder across the $+125-\mathrm{vdc}$ output. The $-11-v d c$ output is obtained from the junction of R1508 and Zener diode CR1514. The Zener diode, which has a range of -9.1 to -11 vdc , controls the $-11-\mathrm{vdc}$ output. Overload protection is provided by +125 V B+ fuse F1506.

3-229. Radio Set AN/URC-9(). DC Power Distribution - Transmit. The dc power distribution for the transmit function of kadio Set AN/URC-9 ( ) is illustrated in figure 5-133. The power supply outputs are coupled to J1401-P1 of ReceiverTransmitter RT-581( )/URC-9. The +275volt output is not used on transmit.

3-230. +325-Volt DC Distribution. The $+325-\mathrm{vdc}$ from pin C of Pl is routed from line filter FL3 through contacts 7 and 8 (closed on transmit) of $t / r$ relay $K 602$ to voltage-divider resistors R601, R602, and R603 in the Relay-Filter and through contacts 13 and 14 (closed on transmit) of $t / r$ relay $K 802$ to voltage-divider resistors R813, R814, and R816 in the Audio Amplifier and Modulator. The +325 vdc across voltage divider R813, R814, and R 816 is applied to meter M 701 on the front panel. On transmit, closed contacts 13 and 14 of $\mathrm{t} / \mathrm{r}$ relay K 802 bypass fuse F1507 and resistor R1505 of the $+275-v d c$ line. Front panel meter M701 indicates +275 vdc until the equipment is keyed to transmit; the meter then indicates +325 vdc .

3-231. The +325 vdc across voltage divider R813, R814, and R816 is applied as $B+$ to the parallel-connected plate of audio and modulator driver V804, and to the plates of audio output amplifiers V805 through V808. The audio-modulated $+325-v d c$ is coupled as $\mathrm{B}+$ from the primary of transformer T802 as follows: from terminal 1 of T 802 through metershunt resistor R706 of the Front Panel assembly to the plate of transmit power
amplifier V106 in the RF and PA Amplifier; and from terminal 2 of T 802 through contacts 3 and 4 (closed on transmit) of high-voltage relay K 2 and R606 in the Relay-Filter to the plate of transmit driver V105 in the RF and PA Amplifier.

3-232. Voltages from the voltage divider are also applied as delayed bias to the if and rf avc gates in the Third IF Amplifier and to the $\mathrm{S}+\mathrm{N} / \mathrm{N}$ squelch discriminator and the squelch dc amplifier in the Audio Amplifier and Modulator; these circuits, however, are not shown since they are not used during the transmit function.

3-233. Voltage dividers R601, R602, and R603 in the Relay-Filter are connected between the +325 and $+125-v d c$ power supplies. The voltage at the wiper arm of potentiometer R602 is modulated through C601 and applied as B+ to the screen grid of transmit power amplifier V106 in the RF and PA Amplifier.

3-234. +125-Volt DC Distribution. The +125 vdc from pin E of P1 is routed through line filter FL5 to the Relay-Filter, where it is applied directly across voltage-divider resistors R616, R617, and R618, and through contacts 19 and 20 (closed on transmit) of $\mathrm{t} / \mathrm{r}$ relay K 602 , across voltage-divider resistors R601, R602, and R603. Since R601 is returned to +325 vdc, voltage divider R601, R602, and R603 provide a voltage of less than +325 vdc but greater than +125 vdc . (The distribution of the dc voltage from the wiper arm of potentiometer R602 is described in the preceding paragraph.) From the bottom of R603, the +125 vdc is applied as $B+$ to the plate of second transmit mixer V101 in the RF and PA Amplifier and to the plate and screen of first transmit mixer V304 in the First IF Amplifier.

3-235. From the top of voltage-divider resistors R616, R617, and R618, the +125 vdc is coupled directly to the following: meter M701 on the front panel; the plates of first oscillator-multiplier V201 and injection amplifiers V203 through V205,
and the plate and screen of frequency tripler V2O2 in the FMO; the plates of rf amplifiers V102 and V103 in the RF and PA Amplifier; the plates and the screens of if amplifiers V301 and V302 and the plates of second oscillator V305 in the First IF Amplifier; the plate of transmit buffer amplifier V401A and the plate of third oscillator V401B in the Second IF Amplifier; and to the cathode of compression rectifier $V 802 B$ and the screens of audio output amplifiers V805 through V808 in the Audio Amplifier and Modulator. This $+125-v d c$ line is also connected to the plate and screen of audio amplifier V504 in the Third IF Amplifier; this circuit, however, is not shown in figure 5-133 since it is not used during the transmit function.
$3-236$. The $+125-v d c$ is coupled from the top of voltage divider R6i6, R617, and R618 in the Relay-Filter through contacts 4 and 5 (closed on transmit) of t/r relay K 602 as $\mathrm{B}+$ for transmit rf amplifier V104 in the RF and PA Amplifier. The dc voltage at the junction of voltage-divider resistors R616 and R617 is applied as $B+$ to the plate and screen of audio amplifier V803 in the Audio Amplifier and Modulator.

3-237. -11-Vo1t DC Distribution. The -11 vdc from pin J of P 1 is routed through line filter FL13 to meter M701 on the front panel; to the control grid of transmit power amplifier V106 in the RF and PA Amp1ifier, as bias; and to the Relay-Filter where it is further distributed throughout the equipment.

3-238. From the Relay-Filter, the -11 vdc is applied as bias directly to the control grids of audio output amplifiers V805 through V808 in the Audio Amplifier and Modulator. The -11 vdc is also routed through Relay-Filter resistor R611 and the microphone transformer T601, front panel MODE switch S702A (in NOR and RETRANS), and line filter FL702 to the MIKE jacks on the front panel. When the MODE switch is in the TONE position, the $-11-v d c$ supply provides power for
the 1 kHz tone generator. The -11 vdc is further routed to the remote microphone through line filter FLI6 and pin $Z$ of P1-J1401. In addition, the -11 vdc is applied through resistor R614 as the energizing voltage for $t / r$ control relay K601 in the Relay-Filter.

3-239. +26.5-Vo1t DC Distribution. The +26.5 vdc from pin P of P1 is routed through line filter FLI to meter M701 on the front panel and is used as the energizing voltage for all relays (except K601 and K801) in the RT-581( )/URC-9. The +26.5 vdc is applied to the solenoids of autopositioner relays K1201, K1202, K1203, and K1204 of the Frequency Selector (figure 5-150 or 5-157), and through contacts 3 and 4 of these relays (closed during channel switching) to energize tuning motor B1201 and work relay K1. The same +26.5 vdc is also applied as the energizing voltage for broadband relay K 803 in the Audio Amplifier and Modulator; K803 is energized by setting PLAIN-BROADBAND switch S1401 (at the rear of the equipment case) to the PLAIN position. (For AN/URC-9A only, the +26.5 vdc is applied through contacts 3 and 5 of K1204 to the solenoid of K402 in the Second IF Amplifier when not channeling). The +26.5 vdc is applied directly to the coil of duplex relay K603 in the Relay-Filter; K603 is energized through the microphone ground when the equipment is operating in the RETRANS mode.

3-240. When $t / r$ control relay K 601 in the Relay-Filter is energized, contacts 3 and 8 close and apply +26.5 vdc to the solenoids of the following relays: $t / r$ relay K602 in the Relay-Filter; high voltage relay K 2 and $\mathrm{t} / \mathrm{r}$ relay K 802 in the Audio Amplifier and Modulator; $\mathrm{t} / \mathrm{r}$ relay K401 in the Second IF Amplifier; and antenna relay Kl01 and injection relay K102 in the RF and PA Amplifier. In addition, contacts 3 and 8 of $\mathrm{t} / \mathrm{r}$ control relay K 601 close , the +26.5 vdc is applied through R612 to the broadband sidetone amplifier as $B+$ for that stage (see figure 5-147).

3-241. Radio Set AN/URC-9 ( ) DC Power Distribution - Receive. The dc power distribution for the receive function of Radio Set AN/URC-9 ( ) is illustrated in figure 5-134. The power supply outputs are coupled to J1401-P1 of ReceiverTransmitter RT-581( )/URC-9. The +325volt line is not used in receive.

3-242. +275-Volt DC Distribution. The +275 vdc from pin $G$ of Pl is routed through line filter FL6 to meter M701 on the front panel and voltage-divider resistors R813, R814, and R816 in the Audio Amplifier and Modulator. From the top of this voltage divider, the +275 vdc is applied to the parallel-connected plates of audio and modulator driver V804 and to the plates of audio output amplifiers V805 through V808.

3-243. Since $t / r$ relay $K 802$ is deenergized on receive, the +275 vdc is applied through normally closed contacts 12 and 13 directly to the plate of broadband cathode follower V802A, and through normally closed contacts 2 and 3 of work relay K1 (energized during channeling) to voltage-divider resistors R 806 through R808 in squelch dc amplifier V801. The voltage on the plate of V801A and on the grid of V801B is obtained from the voltage divider through resistor R809; the voltage on the plate of V801B is obtained through the solenoid of squelch relay K801.

3-244. The dc voltage at the junction of +275 voltage-divider resistors R 813 and R814 is applied as a delayed bias to the if and rf avc gates in the Third IF Amplifier. The dc voltage at the junction of voltage-divider resistors R814 and R816 biases the $\mathrm{S}+\mathrm{N} / \mathrm{N}$ squelch discriminator in the Audio Amplifier and Modulator.

3-245. +125-Volt DC Distribution. The +125 vdc from pin $E$ of Pl is routed through line filter FL5 of voltage-divider resistors R616, R617, and R618 in the Relay-Filter. From the top of the voltage divider, the +125 vdc is coupled through resistor R607 as $\mathrm{B}+$ for the plate
of first receive mixer V104 in the RF and PA Amplifier. The +125 vdc is coupled directly from the top of the voltage divider to the following: meter M701 on the front panel; the cathode of compression rectifier V802B, and the screens of audio output amplifiers V805 through V808 in the Audio Amplifier and Modulator; through contacts 4 and 5 of work relay Kl (energized during channeling) to the $\mathrm{S}+\mathrm{N} / \mathrm{N}$ squelch discriminator in the Audio Amplifier and Modulator; the plates of first oscillator-multiplier V201 and injection amplifiers V203 through V205, and the plate and screen frequency tripler V2O2 in the FMO; the plates of rf amplifiers V102 and V103 in the RF and PA Amplifier; the plates and screens of if amplifiers V301 and V302, and the plates of second oscillator V305 in the First IF Amplifier; the plate of third receive mixer V401A, and the plate of third oscillator V401B in the Second IF Amplifier; and to the plate and screen of audio amplifier V504 in the Third IF Amplifier.
$3-246$. The +125 vdc is coupled from the top of voltage divider R616, R617, and R618 in the Relay-Filter through normally closed (on receive) contacts 18 and 19 of $t / r$ relay $K 602$ as $B+$ for the plates and screens of if amplifier $V 501$ through V503 in the Third IF Amplifier. The same $+125-v d c$ line also applies $B+$ to the plate and screen of second receive mixer V303 in the First IF Amplifier; this signal path is through line filter FL403, resistor R401, feedthrough capacitor C406, and impedance network $Z 401$ in the Second IF Amplifier. The dc voltage at the junction of voltage-divider resistors R616 and R617 is applied as B+ to the plate and screen of audio amplifier V803 in the Audio Amplifier and Modulator.

3-247. -11-Volt DC Distribution. The -11 vdc from pin J of P 1 is routed through line filter FL13 to meter M701 on the front panel and is used as a bias voltage for the control grids of audio output amplifiers V805 through V808 in the Audio Amplifier and Modulator. The -11 vdc is also applied directly to the control grid
of transmit power amplifier V106; this circuit, however, is not shown since it is not used during the receive function.

3-248. +26.5-Volt DC Distribution. The +26.5 vdc from pin P of Pl is routed through line filter FL1 to meter M701 on the front panel and is used as an energizing voltage for broadband relay K 803 in the Audio Amplifier and Modulator. Relay K 803 is energized by setting PLAIN-BROADBAND switch S1401 (on the equipment case) to the PLAIN position.

3-249. Radio Frequency Amplifier AM-1565 /URC DC Power Distribution. The dc power distribution for Radio Frequency Amplifier AM-1565/URC is illustrated in figure 5-135. The self-contained power supplies in this unit provide dc operating voltages of +1800 volts, +300 volts, -60 volts, -27.5 volts, and 19 volts from a 30 volt supply. All of the power supplies except the +1800 -vdc supply operate from secondary windings of lowvoltage power transformer T302; the +1800 $-v d c$ supply operates from a secondary winding of high-voltage power transformer T301. When Radio Frequency Amplifier AM-1565/URC is turned on, primary ac power is applied directly to the primary winding of T302; primary ac power is applied to the primary winding of T301 only after a 60 -second time delay has elapsed and Radio Set AN/SRC-20( )' is keyed to transmit (see paragraph 3-215). All of the power supplies in the AM-1565 /URC use semiconductor diodes in a fullwave bridge-rectifier circuit configuration; also, all power supplies except the $30-\mathrm{vdc}$ supply are fused for overload protection.

3-250. +1800-Volt High-Voltage DC Supply and Distribution. The +1800 -vdc highvoltage supply consists of high-voltage transformer T301 secondary winding 5-6 and diodes CR301 through CR324 connected in a full-wave bridge-rectifier circuit. Overload protection is provided by fuse F301, and the output voltage is filtered by choke-input filter L301-C301. The output of +1800 vdc is applied directly to the plates of rf amplifiers V201 and

V202 in the Power Amplifier subassembly. Also, the +1800 vdc is routed through bleeder resistor R 301 and the solenoid of screen protection relay K 304 to meter M501 on the front panel; resistor R302 is the meter shunt.

3-251. +300-Volt DC Supply and Distribution. The $+300-v d c$ supply consists of low-voltage transformer T302 secondary winding 16-17 and diodes CR325 through CR332 connected in a full-wave bridgerectifier circuit. Overload protection is provided by 300 V B+ fuse F506 on the front panel; the output voltage is filtered by double-section choke-input filter L302-C302 and L303-C303. Resistors R308 and R309 form the bleeder network for the rectifier.
$3-252$. The filtered output of +300 vdc is coupled through contacts 6 and 8 (closed on transmit) of screen protection relay K304 to the screen grids of rf amplifiers V201 and V202 in the Power Amplifier subassembly.
$3-253$. The filtered +300 vdc is coupled directly to meter M501 on the front pane1, and through the windings of the servo motor, part of MG201, in the Power Amplifier subassembly as $B+$ to the plates of power amplifiers V403 and V404 in the Servo Amplifier subassembly. Also, the +300 vdc is routed directly to the Servo Amplifier subassembly, where it is applied as $B+$ to the plates of servo amplifier V401 and phase inverter V402, and the screen grids of power amplifiers V403 and V404.
$3-254$. In addition to the foregoing, the +300 vdc coupled to the Servo Amplifier subassembly is applied through serieslimiting resistor R 434 to the anode of voltage regulator V 407 , which regulates the voltage at +150 vdc . The +150 -volt regulated dc is applied as $B+$ to the plates of drive control amplifier $V 406$ and drive control power amplifier V405; the plate voltage for V 405 is routed through attenuator-current meter-shunt resistor R536 and variable magnetic ferrite attentuator AT401.

3-255. -60-Volt DC Supply and Distribution. The $-60-\mathrm{vdc}$ supply consists of low-voltage transformer T302 secondary winding 18-19 and diodes CR338 through CR341 connected in a full-wave bridgerectifier circuit. Overload protection is provided by -60 V BIAS fuse F 508 on the front panel; the output voltage is filtered by single-section pi-filter C305, L304 and C306. Resistors R303, R304, and R306 form the bleeder network for the rectifier. Resistors R303 and R304 are variable, and thereby vary the bias on the control grids of rf amplifiers V201 and V202 in the Power Amplifier subassembly. The bias voltages selected by R303 and R304 are also coupled to meter M501 on the front panel.

3-256. The full -60 vdc developed across bleeder resistors R303, R304, and R306 is applied to voltage-divider resistors R430 and R431 in the cathode circuit of drive control amplifier V406 in the Servo Amplifier subassembly. Since both voltage-divider resistors are of the same value, a fixed bias of -30 vdc is present at their junction; hence, a fixed bias of -30 vdc is applied to the cathode of V406.

3-257. 30-Volt DC Supply and Distribution. The 30 -vdc supply consists of lowvoltage transformer T302 secondary winding 20-21 and diodes CR342 through CR345 connected in a full-wave bridge-rectifier circuit. The output of 30 vdc is filtered by C304 and applied across series resistor R311 and Zener diode CR346; R311 drops the voltage to 19 vdc , the Zener voltage of CR346.
$3-258$. The $19-v d c$ output is applied across voltage-divider resistors R 435 and R436 in the Servo Amplifier subassembly, and across voltage-divider resistors R526, R527, and R528 of the Front Panel assembly. The voltage at the wiper arm of diode delay potentiometer R436 is applied as a delay bias for the cathode of automatic drive control detector V203 in the Power Amplifier subassembly and the control grid of drive control amplifier V4N6A in the Servo Amplifier sub-
assembly during automatic operation of the drive control circuits; this occurs when EXCITATION MANUAL-AUTO switch S507 on the front panel is set to the AUTO. position.

3-259. The drive control circuit operation is controlled manually when S 506 is set to the MANUAL position. The bias on the control grid of drive control amplifier V406A is adjusted manually by EXCITATION HIGH-LOW control R527 on the front panel. Contacts 2 and 4 of S507 are opened on manual operation, thereby disabling automatic drive control detector V203.

3-260. In addition to the foregoing, the 19 vdc across voltage-divider resistors R526, R527, and R528 is routed to front panel meter M501 via voltage divider R534 and R535. The voltage measured across R 535 provides an indication of the bias-voltage output of the 30vdc supply.

3-261. -27.5 Volt DC Supply and Distribution. The $-27.5-\mathrm{vdc}$ supply consists of low-voltage transformer T302 secondary winding $14-15$ and diodes CR333 through CR336 connected in a full-wave bridge-rectifier circuit. The unfiltered -27.5 vdc is routed to the Front Panel assembly, where it is fused for overload protection by 27.5 V fuse F 507 and app1ied to front panel meter M501. Panel and indicator lights DS501 through DS505 are illuminated via DIMMER control R501; HV B+ indicator light DS501 is returned to ground through diode CR501 and closed contacts 2 and 4 of screen-protection relay K304 in the transmit condition. CAUTION indicator light DS506 is illuminated through the normally open contacts of interlock switch S303C when the interlock switch is pulled out.

3-262. The -27.5 vdc is applied as the energizing voltage directly to input and output coaxial relays K201 and K202 in the Power Amplifier subassembly; the ground for these relays is through closed contacts 2 and 4 of screen-protection relay K304 in the transmit condition.

Also, the -27.5 vdc along the same line is applied through normally open contacts 8 and 6 of time delay relay K302 (K302 energizes 60 seconds after power is applied to the equipment) to normally open contact 6 of $\mathrm{t} / \mathrm{r}$ relay K 303 .

3-263. Within the Front Panel assembly, the -27.5 vdc is routed to the solenoid of autopositioner relay K501, and through its normally closed contacts 1 and 2 (open during channeling) and RF POWER OUTPUT HIGH-LOW switch S508 to the solenoid of $t / r$ relay K303. During channel switching the -27.5 vdc is applied through contacts 2 and 3 of K501 to autopositioner motor B501.

3-264. Keying the AM-1565/URC by using the TEST KEY switch on the front panel, or by actuating the microphone key switch, places a ground on pin 9 of relay K303 and energizes the relay. When 303 energizes, contacts 6 and 7 close and apply -27.5 vdc to the solenoid of $\mathrm{t} / \mathrm{r}$ relay K 301 which energizes and applies the primary ac power to the primary winding of high-voltage transformer T301 (see paragraph 3-220).

3-265. Radio Set Control C-3866/SRC DC Power Distribution. The self-contained power supplies in Radio Set Control C3866/SRC provide dc operating voltages of 24 volts, -28 volts, and 12 volts for the relays and synchro system within the unit and the units at the remote stations (Radio Set Control C-1138/UR or Radio Set Control C-1207/UR and Indicator Control $\mathrm{C}-3868 / \mathrm{SRC}$ ). The dc power supplies and distribution in the $\mathrm{C}-3866 /$ SRC are illustrated in the schematic diagram of figure 5-157.

3-266. 24-Vo1t DC Supply and Distribution. The $24-\mathrm{vdc}$ supply consists of start-stop transformer T201 secondary winding 3-4 and semiconductor diodes CR201 through CR204 connected in a fullwave bridge-rectifier circuit. The $24-$ vdc output is isolated from ground, unfiltered, and is not fused. The output is applied only to the solenoid of startstop relay K 208 as the energizing volt-
age. The operation of the start-stop circuit is described in paragraph 3-206.

3-267. -28-Volt DC Supply and Distribution. The $-28-v d c$ supply consists of power transformer T202 secondary winding 5-6 and semiconductor diodes CR205 through CR208 connected in a full-wave bridge-rectifier circuit. The unfiltered $-28-v d c$ output of this supply is fused by F201 for over-load protection. The -28 vdc is distributed as the energizing voltage to channel-dialing relays K201 through K206 and transfer relay K209. The solenoids of relays K202, K203, K204, K206, and K209 are tied directly to the $-28-v d c$ line. The path for the energizing voltage of $K 201$ is through LOCALREMOTE switch S201 and CHANNEL DIAL selector S 202 in the C-3866/SRC (or the channel dial selector in the $\mathrm{C}-3868 / \mathrm{SRC}$ ). The path for the energizing voltage of K205 is through LOCAL-REMOTE switch S201. In addition, the -28 vdc is used as the excitation voltage for the synchro system which serves to indicate, at the remote station, the preset channel selected for use. The synchro transmitter is located in Radio Set Control C-3866/SRC, and the synchro receiver is located in Indicator Control C-3868/SRC at the remote station.

3-268. 12-Vo1t DC Supply and Distribution. The $12-v d c$ supply consists of power transformer T201 secondary winding 7-8 and semiconductor diodes CR209 through CR212 connected in a full-wave bridgerectifier circuit. Overload protection is provided by fuse F 202 , and the output voltage is filtered by double-section choke-input filter L202-C203 and L201C202. Resistor R248 is the bleeder resistor. Both sides of this supply are isolated from ground; however, if desired, the positive side can be grounded through a link on terminal board TB201.

3-269. The filtered 12 vdc from this supply is routed through LOCAL-REMOTE switch S201 to Radio Set Control C-1138/ UR or C-1207/UR, and used as the energizing voltage for $t / r$ relay K 207 in Radio Set Control C-3866/SRC.

3-270. FREQUENCY SELECTION.
NOTE
Frequencies in the following descriptions are applicable to Radio Set AN/URC-9A; frequencies for the AN/URC-9 are the same, less the hundredths digit.

3-271. FREQUENCY CONVERSION. Frequency conversions during receive and transmit functions are described under the transmit and receive function headings in the prec-ding paragraphs. The following summary of frequency conversion requirements is presented as an introduction to the frequency selection descriptions in the subsequent paragraphs. Refer to figure 3-15 during the following discussion.

3-272. When operating in the receive condition, the uhf signal ( 225.00 to 399.95 MHz ) received at the antenna is applied through Radio Frequency Amplifier AM-1565/URC (in Radio Set AN/SRC-20 ( )) or directly (in Radio Set AN/SRC-21 ( )) to rf amplifiers V102 and V103 in the RF and PA Amplifier. These amplifiers are tuned in $0.1-\mathrm{MHz}$ steps to frequencies in the 225.00 to $399.95-\mathrm{MHz}$ range. The FMO is tuned in $10-\mathrm{MHz}$ steps in the frequency range of 200 to 370 MHz . Both the received and FMO frequencies are mixed in V104 to produce the first if in the range of 20.00 to 29.95 MHz . The if amplifiers, V301 and V302, are tuned to one of 100 frequencies (between 20.00 and 29.95 MHz ) spaced 0.1 MHz apart. Second oscillator V305 in the First IF Amplifier generates one of ten frequencies in the range of 17 to 26 MHz . These frequencies are then mixed in second receive mixer V303 with the output of the if amplifiers (20.00 to 29.95 MHz ) to produce the second if in the range of 3.00 to 3.95 MHz .

3-273. For Radio Set AN/URC-9A, the Second IF Amplifier is tuned to one of 10 steps spaced 0.1 MHz apart. The hundredths relay K 402 selects one of 2 crystals at each step, for a total of 20
available frequencies. Third oscillator V401B generates one of twenty frequencies in the 3.50 to $3.95-\mathrm{MHz}$ range and 3.00 to $3.45-\mathrm{MHz}$ range. When the second if frequency is between 3.00 and 3.45 $\mathrm{MHz}, \mathrm{V} 401 \mathrm{~B}$ operates between 3.50 and 3.95 MHz to produce the third if of 500 kHz . When the second if is between 3.50 to 3.95 MHz , V401B operates between 3.00 to 3.45 MHz to produce the third if of 500 kHz .

3-274. For Radio Set AN/URC-9, the Second IF Amplifier is tuned to one of ten frequencies spaced 0.1 MHz apart. (See figure 3-16.) Third oscillator V401B generates one of ten frequencies in the 3.5 to $3.9-\mathrm{MHz}$ range, and 3.0 to $3.4-\mathrm{MHz}$ range. When the second if is between 3.0 and 3.5 MHz , V401B operates between 3.5 and $3.9-\mathrm{MHz}$ to produce the third if of 500 kHz ; and when the second if is between 3.5 and 3.9 MHz , V401B operates between 3.0 and 3.9 MHz .

## NOTE

During the following example, refer to figure 3-15 for Radio Set AN/URC-9A and to figure 316 for Radio Set AN/URC-9.

3-275. For explanatory purposes, assume the receiver is tuned to 271.75 MHz . Since this frequency falls within the 270.00 to $279.95-\mathrm{MHz}$ range, the FMO crystal frequency is 41.66666 MHz and the FMO injection frequency is 250 MHz . The FMO generates the $250-\mathrm{MHz}$ signal by multiplying the 41.66666 MHz crystal frequency by six (doubled in first oscilla-tor-multiplier V201 and tripled in frequency tripler V202). The FMO injection frequency is applied to first receive mixer V104 in the RF and PA Amplifier where it is mixed with the incoming $271.75-\mathrm{MHz}$ signal, resulting in a first if of $21.75-\mathrm{MHz}$. Since this frequency falls in the 21.00 to $21.95-\mathrm{MHz}$ range, the first if crystal frequency is 18 MHz . The $21.75-\mathrm{MHz}$ and $18-\mathrm{MHz}$ signals are applied to second receive mixer V303 in the First IF Amplifier which produces the second if of 3.75 MHz . This signal is coupled through a 3.00 to $3.95-\mathrm{MHz}$


Figure 3-15. Radio Set AN/URC-9A, Frequency Conversion System Functional Block Diagram
bandpass filter to third receiver mixer V401A in the Second IF Amplifier. In V401A, the $3.75-\mathrm{MHz}$ signal is mixed with the $3.25-\mathrm{MHz}$ second if crystal frequency to produce a $500-\mathrm{kHz}$ if signal. This signal is then coupled through the 500kHz if filter to the Third IF Amplifier.

3-276. At transmit, the operating frequency is obtained by generating low radio frequency and then heterodyning it to the uhf operating frequency. In the heterodyning process, all circuits except V401B of the Second IF Amplifier operate on the same frequency for transmit as for receive; the latter oscillator is shifted 500 kHz so that the transmit channel frequency is the same as receive. Thus, when the equipment is keyed to transmit, third oscillator V401B is switched from 3.25 to 3.75 MHz . This frequency is amplified and mixed in first transmit mixer V304 with an $18-\mathrm{MHz}$ signal generated in the First IF Amplifier. The resulting $21.75-\mathrm{MHz}$ signal is then amplified and routed to the RF and PA Amplifier where it is mixed in second transmit mixer V101 with a $250-\mathrm{MHz}$ signal injection from the FMO. The resultant $271.75-\mathrm{MHz}$ signal is then amplified and applied through the AM-1565/URC (in Radio Set AN/SRC-20( )) or directly to the antenna (in Radio Set AN/SRC-21( )) for transmission.

3-277. ELECTROMECHANICAL TUNING ELEMENTS. (Figure 5-151 for Radio Set AN/URC-9A; figure 5-150 for Radio Set AN/URC-9). The frequency-conversion circuits of Radio Set AN/URC-9( ) and the rf circuitry of Radio Frequency Amplifier AM-1565/URC are automatically tuned by electromechanical units called autopositioners. The autopositioner is a motor-driven, electrically controlled mechanism that comprises a motor and its gear-reduction train, a slip clutch that drives a rotating shaft fastened to a notched stop wheel (detent wheel), and a relay which controls a pawl for the stop wheel and also starts and stops the motor.

3-278. The control system for the autopositioner consists of the front panelmounted selection switches and electrically similar seeking switches that are. driven by the autopositioner shaft. The control system is the open-circuit-seeking type. Whenever the control and seeking switches are not set to the same physical position, the autopositioner energizes and drives its shaft to the proper position, at which point a pawl drops into a notch in the stop wheel and opens the motor control contacts.

3-279. Each positioning unit consists of a relay, notched stop wheel, and pawl, and is adjusted to prevent opening of the contact supplying power to the motor unless the pawl is in a notch in the stop wheel. Tuning motor B1201 drives the autopositioners through slip clutches which permit the motor to run without damage to the gear train when any or all of the autopositioners are at rest.

3-280. In Radio Set AN/URC-9( ), four autopositioners are part of the Frequency Selector (figures 5-67 through 5-81) and are controlled by the front panel CHAN SEL switch. The following can be selected with the CHAN SEL switch: 1 through 19, which allows local selection of a preset channel; REMOTE PRESET, which allows control of the 19 preset channels from a remote equipment; and MANUAL, which allows any one of the available frequencies (i.e., 3500 for AN/URC-9A and 1750 for AN/URC-9) to be selected by the MANUAL FREQUENCY switches.

3-281. The shafts of the autopositioners in the AN/URC-9 ( ) are driven by tuning motor B1201. The three autopositioner output shafts associated with relays K1201, K1202, and K1203 correspond to the positions of the MANUAL FREQUENCY TENS AND UNITS switches, and to the 0.1MHz increments of the TENTHS (or TENTHSHUNDREDTHS) switch. For the AN/URC-9A only, the $0.05-\mathrm{MHz}$ increments of the TENTHSHUNDREDTHS switch are represented by
electrical signals rather than shaft positions. The $10-\mathrm{MHz}$ shaft rotates in 18 incremental steps with each increment representing 10 MHz ; the $1-\mathrm{MHz}$ shaft rotates in 10 incremental steps with each increment representing 1 MHz ; and the $0.1-\mathrm{MHz}$ shaft also rotates in 10 incremental steps, with each increment representing 0.1 MHz . The Frequency Selector combines the 0.1 MHz and $1-\mathrm{MHz}$ shaft positions to obtain 100 incremental steps steps, each of which represents 0.1 MHz . By combining the outputs of the 10 MHz , 1 MHz , and $0.1-\mathrm{MHz}$ shafts, 1750 incremental steps, each representing 0.1 MHz , are obtained.

3-282. The $0.1-\mathrm{MHz}$ shaft tunes V401A and $B$ in the Second IF Amplifier (figure $5-143$ or $5-144$ ) in 10 increments of 0.1 MHz each. Crystal selection in the Second IF Amplifier of the AN/URC-9A depends on both the $0.1-\mathrm{MHz}$ shaft position (for the $0.1-\mathrm{MHz}$ increment) and an electrical signal (for the $0.05-\mathrm{MHz}$ increment). For the AN/URC-9, crystal selection is dependent only on shaft position. The $10-\mathrm{MHz}$ shaft tunes second oscillator V305 and first transmit mixer V304 in the First IF Amplifier (figure 5-142) in 10 increments of 1 MHz each; the $0.1-\mathrm{MHz}$ shaft tunes if amplifiers V301 and V302 and second receive mixer V303 in the first IF Amplifier in 100 increments of 0.1 MHz each. The $10-\mathrm{MHz}$ shaft selects one of 18 crystals and tunes the circuits in the FMO (figure 5-141) in 18 increments of 10 MHz each. The RF and PA Amplifier is tuned in 1750 increments of 0.1 MHz each by a combination of 10 $\mathrm{MHz}, 1 \mathrm{MHz}$ and $0.1-\mathrm{MHz}$ shafts (see figure $5-140$ ). The tuned circuits of the RF and PA, First IF, and Second IF Amplifiers are tuned by the frequency selection system to the nearest $0.1-\mathrm{MHz}$ increment of their operating frequency.

3-283. The fourth autopositioner is associated with channel selector relay K1204. This autopositioner converts the 5-wire channel information presented to local-seeking switch S1205 (or remoteseeking switch S1206) into mechanical rotation and positions the memory drum
to the selected channel. The memory drum, in turn, supplies a ground or noground condition, as required, to the autopositioner associated with frequency selection relays K1201, K1202, and K1203. Thus, the frequency selection circuits convert the channel information into the frequency preset on the memory drum and position the shafts to the frequency that corresponds to the channel selected.

3-284. In Radio Frequency Amplifier AM1565/URC, a single autopositioner (figures 5-96 through 5-100 and 5-154) is mounted on the back of the front panel. This autopositioner, in conjunction with the servo system, automatically tunes the AM-1565/URC to the frequency preset by one of the 20 channel ( 1 through 19 or manual) potentiometers. For a detailed discussion of preset channel selection from the AM-1565/URC, refer to paragraph 3-364.

3-285. FREQUENCY SELECTOR. (Figure 5151 for Radio Set AN/URC-9A; figure 5150 for Radio Set AN/URC-9). The Frequency Selector provides automatic channel selection on 19 preset channels which may be selected locally or from Radio Frequency Amplifier AM-1565/URC, Radio Set Control C-3866/SRC, or remote station Indicator Control C-3868/SRC. In addition, the Frequency Selector provides for local manual frequency selection.

3-286. General. Information is electrically transferred from a channelselector switch to the autopositioners in the Frequency Selector where it is converted to mechanical tuning information for the various oscillators and amplifiers in the radio set. Five accurately positioned tuning shafts, driven by the frequency selector autopositioners, automatically tune the radio set to the desired frequency. This process requires 1 to 5 seconds, the exact time depending upon the sequence of selection.

3-287. The autopositioners always rotate in the same direction, from a high to a

lower frequency position. The channel selector autopositioner always rotates from a low-numbered channel to a highernumbered channel. For this reason, tuning from a lower to a higher frequency takes longer than tuning in the opposite direction. Also, tuning from a higher numbered channel to a lower-numbered channel takes longer than when tuning in the opposite direction.

3-288. Preset Channel Selection from Radio Set AN/URC-9( ). (Figure 5-151 for AN/URC-9A; figure 5-150 for AN/URC9.) Any one of 19 preset channels can be selected by CHAN SEL switch S705. When the CHAN SEL switch is rotated, terminal 2 of channel selector autopositioner relay K1204 is grounded through the contacts of 5705 C (upper section), local seeking switch S1205, and S705B. When energized, K1204 opens the circuit to autopositioner relays K1201, K1202, and K1203; applies +26.5 vdc to tuning motor B1201; and lifts the pawl from the notched stop wheel associated with K1204, thus permitting motor B1201 to rotate. The +26.5 vdc is also applied to the coil of work relay Kl which energizes to disable the key line.

3-289. Motor B1201 drives the channel indicator dial, preset memory drum, and local and remote seeking switches S1205 and S1206, respectively, through a slip clutch. Although the motor is physically connected to the $10 \mathrm{MHz}, 1 \mathrm{MHz}$, and $0.1-\mathrm{MHz}$ autopositioner notched stop wheels through the slip clutch, these wheels do not turn at this time because they are locked by pawls controlled by relays K1201, K1202, and K1203.

3-290. Local seeking switch S1205, which is ganged to the memory drum, turns until the rotor finds the one position that opens the ground path to terminal 2 of K 1204 . When S1205 reaches this position, K1204 deenergizes and drops the pawl into a notch of the stop wheel preventing further rotation of the channel indicator dial, preset memory drum, and local and remote seeking switches. The memory drum is now posi-
tioned to the desired channel. When Kl204 deenergizes, contacts 2 and 4 open and contacts 3 and 5 close; the +26.5 vdc is thus switched from the tuning motor to the coils of the autopositioned relays. Due to the applied voltage through contacts 3 and 4 of either K1201, K1202, or Kl203, work relay Kl remains energized and the motor continues to rotate until the tuning sequence is completed.

3-291. Automatic Frequency Selection. (Figure 5-151 for AN/URC-9A; figure 5150 for AN/URC-9.) The 19 channel frequencies are preset on the direct-reading memory drum which is accessible through the door in the front panel of Radio Set AN/URC-9( ). Five pins, which open or close selected switch contacts, must be positioned for each preset channel on Radio Set AN/URC-9A. (Radio Set AN/URC-9 has only four pins for presetting channel frequencies.) Reference numbers adjacent to the pin tracks indicate the preset channel frequency.

## NOTE

Frequencies in the following description are for Radio Set AN/URC-9A; frequencies for Radio Set AN/URC-9 are the same, less the hundredths digit.

3-292. When the preset channel memory drum has been positioned, the pins representing therselected preset channel frequency operate selected contacts on memory drum switch S1210. The left pin opens one of the two normally closed contacts of switch S1210A; the open contact represents the hundreds megahertz digit ( $2 \mathrm{xx} . \mathrm{xx} \mathrm{MHz}$ or $3 \mathrm{xx} . \mathrm{xx} \mathrm{MHz}$ ) of the. preset channel frequency. The leftcenter pin (second pin from the left) opens one of the ten normally closed contacts of switch S1210B; the open contact respresents the tens megahertz digit ( $\mathrm{x} 0 \mathrm{x} . \mathrm{xx} \mathrm{MHz} ,\mathrm{x} 1 \mathrm{x} . \mathrm{xx} \mathrm{MHz}, \mathrm{x} 2 \mathrm{x} . \mathrm{xx} \mathrm{MHz}$, etc.) of the preset channel frequency. Together, the contacts of switches S1210A and S1210B control the selection of the first two digits (22 through 39) of the preset frequency, as indicated by $10-\mathrm{MHz}$ seeking switch S1201.

3-293. A combination of memory drum switches S1210A and S1210B, $10-\mathrm{MHz}$ seeking switch S1201, and blanking switch S1202, allow the selection of 18 frequencies ( $22 \mathrm{x} . \mathrm{xx}$ through $39 \mathrm{x} . \mathrm{xx}$ ) with 12 switch positions on S1210A and S1210B. On switch S1210A, the eight positions of 22 through 29 are in parallel with the eight positions of 32 through 39 , respectively; these eight positions and the two positions of 30 and 31 effectively make S1201 a 10-position switch. To select the proper frequency, relay K1201 remains energized to allow motor B1201 to drive $10-\mathrm{MHz}$ seeking switch S1201 and'blanking switch S1202 until both switches are positioned to the open switch positions of S1210A and S1210B.

3-294. The third pin from the left closes one of the ten normally open contacts of switch S1210C; the closed contact represents the units megahertz digit ( $\mathrm{xx} 0 . \mathrm{xx} \mathrm{MHz} ,\mathrm{xx} 1 . \mathrm{xx} \mathrm{MHz} ,\mathrm{xx} 2 . \mathrm{xx} \mathrm{MHz}$, etc) of the preset channel frequency, as indicated by $1-\mathrm{MHz}$ seeking switch S1203. The fourth pin from the left on AN/URC9A (right hand pin on AN/URC-9) closes one of the ten normally open contacts of switch S1210D; the closed contact represents the tenths megahertz digit (xxx.0x MHz, xxx.1x MHz, xxx.2x MHz, etc.) of the preset channel frequency, as indicated by $0.1-\mathrm{MHz}$ seeking switch S1204. The right hand pin on AN/URC-9A only, represents the hundredths megahertz digit and controls the single normally open contact of Sl210E. When closed, (pin set in left track), 5.is selected as the hundredths megahertz digit (xxx. $x 5 \mathrm{MHz}$ ); the open contact represents an 0 as the hundredths megahertz digit (xxx.x0 MHz). Switch S1210E directly controls hundredths relay K 402 in the Second IF Amplifier and does not affect the mechanical operation of the frequency selector.

3-295. The following is an example of the automatic frequency. selection. Assume that a frequency of 399.95 MHz is preset on channel 19, that preset channel 19 is selected, and that the preset channel selection cycle (described in
paragraph 3-291) is complete. The left pin of the preset channel memory drum opens the normally closed contact of switch S1210A that represents the hundredths digit 3 ; this action removes the ground from contact 7 on blanking switch S1202 (front). The left center pin of preset channel memory drum opens the normally closed contact of switch S1210B that represents the tens digit 9; this action removes the ground from the positions designated as 29 and 39 (these positions are in parallel) of switch S1201. The $10-\mathrm{MHz}$ autopositioner relay, K1201, energizes because of the completed ground circuit through the normally closed contacts of S1210A, contacts 2 and 17 of phasing switch S1202 (rear), normally closed contacts 0 through 8 of S1210B, and switch S1201 and its permanent connection to contact 17 of S1202. When relay K 1201 energizes, contacts 3 and 4 close applying +26.5 vdc to tuning motor B 1201 which causes the pawl to be 1ifted away from the $10-\mathrm{MHz}$ notched stop wheel. Through the slip-clutch arrangement, motor B 1202 drives the $10-$ MHz indicator, notched stop wheel, switches S1201 and S1202, and the 18position, $10-\mathrm{MHz}$ shaft.

3-296. Since the first and second digits of the assigned frequency are 3 and 9 , $10-\mathrm{MHz}$ seeking switch S 1201 must find 39 , not 29. To prevent the seeking switch from stopping at contact 29 , phasing switch S 1202 (rear) returns terminal 2 of K1202 to ground when seeking switch S1201 reaches contact 29. Phasing switch S1202 rotates at one-half the speed of seeking switch S 1201 because of a $2: 1$ gear reduction. At the instant the rotor contact on S1201 makes with ungrounded contact 29 , the rotor contact of S1202 makes with fixed contact 2 which is returned to ground through the normally closed contact of S1210A; thus relay K1201 remains energized.

3-297. Tuning motor B1201 continues to drive the $10-\mathrm{MHz}$ autopositioner until the rotor contact of seeking switch S1201 makes with ungrounded contact 39. At this instant, relay K1201• deenergizes and
releases the pawl which drops into a notch of the $10-\mathrm{MHz}$ stop wheel. Thus, further rotation of the $10-\mathrm{MHz}$ indicator, notched stop wheel, seeking switch S1201, and phasing and blanking switch S1202 is prevented.

3-298. The front section of S1202 is a blanking switch that blanks out $180^{\circ}$ of rotation. This blanks out alternate cycles of $10-\mathrm{MHz}$ seeking switch S1201 by grounding terminal 2 of K1201 when the uhf tuning elements are tuned below 225.00 MHz . During the blanked alternation of the tuning cycle, the tuning elements are returned to the 399.99 MHz position.

3-299. Concurrently with the operation of the $10-\mathrm{MHz}$ autopositioner, the third pin from the left closes the normally open contact of switch S1210C that represents the units digit 9 ; this action completes the ground circuit for $1-\mathrm{MHz}$ autopositioner relay K1202. When relay K1202 energizes, contacts 3 and 4 close and simultaneously apply power to tuning motor B1201 and lift the pawl from the $1-\mathrm{MHz}$ notched stop wheel. Through the slip-clutch arrangement, motor B1201 drives the $1-\mathrm{MHz}$ indicator, the notched stop wheel, seeking switch S1203, and the 10 -position, $1-\mathrm{MHz}$ shaft. Tuning motor B1201 continues to drive the $1-\mathrm{MHz}$ autopositioner until the open position on the rotor of the front section of seeking switch S1203 makes with grounded contact 9 of switch S1210C. This opens the ground circuit to relay Kl202 causing the relay to deenergize and release the pawl allowing it to drop into a notch in the $1-\mathrm{MHz}$ stop wheel. Thus, further rotation of the $1-\mathrm{MHz}$ indicator, the notched stop wheel, and seeking switch S1203 is prevented.
$3-300$. Pin 2 of the $10-\mathrm{MHz}$ autopositioner relay K 1201 is momentarily grounded (through switches S1201 or S1202) by the rear section of $1-\mathrm{MHz}$ seeking switch Sl203 whenever this switch passes through the position designated as $A$. Thus, the $10-\mathrm{MHz}$ autopositioner is recycled to prevent error in the $10-\mathrm{plus}-1-\mathrm{MHz}$ differ-
ential gear train output; the error may be introduced when the differential cam follower passes over the high point of the cam as the $1-\mathrm{MHz}$ autopositioner passes from 0 to 9 .

3-301. Concurrently with the operation of the 10 MHz and $1-\mathrm{MHz}$ autopositioners, the fourth pin from the left on the AN/ URC-9A (right hand pin on the AN/URC-9) closes the normally open contact of switch S1210D that represents the tenths digit 0.9. This action closes the ground circuit for the $0.1-\mathrm{MHz}$ autopositioner relay Kl203. When relay K1203 energizes, the operation of the $0.1-\mathrm{MHz}$ autopositioner is the same as that of $1-\mathrm{MHz}$ autopositioner described previously. Contact A of $0.1-\mathrm{MHz}$ seeking switch S1204 is connected to the common contact of $1-\mathrm{MHz}$ seeking switch S1203; this applies a ground to $1-\mathrm{MHz}$ autopositioner relay K1202 whenever seeking switch S1204 passes through position A. Thus, relay K1202 is momentarily energized, causing the 1MHz autopositioner to recycle to the same frequency position and eliminate the possibility of error in the $1-\mathrm{plus}-0.1-\mathrm{MHz}$ differential gear train. Without this preventive cycle, an error could be introduced when the differential cam follower passes over the high point of the cam as the 0.1 MHz autopositioner passes from 0.0 to 0.9 .

3-302. The right hand pin of AN/URC-9A only, being positioned in the left track, closes sl210E providing a ground path for hundredths relay K 402 in the Second IF Amplifier. The $+26.5-\mathrm{vdc}$ energizing power is applied to relay K 402 through contacts 3 and 5 of K1204 which supplies power to autopositioners K1201, K1202, and K1203 when the channel selection cycle is complete.

3-303. In summary, once the preset channel memory drum reaches the selected channe1, channel selector relay K1204 deenergizes and the $+26.5-\mathrm{vdc}$ supply is reapplied to the 10 , the 1 , and the $0.1-$ MHz autopositioner relays with the selection of the individual digits of the preset channel occuring simultaneously.

Tuning motor B1201 drives the autopositioners through a slip clutch that permits motor rotation when any or all of the autopositioners are at rest. When autopositioner relays K1202, K1202, and Kl203 deenergize, the $+26.5-\mathrm{vdc}$ is removed from tuning motor B1201 and work relay K 1 . With the key-1ine disabled, the radio set is tuned to a new channel frequency, after which the key line is again enabled.

3-304. Manual Frequency Selection. (Figure 5-151 for AN/URC-9A; figure 5-150 for AN/URC-9.) When CHAN SEL switch S705 on the AN/URC-9 ( ) is rotated to the MANUAL position, any one of the available channel frequencies can be selected by physically positioning the MANUAL FREQUENCY TENS, (S706), UNITS, (S707) and TENTHS (or TENTHS-HUNDREDTHS) (S708) switches, respectively.

3-305. When the CHAN SEL switch is positioned at manual, the preset channel drum rotates to position M. In this position, a nylon bar opens all contacts on memory drum switches S1210A and S1210B; all contacts on switches S1210C, S1210D, and S1210E are normally open. Switch S705A (both front and rear) is operated by a cam to connect TENS switch S706 to $10-\mathrm{MHz}$ autopositioner seeking switch S 1201 in place of memory drum switches S1210A and Sl210B. UNITS switch 5707 is connected to $1-\mathrm{MHz}$ autopositioner seeking switch S1203 in place of memory drum switch S1210C. In a similar manner, TENTHS (or TENTHS-HUNDREDTHS) switch 5708 (front) is connected to $0.1-\mathrm{MHz}$ autopositioner seeking switch S1204 in place of memory drum switch S1210D. On AN/URC-9A only, switch S708 (rear) is connected to hundredths relay K402 in place of S1210E. The wafers of the TENS, UNITS, AND TENTHS (or TENTHSHUNDREDTHS) switches, S706, S707, and S708 respectively, are grounded through contacts $20,21,24$, and 26 of CHAN SEL switch S705A (front). Contact 26 of S705A is also used to ground both the front and rear sides of the 5708 wafer so decoupling diodes CR701 and CR702 are included in both ground paths to
prevent interaction that might otherwise occur.

3-306. Frequency selection is accomplished by setting the MANUAL FREQUENCY switches to the desired frequency. The Frequency Selector operates the same as for automatic frequency selection described in preceding paragraphs except the MANUAL FREQUENCY switches substitute for memory drum switches S1210A through S1210E.

## 3-307. FUNCTIONAL DESCRIPTION OF RADIO

 SET CONTROL C-3866/SRC.3-308. OVERALL FUNCTIONAL DESCRIPTION. Radio Set Control C-3866/SRC provides all necessary control functions for 10cal and remote control of Radio Set AN/ SRC-20( ) or AN/SRC-21() when either of these sets is operated in the preset mode.

3-309. Refer to the functional block diagram of Radio Set Control C-3866/SRC, shown in figure 3-17. The C-3866/SRC contains a pushbutton start-stop circuit which controls the primary ac power de1ivered to either the AN/SRC-20( ) or the AN/SRC-21(); all primary ac power is fused in this unit. The channel select dial is a telephone-type dial used to select any one of 19 preset channels. The programming relays and the stepping relay generate a 5-wire code used to deliver channel information to the Autopositioners in Radio Set AN/URC-9( ) and Radio-Frequency Amplifier AM-1565/ URC, and for Antenna Coupler Group AN/ SRA-33 (when used with the system). In addition, the stepping relay provides dc voltages (coupled from the dc power supply) for a synchro system used for positioning a remote channel indicator in Indicator Control C-3868/SRC. When the radio set is controlled from a remote station by Radio Set Control C-1138/UR or Radio Set Control C-1207/UR, the C-. 3866/SRC provides matching facilities for the receiver and transmit audio lines.

3-310. ANCILLARY CIRCUIT DESCRIPTION. The ancillary circuits in Radio Set


Figure 3-17. Radio Set Control C-3866/SRC, Functional Block Diagram

Control C-3866/SRC, considered here, are the LOCAL-REMOTE switch, the audio matching transformers, and the transmit-receive relay. The start-stop circuit and the primary power relay circuit are described in the discussion of the ac power distribution for Radio Set AN/SRC-21( ) in paragraph 3-206. The de power supply circuits are described in the discussion of the dc power distribution for Radio Set Control C-3866/SRC in paragraph 3265.

3-311. LOCAL-REMOTE Switch S201. LOCALREMOTE switch $S 201$ transfers several functions from local control at Radio Set Control C-3866/SRC to a remote control station (see figure 5-157). The functions of the LOCAL-REMOTE switch are summarized as follows:
a. Contacts 2-3-4 of S201C switch channel dialing from local CHANNEL DIAL S202 to a similar channel dial on the C-3868/SRC at the remote station.
b. Contacts 8-9-10 of S201 and contacts $5-6-7$ of S 201 B switch the synchro indicator voltages to the channel indicator circuits of the C-3868/SRC at the remote control station when the radio set is under local control.
c. Contacts 2-3-4 of S201B disable power to reset indicator relay K 205 and prevent a reset indication from being shown at the remote control station when the radio set is under local control.
d. Contacts 1-11-12 of S201B disconnect the squelch disable line from the remote control station when the radio set is under local control.
e. Contacts 8-9-10 of S201B disconnect the receiver audio line (transformer T204) from the remote control station when the radio set is under local control.
f. Contacts 5-6-7 of S201A disconnect the transmitter audio line (transformer T203) from the remote control station when the radio set is under local control.
g. Contacts 2-3-4 of S201A disable power to the on-off light at the remote control station and extinguish this light when the radio set is under local control.
h. Contacts 8-9-10 of S201A disable the transmit-receive control line at the remote control station when the radio set is under local control.
i. Contacts 1-11-12 of S201A remove the 12 -vdc power from the remote control station when the radio set is under local control.

3-312. Audio Matching Transformers. Radio Set Control C-3866/SRC contains two matching transformers (see figure 5-157). Transformer T203 matches the 82 -ohm unbalanced microphone line of Radio Set AN/URC-9 ( ) to the 600 -ohm balance line required by the remote control station. Transformer T204 matches the 600 -ohm
unbalanced receiver line of Radio Set AN/ URC-9 ( ) to the $600-\mathrm{ohm}$ balanced line required by the remote control station.

3-313. Transmit-Receive Relay K207. Transmit-receive relay K207 (figure 3-22) enables the $t / r$ key line of Radio Set AN/SRC-20( ) or Radio Set AN/SRC-21( ) to be controlled by Radio Set Control C$1138 /$ UR or $\mathrm{C}-1207 / \mathrm{UR}$. To key the AN/ SRC-20( ) or AN/SRC-21( ), 12 vdc is applied to the Radio Set Control and is routed through pin C of J104, line filter FL126, contacts 8 and 10 of LOCALREMOTE switch S201A (in REMOTE), line filter FL117, pin G of J102, Antenna Coupler Group AN/SRA-33 (when used), pin H of J102, and line filter FL118 to the solenoid (pin 1) of K207.

## CAUTION

When Antenna Coupler Group AN/ SRA-33 is not used, a jumper must be installed between line filters FL117 and FL118 (pins G and $H$ of J102) to enable the $t / r$ key line.

3-314. CHANNEL DIALING CIRCUIT. A simplified diagram and an operational sequence chart for the channel dialing circuitry in Radio Set Control C-3866/SRC are illustrated in figure 3-18. Selecting one of the 19 preset channels from the $C-3866 /$ SRC requires the use of tele-phone-type CHANNEL DIAL S202, programming relays K201 through K204, stepping relay K206, and transfer relay K209. Reset indicator relay K 205 is disabled on 1ocal opearation and prevents a reset indication from being shown on Indicator Control C-3868/SRC at the remote control station when the radio set is under local control. When in remote operation, lockout relay K202 and reset indicator relay K205 both are deenergized; -28 vdc and ground are passed through their normally closed contacts and decks 11 and 12 of stepping relay K206 to position the synchro receiver in the $\mathrm{C}-3868 / \mathrm{SRC}$ to indicate the channel previously dialed. Refer to paragraph 3-347 for a detailed description of synchra system operation. Although transfer relay K209 is energized
throughout the dialing operation, and contacts 4 and 7 are closed, the main function of the energized relay is maintain a ground on slow-release relay K203 after the normal slow-release time of K203 has elapsed when channels higher than 10 are dialed. Semiconductor diode CR213 provides isolation for transfer relay K209. Stepping relay K206 is a 13-deck 26 -position, spring-driven rotary switch (see figure 5-157). This switch advances one position each time K206 is deenergized, after a stepping pulse has energized K206 which cocks the spring-driven mechanism.

3-315. Dialing Channels 1 through 10. (Refer to figure 3-18.) The desired channel is selected by the telephonetype CHANNEL DIAL S202, which has two sets of contacts connected in series. The off-normal contacts are open when the dial is at its home position; they are closed at all times when the dial is moved from its home position. The impulse contacts are normally closed when the dial is at home and during the time the dial is turned clockwise to the finger stop. When the dial is released from the finger-stop and allowed to return home, the impulse contacts alternately open and close so that one opening and reclosing is accomplished for each channel number. Dial speed is adjusted for approximately 10 periods per second; therefore, each period, which corresponds to a channel number, is 0.1 second in duration. The impulse contacts are adjusted so that they are open about $30 \%$ of a period and closed about $70 \%$ of a period.

3-316. Refer to column $A$ of the operational sequence chart. Initially, programming relays K201 through K204 and transfer relay K 209 are deenergized, CHANNEL DIAL S202 is at the home position with the impulse and off-impulse contacts closed and off-normal contacts open; stepping relay K206, which is also deenergized, is at the last channel dialed.

3-317. For purposes of explanation, assume that channel 2 is dialed. As the
dial rotates clockwise from the home position to the finger-stop, the off-normal contacts of the dial close energizing impulse relay K201. When impulse relay K201 energizes, contacts 2 and 3 close and apply a ground to slow-release relay K203, thereby energizing K203. When K203 energizes, a ground is placed on contact 6 and grounds are removed from contacts 1 and 3. The ground on contact 6 is applied to the solenoid of transfer relay K 209 , and to the solenoid of stepping relay K206, thus, both K209 and K206 now energize. When ground is applied to the solenoid of K 206 and the relay energizes, its self-interrupting and pulsing action causes it to step to its home position. When the home position is reached, the cam-operated off-normal contacts in the ground line open and deenergize the relay. (The operation of stepping relay K 206 is described in detail in paragraph 3-339.)

3-318. The foregoing action is summarized in column $B$ of the operational sequence chart. When CHANNEL DIAL S202 is at the finger-stop, both the impulse contacts and the off-normal contacts of the dial are closed; impulse relay K 201 , slow-release relay K203, and transfer relay K209 are energized; and stepping relay K206, having stepped to the home position, is deenergized. Slow-release relay K203 and transfer relay K209 remain energized until the dialing sequence is completed. (Because of its built-in slow-release time of 0.2 second, slowrelease relay $K 203$ remains energized until 0.2 second after the dialing operation is complete.) Lockout relay K 202 and pulse relay K 204 are still deenergized.

3-319. The grounds removed from contacts 1 and 3 of slow-release relay K203 are normally routed through rotary switch contacts decks 1 through 5 and decks 6 through 10 of stepping relay K206 and are used to provide 5-wire channel information to Radio Set AN/URC-9 ( ), Radio Frequency Amplifier AM-1565/URC, and Antenna Coupler Group AN/SRA-33. When these grounds are removed, as is the
case during channel dialing, the AN/URC9 ( ), AM-1565/URC, and the AN/SRA-33 are prevented from following stepping relay $K 206$ as it resets and positions to a new channel.

3-320. When CHANNEL DIAL S202 is released from the finger-stop and the dial begins to return toward its home position, the impulse contacts open and impulse relay K 201 immediately deenergizes When K201 deenergizes, contacts 4 and 5 close and apply a ground to the solenoid of lockout relay K202. (The ground is obtained from closed contacts 5 and 6 of slow-release relay K203, which remains energized throughout the dialing operation.) When lockout relay K202 energizes, contacts 2 and 3 and 5 and 6 close. Contacts 5 and 6 are holding contacts that keep lockout relay K202 energized for the remainder of the dialing operation.

3-321. The foregoing action is summarized in column $C$ of the operational sequence chart. Note that the impulse contacts of the dial have opened and impulse relay K201 has deenergized. Slowrelease relay K203, transfer relay K209, and lockout relay K 202 are energized; these relays remain energized for the remainder of the dialing sequence. Pulse relay K 204 is not energized and stepping relay K 206 is deenergized by its offnormal contacts.

3-322. As the channel dial continues to rotate toward home, it next passes through the rest ( $70 \%$ closed) part of the first 0.1 -second period; during this time (column D) the impulse contacts of the dial close and reenergize impulse relay K201.

3-323. When impulse relay K201 reenergizes (column D), a ground is coupled from contacts 2 and 3 of K201 through closed contacts 2 and 3 of lockout re1ay K202 to terminal A of pulse relay K204. K204 energizes and remains energized for the remainder of the dialing operation through holding contacts 2 and 3 which apply a ground to terminal D of

K204. Note in column D, that transfer relay K209 and programming relays K201 through K204 all are energized, and that stepping relay K 206 is still deenergized. Programming of the relays is now complete and the only concern is the completion of the operational sequence for CHANNEL DIAL S202, impulse relay K201 and stepping relay K206.

3-324. The channel dial continues to rotate counterclockwise toward its home position, During the return ( $30 \%$ open) part of its second $0.1-s e c o n d$ period (channel dial digit 2), the impulse contacts of the channel dial open and again deenergize impulse relay K201 (column E). When impulse relay K201 deenergizes, contacts 1 and 2 close; the ground at contact 2 is routed through closed contacts 4 and 5 of pulse relay $K 204$ and terminal A23 to the solenoid of stepping relay K206, and K206 energizes (column E). When K206 energizes, its spring-driven mechanism cocks, that is, the spring is compressed as the driving pawl is pulled through one notch of the ratchet-driven shaft, so that the rotary switches of K206 decks 1 through 13 will be advanced (stepped) one position the next time stepping relay K 206 is deenergized.

3-325. As the channel dial continues to rotate toward home, it next passes through the rest ( $70 \%$ closed) part of the second 0.1 -second period; the impulse contacts of the dial close and reenergize impulse relay K 201 (column F). When impulse relay K201 energizes, contacts 1 and 2 open and remove the ground from K206 causing it to deenergize. The spring-driven mechanism of K206 pushes the ratchet-driven shaft and advances the rotary switches of K206 decks 1 through 13 one step which corresponds to channel 1.

3-326. Since channel 2 was originally dialed, the couterclockwise rotation of CHANNEL DIAL S 202 to its home position is completed at the end of the second (channel dial digit 2) 0.1-second period. When the CHANNEL DIAL reaches the home position, the off-normal contacts of the
dial open (column G). This causes impulse relay K 201 to deenergize and reapply ground through contacts 1 and 2 to relay K206. When K206 energizes, its spring-driven mechanism is again cocked so that the rotary switch of K206 will again be advanced (stepped) one position the next time stepping relay K 206 is deenergized. A1so, when impulse relay K201 deenergizes (column G), the ground is removed from slow-release relay K203. However, because of its built-in slowrelease time, K203 remains energized for an additional 0.2 second after the CHANNEL DIAL reaches its home position. For this reason, transfer relay K209 and programming relays K202 through K204 remain energized.

3-327. After the 0.2 -second time delay, slow-release relay K203 deenergizes (column H) grounding contacts 1 and 3 which present the 5 -wire channel information to the AN/URC-9 ( ), AM-1565/URC, and AN/SRA-33. The removal of ground from contact 6 opens the circuits to the solenoids of transfer relay K209, lockout relay K202, and pulse relay K 204. When pulse relay K 204 denergizes, contacts 4 and 5 open and remove the ground from K206 causing it to deenergize. The K206 spring-driven mechanism pushes the ratchet-driven shaft and advances the rotary switches of K206, decks 1 through 13 , one step which corresponds to channel 2. Since channel 2 was originally dialed, the channel dialing operation is completed.

3-328. In summary, the operational sequences of columns $A$ through $F$ are repeated for each channel selected from 1 through 10, and A is used when dialing channels higher than 10 . The operational sequences of columns $G$ and $H$ are repeated at the end of each dialing operation, except for dial selection A. Thus, if channel 8 is dialed, the operational sequences of columns $A$ and $B$ occur as the operator rotates the dial clockwise to the finger-stop; stepping relay K206 energizes, steps to its home position, then deenergizes. When the dial is released from the finger-stop, it begins
to rotate counterclockwise. On its way to the home position, the dial passes through eight $0.1-$ second periods; the sequences of columns C and D occur during the first (channel dial digit 1) 0.1 -second period and the sequences of columns $E$ and $F$ occur during the second through eighth (channel dial digits 2 through 8) 0.1-second periods. When the channel dial reaches its home position at the end of the eighth 0.1 -second period, the sequences of columns $G$ and $H$ occur. The last operation of stepping relay K 206 is to advance its rotary switch to position 8, which corresponds to channel 8.

3-329. Note that impulse relay K 201 energizes only when both the impulse contacts and the off-normal contacts of the channel dial are closed. Also, deenergizing impulse relay K201 causes stepping relay K206 to energize and cock its spring-driven mechanism; energizing impulse relay K201 then causes stepping relay K206 to deenergize and release its spring-driven mechanism which advances (steps) the rotary switches of decks 1 through 13 one position. This action continues until 0.2 second after the channel dial reaches its home position. At this time the remainder of the programing relays and stepping relay K206 deenergize, and the rotary switches of K206 decks 1 through 13 advance a last Eime to the position corresponding to the channel selected.

3-330. Dialing Channels 11 through 19. To dial any channel higher than 10 , dial A then the last digit in the desired channel number. For example, to dial channel 12 , dial A then 2.

3-331. When $A$ is dialed, the action of columns A through $F$ of the operational sequence chart occurs (see figure 3-18); the sequences in columns $E$ and $F$ repeat until the dial returns to its home position. Normally, when any channel from 1 through 10 is dialed, and the dial has returned to its home position, the sequences of columns $G$ and $H$ occur. However, when channe1 A is dialed, eleven
stepping pulses are received by stepping relay K206, and its rotary switches are held at position 10 until the second digit (2, in this case) of the desired channel is dialed. The operational sequence occuring when the channel dial returns home after A is dialed is depicted in column I; column $J$ depicts the condition of the channel dial circuitry 0.2 second after the dial reaches home and the built-in slow-release time of K203 has elapsed.

3-332. The holding action depicted in column $J$ is provided by terminals B10 and B 27 of stepping relay K206 rotary switch deck 13. Terminal B27 of deck 13 applies ground directly to all channel squelch control potentiometers, except channe1 10. The ground for the channel 10 squelch control potentiometer from terminal B27 through B10 is transferred through contacts 4 and 7 of transfer relay K209 to the solenoid of slow-release K203; thus, K203 is held energized after its normal 0.2-second release time elapses. Since K203 is held energized, the ground at contact 6 holds transfer relay K209, lockout relay K202 and pulse relay K204 energized; stepping relay K206 is held in the cocked position; the offnormal contacts of CHANNEL DIAL S202 are open, and impulse relay K201 is deenergized.

3-333. The condition of the channel dialing circuitry prior to dialing the second digit of the selected channel is depicted in column $K$ of the operational sequence chart; note that all relays, except impulse relay K 201 , are energized. As the operator dials the second digit (2, in this case) and rotates CHANNEL DIAL S202 clockwise from the home position to the finger-stop, the off-normal contacts of the dial close and energize impulse relay K201 (column L). When K201 energizes contacts 1 and 2 open removing the ground from and deenergizing . K206; its spring-driven mechanism pushes the ratchet-driven shaft and advances the rotary switches of K206 decks 1 through 13 one step to position 11.

3-334. When the channel dial is released from the finger-stop and rotates through the $30 \%$ open part of the first 0.1 -second period (channel dial digit 1 , column M), the impulse contacts of the dial open and deenergize impulse relay K201. When K201 deenergizes, contacts 1 and 2 close and apply a ground to K206 which energizes and cocks its spring-driven mechanism.

3-335. As the channel dial passes through the rest ( $70 \%$ closed) part of the first 0.1 -second period (column N ), the impulse contacts of the dial close and reenergize impulse relay K201. When K201 energizes, the ground is removed from K206 causing it to deenergize, thereby allowing its spring-driven mechanism to push the ratchet-driven shaft and advance the rotary switches of decks 1 through 13 one step to position 12.

3-336. The operational sequences of columns 0 through $R$ are identical to those occurring in columns E through $H$, respectively. That is, the impulse contacts of the dial open and cause K201 to deenergize and K206 to energize and cock (column 0). Next the channel dial impulse contacts close and cause K201 to energize, K206 to denergize, and advance the rotary switches of decks 1 through 13 one step (column P) to position 13; this position corresponds to channel 11.

3-337. The channel dial now reaches the home position (column Q), where its offnormal contacts open and cause K201 to deenergize and K206 to energize and cock. Also, when the $0.2-\mathrm{sec}$ ond delay of slowrelease relay K 203 elapses, (column R), K203 deenergizes, causing K209, K202, and K204 to deenergize. When K204 deenergizes, it removes the ground from K206, causing K206 to deenergize and advance the rotary switches of decks 1 through 13 one step to position 14 ; this position corresponds to channe1 12.

3-338. In summary, when channel 12 is desired, A is dialed first, then 2 is dialed. When $A$ is dialed, stepping relay

K206 advances to position 10 and remains cocked. Then, when 2 is dialed, K206 steps three more times from position 10 to position 13. Since stepping relay K206 advances only when its solenoid is deenergized, it advances one more position when slow-release relay K 203 drops out 0.2 second after the dial returns to rest. Thus, the final step of K206 is to position 14 , which corresponds to channel 12.

3-339. Stepping Relay K206. (Refer to figure 3-18.) Stepping relay $K 206$ is a 13-deck, 26-position rotary switch which advances one position each time the energizing voltage is removed from the solenoid.

3-340. Stepping relay K 206 is wired in a configuration which allows it to be self-resetting. Normally, -28 vdc is applied to terminal A22 of the K206 solenoid. When the channel dialing sequence is begun, a ground is applied through terminal A25 to the solenoid of K206. The path for current is through the off-normal contacts, the interrupter contacts, terminals A24 and A23 of K206, and the solenoid of K206. Stepping relay K206 energizes and the interrupter contacts open, allowing the relay to advance one position. When the stepping relay advances, the interrupter contacts close and pulse the coil once again. This self-interrupting and pulsing continues until the 13 -deck, 26 -position rotary switch reaches its home position and the off-normal contacts open and break the reset circuit, causing the relay to stop at the home position.

3-341. Stepping relay K 206 receives stepping pulses through terminal A23. Each time the solenoid of stepping relay K206 is energized by the application of a stepping pulse ground, a driving pawl (figure $5-125$ and $5-126$ ) is pulled through one tooth on a ratchet and a spring is compressed (the spring-driven mechanism cocks). When the stepping pulse ground is removed and the solenoid of K206 deenergizes, the driving paw1 moves back to its deenergized position
under spring pressure. Each time the spring releases and drives the paw 1 back to its deenergized position, the stepping relay advances its 13-deck, 26-position rotary switch one step.

3-342. Refer to figure 5-157 and table 3-5. Rotary switch decks 1 through 5 generate the 5-wire channel information required by the autopositioners in Radio Set AN/URC-9 ( ) and Radio Frequency Amplifier AM-1565/URC. Stepping relay K206 terminals Al through A5, which are connected to the wiper arms of rotary switch decks 1 through 5 , respectively, couple the 5-wire channel information to the AN/URC-9 ( ) for Radio Set AN/SRC-20 ( ) ; terminal A6 is a common terminal and furnishes a ground for those rotary switch positions of decks 1 through 5 which require a ground. The ungrounded switch positions are connected together to provide the continuity required by the autopositioners in the AN/URC-9( ) and the AM-1565/URC.

3-343. In the following example, assume that channel 1 is selected and stepping relay $K 206$ has positioned the rotary switches of decks 1 through 13 to channel 1. Ground is routed through contacts 1 and 2 of slow-release relay K 203 (open during channeling), terminal A6 of stepping relay K 206 , and the wiper arm of rotary switch deck 1 to terminal Al. Terminals A2 through A5 (rotary switch decks 2 through 5, respectively) are tied together and not returned to ground. The 5-wire code is passed through pins $J, K$, $L, M$, and $N$ of J101 to Radio Set AN/URC9( ) or Radio Frequency Amplifier AM1565/URC.

3-344. Rotary switch decks 6 through 10 generate the 5-wire channel information required by the autopositioners in the Antenna Coupler Group AN/SRA-33. Stepping relay K 206 terminals A 7 through A11, which are connected to the wiper arms of rotary switch decks 6 through 10 respectively, couple the 5-wire code to Antenna Coupler Group AN/SRA-33; terminal A12 is a common terminal and furnishes a ground for those rotary switch positions

Table 3-5. Five-Wire Channel Code Produced by Stepping Relay K206.

TO RADIO SET AN/URC-9 ( ) AND RADIO FREQUENCY AMPLIFIER AM-1565/URC							TO ANTENNA COUPLER GROUP AN/SRA-33					
CONNECTIONS TO J101		J	K	L	M	N	CONNECTIONS   TO J102	A	B	C	D	J
CONNECTIONS   TO P201 - J201		A	B	C	D	E	CONNECTIONS   TO P201 - J201	L	M	n	0	p
STEPPING RELAY K206 TERMINAL		A1	A2	A3	A4	A5	STEPPING RELAY K206 TERMINAL	A7	A8	A9	AlO	All
CHANNEL   DIALED	K206 SWITCH POS.	ROTARY SWITCH DECK						ROTARY SWITCH DECK				
		1	2	3	4	5		6	7	8	9	10
1	1	X	0	0	0	0		x	0	0	0	0
2	2	x	X	0	0	0		x	X	0	0	0
3	3	x	X	x	0	0		X	X	x	0	0
4	4	X	X	x	X	0		X	x	X	X	0
5	5	0	X	X	x	x		0	x	X	X	X
6	6	X	0	X	X	X		X	0	X	X	X
7	7	X	X	0	x	X		X	X	0	x	X
8	8	x	x	x	0	X		X	X	X	0	X
9	9	0	X	X	X	0		0	X	X	x	0
10	10	0	0	X	X	X		0	0	X	x	X
11	13	X	0	0	X	X		X	0	0	X	X
12	14	X	x	0	0	X		X	X	0	0	X
13	15	0	x	X	0	0		0	x	x	0	0
14	16	0	0	X	X	0		0	0	x	X	0
15	17	0	0	0	X	x		0	0	0	x	X
16	18	x	0	0	0	X		x	0	0	0	X
17	19	0	x	0	0	0		0	x	0	0	0
18	20	0	0	x	0	0		0	0	x	0	0
19	21	0	0	0	x	0		0	0	0	X	0

X - Indicates line is grounded when channel is selected.
0 - Indicates line is ungrounded when channel is selected. All 0 lines have continuity to all other 0 lines.


AREL Rears are shown in deenergize position
A. holong contacts for lockout relayik 20 2. Hololing contacts for pulse relay kza4.









Figure 3-18. Radio Set Control C-3866/SRC, Channel Dialin Circuit, Simplified Schematic Diagram and Operational Sequence Chart
of decks 6 through 10 which require a ground. The ungrounded switch positions are connected together to provide the continuity required by the autopositioners in the antenna coupler. The ground return for terminal Al2 of stepping relay K206 is through contacts 3 and 4 (open during channeling) of slow-release relay K203.

3-345. Rotary-switch deck 13 applies a ground from terminal B27 to the selected channel squelch potentiometer ( $R 229$ through R247). Terminal B10 of deck 13 also enables channe1s higher than 10 to be dialed (see paragraph 3-330).

3-346. Rotary switch decks 11 and 12 form a resistive-type synchro transmitter that generates the synchro voltage required to position the CHANNEL INDICATOR in Indicator Control C-3868/SRC. The operation of the synchro system is described in the following paragraphs.

3-347. SYNCHRO SYSTEM. A synchro system is used in Radio Sets AN/SRC-20( ) and AN/SRC-21( ) to indicate channel se-
lection at the remote station. The synchro transmitter is in Radio Set Control C-3866/SRC, and the synchro receiver is in Indicator Control C-3868/SRC at the remote station

3-348. Basic Synchro System. A basic synchro system is shown in figure 3-19. The synchro receiver is illustrated by three fixed windings (L1, L2, L3) placed 120 degrees apart, and the rotor which rotates around its center in response to a magnetic field that varies in strength and direction. The synchro transmitter consists of voltage source $E$ and variable resistor $R$. When $R$ is varied, the amplitude and polarity of the voltages at the synchro receiver windings are varied; in this manner the rotor may be positioned at points throughout 360 degrees of rotation. The setting of the rotor is determined only by the ratio of the currents through the three fixed windings of the receiver. For this reason, the operation of the synchro system is independent of line voltage changes since all windings are affected concurrently.


Figure 3-19. Basic Synchro System, Simplified Schematic Diagram

3-349. Synchró System In Radio Sets AN/ SRC-20() and AN/SRC-21( ). The synchro system of Radio Sets AN/SRC-20( ) and AN/SRC-21( ) is shown in figure 3-20. The synchro transmitter, in Radio Set Control C-3866/SRC, consists essentially of circular resistance network R202 through R225 mounted on rotary switch
decks 11 and 12 and thereby vary, in fixed steps, the voltage applied to synchro receiver M301 in Indicator Control C-3868/SRC. (The voltage is varied in essentially the same manner as illustrated by the variable resistor of the simplified synchro system shown in figure 3-19.) After stepping relay K206 has
advanced the deck 11 and deck 12 rotary switches to the selected channel position, the circular resistance network output voltages applied to the synchro receiver position the channel indicator pointer at the number corresponding to the channel just dialed.

3-350. In the configuration of the synchro transmitter, positions 1 through 8 and 15 through 22 of K206 rotary switch decks 11 and 12 are common to each other (see figure $3-20$ ). This is represented by the assignment of two numbers to one position; for example, 11-1 (deck 11, position 1), and 12-15 (deck 12, position 15). When the rotary switches of decks 11 and 12 are at position 1, - 28 vdc is applied from terminal A13 to the rotary switch of deck 11, and ground is applied from terminal A18 to the rotary switch of deck 12. The -28 vdc is app1ied to resistors R202 and R225, and ground is applied to resistors R213 and R214. When the rotary switches of decks 11 and 12 are at position 15, -28 vdc is app1ied to resistors R213 and R214, and ground is applied to resistors R225 and R202. This represents an electrical rotation of 180 degrees.

3-351. The synchro system will function only when LOCAL-REMOTE switch S201 of Radio Set Control C-3866/SRC is set to REMOTE (see figure 3-20). In remote operation, contacts 2 and 4 of S201C apply -28 vdc to the channel dial selector of Indicator Control C-3868/SRC at the remote station; this connects the remote channel dial selector in place of the C-3866/SRC local channel dial selector. Contacts 2 and 4 of S201B apply -28 vdc to the solenoid of reset indicator relay K205. Contacts 5 and 7 of S201B, and contacts 8 and 10 of S201C, complete the circult for the $-28-v d c$ energizing voltage of the synchro transmitter resistance network. The -28 vdc side of the line is routed through contacts 5 and 7 of S201C and normally closed contacts 10 and 11 of lockout relay K202 to the deck 11 rotary switch; the ground side of the line is routed from the deck 12 rotary switch through
normally closed contacts 7 and 8 of K202 and contacts 8 and 10 of S201C.

3-352. When selecting a channel from Indicator Control C-3868/SRC, the operator moves the remote channel dial from the home position to the finger-stop. With the channel dial at the finger-stop, the off-normal contacts of the remote channel dial close and apply -28 vdc to the solenoid of impulse relay K201. When K201 energizes, the ground at contacts 2 and 3 is applied to the solenoids of reset indicator relay K 205 and slow-release relay K203, energizing both relays. When K203 energizes, the previously described channel dialing operation occurs; that is, the function and operational sequence of the channel dialing circuitry, including stepping relay K206 which now resets, is the same as when dialing a channel locally from Radio Set Control C-3866/SRC (see paragraph 3-314). The rotary switches of decks 11 and 12 are now at their reset positions and the -28 vdc and ground applied to terminals A13 and $A 18$, respectively, will have no effect on the synchro transmitter resistive network during the time the channel dial travels from the home (rest) position to the finger-stop position. Lockout relay K202 remains deenergized at this instant (channel dial at the finger-stop) since impulse relay K 201 is energized and contacts 4 and 5 are open, thereby preventing the ground at contact 6 of K 203 from being applied to the solenoid of K202.

3-353. When K 205 energizes, -28 vdc is coupled through contacts 1 and 2 and terminal A21 directly to stepping relay K206 deck 12 switch position 12-14. A ground is routed through contacts 3 and 4 and terminal A16 directly to deck 11 switch position 11-14; stepping relay K206 switch position 14 corresponds to the channel 12 setting. Normally, if channel 12 were dialed, the -28 vdc would be applied through the deck 11 rotary switch wiper arm to position 11-14, and the ground would be applied through the deck 12 rotary switch wiper arm to position 12-14. Therefore, since the polarity of the voltage routed through contacts


Figure 3-20. Radio Sets AN/SRC-20 and AN/SRC-21, Synchro System, Simplified Schematic Diagram
3-91/(3-92 blank)
of the reset indicator relay, K205, and applied directly to switch positions 1114 and $12-14$ is reversed from the polarity that would normally be applied to these positions, the indicator pointer of the synchro receiver is caused to indicate a position directly opposite the normal channel 12 markings on the indicator. The indicator position directly opposite the normal channel 12 markings is the indicator reset position (the long line between the LOCAL and channel 1 markings). Thus, during the interval when stedping relay K 206 resets at the start of the dialing sequence (when the channel dial is at the finger-stop), the synchro system causes the pointer on Indicator Control C-3868/SRC to reset, or rotate to the long line position between the LOCAL and channel 1 markings.

3-354. When the channel dial selector is released from the finger-stop and the dial begins to return to its home position, the impulse contacts of the dial open and cause the impulse relay K201 to deenergize. When K201 deenergizes, contacts 2 and 3 open and contacts 4 and 5 close. When contacts 2 and 3 open, the ground is removed from reset indicator relay K205 and slow-release relay K203; reset indicator relay K205 deenergizes immediately. However, the 0.2 -second slow-release time of K203 keeps K203 energized for the remainder of the dialing operation. Since slow-release relay K203 is held energized, the ground at contact 6 is coupled through closed contacts 4 and 5 of impulse relay K201 to the solenoid of lockout relay K202, thereby causing K 202 to energize.

3-355. When lockout relay K202 energizes, holding contacts 4 and 5 close and hold K202 energized for the remainder of the dialing operation. Also, contacts 1 and 2 open and ensure that the ground is removed from the solenoid of reset indicator relay K 205 for the remainder of the dialing operation. Although contacts 1 and 2, and 3 and 4 of K205 open, the indicator pointer is held at the long line reset position by the action of lockout relay K 202 contacts 11 and 12,
and 8 and 9, which are now closed. Contacts 11 and 12 hold the -28 vdc at stepping relay K 206 switch position $12-$ 14 , while contacts 8 and 9 of K 202 hold the ground at switch position 11-14. In this manner, the opposite-polarity voltage is kept applied to the synchro transmitter and in turn, when coupled to the synchro receiver, holds the indicator pointer at the reset position (opposite the channel 12 position) during the remainder of the channel dialing operation.

3-356. In addition to the foregoing, when lockout relay K202 energizes contacts 10 and 11 and 7 and 8 open. Contacts 10 and 11 remove the -28 vdc energizing voltage from the deck 11 rotary switch of stepping relay K206. Thus, during the remainder of the channel dialing operation, the rotary switch circuits of stepping relay K206 decks 11 and 12 are made inoperative.

3-357. As the channel dial selector continues to rotate toward its home position, the impulse contacts of the dial alternately open and close as the dial passes through each 0.1 second period (each channel dial digit, see paragraph 3-314). Impulse relay K201 alternately deenergizes and reenergizes, in turn, causing stepping relay K206 to energize and deenergize alternately. Each time stepping relay K206 energizes, its spring -driven mechanism cocks so that when the relay is deenergized its rotary switch is advanced one step to the next switch position (channel number setting). Although the deck 11 and 12 rotary switches are advanced one step at a time by the action of stepping relay K206, the synchro receiver is held at the reset position because no voltage is applied to the deck 11 and deck 12 rotary switches.

3-358. When the channel dial reaches the home position, the off-normal contacts of the dial open and cause impulse relay $K 201$ to deenergize and in turn, the ground is removed from the slow-release time circuit of K203. After the 0.2 -second slow-release time elapses, K203 deenergizes and stepping relay K206
advances a final step which corresponds to the selected channel setting. Concurrently, lockout relay K2O2 deenergizes and the -2Q von is transferred from position 14 of stepping rolay K206 decks 11 and 12 to the rotary swith wiper arms of these decks. Since stepping relay K 206 is now positioned at the selected channel setting, a signal is instantaneously coupled from the synchro transmitter to the synchro receiver and the indicator pointer jumps to the selected channe1 marking on Indicator Control C$3868 /$ SRC as the channel dialing operation is completed.

3-359. When the radio set is controlled locally from Radio Set Control C-3866/SRC the synchro system provides an indication of this condition on Indicator Contro1 C-3868/SRC at the remote station. When LOCAL-REMOTE switch 5201 is set to LOCAL, the -28 vdc at contact 5 of s 201 B is transferred from contact 7 to contact 6 and the ground at contact 8 is transferred from contact 10 to contact 9 . This removes the synchro transmitter energizing voltage from the rotary switches of stepping relay K206 decks 11 and 12 making these circuits inoperative; and applies the -28 vdc directly to deck 12 switch position 12-10, and the ground to deck 11 switch position 11-10. Stepping relay K206 switch position 10 corresponds to the channel 10 setting.

3-360. Normally, if the equipment was on remote operation and channel 10 was dialed, the -28 vdc would be applied through the deck 11 rotary switch wiper arm to position 11-10, and the ground would be applied through deck 12 rotary switch wiper arm to position 12-10. Therefore, since the polarity of the voltage applied directly to switch positions $11-10$ and $12-10$ is reversed from the polarity that would normally be applied to these positions, the indicator pointer of the synchro receiver is caused to indicate a position directly opposite the normal channe 10 marking on the indicator. The indicator position directly opposite the normal channel 10 marking is the position marked LOCAL.

Thus, the instant that LOCAL-REMOTE switch S201 is set to the LOCAL position, the energizing voltage applied to the synchro transmitter resistance network is coupled to the synchro receiver resulting in an indication of LOCAL on the CHANNEL INDICATOR of the Indicator Control C-3868/SRC at the remote station.

## 3-361. SYSTEM CHANNEL SELECTION.

3-362. Various combinations of front panel control settings on Radio Set AN/ URC-9 ( ), Radio Set Control C-3866/SRC, and Radio Frequency Amplifier AM-1565/ URC yield various types of channel selection control. Figure 3-21 shows a system tie-together of the channel selection circuitry for the AN/SRC-20( ) and AN/ SRC-21( ). When analyzing the AN/SRC-21 ( ), disregard the circuitry of Radio Frequency Amplifier AM-1565/URC and follow the dotted connections between Radio Set AN/URC-9 ( ) and Radio Set Control C3866/SRC.

3-363. RADIO SET AN/SRC-20 ( ) CHANNEL SELECTION. Channel selection in Radio Set AN/SRC-20( ) can be accomplished from Radio Set AN/URC-9( ), Radio Frequency Amplifier AM-1565/URC, Radio Set Control C-3866/SRC, or remote station Indicator Control C-3868/SRC. Preset channel selection, automatic frequency selection, and manual frequency selection from Radio Set AN/URC-9 ( ) are covered in paragraphs 3-285 through 306; refer to these paragraphs for the description of channel selection from the AN/URC-9( ) in Radio Set AN/SRC-20( ).

3-364. Preset Channe1 Selection From Radio Frequency Amplifier AM-1565/URC. Any one of 19 preset channels can be sellected from the front panel of the AM1565/URC after setting the AN/URC-9 ( ) CHAN SEL switch S705 to REMOTE PRESET, the AM-1565/URC LOCAL-REMOTE switch, S505 S505, to LOCAL, and then rotating the CHAN SEL switch S504 on the AM-1565/URC to the desired channel. Operation of CHAN SEL switch S 504 connects contacts together or to ground in various combinations for channel selection (see table



Figure 3-21. Radio Sets AN/SRC-20( ) and AN/SRC-21( ), System Channe Selection Circuitry, Simplified Schematic Diagram (Sheet 2 of 2)

3-6). Switch S503B (figure 3-21) supplies the 5-wire channel information to the AN/URC-9 ( ), causing it to be set up on the same channel as the AM-1565/URC. Antenna coupler channel selector switch

S503E (figure 5-154) makes available channeling information for use with an antenna coupler. This switch and the information it supplies is not used on the AN/SRC-20( ) system.

Table 3-6. Radio Frequency Amplifier AM-1565/URC Switch Contact Combinations for Channel Selection

SWITCH (see   figure 5-157)	CONTACT	CHANNEL																			
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	MANUAL
S504	2	X	X	X	X	0	X	X	X	0	0	X	X	0	0	0	X	0	0	0	0
and	3	0	X	X	X	X	0	X	X	X	0	0	X	X	0	0	0	X	0	0	0
S503B	4	0	0	X	X	X	X	0	X	X	X	0	0	X	X	0	0	0	X	0	0
	5	0	0	0	X	X	X	X	0	X	X	X	0	0	X	X	0	0	0	X	0
	6	0	0	0	0	X	X	X	X	0	X	X	X	0	0	X	X	0	0	0	X
S503E	17	0	0	X	0	X	X	X	0	0	0	-	-	-	-	-	-	-	-	-	-
Note 1)	18	0	0	0	X	0	X	X	X	0	0	-	-	-	-	-	-	-	-	-	-
	19	X	0	0	0	X	0	X	X	X	0	-	-	-	-	-	-	-	-	-	-
	20	0	X	0	0	0	X	0	X	X	X	-	-	-	-	-	-	-	-	-	-

X - Indicates line is grounded when channel is selected.
0 - Indicates line is ungrounded when channel is selected. All 0 lines have continuity to all other 0 1ines.

NOTE 1 - Switch S503E is not used in the AN/SRC-20( ) system.

3-365. When CHAN SEL switch 5504 is rotated to a new channel position, terminal X2 of autopositioner control relay K501 (figure 3-21) is grounded through contacts 8 and 9 of LOCAL-REMOTE switch S505 (on LOCAL), local seeking switch S503A, and S504. When energized, K501 applies a ground through contacts 4 and 5 to the grid of phase inverter V402A in the Servo Amplifier subassembly and thereby disables the servo system; removes the $-27.5-v d c$ energizing voltage from keying relay K 303 and thereby disables the keying circuit in the AM-1565/ URC during channel selection when contacts 1 and 2 open; applies the -27.5-
vdc energizing voltage to autopositioner motor B501 and the solenoid of L209 when contacts 2 and 3 close; and lifts the stop pawl from the notched stop wheel of the autopositioner in the AM-1565/URC.

3-366. When the solenoid of L209 is energized, it pulls its spring-1oaded plunger (the shaft of power amplifier output tuning capacitor C209) clear of the output loading screws and closes switch S201. Switch S 201 applies a ground to autopositioner motor B501 causing the motor to run which, in turn, drives the notched stop wheel, switch S503, and the output loading screws.

Switch S503 rotates until the combination of contacts $2,3,4,5$ and 6 on local seeking switch 5503 A are connected exactly as the corresponding contacts on CHAN SEL switch S504. When this occurs, the ground is removed from autopositioner control relay K501, and K501 deenergizes.

3-367. When K501 deenergizes, the stop pawl drops into the stop wheel notch and locks $S 503$ into position. Concurrently, contacts 2 and 3 of K501 open and remove the $-27.5-\mathrm{vdc}$ energizing voltage from autopositioner motor B501 and the solenoid of L209. Because of the slip-clutch arrangement, motor B501 coasts to a stop while the pawl in the notched stop wheel keeps switch 5503 locked in position. When contacts 1 and 2 of deenergized K 501 close, the -27.5 vdc. is reapplied to the solenoid of keying relay K303 thereby enabling the keying circuit in the AM-1565/URC. Also, contacts 4 and 5 of K501 open and remove the disabling ground from the servo system. Since the $-27.5-\mathrm{vdc}$ energizing voltage has been removed from the solenoid of L209, L209 deenergizes and causes its plunger (the shaft of tuning capacitor C209) to return against the output loading screw that has been positioned to the new channel by the autopositioner.

3-368. Switch decks S503G and S503F connect one of the preset channel potentiometers (R507 through R525), or the MANUAL TUNING potentiometer (R506) as part of the servo system unbalanced bridge network with follow-up potentiometer R203. This unbalanced bridge causes servo-motor-rate generator MG201 to operate until the bridge is balanced, and thereby tune the resonant cavities of rf amplifiers V201 and V202 in the AM-1565/URC (see paragraph 3-79).

3-369. The 5-wire channel information is transferred between the AM-1565/URC and the Frequency Selector assembly of Radio Set AN/URC-9 ( ) from switch deck S503B (AN/URC-9 ( ) control switch) via remote seeking switch S1206 in the AN/

URC-9 ( ) and CHAN SEL switch S705C (in REMOTE PRESET position), to pin 2 of autopositioner control relay K1204. When K1204 energizes, it 1ifts the paw 1 from the notched stop wheel and applies the $+26.5-\mathrm{vdc}$ energizing voltage to work relay K1 thereby disabling the key line. Also, the +26.5 vdc enables tuning motor B1201 to drive the preset channel dial memory drum, and remote-seeking switch S1206 to the channel position selected by the AN/URC-9 ( ) control switch S503B in the AM-1565/URC. When S1206 is at the same position as S503B, the ground is removed from K1204 and the relay deenergizes. Refer to paragraph 3-288 for a complete description of the channel selection sequence and operation.

3-370. Manual Frequency Selection from Radio Frequency Amplifier AM-1565/URC. Manual frequency selection is accomplished from the AM-1565/URC by setting the AM-1565/URC CHAN SEL switch S504 to M (manual), LOCAL REMOTE switch S 505 to LOCAL, and setting the AN/URC-9 ( ) CHAN SEL switch S705 to MANUAL. Next, the frequency desired is selected by setting the MANUAL FREQUENCY TENS, UNITS, and TENTHS (or TENTHS-HUNDREDTHS) switch on the AN/URC-9 ( ) (see paragraph 3-304). The final step requires tuning the AM$1565 / \mathrm{URC}$ by adjusting the MANUAL TUNING control and the manual output loading screw, which is accessible under the output loading access cap of the AM-1565/ URC.

3-371. Local Preset Channel Selection from Radio Set Control C-3866/SRC. For local selection af preset channels from Radio Set Control C-3866/SRC in the AN/ SRC-20( ) installation, CHAN SEL switch S705 on the AN/URC-9( ) (figure 3-21) is set to REMOTE PRESET, LOCAL-REMOTE switch S201 on the C-3866/SRC is set to LOCAL, and LOCAL-REMOTE switch S505 on the AM-1565/URC is set to REMOTE. Dialing the desired preset channel using CHANNEL DIAL selector $S 202$ on the C3866/SRC applies pulses to programming relays K201 through K205 and stepping relay K206 (refer to paragraph 3-314) where they are converted to the 5 -wire
channel code that completes the ground circuit to autopositioner control relay K501 in the AM-1565/URC. Thus, control of the frequency selector system (see paragraph 3-285) is transferred from CHAN SEL switch 5705 of the AN/URC-9 ( ) or CHAN SEL switch S504 of the AM-1565/ URC to the telephone-type CHANNEL DIAL selector of the C-3866/SRC.

3-372. The local dialing signal from the $\mathrm{C}-3866 / \mathrm{SRC}$ is routed through remote seeking switch S503C and LOCAL-REMOTE switch 5505 (in REMOTE position) to energize the autopositioner control relay K501 in the AM-1565/URC. The sequence of channel selection is then the same as described in paragraph 3-364, except that ground is removed from autopositioner relay K 501 by remote-seeking switch S503C instead of S503A.

3-373. Remote Preset Channel Selection from Indicator Control C-3868/SRC. For selection of preset channels from remote station Indicator Control C-3868/ SRC in the AN/SRC-20( ) installation, CHAN SEL switch 5705 on the AN/URC-9 ( ) is set to REMOTE PRESET, and both LOCALREMOTE switches S201 on the C-3866/SRC and S505 on the AM-1565/URC are set to REMOTE. Dialing the desired preset channel, using the channel dial selector on the $\mathrm{C}-3868 / \mathrm{SRC}$ at the remote station, applies pulses to programing relays K201 through K205 and stepping relay K206 (refer to paragraph 3-314) where they are converted to the 5 -wire channel code that completes the ground circuit to autopositioner control relay K 501 in the AM-1565/URC. Thus, control of the frequency selector system (see paragraph 3-285) is transferred from CHAN SEL switch S 705 of the AN/URC-9 ( ) or CHAN SEL switch S504 of the AM-1565/URC to the telephone-type channel dial selector of the $\mathrm{C}-3868 / \mathrm{SRC}$ at the remote station.

3-374. The remote dialing signal from the $\mathrm{C}-3868 / \mathrm{SRC}$ is routed through Radio Set Control C-3866/SRC to the AM-1565/ URC. The operation of the autopositioner in the AM-1565/URC and the frequency
selector system of the AN/URC-9 ( ) is the same as described in paragraph 3-371 for local preset channel selection from Radio Set Control C-3866/SRC.

3-375. RADIO SET AN/SRC-21( ) CHANNEL SELECTION. Channel selection in Radio Set AN/SRC-21 ( ) can be accomplished from Radio Set AN/URC-9( ), Radio Set Control C-3866/SRC, or remote station Indicator Control C-3868/SRC. Preset channel selection, automatic frequency selection, and manual frequency selection from Radio Set AN/URC-9 ( ) are covered in paragraph 3-285; refer to that paragraph for the description of channel selection from the AN/URC-9 ( ) in Radio Set AN/SRC21().

3-376. Local Preset Channel Selection from Radio Set Control C-3866/SRC. For local selection of preset channels from Radio Set Control C-3866/SRC in the AN-SRC-21( ) installation, CHAN SEL switch S705 on the AN/URC-9 ( ) (see figure 321) is set to REMOTE PRESET and LOCALREMOTE switch S 201 on the $\mathrm{C}-3866 / \mathrm{SRC}$ is set to LOCAL. Dialing the desired preset channel, using CHANNEL DIAL selector S202 on the C-3866/SRC, applies pulses to programing relays K201 through K205 and stepping relay K206 (refer to paragraph 3-314) where they are converted to the 5-wire code that completes the ground circuit to autopositioner control relay K1204 in the AN/URC-9( ). Thus, control of the frequency selector system is transferred from CHAN SEL switch S705 of Radio Set AN/URC-9 ( ) to the telephonetype CHANNEL DIAL selector of Radio Set Control C-3866/SRC.

3-377. The local dialing signal (converted to 5 -wire channel information) from the C-3866/SRC is routed through remote seeking switch S1206 and CHAN SEL switch S705C (in REMOTE PRESET position) to autopositioner control relay K1204 in the AN/URC-9 ( ). Relay K1204 energizes, lifting the pawl from the notched stop wheel and applies the $+26.5-v d c$ energizing voltage to work relay Kl thereby disabling the key line. Also, the +26.5 vdc enables tuning motor B1201 to drive
the preset channel dial, memory drum, and remote-seeking switch S1206 to the channel position selected by the 5-wire channel code from the $\mathrm{C}-3866 /$ SRC. When remote-seeking switch S1206 is at the position to satisfy the 5 -wire channel code, the ground is removed from K1204 and the relay deenergizes. Refer to paragraph 3-288 for a complete description of the channel selection sequence and operation.

3-378. Remote Preset Channel Selection from Indicator Control C-3868/SRC. For selection of preset channels from remote station Indicator Control C-3868/ SRC in the AN/SRC-21( ) installation, CHAN SEL switch S705 on the AN/URC-9 ( ) is set to remote PRESET, and LOCAL-REMOTE switch S201 on the C-3866/SRC is set to REMOTE. Dialing the desired preset channel, using the channel dial selector on the $C-3868 /$ SRC at the remote station, applies pulses to programing relays K201 through K205 and stepping relay K206 (refer to paragraph 3-314) where they are converted to the 5 -wire channel code that completes the ground circuit to autopositioner control relay K1204 in the AN/URC-9 ( ). Thus, control of the frequency selector system (see paragraph 3285) is transferred from CHAN SEL switch S705 of the AN/URC-9 ( ) to the telephonetype dial selector of the C-3868/SRC at the remote station.

3-379. The remote dialing signal from the $\mathrm{C}-3868 / \mathrm{SRC}$ is routed through Radio Set Control C-3866/SRC to the AN/URC-9 ( ). The operation of the frequency selector system in the AN/URC-9 ( ) is the same as described in paragraph 3-376 for local preset channel selection from Radio Set Control C-3866/SRC.

3-380. SYSTEM KEYING IN THE NORMAL MODE.
3-381. Radio Sets AN/SRC-20( ) and AN/ SRC-21( ) can be keyed by actuating the microphone push-to-talk switch of Radio Set AN/URC-9( ) at the local station or the microphone push-to-talk switch of Radio Set Control C-1138/UR or C-1207/UR
at the remote station. In addition, Radio Set AN/SRC-20( ) can be keyed for test purposes by actuating TEST KEY S506 of Radio Frequency Amplifier AM-1565/URC. Refer to the keying circuit simplified schematic in figure 3-22 during the following discussion.

3-382. LOCAL KEYING. Local keying of the AN/SRC-21( ) is from the AN/URC-9 ( ). Local keying of the AN/SRC-20( ) is from either the AN/URC-9 ( ) or AM-1565/URC.

3-383. Radio Set AN/SRC-21(). Local keying of Radio Set AN/SRC-21() is provided by the Radio Set AN/URC-9( ) local microphone push-to-talk switch. When the switch is actuated, the key-line ground circuit is completed through the AN/URC9() MIKE input jack J702A to contacts 5 and 8 of MODE switch S702B. From contacts 5 and 8 of MODE switch S702B, the circuit path is through normally closed contacts 7 and 6 of work relay K1 to the solenoid (terminal 1) of $t / r$ control relay K601. With -11 vdc applied directly to terminal 5 of its solenoid, K601 energizes when the ground is applied to terminal 1 . When $K 601$ energizes, +26.5 vdc is routed through contacts 3 and 8 to the solenoids of the following relays on the AN/URC-9 ( ) : antenna relay K101 and injection relay K102 in the RF and PA Amplifier; $t / r$ relays $K 401$ in the Second IF Amplifier, K602 in the RelayFilter and K 802 in the Audio Amplifier and Modulator; and high-voltage relay K2. The functions provided by the foregoing relays completes the keying of Radio Set AN/SRC-21().

3-384. Radio Set AN/SRC-20( ). Local keying of Radio Set AN/SRC-20() is from either the Radio Set AN/URC-9( ) local microphone push-to-talk switch or the Radio Frequency Amplifier AM-1565/URC TEST KEY.

3-385. Keying from the AN/URC-9 ( ). When the local microphone push-to-talk switch is actuated, the key-line ground circuit is completed through the AN/URC-9( ) MIKE jack J702A to contacts 5 and 8 of MODE
switch S702B. The resultant circuit action within the AN/URC-9( ) is as described in paragraph 3-383.

3-386. To complete the keying of Radio Set AN/SRC-20 ( ) the ground at contacts 4 and 7 of $t / r$ control relay $K 601$ in the AN/URC-9 ( ) is applied to the solenoid (terminal 9) of keying relay K 303 in the AM-1565/URC. Keying relay K303 has -27.5 vdc applied to terminal 1 through fuse F507, normally closed contacts 2 and 1 of autopositioner relay K501, contacts of RF POWER OUTPUT switch S508 (in the HIGH position), and resistor R310. Thus, when the key-line ground is applied to terminal 9, keying relay K303 energizes and contacts 6 and 7 close, completing the circuit from the solenoid (terminal X2) of $t / r$ relay $K 301$ to contact 6 of time delay relay $K 302$.

3-387. Time delay relay K 302 has a 1 minute time delay which commences with the closing of the AM-1565/URC POWER switch S501. Thus, relay K302 energizes 1 minute after power is applied to the AM-1565/URC and remains energized until the POWER switch is opened. With K302 and K303 energized, the $-27.5-\mathrm{vdc}$ line to K301 is complete. When K301 energizes, 115 or 230 vac is applied to the primary winding of T 301 through contacts $\mathrm{C} 1-\mathrm{C} 2$ and A1-A2. The ac voltage in the secondary of T 301 is rectified by the $1800-\mathrm{vdc}$ supply and applied to the plates of rf amplifiers V201 and V202 and through voltage-dropping resistor R301 to screen protection relay K304. When K 304 energizes, +300 vdc is applied through contacts 6 and 7 to the screen grids of rf amplifiers V201 and V202. Also, ground is applied through contacts 2 and 3 of K 304 to input and output coaxial relays K 201 and K 202 , and $\mathrm{HV} \mathrm{B}+$ indicator DS501.

3-388. Contacts of energized relay K201 route the rf signal from the AN/URC-9 ( ) through variable magnetic ferrite attenuator AT401 (figure 5-11) to the cathode circuits of rf amplifiers V201 and V202. The amplified signal is then routed through directional coupler DC201 to
low-pass filter FL201. The rf signal from FL201 is coupled through contacts of energized relay K 202 to the antenna for transmission. Thus, the keying of Radio Set AN/SRC-20() is complete.

3-389. Keying from the AM-1565/URC. Keying from the AM-1565/URC is for maintenance and test purposes and is controlled by TEST KEY S506. When S506 is set to ON or LOCK ON, ground is applied to contacts $10-1$ or 12-3. The ground applied to contact 1 or 3 is routed through contacts 3 and 2 of LOCAL-REMOTE switch S505 (in LOCAL) to contacts 5 and 8 of MODE switch S702B in the AN/URC-9 ( ). From this point, the AN/URC-9( ) keying circuit operation is the same as the circuit description in paragraph 3383.

3-390. The ground from contact 10 or 12 of the AM-1565/URC TEST KEY switch is applied directly to the solenoid (terminal 9) of keying relay K303. With ground applied to relay K303, the AM-1565/URC keying circuits operate the same as described in paragraphs 3-386 through 3-388.

3-391. REMOTE KEYING. Remote keying is initiated at Radio Set Control C-1138/ UR or C-1207/UR and is controlled from Radio Set Control C-3866/SRC.

3-392. Radio Set AN/SRC-21( ). When LOCAL-REMOTE switch S201A on the C-3866/ SRC is in the REMOTE position, actuating the microphone push-to-talk switch of the $\mathrm{C}-1138 / \mathrm{UR}$ or $\mathrm{C}-1207 / \mathrm{UR}$ at the remote station energizes a relay which, in turn, completes the $12-\mathrm{vdc}$ line of $\mathrm{t} / \mathrm{r}$ relay K 207 in the $\mathrm{C}-3866 /$ SRC. When $\mathrm{t} / \mathrm{r}$ relay K 207 energizes, the remote keyline ground at contacts 2 and 3 is routed directly to AN/URC-9( ) MODE switch contacts 5 and 8 (in the NOR position) in Radio Set AN/SRC-21( ). The resultant circuit action to complete the keying within the AN/URC-9( ) is the same as described in paragraph 3-383.

3-393. When Antenna Coupler Group AN/SRA -33 is used in conjunction with the AN/ SRC-21( ), the 12-vdc 1ine from LOCAL-

REMOTE switch S201A to t/r relay K207 can be broken by transmit-disable relay K 5 in the AN/SRA-33. The transmit-disable relay furnishes rf protection under the following conditions when operating with more than one radio set: when all channel frequencies are the same; when the radio sets are keye- from the remote station only; or when the channel selection of the AN/SRA-33 is made from the radio sets. When the AN/SRA-33 is not used, a jumper must be connected between pins G and H (filters FL117 and FL118) of J102 in the C-3866/SRC.

3-394. Radio Set AN/SRC-20( ). Remote keying circuit operation for the AN/SRC20( ) is the same as described in paragraphs 3-392 and 3-393, except the keyline ground from contacts 2 and 3 of K207 is routed to the AN/URC-9 ( ) through contacts 4 and 2 of AM-1565/URC LOCAL-REMOTE switch S505 (in REMOTE position). The keying circuits in the AM-1565/URC operate the same as described in paragraphs 3-386 through 3-388.

3-395. KEY-LINE DISABLING. During normal transmit operation, the key-line circuit is disabled whenever the microphone push-to-talk switch is not actuated, during channeling, and by positioning a LOCAL-REMOTE control switch to LOCAL when keying is from a remote station. In the AN/SRC-20( ) installation only, the key-line circuits may be enabled during maintenance or test by operating AM-1565/URC TEST KEY S506 to ON or LOCK ON (see paragraph 3-389).

3-396. Radio Set AN/SRC-21( ). During channeling, the key-1ine ground circuit is disabled so that the radio set cannot be keyed while the frequency selector system is in the process of selecting a new channel and frequency. In the AN/URC-9 ( ) , +26.5 vdc is applied to the solenoid of work relay Kl through contacts 3 and 4 of autopositioner relays K1201 through K1204 at different stages of the channeling sequence. When

K1 energizes, normally closed contacts 6 and 7 open disabling the key-line ground circuit between MODE switch S702B and the solenoid of $t / r$ control relay K601. Since $t / r$ contro1 relay K601 cannot now be energized, normally open contacts 3 and 8 hold all keying relays in the AN/URC-9 ( ) inoperative, preventing Radio Set AN/SRC-21( ) from being keyed.

3-397. During remote keying only, the key-line circuit is disabled when either the remote microphone push-to-talk switch is open or when C-3866/SRC LOCALREMOTE switch S201 is in LOCAL.

3-398. Radio Set AN/SRC-20( ). The keyline circuit in Radio Set AN/SRC-20( ) is disabled during channeling by the action of autopositioner relay K 501 in the AM-1565/URC, in addition to the disabling action described in paragraph 3396. During channeling, ground is applied to autopositioner relay K501, opening normally closed contacts 1 and 2 which disables the $-27.5-\mathrm{vdc}$ line to AM1565/URC keying relay K 303 . (The -27.5vdc 1ine to relay K 303 can also be disabled by setting RF POWER OUTPUT switch S508 to the LOW position.) Since keying relay K 303 cannot now be energized, normally open contacts 6 and 7 hold all keying relays in the AM-1565/URC inoperative, preventing Radio Frequency Amplifier AM-1565/URC from being keyed. If the AN/URC-9 ( ) is keyed while the AM1565/URC key-line is disabled by the RF POWER OUTPUT switch S508 set to the LOW position (or if the AM-1565/URC is channeling), the output of the AN/URC-9( ) will be routed through the AM-1565/URC by the normally closed contacts of coaxial relays K 201 and K202 to the antenna without being amplified.

3-399. During remote keying, the keyline circuit may be disabled by opening the microphone push-to-talk switch at the remote station or by positioning either the AM-1565/URC or C-3866/SRC LOCALREMOTE switch to LOCAL.










## CHAPTER 4

## SCHEDULED MAINTENANCE

4-1. INTRODUCTION.
4-2. This chapter contains the recommended periodic maintenance schedule for Radio Sets AN/SRC-20( ) and AN/SRC-21( ). The detailed procedures for performance of the maintenance actions listed are contained in Reference Standards Book for Radio Sets AN/SRC-20( ) and AN/SRC21 ( ) NAVELEX 0967-438-0050.

4-3. MAINTENANCE SCHEDULE.
4-4. The recommended periodic maintenance schedule, table 4-1, includes checks that are indicative of equipment performance levels (e.g., transmitter power output, receiver if bandwidth, receiver sensitivity, etc.) and the required lubrication and cleaning procedures. The schedule lists the maintenance actions required, the freq-
uency at which they are to be performed (e.g., daily, weekly, etc.), and a reference to the detailed procedural steps in NAVELEX 0967-438-0050.

## NOTE

The Naval Electronic System Command requirements for this schedule are cancelled when the Electronics Planned Maintenance System is implemented for this equipment.

4-5. IN-PORT PROCEDURES.
4-6. During periods in-port, the radio set should not be energized for the sole purpose of making daily checks. However, the equipment should be energized at least twice a week, and at least two days before getting underway.

Table 4-1. Recommended Periodic Maintenance Schedule

STEP NO.	ACTION REQUIRED	SECTION \& STEP
DAILY		TIME REQD. 4 MIN
1	Check 325 -volt $\mathrm{B}+$ meter reading	B1
2	Check 125-volt $\mathrm{B}+$ meter reading	B2
3	Check 26.5 -volt meter reading	B3
4	Check BIAS meter reading	B4
5	Check \% MOD meter reading	B5
6	Check $\mathrm{DVRI}_{\mathrm{b}}$ meter reading	B6
7	Check $\mathrm{PAI}_{g}$ meter reading	B7.
8	Check $\mathrm{PAI}_{\mathrm{b}}$ meter reading	B8
9	Check PWR meter reading	B9

Table 4-1. Recommended Periodic Maintenance Schedule (Continued)

STEP NO.	ACTION REQUIRED	SECTION \& STEP
DAILY (Continued)		TIME REQD. 4 MIN
10	Check SWR meter reading	B10
11	Check high voltage supply	D1
12	Check 300 volt B+ supply	D2
13	Check 27.5-volt relay supply	D3
14	Check diode relay operating voltage	D4
15	Check V201 grid bias voltage	D5
16	Check V202 grid bias voltage	D6
17	Check forward power	D7
18	Check V201 plate current	D8
19	Check V202 plate current	D9
20	Check reflected power	D10
WEEKLY		TIME REQD. 4 MIN
1	Observe servo operation	D11
2	Check AN/URC-9 ( ) automatic frequency selection time	D12
3	Check C-3366/SRC automatic frequency selection time	D13
4	Check AM-1565/URC automatic frequency selection time	D14
MONTHLY		TIME REDQ. 60 MIN
1	Clean interior and exterior of radio set and check general condition of component parts	E1
2	Check receiver audio output	B11
3	Check receiver sensitivity	B23
4	Check AN/URC-9 ( ) power output	C4
QUARTERLY		TIME REQD. 150 MIN
1	Check third if bandwidth	B12
2	Check maximum signal-plus-noise to noise ratio	B24

Table 4-1. Recommended Periodic Maintenance Schedule (Continued)

STEP NO.	ACTION REQUIRED	SECTION \& STEP
QUARTERLY (Continued)		TIME REQD. 150 MIN
3	Check receiver audio frequency response	B25
4	Check receiver audio frequency distortion	B26
5	Check modulation gain	C5
DURING MAJOR OVERHAUL OR		
EVERY 10,000 HOURS OF OPERATION		TIME REQD. 150 MIN
1	Lubricate Radio Frequency Amplifier gear train	E2
2	Lubricate Radio Frequency Amplifier autopositioner	E3
3	Lubricate Radio Frequency Amplifier rf cavity	E4
4	Lubricate receiver-transmitter RF and PA Amplifier subunit	E5
5	Lubricate receiver-transmitter RF and PA Amplifier subunit	E6
6	Lubricate receiver-transmitter Second IF Amplifier subunit	E7
7	Lubricate receiver-transmitter Frequency-Multiplier Oscillator	E8
8	Lubricate receiver-transmitter uhf injection unit	E9
9	Lubricate receiver-transmitter uhf injection unit	E10
10	Lubricate receiver-transmitter First IF Amplifier subunit	E11

## TROUBLESHOOTING AND CORRECTIVE MAINTENANCE

5-1. ORGANIZATIONAL MAINTENANCE RESPONSIBILITY.

## NOTE

The expression, ( ), following an equipment nomenclature indicates both models (e.g., AN/URC9( ) includes AN/URC-9 and AN/URC-9A, etc.).

2-2. Organizational level maintenance responsibility, as defined by the Department of Defense, is that maintenance which is the responsibility of and performed by a using activity on its assigned equipment. For Radio Sets AN/SRC20( ), AN/SRC-21(), and AN/URC-9 ( ),
the shipboard electronic technician (ET) has full responsibility for the maintenance of all units and assemblies of the radio set, except for the following assemblies: Power Amplifier Cavity of Radio Frequency Amplifier AM-1565/URC; RF and PA Amplifier, Frequency Multipli-er-Oscillator (FMO), First IF Amplifier and Frequency Selector of the RT-581( )/ URC-9. In the case of these five, he has the full responsibility for complete mechanical and electrical alignment, and physical servicing, (e.g., cleaning and lubricating); but has limited responsibility for parts replacement. Those parts that are shipboard replaceable are as follows:

ASSEMBLY COLLOQUIAL NAME	PARTS REPLACEABLE BY ET
UNIT 1 - RADIO SET AN/URC-9 ( )	
RF and PA Amplifier	$\begin{aligned} & \mathrm{V}-101, \mathrm{~V}-102, \mathrm{~V}-103, \mathrm{~V}-104, \mathrm{~V}-105, \mathrm{~V}-106, \mathrm{R}-110, \mathrm{R}-115 \text {, } \\ & \mathrm{R}-116, \mathrm{C}-135, \mathrm{C}-142, \mathrm{C}-148, \mathrm{~L}-119, \mathrm{~L}-120, \mathrm{~K}-101, \mathrm{~K}-102 \text {, } \\ & \mathrm{L}-111, \mathrm{~L}-106, \mathrm{~L}-116, \mathrm{~L}-121, \mathrm{C}-133, \mathrm{R}-108, \mathrm{C}-141, \mathrm{C}-146 \text {, } \\ & \mathrm{S}-101, \mathrm{R}-114, \mathrm{~W}-101, \text { and Cable Harness } \end{aligned}$
Frequency MultiplierOscillator (FMO)	$\begin{aligned} & \mathrm{V}-201, \mathrm{~V}-202, \mathrm{~V}-203, \mathrm{~V}-204, \mathrm{~V}-205, \mathrm{R}-209, \mathrm{R}-210, \mathrm{R}-211, \\ & \mathrm{R}-212, \mathrm{R}-213, \mathrm{C}-240, \mathrm{C}-241, \mathrm{~W}-201, \mathrm{C}-203, \mathrm{~L}-219, \mathrm{Y}-202 \text {, } \\ & \mathrm{Y}-204, \mathrm{Y}-206 \text {, and } \mathrm{Y}-207 \text { through } \mathrm{Y}-218 \end{aligned}$
First IF Amplifier	$\begin{aligned} & \mathrm{V}-301, \mathrm{~V}-302, \mathrm{~V}-303, \mathrm{~V}-304, \mathrm{~V}-305, \mathrm{Y}-301, \mathrm{Y}-302, \mathrm{Y}-303, \\ & \mathrm{Y}-304, \mathrm{Y}-305, \mathrm{Y}-306, \mathrm{Y}-307, \mathrm{Y}-308, \mathrm{Y}-309, \mathrm{Y}-310,0-301, \\ & 0-302,0-303,0-304,0-305,0-306,0-307, \mathrm{~W}-301, \mathrm{~W}-302, \\ & \mathrm{~W}-303, \mathrm{~W}-304, \end{aligned}$
Frequency Selector	$\begin{aligned} & \mathrm{K}-1201, \mathrm{~K}-1202, \mathrm{~K}-1203, \mathrm{~K}-1204, \mathrm{~S}-1202, \mathrm{~S}-1203, \mathrm{~S}-1204, \\ & \mathrm{~B}-1201, \mathrm{~J}-1201, \mathrm{P}-1201 \end{aligned}$

UNIT 3 - RADIO FREQUENCY AMPLIFIER AM-1565/URC

Power Amplifier Assembly	V-201, V-202, V-203, R-201, R-202, C-215, K-201, K-202,   DC-201 Assembly and Parts, FL-201, FL-202, MG-201, R-203,   Cable Repair, and Coaxial Cable Replacement

5-3. For disposition of defective assemblies that are beyond the capability of maintenance personnel to restore to operational use, refer to the current Con-
solidated Repairable Item List (CRIL) NAVSUP 4102, and current NAVSUP Publication 485, Chapter 5, paragraphs 5090 and 5155. All procedures of this publication
are keyed to the organization maintenance responsibilities stated in this Chapter.

## 5-4. GENERAL INFORMATION.

5-5. MAINTENANCE AND MATERIAL MANAGEMENT (3-M) SYSTEM. The $3-M$ system provides:
a. A method to attain and maintain maximum operational efficiency of all fleet equipment at all times through the use of a Planned Maintenanced System (PMS).
b. A method to gather information as to the expenditure of resources of main-
tenance of equipments failure data, and other data directly related to maintenance through the use of the Maintenance Data Collection System (MDCS). All fallures of equipment shall be reported on MDCS forms in accordance with OPNAV 43P2 (NAVSHIPS 0420-0490060).

> 5-6. REFERENCE STANDARDS. Reference standard tests for Radio Sets AN/SRC-20 ( ) and AN/SRC-21( ) are in NAVELEX 0967$438-9050$.

5-7. LIST OF TABLES. The following list is provided for quick reference:

Table
Short Title
Page
5-1 Test Equipment Required for Maintenance 5-3
5-2 Special Tools Required (Not Supplied)
5-5
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
Test Equipment to Be Made Locally 5-5
AN/URC-9 ( ) Numerical Designation 5-9
C-3866/SRC Numerica1 Designation $\quad 5-10$
AM/1565 vac Numerical Designation 5-10
Front Panel Checkout Procedures 5-12
Fuse Complement 5-22
2nd IF Amplifier Crystal Frequencies (Transmit) 5-26
2nd IF Amplifier Troubleshooting (Transmit) 5-28
Ist IF Amplifier Crystal Frequencies (Transmit) 5-31
lst IF Amplifier Troubleshooting (Transmit) 5-33
FMO Frequencies at Test Point J204 5-36
FMO Crystal Frequencies 5-38
FMO Tracking Tabs 5-39
FMO Troubleshooting (Transmit) 5-40
FMO Intermittent Operations (Transmit) 5-43
RF and PA Tracking Tabs 5-48
$\begin{array}{ll}R F & \text { and PA Troubleshooting (Transmit) 5-48 }\end{array}$
RF and PA Intermittent Operations (Transmit) 5-52
Audio Amplifier and Modulator Troubleshooting (Transmit) 5-54
3rd IF and Audio Amplifier Troubleshooting (Receive) 5-58
2nd IF Amplifier Frequencies at J404 Output 5-59
2nd IF Amplifier Troubleshooting (Receive) 5-60
1st IF Amplifier Troubleshooting (Receive) 5-62
RF and PA Assembly Troubleshooting (Receive) 5-64
Squelch Level Troubleshooting (Receive) 5-66
R/T Centrifugal Fan Troubleshooting 5-67
C-3866/SRC Troubleshooting 5-69
Power Amplifier Troubleshooting 5-71
Autopositioner Troubleshooting 5-72
Servo Amplifier Troubleshcoting 5-74
Auto Drive Control Troubleshooting 5-67
Directional Coupler Troubleshooting 5-78

5-8. REFERENCE DATA. A1though this chapter is primarily concerned with troubleshooting and maintenance, information included here may also be applied to other chapters of the manual. These data are in the form of troubleshooting and servicing block diagrams, equipment and subassembly photographs, interconnection diagrams and schematic diagrams which include tube voltage-resistance charts. The reference data are located at the rear of this chapter.

5-9. UHF MAINTENANCE. The nature of uhf radio requires special circuit designs. Similarly, the maintenance of uhf equipment requires special care, techniques, and procedures as follows:
a. Circuit lead length and position of replacement parts must be the same as for the parts removed.
b. Vacuum tubes in uhf circuits are best tested by substitution and not by vacuum tube tester.
c. Vacuum tube shields, chassis covers, and plates with all securing hardware must be in place and tightened before rf alignments and adjustments are performed.
d. Intermittent operation in uhf circuits is generally a result of poor cir-
cuit grounds or rf connections in switches, rf tuners, and trimmer capacitors.

5-10. ALIGNMENT AND ADJUSTMENT PROCEDURE. When only one alignment procedure is performed, it is assumed that all other sections of the equipment are properly aligned. Read the complete alignment procedure to become familiar with the steps involved. Do not perform alignment of the equipment as a substitute for troubleshooting. Alignment should be performed only after electrical tests or troubleshooting procedures indicate the need for alignment.

NOTE
All adjustments and other pertinent circuit reference designations on illustrations are boxed.

5-11. TEST EQUIPMENT. Tables 5-1
through 5-3 list the test equipment and special tools required for maintenance. The following components are required for impedance matching and termination in conjunction with the test equipment:

Resistor:	1000 ohms, $1 / 2$ watt   (2 required)
Resistor:	600 ohms, 5 watts
Resistor:	82 ohms, $1 / 2$ watt
(2 required)	
Capacitor:	25 uf $/ 50 \mathrm{vdc}$

Table 5-1. Test Equipment Required For Maintenance of Radio Sets AN/SRC-20 ( ), AN/SRC-21( ), and AN/URC-9 ( )

QTY	EQUIPMENT	MODEL	REQUIRED CHARACTERISTICS
1	Electronic   Voltmeter	AN/USM-143 (Alternate: CAQI-400-A)	Voltage range. . 0.001 to 300 volts ac in 12 scales   Decibel range.. -60 to +50 in 12 scales   Freq response. . 10 Hz to 4 MHz   Accuracy. ...... 20 Hz to $1 \mathrm{MHz}, \pm 2 \%$   1 MHz to $4 \mathrm{MHz}, \pm 5 \%$
1	Electronic   Multimeter	AN/USM-116 (Alternate: CAQI-410-B)	Voltage range. . $0-300$ volts ac in 6 scales; $0-1000$ volts dc in 7 scales Ohmmeter range. 0.2-500 megohms in 7 ranges Freq range..... 20 Hz to 700 MHz Accuracy....... $\pm 3 \%$

Table 5-1. Test Equipment Required For Maintenance of Radio Sets AN/SRC-20 ( ), AN/SRC-21( ), and AN/URC-9 ( ) (Continued)

QTY	EQUIPMENT	MODEL	REQUIRED CHARACTERISTICS
1	Radio Frequency Wattmeter	TS-1771/U (Alternate: AN/URM-43( ))	Power range... 0 to 60 watts in 2 ranges   Freq range.... 30 to 600 MHz   Use............ CW, FM, TV, AM   Impedance..... 51.5 ohms   Accuracy...... $\pm 5 \%$ of full scale
1	Radio Frequency Wattmeter	AN/URM-120   (Alternate:   AN/URM-96)	25 -watt plug-in element for throughline power readings over required frequency range
1	Audio Oscillator	AN/URM-127 (Alternate: TS-382( )/U)	```Freq range.... 20 to \(200,000 \mathrm{~Hz}\) on 4 bands Output impedance.... 1000 ohms Freq response. \(20 \mathrm{~Hz} ; \pm 1 \mathrm{db}, 150,000\) Hz ; \(\pm 1 \mathrm{db}\) Freq accuracy. \(+6 \%\) Freq stability \(\pm 2 \%\)```
1	RF Signal Generator Set	AN/URM-25D   (Alternate:   AN/URM-25( ))	Freq.......... 10 kHz to 50 MHz in 8 bands   Output   Impedance... $53.5,500$, or 0 to 90 kohms Modulation.... AM: 0 to $80 \% \pm 10 \%$   Internal: 400 Hz and 1 kHz   Externa1: 100 to $15,000 \mathrm{~Hz}$
1	$\begin{aligned} & \text { Signal } \\ & \text { Generator } \end{aligned}$	AN/USM-44A (Alternate: CAQI-608C)	```Freq range.... 10 to 420 MHz in 5 bands Generator impedance.... 50 ohms, swr 1.2:1 max Internal modulation... 400 Hz +10% and 1000 Hz }\pm10 External modulation... O to 95%, 20 Hz to 20 kHz Output level.. 0.1 microvolt to 0.5 volt into 50-ohm resistive load```
1	Frequency Counter	AN/USM-207	100 MHz to 510 MHz plug-in unit for freq measurements over required freq range
1	Dummy Load	$\begin{aligned} & \text { DA/412( )/U } \\ & \text { (A1ternate: } \\ & \text { DA-91/U) } \end{aligned}$	```Input resistance... 0.50 ohms Dissipation... }500\mathrm{ watts over required freq range```

Table 5-1. Test Equipment Required For Maintenance of Radio Sets AN/SRC-20 ( ), AN/SRC-21 ( ), and AN/URC-9 ( ) (Continued)

QTY	EQUIPMENT	MODEL	REQUIRED CHARACTERISTICS
1	RF Attenuator	CBSH-50-6	Freq range.... 225 to 400 MHz
1	Strobe   Tachometer	CAG-1531A	Flashing Rate. 110 to $25 \mathrm{~K} \mathrm{~F} / \mathrm{min}$

Table 5-2. Special Tools Required (Not Supplied)

COMMERCIAL PART NUMBER	DESCRIPTION	FSN
GC-2522   None   None   None   None	**Turret Tuner Tool   *Bristol, Spline Type, Screwdriver .094"   *Bristol, Spline Type, Screwdriver . 110" Alignment Tool, Electronic Equipment Extractor, Electron Tube (part peculiar) Size 4 Retaining Ring Pliers for Speed Increaser   Extractor, Electron Tube Puller   Thickness (Feeler gauge)   Steel Machinist Ruler 12"   Troubleshooting Light (locally made)   1/8' Pencil Tip Soldering Iron-25Watt w/extra angle tip   $1 / 4^{\prime \prime}$ Spin-Tite wrench	9Q5120-975-9478   9Q5120-288-8853   905120-540-4359   9Q5120-720-1908   9Q5120-293-3539   9Q5120-024-9529   9Q5120-293-0808   9Q5120-246-2303   9Q5120-234-5224   (bulb 6240-155-   7857 \#328 bulb-6V   1H3439-204-3856   -----

* Both needed since all assemblies are not identical
** Orange manicure sticks may be used as substitute
Table 5-3. Test Equipment To Be Made Locally


This Impedence Matching Network is used to match the output impedence of the URM-127 to the input of the RT-581. It is used in the RT-581 Modulator checks.

Table 5-3. Test Equipment To Be Made Locally (Continued)

ITEM \#	INSTRUMENT	DESCRIPTION AND USE

2. $\quad$ Trouble-Shooting Light

Connect Alligator clip to FL 201 on FMO Assembly. Ground side of lamp on Assembly being inspected. This Trouble Shooting light is used to illuminate the internal parts of each assembly while aligning the RT-581
3. Transmit Key Plug


This Transmitter Key Plug is used to key the RT-581 During the Trouble Shooting and Alignment Procedures.

Table 5-3. Test Equipment To Be Made Locally (Continued)

ITEM $\#$	INSTRUMENT	DESCRIPTION AND USE

## 4. <br> Combining Alternate Method for I tems I and 3.




FOR USE WITH USM-207 COUNTER TO PROBE HARD TO REACH TEST JACKS.

Table 5-3. Test Equipment To Be Made Locally (Continued)

ITEM $\#$	INSTRUMENT	DESCRIPTION AND USE

6. 

Oscillator Pickup Loop


PLASTIC PILL BOX CAN BE USED

5-12. TEST POINTS. The test points in the assemblies of Radio Set AN/URC-9( ) are color coded in accordance with the standard resistor color code. For example, in the First IF Assembly, test point J301 is brown; J302 is red; J303 is orange; J304 is yellow, etc. Some equipments contain a few white teflon test points which are exceptions to the color code system.

5-13. RF TUNERS. Special tuners are used in the last four stages of the FMO

This pick-up loop is used with electronic frequency counters to verify various frequencies generated in RT-581. It is particularly useful for coupling RF from V201 into AN/USM 207 frequency counter.
and six stages of the RF and PA Assembly. The tuners cover the frequency range by simultaneously changing both the capacitance and the inductance of their elements as they are positioned by the frequency selector.

5-14. Each section of the capacitors (with the exception of Z 107 and Z 108 in RF and PA Assembly) consists of two stator plates and three rotor plates. The two outside rotor plates are divided into segments (referred to as tabs). The
capacitance can be changed (for tracking) by physically bending the tabs. The inductor consists of a fixed loop or ring and the inductor rotor arm.

5-15. Tracking of the rf tuners over the frequency range of the RT-581 is accomplished by bending the tabs of the outside rotor plates that are in half mesh with the stator plate at each of the tracking frequencies.

5-16. SAFETY. The attention of officers and operating personnel is directed to Chapter 9670 of the NAVSHIPS Technical Manual, or superseding instructions, for a description of applicable electronics safety precautions.

5-17. This equipment employs voltages which are dangerous and may be fatal if contacted by operating personnel. Extreme caution should be exercised when working with this equipment. While every practicable safety precaution has been incorporated in this equipment, the following rules must be strictly observed:

## KEEP AWAY FROM LIVE CIRCUITS

Operating personnel must at all times observe all safety regulations. Do not change tubes or make adjustments inside equipment with high voltage supply on.

Under certain conditions dangerous potentials may exist in circuits with power controls in the off position due to charges retained by capacitors. To avoid casualties always remove power and discharge and ground circuits prior to touching them.

## DON'T SERVICE OR ADJUST ALONE

Under no circumstances should any person reach within or enter the enclosure for the purpose of servicing or adjusting the equipment without the immediate presence or assistance of another person capable of rendering aid.

## DON'T TAMPER WITH INTERLOCKS

Do not depend upon door switches or interlocks for protection but always shut down motor generators or other power equipment. Under no circumstances should any access gate, door, or safety interlock switch be removed, short-circuited, or tampered with in any way, by other than authorized maintenance personnel, nor should reliance be placed upon the interlock switches for removing voltages from the equipment.

5-18. RADIO SET REFERENCE DESIGNATIONS. Tables 5-4, 5-5, and 5-6 1ist the assemblies of the radio sets and their respective numerical designations.

Table 5-4. Radio Set AN/URC-9( ) Assembly Numerical Designation

ASSEMBLY NAME	NUMERICAL DESIGNATION
RT-581 ( )/URC-9	$1-99$
Radio Frequency \& Power Amplifier	$101-199$
Frequency Multiplier-Oscillator	$201-299$
First IF Amplifier	$301-399$
Second IF Amplifier	$401-499$
Third IF Amplifier	$501-599$
Relay-Filter	$601-699$
Front Panel	$701-799$
Audio Amplifier \& Modulator	$801-899$
IF Filter	$901-999$
Centrifugal Fan	$1001-1099$
Low-Pass Filter	$1101-1199$
Frequency Selector	$1201-1299$

Table 5-4. Radio Set AN/URC-9 ( ) Assembly Numerical Designation (Continued)

ASSEMBLY NAME	NUMERICAL DESIGNATION
Directional Coupler	$1301-1399$
Broadband Side Tone Amplifier	$1601-1699$
Case CY-2959/URC-9	$1401-1499$
Power Supply PP-2702	$1501-1599$

Table 5-5. Radio Set Control C-3866/SRC Numerical Designation

ASSEMBLY NAME	NUMERICAL DESIGNATION
Radio Set Control C-3866	$101-299$

Table 5-6. Radio Frequency Amplifier AM-1565/URC Assembly Numerical Designation

ASSEMBLY NAME	NUMERICAL DESIGNATION
Electrical Equipment Cabinet	$101-199$
Power Amplifier Subassembly	$201-299$
Amplifier Subassembly Chassis	$301-399$
Servo Amplifier Subassembly	$401-499$
Chassis, Front Panel \& Autopositioner	$501-599$
Blower Assembly (Amplifier Blower)	$1001-1099$
Blower Assembly (Case Blower)	$1101-1199$

5-19. TROUBLESHOOTING PHILOSOPHY. Every indication of abnormal operation in a radio set has a specific and significant meaning when locating a fault in a non-operating or marginally operating set. If a logical sequence of action is followed, suspected units, assemblies or subassemblies may be eliminated, or pinpointed for further check to locate the trouble in a faulty component, a circuit discontinuity, or in a mechanical or electrical misalignment. Such action should lead to the isolation of the defective unit, initially through front panel indicators (lights and meters). Then the defective unit can be returned to its proper operating condition by: removing it from its case or main frame if necessary; troubleshooting, repairing and aligning, both electrically
and mechanically; replacing it in the case and again checking the entire radio set by means of the front panel indicators.

5-20. SPECIAL CABLES. Special cables include those used for maintenance and those used as intra-assembly connectors.

5-21. Maintenance. The following cables supplied with the radio sets are used externally to energize and operate units and assemblies removed from their normal operation position:
a. Maintenance Cable, Power Supply PP-2702, CX-7300/URC-9.
b. Maintenance Cab1e, ReceiverTransmitter RT-581, CX-7260/URC-9.
c. Maintenance Cable, Relay Filter Assembly, CX-8521/URC-9.

5-22. Intra-assembly. The following intra-assembly cables MUST be RETAINED for use when installing replacement assemblies:
a. RF and PA Assembly - cables W101 and W8.
b. FMO Assemb1y - cable W4
c. 2nd IF Amplifier - cable W5

5-23. RADIO SET OVERALL CHECKOUT AND TROUBLESHOOTING PROCEDURE. The check out procedure verifies the proper operation of Radio Sets AN/SRC-20(), AN/SRC21( ), and AN/URC-9 ( ) using the front panel meters. The first step in the procedure is to set all front panel controls as indicated in the preliminary control settings listed in paragraph 5-24, with the equipment NOT energized. The equipment is then energized and checked out in a logical sequence to uncover any failure or marginal operation. The checkout procedure in table 5-7 provides an expected indication and fault correction for each action. Table 5-7 also contains the most likely remedial measures to correct the improper indication. Table 5-8 1ists the fuse complement for Radio Sets AN/SRC-20( ), AN/SRC-21( ), and AN/URC-9( ). Fuse location is shown in figures 5-82 (AN/URC9( )), 5-88 (AM-1565/URC) and 5-123 (C3866/SRC).

## NOTE

All front panel checks should be completed before beginning internal checks.

5-24. PRELIMINARY CONTROL SETTINGS. The following is a list of preliminary control settings:
a. Radio Set Control C-3866/SRC (figure 5-123):

1. LOCAL-REMOTE switch S201 to LOCAL
2. EMERGENCY POWER switch S206 to up position.
b. Radio Set AN/URC-9( ):
3. RT-581 (figure 5-65):
(a) SQUELCH contro1 R702 to OFF
(b) VOLUME contro1 R717 at desired level
(c) CHAN SEL switch S705 to MANUAL
(d) MODE switch S 702 to NOR
(e) PLAIN-BROADBAND switch S1401 to PLALN (figure 5-63)
(f) Handset HD169 connected to Audio Connector J704.
4. PP-2702 (figure 5-82):
(a) DIMMER control R1506 clockwise
(b) Power switch S1503 to OFF.
c. Radio Frequency Amplifier AM-1565/ URC (figure 5-91).
5. LOCAL-REMOTE switch 5505 to LOCAL
6. MANUAL-AUTO EXCITATION switch S507 to MANUAL
7. CHAN SEL switch S 504 to any channel
8. TEST KEY S506 to OFF
9. DIMMER control R501 to clockwise
10. POWER switch S 501 to OFF
11. RF POWER OUTPUT switch S508 to LOW
12. ANT CONNECTOR (J502) terminated in wattmeter AN/URM-120.

Table 5-7. Front Panel Checkout Procedure (Use PRELIMINARY CONTROL SETTINGS, paragraph 5-24)

| STEP | INITIAL ACTION NORMAL INDICATION FAULTS AND CORRECTIVE ACTION |
| :--- | :--- | :--- |

NOTE
Every symptom of abnormal operation has a significant meaning. A suspected circuit is efficiently checked and either noted or eliminated as contributing to the cause of trouble when a logical procedure is followed. Steps 1 through 22 apply to Radio Set AN/SRC21( ). Steps 2 through 22 apply to Radio Set AN/URC9( ). Steps 1 through 43 apply to Radio Set AN/SRC20( ) .

1.	Press and release RADIO SET POWER START switch S-204 (figure 5-123)	EMERGENCY POWER INDICATOR DS202 and RADIO SET POWER INDICATOR DS201 are 1it	Refer to fig 5-132   1. Check DS202 and DS201 indicators   2. Check MAIN fuse F204, CONTROL fuse F205 and STARTSTOP fuse F203   3. Check main AC supply   4. Check T201 and T202   5. Check K208   6. Trace wiring and check for discontinuities
2.	On Power Supply PP-2702: Set power switch S1503 to up position (fig 582)	1. POWER indicator   DS1501 1it (DIM-   MER control   R1506 maximum   clockwise position   2. Indicators DS701, DS702, and DS703 are lit   3. Operating blower motor B1401 (PP2702) and blower motor B1051 (RT581) are audible	Refer to fig 5-136, 5-150, 5-151   1. Check DS1501, DS701 and DS 702, indicators   2. Check MAIN fuse F1501, T1501 PRI fuse F1502, and F1505 PP-2702   3. Check MAIN fuse F2O4 and RADIO SET fuse F206 in $\mathrm{C}-3866$; B1051 and B1401   4. Check start-stop relay K 208 and the 24 -vdc supply in C-3866


STEP	INITIAL ACTION	NORMAL INDICATION	FAULTS AND CORRECTIVE ACTION
2 cont.			5. Check rectifiers CR1505 through CR1508; trace wiring and check for discontinuities   6. Check S1505, S1503, and T1501; repair or replace as necessary in PP-2702
3	On RT-581; Set METER switch S701 to BIAS (fig 5-65)	Meter indicates within NORMAL range	Refer to fig 5-134, 5-133, 5-136   1. Check T1502 PRI fuse F1503 and 125 V B+ F1506   2. Check S1502 and T1502; repair or replace as necessary   3. Check rectifiers CR1509 through CR1512, and CR1514; trace wiring and check for discontinuities   4. Check filter and load circuits
4	```On RT-581: Set METER switch S701 to +26.5V```	Meter indicates within NORMAL range	$\begin{array}{\|l} \text { Refer to fig 5-134, 5-133, } \\ 5-136 \end{array}$   Check METER switch 5701 and associated circuits   NOTE   Step 2 discloses possible causes for +26.5vdc supply failure
5	On RT-581: Set METER switch S701 to +125 V	Meter indicates within NORMAL range	Refer to fig 5-134, 5-133, 5-136   Check METER switch 5701 and associated circuits   NOTE   Step 3 discloses possible causes for failure of +125 vdc supply


| Table 5-7. Front Panel Checkout Procedure (Continued) |
| :--- | :--- | :--- | :--- | :--- |
| (Use PRELIMINARY CONTROL SETTINGS, paragraph 5-24) |

Table 5-7. Front Panel Checkout Procedure (Continued) (Use PRELIMINARY CONTROL SETTINGS, paragraph 5-24)

STEP	INITIAL ACTION	NORMAL INDICATION	FAULTS AND CORRECTIVE ACTION
10	On RT-581: Set METER switch S701 to SWR; key to transmit	Meter indicates below NORMAL range	Refer to fig 5-1   Check discontinuities in RF signal path to wattmeter
11	On RT-581: Set METER switch S701 to PWR; key to transmit	Meter indicates center of NORMAL range or above; wattmeter indicates 16 watts or greater	```Refer to para 5-29 for checks and troubleshooting of RT- 581. The sequence to be followed is: 1 2nd IF Amplifier 2 1st IF Amplifier 3 FMO RF and PA 5 Directional Coupler```
12	On RT-581: Set METER switch S701 to $\mathrm{DVR}_{\mathrm{b}}$; key to transmit	Meter indicates within NORMAL range	Check V105, K2 and circuit discontinuities
13	On RT-581: Set METER switch S701 to $\mathrm{PAI}_{\mathrm{g}}$; key to transmit	Meter indicates center of NORMAL range or above	Same as step 11
14	```On RT-581: Set METER switch S701 to PAIb; key to transmit```	Meter indicates center of NORMAL range or above	Check V106 and circuit discontinuities
15	On RT-581: Set METER switch S701 to \% MOD; key to transmit and MODULATE with voice signal	Meter peaks within NORMAL range	Refer to para 5-59 Check handset
16	On RT-581: Set MODE switch S702 to TONE; key to transmit	1. Meter indicates within lower portion of NORMAL range if FC 2 is not installed	Refer to fig 5-133, 5-149   1. Check MODE switch S 702

Table 5-7. Front Panel Checkout Procedure (Continued)
(Use PRELIMINARY CONTROL SETTINGS, paragraph 5-24)

STEP	INITIAL ACTION	NORMAL INDICATION	FAULTS AND CORRECTIVE ACTION
$\begin{aligned} & 16 \\ & (\text { cont }) \end{aligned}$	NOTE   Return MODE switch to NOR upon completion of this check	2. Meter will not change relative indication when RT-581 is keyed if FC 2 is installed	2. Check tone oscillator circuits   3. Check $T / R$ relay $K 802$   4. Check Relay-Filter circuits
17	On RT-581: Operate CHAN SEL switch S705 from 1 through 19	1. Channel indicator numbers follow selected channel   2. Frequency indicator numbers follow to preset frequency for selected channel	Refer to para 5-64 and fig 5-150, 5-151   1. Check K1204, B1201, S705 $B \& C$, and S1205, in that order   2. Check K1201, S1202, S1201 A\&B, K1202, S1203, S1201C, K1203, S1203, and S1210D, in that order   3. Check mechanical synchronization (para 5-66)
18	On RT-581: Set CHAN SEL switch S705 to MANUAL; Set MANUAL FREQUENCY TENS, UNITS, AND TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switches S706, S707, and S708 to 399.9 (or 399.95) ; key to transmit	1. Channel indicator moves to M   2. Frequency :indicators move to 399.9 (or 399.95)   3. Wattmeter indicates 16 watts minimum	Refer to fig 5-150, 5-151   1. Check S705A, (front and rear), S706, S707, and S708   2. Check circuit and parts described in step 17   3. Same as step 11
19	On RT-581: Set METER switch S701 to PWR; key to transmit; Oper ate MANUAL FREQUENCY TENS switch S706 in steps from 39 to 22; return to 39	1. Meter indicates center of NORMAL range or above (16 watts min)   2. Frequency indicator TENS dial follows TENS switch position	Refer to para 5-29   1. Check 2nd IF Amplifier, lst IF Amplifier, FMO, and $R F$ and PA in that order   2. Check circuit and parts described in step 17

Table 5-7. Front Panel Checkout Procedure (Continued) (Use PRELIMINARY CONTROL SETTINGS, paragraph 5-24)

STEP	INITIAL ACTION	NORMAL INDICATION	FAULTS AND CORRECTIVE ACTION
20	```On RT-581: Key to transmit; oper- ate MANUAL FRE- QUENCY UNITS switch S707 in steps from 9 to 0; return to 9```	1. Meter indicates within NORMAL range or above ( 16 watts min)   2. Frequency indicator UNITS dial follow UNITS switch position	Same as step 19
21	```On RT-581: Key to transmit; oper- ate MANUAL FRE- QUENCY TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switch S708 in steps from . }9\mathrm{ to .0 (or . }95\mathrm{ to .00); return to . }9\mathrm{ (or .95)```	1. Meter indicates center of NORMAL range or above (16 watts min)   2. Frequency indicator TENTHS (or TENTHS-HUNDREDTHS) dial follows TENTHS (or TENTHSHUNDREDTHS) switch position	Same as step 19
22	NOTE   Disregard this step unless RETRANSMIT operation is used   On RT-581: Set MODE switch S702 to RETRANS	Rełer to para 5-62 for operational checkout	Refer to para 5-93 for troubleshooting

Table 5-7. Front Panel Checkout Procedure (Continued)
(Use PRELIMINARY CONTROL SETTINGS, paragraph 5-24)

(Use PRELIMINARY CONTROL SETTINGS, paragraph 5-24)						
STEP	INITIAL ACTION	NORMAL INDICATION	FAULTS AND CORRECTIVE ACTION,			

Set ChAN SEL switch S504 to M
c. Adjust MANUAL TUNING control R506 for 399.9 (or 399.95) in FREQ-MC and LOGLOG windows (Fig 5-91)

1. Indicators DS502 (POWER), DS503, DS504 and DS505 are lit (DIMMER
2. Check DS502 through DS505, MAIN fuse F501; T302 PRI fuse F504 and F505; and fuse F507 control R501 maximum clockwise position)
3. Blower Motors B1001 and Bl101 are audible
4. Check case interlock switch S303, intraconnection cables and circuit discontinuities
5. AM-1565 remains ener-3. Check CR333 through CR336 gized after 60 second time delay relay K 302 energizes
6. Both AM-1565 and RT- 4. Check AIR FLOW switch 581 frequency indiS1001 and B1001 cators are 399.9 (or 399.95)
7. Check thermostat S1101

Refer to fig 5-131, 5-135, METER switch S502 to BIAS 1

Meter indicates approx 50 on BLACK (lower) scale 5-152, and 5-155

1. Check 60 V BIAS fuse F508
2. Check CR338 through CR341, V201, R304, and circuit discontinuities

Same as Step 24 approx 50 on BLACK scale

Meter indicates
Check V202 and R303
Refer to fig 5-131, 5-135, approx 60 on $5-152$, and 5-155

1. Check +300 V fuse F506
2. Check CR325 through CR332 and circuit discontinuities

Table 5-7. Front Panel Checkout Procedure (Continued) (Use PRELIMINARY CONTROL SETTINGS, paragraph 5-24)

STEP	INITIAL ACTION	NORMAL INDICATION	FAULTS AND CORRECTIVE ACTION
27	On AM-1565: Set METER switch S502 to 27.5 V	Meter indicates approx 55 on BLACK scale	Refer to fig 5-153   Check METER switch S502 and circuit discontinuities
28	On AM-1565: Set METER switch S502 to DELAY	Meter indicates approx 38 on BLACK scale	Refer to fig 5-131, 5-135, 5-152, and 5-155   Check CR342 through CR346 and circuit discontinuities
29	On AM-1565: Set METER switch 5502 to PWR; set RF POWER OUTPUT switch S508 to HIGH; set LOW-HIGH EXCITATION control R527 maximum counterclockwise (and readjust R527 as required) key to transmit; adjust MANUAL TUNING control R506 for maximum power output (399.9 or 399.95 MHz)	1. $\mathrm{HVB}+$ indicator DS501 lit (DIMMER control R501 maximum clockwise) ; DS501 is 1it whenever the radio set is keyed   2. Meter indicates $0-130$ Watts on RED (upper) scale (dependent upon setting of $10 \mathrm{~W}-$ HIGH EXCITATION control R527). Do not exceed 130 watts	Refer to fig 3-22, 5-131, $5-135,5-152$, and 5-155   1. Check DS501, T301, PRI fuses F502 and F503, F301 K304, S508, CR301 through CR324, and T301   2. Check Power Amplifier bias voltage adjustments (para 5-98), K201, K202, and Directional Coupler (para 5-112)
30	On AM-1565: Set METER switch S502 to SWR; key to transmit	Meter indication is 13 watts or less	Refer to fig 5-153 and 5-155   Check antenna cab1e, dummy load, and Directional Coupler DC201 adjustments (para 5-112)
31	On AM-1565: Set METER switch 5502 to $\mathrm{PAI}_{\mathrm{b} 1}$; key to transmit	Meter indicates 60 to 80 on BLACK scale	Refer to fig 5-131, 5-135, $5-152,5-154$, and 5-155   Check V201, rf drive, K201, K304 (screen grid interlock and protection relay) and circuit discontinuities

Table 5-7. Front Panel Checkout Procedure (Continued) (Use PRELIMINARY CONTROL SETTINGS, paragraph 5-24)

STEP	INITIAL ACTION	NORMAL INDICATION	FAULTS AND CORRECTIVE ACTION
32	On AM-1565: Set METER switch S502 to $\mathrm{PAI}_{\mathrm{b} 2}$; key to transmit	Meter indicates 60 to 80 on BLACK scale	Refer to fig 5-131, 5-135, $5-152,5-153$, and 5-155   Check V202, rf drive, K201, K304 (screen grid interlock and protection relay)
33	```On AM-1565: Set METER switch S502 to ATTEN; key to transmit```	Meter indication varies 0 to 40 on BLACK scale (dependent on LOWhigh excitation control R527)	Refer to fig 3-21, 5-131, 5-135, 5-152, 5-153, and 5-155   1. Check S507, V406, V405, V407, and AT-401   2. Check alignment and adjustments (para 5-97)
34	On AM-1565: Set MANUAL-AUTO EXCITATION control S507 to AUTO; key to transmit	Meter indication varies 0 to 40 on BLACK scale	Check same items as in Step 33 and check V203, C207 and R436 (refer to para 5-97)
35	```On AM-1565: Set METER switch S502 to HV; key to transmit```	$\begin{aligned} & \text { Meter indicates } 70 \\ & \text { to } 72 \text { on BLACK } \\ & \text { scale } \end{aligned}$	Same as Step 29
36	On RT-581: Set CHAN SEL switch S705 to REMOTE PRESET: On the AM-1565: Remove OUTPUT LOADING adjustment cover 0528 (fig 5-88); operate CHAN SEL switch S504 from 1 through 19   NOTE   Preset frequencies' may be set up according to paragraph 2-39 or 2-40 in NAVELEX 0967-438-9020, VOLUME 2 of Technical Manual for AN/SRC-20( ) and AN/SRC-21( )	1. Audible sound as L209 energizes   2. Channel indicator numbers follow CHAN SEL switch S504 positions   3. FREQ-MC and LOG-LOG dials move to preset frequency   4. Channel and frequency indicators in RT-581 follow AM-1565	Refer to fig 3-21, 5-135, 5-152, 5-153 and 5-155   1. Check L209, K501, S505, S503C (refer to para 5-102;   2. Refer to para 5-98 and 5-102   3. Refer to para 5-98 and 5-102   4. Refer to para 5-98 and 5-102

Table 5-7. Front Panel Checkout Procedure (Continued)
(Use PRELIMINARY CONTROL SETTINGS, paragraph 5-24)

STEP	INITIAL ACTION	NORMAL INDICATION	FAULTS AND CORRECTIVE ACTION
37	On AM-1565: Set CHAN SEL switch S504 to M; operate MANUAL TUNING control R506 to maximum counterclockwise then maximum clockwise; replace cover 0528	1. Channel indicator follows CHAN SEL switch S504 to M   2. FREQ-MC and LOGLOG dials move from beyond 400 to beyond 220	Refer to fig 3-21, 5-131, $5-135,5-152,5-153$, and 5-155   Refer to para 5-98 and 5-102
38	On AM-1565: Set LOCAL-REMOTE switch S505 to REMOTE	```Dependent on setting in C-3866```	No action required
39	On C-3866; Dial   a channel between   1 and 10   NOTE   When a channel above 10 is required, dial A and the digit (Example: Channe1 14 is required; dial A plus 4)	Channel and frequency indicators on AM-1565 and RT-581 follow the dialed channel	Refer to fig 3-18 and 5-157   1. Check 28V fuse F201; S202 (Refer to para 5-91)   2. Check K 206 , decks 11 and 12; decks 1 through 5
40	$\begin{aligned} & \frac{\text { CAUTION }}{\text { DAMAGE to the }} \\ & \text { C- } 3866 \text { will } \\ & \text { occur if only } \\ & \text { A is dialed } \\ & \text { On C-3866: Dial } \\ & \text { a channel between } \\ & 10 \text { and } 19 \end{aligned}$	Channel and frequency indicators on AM-1565 and RT-581 follow the dialed channel	Same as Step 39
41	On C-3866: Set LOCAL-REMOTE	Dependent on settings of remote C-3868	No action required

Table 5-7. Front Panel Checkout Procedure (Continued) (Use PRELIMINARY CONTROL SETTINGS, paragraph 5-24)

STEP	INITIAL ACTION	NORMAL INDICATION	FAULTS AND CORRECTIVE ACTION

Table 5-8. Fuse Complement For Radio Sets AN/SRC-20( ), AN/SRC-21( ), and AN/URC-9 ( )


Table 5-8. Fuse Complement For Radio Sets AN/SRC-20( ), AN/SRC-21( ), and AN/URC-9 ( ) (Continued)

UNIT	SYMBOL	CURRENT RATING	CIRCUIT
```Power Supply PP-2702 (fig 5-82) (Cont)```	F1503	$\begin{aligned} & 1-1 / 2 \mathrm{~A}(115 \mathrm{~V}) \\ & 3 / 4 \mathrm{~A}(230 \mathrm{~V}) \end{aligned}$	Primary ac power to T1502
	F1504	1/2A	$+325 v d c$ power supply output (receive and transmit)
	F1505	15A	+26.5 vdc power supply output
	F1506	1/4A	+125 vdc and -11 vdc power supply outputs
	F1507	0.175 A	+275 vdc power supply output (receive only)
```Radio Frequency Ampli- fier AM-1565/URC (fig 5-92)```	F301	1/2A	$+1800 v d c$ high voltage supply output
	F501	15A	Main primary ac power
	F502	5A	Primary ac power to T301
	F503	5A	Primary ac power to T301
	F504	3A	Primary ac power to T302
	F505	3A	Primary ac power to T302
	F506	1/4A	+300 vdc power supply output
	F507	5A	-27.5 vdc power supply output
	F508	1/4A	-60vdc power supply output

[^0]5-25. INITIAL SETUP FOR ALIGNMENT AND ADJUSTMENT OF RT-581.

NOTE
All references to Radio Set AN/URC-9 are applicable to Radio Set AN/URC-9A, except where noted.

5-26. EQUIPMENT SETUP. Remove RT-581 from case and make equipment test connections as follows:
a. Press RADIO SET POWER STOP switch (S205).
b. Remove connection at ANT (J701).
c. Loosen four captive screws in corners of front panel (fig 5-65).
d. Turn extractor knob (01408, fig 562) fully counterclockwise; reverse rotation for three turns and stop with knob slot horizontal; push extractor down.
e. Pull RT-581 out of cabinet.
f. Connect P1 (fig 5-17) on the rear of RT-581 to J1401 (fig 5-62) on case CY-2959; use Cable Assembly CX-7260.
g. Connect the input of RF Wattmeter AN/URM-43( ) (60 w scale) to ANT connector (J701, fig 5-65) on RT-581.
h. Connect handset to AUDIO connector (J704, fig 5-65).

5-27. RADIO SET AN/URC-9 ( ) CONTROL SETTINGS. Set controls as follows:
a. CHAN SEL switch (S705) to MANUAL.
b. MANUAL FREQUENCY TENS, UNITS and TENTHS switches (S706, S707, and S708) on AN/URC-9, to 399.9 (fig 5-65). (0n AN/URC-9A, switch 5708 is calibrated in TENTHS-HUNDREDTHS; set 5708 to 399.95 .)

NOTE
399.9 MHz is the mechanical and electrical reference frequency for the AN/URC-9; 399.95 MHz is the reference frequency for AN/URC-9A.
c. MODE selector (S702) to NOR.
d. SQUELCH control (R702) to OFF.
e. Power switch (S1503) on PP-2702 to $0 N$ (up).
f. PLAIN-BROADBAND switch (S1401), at rear of CY-2959 case, (fig 5-63) to PLAIN.
g. VOLUME control (R717) as required.

5-28. RADIO SET CONTROL C-3866/SRC CONTROL SETTINGS. Set controls as follows:
a. LOCAL-REMOTE switch (S201) to LOCAL.
b. EMERGENCY POWER switch (S206) to ON.

## CAUTION

Do not transmit unless RT-581 is terminated in a proper load (wattmeter, antenna, etc.).
c. Press RADIO SET POWER START switch (S204) to apply power. To remove power, press RADIO SET POWER STOP switch (S205).

5-29. RT-581 ALIGNMENT, ADJUSTMENT, AND TROUBLESHOOTING PROCEDURES.

NOTE
A11 references to RT-581/URC-9 are app1icable to RT-581A/URC9 except where noted.

5-30. The following alignment and adjustment procedures, due to the interdependancy of the assemblies, must be performed in the sequence as presented. The electrical checks and alignments in paragraphs 5-31 through 5-66 are performed in a transmit condition. The electrical checks and alignments in paragraphs 5-67 through 5-86 are performed in a receive condition. When a check or alignment can be made in either transmit or receive, the check or alignment is made in transmit and is not repeated for receive. These procedures are to be performed at 399.9 MHz (or 399.95 MHz for AN/URC-9A), unless otherwise indicated. Troubleshooting procedures are performed as required.

> Voltages dangerous to life are present. Use care when making alignments or adjustments.

5-31. SECOND IF AMPLIFIER ALIGNMENT, ADJUSTMENT, AND TROUBLESHOOTING. Alignment procedures need be performed only
when indicated by unsatisfactory results received during checks. Troubleshooting is performed as required.

5-32. Second IF Amplifier Mechanical Check. Set up RT-581 as in paragraph 5-25. Use tuning tool FSN-9Q5120-7201908 during following procedures:
a. Position RT-581 right side up (fig 5-14).

NOTE
When the observation is incorrect for a step, discontinue check at that point and perform mechanical alignment in accordance with paragraph 5-33.
b. Check that coupler (0405, fig 5-47) slot on end of the shaft is vertical and centered under the black guide post (fig $5-30$ ); that the coupler keeper pin is in the upper right corner and in the open quadrant of Frequency Selector coupler half, (01295, fig 5-72), as viewed from the front of RT-581.
c. Insert tuning tool into coil L 401 (fig 5-46).
d. Operate MANUAL FREQUENCY TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switch (S708) counterclockwise to .0. (Tuning tools should rise.)
e. Operate MANUAL FREQUENCY TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switch (S708) counterclockwise to . 9 (or .95). (Tuning tool should fa11.)
f. Repeat steps $c$ through e for coils L403 and L405.
g. Remove tuning tool.
h. If mechanical check is satisfactory, proceed to Second IF Amplifier electrical check.

5-33. Second IF Amplifier Mechanical Alignment. Set up RT-581 as in paragraph 5-25. Use Bristol tool FSN-9Q5120-

540-4359 or 9Q5120-288-8853 during the following procedures:
a. Position RT-581 right side up (fig 5-14).
b. Loosen locking collar on male coupler (01295, fig 5-72) on Frequency Selector and center coupler mating element in vertical position under black guide post. The cutout on male coupler should be in upper right corner as viewed from front of RT-581. Coupler keeper pin of coupler 0405 should be in the open quadrant of male coupler 01295.
c. Tighten locking collar.

5-34. Second IF Amplifier Electrical Check. Set up RT-581 as in paragraph 5-25. Refer to figures 5-14, 5-41, 5-46, $5-47,5-48,5-143$, and 5-144 for the physical and electrical location of test points. Use Electronic Multimeter AN/ USM-116 and Electronic Frequency Counter AN/USM-207. If abnormal indications are observed, refer to 2nd IF Amplifier troubleshooting (paragraph 5-36) only after completing all electrical checks.

NOTE
Steps a through d verify 3.0 to 3.9 MHz (or 3.00 to 3.95 MHz for AN/URC-9A) third oscillator V401B operation. (Fig 5-143, 5-144).
a. Set AN/USM-116 for negative DC voltage, 10 V range, and connect dc probe to yellow test point $J 404$ (fig 5-46).
b. Operate MANUAL FREQUENCY TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switch (S708) in steps from . 9 to . 0 (or . 95 to .00) and observe indication ( -6 vdc minimum) on AN/USM-116 at each step.

NOTE
A slow voltage rise indicates marginal crystal operation.
c. Key to transmit and repeat step b; observe AN/USM-116 ( -6 vdc minimum).
d. Unkey the transmitter and remove probe.

NOTE
Steps e through g verify transmit buffer amplifier V401A operation in transmit. (Fig 5-143, 5-144).

NOTE
Do not use a probe extension in step e through g.
e. Set AN/USM-116 for DC voltage, 10 V range, connect dc probe to red test point J402 (fig 5-46); and key to transmit.
f. Operate MANUAL FREQUENCY TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switch (S708) in steps from .9 to .0 (or .95 to . 00) and observe indication (3 to 3.8 vdc ) on AN/USM-116.
g. Unkey the transmitter and remove dc probe.
h. Using probe extension, connect AN/ USM-207 to yellow test point J404 (fig 5-46).
i. Key to transmit.
j. Operate MANUAL FREQUENCY TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switch (S708) in steps from .9 to .0 (or .95 to .00 ) and observe that frequency indication on AN/USM-207 corresponds to those listed in table 5-9.
k. Unkey transmitter and remove AN/ USM-207 probe.

1. Remove V304 on lst IF Amplifier; set AN/USM-116 for AC voltage, $1 V$ range; connect ac probe to pin 1 on tube socket (fig 5-41).
m. Key to transmit; operate MANUAL FREQUENCY TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switch (S708) in steps from .9 to . 0 (or . 95 to .00) and observe for (. 5 to .0 vac) indication on AN/USM116 at each step.
n. Unkey transmitter; remove test probe.
o. Replace V304.
p. If electrical check is satisfactory, proceed to 1st IF Amplifier mechanical check.

Table 5-9. Second IF Amplifier Crystal Frequencies (Transmit)

TENTHS/   TENTHS-   HUNDREDTHS   SWITCH   POSITION	AN/USM-207   INDICATION	FREQUENCY   TOLERANCE   AND CRYSTAL   FREQUENCY   (MHz)
AN/URC-9		
.9	3.9	
.8	3.8	195
.7	3.7	190
.6	3.6	185
.5	3.5	180
.4	3.4	175
.3	3.3	170
.2	3.2	165
.1	3.1	160
.0	3.0	155

Table 5-9. Second IF Amplifier Crystal Frequencies (Transmit) (Continued)

TENTHS/   TENTHS-   HUNDREDTHS   SWITCH   POSITION	AN/USM-207   INDICATION   AND CRYSTAL   FREQUENCY   (MHz)	FREQUENCY   TOLERANCE   $(+$ Hz $)$
AN/URC-9A		
95		
.90	3.95	197.5
.85	3.90	195.0
.80	3.85	192.5
.75	3.80	190.0
.70	3.75	187.5
.65	3.70	185.0
.60	3.65	182.5
.55	3.60	180.0
.50	3.55	177.5
.45	3.50	175.0
.40	3.45	172.5
.35	3.35	170.0
.30	3.30	167.5
.25	3.25	165.0
.20	3.20	162.5
.15	3.15	160.0
.10	3.10	157.5
.05	3.05	155.0
.00	3.00	152.5

5-35. Second IF Amplifier Electrical Alignment. Set up RT-581 as in paragraph 5-25. Refer to figures 5-14, 5-41, $5-46,5-47,5-50,5-143$, and 5-144 for the physical and electrical locations of adjustments and test points. Use Electronic Multimeter AN/USM-116, Electronic Frequency Counter AN/USM-207, tuning tool FSN-9Q5120-720-1908, and steel ruler during following procedures:

NOTE
Mechanical alignment for 2nd IF Amplifier must be correct before proceeding.

NOTE
Make sure MANUAL FREQUENCY TENTHS (or TENTHS-HUNDREDTHS) switch (S708) is on . 9 (or .95) before proceeding.
a. Remove V304 on 1st IF Amplifier; set AN/USM-116 for AC voltage, $1 V$ range; connect ac probe to pin 1 on tube socket (fig 5-41).
b. Key to transmit; then adjust L402, L404, and L406 (fig 5-46) for a peak indication ( 0.5 to 0.9 vac ) on tube socket (fig 5-41).
c. Unkey transmitter.

NOTE
If no output is obtained in step b, adjust L401, L403, and L405 (fig 5-46) until tuning cores are 1-1/32 inches from top of can and repeat step b.
d. Operate MANUAL FREQUENCY TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switch (S708) to . 0.
e. Key to transmit; adjust L401, L403, and L 405 (fig 5-46) for a peak on AN/USM-116.
f. Unkey transmitter and remove probe.
g. Repeat steps b through f until no further change is noted on AN/USM116.
h. Replace V304.
i. This completes 2nd IF Amplifier Electrical Alignment.

5-36. Second IF Amplifier Troubleshecting (Transmit). (Figures 5-133, 5-143, 5-144, 5-1, 5-7, and 5-8). Troubleshoot the second IF Amplifier in accordance with procedures in table 5-10.


5-37. FIRST IF AMPLIFIER ALIGNMENT, ADJUSTMENT, AND TROUBLESHOOTING. Alignment procedures need be performed only when indicated by unsatisfactory results received during checks. Troubleshooting is performed as required.

5-38. First IF Amplifier Mechanical Check. Set up RT-581 as in paragraph 5-25. Use tuning tool FSN 9Q5120-7201908 during following procedures:
a. Position RT-581 right side up (fig 5-14.

NOTE
When the observation is incorrect for a step, discontinue check at that point and perform mechanical alignment in accordance with paragraph 5-39.
b. Check that both coupler slots (0316, 0317, fig 5-44) are vertical and centered under the black guide posts; that the coupler keeper pins are in the upper right corner and in the open quadrant of the Frequency Selector coupler halves (01293, 01294, fig 5-72) as viewed from the front of RT-581.
c. Insert tuning tool into coil L301 (fig 5-41).
d. Operate MANUAL FREQUENCY UNITS switch (S707) counterclockwise to 0 . (Tuning tool should rise).
e. Operate MANUAL FREQUENCY TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switch (S708) counterclockwise to . 0 (Tuning tool should rise slightly further.)
f. Operate MANUAL FREQUENCY UNITS switch (S707) counterclockwise to 9. (Tuning tool should fall).
g. Operate MANUAL FREQUENCY TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switch (S708) counterclockwise to . 9 (or .95). (Tuning tool should fall slightly further.)
h. Repeat steps $c$ through $g$, in turn, for coils L302, L303, L304, L305, L306 and L310.

NOTE
Coil L310 is driven by Frequency Selector units ( 1 MHz ) shaft only.
i. Remove tuning tool.
j. If mechanical check is satisfactory, proceed to First IF Amplifier electrical check.

## 5-39. First IF Amplifier Mechanical

 Alignment. Set up RT-581 as in paragraph 5-25. Use Bristol tool FSN 9Q5120-540-4359 or FSN 9Q5120-288-8854 during the following procedures:a. Position RT-581 right side up (fig 5-14).
b. Loosen locking collars on male couplers (01293, 01294 fig 5-72) on Frequency Selector; center coupler mating elements in vertical position under black guide posts. The cutouts on male couplers should be in upper right corner as viewed from the front of RT-581. Coupler keeper pins of couplers 0316 and 0317 should be in open quadrant of male couplers 01293 and 01294.
c. Tighten locking collar.

5-40. First IF Amplifier Electrical Check. Set up RT-581 as in paragraph 5-25. Refer to figures 5-14, 5-41 through 5-45, and 5-142 for the physical and electrical location of test points. Use Electronic Multimeter AN/USM-116 and Electronic Frequency Counter AN/USM-207, during the procedures that follow. If abnormal indications are observed, refer to 1st IF Amplifier troubleshooting (paragraph 5-44).

NOTE
The 2nd IF Amplifier electrical alignment (paragraph 5-35) must be correct before proceeding.
a. Set AN/USM-116 for negative DC voltage, 3 V range, and connect dc probe to green test point J305 (fig 5-41).
b. Operate MANUAL FREQUENCY UNITS and TENTHS (or TENTHS-HUNDREDTHS on AN/URC9A) switches (S707 and S708) to 9.9 (or 9.95) ; key to transmit and observe iridication ( -1.0 vdc minimum) on AN/USM-116.
c. Operate MANUAL FREQUENCY UNITS switch (S707) from 9 to 0 , in turn, and observe indication ( -1.0 vdc minimum) on AN/USM-116 at each switch position. Unkey transmitter.

## NOTE

A slow voltage rise indicates marginal crystal operation.
d. Remove dc probe from green test point J305.
e. Connect AN/USM-207 to green test point J305.

## NOTE

The frequency counter read-out varies with the input signal level. Use minimum input signal by adjusting counter input attenuator.
f. Operate MANUAL FREQUENCY UNITS switch (S707) in steps from 9 to 0 , in turn, and observe that frequency indications on AN/USM-207 correspond to those listed in table 5-11.

## NOTE

Satisfactory results verify 17 to 26 MHz second oscillator V305 operation in receive and transmit.
g. Operate MANUAL FREQUENCY TENS, UNITS, AND TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switches (S706, S707,

S708) to 399.9 (or 399.95 ) and remove AN/USM-207 probe.
h. Set AN/USM-116 for AC voltage, 10 V range, and connect ac probe to orange test point J103 on RF and PA (fig 5-27).
i. Key to transmit; observe indication (5 to 8 vac) on AN/USM-116.
j. Operate MANUAL FREQUENCY UNITS and TENTHS (or TENTHS-HUNDREDTHS on AN/URC9A) switches (S707 and S708) in steps from 9.9 to 0.0 (or 9.95 to 0.00 ), in turn, and observe indications (5 to 8 vac) on AN/USM-1.16 at each step.
k. Unkey transmitter and remove test probe.

NOTE
Steps 1 through $p$ verify proper signal mixing of the 1 st and $2 n d$ IF Amplifiers in transmit.

1. Connect AN/USM-207 to orange test point J303 (fig 5-41).
m. Operate MANUAL FREQUENCY UNITS and 'iENTHS (or TENTHS-HUNDREDTHS on AN/URC9A) switches (S707 and S708) to 9.9 (or 9.95).
n. Key to transmit; observe indication of 29.9 MHz (or 29.95 MHz ) on AN/USM-207.
o. Operate MANUAL FREQUENCY UNITS and TENTHS (or TENTHS-HUNDREDTHS on AN/URC9A) switches (S 707 and S708) to 0.0 ; observe indication of 20.0 MHz (or 20.00 MHz ) on AN/USM-207.
p. Unkey transmitter and remove test probe.
q. If electrical check is satisfactory, proceed to FMÓ mechanical check.

Table 5-11. First IF Amplifier Crystal Frequencies (Transmit)

| UNITS |
| :---: | :---: | :---: |
| SWITCH |
| POSITION | | AN/USM-207 INDICATION |
| :---: |
| AND CRYSTAL FREQUENCY |
| $(M H z)$ | | FREQUENCY |
| :---: |
| TOLERANCE |
| $(+H z)$ |

5-41. First IF Amplifier Electrical Alignment. Set up RT-581 as in paragraph 5-25. Refer to figures 5-14, 5-41 through 5-45, and 5-142 for the physical and electrical location of adjustments and test points. Use Electronic Multimeter AN/USM-116 and Electronic Frequency Counter AN/USM-207 during following procedures:

NOTE
The 2nd IF Amplifier electrical alignment (para 5-35) and the lst IF Amplifier mechanical alignment (para 5-39) must be correct before proceeding.
a. Position $\mathrm{RT}-581$ right side up (fig 5-14).
b. Operate MANUAL FREQUENCY UNITS switch (S707) to 9.
c. Set AN/USM-116 for negative DC voltage, 1 V range; connect dc probe to green test point J305 (fig 5-41).
d. Adjust $C 340$ for maximum indication on AN/USM-116 ( -1 vdc minimum).
e. Operate MANUAL FREQUENCY UNITS switch (S707) to 0; adjust L310 (fig 5-41) for maximum indication on AN/USM116 ( -1 vdc minimum).
f. Repeat above steps until no further increase is observed on AN/USM-116.
g. Turn trimmer capacitors C304, C306, C309, C312, and C317 (fig 5-41) fully counterclockwise.
h. Set L302, L303, L304, L305, and L306 tuning cores (fig 5-41) for a depth of $1-3 / 32$ inches from top of cover.
i. Operate MANUAL FREQUENCY UNITS and TENTHS (or TENTHS-HUNDREDTHS) switches (S707 and S708) to 9.9 (or 9.95).
j. Set AN/USM-116 for $A C$ voltage, $1 V$ range; connect ac probe to brown test point J301 (fig 5-41).
k. Key to transmit; adjust C304 for maximum indication on AN/USM-116.

1. Unkey transmitter; disconnect AN/ USM-116 from test point J301.
m. Set AN/USM-116 for 3 V range; connect ac probe to red test point J302.

[^1]n. Key to transmit; adjust C306 and C309 in small increments for maximum ac voltage indication on AN/USM-116. Unkey transmitter and disconnect AN/USM-116 from test point J302.
o. Connect AN/USM-207 to red test point J302; key to transmit; observe frequency 29.9 MHz (or 29.95 MHz for AN/ URC-9A) on AN/USM-207; unkey transmitter and disconnect AN/USM-207.
p. Set AN/USM-116 for AC voltage, 10 V range; connect ac probe to orange test point Jl03 on RF and PA (fig 5-27).
q. Key to transmit; adjust C312 and C317 in small increments for maximum ac voltage indication on AN/USM-116.
r. Unkey transmitter; remove ac probe.
s. Operate MANUAL FREQUENCY UNITS and TENTHS (or TENTHS-HUNDREDTHS on AN/URC9A) switches ( $\mathrm{S} 70 \overline{7}$ and S 708 ) to . 0 .
t. Set AN/USM-116 to $1 V$ range; connect ac probe to brown test point J301.
u. Key to transmit; adjust L302 for maximum indication on AN/USM-116.
v. Unkey transmitter; disconnect AN/ USM-116 from test point J301.
w. Set AN/USM-116 to 3 V range; connect ac probe to red test point $J 302$.
x. Key to transmit; adjust L303 and L304 in small increments for maximum ac voltage indication on AN/USM-116; unkey transmitter and disconnect AN/USM-116 from test point J302.
y. Connect AN/USM-207 to red test point J302; key to transmit; observe frequency of 20.0 MHz on AN/USM-207. Unkey cransmitter and disconnect AN/USM-207 from test point J302.
2. Set AN/USM-116 for AC voltage; connect ac probe to orange test point J103 on RF and PA (fig 5-27).
aa. Key to transmit; adjust L305 and L306 in small increments for maximum ac voltage indication on AN/USM-116.
bb. Unkey transmitter and remove ac probe from test point J103.
cc. Repeat steps i through bb until no improvement is noted, and a level of 5 to 8 vac at test point J103 can be obtained for each position of the MANUAL FREQUENCY UNITS and TENTHS (or TENTHSHUNDREDTHS) switches (S707 and S708).
dd. Adjust C302 clockwise until it is approximately the same physical position as C304.
ee. Adjust L 301 until the depth of the tuning core from the top of the cover is approximately the same as L302.

NOTE
Final adjustment of C302 and L 301 will be made in a receive condition.

5-42. S METER Zero Check. Set up RT581 as in paragraph 5-25. Refer to figure 5-65. No tools or test equipments are required to perform following procedures.
a. Set METER switch (S701) to S METER position.
b. Operate MANUAL FREQUENCY TENS switch (S706) through complete range; check meter reading at each position.
c. Repeat step $b$, using MANUAL FREQUENCY UNITS switch (S707).
d. Repeat step b, using MANUAL FREQUENCY TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switch (S708).
e. Front panel meter should indicate zero, or slightly above, on all frequency channels.

5-43. S METER Zero Electrical Alignment. Set up RT-581 as in paragraph 5-25.

Refer to figures 5-16 and 5-149. No special tools or test equipments are required to perform the following procedures:
a. Set METER switch (S701) to S METER position.
b. Adjust variable resistor R712 (fig 5-16 and 5-149) so that indication on front panel meter is zero (first mark at left end of scale) with mirimum noise throughout spectrum.
c. Operate MANUAL FREQUENCY TENS switch (S706) through complete range; at each position check meter reading. If meter reads down scale, reset R 712 to zero the meter. Set MANUAL FREQUENCY

TENS switch to position with lowest meter reading.
d. Repeat step $c$, using MANUAL FREQUENCY UNITS switch (S707).
e. Repeat step $c$, using MANUAL FREQUENCY TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switch (S708).
f. When adjustment is complete, front panel meter should read zero, or slightly above, on all frequency channels.

5-44. First IF Amplifier Troubleshooting (Transmit), (Figures 5-1, 5-6, 5-133, and 5-142). Troubleshoot 1st IF Amplifier in accordance with procedures in table 5-12.

Table 5-12. First IF Amplifier Troubleshooting Procedures (Transmit)


V305; Pin 8-115; Pin 9-m
5. Faulty switch ( $\mathrm{s}^{*} 301$ and S 302 ) contacts
6.Faulty electrical alignment
5. Clean contacts with a cleaner/lubricant such as CRAMOLIN, FSN 9G6850-880-7007
6. Check according to para 5-42

FAULTY INDICATION	POSSIBLE CAUSE	ACTION-CORRECT AS REQUIRED
2.Abnormal indication at orange test point J103 (5 to 8 vac normal) - Keyed	1. Faulty mechanical alignment	1. Check according to para 5-38 and 5-39
	2. Faulty IF Amplifier tubes V302, V301, and V304	2. Replace tubes V302, V301, and V304, one at a time
	3.Faulty operating voltages	3. Check supply voltages at M701 and all tube sockets (fig 5-133)
	4.Faulty components	4. Make circuit checks
	5. Faulty switch (S301 and S302) contacts	5. Clean contacts with a cleaner/lubricant such as CRAMOLIN, FSN 9G6850-880-7007
	6.Faulty electrical alignment; 2nd (V305) and 3rd (V401) oscillator may not be mixing in 1st transmit mixer (V304)	6. Check according to para 5-42
	7. Faulty cable (W304) or connectors P302/ J101.	```7.Repair/replace (fig 5-1, 5-6)```

5-45. FREQUENCY MULTIPLIER-OSCILLATOR (FMO) ALIGNMENT, ADJUSTMENT, AND TROUBLESHOOTING. Alignment procedures need be performed only when indicated by unsatisfactory results received during checks. Troubleshooting is performed as required.

5-46. FMO Mechanical Check. Set up RT581 as in paragraph 5-25. Refer to figures 5-31, 5-34, 5-37, and 5-72. No tools or test equipments are required to perform the following procedures:
a. Position RT-581 top side up (fig 5-13).

NOTE
If the observation is incorrect for a step, discontinue check at that point and perform mechanical alignment for FMO in accordance with paragraph 5-47.
b. Check that coup1er (0220, fig 5-34) on the end of the shaft is vertical and centered under the black guide post (fig 5-72); that coupler keeper pin is in the upper right corner and in open quadrant of Frequency Selector coupler as viewed from front of RT-581.
c. Check that the position of the small tab on the front rotor plate of the main tuning capacitor (number 1 on front rotor plate fig 5-31) is in full mesh with stator plates Z202, Z204, Z206, and 2208 (fig 5-37).

NOTE
Ensure that capacitor rotor plates do not touch the stator plates in any position (39 through 22) as the TENS switch (S706) is set.
d. Operate MANUAL FREQUENCY TENS switch (S706) to 34. Check that S201 coil selector switch rotor arm is centered in the contact nearest to the center of the viewing hole located at the top rear of the FMO (fig 5-34).
e. If mechanical check is satisfactory proceed to the FMO electrical check.

5-47. FMO Mechanical Alignment. Set up RT-581 as in paragraph 5-25. Refer to figures 5-13, 5-72, and 5-34. Bristol tools FSN 9Q5120-288-8853 and FSN 9Q5120-540-4359 are required during the following procedures:
a. Position RT-581 top side up (fig 5-13).
b. Loosen locking collar on male coupler (01291, fig 5-72) on Frequency Selector and center coupler mating element in vertical position under black guide post; cutout on male coupler must be in upper right corner as viewed from front of RT-581. Coupler keeper pin of coupler 0220 should be in open quadrant of male coupler 01291.
c. Make fine adjustment by rotating coupler so that small rotor tab on main tuning capacitor (tab 1 on front plate, fig 5-31), is in full mesh with the stator plates in Z202, Z204, Z206, and Z208 (fig 5-37).
d. Tighten locking collar on coupler of Frequency Selector.
e. Operate MANUAL FREQUENCY TENS switch (S706) to gain access to screw on locking collar of drive gear (0202) between the oscillator and amplifier of FMO (fig 5-34). Loosen locking screw.
f. Operate MANUAL FREQUENCY TENS switch (S706) to 34.
g. Hold coupler (01291) and rotate drive gear counterclockwise until rotor arm of switch S 201 is centered on contact nearest to center of viewing hole in oscillator dust cover (fig 5-34).

NOTE
Drive gear should be rotated in the normal direction of rotation (counterclockwise), to account for any back lash in S201.
h. Hold coupler 01291 and tighten locking collar loosened in step e.

5-48. FMO Electrical Check. Set up RT581 as in paragraph 5-25. Refer to figures 5-13, 5-15, 5-34 through 5-40, and 5-141 for the physical and electrical location of test points. Use Electronic Multimeter AN/USM-116 and Electronic Frequency Counter AN/USM-207 during the procedures that follow. If abnormal indications are observed, refer to FMO troubleshooting, paragraph 5-50.

NOTE
FMO mechanical alignment must be correct before proceeding.
a. Position RT-581 top side up (fig 5-13).
b. Set AN/USM-116 for AC voltage, 3 V range; connect ac probe to oscillator output link (Y, fig 5-34).
c. Observe indication (1.0 vac minimum) on AN/USM-116.
d. Operate MANUAL FREQUENCY TENS switch (S706), in turn, from 39 to 22 and observe indication (1.0 vac minimum) on AN/USM-116 at each step (voltage level may increase at 29).

NOTE
A slow voltage rise indicates marginal crystal operation.

NOTE
Tube V201 operation (steps b through d) must be correct before proceeding
e. Set AN/USM-116 for negative DC voltage, 1 V range; connect dc probe to
white teflon test point J106 on RF and PA (fig 5-13 and 5-140).

NOTE
Incorrect setting of 2105 trimmer capacitor Cl22 will cause a low voltage indication at test point J106.
f. Operate MANUAL FREQUENCY TENS switch (S706), in turn, from 39 to 22 and observe indication ( -1.0 vdc minimum) on AN/USM-116 at each switch position.
g. Remove tube V203 (fig 5-35) and observe that indication on AN/USM-116 decreases to approximately -0.25 vdc .
h. Remove dc probe; replace V203.
i. Connect AN/USM-207 to yellow test point J204 (fig 5-35).
j. Operate MANUAL FREQUENCY TENS switch (S706), in turn, from 39 to 22 and observe that frequency indication on AN/USM-207 corresponds to those listed in table 5-13.

NOTE
The indication on the AN/USM207 is not a direct readout of the FMO output frequency, but is the result of heterodyning. (Refer to the AN/USM-207 Technical Manua1.)

Table 5-13. FMO Frequencies at Test Point J204

$\begin{gathered} \text { TENS } \\ \text { SWITCH } \\ \text { POSITION } \end{gathered}$	```TEST POINT J204 FREQUENCY (MHz)```	* AN/USM-207 TUNING FREQUENCY MC. SWITCH POSITION	AN/USM-207 INDICATION AND FREQUENCY TOLERANCE (MHz)   $(+\mathrm{Hz})$
39	370	350	209250
38	360	350	109000
37	350	300	508750
36	340	350	108500
35	330	350	208250
34	320	350	308000
33	310	350	407750
32	300	350	507500
31	290	300	107250
30	280	300	207000
29	270	300	$30 \quad 6750$
28	260	300	406500
27	250	300	$50 \quad 6250$
26	240	250	106000
25	230	250	20 5750
24	220	250	305500
23	210	250	405250
22	200	250	505000

* DIRECT-HETERODYNE switch must be in HETERODYNE
k. Disconnect AN/USM-207.

NOTE
Steps e through $j$ verify the FMO output frequency and level.

1. If electrical check is satisfactory proceed to the RF and PA mechanical check.

5-49. FMO Electrical Alignment. Set up RT-581 as in paragraph 5-25. Refer to
figures 5-13, 5-15, 5-34 through 5-40, and 5-141 for the physical and electrical location of adjustments and test points. Electronic Multimeter AN/USM-116, Electronic Frequency Counter AN/USM-207, tuning tool FSN 9Q5120-720-1908, and capacitor tab bending tool FSN 9Q5120-9759478 are required during the following procedures:

NOTE
Mechanical alignment of the FMO must be correct before proceeding. Tube shields and covers must be in place.
a. Position RT-581 top side up (fig 5-13).
b. Set AN/USM-116 for AC voltage, 3 V range; connect ac probe to oscillator output link (Y, fig 5-34).
c. Operate MANUAL FREQUENCY TENS switch (S706) to 22.
d. Adjust C208 (fig 5-36) for maximum indication ( 1.0 vac minimum).

NOTE
At any point in step e that the minimum voltage cannot be obtained, replace V201 and V202 (one at a time) and readjust trimmers.
e. Operate MANUAL FREQUENCY TENS switch (S706), in turn, from 39 to 22 , adjusting coils (L218 through L201, fig 5-17) at each step for maximum indication ( 1.0 vac minimum) on AN/USM-116. (Adjustments are made through holes rear plate of first oscillator.)

NOTE
Steps $f$ through $k$ should seldom be part of normal alignment.
f. Operate MANUAL FREQUENCY TENS switch (S706) to 22.
g. Readjust C 208 for maximum indication on AN/USM-116.
h. Operate MANUAL FREQUENCY TENS switch (S706) to 39.
i. Adjust C 208 slowly clockwise, then slowly counterclockwise (1 to 2 turns) from its position in step $g$; note changes on AN/USM-116. If indication increases with clockwise rotation, $L 222$ must be compressed slightly; if indication increases with counterclockwise rotation, L222 must be spread slightly.

NOTE
To adjust L 222 (fig 5-40) remove FMO from RT-581. (See paragraph 5-135).
j. Reinstall FMO assembly.
k. Repeat steps $f$ through $j$ until no further change is noted on AN/USM-116.

1. Remove V201 tube shield and place pickup loop (see table 5-3) over V201.
m. Connect pickup loop to AN/USM-207 plug-in unit.
n. Compare readout on AN/USM-207 for each switch position (39 through 22) of the MANUAL FREQUENCY TENS switch (S706) with those listed in table 5-14.
o. Disconnect AN/USM-207; remove pickup loop and replace tube shield.
p. Connect AN/USM-207 to red test point J 202 .
q. Operate MANUAL FREQUENCY TENS switch (S706) to 39.

NOTE
Ensure capacitor rotor plates do not touch the stator plates in any position (39 through 22) as TENS switch (S706) is set.
r. Turn trimmer capacitors C215, C221, C 227 , and C 233 fully counterclockwise.
s. Adjust C215 clockwise (6 to 8 turns) for maximum indication on AN/USM207 INPUT LEVEL METER.

Table 5-14. FMO Crystal Frequencies

TENS	AN/USM-207 INDICATION	
SWITCH	AND FREQUENCY TOLERANCE	
POSITION	$(\mathrm{MHz})$	$(+\mathrm{Hz})$
39	41.11111	1028
38	40.00000	1000
37	38.88888	972
36	37.77777	944
35	36.66666	916
34	35.55555	888
33	34.44444	860
32	33.33333	832
31	32.22222	804
30	31.11111	776
29	45.00000	1125
28	43.33333	1083
27	41.66666	1042
26	40.00000	1000
25	38.33333	958
24	36.66666	916
23	35.00000	875
22	33.33333	832

t. Connect AN/USM-207 to orange test point J203.
u. Adjust C221 clockwise (6 to 8 turns) for maximum indication on AN/USM207 INPUT LEVEL METER.
v. Connect AN/USM-207 to yellow test point J204.
w. Adjust C 227 clockwise ( 6 to 8 turns) for maximum indication on AN/USM207 INPUT LEVEL METER.
x. Disconnect AN/USM-207.
y. Set AN/USM-116 for negative DC voltage, 3 V range; connect dc probe to white teflon test point J106 on RF and PA (fig 5-13 and 5-140).

## NOTE

Incorrect setting of 2105 trimmer Cl22 will cause a low voltage indication at J106.
z. Adjust C233 clockwise (6 to 8 turns) for maximum dedication ( -1 vdc minimum) on AN/USM-116.
aa. Readjust C215, C221, and C227 for maximum indication ( -1 vdc minimum on AN/USM-116; this completes FMO reference frequency alignment. Place pencil mark on the chassis cover next to trimmer capacitors C215, C221, C227, and C233 for reference during tracking procedure.

NOTE
Before proceeding with tracking steps bb through gg, steps 1 through aa MUST be accomplished. The voltage at Jl06 must not fall below -1.0 vdc during the following steps.
bb. Set AN/USM-116 for negative $D C$ voltage, 3 V range; connect dc probe to white teflon test point J106 on RF and PA (fig 5-13).
cc. Operate MANUAL FREQUENCY TENS switch (S706) to 38.

NOTE
The need for tab bending must be determined prior to adjustment of any tabs. See table 5-15 for Frequency Selector switch position and associated tab.

## CAUTION

Do not bend capacitor tabs beyond 20 degrees from the vertical, or short tabs to stators.
dd. To determine the need for tab bending, observe AN/USM-116 and adjust C215 as follows: (1) one-half to one turn counterclockwise from pencil mark, (2) reset to mark; (3) one-half to one full turn clockwise from pencil mark, (4) reset to mark. If the voltage dipped as C 215 was turned in both ccw and $c w$ directions, the circuit was in resonance and required NO tab bending. If the voltage increased as C 215 was turned in a ccw direction, the capacitance must be decreased by bending WHITE rotor tab of Z 202 away from the stator for peak voltage indication. If the voltage increased as $C 215$ was turned in a cw direction, the capacitance must be increased by bending WHITE rotor tab of Z202 toward stator for peak voltage indication. Repeat this procedure for C221 and Z204, C227 and Z206, C233 and Z208, at switch position 38.
ee. Operate MANUAL FREQUENCY TENS switch in steps from 38 to 30 and repeat step dd at each switch position.

NOTE
The voltage at test point J104 on the RF and PA must not fall below -. 5 vdc during the following tracking procedure.
ff. Connect dc probe of AN/USM-116 to yellow test point J104 on RF and PA; key to transmit.
gg. Operate MANUAL FREQUENCY TENS switch (S706) in steps from 29 to 22 and repeat step dd at each switch position. Remove probe.
hh. Connect AN/USM-207 to test point J204.
ii. Compare readout on AN/USM-207 for each position of the MANUAL FREQUENCY TENS switch (S706) 39 through 22 with those listed in table 5-13.

NOTE
If readings on AN/USM-207 are not within tolerance listed in table 5-13, adjust the corresponding trimmer coils (L201 through L218). This completes FMO alignment.

Table 5-15. FMO Tracking Tabs

FREQUENCY SELECTOR		
POSITION (MHz)	CAPACITOR ROTOR	CAPACITOR ROTOR
(NOTE 1)	TAB NUMBER (NOTES 2, 3, \& 4)	TAB COLOR
$399.9(5)$	1-Back	Black
$389.9(5)$	$2-$ Front	White
$379.9(5)$	2-Back	Yellow
$369.9(5)$	3-Front	Orange
$359.9(5)$	3-Back	Blue
$349.9(5)$	4-Front	Brown
$339.9(5)$	4-Back	Green
$329.9(5)$	5-Front	Red
$319.9(5)$	5-Back	White
$309.9(5)$	6-Front	Blue
$299.9(5)$	6-Back	Red

Table 5-15. FMO Tracking Tabs (Continued)

FREQUENCY SELECTOR POSITION (MHz) (NOTE 1)	CAPACITOR ROTOR   TAB NUMBER (NOTES 2, 3, \& 4)	CAPACITOR ROTOR tab COLOR
289.9(5)	7-Front	Brown
279.9(5)	7-Back	Green
269.9(5)	8-Front	Yellow
259.9(5)	8-Back	White
249.9(5)	9-Front	Orange
239.9(5)	9-Back	Black
229.9 (5)	10-Front	Yellow
225.0(0)	10-Back	Red

NOTES

1. Hundredths digit ( ) applicable to AN/URC-9A only.
2. Front indicates rotor plate(s) facing Oldham coupling.
3. Back indicates rotor plate(s) facing away from Oldham coupling.
4. The rotor $t a b$ being adjusted at a given frequency should be in half mesh with stator plate.

5-50. FMO Troubleshooting (Transmit). 5-51. FMO Intermittent Operation. (Fig(Figures 5-1, 5-5, 5-133 and 5-141.) Troubleshoot the FMO in accordance with procedures in table 5-16.
ures 5-34 through 5-40.) To correct FMO intermittent operations, perform procedures in table 5-17.

| FAULTY INDICATION | FMO Troubleshooting Procedures (Transmit) |  |
| :---: | :---: | :---: | :---: | :---: |
| 1. Abnormal indicationat oscillator output | 1. Faulty mechanical <br> alignment | ACTION-CORRECT AS REQUIRED |

Table 5-16. FMO Troubleshooting Procedures (Transmit) (Continued)

FAULTY INDICATION	POSSIBLE CAUSE	ACTION-CORRECT AS REQUIRED
2.Abnormal indication at red test point J202 (. 38 to .43 vdc normal)	1. Faulty mechanical alignment   2. Faulty tubes V2O2 and V203   3. Faulty operating voltage   4. Faulty components   5. Faulty rf tuner (Z201 and Z2O2) inductance rotor contacts   6. Faulty electrical alignment	1. Check according to para 5-46 and 5-47   2.Replace tubes V202 and V203, one at a time   3. Check supply at R210, R213, R209, C212, C213, and pins 5 and 6 of XV2O2 (fig 5-141)   4. Make resistance checks (see tube chart)   5. Clean contacts with a cleaner/lubricant such as CRAMOLIN, FSN 9G6850-880-7007   6. Check according to para 5-49
3.Abnormal indication at orange test point J 203 (. 8 to 1.1 vdc normal)	1. Faulty mechanical alignment   2. Faulty tube V204   3.Faulty operating voltages   4. Faulty components   5.Faulty rf tuner (2204) inductance rotor contacts   6. Faulty electrical alignment	1. Check according to para 5-46 and 5-47   2. Replace tube V204   3.Check supply at R211, C225 and pin 7 of XV204   4. Make circuit checks   5. Clean contacts with a cleaner/lubricant such as CRAMOLIN, FSN 9G6850-8807007   6. Check according to para 5-49
4.Abnormal indication at yellow test point J204 (1.1 to 2.1 vdc normal)	1. Faulty mechanical alignment   2. Faulty tube V205   3.Faulty operating voltages	1. Check according to para 5-46 and 5-47   2. Replace tube V205   3.Check supply at R212, C231 and pin 7 of XV 205



Table 5-17. FMO Intermittent Operations (Transmit)

CAUSE	CURE
Inadequate ground for C215, C221, C227,   and C233	Remove FMO. Insert a small screwdriver   into the bottom side of trimmer capaci-   tor and rotate ccw until threaded por-   tion clears slotted portion of mount.
	Trimmer capacitor is glass foil.   Carefully bend slotted portions
of mount together.	
Insert small screwdriver into the bottom	
side of the trimmer capacitor and rotate	
cw until threaded screw extends above	
mount. Reinstall FMO.	

Dirty contacts on S201, S202, and Z201

Remove FMO. Remove cover. Use cleaner/ lubricant such as CRAMOLIN, FSN 9G6850-880-7007. Reinstall cover. Reinstall FMO.

Remove FMO. Remove covers. Clean inductor rings with cleaner/lubricant such as CRAMOLIN, FSN 9G6850-880-7007. Reinstall covers. Reinstall FMO.

Remove FMO. Remove covers. Clean shaft with cleaner/lubricant such as CRAMOLIN, FSN 9G6850-880-7007. Reinstall covers. Reinstall FMO.

5-52. RF AND PA ALIGNMENT, ADJUSTMENT, AND TROUBLESHOOTING. Alignment procedures need be performed only when indicated by unsatisfactory results received during checks. Troubleshooting is performed as required.

5-53. RF and PA Mechanical Check. Set up RT-581 as in paragraph 5-15. Refer to figures 5-4, 5-22 through 5-33 and 5-140. No tools or test equipments are required to perform the following procedures:
a. Position RT-581 top side up (fig 5-13).

NOTE
When the observation is incorrect for a step, discontinue
check at that point and perform mechanical alignment for $R F$ and PA in accordance with paragraph 5-54.
b. Check that coupler 0126 slot (fig $5-27$ ) on the end of the shaft is vertical and centered under the black guide post (fig 5-30); that coupler keeper pin is in the upper right corner and in open quadrant of Frequency Selector coupler as viewed from the front of RT-581 (fig 5-72.
c. Check that the position of the small tab on the front rotor plate of the main tuning capacitor (number 1 on the front rotor plate, fig 5-31) is in full mesh with stator plate in $\mathrm{Z1Ol}$, Z103, 2105, Z106 and 2108 (fig 5-27).

## NOTE

Ensure that capacitor rotor plates do not touch the stator plates in any position (39 through 22), as the TENS switch (S706) is set.
d. Operate MANUAL FREQUENCY TENS, UNITS, AND TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switches (S706, S707, and S708) to 375.0 (or 375.00 ).
e. Check that yellow rotor tab (first tab) in 2107 is in full mesh with the stator (fig 5-32).
f. If mechanical check is satisfactory, proceed to RF and PA electrical check.

5-54. RF and PA Mechanical Alignment. Set up RT-581 as in para 5-25. Refer to figures $5-13,5-27,5-30,5-32,5-33$, and 5-72. Use Bristol tools FSN 9Q5120-288-8853 and FSN 9Q5120-540-4359 during the following procedures:
a. Position RT-581 top side up (fig 5-13).
b. Loosen locking collar on male coupler (01292, fig 5-72) on Frequency Selector and center coupler mating element in vertical position under black guide post. The cutout of male coupler should be in upper right corner as viewed from front of RT-581. Coupler keeper pin of coupler 0126 should be in open quadrant of male coupler 01292.
c. Make fine adjustment by rotating coupler and shaft so that the small rotor tab on the main tuning capacitor (tab 1 on front plate, fig 5-30) is in full mesh with the stator plate in 2101, Z103, $2105, \mathrm{Z106}$ (fig 5-27).
d. Operate MANUAL FREQUENCY TENS, UNITS, and TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switches (S706, S707, and S708) to 375.0 (or 375.00 ).
e. Remove power from RT-581.

WARNING
High voltages that are dangerous to life are present at Z107 and 2108. Before performing alignment of $\mathrm{Z107}$ and Z108, remove all electrical power from RT-581.
f. Remove the large cover plate from RF and PA Amplifier for access to Z107.

## CAUTION

2107 is spring loaded. Care must be taken to maintain equal spring between capacitor stator and rotor plates.
g. Loosen 2107 locking collar; rotate rotor until yellow rotor tab (first tab) is in full mesh with the stator (fig 532).
h. Tighten locking collar.
i. Restore power to RT-581.
j. Operate MANUAL FREQUENCY TENS, UNIT UNITS, and TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switches (S706, S707, and S708) to 399.9 (or 399.95 ).
k. Remove small cover plate from PA stage (V106) for access to 2108.

## CAUTION

Care must be taken to maintain equal spacing between capacitor stator and rotor plates.

1. Loosen Bristol screws holding rotor of $\mathrm{ZlO8}$ to shaft (fig 5-33); position rotor of $\mathrm{ZlO8}$ until small rotor tab is in full mesh with the stator and the rotor tab opposite it is in half mesh (fig 5-33).
m. Tighten Bristol screws.
n. Replace covers removed in steps $f$ and $k$.

5-55. RF and PA Electrical Check. Set up RT-581 as in para 5-25. Refer to
figures 5-13, 5-14, 5-22 through 5-34, and 5-140 for the physical and electrical location of test points. Use Power Meter AN/URM-43( ) and Electronic Multimeter AN/USM-116. If abnormal indications are observed, refer to RF and PA troubleshooting (paragraph 5-57).
a. Set AN/USM-116 for AC voltage, 10 V range; connect ac probe to orange test point Jl03.
b. Key to transmit; observe indication (5 to 8 vac ) on AN/USM-116.

NOTE
Step c verifies 1st and 2nd IF Amplifier signal mixing.
c. Remove tube $V 401$ from 2nd IF Amplifier (fig 5-46); observe that indication on AN/USM-116 decreases near to zero.
d. Unkey transmitter and reinstall V401.
e. Set AN/USM-116 for negative DC voltage, 3 V range; connect dc probe to yellow test point J104.
f. Key to transmit; observe indication ( -0.5 to -3 vdc ) on AN/USM-116.

## NOTE

Step $g$ verifies $F M O$ and lst IF Amplifier signal mixing.
g. Remove tube V 401 from 2nd IF Amplifier; observe that indication on AN/ USM-116 decreases to near zero.
h. Unkey transmitter; reinstall V 401.
i. Connect dc probe of AN/USM-116 to white teflon test point J106; observe indication ( -1 vdc minimum). This is the FMO output signal in receive.
j. Key to transmit; observe indication ( -1 vdc minimum) ; unkey transmitter.
k. Connect dc probe of AN/USM-116 to test point J114.

1. Key to transmit; observe indication ( -2 vdc minimum) on AN/USM-116.
m. Unkey transmitter; set AN/USM-116 to 30 V range; connect dc probe to brown test point Jlll (fig 5-14); observe indication ( -9.5 to -12 vdc ) of V106 bias.
n. Key to transmit; observe indication ( -12 vdc minimum) on AN/USM-116 and power indication ( $16-24$ watts) on AN/URM43( ).
o. Unkey transmitter; connect dc probe of AN/USM-116 to brown test point J601 on Relay-Filter Assembly (fig 5-17 and $5-148$ ); set meter to 300 V dc range.
p. Key to transmit; observe indication ( +170 vdc ) on AN/USM-116.
q. Unkey transmitter; remove probe.

5-56. RF and PA Electrical Alignment. Set up RT-581 as in paragraph 5-25. Refer to figures 5-13, 5-14, 5-22 through 5-34, and 5-140 for the physical and electrical location of adjustments and test points. Use Electronic Multimeter AN/USM-116, Power Meter AN/URM-43( ), Alignment Tool FSN 9G5120-720-1908 and capacitor tab bending tool during the following procedures;

## CAUTION

Do not make any electrical adjustment to the RF and PA until the FMO and list IF Amplifier input signals have been verified for amplitude and frequency. Refer to FMO and 1st IF Amplifier electrical checks (paragraphs 548 and 5-40).
a. Turn C107 (Z101), C115 (Z103), C122 (Z105), and C127 (Z106) fully counterclockwise.
b. Remove tube V102.
c. Set AN/USM-116 for $A C$ voltage, $3 V$ range; connect ac probe to pin 2 of V102 tube socket (fig 5-24).
d. Key to transmit; adjust C107 slowly clockwise approximately 6 turns for the first maximum indication (approximately 3 vac ) on AN/USM-116.
e. Remove ac probe; connect AN/USM207 to pin 2 of tube socket.
f. Observe AN/USM-207 for frequency readout of 399.9 MHz (or 399.95 on AN/ URC-9A); unkey transmitter. This verifies that lst IF Amplifier and FMO are mixing properly.
g. Reinstall tube V102; remove tube V103.
h. Connect ac probe of AN/USM-116 to pin 2 of V103 tube socket.
i. Key to transmit; adjust C115 approximately 6 turns for maximum indication (approximately 9 vac) on AN/USM116.
j. Readjust C107 for maximum indication on AN/USM-116.
k. Release key; reinstall tube V103.

1. Set AN/USM-116 for negative $D C$ voltage, 3 V range; connect dc probe to J106.
m. Key to transmit; adjust C122 approximately 6 turns for maximum indication ( -1 vdc minimum) on AN/USM-116.
n. Adjust C107, C115, and C122 for maximum indication ( -1 vdc minimum) on AN/USM-116.
o. Unkey transmitter.
p. Connect dc probe of AN/USM-116 to J114.
q. Key to transmit.
r. Adjust C127 for maximum indication on AN/USM-116 ( -2 vdc minimum).
s. Unkey transmitter; connect dc probe of AN/USM-116 to test point J111.

NOTE
Test probe at J111 may load circuit, requiring readjustment (in a later step) of C141 for maximum power with probe removed.
t. Key to transmit; adjust C141 (fig 5-14) for maximum indication ( -12 vdc minimum) on AN/USM-116.
u. Adjust C132 (fig 5-13) for maximum power output on AN/URM-43( ).
v. Unkey transmitter; remove dc probe.

NOTE
Two Phillip screws must be loosened to adjust L111; L111 is attached to J115 (fig 5-14). Tighten screws upon completion of adjustment.
w. Key to transmit; rotate rf connectors P11 and J115 for maximum power on AN/URM-43( ) .
x. Readjust C132 and C141 for maximum power on AN/URM-43.
y. Unkey transmitter.
z. Set AN/USM-116 for positive DC voltage, 300 V range; connect dc probe to J601 on the Relay-Filter assembly (fig 517 and 5-148).
aa. Set front panel METER switch to $\mathrm{PAI}_{\mathrm{g}}$ 。
bb. Key to transmit; adjust R602 on Relay-Filter assembly (fig 5-17 and 5148) for an indication of 170 vdc on AN/USM-116.
cc. Adjust R108 on RF and PA Amplifier (fig 5-24 and 5-140) for indication in upper half of NORMAL range on meter. (M701).
dd. Repeat steps $b b$ and $c c$ until indication at $J 601$ is 170 vdc and front panel meter indicates in upper half of NORMAL range.

NOTE
Excessive voltage at J601 can cause the rf output signal to become distorted.
ee. Remove AN/USM-116 dc probe; adjust C141 and C132 for maximum power on AN/URM-43 ( ) .
ff. Unkey transmitter; this completes RF and PA reference frequency alignment. Place pencil mark on chassis cover plate to mark position of trimmer capacitors C107, C115, C127, C141, and C132 for reference during tracking procedure.

NOTE
Before proceeding with tracking steps gg through pp, steps a through ee must be accomplished.
gg. Set AN/USM-116 for negative DC voltage, 30 V range; connect dc probe to white teflon test point J114.
hh. Operate MANUAL FREQUENCY TENS switch (S706) to 38 ; key to transmit.

## NOTE

The need for tab bending must be determined prior to adjustment of any tab. See table 5-18 for Frequency Selector switch position and associated tab.

CAUTION
Do not bend capacitor tabs beyond 20 degrees from the vertical or short tabs to stators.
ii. To determine the need for tab bending, observe AN/USM-116 and adjust C107 one-half to one turn counterclockwise from pencil mark; reset to mark, then adjust C107 one-half to one turn clockwise from pencil mark; reset to mark. If the voltage dipped as C107 was turned, in both clockwise and counterclockwise directions, the circuit was in resonance and requires no tab bending. If the voltage increased
as C107 was turned in a counterclockwise direction, the capacitance of Z 101 must be decreased by bending WHITE rotor tab away from the stator for a peak voltage indication. If the voltage increased as C107 was turned in a clockwise direction, the capacitance of 2101 must be increased by bending WHITE rotor tab toward the stator for a peak voltage indication. Repeat this procedure for C115 and Z103, C122 and Z105, C127 and Z106 at switch position 38.
jj. Operate MANUAL FREQUENCY TENS switch (S706) in steps from 37 to 22 repeating procedure in step ii for each switch position.

NOTE
Ensure that capacitor rotor plates do not touch the stator plates in any position (39 through 22), as the TENS switch (S706) is set.
kk. Operate MANUAL FREQUENCY TENS, UNITS, and TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switches (S706, S707, S708) to 255.0 (or 255.00 ) and repeat procedure in step ii.

## NOTE

Z107 is tracked in 20 MHz steps beginning at 375.0 (or 375.00 ).
11. Set MANUAL FREQUENCY TENS, UNITS and TENTHS (or TENTHS-HUNDREDTHS on AN/ URC-9A) switches (S706, S707, S708) to 375.0 (or 375.00).
mm. Connect AN/USM-116 dc probe to brown test point J111.

NOTE
Test probe at Jlll may load circuit, requiring readjustment (in a later step) of C141 for maximum power with probe removed.
nn. Repeat procedures in step ii for C141 and $Z 107$ to determine need for tab bending. Tab bending for Z 107 is accomplished by bending rotor tabs that are meshed with the stator.
oo. Operate MANUAL FREQUENCY TENS switch (S706) in 20 MHz steps from 35 to 22 , repeating procedure in step nn at each switch position.
pp. Operate MANUAL FREQUENCY TENS, UNITS, AND TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switches (S706, S707, S708)
in 10 MHz steps from 389.9 to 225.0 (or 389.95 to 225.00 ) and repeat procedures in step ii for C132 and 2108 at each switch position. Observe AN/URM-43( ) instead of AN/USM-116 for changes.

Table 5-18. RF and PA Tracking Tabs


NOTES: 1. Hundredths digit ( ) applicable to AN/URC-9A only.
2. Front indicates rotor plate(s) facing 01dham coupling.
3. Back indicates rotor plate(s) facing away from Oldham coupling.
4. Rotor tab being adjusted should be in half mesh with stator plate.

5-57. RF and PA Troubleshooting (Transmit). (Figures 5-1, 5-4, 5-19, 5-133 and 5-140.) Troubleshoot the RF and PA Amplifier in accordance with procedures in table 5-19.

5-58. RF and PA Intermittent Operation. (Figures 5-22 through 5-29.) To correct RF and PA intermittent operation, perform procedures in table 5-20.


Table 5-19. RF and PA Troubleshooting Procedures (Transmit) (Continued)

FAULTY INDICATION	POSSIBLE CAUSE	ACTION-CORRECT AS REQUIRED
	3. Faulty tube V101   4. Faulty FMO   5. Faulty components	3. Replace tube V101   4. Check FMO (para 5-44)   5. Check circuits (fig 5-140)
2. Abnormal indication at yellow test point Jl04 (-. 5 to -3 vdc normal indication) - Keyed	1. Faulty input from FMO   2. Faulty FMO   3. Faulty tube V101   4. Faulty operating voltage	1. Check cable W101 and connectors P107/J107 and P103/J113 K102, R114, and cable W4; connector P3/J112 (fig 5-1)   2. Check FMO (para 5-50)   3. Replace tube V101   4. Check supply; +125 vdc at R115 and +26.5 vdc on M701 (fig 5-133)

5. Make resistance checks
6. Clean contacts with cleaner/ lubricant such as CRAMOLIN FSN 9G6850-880-7007.
7. Check according to para 5-53 and 5-54
8. Check according to para 5-56
9. Check according to para 5-53 and 5-54
10. Replaces tubes V102 and V103, one at a time
11. Check supply at R116, C113 and C120 (fig 5-133)
12. Clean contact with cleaner/ lubricant such as CRAMOLIN FSN 9G6850-880-7007
13. Components faulty

Table 5-19. RF and PA Troubleshooting Procedures (Transmit) (Continued)

FAULTY INDICATION	POSSIbLE CAUSE	ACTION-CORRECT AS REQUIRED
	6.Faulty electrical alignment	6. Check according to para 5-56
4.Abnormal indication at white teflon test point J106 ( -1.0 vdc minimum normal indication) - Keyed	1. Faulty tube V104   2. Faulty operating voltage   3. Faulty mechanical alignment   4. Faulty components   5. Faulty rf tuner (Z105) inductance rotor contact; intermittent operation   6.Faulty electrical alignment	1. Replace tube V104   2. Check supply (fig 5-140)   3. Check according to para 5-53 and 5-54   4. Make circuit check (fig 5-133)   5.Clean contacts with cleaner/ lubricant such as CRAMOLIN FSN 9G6850-880-7007   6. Check according to para 5-56
5. Abnormal indication at test point   J114 (-2 vdc minimum)   - Keyed	1. Faulty mechanical alignment   2. Faulty tube V105   3. Faulty operating voltage   4.Faulty rf tuner (Z106) inductance rotor contact; intermittent operation   5. Faulty components   6.Faulty electrical alignment	1. Check according to para 5-53 and 5-54   2. Replace tube V105   3.Check supply M701 (+325 vdc)   4.Clean contacts with. cleaner/lubricant such as CRAMOLIN, FSN 9G6850-880-7007   5.Make circuit check (fig 5-140)   6. Check according to para 5-56
6.Abnormal indication at test point J111 ( -12 vdc minimum noraal indication) - Keyed	1.Faulty mechanical alignment   2. Faulty tube V105	1.Check according to para 5-53 and 5-54   2.Replace tube V105

Table 5-19. RF and PA Troubleshooting Procedures (Transmit) (Continued)


Table 5-20. RF and PA Intermittent Operations (Transmit)

CAUSE	CURE

Inadequate ground for C107, C115, C122, C127, and C141

Remove RF \& PA. Insert small screwdriver into the bottom side of trimmer capacitors and rotate ccw until threaded portion clears slotted portion of mount.

Table 5-20. RF and PA Intermittent Operations (Transmit) (Continued)

CAUSE	CURE
	Trimmer capacitor is glass foil.   Carefully bend slotted portions   of mount together.
Insert small screwdriver into the bot-	
tom side of trimmer capacitor and	
rotate cw until threaded screw extends	
above mount. Reinstall RF \& PA.	

Dirty wiper contacts on 2101, Z103, Z105, and 2106 inductors

Remove RF \& PA. Remove cover. Clean inductor rings with a cleaner/lubricant such as CRAMOLIN, FSN 9G6850-8807007. Reinstall covers. Reinstall RF \& PA.

Remove RF \& PA. Remove covers. Clean inductor surface with cleaner/lubricant such as CRAMOLIN, FSN 9G6850-880-7007. Check centering of capacitor stator plate between rotor plates. Reinstall covers. Reinstall RF \& PA.

Remove RF \& PA. Remove covers. Clean shaft with cleaner/lubricant such as CRAMOLIN, FSN 9G6850-880-7007. Reinstall covers. Reinstall RF \& PA.

5-59. AUDIO AMPLIFIER AND MODULATOR CHECKS, ADJUSTMENTS, AND TROUBLESHOOTING. Alignment procedures need be performed only when indicated by unsatisfactory results received during checks. Troubleshooting is performed as required.

5-60. Modulator Audio Level Check. No mechanical checks or alignments are required. Set up RT-581 as in paragraph 5-25. Refer to figures 5-15, 5-52, $5-53$, and $5-146$ for the physical and electrical location of test points. Use Audio Oscillator AN/URM-127, Electronic Voltmeter AN/USM-143, Power Meter AN/ URM-43( ), and Impedance Matching Network (illustrated in table 5-3) during the following procedures:
a. Remove tube V 802 from Audio Amplifier and Modulator assembly (fig 5-52).
b. Apply a 1000 Hz audio signal to terminals $B$ and $C$ of AUDIO connector J704 through the impedance matching network.
c. Set AN/USM-143 to . 1 vac range and connect to green test point J 805.
d. Key to transmit; set output leve1 of AN/URM-127 for . 08 vac indication on AN/USM-143.
e. Unkey transmitter.

WARNING
High voltage ( +325 vac ) that is dangerous to life is present at test point J803.
f. Set AN/USM-143 to 300 V ac range, and connect ac probe to orange test point J803.
g. Key to transmit and observe indication on AN/USM-143 (210 vac).
h. Unkey transmitter; reinstall V802.
i. Key to transmit; observe indication on AN/USM-143 (200 vac).
j. Unkey transmitter; remove test equipment.

5-61. Modulator Audio Level Adjustment. Set up for RT-581 as in paragraph 5-25. Refer to figures $5-15,5-17,5-52,5-53$, and 5-146 for the physical and electrical location of adjustments and test points. Use Audio Oscillator AN/URM127, Electronic Voltmeter AN/USM-143, Power Meter AN/URM-43( ), and Impedance Matching Network (illustrated in table 5-3) during the following procedures.

NOTE
If indications are abnormal, refer to Audio Amplifier and Modulator troubleshooting (paragraph 5-63).
a. Remove tube V802 from Audio Amp1ifier and Modulator assembly (fig 5-52).
b. Apply a 1000 Hz audio signal to terminals $B$ and $C$ of AUDIO connector J704 through the impedance matching network.
c. Set AN/USM-143 to . 1 V ac range and connect to green test point J805.
d. Key to transmit; set level on AN/ URM-127 for . 08 vac indication on AN/ USM-143.
e. Unkey transmitter
$\frac{\overline{\text { WARNING }}}{\text { High voltages }(+325 \mathrm{vdc}) \text { that }}$
is dangerous to life is present
at J803.
f. Set AN/USM-143 to 300 V ac range; connect ac probe to orange test point J803.
g. Key to transmit; adjust R831 for 210 vac on AN/USM-143.
h. Unkey transmitter; reinstall V802.
i. Key to transmit; adjust R839 for 200 vac on AN/USM-143.
j. Unkey transmitter; remove all test equipment except AN/URM-43( ).
k. Connect handset to AUDIO connector J704.

1. Key to transmit; adjust R609 (fig 5-17) on Relay-Filter assembly and set VOLUME control (R717) for desired level in handset earpiece while speaking into mouthpiece.
m. Unkey transmitter; remove test equipment.

5-62. Retransmit Audio Level Check and Adjustment.

## NOTE

This check is to be made only if a companion AN/URC-9 is installed to provide retransmit operation.

Set up RT-581 as in paragraph 5-25, except as instructed below. Refer to figures $5-15,5-17,5-52,5-54$, and 5-146 for physical and electrical location of test points. Use RF Signal Generator AN/USM-44, Electronic Voltmeter AN/USM143 , 6 db attenuator, and Power Meter AN/ URM-43( ) during the following procedures:

NOTE
Identify AN/URC-9 as SET \#1 and SET \#2 for this procedure.
a. Connect AN/URM-43( ) to ANT connector J701 on AN/URC-9 designated SÉT \#1.
b. Set MANUAL FREQUENCY SELECTOR TENS, UNITS, and TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switches (S706, S707, S708) to 390.0 (or 390.00 ) on SET $\# 1$.
c．Set MODE SELECTOR switch（S702） to RETRANS on SET \＃1．
d．Deenergize SET $⿰ ⿰ 三 丨 ⿰ 丨 三 八$ 2 and remove Relay－ Filter，reconnect Relay－Filter，using ex－ tension cable CX－8521；reenergize SET 非2．
e．Set MANUAL FREQUENCY SELECTOR TENS， UNITS，and TENTHS（or TENTHS－HUNDREDTHS on AN／URC－9A）switches（S706，S707，and S708）to 399.9 （or 399．95）on SET \＃2．
f．Remove V802（fig 5－52）from SET \＃2．
g．Set AN／USM－143 to 1 V ac range；con－ nect to contact number 12 of K 602 （fig 5－54）．
h．Connect AN／USM－44 through 6 db at－ tenuator to ANT connector $J 701$ on SET \＃2；adjust AN／USM－44 for an 8 microvolt，
$1000 \mathrm{~Hz}, 30 \%$ modulated signa1 at 399.9 MHz （or 399.95 MHz ）．
i．Observe that SET \＃1 keys to trans mit and level on AN／USM－143 is ． 1 vac．
j．Adjust R608（fig 5－17）if ． 1 vac indication is not obtained in step i． This completes check and adjustment of retransmit audio level for SET \＃2．Re－ install V802．
k．To check SET \＃1，reverse designa－ tion and repeat steps a through $j$ ．

5－63．Audio Amplifier and Modulator Troubleshooting（Transmit）．（Figures $5-1,5-3,5-10,5-133$ ，and 5－146．） Troubleshoot the Audio Amplifier and Mod－ ulator in accordance with procedures in table 5－21．

FAULTY INDICATION	POSSIBLE CAUSE	ACTION－CORRECT AS REQUIRED
1．Abnormal indication at green test point J805（． 08 vac ）；V802 removed；using signal generator audio input	1．Microphone input circuitry   2．Microphone trans－ former T601 or other component   3．Excessive hum pick－ up；improper shielding and grounding of matching network	1．Make circuit checks （fig 5－146）   2．Make resistance checks； replace if defective   3．Check shielding and grounding of matching network（fig 5－10）
2．Abnormal indication at orange test point J803（210 vac normal with ． 08 vac input）； V802 removed．	1．Faulty tubes V803 thru V808   2．Faulty operating voltage   3．Faulty components	1．Replace tubes V803 thru V808，one at a time   2．Check supply at M701（ +125 and +325 vdc ）and at tube sockets（fig 5－133）   3．Make circuit checks （fig 5－146）
3．Abnormal indication at orange test point J803（200 vac）；V802 replaced	1．Faulty tube V802   2．Faulty components （compression circuit）	1．Replace tubes   2．Check compression circuit components

Table 5-21. Audio Amplifier and Modulator Troubleshooting Procedures (Transmit) (Continued)

FAULTY INDICATION	POSSIble cause					ACTION-CORRECT AS REQUIRED				
				PIN	UMBER	(Dis	nnect	801)		
	TUBE	1	2	3	4	5	6	7	8	9
	V801	0	390	4 M	400K	-	15K	400K	5.2K	0
	V802	0	13K	340K	5K	-	210K	210K	14K	0
	V803	47K	720	0	0	58K	40K	720	-	-
	V804	0	820	200K	15K	-	15K	200K	820	0
	V805	-	15K	12K	0	0	470	2.3	12K	2.3
	V806	-	15K	12K	0	0	470	2.3	12K	2.3
	V807	-	15K	12K	0	0	470	2.3	12K	2.3
	V808	-	15K	12K	0	0	470	2.3	12K	2.3

5-64. FREQUENCY SELECTOR ALIGNMENT AND ADJUSTMENT. The Frequency Selector alignment and adjustment consist of mechanical checks and adjustments. No electrical checks are required.

5-65. Frequency Selector Mechanical Check. Set up RT-581 as in paragraph $5-25$ and perform the following procedures:

## NOTE

Steps a through h verify proper mechanical operation on the Frequency Selector from the RT581 front panel. To verify operation from a remote frequency selecting (dialing) station, follow remote system checkout procedures.
a. Position RT-581 top side up (fig 5-13). Check that FMO male coupler 01291 and RF and PA male coupler 01292 (fig 5-72) mating elements are vertical, centered under black guide posts, and the cutout on each coupler is in the upper right corner as viewed from front of RT-581. Check that FMO coupler keeper pin and RF and PA coupler keeper pin are in same quadrant as the cutouts on the Frequency Selector couplers.
b. Position RT-581 right side up (fig 5-19). Check that 2nd IF Amplifier male
coupler (01295, fig 5-72) and 1st IF Amplifier couplers (01293 and 01294, fig 5-72) mating elements are vertical, centered under black guide posts, and the cutout on each coupler is in the upper right corner as viewed from front of RT-581. Check that 2nd IF Amplifier and 1st IF Amplifier coupler keeper pins are in same quadrant as the cutouts on the Frequency Selector couplers.

NOTE
Check that couplers rotate $360^{\circ}$ in steps $c, d$ and e.
c. Operate MANUAL FREQUENCY TENTHS ( or TENTHS-HUNDREDTHS on AN/URC-9A) switch (S708) counterclockwise in steps from .9 to .0 (or .95 to .00). Allow Frequency Selector to come to a complete stop. Return switch to the . 9 (or . 95 position.
d. Operate MANUAL FREQUENCY UNITS switch (S707) counterclockwise in steps from 9 to 0 . Allow frequency Selector to come to a complete stop at each step. Return switch to the 9 position.
e. Operate MANUAL FREQUENCY TENS switch (S706) counterclockwise in steps from 39 to 22. Allow Frequency Selector to come to a complete stop at each step. Return switch to the 39 position.
f. Check that the five male couplers (01291 through 01295) are centered under the black guide posts as noted in steps $a$ and $b$. The Bristol head screws of the coupler locking collar should be accessible for adjustment at this position.
g. Operate CHAN SEL switch counterclockwise in steps from 19 to 1 . At each step, check that channel and freauency indicators (I1201 through I1204, fig 5-70) indicate correct channel numbers and the preset frequency for that channel.
h. Set CHAN SEL SWITCH to MANUAL and operate MANUAL FREQUENCY TENS, UNITS, and TENTHS (or TENTHS-HUNDREDTHS on AN/ URC-9A) switches (S706, S707, S708) to 399.9 (or 399.95).

5-66. Frequency Selector Mechanical Adjustments. The Frequency Selector mechanical adjustments include synchronization of the autopositioners and relay and pawl adjustments.
a. Autopositioner Synchronization. These procedures must be performed when one or more of the couplers (01291 through 01295) operate in an abnormal manner.

1. Operate MANUAL FREQUENCY TENS, UNITS, and TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switches through their range from high frequency to low frequency while observing the appropriate coupler. A smooth rotation of the coupler in one direction indicates normal operation. A momentary reversal of direction or wavering indicates abnormal operation.
2. Set the CHAN SEL switch to 1 and set the pins on memory drum to 220.0 (or 220.00). (This sets channel 5).
3. Set CHAN SEL switch to 5. Observe that channel 5 appears in channel window and 220.0 (or 220.00 ) appears in frequency windows.
4. Deenergize radio set. Remove front panel as in paragraph 5-165.
5. To synchronize the TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) autopositioner at . O (or .00), locate cam 01297 and cam follower 01299.9 (fig 568).
6. Loosen clamp 01244 (fig 5-68) and set cam follower on the high point of the cam as indicated by scribe mark on cam. Tighten clamp 01244.
7. Loosen clamp 01238 (fig 5-71), center the notch in the rotor of S1204 over the clip with the black wire (fig 5-79).
8. Tighten clamp 01238.
9. To synchronize the UNITS autopositioner at 0.0 , locate cam follower 01299.4 and cam 01299.26 (fig 5-68 and 5-69). The scribe mark on this cam and the cam follower roller are visible through an inspection hole located just above and to the left of UNITS indicator wheel Il203 (fig 5-69 and 5-70).
10. Loosen clamp 01242 (fig 5-68). As viewed through the inspection hole, set the cam follower on the high point of the cam as indicated by the scribe mark; tighten clamp 01242.
11. Loosen clamp 01243 (fig 5-68); center the notch in the rotor of switch S-1203 over the clip with the black wire (fig 5-79).
12. Tighten clamp 01243.

NOTE
Steps 5 through 12 complete synchronization of the TENTHS (or TENTHS-HUNDREDTHS) and UNITS autopositioners.
13. Synchronization of the TENS autopositioner requires extensive disassembly procedures which are not
recommended for shipboard accomplishment. If TENS synchronization is indicated, replace the entire Frequency Selector and submit the defective one for depot repair.
b. Relay K1201, K1202, K1203, K1204 and Pawl Adjustments. These adjustments and observations should be made whenever the front panel is removed for other servicing or whenever relay adjustments are indicated. It is assumed that the front panel has been removed and the radio set is deenergized.

1. Locate relays K1201, K1202, K1203, and K1204 (fig 5-69 and 5-70). Note that the armature of each relay actuates a set of contacts. Note also that behind each relay coil is a notched stopwheel and that a pawl, actuated by the relay armature, engages or seats in the notches. Pawl action in the notches is directly observable on relays K1203 and K1204, therefore, make observations and adjustments first on these two relays.
2. Depress armature of K1203 with finger. Note that relay contacts close and that pawl is disengaged from notch.
3. Release armature of K 1203 and note that pawl is fully seated in notch. Measure gap between relay contacts, Gap must be . 030 inch minimum with armature released (deenergized) and pawls fully seated.
4. After gap adjustment, repeat step 2 to verify that contacts close and pawl disengages.
5. Repeat steps 2,3 and for relays K1204, K1201 and K1202.
6. Replace front panel and restore equipment to normal operation.

5-67. THIRD IF AMPLIFIER AND AUDIO AMPLIFIER AND MODULATOR CHECK AND TROUBLESHOOTING (RECEIVE). The 3rd IF Amplifier and Audio Amplifier and Modulator do not require any mechanical checks or mechanical alignments.

5-68. Third IF Amplifier and Audio Amplifier and Modulator Check (Receive). Set up RT-581 as in paragraph 5-25. Refer to figures 5-15, 5-16, 5-46, 4-49, $5-52,5-53,5-65,5-145$, and 5-146 for physical and electrical location of test points. Use Electronic Voltmeter AN/ USM-143, Electronic Frequency Counter AN/USM-207, RF Signal Generator AN/URM25 , and 600 ohm 5 watt resistor during the procedures that follow. Refer to paragraph 5-69 in case of abnormal indications.

NOTE
Modulator audio level checks and adjustments (transmit function) in paragraph 5-60 and 5-61 must be made prior to making the receive function check.
a. Position RT-581 bottom side up (fig 5-16).
b. Connect 600 ohm resistor across terminals A and B of AUDIO connector J704 (fig 5-65).
c. Set SQUELCH control to OFF; VOLUME control to position 5 (fig 5-65); and R819 (fig 5-15) fully counterclockwise.
d. Set AN/USM-143 to +10db range and connect across 600 ohm resistor.
e. Set AN/URM-25( ) for 500 kHz (check frequency with AN/USM-207) unmodulated output and connect to orange test point J503.
f. Adjust R819 for zero db noise level reference setting (-10db indication on AN/USM-143).
g. Set AN/URM-25 for $30 \%$ modulation of 1000 Hz and adjust output until a 100 db increase over the noise level reference setting of step $f$ is obtained. This is a $10 \mathrm{db} \mathrm{S}+\mathrm{N} / \mathrm{N}$ ratio.
h. Output voltage of AN/URM-25 ( ) should not exceed 16 uv.
i. Remove test equipment.

5-69. Third IF Amplifier and Audio Amplifier and Modulator Troubleshooting (Receive). (Figures 5-2, 5-9, 5-134, and 5-145). Perform 3rd IF Amplifier
and Audio Amplifier and Modulator troubleshooting in accordance with procedures in table 5-22.

FAULTY INDICATION	POSSIBLE CAUSE	ACTION-CORRECT AS REQUIRED
1. Unable to achieve $10 \mathrm{db} \frac{\mathrm{S}+\mathrm{N}}{\mathrm{N}}$ ratio with 16 uv signal injected at orange test point J503	1. Faulty test setup   2. Faulty tubes V501, V502, V503, or V504   3. Faulty operating voltages   4. Faulty audio amplifier   5. Faulty components   6.Faulty cables: from P501/J5 into J8/P801 (Modulator); J8 to J14 Relay-Filter; from Relay-Filter J14 to Front Panel J15; and VOLUME control to HEADSET   7. Fau1ty K602 in RelayFi1ter	1. Recheck test equipment connections and set-up   2.Replace tubes one at a time   3. Check supply at M701 (+125 and +275 vdc ) and tube sockets (fig 5-134)   4. Refer to para 5-59   5. Make circuit check and audio checks through: receive path of 3rd IF Amplifier; squelch relay K801; and broadband relay K803 (fig 5-2, 5-9, 5-145)   6. Repair/replace cable, connector and check audio path through Relay-Filter   7. Repair/replace

Amplifier does not require any mechanical checks or mechanical adjustment.

5-71. Second IF Amplifier Electrical Check (Receive). Set up RT-581 as in paragraph 5-25. Refer to figures 5-14, $5-15,5-41,5-49,5-65,5-143$, and $5-144$ for the physical and electrical location of test points. Use Electronic Voltmeter AN/USM-143, RF Signal Generator AN/URM25( ) , Eiectronic Frequency Counter AN/ USM-207, and 600 ohms 5 watt resistor during the procedures that follow.

NOTE
The 2nd IF Amplifier checks and alignment in transmit (paragraphs 5-32 through 5-35) must be made prior to making this receive function check.

NOTE
The $3 r d$ IF Amplifier and Audio Amplifier and Modulator must be operating satisfactorily before making this check.
a. Position RT-581 right side up (fig 5-14).
b. Connect 600 ohm resistor across pins A and B of AUDIO connector J705 (fig 5-65).
c. Set SQUELCH control OFF; VOLUME control to position 5 (fig 5-65); and R819 (fig 5-15) fully counterclockwise.
d. Set AN/USM-143 to +10 db range and connect across 600 ohm resistor.
e. Set AN/URM-25( ) for 3.9 MHz (check frequency with AN/USM-207) unmodulated output and connect to red test point J402.

NOTE
Injection of 3.9 MHz at J 402 will mix at V401 to produce 500 kHz 3rd if frequency.
f. Adjust R 819 for a zero db noise level reference setting ( -10 db indication on AN/USM-143.
g. Set AN/URM-25 ( ) for 30\% modulation at 1000 Hz and adjust output until a 10 db increase over the noise level reference setting of step $f$ is obtained. This is a $10 \mathrm{db} \mathrm{S}+\mathrm{N} / \mathrm{N}$ ratio.
h. Output voltage of AN/URM-25( ) should not exceed 100 uv.
i. Repeat steps $c$ through $h$ using 3.0 MHz frequency as in step $e$, and TENTHS (or TENTHS-HUNDREDTHS on AN/URC$9 \mathrm{~A})$ switch ( S 708 ) set to .0 (or .00).
j. Remove test equipment.
k. Connect AN/USM-207 to yellow test point J404.

1. Operate MANUAL FREQUENCY TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switch (S708) in steps from . 9 to . 0 (or . 95 to . 00 ); check that frequency indication on AN/USM-207 corresponds to table 5-23.

Table 5-23. Second IF Amplifier Frequencies at J404 Output

TENTHS/TENTHS-HUNDREDTHS   SWITCH POSITION	AN/USM-207 INDICATION AND   CRYSTAL FREQUENCY   (MHz)	FREQUENCY   TOLERANCE   $(+\mathrm{Hz})$
AN/URC-9		
.9		
.8	3.4	170
.7	3.3	165
.6	3.2	160
.5	3.1	155
.4	3.9	150
.3	3.8	195
.2	3.7	190
.1	3.6	185
.0	3.5	180
		175
AN/URC-9A		
.95	3.45	
.90	3.40	172.5
.85	3.30	170.0
.80		167.5
		165.0


TENTHS/TENTHS-HUNDREDTHS SWITCH POSITION	AN/USM-207 INDICATION AND CRYSTAL FREQUENCY (MHz)	FREQUENCY TOLERANCE $(+\mathrm{Hz})$
AN/URC-9A (Cont)		
. 75	3.25	162.5
. 70	3.20	160.0
. 65	3.15	157.5
. 60	3.10	155.0
. 55	3.05	152.5
. 50	3.00	150.0
. 45	3.95	197.5
. 40	3.90	195.0
. 35	3.85	192.5
. 30	3.80	190.0
. 25	3.75	187.5
. 20	3.70	185.0
. 15	3.65	182.5
. 10	3.60	180.0
. 05	3.55	177.5
. 00	3.50	175.0

5-72. Second IF Amplifier Troubleshoot- plifier Troubleshooting in accordance ing (Receive). (Figures 5-2, 5-7, 5-134, with procedures in table 5-24. 5-143, and 5-144). Perform 2nd If Am-

Table 5-24. Second IF Amplifier Troubleshooting Poocedures (Receive)

FAULTY INDICATION	POSSIble Cause	ACTION-CORRECT AS REQUIRED
1.Unable to achieve $10 \mathrm{db}(\mathrm{S}+\mathrm{N} / \mathrm{N})$ ratio with 100 uv (max) signal (3.9 or 3.0 MHz ) injected at red test point J402	1. Faulty test setup   2. Faulty 3rd IF Amplifier   3.Faulty 2nd IF Amplifier   4. Faulty 500 kHz filter FL901 or cables W5 and W502	1.Recheck test equipment and setup   2.Check 3rd IF Amplifier (para 5-67)   3. Check 2nd IF Amplifier (Transmit) (para 5-31)   4.Replace filter (fig 5-2, 5-7, 5-8)
2.Abnormal frequency indication at yellow test point J406 (see table 5-23)	1. Faulty crystals   2. Faulty relay K401   3. Faulty relay K 402   (AN/URC-9A only)	1.Refer to crystal replacement (para 5-126)   2.Replace relay (fig 5-143, 5-144)   3.Replace relay (fig 5-144)

5-73. FIRST IF AMPLIFIER ALIGNMENT, ADJUSTMENT, AND TROUBLESHOOTING (RECEIVE). The lst IF Amplifier does not require any mechanical checks or adjustments.

5-74. First IF Amplifier Electrical Check (Receive). Set up RT-581 as in paragraph 5-25. Refer to figures 5-14, $5-15,5-41,5-65$, and 5-142 for the physical and electrical location of test points. Use Electronic Voltmeter AN/ USM-143, RF Signal Generator AN/USM-44, Electronic Frequency Counter AN/USM-207, and 600 ohm 5 watt resistor during the procedures that follow. Refer to paragraph 5-76 in case of abnormal indication.

NOTE
This check does not include coil assemblies Z301 and Z302. Z301 and Z302 are covered in lst IF Amplifier alignment (receive) in paragraph 5-75.

NOTE
The 1st IF Amplifier checks and alignments in paragraphs 5-37 through 5-41 must be made prior to making this receive function check.

NOTE
The 2nd IF Amplifier and 3rd IF Amplifier and Audio Amplifier and Modulator must be operating satisfactorily before making this check.
a. Position RT-581 right side up (fig 5-14).
b. Connect 600 ohm resistor across terminals A and B of AUDIO connector J704 (fig 5-65).
c. Set SQUELCH control to OFF; VOLUME control to position 5 (fig 5-65); and R819 (fig 5-15) fully counterclockwise.
d. Set AN/USM-143 to +10 db range and connect across 600 ohm resistor.
e. Set AN/USM-44 to 29.9 MHz (check frequency with AN/USM-207) unmodulated output and connect to brown test point J301 (fig 5-41).
f. Adjust R819 for a zero db noise level reference setting ( -10 db indication on AN/USM-143).
g. Set AN/USM-44 for $30 \%$ modulation at 1000 Hz and adjust output until a 10 db increase over the noise level reference setting of step $f$ is obtained. This is a $10 \mathrm{db} \mathrm{S}+\mathrm{N} / \mathrm{N}$ ratio.
h. Output voltage of AN/USM-44 should not exceed 16 uv.
i. Repeat steps c through h using 20.0 MHz frequency as in step $e$, and UNITS and TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switches (S707, S708,) set to 0.0 (or 0.00 ).
j. Remove test equipment.

## 5-75. First IF Amplifier Electrical

 Alignment (Receive). Set up RT-581 as in paragraph 5-25. Refer to figures 513, 5-14, 5-41 through 5-45, 5-49, 5-142, and 5-145 for physical and electrical location of adjustments and test points. Use Electronic Multimeter AN/USM-116, RF Signal Generator AN/USM-44, Electronic Frequency Counter AN/USM-207, and Tuning Tool FSN 9Q5120-720-1908 during the following procedures:
## NOTE

The 1st IF Amplifier checks and alignment in paragraphs 5-37 through 5-41 must be made prior to making this alignment.

## NOTE

The 2nd IF Amplifier, 3rd IF Amplifier, FMO, and Audio Amplifier and Modulator must beoperating satisfactorily before making this alignment.
a. Position RT-581 right side up (fig 5-14).
b. Set AN/USM-44 to 399.9 MHz (check frequency with AN/USM-207) modulated $30 \%$ at 1000 Hz and connect to green test point J105.
c. Set AN/USM-116 for DC voltage, 3V range; connect dc probe to yellow test point J504 on 3rd IF Amplifier (fig 549).
d. Adjust output of AN/USM-44 for an indication of $\mathbf{- 2} \mathrm{vdc}$ on $\mathrm{AN} / \mathrm{S} M-116$.
e. Adjust C302 for maximum indication on AN/USM-116.
f. Set MANUAL FREQUENCY UNITS and TENTHS (or TENTHS-HUNDREDTHS on AN/URC9A) switches (S707, S708) to 0.0 (or 0.00).
g. Set AN/USM-44 to 390.0 MHz (check frequency with AN/USM-207) modulated $30 \%$ at 1000 Hz . Adjust output for an indication of -2 vdc on AN/USM-116.
h. Adjust L301 for maximum indication on AN/USM-116.
i. Repeat procedure in steps b through $h$ until no further improvement is noted.

## j. Remove test equipment.

5-76. First IF Amplifier Troubleshooting (Receive). (Figures 5-2, 5-6, 5-134, and 5-142). Perform 1st IF Amplifier troubleshooting in accordance with procedures in table 5-25.

NOTE
Check transmit function of lst IF Amplifier according to procedure given in paragraphs 5-37 through 5-41 before using procedures in Table 5-25. Refer to paragraph 5-44 for transmit troubleshooting procedures.

5-77. FREQUENCY MULTIPLIER-OSCILLATOR (FMO) ALIGNMENT AND ADJUSTMENT (RECEIVE). The FMO is checked and aligned in paragraphs 5-45 through 5-49. No further checks or adjustments are required.

5-78. RF AND PA CHECK AND TROUBLESHOOTING (RECEIVE). The RF and PA does not require any mechanical checks or adjustments.

Table 5-25. First IF Amplifier Troubleshooting Procedures (Receive)

FAULTY INDICATION	POSSIBLE CAUSE	ACTION-CORRECT AS REQUIRED
1.Unable to achieve $10 \mathrm{db} \mathrm{S}+\mathrm{N} / \mathrm{N}$ ratio with 16 uv (max) signal injected at brown test point J301	1. Faulty test setup	1.Recheck test equipment, connectors and setup
	2. Faulty 3rd IF or 2nd IF Amplifiers	2. Check 3 rd and 2 nd IF Amplifiers (Check 2nd IF Amplifier in transmit)
	3. Faulty relay contact K102	$\begin{aligned} & \text { 3. Repair/replace K102 } \\ & \text { (fig 5-142) } \end{aligned}$
	4. Faulty adjustment of Z301 and Z302	4.Recheck alignment of 2301 and Z 302
	5. Faulty cable W303 and connectors	5. Repair/replace cable and connectors (fig 5-2, 5-6)
	$\begin{aligned} & \text { 6. Faulty tubes V103 } \\ & \text { or V104 } \end{aligned}$	6.Replace tubes

Table 5-25. First IF Amplifier Troubleshooting Procedures (Receive) (Continued)

FAULTY INDICATION	POSSIBLE CAUSE	ACTION-CORRECT AS REQUIRED
	7.Faulty FMO output	7.Refer to para 5-45
2. Unable to adjust   C302 or L301	Faulty Z301	Replace 1st IF Amplifier

5-79. RF and PA Electrical Check (Receive). Set up RT-581 as in paragraph 5-25. Refer to figures 5-15, 5-16, 565 , and 5-146 for physical and electrical location of test points. Use Electronic Voltmeter AN/USM-143, Electronic Frequency Counter AN/USM-207, RF Signal Generator AN/USM-44, 6 db attenuator, and 600 ohm 5 watt resistor during the procedures that follow. Refer to paragraph 5-80 in case of abnormal indications.

NOTE
The RF and PA checks and alignment in paragraphs 5-53 through $5-56$ must be made prior to making this receive function check.

NOTE
The 1st IF Amplifier, 2nd IF Amplifier, 3rd IF Ampiifier, FMO, and Audio Amplifier and Modulator must be operating satisfactorily before making this check.

CAUTION
Do not key to transmit.
a. Position RT-581 top side up (fig 5-16).
b. Connect 600 ohm resistor across pins A and B of AUDIO connector J704 (fig 5-65).
c. Set SQUELCH control to OFF: VOLUME control to position 5 (fig 5-65); and R819 (fig 5-15) fully counterclockwise.
d. Set $A N / U S M-143$ to $+10 d b$ range and connect across 600 ohm resistor.
e. Set AN/USM-44 for 399.9 MHz (check frequency with AN/USM-207) unmodulated output and connect to ANT connector $J 701$ (fig 5-65) through the 6 db attenuator.
f. Adjust R819 (fig 5-15 and 5-146) for a zero db noise level reference setting ( -10 db indication on AN/USM-143).
g. Set AN/USM-44 for $30 \%$ modulation at 1000 Hz and adjust output until a 10 db increase over the noise level reference setting of step $f$ is obtained. This is a $10 \mathrm{db} 5+\mathrm{N} / \mathrm{N}$ ratio.
h. Output voltage of AN/USM-44 should not exceed 6 uv .
i. Set AN/USM-143 to +40db range.
j. Adjust AN/USM-44 for 6 uv output, $30 \%$ modulation at 1000 Hz .
k. Adjust R 819 for -7 db indication on AN/USM-143.

1. Remove test equipment.

NOTE
This check is also an overall receiver sensitivity check. For a complete check of the receive signal path, connect the AN/USM44( ) to the ANT connector (J502 on the $\mathrm{AM}-1565$ ).

5-80. RF and PA Troubleshooting (Receive). (Figures 5-2, 5-4, 5-134, and 5-140). Perform RF and PA troubleshooting in accordance with procedures in table 5-26.

FAULTY INDICATION	POSSIBLE CAUSE	ACTION-CORRECT AS REQUIRED
Check RF and PA according to paragraphs 5-53 through 5-56 before using this procedure. Refer to paragraph 5-57 for transmit troubleshooting procedures.		
```Greater than 6 micro- volts necessary to achieve 10db (S+N/N ratio)```	1. Faulty relay contacts K101 and K102   2.Faulty tubes V102 V103 and V104   3.Faulty components	1. Continuity check (fig 5-140); replace if necessary   2.Check tubes one at a time   3. Refer to para 5-57; check cables and connectors; and directional coupler between J701 and K101 (fig 5-2)

5-81. SQUELCH LEVEL CHECK, ALIGNMENT, AND TROUBLESHOOTING (RECEIVE). There are no mechanical squelch level checks and alignments.

5-82. Carrier Squelch Level Check (Receive). Set up RT-581 as in paragraph 5-25. Use RF Signal Generator AN/USM44() and a 6 db attenuator during the following procedures:

Do not key $\frac{\text { CAUTION }}{\text { transmitter }}$
a. Connect AN/USM-44 () through 6 db attenuator to ANT connector J701 (fig 5-65).
b. Set METER switch (S701) to S METER position; MODE switch (S702) to RETRANS; and SQUELCH control (R702) to OFF.
c. With no signal input, operate MANUAL FREQUENCY TENS switch (S706) through its range; set to position with highest S METER indication. Repeat with UNITS switch (S707); then with TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switch (S708).
d. Set AN/USM-44 () to frequency indicated on MANUAL FREQUENCY TENS, UNITS, and TENTHS (or TENTHS-HUNDREDTHS on

AN/URC-9A) switches, and adjust output to $90 \mathrm{uv}, 30 \%$ modulated at 1000 Hz . Adjust AN/USM-44() frequency slightly for maximum S METER reading.
e. Set SQUELCH control (R702) fully clockwise and observe that CALL LIGHT is off.
f. Increase AN/USM-44() output and observe that CALL LIGHT comes on at 100 uv.

5-83. Carrier Squelch Level Electrical Alignment (Receive). Set up RT-581 as in paragraph 5-25. Refer to figures 516, 5-65, 5-150, and 5-151 for physical and electrical location of adjustments and test points. Use RF Signal Generator AN/USM-44 () and a 6 db attenuatior during the procedures that follow. Refer to paragraph 5-86 in case of abnormal indications.

CAUTION
 Do not key transmitter.

a. Connect AN/USM-44() through 6 db attenuator to ANT connector J701 (fig 5-65).
b. Set METER switch (S701) to S METER position; MODE switch (S702)) to RETRANS,
and SQUELCH control R702 to the OFF position.
c. With no signal input, operate MANUAL FREQUENCY TENS switch (S706) through its range and set to position with highest S METER reading. Repeat with UNITS switch (S707); then with TENTHS (or TENTHS-HUNDREDTHS on AN/URC-9A) switch (S708) .
d. Set AN/USM-44 () to frequency indicated on MANUAL FREQUENCY TENS, UNITS, and TENTHS (or TENTHS-HUNDREDTHS on AN/ URC-9A) switches, and adjust output to 100 uv, modulated 30% ot 1000 Hz . Adjust AN/USM-44() frequency slightly for maximum S METER reading.
e. Set SQUELCH control (R702) fully clockwise.
f. Set R716 (fig 5-16, 5-150 and 5151) counterclockwise until CALL LIGHT comes on.
g. Reduce AN/USM-44() output, and check that CALL LIGHT goes out. Slowly increase AN/USM-44 () output and check that CALL LIGHT comes on at 100 uv .

5-84. Signal-Plus-Noise To Noise (S+N/ N) Squelch Check (Receive). Set up RT581 as in paragraph 5-25. Refer to figure 5-65. Use RF Signal Generator AN/ USM-44 (), Electronic Voltmeter AN/USM143, a 600 ohm 5 watt resistor, and a 6 db attenuator during the following procedures:

NOTE
Factory-wired equipment has $\mathrm{S}+\mathrm{N} / \mathrm{N}$ squelch set up on NOR position of MODE switch S702; equipment in the field may have been changed for carrier squelch operation.

CAUTION
Do not key transmitter.
a. Connect AN/USM-44 () through 6 db attenuator to ANT connector.J701.
b. Connect 600 ohm 5 watt resistor to AUDIO Connector J704 pins A and B.
c. Set AN/USM-143 to ac range; connect probe across the 600 ohm resistor.
d. Set AN/USM-44 () to 399.9 MHz (or 399.95 MHz), modulated 30% at 1000 Hz ; adjust output of AN/USM-44 () for an indication on S METER,
e. Fine tune AN/USM-44() frequency for maximum indication on S METER,
f. Decrease AN/USM-44() output to zero.
g. Set VOLUME control fully clockwise and set SQUELCH control to OFF.
h. Increase AN/USM-44() output from zero microvolts for an indication on AN/ USM-143.
i. Continue increasing AN/USM-44 () output while alternately switching MOD SELECTOR switch from 1000 Hz to CW until the ratio of audio output with modulation to the audio output without modulation is 10db. Observe AN/USM-44() output level required to produce the $10 \mathrm{db} \mathrm{S}+\mathrm{N} / \mathrm{N}$ ratio.
j. Rotate squelch control clockwise until SQUELCH DISABLE switch (S703) clicks.
k. Reduce AN/USM-44 () output until CALL LIGHT goes off. Slowly increase AN/USM-44 () output to level observed in step i; CALL LIGHT should come on at this point. There should be $10 \mathrm{db} 5+\mathrm{N} / \mathrm{N}$ ratio between level when the CALL LIGHT goes off and the level when the CALL LIGHT comes one.

5-85. Signal-Plus-Noise To Noise $S+N / N$ N) Squelch Electrical Alignment (Receive). Set up RT-581 as in paragraph 5-25. Refer to figures 5-15, 5-65, and 5-146 for physical and electrical location of adjustments and test points. Use RF Signal Generator AN/USM-44 (), Electronic Voltmeter AN/USM-143, 600 ohm

5 watt resistor, and a 6 db attenuator during the following procedures:

NOTE
Factory-wired equipment has $\mathrm{S}+\mathrm{N} / \mathrm{N}$ squelch set up on NOR position of MODE switch S702; equipment in the field may have been changed for carrier squelch operation.

Do not key $\frac{\text { CAUTION }}{\text { transmitter. }}$
a. Connect AN/USM-44 () through 6 db attenuator to ANT connector J701.
b. Connect 600 ohm 5 watt resistor to AUDIO connector J704 terminals A and B.
c. Set AN/USM-143 to ac range; connect probe across the 600 ohm resistor.
d. Set AN/USM-44 () to 399.9 MHz , modulated 30% at 1000 Hz , adjust output of AN/USM-44 () for an indication on S METER.
e. Fine tune AN/USM-44() frequency for maximum indication on S METER.
f. Decrease AN/USM-44() output to zero.
g. Set VOLUME control fully clockwise and set SQUELCH control to OFF.
h. Increase AN/USM-44() output from zero microvolts for an indication on AN/ USM-143.
i. Continue increasing AN/USM-44() output while alternately switching MOD SELECTOR switch from 1000 Hz to CW until the ratio of the audio output with modulation to the audio output without modulation of 10 db . Observe AN/USM-44() output level required to produce the 10 db $\mathrm{S}+\mathrm{N} / \mathrm{N}$ ratio.
j. Decrease AN/USM-44() output to zero.
k. Rotate R804 (fig 5-15 and 5-146) fully counterclockwise.

1. Rotate SQUELCH control (R702, fig 5-65) clockwise until SQUELCH DISABLE switch (S708) clicks.
m. Set AN/USM-44 () to output level observed in step i.
n. Rotate R804 slowly clockwise until CALL LIGHT comes on.
o. Rotate AN/USM-44() output and check that CALL LIGHT goes out. Slowly increase AN/USM-44() output and check that CALL LIGHT comes on at output level observed in step i.
p. Adjust R804, while alternately, switching AN/USM-44() MODE SELECTOR Switch from 1000 Hz to CW until the ratio of the audio output with modulation to the audio output without modulation is 10 db .

5-86. Squelch Level Troubleshooting (Receive). (Figures 5-2, 5-10, 5-134 and 5-146). Perform squelch level troubleshooting in accordance with procedures in table 5-27.

| Table 5-27. Squelch Level Troubleshooting Procedures (Receive) | | |
| :---: | :---: | :---: | :---: | :---: |
| FAULTY INDICATION | POSSIBLE CAUSE | ACTION-CORRECT AS REQUIRED |
| Abnormal carrier
 3quelch | 1.Faulty tube V801 | 1.Replace V801 |

Table 5-27. Squelch Level Troubleshooting Procedures (Receive) (Continued)

FAULTY INDICATION	POSSIBLE CAUSE	ACTION-CORRECT AS REQUIRED
	2.Faulty components	2.Check squelch controls R702 and R716; check cables and squelch relay K801 (fig 5-146)
$2 . A b n o r m a 1 \frac{S+N}{N}$	Faulty component on s+N circuit board	Make circuit checks (fig 5-2, 5-10, 5-134)

5-87. R/T CENTRIFUGAL FAN STROBE CHECK AND TROUBLESHOOTING. The following procedure is performed on R / T centrifugal fans that are not equipped with electronic speed increaser assemblies.

5-88. R/T Centrifugal Fan Strobe Check. Refer to figure 5-15 for physical location of the centrifugal fan. Use Strobotac CAG-1531A, FSN 226680-799-7616 or FSN 2Z6680-880-1844 during the following procedures:
a. Remove RT-581 from case as in paragraph 5-121.
b. Place RT-581 with rear facing forward (fig 5-17).
c. Attach a small piece of masking tape to one of the squirrel cage fan blades (01004, fig 5-61).
d. Turn on Strobotac and set controls to measure approximately 8000 rpm .
e. Energize RT-581.
f. Strobe the fan; rpm should be 7000 or more. If speed is less than 7000 rpm , perform lubrication of centrifugal fan (paragraph 5-157).

NOTE

Motor speed should be 2900 to 3200 rpm at 115 vac 60 Hz input. Four-bladed fan on motor end may be strobed to determine this speed.
g. Remove masking tape from fan blade.

5-89. R/T Centrifugal Fan Troubleshooting. (Figures 5-57 through 5-61). Perform Centrifugal Fan troubleshooting in a accordance with procedures in table 5-28.

Table 5-28. R/T Centrifugal Fan Troubleshooting Procedures

FAULTY INDICATION	POSSIBLE CAUSE	ACTION-CORRECT AS REQUIRED
Fan speed less than 7000 rpm	1.Lubrication required	1.Lubricate according to para 5-157
	2. Fau1ty speed increaser	2a. If replaceable type (small bronze coupler), replace speed increaser FSN IN3020-201-6906
		2 b . If non-replaceable type (large phenolic coupler), replace entire blower assembly

5-90. RADIO SET CONTROL C-3866/SRC ADJUSTMENT AND TROUBLESHOOTING PROCEDURES.

NOTE
Mechanical adjustment should only be made after troubleshooting procedures indicate a need.

5-91. ADJUSTMENT OF PROGRAMMING RELAYS. The telephone-type programming relays, K201 through K205 and K209 (figures 5119 and 5-121), may occasionally require adjustment and cleaning. Cleaning should be done with a standard burnishing tool. A small piece of bond paper may be substituted if no burnishing tool is available. In no instance should any file, sandpaper, or steel wool be used to clean relay contacts. If contacts require cleaning, place the contact burnisher between the contacts to be cleaned and pull it back and forth about four times. Normally closed contacts should be cleaned while under normal pressure. Adjust the relay contacts, if necessary, using relay adjustment pliers (or a pair of small needle-nose or chain-nose pliers). When the armature is operated by hand, there must be perceptible follow of the breaking contacts and perceptible deflection of the making contacts. The contact gaps must not be less than 0.010 inch.

5-92. ADJUSTMENT OF STEPPING RELAY K206. The stepping relay (figures $5-125$ through 5-127) normally requires adjustment only after each 500,000 dialing operations. Because correct lubricant is important to continued reliable operation, lubrication instructions are included in paragraph 5-188. Lubrication should be performed after each estimated 100,000 operations, even if no mechanical adjustment is required.

5-93. Stepping Mechanism Adjustment. Adjust the stepping mechanism as follows:
a. Eliminate excessive forward play of the wiper tips by advancing the pawl
stop toward the pawl until both touch (figures 5-125 and 5-126). Tighten the pawl screw carefully to avoid changing the adjustment.

NOTE
The pawl stop is located to the right of the ratchet and paw1.
b. Eliminate excessive reverse play of the wiper tips by moving the detent spring toward the ratchet, but not so far as to prevent its dropping freely into each ratchet tooth during manual stepping. Center the detent spring on the ratchet to ensure even wear.
c. Check to see that the armature arm rests against the armature backstop by inserting a 0.0015 inch feeler gauge between the armature arm and the backstop; the gauge should drag during removal. If the gauge does not drag, loosen the back stop screw and the nearest coil frame adjusting screw. Lift the backstop and backstop support against the armature, but not to the extent of lifting the pawl from its stop. After tightening the two screw, recheck for gauge drag and for positive action of the detent spring during manual stepping of the switch. An ideal adjustment is to have the armature arm and pawl strike their stops simultaneously.

5二94. Off-Normal Contacts. Inspect the off-normal contact (figure 5-126) for proper operation by performing the following steps:
a. Manually step the relay; on either side of the home position there should be clearance between the cam contact and the cam.
b. Manually step the relay slowly through both home positions. Check that the moving contact leaves the normally. closed contact and then touches the normally open contact, causing the latter to be visibly deflected. The contacts must be separated by 0.008 inch minimum when open.
c. Make necessary adjustments by bending the fixed contacts at a point near the insulator stacks. Make adjustments a little at a time. It is better to adjust contacts by several small bends in the right direction than to overshoot and be forced to reverse-bend the contacts.

5-95. Interrupter and Auxiliary Contacts. Adjust the interrupter and auxiliary contacts as follows:
a. Operate the relay several times and check for smooth, fast, resetting of these contacts (figure 5-125). The normally closed contacts are used for self-interrupted resetting of the relay. If necessary, adjust the contacts before performing steps c, d, and e.
b. Manually close the armature against the heel-piece (figure 5-126) to insure
that the armature contact deflects the normally open contact. If necessary, adjust the contacts by performing steps c, d, and e.
c. Bend the normally open contact toward the armature contact to restore its deflection.
d. Bend the normally closed contact slightly to restore smooth, fast resetting.
e. Do not decrease the normally open clearance to less than 0.008 inch, nor the normally closed gap to less than 0.006 inch.

5-96. RADIO SET CONTROL C-3866/SRC TROUBLESHOOTING. (Figures 3-18, 5-157, and 5-158.) Troubleshoot the Radio Set Control C-3866/SRC in accordance with procedures in table 5-29.

FAULTY INDICATION	POSSIBLE CAUSE	ACTION-CORRECT AS REQUIRED
1. Stepping Relay K206 fails to operate properly: a. When dial moved to finger stop b. When dial released from finger stop	a. (1) Fuse (2) -28-vdc supply (3) Faulty dial (4) Faulty relays K201, K203, K204 or K206 b. (1) Faulty dial (2) Faulty relays K201, K202, K203, K204, or K206	a. (1) Check 28V fuse F201 on front panel (2) Check voltage supply (fig 5-157) (3) Check for -28 vdc at K201 (fig 3-18) (4) Check relays, coils and contacts (fig 3-18) b. (1) Check dial (2) Check relays, coils and contacts (fig 3-18)

Table 5-29. Radio Set Control C-3866/SRC Troubleshooting Procedures (Continued)

FAULTY INDICATION	POSSIBLE CAUSE	ACTION-CORRECT AS REQUIRED
c. When channel above 10 dialed (proper operation observed for channel below 10)	c. Faulty lockout relay K209 and K206 deck 13	c. Check relay K209
2.Abnormal remote channel indication	Faulty reset indication relay K205	Check relay K205
3. Abnormal channe1 sequence observed; above procedure indicates all relays operational	1. Faulty relay contact alignment 2. Dirty contacts	$1 \& 2$. See para 5-91 and 5-92

5-97. RADIO FREQUENCY AMPLIFIER AM-1565/ URC ALIGNMENT, ADJUSTMENT, and TROUBLESHOOTING PROCEDURES.

NOTE
Allow 15 minutes warm-up before making the following checks and adjustments.

5-98. POWER AMPLIFIER BIAS VOLTAGE CHECK, ADJUSTMENT, AND TROUBLESHOOTING. Perform the following check and adjustment; perform troubleshooting as required.

5-99. Power Amplifier Bias Voltage Check. No tools or test equipments are required to perform the following procedure:
a. Set power switch S1503 on Power Supply PP-2702/URC-9 to OFF (fig 5-82).
b. On AM-1565 set POWER-OFF switch S501 to POWER and RF POWER OUTPUT switch S508 to HIGH.
c. Set LOCAL-REMOTE switch S505 to LOCAL.
d. Set TEST KEY S506 to LOCK-ON.
e. Set METER switch S 502 to $\mathrm{PAI}_{\mathrm{b}} 1$; note indication of 65 milliamperes.
f. Set METER switch S 502 to $\mathrm{PAI}_{\mathrm{b}} 2$; note indication of 65 milli amperes.
g. Set TEST KEY switch S506 to OFF.
h. Perform autopositioner electromechanical check if bias voltage check is satisfactory.

5-100. Power Amplifier Bias Voltage Adjustment. The bias voltage adjustments are made whenever the power amplifier tubes are changed. Refer to paragraph 5-101 in case of difficulty.
a. Set POWER switch S1503 on Power Supp1y PP-2702/URC-9 to OFF.
b. On AM-1565 set POWER-OFF switch S501 to OFF.
c. Remove as in paragraph 5-192.

CAUTION
Do not pull switch S 303 with POWER-OFF switch S501 set to POWER.
d. Pull out interlock override switch S303 on rear of assembly (fig 5-89).
e. Set POWER-OFF switch S501 to POWER, wait 60 second for time delay relay K 302 to operate.

NOTE
When switch S303 is on, CAUTION indicator DS506 will light when POWER-OFF switch S501 is set to POWER.
f. Set METER switch S502 to PAI 1 and TEST KEY switch S506 to LOCK ON.

NOTE
Refer to fig 5-93 for location of R304 and R303.
g. Adjust power amplifier V201 biasadjust control R304 until front panel meter indicates 65 milliamperes.
h. Set METER switch $S 502$ to $\mathrm{PAI}_{\mathrm{b}} 2$ position.
i. Adjust power amplifier V202 biasadjust control R303 until front panel meter indicates 65 milliamperes.
j. Set TEST KEY switch S506 to OFF, and POWER-OFF switch S501 to OFF.
k. Replace as in paragraph 5-193.

5-101. Power Amp1ifier Troubleshooting. (Figure 5-135.) Troubleshoot the Power Amplifier in accordance with procedures in table 5-30.

FAULTY INDICATION	POSSIBLE CAUSE	ACTION-CORRECT AS REQUIRED
Abnormal indication on METER for $\mathrm{PAI}_{b} 1$ (V201) or $\mathrm{PAI}_{\mathrm{b}} 2$ (V202) (32 on black scale normal) Keyed	1. Faulty tube V201 or V202 2. Faulty voltage supp1y 3.If unable to adjust, faulty R303 and R304 4. Faulty relays, K301, K302, K303, and K304	1.Replace tubes one at a time 2. Check voltage: +1800 vdc , $+300 \mathrm{vdc},-60 \mathrm{vdc}$ (fig 5-135) 3. Check R303 and R304 4. Check relays and voltage distribution (fig 5-135)

5-102. AUTOPOSITIONER CHECK, ALIGNMENT, AND TROUBLESHOOTING. Perform the following check and adjustment; perform troubleshooting as required.

5-103. Autopositioner Electro-Mechanical Check. In addition to the autopositioner check, this procedure also checks the operation of the Servo Amplifier. Refer to Servo Amplifier alignment, paragraph 5-106, if frequency dials do not respond properly. Perform the following:
a. Set front panel controls as follows (fig 5-91 and 5-92): LOCAL-REMOTE switch S505 to LOCAL: CHAN SEL switch S504 to M, POWER-OFF switch S501 to POWER.
b. Observe that M appears in CHANNEL window.
c. Rotate MANUAL TUNING CONTROL (R506) fully clockwise and observe that indication on FREQ-MC dial indicates greater than 400.
d. Rotate MANUAL TUNING CONTROL fully counterclockwise and observe indication on FREQ-MC dial indicates less than 225.
e. Set CHAN SEL switch (S504) to 1 ; observe that 1 appears in CHANNEL window.
f. Lift cover to expose PRESET TUNING CHANNEL POTENTIOMETERS R507 through R525 (fig 5-92).
g. Loosen locking nut on CHANNEL 1 PRESET TUNING POTENTIOMETER R525.
h. Note the exact indication on LOG dial. Rotate PRESET TUNING CHANNEL 1 POTENTIOMETER R525 1/2 turn counterclockwise and note that indication on FREQ-MC dial and LOG dials change. Rotate PRESET TUNING CHANNEL 1 POTENTIOMETER clockwise until the LOG dial is returned to the exact position as noted above. Tighten the locking nut.
i. Perform steps e, g, and h for each of the positions 2 through 19 on CHAN SEL switch (S504).
j. Go to automatic drive control regulator circuit check if auto positioner electro-mechanical check is satisfactory.

5-104. Autopositioner Electro-Mechanical Alignment. No test equipment is required during the following procedures:
a. Set CHAN SEL switch S 504 to 5 .
b. Set LOCAL-REMOTE switch 5505 to LOCAL.
c. Secure power to AN/SRC-20().
d. Remove according to procedures in paragraph 5-198.
e. Loosen four set screws 36 and 73, (fig 5-99) and position 5503 as shown in fig 5-97.
f. Tighten the four set screws.
g. Check relay K501; (fig 5-96, and 5-98). Ensure that only contacts 1 and 2 A and contacts 4 and 5 A are closed when the paw1 is fully engaged.
h. Check relay K50l; ensure that contacts $2 B$ and 3 and contacts $5 B$ and 6 make and break exactly together (fig 596 and 5-98).
i. Observe the following: as the pawl approaches the stop wheel, contacts $2 B$ and 3 of relay K 501 should stay closed until the pawl is positively engaged in a stop-wheel notch.
j. If steps g, h, and i do not check out, proceed with steps $\mathrm{k}, 1, \mathrm{~m}$, and n .
k. On relay K501, adjust contacts 1 , 3,4 and 6 only.

1. When relay K 501 is energized, contacts 1 and 2 A and contacts 4 and 5 A must have a minimum gap of 0.020 inch (fig 5-98). When relay is deenergized, contacts 1 and 4 should have moved a minimum of 0.015 inch.
m . When relay K 501 is deenergized the pawl tip is fully seated in a stopwheel notch, contracts 2 and 3 should have a minimum gap of 0.020 inch (fig 5-98).
n. When relay K 501 is deenergized contacts $5 B$ and 6 must have a minimum gap of 0.020 inch. When relay is energized, contact 6 should have moved a minimum of 0.015 inch.
o. Replace according to procedure in paragraph 5-202.

5-105. Autopositioner Troubleshooting. (Figures 3-21 and 5-135.) Troubleshoot the Autopositioner in accordance with procedures in table 5-31.

Table 5-31. Autopositioner Troubleshooting Procedures

FAULTY INDICATION	POSSIBLE CAUSE	ACTION-CORRECT AS REQUIRED
Failure to channe1 properly	1.Faulty supply voltage	1. Check -27.5vdc supply (fig 5-135)

Table 5-31. Autopositioner Troubleshooting Procedures (Continued)

FAULTY INDICATION	POSSIBLE CAUSE	ACTION-CORRECT AS REQUIRED
	2.Faulty Circuit	
components (S201,	2.Check circuit components (fig 3-21) S504, S505, L209, K501, B501, wiring etc.)	
	3.Output loading	
screw position	3. Check adjustment of output	
	(binding, too	loading screws
	far in)	

5-106. Servo Amplifier Electrical Alignment. The Servo Amplifier subassembly is factory adjusted for $60-\mathrm{Hz}$ power operation and normally requires no adjusting. If components are replaced or the equipment is used on $50-\mathrm{Hz}$ power, the following adjustments must be made:
a. Set power switch S1503 on Power Supply PP-2702/URC-9 to OFF (fig 5-82).
b. Remove according to procedure in paragraph 5-208.
c. Pull out safety interlock override switch S 303 on rear of assembly (fig 5-89).
d. Loosen locknuts, and turn R405, R409, R410, and R411 fully counterclockwise (fig 5-93 and 5-156).
e. On AM-1565, set LOCAL-REMOTE switch S505 to LOCAL and POWER-OFF switch S501 to POWER.
f. Set CHAN SEL switch S504 to CHANNEL 2; note exact indication of FREQ-MC and LOG dials.
g. Set CHAN SEL switch to CHANNEL 2; note exact indication of FREQ-MC and LOG dials.
h. Set CHANNEL 1 POTENTIOMETER R525 approximately three-fourths toward fully counterclockwise and CHANNEL 2 POTENTIOMETER R524 approximately three-fourths toward fully clockwise.
i. Turn CHAN SEL switch S504 to channel 1.
j. Adjust AMP GAIN potentiometer R410 clockwise until servo drives to new position and oscillates at this position as indicated by movement of FREQ-MC dial.

NOTE
If servo does not oscillate, increase setting of R410 slightly, turn CHAN SEL switch to other channel (1 or 2) and repeat step k.
k. Set AMP GAIN potentiometer R410 for point of maximum oscillation (widest dial movement), then tighten locknut.

1. Adjust DAMP GAIN potentiometer R409 until oscillations cover 2 divisions of FREQ-MC dial, then tighten locknut.
m. Adjust AMP PHASE potentiometer R405 for fastest oscillations of FREQ-MC dial, then tighten locknut.
n. Adjust DAMP PHASE potentiometer R411 until oscillations of FREQ-MC dial stop.
o. Turn CHAN SEL switch (S504) to other channel (1 or 2) and readjust R4ll slightly until there are approximately 2 oscillations before stopping. Repeat this step as necessary, then tighten locknut on R411.
p. Upon completion of adjustment, set R525 and R524 to obtain same indications
on FREQ-MC and LOG dial noted in steps f and g.
q. Replace assembly per paragraph 5210.
r. Proceed to autopositioner subassembly electromechanical check (para-
graph 5-103) when servo alignment is satisfactory.

5-107. Servo Amplifier Troubleshooting. (Figures 5-131, 5-153, 5-154, 5-156, and 3-21.) Troubleshoot the Servo Amplifier in accordance with procedures in table 5-32.

FAULTY INDICATION	POSSIble Cause	ACTION-CORRECT AS REQUIRED
1.FREQ-MC dial fails to respond to selected PRESET TUNING CHANNEL POTENTIOMETERS R506 to R525 (fig 5-92)	1. No error voltage at TP-401 when adjusting potentiometer: a. Faulty S503 (F\&G) b. Faulty potentiometer c. Faulty supply voltage d.Faulty follow-up potentiometer 2. Error voltage present at TP401 continuously (when not adjusting potentiometers): a. Faulty Servo Amplifier tubes (V401, V402, V403, V404) b. Faulty Servo Amplifier voltages 3. Error voltage (120150vac normal) present at TP-403 continuously (when not adjusting potentiometer) : a. Faulty MG-201 b.Faulty (binding) gear train	1. Perform the following as required; a. Check switch and wiring (fig 5-153 and 5-154) b. Check appropriate potentiometer c. Check 60vac supply (fig 5-131) d. Check follow-up potentiometer R203 (fig 3-21) 2. Perform the following as required: a. Check/replace tubes b. Check filament supply voltage; check circuits 3. Perform the following as required: a. Check MG-201 b. Refer to para 5-189

Table 5-32. Servo Amplifier Troubleshooting Procedures (Continued)

FAULTY INDICATION	POSSIBLE CAUSE	ACTION-CORRECT AS REQUIRED		
2.Adjustments of AMP GAIN	Faulty Servo Amplifier	Refer to troubleshooting		
DAMP GAIN, AMP PHASE				
and DAMP PHASE fail to				
achleve desired results			\quad	procedures outlined for
:---				
step 1				

5-108. AUTOMATIC DRIVE CONTROL REGULATOR CIRCUIT CHECK, ALIGNMENT, AND TROUBLESHOOTING. Perform the following check and adjustment; perform troubleshooting as required.

5-109. Automatic Drive Control Regulator Circuit Check. No test equipment is required during the following procedures.
a. Set up RT-581 as in paragraph 5-27 and 5-28.
b. On AM-1565 set LOCAL-REMOTE switch S505 to LOCAL; POWER-OFF switch 5501 to POWER.
c. Set CHANNEL SELECT switch S504 to M.
d. Set EXCITATION AUTO-MANUAL switch S507 to MANUAL.
e. Operate MANUAL tuning control (R506) for a frequency of 399.95 MHz (399.9 MHz on AN/URC-9) as observed on FREQ-MC dial. Set RF power output switch 5508 to HIGH.
f. Set TEST KEY switch (S506) to LOCK ON.
g. Set Meter M501 switch S502 to PWR adjust MANUAL TUNING R506 for maximum indication on M-501.
h. Set M501 switch S502 to ATTEN; observe indication ($0-40$ on black scale).
i. Set TEST KEY switch S506 to OFF.
j. Go to directional coupler DC201 electrical check if automatic drive control regulator circuit check is satisfactory.

5-110. Automatic Drive Control Regulator Circuit Electrical Alignment. Radio Frequency Wattmeter AN/URM-120 and Dummy Load DA-91/U are required during the following procedures:
a. Set up RT-581 as in paragraph 5-26 except as noted below.
b. On AM-1565; set TEST KEY switch S506 to OFF; POWER-OFF switch S501 to OFF.
c. Remove AM-1565 according to paragraph 5-192.
d. Connect ANT connector J701 on RT581() to RF input connection J501 on AM1565. Connect AN' connector J502 to AN/ URM-120 (25 watt scale) and the wattmeter to Dummy Load DA-91/U.
e. Key RT-581 to transmit; adjust Cl32 (fig 5-13) for 16 watts on AN/URM-120. Unkey and set AN/URM-120 to 250 Watt scale.
f. Pull out safety interlock override switch S303 on REAR of RF Amplifier chassis (fig 5-89).
g. Set POWER-OFF switch S501 to POWER; RF POWER OUTPUT switch (S508) to HIGH.
h. On AM-1565; set CHANNEL SELECT switch S504 to M; operate MANUAL TUNING control R506 for 399.95 MHz (or 399.9 MHz) in FREQ-MC window; set MANUAL-AUTO EXCITATION switch S507 to MANUAL; set LOCAL-REMOTE switch S505 to LOCAL; and METER switch 5502 to PWR OUT.
i. Loosen locknut on DIODE DELAY control R436 (fig 5-93). Remove 10 screws from red plate.
j. Remove OUTPUT LOADING screw cover 0528 (fig 5-88); turn screw maximum clockwise.
k. Set TEST KEY switch S506 to LOCK ON.

1. Adjust MANUAL TUNING contro1 R506 for maximum power output on AN/URM-120 and at the same time adjust LOW-HIGH EXCITATION control R527 to keep power output at 100 watts.
m. Adjust OUTPUT LOADING screw two turns counterclockwise.
n. Repeat steps 1 and m until power output starts to fall. Then readjust MANUAL TUNING control R506 and OUTPUT LOADING screw for maximum power on AN/ URM-120. Note output power. Set EXCITATION switch S 507 to AUTO.
o. Adjust DIODE DELAY control R436 maximum counterclockwise; set EXCITATION switch S507 to AUTO.
p. Set METER switch S502 to ATTEN; note indication; set TEST KEY switch S506 to OFF:
q. Remove five screws, and cover of C 207 (fig 5-102). Loosen locknut on C207.
r. Set TEST KEY switch S506 to LOCK ON. Use nonmetallic tool and adjust C207 maximum clockwise then counterclockwise for peak ATTEN indications. (Note indication on black scale.)
s. Set EXCITATION switch S507 to MANUAL: Adjust MANUAL TUNING control R506
for maximum power on AN/URM-120, (note ATTEN indication). Set EXCITATION switch S507 to AUTO.
t. Adjust C207 clockwise to decrease ATTEN indication.
u. Repeat steps s and t until ATTEN indication in MANUAL is 4% less than value noted in step r. Set TEST KEY switch S506 tc OFF. Tighten locknut on C207 and replace cover.

NOTE

Readjustment of C 207 may be necessary to compensate for effects of cover replacement.
v. Set EXCITATION switch S507 to AUTO. Set TEST KEY switch S506 to LOCK ON; adjust DIODE DELAY control R436 for 130 watts on AN/URM-120; tighten locknut on R436 and set TEST KEY switch S506 to OFF.
w. Set RF POWER OUTPUT switch S508 to LOW.
x. Key RT-581 to transmit; adjust C132 for maximum power output on AN/URM120. Unkey and replace RT-581() in its case.
y. Use AM-1.565 replacement procedures (paragraph 5-193).

5-111. Automatic Drive Control Regulator Troubleshooting. (Figures 3-8 and 5-135.) Troubleshoot the automatic drive control regulator in accordance with table 5-33.

Table 5-33. Automatic Drive Control Regulator Troubleshooting Procedures.

FAULTY INDICATION	POSSIBLE CAUSE	ACTION-CORRECT AS REQUIRED
1.Abnormal indication	1.Faulty drive control	1.Replace tubes one at a time
(0-40, black scale);	amplifier V405 or	
METER switch set to	V406 tubes	
ATTEN; EXCITATION	2.Faulty voltage regu-	2.Replace
switch S507 set to	lator V407	
MANUAL		

Table 5-33. Automatic Drive Control Regulator Troubleshooting Procedures. (Continued)

FAULTY INDICATION	POSSIBLE CAUSE	ACTION-CORRECT AS REQUIRED
	3. Faulty AT401 to ferrite attenuator 4. Faulty supply voltages 5. Faulty circuit components	3. Replace 4. Check supply voltages (+30 vdc , $-60 v d c, 30 v d c$ (fig 5-135) 5. Check circuits, (fig 3-8)
2.Abnormal indication (0-40, black scale); METER switch set to ATTEN; EXCITATION switch S507 set to AUTO	1. Faulty automatic drive control detector V203 2. Faulty or misaligned C207 or R436 3. Faulty circuit components	1. Replace tube 2. Adjust, replace as necessary 3. Check circuit, (fig 3-8)

5-112. DIRECTIONAL COUPLER DC-201 CHECK, ALIGNMENT, AND TROUBLESHOOTING. Perform the following check and alignment; perform troubleshooting as required.

5-113. Directional Coupler DC-201 Electrical Check. Radio Frequency Wattmeter AN/URM-120 is used during the following procedures:
a. Connect AN/URM-120 to ANT J-502 and terminate with Dummy Load DA-91/U.
b. Set AM-1565 LOCAL-REMOTE switch (S505) to LOCAL; CHAN SEL switch (S504) to M ; POWER-OFF switch (S501) to POWER; RF POWER OUTPUT HIGH-LOW SWITCH (S507) to HIGH; and operate MANUAL-TUNING CONTROL (R506) until 299.95 MHz (299.9 MHz on AN/URC-9) is indicated on FREQ-MC dial.
c. On RT-581 set CHAN SEL switch (S705) to MANUAL; operate MANUAL FREQUENCY SELECTOR switches (S706, S707 and S708) to $299.95 \mathrm{MHz}(299.9 \mathrm{MHz}$ on $\mathrm{AN} / \mathrm{URC} \pm$ 9).
d. On AM-1565 set METER switch (S502) to PWR; TEST KEY switch (S506) to LOCK ON ; adjust EXCITATION HIGH-LOW control
(R527) for a 100 watt indication on meter (M501).
e. Observe indication on AN/URM-120 (100 watts).
f. Set METER switch (S502) to SWR. Indication should be zero.
g. Operate TEST KEY switch (S506) to OFF.
h. AM-1565 checks complete when directional coupler electrical check satisfactory.

5-114. Directional Coupler DC-201 Electrical Alignment. Radio Frequency Wattmeter AN/URM-120 is used during the following procedures:
a. Set power switch (S1503) on Power Supply PP-2702/URC-9 to OFF.
b. Perform removal procedure in paragraph 5-192.
c. Connect AN/URM-120 wattmeter to ANT connector (J502) and terminate with Dummy Load DA-91/U.
d. Connect rf output (J701) of RT-581 () to RF INPUT (J501) of AM-1565.
e. Set power switch (S1503) on PP$2702 /$ URC-9 to on (up).
f. On RT-581 set CHAN SEL switch (S705) to MANUAL; operate MANUAL FREQUENCY switches (S706, S707 and S708) to 299.95 MHz (299.9 MHz on AN/URC-9).
g. On AM-1565 pull out safety interlock override switch (S303) (fig 5-89) and set front panel controls as follows:

LOCAL-REMOTE switch (S505) to LOCAL; CHAN SEL switch (S501) to M; POWER-OFF switch (S501) to POWER; RF POWER OUTPUT HIGH LOW switch (S508) to HIGH; EXCITATION switch (S507) to MANUAL; Operate MANUAL TUNING control (R506) until 299.95 MHz (299.9 MHz on AN/URC-9) is indicated on FREQ-MC dial; set METER switch (S502) to POWER OUT.
h. Set TEST KEY (S506) to LOCK ON and adjust EXCITATION HIGH-LOW control (R527) for 100 watt indication on AN/URM-120.
i. Adjust R531 (fig 5-94) until M501 indicates 100 watts.
j. Set TEST KEY (S506) to OFF.

NOTE

If unable to set M501 to 100 watts with R531, loosen the hex head (or Allen) screw holding J213 (brown) and crystal holder to $D C-201$ (fig 5-87). (This screw is located on top of DC201 directly in line with J 213
and P213; on some directional couplers the screw is covered by the name plate.) Slide crystal holder and J213 in or out as necessary to set M501 to 100 watts with R531 set at midrange.
k. Set METER switch (S502) to SWR and operate TEST KEY (S506) to LOCK ON.

1. Adfust R532 until M501 indication is zero.
m. Set TEST KEY (S506) to OFF.

NOTE
If unable to set M501 with R533, loosen the hex head (or Allen) screw holding J214 (yellow) and crystal holder to DC-201 (fig 5-87). (This screw is located on top of DC-201 directly in line with J214 and P214; on some directional couplers the screw is covered by the name plate.) Slide crystal holder in or out as necessary to set M501 to zero, with R532 set at midrange.

5-115. Directional Coupler DC-201 Troubleshooting. (Figures 3-13 and 5-155.) Troubleshoot the Directional Coupler DC-201 in accordance with table 5-34.

5-116. REPAIR PROCEDURES FOR RADIO SET AN/URC-9 () .

5-117. The following data is for removal, repair, and replacement of parts, assemblies, and units of Radio Set AN/ URC-9(). Deenergize equipment before removal.

Table 5-34. Directional Coupler Troubleshooting Procedures.

FAULTY INDICATION	POSSIBLE CAUSE	ACTION-CORRECT AS REQUIRED
1. Unable to achieve minimum of 100 watts power output by adjusting R531	1. Faulty R531 or faulty metering circuit 2. Faulty DC-201	1. Check R531; replace/repair as necessary, check metering circuit (fig 3-13) 2. Replace or align using procedure in para 5-114; check crystal diode and R204 (fig 5-155)

Table 5-34. Directional Coupler Troubleshooting Procedures (Continued)

FAULTY INDICATION	POSSIBLE CAUSE	ACTION-CORRECT AS REQUIRED
2.Unable to achieve a SWR indication of 10% or less of POWER OUT indication by adjusting R532	1. Faulty R532, or faulty metering circuit 2. Faulty dC-201	1. Check R532; repair/replace as necessary, check metering circuit (fig 3-13)
		2. Adjust/replace DC-201 (adjust using procedure in para 5114; check crystal diode and R205 (fig 5-155)
	3.Faulty dummy load	3. Change dummy load

5-118. POWER SUPPLY PP-2702. Power Supply PP-2702 is shipboard repairable. All parts are replaceable aboard ship.

5-119. Remova1. Remove power supply as follows:
a. Loosen four captive screws in the corners of the power supply (fig 5-82).
b. Turn extractor knob fully counterclockwise; reverse rotation for three turns, stop with knob slot horizontal, and push extractor down.
c. Pull the power supply from the case.

5-120. Replacement. Reverse the removal procedures.

```
5-121. RECEIVER-TRANSMITTER RT-581( )/
URC-9.
```

CAUTION
Before removal of assemblies, set CHAN SEL switch to MANUAL and set MANUAL FREQUENCY TENS, UNITS, and TENTHS-HUNDREDTHS (or TENTHS on AN/URC-9) switches to 399.95 MHz (or 399.9 MHz). These setting must be made while power is applied to the equipment.

5-122. Remova1. Remove RT-581 as follows:
a. Loosen four captive screws in corners of the front panel.
b. Turn extractor knob fully counterclockwise; reverse rotation for three turns, stop with knob slot horizontal, and push extractor down.
c. Pull the RT-581 from the case.

> WARNING

This equipment contains high voltages that are dangerous to life. Make certain to remove all power from equipment before attempting to remove assemblies.

5-123. Replacement. Reverse the removal procedures.

5-124. SECOND IF AMPLIFIER. This assembly is shipboard repairable. All parts are replaceable aboard ship.

5-125. Removal. Remove RT-581 as in paragraph 5-122 (observing the caution in paragraph 5-121). Refer to figures $5-19,5-46,5-47$, and $5-48$ during the following procedures:
a. Position $R T-581$ right side up (fig 5-19).
b. Disconnect plugs P5, P304, and P401 from jacks J403, J401, and J4, respectively (fig 5-19).
c. Loosen three captive screws, two at front and one at rear ($D, f i g$ 5-19) , that hold 2nd IF Amplifier.
d. Lift 2nd IF Amplifier from RT-581.

5-126. Crystal Replacement. Remove RT581 as in paragraph 5-122 (observing the caution in paragraph 5-121).
a. Position RT-581 right side up (fig 5-19) .
b. Remove 2nd IF Amplifier as in paragraph 5-125.
c. Remove two flathead machine screws from sides of cover.
d. Lift lip of dust cover straight out and away from tube V401.
e. Replace defective crystal.
f. Replace covè and screws; reinstall assembly.
g. Perform 2nd IF Amp1ifier mechanical alignment as in paragraph 5-33.

5-127. Selector Switch Replacement (S401 and S402). Remove RT-581() as in paragraph 5-122 (observing the caution in paragraph 5-121).
a. Remove 2nd IF Amplifier as in paragraph 5-125.
b. Unsolder two wires from relay K401 and one ground wire routed to switches S401 and S402 (fig 5-46 and 5-47). For AN/URC-9A only, unsolder four additional wires from relay K 402 and one additional ground wire routed to crystal socket XY401.
c. Remove the three screws holding switch assembly to tube chassis; slide units apart so that the slugs will slide out of L401, L403, and L405.
d. Scribe lines on shaft and coupler before removing, retaining pin from coupler and shaft.
e. Slide coupler from shaft.
f. Remove the two Phillips-head machine screws from switch bracket.
g. Remove the two small nuts holding switch to bracket.
h. Slip bracket from shaft. Remove the four corner crystals from crystal socket. (Note the positions of the crystals.)

1. Remove the four Phillips-head screws holding crystal socket to frame.
j. Unsolder wires from switch and slide wafer from shaft.
k. To reassemble, reverse order of foregoing disassembly.
2. Perform 2nd IF Amplifier mechanical alignment as in paragraph 5-33.

5-128. Lubrication. Lubrication of the unit is only required during servicing or cleaning. Lubricate unit as follows:
a. Lubricate cam face with a thin film of grease (MIL-G-23827A).
b. Lubricate cam followers with one drop of oil (MIL-L-6085A).

5-129. Replacement. Set coupler on assembly. Make sure the slot in the coupler is vertical and the keeper pin is in the upper right corner when viewed from the front. Reverse removal procedures.

5-130. FIRST IF AMPLIFIER. This assembly is partially repairable aboard ship. Refer to paragraph 5-2 for parts that are shipboard replaceable.

NOTE
Lubrication is only required during servicing or cleaning.

5-131. Removal. Remove $\mathrm{RT}-581$ as in paragraph 5-122 (observing caution in paragraph 5-121) and proceed as follows:
a. Position $\mathrm{RT}-581$ right side up (fig 5-19).
b. Disconnect plugs P301, P302, P303, and P304 from jacks J3, J101, J102, and J401, respectively (fig 5-19).
c. Remove cover plate $\mathrm{H}-4$ (fig 5-14).
d. For convenience, disconnect plugs P6 and P502 (fig 5-19) from jacks J901 and J902, respectively. Slide cables W5 and W6 from under clip.
e. Loosen three captive screws (fig 5-19).
f. Lift lst IF Amplifier from RT-581.

5-132. Tuning Core Replacement (0301 through 0307). Remove 1st IF Amplifier as in paragraph 5-131 and proceed as follows:
a. Position lst IF Amplifier as in figure 5-44.
b. Rotate coupler 0317 clockwise (approximately 170°) to position tuning cores 0301, 0302, 0303, 0304, 0305, and 0306 to the highest position in the coils. Rotate coupler 0316 counterclockwise (approximately 170°) to position tuning core 0307 to the highest position in L 310 .

NOTE

Tuning cores 0301 through 0306 are identical. Tuning core 0307 is slightly shorter. Do not interchange tuning cores.
c. Remove defective tuning core(s) and clean core hole(s).
d. Replace defective tuning core(s). Ensure that threaded slot is projecting through core rack at bottom of assembly for all cores. Lubricate threads with one drop of oil (MIL-L-6085A).
e. Position assembly as in fig 5-44; set couplers 0316 and 0317 with slots
vertical and coupler pin in upper right corner. Reverse removal procedure.

5-133. Crystal Replacement (Y301 through Y310). Remove lst IF Amplifier as in paragraph 5-131 and proceed as follows:
a. Position 1st IF Amplifier as in fig 5-44.
b. Remove dust cover; location of crystal(s) is marked on dust cover (fig 5-44) .

NOTE
Use a pencil type soldering iron (15 to 25 watts) to remove crystals. If access to rear (S302) crystal is difficult, remove screws from crystal bracket; slide bracket and switch assembly slightly forward. Avoid misaligning or disengaging switch rotor from shaft.
c. Install new crystal(s), avoiding use of excessive heat and solder.
d. Ensure that switch rotor arm is in the full contact with tab for $Y 310$ (26.0 or 26.00 MHz) when coupler 0316 slot is vertical and coupler keeper pin is in upper right corner.
e. Replace dust cover.

5-134. Replacement. Set couplers 0316 and 0317 on assembly so that slots are vertical and keeper pins are in upper right corner (fig 5-44). Reverse removal procedures.

5-135. FREQUENCY MULTIPLIER-OSCILLATOR (FMO). The FMO is partially repairable aboard ship. Refer to paragraph 5-2 for those parts that are shipboard replaceable.

5-136. Removal. Remove RT-581 as in paragraph 5-122 (observing the caution in paragraph 5-121) and proceed as follows:
a. Position RT-581 top side up (fig 5-13).
b. Remove cover plate $\mathrm{H}-3$ (fig 5-18).
c. Disconnect plug P4 from jack J205 (fig 5-18). Use a screwdriver to pull plug straight off.
d. Disconnect plug P201 from jack J2 (fig 5-20).
e. Loosen three captive screws. (B, fig 5-18).
f. Lift FMO from RT-581.

5-137. General Maintenance. These procedures contribute to the reduction and elimination of intermittent FMO operation. They should be done whenever the assembly is removed for repair.

NOTE
The FMO reference position in the following procedures is: coupler 0220 forward; slot vertical; keeper pin in upper right corner; and amplifier tubes pointing left.
a. RF Tuner Trimmer Capacitors. The following procedure is to ensure proper mounting and grounding of trimmer capacitors C215, C221, C227, and C233 (fig 5-34).

CAUTION

These capacitors are glass foil type. Use care to avoid damaging or breaking.

1. Remove covers from multiplieramplifier section; retain all screws and washers.
2. Insert thin screwdriver or tuning tool into bottom of trimmer capacitors C215, C221, C227, and C233; rotate each capacitor counterclockwise until threaded portion clears the slotted portion of mount.
3. Check that capacitor mounting lock nuts are secure; do not over-tighten.
4. Bend slotted portions together slightly with long nose plier.
5. Insert screwdriver or tuning tool into bottom of capacitors and rotate clockwise until threaded portion extends above slotted portion of the mount.
b. RF Tuner Inductors. The following procedure is to ensure positive contact of the inductor rings and positive grounding of the main tuning shaft (fig 5-37).
6. Clean both sides of each of the four semicircular inductor rings with CRAMOLIN, FSN 9Q6850-880-7007. These inductor rings are a part of the stator assembly for $2202, \mathrm{Z204}, \mathrm{Z} 206$, and 2208 .
7. Eight sets of finger contacts provide grounding for the main tuning shaft. Rotate the shaft and clean the surface under each of these contacts with CRAMOLIN.
8. Apply one small drop of MIL-L6085A oil to each ball bearing (0208 and 0209, fig 5-37).
9. When no further servicing or repair in this section of the assembly is required, replace covers and install all screws and washers previously removed.
c. Oscillator-Multiplier. The following procedure is to ensure positive contact of the wiper arm of S201, S202, and Z201 with the stationary contacts (fig 5-40).
10. Remove oscillator-multiplier cover; retain all screws and washers.
11. Remove tuning coil access plate.
12. Clean the contacting surfaces of S201, S202, and 2201 with CRAMOLIN, FSN 9Q6850-880-7007.
13. When no further servicing or repair in this section of the assembly is required, replace coll access cover, oscillator-multiplier cover and install all screws and washers previously removed.

5-138. Crystal Replacement. Crystals in the FMO may be replaced aboard ship. Disassembly of S201, S202, and 2201 (fig $5-40$) is not recommended aboard ship. Careful techniques and the proper soldering tool will result in satisfactory crystal replacement without complicated disassembly. Replace crystals as follows:
a. Remove oscillator-multiplier cover; retain all screws and washers (fig 5-34).
b. Remove tuning coil access plate.
c. Refer to figure 5-36 for location of crystals.

NOTE
Use pencil type soldering iron (15 to 25 watts) to remove crystals.
d. Install new crystal(s), avoiding use of excessive heat and solder.
e. Replace coil access plate. Ensure that spring wafer attached to plate properly grounds each crystal case.
f. Replace oscillator-multiplier cover and install all screws and washers previously removed.

5-139. Tube and Other Component Replacement. The following are general procedures for tube and miscellaneous parts replacements:

NOTE
Tube shields and tube shield liners must be in place during test and normal operation.
a. Tubes in the FMO must be evaluated on a comparison basis. When a tube is suspect, set the AN/URC-9A to 399.95 MHz (399.9 MHz on AN/URC-9). Locate a test point to which the stage is supplying output. Peak the input and output trimmers for that stage. Note the output level. Replace the tube under evaluation with a new tube. Repeak trimmers for maximum output. If the new tube shows improvement in output, retain the new tube. It may be necessary to repeat this procedure several times in order to select a satisfactory tube.
b. When replacing components in this assembly, the lead length and location of replacement part must be the same as the part removed.

5-140. Replacement. When replacing the FMO, set the assembly into the RT-581 with the slot in coupler 0220 vertical and the keeper pin in the upper right corner as viewed from the front. Reverse removal procedures.

5-141. RF AND PA AMPLIFIER. This assembly is partially repairable aboard ship. Refer to paragraph 5-2 for those parts which are shipboard replaceable. Replacement of components which require disassembly of the RF and PA into two sections or removal of V101, V102, and V103 tube chassis, is not recommended aboard ship.

5-142. Removal. Remove RT-581 as in paragraph 5-122 (observing the caution in paragraph 5-121) and proceed as follows:
a. Remove cover plates $\mathrm{H}-3$ and $\mathrm{H}-5$ (fig 5-14 and 5-18).
b. Disconnect plugs P3, P101, P10, P302, P303, P1101, and P1301 from jacks J112, J1, J1101, J101, J102, J108, and J109, respectively (fig 5-19).
c. Loosen three captive screws (A, fig 5-18).
d. Lift $R F$ and $P A$ up and to the right.

5-143. General Maintenance. These procedures contribute to the reduction and elimination of intermittent $R F$ and $P A$ operation. They should be performed whenever the assembly is removed for repair.
a. RF Tuner Trimmer Capacitors. The following procedure is to ensure proper mounting and grounding of trimmer capacitors C107, C115, C122, C127, and C141 (fig 5-29).

CAUTION
Trimmer capacitors are glass foil type. Use care to avoid damaging or breaking.

1. Remove side, bottom, and air minifold covers from assembly; retain all screws and washers.
2. Insert thin screwdriver or tuning tool into bottom of capacitors C107, C115, C122, C127, and C141 (fig 5-29) ; rotate each capacitor counterclockwise until the threaded portion clears the slotted portion of the mount.
3. Check that capacitor mounting locknuts are secure; do not over-tighten.
4. Bend slotted portions of each capacitor mount together slightly with long nose plier.
5. Insert screwdriver or tuning tool into bottom of capacitors and rotate clockwise until threaded portion extends above slotted portion of mount.
b. RF Tuner Inductors. The following procedure is to ensure positive contact of the inductor rings and positive grounding of the main tuning shaft (fig 5-23, 5-27, 5-29).
6. Clean both side of the four semicircular inductor rings with CRAMOLIN, FSN 9Q6850-880-7007. These inductor rings are a part of the stator assembly Z101, Z103, Z105, and Z106 (fig 5-27).
7. Clean and lubricate the inductor ring surface of $\mathrm{ZlO7}$ with CRAMOLIN. The 2107 inductor is a brass semicircular ring mounted on the ceramic plate of $\mathrm{Z107}$ stator assembly (fig 5-27 and 5-32).
8. Eight sets of finger contacts provide grounding for the main tuning shaft. Rotate the shaft and clean the surface under each of these contacts with CRAMOLIN.
9. The rotor of 2108 is grounded by flange rings which bear or circular finger contacts (fig 5-27 and 5-33). Clean these surfaces with CRAMOLIN. Avoid bending or displacement of the finger contacts.
10. Remove tubes V104 and V105 (fig 5-27).
11. Inspect ceramic portions of tubes for imbedded metal particles or other foreign matter. (A pointed typewriter eraser may be used to remove foreign matter).
12. Clean metal portions of tubes with eraser.
13. Ensure tubes are clean and reinstall tubes.
14. If no further servicing in assembly is required, replace covers and install all screws and washers previously removed.

5-144. Tube and Other Component Replacement. The following are general procedures for tube and miscellaneous parts replacement.

NOTE
Tube shields and tube shield liners must be in place during all tests and when assembly is restored to normal operation.
a. Tubes in the RF and PA must be evaluated on a comparison basis. When
a tube is suspect, set the AN/URC-9A to 399.95 MHz (399.9 MHz on AN/URC-9). Locate a test point to which the stage is supplying output. Peak the input and output trimmers for that stage. Note the output level. Replace the tube under evaluation with a new tube. Repeak trimmers for maximum output. If the new tube shows improvement in output, retain the new tube. It may be necessary to repeat this procedure several times in order to select a satisfactory tube.
b. When replacing components in this assembly, the lead length and location of replacement part must be the same as for the part removed.

5-145. Replacement. When replacing the RF and PA, set the assembly into the RT581 with the slot in coupler 0126 (fig 5-27) vertical and the keeper pin in the upper right corner when viewed from the front. Reverse removal procedure.

5-146. AUDIO AMPLIFIER AND MODULATOR. This assembly is shipboard repairable. All components are replaceable aboard ship.

5-147. Removal. Remove RT-581 as in paragraph 5-122 (observing the caution in paragraph 5-121). Refer to figures $5-15,5-20,5-52$, and 5-53 during the following procedures:
a. Position RT-581 left side up (fig 5-20).
b. Disconnect plug P801 from jack J8 (fig 5-20).
c. Loosen five captive screws (F, fig 5-20).
d. Lift Audio Amplifier and Modulator from RT-581.

5-148. Replacement. Ensure that interconnecting cables are not damaged by pinching and chafing when replacing in case. Reverse removal procedures.

5-149. THIRD IF AMPLIFIER. This assembly is shipboard repairable. All components are replaceable aboard ship.

5-150. Removal. Remove RT-581 as in paragraph 5-122 (observing the caution in paragraph 5-121). Refer to figures 5-16, 5-21, and 5-49 through 5-51 during the following procedures:
a. Position RT-581 bottom side up (fig 5-21).
b. Disconnect plugs P502 and P501 from jacks J902 and J4, respectively (fig 5-16).
c. Loosen four captive screws (E, fig 5-21).
d. Lift 3rd IF Amplifier from RT-581.

5-151. Replacement. Ensure that interconnecting cables are not damaged by pinching and chafing when replacing in case. Cable W502 can be dressed and protected from damage by the installation of a nylon clamp. Instructions for installing this clamp are in Eib 731. Reverse removal procedures.

5-152. RELAY-FILTER. This assembly is shipboard repairable. All components are replaceable aboard ship.

5-153. Removal. Remove ri-581 as in paragraph 5-122 (observing the caution in paragraph 5-121). Refer to figures 5-17, 5-55, 5-56, and 5-57 during the following procedures:

CAUTION

It may be necessary to energize Relay-Filter (with CX-8521 cable) to assist in fault 10 cation. Special attention is required in the ase of test probes and tools to prevent damage to the assembly.
a. Position RT-581 top side up and its rear facing the front (fig 5-17)
b. Loosen two captive screws that hold Relay-Filter to rear of chassis.
c. Pull Relay-Filter out of RT-581 with the handle provided (fig 5-17).

5-154. Replacement. Reverse the removal procedures.

CAUTION

After the Relay-Filter is replaced, check that blower hose is properly connected between blower outlet and the air duct for the RF and PA.

5-155. R/T CENTRIFUGAL FAN. Centrifugal fan assemblies with electronic speed increasers are not shipboard repairable.

5-156. Removal. Remove RT-581 as in paragraph $5-122$ (observing the caution in paragraph 5-121). Refer to figures $5-14,5-20$, and 5-60 during the following procedures:
a. Position RT-581 left side up (fig 5-20).
b. Remove cover plate $\mathrm{H}-2$ (fig 5-20).
c. Disconnect plug P1051 from jack Jlo (fig 5-15).
d. Loosen four screws (H, fig 5-20).
e. Lift R / T Centrifugal Fan from RT581 assembly; slide fan hose from the fan air output duct.

5-157. Lubrication and Repair. These procedures assume that the motor portion of the assembly is functioning properly. They should be performed whenever strobe measurement of the centrifugal fan speed is below standard (7000 rpa minimum at 115 vac input), or whenever there are other indications that the speed increaser requires lubrication or repair.

NOTE

> Centrifugal fan assemblies with electronic speed increasers are not lubricated and
are not shipboard repairable (fig 5-59, 5-60, and 5-61).
a. Remove R / T Centrifugal Fan as in paragraph 5-156.
b. Remove screws and front plate from centrifugal blower housing
c. Loosen blower fan set screws; remove fan.

CAUTION

Care must be taken to prevent damage to electrical wiring.
d. Remove capacitor(s) retaining screws and swing capacitor(s) away from speed increaser.
e. Remove blower housing retaining screws; remove blower housing.
f. Remove speed increaser retaining screws; remove speed increaser.

NOTE

For all speed increasers which have the small bronze couplerdriver, a paper gasket is required between the speed increaser block and the motor end bell housing. If this gasket is missing or damaged during disassembly, a new one must be provided for reassembly. Make a gasket or order one by FSN 9Z5330-290-8495.
g. Remove the lock ring from the cou-pler-driver end of the speed increaser.
h. Gently tap the shaft of the speed increaser against a non-metallic surface until both bearings and the shaft can be lifted free of the speed increaser block. Use care that loose ball bearings do not drop out.
i. Use soft bristle brush and P-D-680 solvent to clean old lubricant from bearings and shaft. Clean inside of speed increaser block and coupler-driver with solvent.
j. Pack the space between the two bearings solid with grease to the diameter of the bearings. Use MIL-G-23827 grease for metal coupler-driver and MIL-C-15793 grease for phenolic coupler.
k. Reverse the procedure in steps b through i to reassemble. During reassembly, ensure that shim and compression washers inside the block are in proper position; that paper gasket is in place between speed increaser and motor housing; and that screws holding speed increaser to motor housing are tightened alternately to avoid misalignment of coupler-driver.

1. Reinstall assembly in RT-581 and perform fan speed measurement of paragraph 5-88.
m. Allow blower to turn for 20 to 30 minutes and make another speed measurement (7000 rpm minimum).
n. If minimum speed requi rement cannot be obtained after lubrication, and the speed increaser is of the metal coupler-driver type (fig 5-58), do not discard the assembly. Procure a replacement speed increaser FSN IN3020-201-6906, discard the old speed increaser and install new one. New speed increaser is pre-packed with grease. If speed increaser is a phenolic type coupler-driver, and minimum speed cannot be obtained, no further repair or replacement can be accomplished; this type may be discarded.

NOTE
As a further aid in identifying the type of assembly, figure 5-58 shows the repairable type. The repairable type has two motor capacitors and red lubrication decals. The nonrepairable type has one motor capacitor and no lubrication decals.

5-158. Replacement. When replacing the R / T centrifugal fan, ensure that fan
hose is properly connected between blower outlet and air duct to the RF and PA. If fan hose becomes cracked or otherwise damaged, procure a replacement (FSN IN 4720-023-6753). Reverse the removal procedures.

5-159. 500 KHz FILTER (FL901) AND LOWPASS FILTER (FL1101). These items are not shipboard repairable.

5-160. Removal. Remove RT-581 as in paragraph 5-122 (observing the caution in paragraph 5-121). Refer to figures 5-14, and 5-19 during the following procedures:
a. Position RT-581 right side up (fig 5-19).
b. Disconnect plugs P6, P502, P10 and P1101 from jacks J901, J902, J1101, and J108 respectively (fig 5-19).
c. Loosen three captive screws (I, fig 5-19).
d. Lift the Filter Assembly from RT581.
e. Separate filters FL901 and FLl101 by removing the screws which fasten them together.

5-161. Replacement. Before replacing the Filter Assembly fasten FL901 and FLll01 together with the screws removed during step e above. Reverse the removal procedure.

5-162. BROADBAND SIDETONE AMPLIFIER. This assembly is shipboard repairable. A11 components are replaceable aboard ship.

5-163. Remova1, Remove RT-581 as in paragraph 5-122 (observing the caution in paragraph 5-121). Refer to figures 5-14 and 5-19 during the following procedures.
a. Position RT-581 right side up (fig 5-19).
b. Disconnect plug P1601 from jack J9 (fig 5-19).
c. Loosen two captive screws (K, fig 5-19) that hold broadband sidetone assemb1y to RT-581.
d. Lift broadband sidetone assembly. from RT-581.

5-164. Replacement. Reverse the removal procedures.

5-165. FRONT PANEL. This assembly is shipboard repairable. All components are replaceable aboard ship.

5-166. Remova1. Remove RT-581 as in paragraph $5-122$ (observing the caution in paragraph 5-121). Refer to figures $5-18$ through $5-21,5-65$ and $5-66$ during the following procedures:
a. Position RT-581 top side up (fig 5-18) .
b. Remove four flat head and four round head screws, two of each are located on top and one of each is located on the right and left sides (J, fig 5-18, $5-19$ and 5-20), that fasten shroud to RT-581 Front Panel.
c. Lift shroud straight up and off RT-581.
d. Disconnect plug P703 from jack J11 (fig 5-20).
e. Loosen coaxial connector P8 from jack J706 (fig 5-9).
f. Position RT-581 bottom side up; remove four roundhead screws (J, in fig 5-21) and lockwashers that fasten bottom of Front Panel to RT-581.
g. Carefully pull Front Panel straight off at RT-581, check that plug P8 disengages from jack J706.

5-167. Replacement. When replacing Front Pane1, make certain that plug $p 8$
mates with jack J706 as assembly is slid into position. Do not tighten any screws until all screws are in place. Reverse removal procedure.

5-168. FREQUENCY SELECTOR. This assembly is partially repairable aboard ship. Refer to paragraph 5-2 for those parts which are shipboard replaceable.

5-169. Remova1. Remove RT-581 as in paragraph 5-122 (observing the caution in paragarph 5-121). Refer to figures 5-18 through 5-21 and 5-65 through 5-81 during the following procedures:
a. Remove Audio Amplifier and Modulator as in paragraph 5-147.
b. Remove R / T Centrifugal Fan as in paragraph 5-156.
c. Remove Front Pane1 as in paragraph 5-166.
d. Position RT-581 left side up (fig 5-20).
e. Remove two screws (K, fig 5-20) and lockwashers on the rear of the Frequency Selector adjacent to the space occupied by the R/T Centrifugal Fan.
f. Position RT-581 bottom side up. Remove three screws (L, fig 5-21) and lockwashers on the bottom of the chassis.
g. Remove hexhead screw (M, fig 5-20) on rear of Frequency Selector by inserting $1 / 4$ inch Spin Tite wrench through cutout on chassis.
h. Disconnect plug P1201 from jack J12 (fig 5-20).
i. Position RT-581 top side up. Pull out plate mounting for jacks J7, Jl0, and J15 from clamp; remove two screws ($\mathrm{N}, \mathrm{fig} 5-18$) and lockwashers on the upper left corner.
j. Remove screws (P, fig 5-18) adjacent to the Directional Coupler in the upper right corner.
k. Remove two screws and lockwashers below and behind the memory drum; lift Frequency Selector from RT-581.

5-170. Component Replacement. Refer to figures $5-69,5-70,5-78$, and $5-79$ during the following procedures:
a. When relays K1201, K1202, K1203, or K1204 are replaced, refer to paragraph 5-66 for paw1 action and gap adjustment procedures.
b. If drive motor Bl201 requires replacement or repair, observe the dress or motor input leads and repeat this dress upon reassembly. Minor repairs (brushes \& commutator) should be performed aboard ship.
c. Inspect wafer switch section S 1202 , S1203, and S1204 for broken wafers, loose contacts, and burned or pitted rotor or fixed contacts. Replace defective switch wafers as required. When replacing these switches, the rotor contacts must be in the correct position after replacement. Remove leads from defective switch one at a time; after each lead removal, solder that lead to the new switch. Position rotor of new switch exactly as the old rotor was positioned. Figure 5-69 (or 5-70) indicates correct position of switches when at rest on Channel M (399.95 MHz on AN/ URC-9A; 399.9 MHz on AN/URC-9). Figure 5-79 indicates correct switch position when at rest on Channel $5(220.05 \mathrm{MHz}$ on AN/URC-9A; 220.0 MHz on AN/URC-9).

5-171. Lubrication. Lubrication of the Frequency Selector should be accomplished at least once a year but no more often than once every six months. Lubricate only those points which are accessible without disassembly of the gear plates.

> CAUTION

Do not permit grease or oil to get into clutch assemblies. Oil or grease on clutch faces will cause operational failure of the Frequency Selector.
a. Lubricate teeth of all gears with a thin film of grease (MIL-G-23827A).
b. Lubricate cam faces with a thin film of grease (MIL-G-23827A).
c. Lubricate bore of cam follower 01299.4 (fig 5-73) with a thin film of grease (MIL-G-23827A).
d. Lubricate porous bronze bearings with one drop of oil (MIL-L-6085A).
e. Lubricate bores of differential planetary gears with one drop of oil (MIL-L-6085A).
f. Lubricate pawl pivot studs with one drop of oil (MIL-L-6085A).

5-172. Replacement. Adjust couplers of all assemblies to mate with Frequency Selector before replacing in RT-581. Do not tighten any screws until all screws are in place. Reverse the removal procedures.

5-173. RECEIVER-TRANSMITTER CASE CY-2969/URC-9. This unit is shipboard repairable. All components are repairable aboard ship.

5-174. Removal of Case CY-2959/URC-9 Centrifugal Fan. Remove power supply as in paragraph 5-119. Refer to figures $5-15,5-62$, and $5-64$ during the following procedures:
a. While supporting the centrifugal fan, disconnect plug P1401 and loosen four screws and associated hardware that hold the fan to the case.
b. Remove the centrifugal fan.

5-175. Cleaning of Case and Fan. Cleaning of the case and fan must be accomplished at least once every six months. Cleaning of the filter is required at least once each month. Refer to figure 5-62 during the following procedures.
a. Remove power supply and centrifugal fan as in paragraph 5-174.
b. Remove RT-581 as in paragraph 5-122 (observing the caution in paragraph 5121).
c. Cover the power supply and RT-581 with paper or thin plastic to avoid contamination by dirt and dust.
d. Remove the left louver screen and right exhaust grill from sides of case. If case is installed in cabinet type enclosure, it may be necessary to remove it from the enclosure before this step is performed.
e. Brush and vacuum all accumulated dirt and dust from both louver screen and exhaust grill.
f. Remove filter through opening created by removal of left louver screen. (Filter may also be removed from inside power supply cavity by removing 6 screws from front retainer clip.)
g. Brush and vacuum all accumulated dirt and dust from filter.
h. Brush and vacuum all accumulated dirt and dust from the fan blades and fan housing of the case centrifugal fan.
i. Brush and vacuum all dirt and dust from the space between the case walls and the corrugated liners.
j. Vacuum remaining dust and dirt from the power supply cavity and the re-ceiver-transmitter cavity.
k. Reinstall filter.

1. Reinstall left screen louver and right exhaust grill.
m. Reinstall fan.
n. Reinstall power supply and RT-581.
o. Restore AN/URC-9 to normal condition.

5-176. Replacement of Case Centrifugal Fan. Reverse the removal procedure.

5-177. REPAIR PROCEDURES FOR RADIO SET CONTROL C-3866/SRC.

5-178. The following data is for removal, repair, and replacement of the entire C-3866/SRC or parts of the C-3866/ SRC. Deenergize equipment before removal.

5-179. RADIO SET CONTROL C-3866/SRC. Radio Set Control C-3866/SRC is shipboard repairable. All parts are replaceable aboard ship.

5-180. C-3866 Removal. Remove the C3866 as follows (figures $5-116$ through 5-121) :
a. Loosen six screws (fig 5-116); pull forward to extend chassis.
b. If entire chassis must be removed, loosen two knurled screws on bottom of chassis just behind front panel. Remove plug P201 (fig 5-117); pull chassis up and forward.
c. To disengage plug P201 from jack J201, turn thumbwheel (fig 5-117) counterclockwise as far as it will go.
d. Loosen, but do not remove screws A and B (figure 5-117). Slide thumbwheel out of the way, and remove plug P201 and cable.
e. Remove chassis.

5-181. Replacement of C-3866. Reverse removal procedures. Be sure to press down on thumb-release catches (fig 5-116) before sliding chassis back into cabinet.

5-182. Removal of Rear Cabinet Panel. Remove eight screws holding rear pane 1 to cabinet (figure 5-120).

5-183: Replacement of Rear Cabinet Pane1. Reverse removal procedures.

5-184. Removal of Dust Cover for Relays K201 through K205. Remove the C-3866 as in paragraph $5-180$. Loosen six fasteners and lift cover off (fig 5-118).

5-185. Replacement of Dust Cover for Relays K201 through K205. Reverse removal procedure.

5-186. Removal of Dust Cover for Stepping Relay K206. Remove the C-3866 as in paragraph 5-180. Remove two screws from top of cover and lift cover off (fig 5-118).

5-187. Replacement of Dust Cover for Stepping Relay K206. Reverse removal procedure.

5-188. Lubrication of Stepping Reley K206. After each 100,000 dialing operations, perform a complete lubrication of stepping relay K206 using lubricant MIL-G-23827A. Use the minimum amount of lubricant practicable throughout this procedure. The amount of lubricant applied should be vapor thin. DO NOT OVER-LUBRICATE. The lubricant is applied to the stepping relay mechanism (fig 5125 through 5-127) by using either clean linen, bond paper, wooden stick, or a brush, in the following manner:
a. Remove dwst cover as in paragraph 5-186.
b. Withdraw the wiper assembly bearing pin approximately $1 / 4$ inch; apply minimum lubricant to each pin; replace the pin.
c. Apply minimum lubricant to each side of a small strip of bond paper. Pass the strip between each pair of wiper tips. After lubricating four wiper pairs, renew the lubricant. Repeat until all wiper tips have been lubricated. Be sure to lubricate both sets of wiper tips. Rotate wiper assembly several times to distribute the lubricant to the deck contacts.
d. Apply minimum lubricant among four decks of wipers at the inner surfaces where the brush contacts ride. Repeat for each additional four decks, then rotate the wiper assembly several times to distribute the lubricant.
e. Apply minimum lubricant to each side of a small strip of bond paper. Pass the strip between each armature arm bushing and the contact it deflects.
f. Apply minimum lubricant between the lobes of the off-normal cam. Apply the lubricant to the lifting of wearing surfaces only.
g. Remove the armature bearing pin; apply minimum lubricant into each armature bearing, and replace the pin.
h. Apply minimum lubricant to the pawl bearing, working the lubricant in between the bearing, armature arm, and paw1.

1. Apply minimum lubricant to each pawl spring hook at the point where the spring eyelets make contact.
j. Apply minimum lubricant evenly over the ratchet teeth while rotating the wiper assembly.
k. Replace all covers; reverse removal procedures.

5-189. REPAIR PROCEDURES FOR RADIO FREQUENCY AMPLIFIER AM-1565/URC.

5-190. The following provides data for removal, repair, and replacement of assemblies, subassemblies and parts of AM1565.

5-191. RADIO FREQUENCY AMPLIFIER AM-1565. This subassembly is partially repairable aboard ship. Refer to paragraph 5-2 for those parts that are shipboard replaceable.

5-192. Removal. Refer to figures 5-85 through $5-88$ during removal procedures. Remove the AM-1565 from the case:

WARNING

Two persons are required to remove the AM-1565 from the case. Do not slide the AM-1565 chassis out unless the AN/SRC-20() is bolted down.
a. Disconnect rf cables from input connector J501 and antenna connector J502.
b. Release ten screws (fig 5-85) from edge of front panel.
c. Use handles and pull AM-1565 out of case on the chassis slides (fig 5-85).
d. Depress the two black release buttons (2, fig 5-85) above the handle and tilt chassis (fig 5-86).

5-193. Replacement. Reverse the removal procedure.

5-194. FRONT PANEL. This unit is shipboard repairable. A11 components are replaceable aboard ship.

WARNING

Do not slide the AM-1565 chassis out of case unless the AN/SRC20() is bolted down.

5-195. Remova1. Remove the AM-1565 as in paragraph 5-192. Refer to figures $5-85,5-86,5-87$, and 5-94 during the following procedures:
a. Loosen two set-screws (3, fig 585) on the front ends of the tilting mechanisms. There is one set-screw on each mechanism of the stop plungers at the rear of the front panel.
b. Remove screws holding the tilt mechanism to the front panel. (There is one screw located behind the handle on each side of the front panel.) Remove the stop lever arms by sliding the connecting wires (4, fig 5-85), out from under the set-screws loosened in step a.
c. Remove the four large slotted studs that secure the two handles. (There are two studs at each side on the back of the front pane1.)
d. Disconnect plugs P203 and P211 from the front end of coaxial relays K201 and K202, respectively (fig 5-87).
e. Tilt the chassis so the front panel is facing upward (fig 5-86).
f. Remove eight hex-head bolts (H54l, fig 5-88) and their sealing washers 10cated on the front panel.
g. Carefully rock front panel to disengage plug P501 and then lift straight up and away.

5-196. Replacement. Reverse the removal procedure.

5-197. AUTOPOSITIONER. This subassembly is shipboard repairable. All components are replaceable aboard ship.

WARNING

Do not slide the AM-1565 chassis out of case unless the AN/SRC20 () is bolted down.

5-198. Removal. Remove the AM-1565 as in paragraph 5-192 and the Front Panel assembly as in paragraph 5-195. Refer to figures 5-94 through 5-100 during the following procedures:

NOTE
Before removing autopositioner, note which channel number appears in the CHANNEL window, and mark the loading screw that appears directly in the center of the output loading screw hole. The output loading screw must be centered directly in the hole to ensure proper alignment when the unit is replaced.
a. Remove four screws (on front of panel) and their seals holding the autopositioner to the front panel.

NOTE
Retain the two metal spacers which are detached when the screws holding the autopositioner to the front panel are removed.
b. Release plugs P-503 and P-504 from their respective receptacles (fig 5-94).
c. Remove the retaining rings from the large flat gear $0-501$ connected to the front panel. Carefully lift the bottom of the autopositioner out and up so the dial clears the flat gear; then lift straight up and free from the chassis. The large gear is not connected to the autopositioner, but does prevent direct removal of the autopositioner due to the location of the dial.

5-199. Disassembly and Reassembly. Refer to figures 5-96 and 5-99 during this procedure. Do not disassemble the gear train unless necessary; if necessary, begin with item 1 in figure 5-99. If part of switch $S 503$ needs to be replaced, begin disassembly with item 85 , then 84 and 83. Next, depending upon which part of the switch needs to be replaced, continue with items 73 and 72 , or 36 and 35 . Reassembly is the reverse of whichever disassembly procedure is undertaken.

5-200. Lubrication. Lubrication of the autopositioner subassembly should be accomplished at least once each year as follows:
a. Apply a thin film of MIL-G-23827A grease to all gear teeth.
b. Apply one drop of MIL-L-6085A oil to each bronze sleeve bearing and each ball bearing in the subassembly.

5-201. Replacement. Reverse the removal procedures in paragraph 5-198. Before final mounting of subassembly, ensure that channel number and loading screw are positioned as noted during the removal procedure.

5-202. POWER AMPLIFIER. This subassembly is partially repairable aboard ship. Refer to paragraph 5-2 for those parts which are shipboard replaceable.

WARNING
Do not slide the AM-1565 chassis out of case unless
the AN/SRC-20 () is boitted down.

5-203. Removal. Remove the AM-1565 as in paragraph 5-192. Refer to figures 5-87, and 5-101 through 5-111 during the following procedures:
a. Disconnect the following plugs from their connectors: P201, P1, P402, P215, P211, and P203 (fig 5-87).
b. Remove four screws on the righthand side of the Power Amplifier cavity flange which hold the assembly to the chassis. Remove two screws at the rear and one on the front of the subassembly which secure the unit to the chassis.
c. Pull the Power Amplifier subassembly straight up and slightly toward the rear and free from the chassis; be careful not to bend output loading capacitor plunger that engages stop wheel.

5-204. Automatic Drive Control Detector Diode (V203) Replacement. Refer to figures 5-101 through 5-111.
a. Remove four screws form the top of the detector diode housing on the Power Amplifier subassembly, and remove the top cover of the housing.
b. Using a small screwdriver, carefully slide the diode toward the rear of the cavity until the pins disengage the socket.
c. Loop a piece of wire or string over the rear end of the diode. Lift the rear of the diode free of the back clip, be careful not to bend the heater pins.
d. Grasp the rear of the tube and carefully pull straight back to remove the tube from the front clip.
e. To replace the diode, lay it on top of the two clips with the heater pins in line vertically and clear the tube socket.

NOTE

Ensure the pins do not strike the socket during the following steps.
f. Press on both ends of the tube directly over the clips until it is seated.
g. Align the tube pins with the socket and carefully push the tube forward until the pins are fully seated. The socket may have to be rocked slightly to align the pins properly.
h. Replace the top cover and secure with the four screws.

5-205. Cavity Tube (V201 and V202) Replacement. Refer to figures 5-101 through 5-111.
a. Remove six screws holding the back cover to the cavity; remove the cover.
b. Loosen two tube clamp screws.
c. Insert a tube puller between the tube fins so that the puller hooks over the outer rim and not over a fin.
d. Remove the tube carefully.
e. To replace the tube, insert tube into socket and seat firmly without forcing.
f. Tighten the tube clamp screws, and replace the back cover of the cavity.

5-206. Lubrication. Lubrication of the Power Amplifier subassembly is a requirement under the Preventative Maintenance Program and is scheduled quarterly. If it is verified that lubrication has been accomplished as scheduled, do not repeat the procedures during repair.
a. Lubrication is performed while the subassembly is removed from AM-1565 chassis; for removal, refer to paragraph 5-203.
b. Remove covers from lead screws 0202 and 0203 (fig 5-105). Clean
foreign matter and old lubricant from threads.
c. Apply two or three drops of MIL-. L-6085A oil to each lead screw; distribute oil evenly over length of screws.
d. Apply one or two drops of oil to the top of each lead screw follower.
e. Apply one drop of ofl to each ball bearing at the ends of each lead screw.
f. Remove excess o11. Replace lead screw covers.

NOTE
Disassembly of inner cavities for lubrication of inner lead screws is not an authorized maintenance procedure aboard ship.
g. Apply one drop of oil to tachometer MG-201 where its shaft enters motor housing (fig 5-102).
h. Apply one dro, of oil to each ball bearing in each of the gear plates. Apply one drop of oil to each bronze oilite bearing in each of the gear plates. (fig 5-103 and 5-104).
i. Remove excess oil.

5-207. Replacement. Reverse the removal procedure.

5-208. SERVO AMPLIFIER. This subassembly is shipboard repairable. All components are replaceable aboard ship.

WARNING

Do not slide the AM-1565 chassis out of case unless the AN/SRC20() is bolted down.

5-209. Removal. Remove the AM-1565 as in paragraph 5-192. Refer to figures 5-89, 5-112, 5-113, and 5-114 during the following procedures:
a. Tilt AM-1565 so that the front panel faces upward (fig 5-86).
b. Remove bottom cover; loosen four captive screws that hold Servo Amplifier subassembly in place; disconnect plug P401 (fig 5-89).
c. Lift the Servo Amplifier subassembly out.

5-210. Replacement. Reverse the removal procedure.

5-211. AIR FILTER AND CASE CENTRIFUGAL FAN. The centrifugal fan and air filter must be cleaned at least once every six months. Those portions of the procedure verified accomplished under scheduled preventive maintenance need not be repeated.

WARNING

Do not slide the AM-1565 chassis out of case unless the AN/SRC20() is bolted down.

5-212. Removal and Cleaning. Remove the air filter and fan as follows:
a. Extend AM-1565 from case as in figure 5-85.
b. Release cable assembly from rear of AM-1565 chassis (fig 5-90).
c. Two persons required: each depresses a safety stop located on each
drawer slide (5, fig 5-85) and while supporting the weight of the chassis, withdraw it completely from the case. Place chassis on deck or bench.
d. Disconnect plug P-1101 from J-105 (fig 5-90).
e. Hold centrifugal fan with one hand while removing eight mounting nuts with other hand.
f. Lift out the fan assembly.
g. Remove the air filter from the bottom of the case (0107, fig 5-90).
h. Brush and vacuum accumulated dirt from fan blades and fan housing. Tap the air filter gently on deck while vacuuming out dust and dirt.
i. Replace air filter.
j. Replace centrifugal fan; reverse removal procedures.
k. Using two persons; restore the AM-1565 chassis to its normal position in the case.

5-213. Replacement. Reverse the removal procedure.

Figure 5-1. Radio Set AN/URC-9(), Transmit RF Function Troubleshooting Block Diagram

notes
A MEAUY lines indicate main signal path,
Light lines indicate auxiliary or SECONDARS SIGNAL PATHS.
 BLOCKS MOLCATE ELEMENT AND PIN
OR TERMNAL NUMBERS. C RELAYS ARE SHOWN IN DE-ENERGIZED
position - operating conotions

MOOE NORMAL
SOU OHH OFF
OFFROSS HEADSET JACK

 REEUREE FOR
HEADET JACK
$\frac{S+N}{N}: \frac{\text { OUTPUT } 30 \times \text { MOOL LATED }}{\text { OUTPUT NOT MOOLATE }}$ OUTPUT NOT MODULATE
(1000 CPS MODVLATON)
F. FREDUENCIES SHOWN ARE FOR AN URC-9A.
FREQUENCIES FOR AN/UEC-9 ARE THE SAME FREQUNCI ES FOR AN/URC-9 ARE
LESS THE HUDREDHS POSITION.
FOR AN/SRC-20(), RR SI GNAL is To
ANO FROM AM 1565 UUC ; FOR AN/ AND FROM AHT 1565 SURC ; FOR AN/
SRC- 21 () (TO ANO FROM ANTENNA. REFERENCES:
1.. PARAGRAPH
in

1. PARAGRAPH
2.PARAGRAPH
$5-30$

Figure 5-4. Radio Set AN/URC-9(), RF and PA Amplifier

NOTES:
A. heavy lines indicate signal path during transmit and receive.
higt broken lines indicate
b. Letters and numgers outsio CIRCUIT BLOCKS INOICATE ELEMENT and pil number.
reference
PARAGRAPH 3-37

Figure 5-5. Radio Set AN/URC-9(), Frequency Multiplier-Oscillator Assembly, Servicing Block Diagram

Figure 5-6. Radio Set AN/URC-9(), First IF Amplifier Assembly, Servicing Block Diagram

Figure 5-7. Radio Set AN/URC-9, Second IF Amplifier Assembly, Servicing Block Diagram

Figure 5-8. Radio Set AN/URC-9A, Second IF Amplifier Assembly, Servicing Block Diagram

A. heavy broken lines indicate receive signal path; LIGHT LINES INDICATE AUXILIARY OR seconoary signal paths.
B. LETTERS AND NUMBERS OUTSIDE CIRCUIT
BLOCKS INDICATE ELEMENT AND PIN OR terminal numbers.
reference:
Paragraph 3-152
Figure 5-9. Radio Set AN/URC-9(), Third IF Amplifier Assembly,

Figure 5-11. Radio Frequency Amplifier AM-1565/URC, Power Amplifier Subassembly
Servicing Block Diagram Servicing Block Diagram

Figure 5-12. Radio Frequency Amplifier AM-1565/URC, Servo Amplifier Subassembly, Servicing Block Diagram

Figure 5-13. Receiver-Transmitter RT-581()/URC-9, Top View

Figure 5-14. Receiver Transmitter RT-581()/URC-9, Right Side

Figure 5-15. Receiver-Transmitter RT-581()/URC-9, Left Side

Figure 5-16. Receiver-Transmitter RT-581()/URC-9; Bottom View

Figure 5-17. Receiver-Transmitter RT-581()/URC-9, Rear View

Figure 5-18. Receiver-Transmitter RT-581()/URC-9, Top View. Subassembly Removal

Figure 5-19. Receiver-Transmitter RT-581()/URC-9, Right Side, Subassembly Removal

Figure 5-20. Receiver-Transmitter RT-581()/URC-9, Left Side, Subassembly Removal

Figure 5-21. Receiver-Transmitter RT-581()/URC-9, Bottom View, Subassembly Removal

Figure 5-22. RT-581 ()/URC-9, RF and PA Amplifier Assembly, Right Side, Disassembly Points

> DO NOT DISCARD FILAMENT ADAPTER 0140 ON V105

Figure 5-23. RT-581()/URC-9, RF and PA Amplifier Assembly, Left Side, Disassembly Points

Figure 5-24. RT-581()/URC-9, RF and PA Amplifier Assembly, Top View

Figure 5-25. RT-581()/URC-9, RF and PA Amplifier Assembly, Right Side

Figure 5-26. RT-581()/URC-9, RF and PA Amplifier Assembly, Side View Showing Thermal Sensor

Figure 5-27. RT-581()/URC-9, RF and PA Amplifier Assembly, Left Side

Figure 5-28. RT-581()/URC-9, RF and PA Amplifier Assembly, Bottom View

Figure 5-29. RT-581()/URC-9, RF and PA Amplifier Assembly, Power Amplifier Stage Removed

Figure 5-30. RT-581()/URC-9, 01dham Coupler Alignment

FMO,RF AND PA ASSEMBLIES TUNER CAPACITOR PLATES
(Z202,Z204,Z206,Z208,Z101,Z103,Z105,ANO Z106)
Figure 5-31. RT-581()/URC-9, RF and PA Amplifier and Frequency MultiplierOscillator Assemblies, Tuner Capacitor Plates

Figure 5-32. RT-581()/URC-9, RF and PA Amplifier Assembly, Tuner Z107

Figure 5-33. RT-581()/URC-9, RF and PA Amplifier Assembly, Tuner 2108

Figure 5-34. RT-581()/URC-9, Frequency Multiplier-Oscillator, Disassembly Points (A)

Figure 5-35. RT-581()/URC-9, Frequency Multip1ier-Oscillator, Disassembly Points (B)

Figure 5-36. RT-581()/URC-9, Frequency Multiplier-Oscillator, Master Oscillator (V201), Rear View

Figure 5-37. RT-581()/URC-9, Frequency Multiplier-Oscillator, Bottom View, Master Oscillator Removed

Figure 5-38. RT-581()/URC-9, Frequency Multiplier-Oscillator Chassis, Bottom View

Figure 5-39. RT-581()/URC-9, Frequency Multiplier-Oscillator, Master Oscillator, Left Side

Figure 5-40. RT-581()/URC-9, Frequency Multiplier-Oscillator, Master Oscillator, Right Side

Figure 5-41. RT-581()/URC-9, First IF Amplifier, Top View

Figure 5-42. RT-581()/URC-9, First IF Amplifier, Bottom View (A)

Figure 5-43. RT-581()/URC-9, First IF Amplifier, Bottom View (B)

Figure 5-44. RT-581()/URC-9, First IF Amplifier, Front View

Figure 5-45. RT-581()/URC-9, First IF Amplifier, Synchronization

Figure 5-46. RT-581()/URC-9, Second IF Amplifier, Top View

Figure 5-47. RT-581()/URC-9, Second IF Amplifier, Bottom View

Figure 5-48. RT-581()/URC-9, Second IF Amplifier, Front View

Figure 5-49. RT-581()/URC-9, Third IF Amplifier, Top View

Figure 5-50. RT-581()/URC-9, Third IF Amplifier, Bottom View (A)

Figure 5-51. RT-581()/URC-9, Third IF Amplifier, Bottom View (B)

Figure 5-52. RT-581()/URC-9, Audio Frequency Amplifier and Modulator Assembly, Top View

Figure 5-53. RT-581()/URC-9, Audio Frequency Amplifier and Modulator Assembly, Bottom View

Figure 5-54. RT-581()/URC-9, Relay-Filter, Top View

Figure 5-55. RT-581()/URC-9, Relay-Filter, Left Side

Figure 5-56. RT-581()/URC-9, Relay-Filter, Right Side

Figure 5-57. RT-581()/URC-9, R/T Centrifugal Fan (Globe Industries)

SHIPBOARD REPAIRABLE
Figure 5-58. RT-581()/URC-9, R/T Centrifugal Axial Fan (Collins Radio Company Contracts NObsr 87290 and NObsr 89509)

NOT SHIPBOARD REPAIRABLE
A. MCN 1 Through 185 On1y

NOT SHIPBOARD REPAIRABLE
B. MCN 186 and Over

Figure 5-59. RT-581()/URC-9, R/T Centrifugal Axial Fan (Stewart-Warner Electronics Contract NObsr 91068)

NOT SHIPBOARD REPAIRABLE

Figure 5-60. RT-581()/URC-9, R/T Centrifugal Fan (Dubrow Electronics Industries Contracts NObsr 91149, 91284, and 93164)

NOT SHIPBOARD REPAIRABLE

Figure 5-61. RT-581()/URC-9, R/T Centrifugal Axial Fan (Contract NObsr 95140)

Figure 5-62. RT-581()/URC-9, Receiver-Transmitter Case CY-2959/URC-9, Front View

NOTE: Used on ships with AN/SSQ-54 Indicator only.
Figure 5-63. RT-581()/URC-9, Receiver-Transmitter Case CY-2959/URC-9, Rear View

Figure 5-64. RT-581()/URC-9, Case CY-2959/URC-9, Centrifugal Fan

NOTE: Graduated in TENTHS (.1 MHz) on RT-581/URC-9 only

Figure 5-65. RT-581()/URC-9, Front Pane1, Front View

Figure 5-66. RT-581()/URC-9, Front Pane1, Rear View

Figure 5-67. RT-581()/URC-9, Frequency Selector, Top View

Figure 5-68. RT-581()/URC-9, Frequency Selector, Right Rear View

Figure 5-69. RT-581/URC-9, Frequency Selector, Front View

Figure 5-70. RT-581A/URC-9, Frequency Selector, Front View

Figure 5-71. RT-581()/URC-9, Frequency Selector, Bottom View

Figure 5-72. RT-581()/URC-9, Frequency Selector, Rear View

Figure 5-73. RT-581/URC-9, Frequency Selector, Front View of Rear Plate

Figure 5-74. RT-581A/URC-9, Frequency Selector, Front View of Rear Plate

Figure 5-75. RT-581/URC-9, Frequency Selector, Front View of Rear Plate, Small Gear Removed

Figure 5-76. RT-581A/URC-9, Frequency Selector, Front View of Rear P1ate, Small Gear Plate Removed

Figure 5-77. RT-581()/URC-9, Frequency Selector, Rear View of Front Plate

Figure 5-78. RT-581()/URC-9, Frequency Selector, Left Top View

NOTE: Graduated in TENTHS (.1 MHz) on RT-581/URC-9

Figure 5-79. RT-581A/URC-9, Frequency Selector, Front View, Set to Preselect 220 MHz

Figure 5-82. Power Supply PP-2702/URC-9, Front View

Figure 5-83. Power Supply PP-2702/URC-9, Top View

Figure 5-84. Power Supply PP-2702/URC-9, Bottom View

Figure 5-85. Radio Frequency Amplifier AM-1565/URC, Extended on Slides

Figure 5-86. Radio Frequency Amplifier AM-1565/URC, Extended and Tilted

Figure 5-87. Radio Frequency Amplifier AM-1565/URC, Top View

Figure 5-88. Radio Frequency Amplifier AM-1565/URC, Front View, Parts Location

Figure 5-89. Radio Frequency Amplifier AM-1565/URC, Bottom View

Figure 5-90. Radio Frequency Amplifier AM-1565/URC, Inside of Case

Figure 5-91. AM-1565/URC, Controls and Indicators

Figure 5-92. AM-1565/URC, Preset Tuning Potentiometers

Figure 5-93. AM-1565/URC, Location of Alignment Points

Figure 5-94. AM-1565/URC, Front Panel Rear View

Figure 5-95. AM-1565/URC, Output Loading Adjustment Subassembly, Exploded View

Figure 5-96. AM-1565/URC, Autopositioner

Figure 5-97. AM-1565/URC, Autopositioner, Switch Section Orientation

ENERGIZED POSITION

DEENERGIZED POSITION

Figure 5-98. AM-1565/URC, Autopositioner, Relay K501, Contact Adjustment

Figure 5-99. AM-1565/URC, Autopositioner, Exploded View,
Disassembly Procedure
5-181/(5-182 blank)

Figure 5-100. AM-1565/URC, Autopositioner, Exploded View, Parts Location

Figure 5-101. AM-1565/URC, Power Amplifier Subassembly, Parts Location (A)

Figure 5-102. AM-1565/URC, Power Amplifier Subassembly, Parts Location (B)

Figure 5-103. AM-1565/URC, Power Amplifier Subassembly, Parts Location (C)

Figure 5-104. AM-1565/URC, Power Amplifier Subassembly, Parts Location (D)

Figure 5-105. AM-1565/URC, Power Amplifier Subassemb1y, Parts Location (E)

Figure 5-106. AM-1565/URC, Power Amplifier Subassembly, Parts Location (F)

Figure 5-107. AM-1565/URC, Power Amplifier Subassembly, Parts Location (G)

Figure 5-108. AM-1565/URC, Power Amplifier Subassembly, Parts Location (H)

0
\vdots
$\stackrel{1}{0}$
0
Figure 5-109. AM-1565/URC, Power Amplifier Subassembly,
Parts Location (I)

Figure 5-110. AM-1565/URC, Power Amplifier Subassembly, Parts Location (J)

Figure 5-111. AM-1565/URC, Power Amplifier Subassembly, Parts Location (K)

Figure 5-112. AM-1565/URC, Servo Amplifier Subassembly, Top View

Figure 5-113. AM-1565/URC, Servo Amplifier Subassembly, Bottom View (A)

Figure 5-114. AM-1565/URC, Servo Amplifier Subassembly, Bottom View (B)

Figure 5-115. AM-1565/URC, Amplifier B1ower Assembly

Figure 5-116. Radio Set Contro1 C-3866/SRC, Removal of Chassis

Figure 5-117. Radio Set Control C-3866/SRC, Plug P201 Removed

Figure 5-118. Radio Set Control C-3866/SRC, Top View

Figure 5-119. Radio Set Control C-3866/SRC, Bottom View

Figure 5-120. Radio Set Control C-3866/SRC, Rear View (A)

Figure 5-121. Radio Set Control C-3866/SRC, Rear View (B)

Figure 5-122. Radio Set Control C-3866/SRC, Rear View, Cover Plate Removed

Figure 5-123. C-3866/SRC, Controls and Indicators

Figure 5-124. C-3866/SRC, Squelch Control Board

Figure 5-125. C-3866/SRC, Stepping Relay K206, Front Viéw

Figure 5-126. C-3866/SRC, Stepping Relay K206, Top View

Figure 5-127. C-3866/SRC, Stepping Relay K206, Rear View
o

Figure 5-128. Radio Set AN/SRC-20(), Interconnection Diagram

Figure 5-129. Radio Set AN/SRC-21(), Interconnection Diagram

2. For ships with an/sso-54 installed

Figure 5-130. Radio Set AN/URC-9 (), Interconnection Diagram

Figure 5-136. Power Supply PP-2702/URC-9, Schematic Diagram

reference:
PARAGGAPH $3-37$
PARAGRAPH $3-123$

Figure 5-141. RT-581()/URC-9, Frequency MultiplierOscillator Assembly, Schematic Diagram

Figure 5-143. RT-581/URC-9, Second IF Amplifier Assembly, Schematic Diagram (AN/URC-9 ONLY)

D. UNLESS OTHERWISE MNOICATED, ALL VOLTAGES
AEE OC TAKE WTH A HIGH IN PUT IMPEDANGE

ARE DC TAKEN WITH A HIOH AMPUT IMPEDANCE
VTVM, AND MEASURED TO GROUNO (CHASSIS).
Reference:
PaRCE:

NOTES

A. UNLESS OTHERWISE INDICATED; ALL RESISTANCE

VALUES ARE IN OHMS, AND ALL CAPACITANCE
VALUES ARE IN PICOFARADS
RESISTANCES LESS THAN ONE OHM NOT SHOWN

REFERENCE:

PARAGRAPH 3-70

Figure 5-147. RT-581()/URC-9, Broadband Sidetone Amplifier Assembly, Schematic Diagram

Figure 5-148. RT-581()/URC-9, RelayFilter Assembly, Schematic Diagram

Figure 5-149. RT-581()/URC-9, Part of Front Panel Assembly, Schematic Diagram

Figure 5-154. AM-1565/URC, Autopositioner, Schematic Diagram

Figure 5-155. AM-1565/URC, Power Amplifier

affrence:
PARAGRAPH 3-89

 call resistor values are in onas
 2. RV202 is A 24 -volt vanistor
reference
Paraggaper 3 -314

NOTES: I. ALL RESISTANCE VALUES IN OHMS.
2. SIBO3 SHOWN IN POSITION IB (CHAN SEL KNOE SET ON POSITION 16).
3. SIBOI CLOSED WHEN RIBO4 IS IN EXTREME CCW POSITION.

Figure 5-158. Radio Set Control C-2383/URC-9, Schematic Diagram

CHAPTER 6

PARTS LIST

6-1. INTRODUCTION.

$6-2$. This section provides reference designation data used to identify the units, assemblies, and parts of Radio Sets AN/SRC-20() and AN/SRC-21(). The reference designation data is primarily in tabular form and is intended to supplement the troubleshooting, maintenance, and repair information presented in other chapters of the manual. The following is an example of the referenced designations used:

EXAMPLE:

READ AS: Second (2) filter (FL) of frame assembly (Al) of Radio Set AN/ URC-9() receiver-transmitter (1A1).

6-3. LIST OF UNITS.
6-4. The equipment units of Radio Sets AN/SRC-20() and AN/SRC-21() are 1isted in numerical order, by unit number, in table 6-1. Table 6-1 provides the following information for each unit:
(1) quantity per equipment, (2) official name, (3) designation, (4) colloquial name, and (5) location of the first page of the unit maintenance parts listing in table 6-2.

6-5. MAINTENANCE PARTS LIST.

6-6. Table 6-2 lists all units and their maintenance parts. The table is arranged in the same unit numerical order as table 6-1 and provides the following information: (1) complete reference designation of each unit, assembly, and part, (2) noun name and brief description, and (3) identification of the
illustration which pictorially locates the part. Maintenance parts for each unit are arranged in alpha-numerical sequence by class (generic group). Unless otherwise indicated, referenced drawings apply to the equipment manufacturer, and all type numbers apply to the part manufacturer.

NOTE
Some units listed in table 6-2 are only contained in certain configurations of the radio set. These units are identified by a parenthetical suffix which lists the specific radio set that contains the unit.

6-7. LIST OF MANUFACTURERS.
6-8. Table 6-3 lists the manufacturers of the parts used in the radio sets and includes the manufacturer's federal identification code referenced in table 6-2.

6-9. SUPPLY SUPPORT INFORMATION.
6-10. The Allowance Parts List (APL) issued by the Electronics Supply Office (ESO) includes federal stock numbers (FSN) and source maintenance and recoverability codes. Separate APL's are issued for each configuration (i.e., AN/ SRC-20, AN/SRC-20A, etc.) of each radio set. Refer to the APL prepared for the applicable equipment to identify stock numbers and other pertinent information. The Consolidated Repairable Item List (NAV SUP Publication 4102), and Mandatory Turn-In Repairable Material Policy and Procedures for Handing (NAV-SANDA Instruction 4440.117) contains information concerning the current modular classification and turn-in procedure; and ESO Instruction 4410 provides information relating to the addition of spare modules to the APL.

Table 6-1. Equipment Units of Radio Sets AN/SRC-20() and AN/SRC-21()

UNIT NO.	QTY	NAME OF UNIT	DESIGNATION	COLLOQUIAL NAME	PAGE
1	1	Radio Set	AN/URC-9 or AN/URC-9A	Radio Set	6-3
1 A1	1	Receiver-Transmitter	$\begin{gathered} \text { RT-581/URC-9 or } \\ \text { RT-581A/URC-9 } \end{gathered}$	R-T Unit	6-3
1A1A1	1	Main Frame	N/A	Main Frame	6-3
1A1A2	1	Amplifier Assembly	N/A	RF and PA Amplifier	6-6
1A1A 3	1	Frequency Multiplier	N/A	Frequency MultiplierOscillator	6-12
1A1A4	1	1st IF Amplifier	N/A	1st IF Amplifier	6-17
1A1A5	1	2nd IF Amplifier	N/A	2nd IF Amplifier	6-22
1A1A6	1	3rd IF Amplifier	N/A	3rd IF Amplifier	6-28
1A1A7	1	Relay-Filter	N/A	Relay-Filter	6-31
1A1A8	1	Front Panel	N/A	Front Panel	6-32
$1 \mathrm{AlA9}$	1	Audio Amplifier and Modulator Assembly	N/A	Audio Amplifier	$6-42$ $6-45$
1A1A10	1	Filter Assembly	N/A	Filter Assembly	6-45
1A1A11	1	Fan, Centrifugal	N/A	Fan	6-46
1A1A12	1	Frequency Selector	N/A	Frequency Selector	6-48
1A1A13	1	Directional Coupler	N/A	Directional Coupler	6-63
1A1A14	1	Broadband Sidetone Amplifier	N/A	Broadband Amplifier	6-64
1A2	1	Case, ReceiverTransmitter	CY-2959/URC-9	Case	6-64
1 A 3	1	Power Supply	PP-2702/URC-9	Power Supply	6-67
1 A 4	1	Installation Kit	MK-620/UR	Installation Kit	6-71
1W1	1	Cable Assembly	CX-7258/U	Cable Assembly	6-71
1W2	1	Cable Assembly	CX-7259/U	Cable Assembly	6-71
1W3	1	Cable Assembly	CX-8521/URC-9	Cable Assembly	6-71
1W1605	1.	Cable Assembly	CX-7300/URC-9	Cable Assembly	6-71
1W2202	1	Cable Assembly	CX-7260/URC-9	Cable Assembly	6-71
2	1	Control, Radio Set	C-3866/SRC	Control	6-72
$2 \mathrm{AlO1}$	1	Installation Kit	MK-622/UR	Installation Kit	6-72
3	1	Amplifier, Radio Freq.	AM-1565/URC	RF Amplifier	6-78
3 Al	1	Chassis Assembly	N/A	Chassis	6-79
3 A 2	1	Cabinet, Eiectrical Equipment	N/A	Case	6-85
3A3	1	Power Amplifier Assembly	N/A	Power Amplifier	6-89
3 A 4	1	Servo Amplifier Ascembly	N/A	Servo Amplifier	6-100
3A5	1	Front Panel Assembly	N/A	Front Panel	6-103
3A6	1	Blower Assembly	N/A	B1ower	6-114
3A7	1	Blower Assembly	N/A	Blower	6-115
3A8	1	Installation Kit	MK-621/UR	Installation Kit	6-115
4W1604	1	Cable Assembly	CG-2232/U	Cable Assembly	6-115
5W1902	1	Cable Assembly	CX-6102 (2 ft)	Cable Assembly	6-115
6W1905	1	Cable Assembly	CX-6102 (3.5 ft)	Cable Assembly	6-115
7W1906	1	Cable Assembly	$\mathrm{CX}-6105(1.5 \mathrm{ft})$	Cable Assembly	6-115
8W1907	1	Cable Assembly	$\mathrm{CX}-6105(3.5 \mathrm{ft})$	Cab1e Assembly	6-115
9W1908	1	Cable Assembly	$C X-6104$	Cable Assemb1y	$6-116$
10		Rack Assemblies	$\begin{aligned} & \mathrm{MT}-2299 / \mathrm{UR} \\ & \mathrm{MT}-2300 / \mathrm{UR} \end{aligned}$	Rack Assemblies	6-116

Table 6-2. Mainteriance Parts List

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RADIO SET AN/URC-9		
UNIT 1	RADIO SET: AN/URC-9; 225.0 to 399.9 MHz freq range, 115 vac single phase, 50 to 60 Hz ; 16 watt radiated power; 13-13/16 in. by 19 in. by $19-1 / 2$ in. o/a dim.; Mfr 13499 part no. 522-2974-004	1-3
UNIT 1A1	RECEIVER-TRANSMITTER: RT-581/URC-9; 16 watts pwr output; 225.0 to $399.9 \mathrm{MHz} ; 1750$ channels; 10 in. by $11-3 / 4 \mathrm{in}$. by 15-1/2 in. o/a dim.; Mfr 13499 part no. 593-8265-006	1-3
RADIO SET AN/URC-9A		
UNIT 1	RADIO SET: AN/URC-9A; 225.00 to 399.95 MHz freq range, 115 vac or 230 vac , single phase, 50 to $60 \mathrm{~Hz} ; 16$ watt radiated power; 13-13/16 in. by 19 in. by 19-1/2 in. o/a dim.; Mfr 03565 part no. D6299	1-3
UNIT 1A1	RECEIVER-TRANSMITTER: RT-581A/URC-9; 16 watts pwr output; 225.00 to $399.95 \mathrm{MHz} ; 3500$ channels; 10 in . by $11-3 / 4 \mathrm{in}$. by 15-1/2 in. o/a dim.; Mfr 03565 part no. D-6282	1-3
RT-581()/URC-9, FRAME ASSEMBLY (MAIN)		
$\begin{aligned} & 1 \mathrm{~A} 1 \mathrm{~A} 1 \\ & (1-100) \end{aligned}$	FRAME ASSEMBLY (MAIN) : Mfr 03565 part no. D6098	5-18
C1	CAPACITOR, FIXED, PAPER DIELECTRIC: 1.0 uf $+20 \% 400 \mathrm{vdc}, \mathrm{Mfr}$ 03565 part no. B6442	5-18
FL1	FILTER: MIL type CZ24BKB474	5-17
FL2	FILTER: 0.375 in. dia by 1.781 in. 1 g o/a dim.; excl end loops; Mfr 13499 part no. 553-2099-003	5-17
FL 3	FILTER: Same as FL2	5-17
FL 4	FILTER: 0.375 in. dia by 1.781 in. 1 g o/a dim.; excl end loops; Mfr 13499 part no. 553-2102-003	5-17
FL5	FILTER: Same as FL2	5-17
FL6	FILTER: Same as FL2	5-17
FL7	FILTER: Same as FL4	5-17
FL8	FILTER: Same as FL4	5-17
FL9	FILTER: Same as FL4	5-17
FL10	FILTER: Same as FL4	5-17
FL11	FILTER: Same as FL4	5-17
FL12	FILTER: Same as FL4	5-17
FL13	FILTER: Same as FL4	5-17
FL14	FILTER: Same as FL2	5-17
FL15	FILTER: MIL type CZ24BKB224	5-17
FL16	FILTER: Same as FL2	5-17
FL17	FILTER: Same as FL2	5-17
FL18	FILTER: Same as FL4	5-17

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \hline \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581()/URC-9, FRAME ASSEMBLY (MAIN) (Continued)		
FL19	FILTER: Same as FL2	5-17
FL 20	FILTER: Same as FL2	5-17
FL21	FILTER: Same as FL2	5-17
FL22	FILTER: Same as FLl5	5-17
FL 23	FILTER: Same as FL15	5-17
FL24	FILTER: Same as FL15	5-17
FL25	FILTER: Same as FLl5	5-17
FL26	FILTER: Same as FL2	5-17
FL27	FILTER: Same as FL2	5-17
FL28	FILTER: Same as FL2	5-17
FL29	FILTER: Same as FL2	5-17
FL30	FILTER: Same as FL4	5-17
FL31	FILTER: Same as FL4	5-17
FL32	FILTER: MIL type CZ24BKF473	5-17
FL33	FILTER: Same as Fl32	5-17
FL34	FILTER SUBASSEMBLY: Same as FL2	5-17
FL35	FILTER SUBASSEMBLY: Same as FL2	5-17
FL36	FILTER: Same as FL15	5-17
H1	CONNECTOR COVER PLATE: 3 in. by 2 in. by 0.032 in. thick; aluminum; retains P501; BuShips Dwg STD 404SK1659332/4	5-21
H2	CONNECTOR COVER PLATE: $6-7 / 32 \mathrm{in}$. by $2-3 / 4 \mathrm{in}$. by 0.032 in . thick; aluminum; retains P1051; BuShips Dwg STD 404SK1659332/5	5-20
H3	CONNECTOR COVER PLATE: $8-3 / 16$ in. by $1-3 / 4 \mathrm{in}$. by 0.032 in . thick; aluminum; retains P201, P703, and P1201; BuShips Dwg STD 404SK1559332/6	5-18
H4	CONNECTOR COVER PLATE: 3-7/16 in. by 1-3/16 in. by 0.032 in . thick; aluminum; retains P301, P401, and P1601; BuShips Dwg STD 404SK1659332/7	5-14
H5	CONNECTOR COVER PLATE: $6-15 / 32 \mathrm{in}$. by $1-5 / 16 \mathrm{in}$. by 0.032 in . thick; aluminum, retains P101; BuShips Dwg STD 404SK1659332/8	5-14
J1	CONNECTOR, RECEPTACLE, ELECTRICAL: 18 female contacts, $7.5 \mathrm{amps} ;$ straight shape; p/o W1; Mfr 80586 part no. FM18F79	5-19
J2	CONNECTOR, RECEPTACLE, ELECTRICAL: 11 female contacts, 7.5 amps ; straight shape; p/o Wl; Mfr 91491 part no. MS20-11DG030	5-15
J3	CONNECTOR, RECEPTACLE, ELECTRICAL: 14 female contacts, $7.5 \mathrm{amps} ;$ stralght shape; p/o W1; Mfr 11453 part no. 1040-14S	5-19
J4	CONNECTOR, RECEPTACLE, ELECTRICAL: Same as J2 p/o W1	5-19
J5	CONNECTOR, RECEPTACLE, ELECTRICAL: Same as J3 p/o W1	5-16
J6	CONNECTOR, RECEPTACLE, ELECTRICAL: 20 female contacts, $7.5 \mathrm{amps} ;$ straight shape; p/o W1; Mfr 80586, P/N GM20F79	5-17
J7	CONNECTOR, RECEPTACLE, ELECTRICAL: 26 female contacts, arc resistant plastic dielectric, copper alloy contacts, silver plated; 500 v ; $7.5 \mathrm{amps} \mathrm{dc} ; \mathrm{p} / \mathrm{O} \mathrm{Wl} ; \mathrm{Mfr} 80586$, P/N GM26F79	5-16
J8	CONNECTOR, RECEPTACLE, ELECTRICAL: 41 female contacts, $7.5 \mathrm{amps} ;$ straight shape; Mfr 80586 part no. GM41F79	5-15

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581()/URC-9, FRAME ASSEMBLY (MAIN) (Continued)		
J9	CONNECTOR, RECEPTACLE, ELECTRICAL: Same as J2 p/o W1	5-19
J10	CONNECTOR, RECEPTACLE, ELECTRICAL: Same as J2 p/o W1	5-15
J11	CONNECTOR, RECEPTACLE, ELECTRICAL: Same as J6 p/o W1	5-15
J12	CONNECTOR, RECEPTACLE, ELECTRICAL: Same as J1 p/o W1	5-15
J13	NOT USED	
J14	CONNECTOR, RECEPTACLE, ELECTRICAL: Same as J6 p/o W1	5-17
J15	CONNECTOR, RECEPTACLE, ELECTRICAL: Same as J7 p/o W1	5-16
K1	RELAY ARMATURE: $1 \mathrm{~A}, 10$ ma at $300 \mathrm{vdc}, 1 \mathrm{~B}, 10$ ma at $125 \mathrm{vdc}, 1 \mathrm{~B}$, 400 ma at 28 vdc inductive load; 28 vdc nom coil; 237 ohms $\pm 10 \%$ at $+25^{\circ} \mathrm{C}$ coil resistance; continuous duty; hermetically sealed; Mfr 77523 part no. 22320-1	5-16
K2	RELAY, ARMATURE: 1C, n.o. Side rated at 235 ma at $300 \mathrm{vdc}+190$ vac rms superimposed N.C. side 20 ma at 150 vac rms resistive; $1 \mathrm{~A}, 500$ ma at $50 \mathrm{vdc} ; 28 \mathrm{vdc}$ nom coil; 237 ohms $\pm 10 \%$ coil resistance; continuous duty; hermetically sealed; Mfr 77523 part no. 22320-0	5-16
01	BRACKET ASSEMBLY: Aluminum Bracket; 2.062 in. by 7.393 in. by 8.849 in. ; incl 3 gold plated springs; Mfr 13499 part no. 553-1415-003	5-18
02	MANIFOLD ASSEMBLY: Brass manifold w/silicone rubber gasket; $2-1 / 2$ in. by $3-1 / 64$ in. by 4.265 in. approx; Mfr 03565 part no. B6619	5-19
P1	CONNECTOR, PLUG ELECTRICAL: 37 非16 male contacts; pressurized; $700 \mathrm{vdc}, 500 \mathrm{vac}, \mathrm{rms} ; \mathrm{Mfr} 02660$ part no. $7-8721$	5-17
P2	NOT USED	
P3	P/O W4	5-19
P4	P/O W4	5-18
P5	P/0 W5	5-19
P6	P/0 W5	5-19
P7	NOT USED	
P8	CONNECTOR, PLUG, ELECTRICAL: straight shape; low loss plastic dielectric; 5 amps; Mfr 94375 part no. 131B110-0A	5-19
P9	CONNECTOR, PLUG, ELECTRICAL: Low loss plastic dielectric; Mfr 13499 part no. 357-9739-00	5-19
P10	CONNECTOR, PLUG, ELECTRICAL: Same as P8	5-19
P11	CONNECTOR, PLUG, ELECTRICAL: Low loss plastic dielectric; 50 ohms, 500 vac rms; Mfr 94375 part no. 0722-50	5-19
R1	RESISTOR, FIXED, COMPOSITION: 39,000 ohms $\pm 10 \%$, $4 \mathrm{~W} ; \mathrm{Mfr} 01121$ part no. HM3931	5-18
R2	NOT USED	
R3	RESISTOR, FIXED, WIREWOUND: MIL type RE70G8060	5-19
W1	WIRING HARNESS, BRANCHED: c/o J-1 through J-12, J-14, P3 and J-15; Mfr 03565 part no. D-6199	5-15
W4	CABLE ASSEMBLY RF: Mfr 98278 part no. 30-188-1	5-13
W5	CABLE ASSEMBLY RF: Mfr 98278 part no. 30-189-1	5-19

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \\ & \hline \end{aligned}$
RT-581()/URC-9, FRAME ASSEMBLY (MAIN) (Continued)		
W7	CABLE ASSY RF: Mfr 13499 part no. 549-3376-002	
W8	CABLE ASSY RF: Mfr 13499 part no. 549-3368-002	
XK1	SOCKET, RELAY: MIL type M12883/09-03	5-16
XK2	SOCKET, RELAY: Same as XKI	5-16
RT-581()/URC-9, RF and PA AMPLIFIER ASSEMBLY		
$\begin{aligned} & \text { IA1A2 } \\ & (101-199) \end{aligned}$	AMPLIFIER ASSEMBLY: RF and PA; Mfr 03565 part no. C-6489	5-22
C101	CAPACITOR, FIXED, MICA DIELECTRIC: 500 uuf $\pm 20 \%$, $500 \mathrm{vdc} ; \mathrm{Mfr}$ 00853 part no. M79500500VEPORM20PCT	5-24
C102	CAPACITOR, FIXED, CERAMIC DIELECTRIC: MIL type CC22CH200J	5-28
C103	CAPACITOR, FIXED, MICA DIELECTRIC: MIL type CB11RE511J	5-28
C104	CAPACITOR, FIXED, MICA DIELECTRIC: MIL type CB11RE102K	5-28
C105	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 7 uuf ± 0.25 uuf 500 vdc ; Mfr 90177 part no. CD8C070C	5-28
C106	CAPACITOR, FIXED, CERAMIC DIELECTRIC: MIL-C-20B type CC20CK020C	5-28
C107	CAPACITOR, VARIABLE, GLASS DIELECTRIC: 1 section; 0.5 uuf to 3.0 uuf; 1-9/16 in. 1 g o/a, $1-5 / 32 \mathrm{in}$. body $1 \mathrm{~g}, 1 / 4 \mathrm{in} . \mathrm{w}$ across flats; Mfr 14674 part no. 680081	5-29
C108	CAPACITOR, FIXED, CERAMIC DIELECTRIC: MIL-C-20B type CC20CH040C	5-28
C109	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C101	5-25
C110	CAPACITOR, FIXED, CERAMIC DIELECTRIC: MIL-C-20D type CC20SK020C	5-28
C111	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C101	5-25
C112	CAPACITOR, SHEET, MICA DIELECTRIC: 255 uuf; 0.718 in. by 0.796 in.; Mfr 13499 part no. 553-2035-002	5-28
C113	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C101	5-25
C114	CAPACITOR, FIXED, CERAMIC DIELEGTRIC: 20 uuf $\pm 10 \% 500$ vdc; Mfr 90177 part no. CD8R200K	5-28
C115	CAPACITOR, VARIABLE, GLASS DIELECTRIC: Same as Cl07	5-29
C116	CAPACITOR, FIXED, MICA DIELECTRIC: Same as Cl03	5-25
C117	CAPACITOR, FIXED, CERAMIC DIELECTRIC: MIL-C-20D type CC20SK1R5C	5-28
C118	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C101	5-25
C119	CAPACITOR, SHEET, MICA DIELECTRIC: Copper; 0.094 in. by 0.812 in. by 0.905 in.; Mfr 13499 part no. 553-2033-002	5-28
C120	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C101	5-28
C121	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C114	5-28
C122	CAPACITOR, VARIABLE GLASS DIELECTRIC: Same as C107	5-29
C123	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C117	5-28
C124	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 500 uuf, GMV, 300 vdc w; Mfr 71590 part no. DA718-001	5-18
C125	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C124	5-28
C126	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C114	5-28
C127	CAPACITOR, VARIABLE, GLASS DIELECTRIC: Same as C107	5-29
C128	CAPACITOR ASSEMBLY: Brass, gold flash/silver plate finish; 0.107 in. by $3 / 8$ in, by $1-1 / 8$ in; p/o Z107; Mfr 13499 part no. 553-2287-003	5-29

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \hline \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581()/URC-9, RF and PA AMPLIFIER ASSEMBLY (Continued)		
C129	CAPACITOR, FIXED: MIL type CK61BX471K	5-27
C130	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C103	5-25
C131	CAPACITOR ASSEMBLY: Glass supported teflon, copper both sides; gold plate finish; 0.007 in. by $11 / 16$ in. by $2-5 / 8$ in. p/o 0/34; Mfr 13499 part no. 553-2057-002	5-27
C132	C/O 0-136; H-109; p/o 2108	5-13
C133	CAPACITOR, FIXED, MICA DIELECTRIC: 500 uuf $\pm 10 \%, 1000 \mathrm{vdc}$; p/o Z108; Mfr 00853 part no. M4-500K	5-25
C134	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C101	5-25
C135	CAPACITOR, FIXED, CERAMIC DIELECTRIC: MIL-C-20D type CC 20 CH 060 C	5-27
C136	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as Cl02	5-28
C137	CAPACITOR: p/o 0123 Mfr 13499 part no. 553-2239-002	5-27
C138	CAPACITOR ASSEMBLY: Inc1 2 capacitors, 4 plates and hardware; p/o 2108; Mfr 13499 part no. 553-2061-002	5-27
C139	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C106	5-28
C140	CAPACITOR: 400 uuf $\pm 20 \%$; 1000 vdc test voltage; Mfr 13499 part no. 553-2238-002	5-29
C141	CAPACITOR, VARIABLE, GLASS DIELECTRIC: Same as C107	5-29
C142	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 500 uuf $\pm 20 \% 1000$ vdc; Mfr 71590 part no. DD501	5-29
C143	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C124	5-28
C144	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C129	5-25
C145	CAPACITOR, FIXED, CERAMIC DIELECTRIC: MIL-C-20B type CC20CJO30C	5-29
C146	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C129	5-29
C147	CAPACITOR, FIXED, MICA: 400 uuf $\pm 20 \% ; 1000$ vdc test voltage; Mfr 13499 part no. 553-2240-002	5-29
C148	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C129	5-29
H101	WASHER, FLAT: Copper, bright alloy; 0.125 in. id, 0.250 in. od, 0.016 in thk; Mfr 13499 part no. 543-5575-003	5-23
H102	SCREW, MACHINE: Stainless steel, passivate finish; phillips recessed fillister head; $8-32 \mathrm{NC}-2 \mathrm{~A}$ thd, $1 / 2$ in. 1 g ; Mfr 13499 part no. 553-1853-002	5-22
H103	WASHER, FLAT: Cres; 0.127 in. id, 0.250 in. od, 0.033 in. thk; Mfr 13499 part no. 553-1854-002	5-29
H104	SCREW, MACHINE: Stainless steel, passivate finish; phillips cross-recessed fillister head; 8-32 NC-2A thd, $5 / 8$ in. 1 g ; Mfr 13499 part no. 553-1987-002	5-22
H105	NUT, PLAIN, HEXAGON: Brass; $3 / 8$ in. w across flats by $1 / 16$ in. thk; 4-40 thd; Mfr 13499 part ${ }^{\text {no. }} 553-2006-002$	5-29
H106	BUMPER, PLASTIC: 0.093 in . by 0.250 in. by $0.312 \mathrm{in} . ; \mathrm{Mfr} 13499$ part no. 553-2004-002	5-29
H107	WASHER, FLAT: Cres; 0.255 in. id, 0.437 in. od, 0.012 in. thk; Mfr 13499 part no. 553-1421-002	5-29
H108	NUT, SLEEVE: Brass; 0.312 in. dia by 0.437 in. 1 g o/a; 8-32 internal thd, 0.276 in. 1 g ; Mfr 13499 part no. 553-2247-002	5-18

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION'	$\begin{aligned} & \text { FIG } \\ & \text { NO.. } \end{aligned}$
RT-581()/URC-9, RF and PA AMPLIFIER ASSEMBLY (Continued)		
H109	SCREW, EXTERNALLY RELIEVED BODY: Brass; 3/8 in. dia by 3/64 in. h head; 8-32 thd, 0.579 in. $1 \mathrm{~g} ; 11 / 16$ in 1 g o/a; Mfr 13499 part no. 553-2248-002	5-18
H110	WASHER, NONMETALLIC: Tef1on; 0.187 in. id, 0.250 in. od, 0.095 in thk; Mfr 13499 part no. 553-2250-002	5-27
H111	WASHER, FLAT: Brass, bright alloy plate; 0.130 in. dia hole, 0.245 in. dia, 0.016 in thk outside dim.; Mfr 13499 part no 504-0736-002	5-27
J101	CONNECTOR, RECEPTACLE, ELECTRICAL: 850 v rms peak voltage; 70 ohms impedance, low loss plastic dielectric; 5/8 in. 1g; Mfr 94375 part no. R700	5-24
J102	CONNECTOR, RECEPTACLE, ELECTRICAL: Same as J101	5-24
J103	JACK, TIP: For use with 0.080 diameter male contact; teflon; 5.5 amps; Mfr 98291 part no. SKT5BCORANGE	5-27
J104	JACK, TIP: For use with 0.080 diameter male contact; teflon; 5.5 amps; continuous duty; Mfr 98291 part no. SKT5BCYELLOW	5-27
J105	JACK, TIP: For use with 0.080 diameter male contact; teflon; 5.5 amps; continuous duty; Mfr 98291 part no. SKT5BCGREEN	5-27
J106	CONNECTOR, BUSHING: Tef1on; $3 / 32$ in. id, 0.281 in. od, 0.133 in. 1g; Mfr 13499 part no. 553-2023-002	5-13
J107	CONNECTOR, RECEPTACLE, ELECTRICAL: Same as J101	5-28
J108	P/O K101	5-24
J109	P/O K101	5-25
J110	TERMINAL, FEEDTHRU, INSULATED: Brass w/teflon insulation; 0.172 in. dia; 0.515 in. 1 g o/a; Mfr 98291 part no. FTSM1	5-28
J111	JACK, TIP: For use with 0.080 diameter male contact; teflon; 5.5 amps, continuous duty; Mfr 98291 part no. SKT5BCBROWN	5-25
J112	P/O K102	5-24
J113	P/O K102	5-24
J114	BUSHING, Teflon; $3 / 32$ in. id, 0.281 in. od, 0.155 in. $1 g ;$ Mfr 13499 part no. 553-2022-002	5-13
J115	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 rd male contact; 500 vdc ; low loss plastic dielectric; straight shape; Mfr 94375 part no. 0750	5-14
K101	RELAY, ARMATURE: 1 C contact, 30 w at max rated current; 1 inductive winding, 275 ohms dc coil resistance; 1.562 in. h, 1.750 in. w. 2.030 in. $1 g$ o/a; continuous duty; air arc quenching; Mfr 74868 part no. 304-11348	5-24
K102	```RELAY, ARMATURE: 2C contact; 500 vdc electrical rating; 1 inductive winding; 100 ohms dc coil resistance; 13/16 in. h., 2-3/4 in. 1g; continuous duty; Mfr 04221 part no. 140-3714```	5-24
L101	CHOKE ASSEMBLY: 13 turns close bifilar wound; 0.050 ohms ea winding; 0.192 in. dia by 0.547 in .1 g ; Mfr 13499 part no. 533-2282-002	5-28
L102	COIL, RADIO FREQUENCY: MIL type MS75008-24	5-28

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581()/URC-9, RF and PA AMPLIFIER ASSEMBLY (Continued)		
L103	COIL, RADIO FREQUENCY: MIL type MS75008-42	5-28
L104	CHOKE ASSEMBLY: Same as L101	5-28
L105	COIL, RADIO FREQUENCY: Same as L102	5-28
L106	CHOKE ASSEMBLY: Same as L101	5-28
L107	COIL, RADIO FREQUENCY: Same as L102	5-28
L108	COIL, RADIO FREQUENCY: MIL-type MS75008-30	5-24
L109	COIL, RADIO FREQUENCY: Same as L102	5-28
L110	COIL, RADIO FREQUENCY: Same as L102	5-28
L111	LOOP, RADIO FREQUENCY COUPLING: Silver plated brass; 1 in. dia by 15/16 in. ho/a; Mfr 13499 part no. 549-3367-002 P/0 Z108	5-29
L112	COIL, RADIO FREQUENCY: 21 turns of no. 22 AWG wire; 0.172 in dia by 0.525 in. $1 g$ excl terminals; Mfr 13499 part no. 548-8643-002	5-27
L113	COIL, RADIO FREQUENCY: Same as L103	5-25
L114	COIL, RADIO FREQUENCY: Same as L102	5-29
L115	COIL, RADIO FREQUENCY: Same as L108	5-27
L116	COIL, RADIO FREQUENCY: Same as L108	5-24
L117	COIL, RADIO FREQUENCY: Same as L108	5-28
L118	COIL, RADIO FREQUENCY: Same as L108	5-28
L119	COIL, RADIO FREQUENCY: Same as L102	5-27
L120	COIL, RADIO FREQUENCY: Same as L112	5-29
L121	COIL, RADIO FREQUENCY: Same as L108	5-29
0101	SPRING ASSEMBLY: Gold plated copper clip and support; $1 / 4 \mathrm{in}$. by 0.593 in. by 0.750 in. o/a; Mfr 13499 part no. 553-1857-002	5-23
0102	SPRING ASSEMBLY: Same as 0101	5-23
0103	SPRING ASSEMBLY: Same as 0101	5-23
0104	```SPRING ASSEMBLY: Silver alloy contact points on gold plated copper plate; 0.093 in. by 19/32 in. by 1 in.; Mfr 13499 part no. 553-1883-002```	5-27
0105	SPRING ASSEMBLY: Same as 0104	5-27
0106	SPRING ASSEMBLY: Same as 0104	5-27
0107	SPRING ASSEMBLY: Same as 0104	5-27
0108	SPRING ASSEMBLY: Same as 0104	5-27
0109	```SPRING ASSEMBLY: Silver alloy contact points on gold plated copper plate; 0.093 in. by 0.842 in. by 1.187 in.; Mfr 13499 part no. 553-1890-002```	5-27
0110	SPRING: Silver alloy; 1-9/16 in. dia by 9/32 in. thk; Mfr 13499 part no. 553-1966-003	5-27
0111	SPRING: Same as 0110	5-27
0112	SPRING: Copper; 0.063 in. by 0.437 in. by 0.718 in.; Mfr 13499 part no. 553-1969-002	5-23
0113	SPRING: Copper; 0.125 in. by 0.500 in. by 0.629 in.; Mfr 13499 part no. 553-1972-002	5-27
0114	SPRING: Same as 0113	5-27

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581()/URC-9, RF and PA AMPLIFIER ASSEMBLY (Continued)		
0115	STATOR ASSEMBLY: 0.718 in. by $1-9 / 32$ in. by $1-1 / 2$ in approx o/a; Mfr 13499 part no. 553-1988-003 P/O 2101	5-23
0116	STATOR ASSEMBLY: Same as 0115; P/0 Z103	5-23
0117	STATOR ASSEMBL̇: Same as 0115; P/0 2105	5-23
0118	STATOR ASSEMBLY: Same as 0115; P/0 Z106	5-23
0119	RING, HOUSING, Bronze; 2.125 in. dia by 0.475 in. thk; Mfr 13499 part no. 553-2002-003	5-23
0120	RING, INSULATOR: Plastic; 1.998 in. dia by 0.470 in. thk; Mfr 13499 part no. 553-2001-002	5-23
0121	CAVITY ASSEMBLY: 3.562 in. by 4.156 in. by 4.186 in. o/a; Mfr 13499 part no. 553-2010-002	5-27
0122	ROTOR ASSEMBLY: 0.687 in. by 1.375 in. by 1.375 in. approx o/a; Mfr 13499 part no. 553-2013-003 P/O C132	5-27
0123	WALL ASSEMBLY: Mfr 13499 part no. 553-2042-003	5-22
0124	SPRING: Copper; 0.094 in. by 0.812 in. by 0.905 in. o/a dim; Mfr 13499 part no. 553-2038-002	5-27
0125	SHAFT ASSEMBLY: 1.120 in. by 1.353 in. by 5.593 in. approx o/a dim.; Mfr 13499 part no. 553-2046-003 P/O 0144	5-27
0126	COUPLING ASSEMBLY: Cres; 1 in. dia by $7 / 16 \mathrm{in} .1 \mathrm{~g}$ o/a; Mfr 13499 part no. 553-1880-002 P/0 0144	5-27
0127	SPRING ASSEMBLY: Silver Alloy contact points on gold plated copper plate; 0.093 in. by 0.765 in. by $1-1 / 32$ in; $\operatorname{Mfr} 13499$ part no. 553-2058-002	5-27
0128	SPRING ASSEMBLY: Same as 0127	5-27
0129	NOT USED	
0130	SPRING: Copper, gold plated; 31/64 in. dia by 0.113 in. ho/a; Mfr 13499 part no. 553-2131-003	5-27
0131	SHAFT, SHOULDERED: Brass, gold plated; 0.155 in. dia by 2-5/16 in. 1 g o/a; Mfr 1.3499 part no. 553-2233-002	5-27
0132	SHAFT ASSEMBLY: Gold plated brass shaft, plastic sleeve; 0.375 in. dia by 2 in. 1 g ; Mfr 13499 part no. 553-2009-002	5-27
0133	NOT USED	
0134	PA CAP ASSEMBLY: Mfr 89114 part no. 717 SK113	5-23
0135	SPRING: Copper, gold plated; 1-1/16 in. dia by 7/32 in. ho/a; Mfr 13499 part no. 553-2241-002	5-27
0136	SPRING, LOCKING: Steel wire; 0.0300 in. dia; accommodates 0.250 in. dia component; Mfr 13499 part no. 502-6005-002	5-18
0137	ROTOR ASSEMBLY: 0.875 in. by 1.077 in. by 1.562 in.; Mfr 13499 part no. 553-2242-003	5-29
0138	FLANGE ASSEMBLY: Brass flange; 0.527 in. by 1.312 in. by 1.483 in. ; Mfr 13499 part no. 553-2246-002	5-23
0139	COUPLER, SHAFT, RIGID: Brass, gold plated; 0.187 in. id, 0.375 in. od. 7/16 in. 1g, Mfr 13499 part no. 553-2251-002	5-27
0140	```ADAPTER ASSEMBLY: TEFLON LINER, brass cup; 0.390 in. dia by 1/8 in. lg; w/copper contact; brass post; Mfr 13499 part no. 553-1961-002 Plate Cap for V105```	5-23

Table 6-2. Maintenance Parts List (Continued)

REF	NAME AND DESCRIPTION	F
DESIG	NO	

BEARING, BALL, ANNULAR: Single row, radial; 0.125 in. bore dia, 0.375 in . od, 0.145 in . w o/a; 2 stainless steel shields; Mfr 21335 part no. AM33KDD3FS168
0142
BEARING, BALL, ANNULAR: Single row, radial; 0.250 in . bore dia; 0.625 in. od, 0.196 in. w o/a; 2 stainless steel shields; Mfr 21335 part no. AMS1KDD7FS168
0143
BEARING, BALL, ANNULAR: Single row, radial; 0.1875 in. bore dia, 0.500 in. od, $0.1960 \mathrm{in} . \mathrm{w}$ o/a; 2 stainless steel shields, Mfr 21335 part no. AM22KDD5FS227
0144
SHAFT ASSEMBLY: 1 in. dia by 6.601 in .1 g approx.; Mfr

| 13499 part no. $553-2045-002 \mathrm{P} / 0 \mathrm{Z101}, \mathrm{Z103}, \mathrm{Z105}$ and Z106 | 5 |
| :--- | :--- | :--- |
| PLATE ASSEMBLY: P/o Z107 Mfr 13499 part no. 553-2258-003 | $5-29$ |

0145
PLATE ASSEMBLY: P/o Z107 Mfr 13499 part no. 553-2258-003
P101
R101
R102
dielectric; Mfr 80586 part no. GM18M79
RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF333K
RESISTOR, FIXED, COMPOSITION: Same as R101
R103 RESISTOR, FIXED, WIREWOUND: $1 \mathrm{w}, 100$ ohms $+3 \%$, Mfr 91637 part no. RSIA100ROG
R104
R105
R106
R107
R108
RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF101K RESISTOR, FIXED, COMPOSITION: Same as R104
RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF391J
RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF104K
RESISTOR, VARIABLE, WIREWOUND: 5000 ohms $\pm 5 \%, 1.25 \mathrm{w} ; \quad 5-29$
Mfr 02297 part no. APO5C554
R109
R110
R111
R112
R113
R114
R115
R116
R117
R118
R119
R120
R121
R122
R123
R124
RESISTOR, FIXED, FILM: MIL type RN65B68R1F
RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF561K
RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF680K
RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC32GF151K
NOT USED
RESISTOR, FIXED, COMPOSITION: Same as R104
RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF272K
RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC32GF182K
RESISTOR, FIXED, COMPOSITION: Same as R107
NOT USED
NOT USED
RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF102K
RESISTOR, FIXED, FILM: MIL-R-10509 type RN65B16R9F
RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RCO7GF470K $\quad 5-28$
RESISTOR, FIXED, COMPOSITION: Same as R104
RESISTOR, FIXED, WIREWOUND: 0.56 ohm $+3 \%, 2.5 \mathrm{w}$; Mfr 44655 part no. 47683DETO-56 encapsulated in ceramic cup fabricated from beryllium oxide (BEO) NAVSEC NORDIV Dwg 450SK2170029
ELECTRON TUBE: MIL-E-1 type 8532
ELECTRON TUBE: Same as V101
$5-29$

5-24

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \hline \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581()/URC-9 RF and PA AMPLIFIER ASSEMBLY (Continued)		
V103	ELECTRON TUBE: Same as Vlol	5-24
V104	ELECTRON TUBE: MIL-E-1 type 7554	5-27
V105	ELECTRON TUBE: MIL-E-1 type 6442	5-22
v106	Electron tube: MIL-E-1 type 4X150A	5-27
W101	CABLE ASSEMBLY, RADIO FREQUENCY: Coaxial; 50 ohms nom impedance, 7 strands of 0.004 in. dia; teflon; single shield; Mfr 98728 part no. 30-187-1	5-24
XV101	SOCKET, ELECTRON TUBE: 7 contact miniature; 5200.125 in. dia mtg holes spaced 0.875 in. c to c; Mfr 80368 part no. V24-6034	5-24
XV102	SOCKET, ELECTRON TUBE: Same as XV101	5-24
XV103	SOCKET, ELECTRON TUBE: Same as XV101	5-24
2101	C/O 0-115, 0-114, C-107	5-27
2102	SUPPRESSOR: Single layer wound; 8 turns no. 30 AWG; Mfr 13499 part no. 553-1996-002	5-28
2103	C/O 0-116, 0-144, C-115	5-27
2104	NOT USED	
2105	C/O 0-117, 0-114, C-122	5-27
2106	C/O 0-118, 0-144, C-127	5-27
2107	c/o 0-145, C-128, C-147, 0-139, 0-135, 0-132, 0-137	5-27
2108	C/O C-131, C-132, C-133, L-111, 0-122, 0-131, 0-134	
RT-581()/URC-9, FREQUENCY MULTIPLIER-OSCILLATOR ASSEMBLY		
$\begin{aligned} & \text { 1A1A3 } \\ & (201-299) \end{aligned}$	FREQUENCY MULTIPLIER: Mfr 03565 part no. C-1448	5-34
C201	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 2000 uf $-20 \%+1000 \%$, 350 vdc ; Mfr 72972 part no. 246700W5T0202A	5-40
C202	CAPACITOR, FIXED, MICA DIELECTRIC: MIL type CBIIPE102M	5-40
C203	CAPACITOR, FIXED, MICA DIELECTRIC: MIL type CM15ED511G03	5-39
C204	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C203	5-39
C205	NOT USED	
C206	NOT USED	
C207	CAPACITOR, FIXED, MICA DIELECTRIC: MIL type CM15CD101J03	
C208	CAPACITOR, VARIABLE, GLASS DIELECTRIC: 1.0 uuf to 8.0 uuf, 500 vdc; Mfr 73899 part no. VC3G	5-36
C209	NOT USED	
C210	CAPACITOR, FIXED, MICA DIELECTRIC: MIL type CM15ED150J03	5-39
C211	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C302	5-38
C212	CAPACITOR, FIXED, MICA DIELECTRIC: MIL type CB11RD511J	5-35
C213	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C212	5-35
C214	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 20 uuf $\pm 10 \%, 500 \mathrm{vdc}$; Mfr 90177 part no. CD8R200K	5-38
C215	CAPACITOR, VARIABLE, GLASS DIELECTRIC: 1 section; 0.5 uuf to 3.0 uuf; $1-9 / 16$ in. 1 g o/a, $1-5 / 32 \mathrm{in}$. body $1 \mathrm{~g}, 1 / 4 \mathrm{in}$. across flats; Mfr 14674 part no. 680081	5-38
C216	CAPACITOR, FIXED, CERAMIC DIELECTRIC: MIL-C-20D type CC20SK020C	5-38

Table 6-2. Maintenance Parts List (Continued)

REF DESIG	NAME AND DESCRIPTION	FIG NO.
RT-581()/URC-9, FREQUENCY MULTIPLIER-OSCILLATOR ASSEMBLY (Continued)		

C217
C218
C219
C220
C221
C222
C223
C224
C225
C226
C227
C228
C229
C230
C231
C232
C233
C234
C235
C236
C237
C238
C239
C240
C241
FL201
FL202
FL203
H201

H2O2
H203
H204
H205
H206
H207
J201

CAPACITOR, FIXED, MICA DIELECTRIC: Same as C212
CAPACITOR, FIXED, MICA DIELECTRIC: Same as C212
CAPACITOR, FIXED, MICA DIELECTRIC: Same as C212
CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C214
CAPACITOR, VARIABLE, GLASS DIELECTRIC: Same as C215
CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C216
CAPACITOR, FIXED, MICA DIELECTRIC: Same as C212
CAPACITOR, FIXED, MICA DIELECTRIC: Same as C212
CAPACITOR, FIXED, MICA DIELECTRIC: Same as C212
CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C214
CAPACITOR, VARIABLE, GLASS DIELECTRIC: Same as C215
CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C216
CAPACITOR, FIXED, MICA DIELECTRIC: Same as C212
CAPACITOR, FIXED, MICA DIELECTRIC: Same as C212
CAPACITOR, FIXED, MICA DIELECTRIC: Same as C212
CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C214
CAPACITOR, FIXED, GLASS DIELECTRIC: Same as C215
CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C216
CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C108
CAPACITOR, FIXED, CERAMIC DIELECTRIC: 10 uuf $\pm 20 \% 500 \mathrm{vdc}$;
Mfr 71590 part no. DA933-043
CAPACITOR, FIXED, CERAMIC DIELECTRIC: MIL type CK61BX471K
CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C237
CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C237
CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C201
CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C201
FILTER, RADIO INTERFERENCE: $500 \mathrm{vdc} ; 5 \mathrm{amp}, 1000 \mathrm{uuf} ; 5 / 16 \mathrm{in}$. by 7/16 in. overall Mfr 01121 part no. FCS1
FILTER, RADIO INTERFERENCE: Same as FL201
FILTER, RADIO INTERFERENCE: Same as FL201
SCREW, MACHINE: Stainless steel, passivate finish; phillips recessed fillister head; 8-32NC-2A thd; $1 / 2$ in 1g; Mfr 13499 part no. 553-1853-002
WASHER, FLAT: Copper, bright alloy; 0.125 in. id, 0.250 in. ods 0.016 in. thk; Mfr 13499 part no. 553-1910-002

WASHER, FLAT: Cres; 0.406 in. id, 0.600 in. od, 0.018 in. thk;
Mfr 13499 part no. 553-1870-002
WASHER, FLAT: Cres; 0.255 in. id, 0.437 in. od, 0.012 in. thk;
Mfr. 13499 part no. 553-1421-002
NOT USED
SHIM: Cres, passivate finish; 0.0190 in. id, 0.275 in. od, 0.003 in. thk; Mfr 13499 Part no. 544-8773-003

SHIM: Copper, beryllium, bright alloy; 0.166 in. id, 0.250 in. od, 0.0126 in. thk; Mfr 13499 part no. 553-2072-002 JACK, TIP: For use with 0.080 diameter male contact; Teflon; 5.5 amps continuous duty; Mfr 98291 part no. SKT5BCBROWN

5-35
5-35
5-35
5-38
5-38
5-38
5-35
5-35
5-35
5-38
5-38
5-38
5-35
5-35
5-35
5-38
5-38
5-35
5-38
5-40
5-35
5-35
5-35
5-35
5-35
5-37
5-37
5-37
5-34

5-38
5-37
5-37

5-37
5-40
5-35

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581()/URC-9, FREQUENCY MULTIPLIER-OSCILLATOR ASSEMBLY (Continued)		
J202	JACK, TIP: For use with 0.080 diameter male contact, 5.5 amps continuous duty; Mfr 98291 part no. SKT5BCRED	5-35
J203	JACK, TIP: For use with 0.080 diameter male contact; teflon; 5.5 amps continuous duty; Mfr 98291 part no. SKT5BCORANGE	5-35
J204	JACK, TIP: For use with 0.080 diameter male contact; teflon; 5.5 amps continuous duty; Mfr 98291 part no. SKT5BCYELLOW	5-35
J205	CONNECTOR, RECEPTACLE: 850 v peak voltage; 93 ohms impedance; low loss plastic dielectric; 0.710 in. 1 g ; Mfr 98278 part no. 31-85	5-38
L201	COIL ASSEMBLY: Single layer wound; 12 turns no. 28 AWG; Mfr 13499 part no. 553-1944-002	5-36
L202	COIL ASSEMBLY: Same as L201	5-36
L203	COIL ASSEMBLY: Single layer wound; 11 turns no. 28 AWG; Mfr 13499 part no. 553-1943-002	5-36
L204	COIL ASSEMBLY: Single layer wound; 10 turns no. 28 AWG; Mfr 13499 part no. 553-1942-002	5-36
L205	COIL ASSEMBLY: Single layer wound; 9 turns, no 28 AWG; Mfr 13499 part no. 553-1941-002	5-36
L206	COIL ASSEMBLY: Same as L205	5-36
L207	COIL ASSEMBLY: Single layer wound; 8 turns no. 28 AWG; Mfr 13499 part no. 553-1940-002	5-36
L208	COIL ASSEMBLY: Same as L207	5-36
L209	COIL ASSEMBLY: Same as L201	5-36
L210	COIL ASSEMBLY: Same as L201	5-36
L211	COIL ASSEMBLY: Same as L201	5-36
L212	COIL ASSEMBLY: Same as L201	5-36
L213	COIL ASSEMBLY: Same as L203	5-36
L214	COIL ASSEMBLY: Same as L203	5-36
L215	COIL ASSEMBLY: Same as L204	5-36
L216	COIL ASSEMBLY: Same as L204	5-36
L217	COIL ASSEMBLY: Same as L205	5-36
L218	COIL ASSEMBLY: Same as L205	5-36
L219	COIL, RADIO FREQUENCY: MIL type MS75008-26	5-40
L220	COIL, RADIO FREQUENCY: MIL type LT4K036	5-39
L221	COIL, RADIO FREQUENCY: MIL type MS75053-2	5-40
L222	COIL, Single layer wound; 4 turns no. 20 AWG; Mfr 13499 part no. 553-1946-002	5-40
L223	COIL, RADIO FREQUENCY: 38 turns, no. 26 AWG wire, 0.6 uh inductance, 0.9 amp current rating; 9/32 in. dia, 5/8 in. 1 g o/a; 4 wire lead type terminals; Mfr 90526 part no. P449A	5-38
L224	COIL, RADIO FREQUENCY: 20 turns, no. 26 AWG wire; 0.5 uh inductance, 100 ma current rating; $11 / 64 \mathrm{in}$. dia, $1 / 2$ in 1 g o/a; 2 wire lead type terminals; Mfr 99800 part no. BP866	5-38
L225	COIL, RADIO FREQUENCY: Same as L223	5-38
L226	COIL, RADIO FREQUENCY: Same as L224	5-38
L227	COIL, RADIO FREQUENCY: Same as L223	5-38

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581()/URC-9, FREQUENCY MULTIPLIER-OSCILLATOR ASSEMBLY (Continued)		
L228	COIL, RADIO FREQUENCY: Same as L224	5-38
L229	COIL, RADIO FREQUENCY: Same as L223	5-38
L230	COIL, RADIO FREQUENCY: Same as L224	5-38
0201	SPRING: Copper; 0.098 in. by $7 / 32$ in. by 1.125 in; Mfr 13499 part no. 553-1856-002	5-37
0202	GEAR, SPUR: Aluminum; 66 teeth; 1.416 in. dia by 0.343 in. 1 g o/a; 0.187 in. dia bore; Mfr 13499 part no. 553-1861-002	5-37
0203	STATOR ASSEMBLLY: 0.312 in. by 0.952 in. by 1.437 in.; Mfr 13499 part no. 553-1862-003 P/0 Z202	5-37
0204	STATOR ASSEMBLY: Same as 0203 P/O Z204	5-37
0205	STATOR ASSEMBLY: Same as 0203 P/O Z206	5-37
0206	STATOR ASSEMBLY: Same as 0203 P/O Z208	5-37
0207	```ROTOR ASSEMBLY: 1 in. by 1.062 in. by 6.401 in. approx o/a dim.; Mfr 13499 part no. 553-1868-003 P/O Z202, Z204, Z206, Z208```	5-37
0208	BEARING, BALL, ANNULAR: Single row, radial; 0.250 in. bore dia, 0.625 in. od, 0.196 in. w o/a; 2 stainless steel shields; Mfr 21335 part no. AMS1KDD7FS168	5-37
0209	BEARING, BALL, ANNULAR: Same as 0208	5-37
0210	```SPRING, HELICAL COMPRESSION: Steel; 0.075 in. id, 0.130 in. od, 0.165 in. compressed 1g; 8 coils; Mfr 13499 part no. 553-1871-002```	5-37
0211	SPRING, HELICAL, COMPRESSION: Same as 0210	5-37
0212	SPRING, HELICAL, COMPRESSION: Same as 0210	5-37
0213	FLANGE ASSEMBLY: Brass flange; 0.527 in. by 1.312 in. by 1.483 in; Mfr 13499 part no. 553-2246-002	5-37
0214	SPRING: Copper, gold plated; $31 / 64$ in. dia by 0.113 in. ho/a; Mfr 13499 part no. 553-2131-003	5-37
0215	GEAR, SPUR: Aluminum; 33 teeth; 0.729 in. dia by $5 / 16 \mathrm{in} .1 \mathrm{~g} \mathrm{o} / \mathrm{a}$; Mfr 13499 part no. 553-1902-002	5-37
0216	GEAR, SPUR: Bronze; 39 teeth; 0.854 in. dia by 0.125 in. $1 g$; Mfr 13499 part no. 553-1903-002	5-37
0217	TUNER ASSEMBLY: 0.349 in. by 2.062 in. by 3.906 in. approx o/a dim.; Mfr 13499 part no. 553-1907-003	5-39
0218	SPRING: Copper; 1.812 in. dia by 0.250 in. thk; 15 fingers; Mfr 13499 part no. 553-1934-003	5-36
0219	SHAFT ASSEMBLY: Ceramic shaft, cres sleeve ea end; 0.187 in. dia by 2-9/16 in. 1 g o/a; Mfr 13499 part no. 553-1936-002	5-39
0220	SAME AS 0126.	5-34
P201	CONNECTOR, RECEPTACLE, ELECTRICAL: 11 male contacts; 5 amps; 7/16 in. dia, 1-3/32 in. 1 g ; Mfr 80586 part no. GM11M79 P/O W201	5-35
R201	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF272K	5-40
R202	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF220K	5-36
R203	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF221K	5-39
R204	RESISTOR, FIXED, COMPOSITION: Same as R203	5-39

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581()/URC-9, FREQUENCY MULTIPLIER-OSCILLATOR ASSEMBLY (Continued)		
R205	RESISTOR, FIXED, COMPOSITION: MIL-R-11 RC20GF103K	5-36
R206	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF100K	5-40
R207	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF124K	5-38
R208	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF223K	5-38
R209	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF823K	5-35
R210	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC32GF223K	5-35
R211	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC32GF392K	5-35
R212	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC42GF222K	5-35
R213	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF333K	5-35
R214	NOT USED	
R215	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF910J	5-38
R216	RESISTOR, FIXED, COMPOSITION: Same as R215	5-38
R217	RESISTOR, FIXED, COMPOSITION: Same as R215	5-38
S201	SWITCH, ASSEMBLY: 0.395 in. by $1-7 / 8 \mathrm{in}$. by $2-1 / 16 \mathrm{in}$. o/a dim.; Mfr 13499 part no. 553-1915-003	5-40
S202	SWITCH ASSEMBLY: 0.750 in. by 1.875 in. by 2.062 in. approx. o/a dim.; Mfr 13499 part no. 553-1924-003	5-40
V201	ELECTRON TUBE: MIL-E-1 type 5670	5-36
V202	ELECTRON TUBE: MIL-E-1 type 5654	5-35
V203	ELECTRON TUBE: MIL-E-1 type 8532	5-35
V204	ELECTRON TUBE: Same as V203	5-35
V205	ELECTRON TUBE: Same as V203	5-35
W201	CABLE ASSEMBLY, SPECIAL PURPOSE, ELECTRICAL: 6 conductors; Mfr 03565 part no. C-6614 P/o P201	5-35
W202	CABLE ASSEMBLY, SPECIAL PURPOSE, ELECTRICAL: 3 conductors; ends stripped and tinned; Mfr 13499 part no. 553-1897-003	5-35
xV201	SOCKET, ELECTRON TUBE: Phospher bronze, silver plated; Mfr 91662 part no. BRTL669SPHSPTD125	5-36
XV202	SOCKET, ELECTRON TUBE: 7 contact miniature; two 0.125 in . dia mtg holes spaced 0.875 in. c to c; Mfr 80368 part no. V24-6034	5-35
XV203	SOCKET, ELECTRON TUBE: Same as XV202	5-35
XV204	SOCKET, ELECTRON TUBE: Same as XV202	5-35
XV205	SOCKET, ELECTRON TUBE: Same as XV202	5-35
Y201	NOT USED	
Y202	CRYSTAL UNIT QUARTZ: MIL-C-3098/53 type CR76U35-00000 MHz	5-36
Y203	NOT USED	
Y204	CRYSTAL UNIT, QUARTZ: MIL-C-3098/53 type CR76U38-33333 MHz	5-36
Y205	NOT USED	
Y206	CRYSTAL UNIT, QUARTS: MIL-C-3098/53 type CR76U41-66666 M z	5-36
Y207	CRYSTAL UNIT, QUARTZ: MIL-C-3098/53 type CR76U43-33333 MHz	5-36
Y208	CRYSTAL UNIT, QUARTZ: MIL-C-3098/53 type CR76U45-00000 MHz	5-36
Y209	CRYSTAL UNIT, QUARTZ: MIL-C-3098/53 type CR76U31-11111 MHz	5-36
Y210	CRYSTAL UNIT, QUARTZ: MIL-C-3098/53 type CR76U32-22222 MHz	5-36
Y211	CRYSTAL UNIT, QUARTZ: MIL-C-3098/53 type CR76U33-33333 MHz	5-36
Y212	CRYSTAL UNIT, QUARTZ: MIL-C-3098/53 type CR76U34-44444 MHz	5-36

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581()/URC-9, FREQUENCY MULTIPLIER-OSCILLATOR ASSEMBLY (Continued)		
Y213	CRYSTAL UNIT, QUARTZ: MIL-C-3098/53 type CR76U35-55555 MHz	5-36
Y214	CRYSTAL UNIT, QUARTZ: MIL-C-3098/53 type CR76U36-66666 MHz	5-36
Y215	CRYSTAL UNIT, QUARTZ: MIL-C-3098/53 type CR76U37-77777 MHz	5-36
Y216	CRYSTAL UNIT, QUARTZ: MIL-C-3098/53 type CR76U38-88888 MHz	5-36
Y217	CRYSTAL UNIT, QUARTZ: MIL-C-3098/53 type CR76U40-00000 MHz	5-36
Y218	CRYSTAL UNIT, QUARTZ: MIL-C-3098/53 type CR76U41-11111 MHz	5-36
Z201	TUNER, ASSEMBLY: Copper clad glass cloth, gold plated $0.00005 / .00007$ thk; 0.062 in. by $2-1 / 16$ in. by 2.656 in. incl. 3 tubelets; Mfr 13499 part no. 553-1911-002	$\begin{aligned} & 5-40 \\ & 5-40 \end{aligned}$
Z202	C/O 0-203, 0-207	5-37
Z203	NOT USED	
Z204	C/O 0-204, 0-207	5-37
Z205	NOT USED	
Z206	C/O 0-205, 0-207	5-37
Z207	NOT USED	
Z208	C/O 0-206, 0-207	5-37
RT-581(), FIRST IF AMPLIFIER ASSEMBLY		
$\begin{aligned} & \text { 1A1A4 } \\ & (301-399) \end{aligned}$	FINAL ASSEMBLY - 1ST IF AMPLIFIER: Mfr 03565 part no. C-6490	5-41
C301	CAPACITOR, FIXED, MICA DIELECTRIC: MIL type CM05ED270J03	5-43
C302	CAPACITOR, VARIABLE, GLASS DIELECTRIC: 1.0 uuf to 8.0 uuf, 500 vdc; Mfr 73899 part no. VC3G1 P/O Z301	5-41
C303	CAPACITOR, FIXED, CERAMIC DIELECTRIC: MIL type CC22CK010C	5-43
C304	CAPACITOR, VARIABLE, GLASS DIELECTRIC: Same as C302; P/O Z302	5-41
C305	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 30 uuf $+5 \%$; 500 vdc at $85^{\circ} \mathrm{C}, 400 \mathrm{vdc}$ at $100^{\circ} \mathrm{C}, 250 \mathrm{vdc}$ at $125^{\circ} \mathrm{C}$; Mfr 72982 part no. 338026 COHO 300 J	5-43
C306	CAPACITOR, VARIABLE, GLASS DIELECTRIC: Same as C302 P/o z303	5-41
C307	CAPACITOR, FIXED, CERAMIC DIELECTRIC: MIL-C-20B type CC22CH180J P/0 2303	5-41
C308	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C303	5-43
C309	CAPACITOR, VARIABLE, GLASS DIELECTRIC: Same as C302; P/0 Z304	5-41
C310	CAPACITOR, VARIABLE, CERAMIC DIELECTRIC: Same as C307; P/0 2304	5-41
C311	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C305	5-43
C312	CAPACITOR, VARIABLE, GLASS DIELECTRIC: Same as C302; P/0 z305	5-41
C313	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307; P/0 z305	5-41
C314	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C303	5-43
C315	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 33 uuf $\pm 10 \%$, 500 vdc ; Mfr 13499 part no. 928-4013-00	5-43
C316	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C303	5-43
C317	CAPACITOR, VARIABLE, GLASS DIELECTRIC: Same as C302; P/0 2306	5-41
C318	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 2000 uff $-20 \%,+100 \%$, 350 vdc; Mfr 04222 part no. 2467001W5T0202z	
C319	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C318	5-43

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581()/URC-9, FIRST IF AMPLIFIER ASSEMBLY (Continued)		
C320	CAPACITOR, FIXED, MICA DIELECTRIC: 100 uuf $\pm 20 \%$, 500 vdc ; per MIL-C-10950 part no. CB11PE102M	5-43
C321	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 3,000 uuf $-20+100 \%, 350$ vdc; Mfr 72982 part no. 2462000 W5T0302Z	5-43
C322	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C320	5-43
C323	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C318	5-43
C324	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C321	5-43
C325	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 100 uuf $+2 \%$, 500 vdc at $100^{\circ} \mathrm{C}$; Mfr 72982 part no. 338026 T 2 H 0101 G	5-43
C326	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C320	5-43
C327	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C320	5-43
C328	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C320	5-43
C329	CAPACITOR, FIXED, MICA DIELECTRIC: MIL type CB11RE511J	5-43
C330	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C321	5-43
C331	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C320	5-43
C332	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C320	5-43
C333	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C320	5-43
C334	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C329	5-43
C335	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C325	5-43
C336	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C321	5-43
C337	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C325	5-43
C338	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C305	5-43
C339	CAPACITOR, FIXED. CERAMIC DIELECTRIC: MIL type CC22CHO50C	5-43
C340	CAPACITOR, VARIABLE, GLASS DIELECTRIC: Same as C302 P/O Z307	5-41
C341	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C321	5-43
C342	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C321	5-43
C343	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 47 uuf $\pm 5 \%$, 500 vdc at $85^{\circ} \mathrm{C}, 400 \mathrm{vdc}$ at $100^{\circ} \mathrm{C}, 250 \mathrm{vdc}$ at $125^{\circ} \mathrm{C}$; Mfr 72982 part no. 338026 COHO 47 J	5-43
C344	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C329	5-43
C345	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C329	5-43
C346	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C339	5-43
C347	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C321	5-43
C348	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 6.8 uuf $\pm 5 \%$, 500 vdc Mfr 78488 part no. GA6-8UUFPORM5PCT	5-43
H301	SCREW, MACHINE: Cres; philifps fillister head; 6-32 NC-2A thd, 7/16 in. 1g; Mfr 13499 part no. 553-1662-002	5-14
H302	SCREW, MACHINE: Cres; phillips fillister head; 6-32NC-2A thd, 7/16 in. 1 g ; Mfr 13499 part no. 553-1663-002	5-14
H303	SCREW, MACHINE: Cres; phillips pan head; $6-32 \mathrm{NC}-2 \mathrm{~A}$ thd, 1/2 in. 1g; Mfr 13499 part no. 553-1664-002	5-41
H304	WASHER, FLAT: Cres; $0.101 \mathrm{in} . \operatorname{id}, 0.375 \mathrm{in} .0 d, 0.0156 \mathrm{in}$. thk; Mfr 13499 part no. 553-1431-002	5-42
J301	JACK, TIP: For use with 0.080 diameter male contact; teflon; 5.5 amp continuous duty; Mfr 98291 part no. SKT5BCBROWN	5-41

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \\ \hline \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581()/URC-9, FIRST IF AMPLIFIER ASSEMBLY (Continued)		
J302	JACK, TIP: For use with 0.080 diameter male contact; teflon; 5.5 amps continuous duty; Mfr 98291 part no. SKT5BCRED	5-41
J303	JACK, TIP: For use with 0.080 diameter male contact; teflon; 5.5 amps; continuous duty; Mfr 98291 part no. SKT5BCORANGE	5-41
J304	JACK, TIP: For use with 0.080 diameter male contact; teflon; 5.5 amps; continuous duty; Mfr 98291 part no. SKT5BCYELLOW	5-41
J305	JACK, TIP: For use with 0.080 diameter male contact; teflon; 5.5 amps continuous duty, Mfr 98291 part no. SKT5BCGREEN	5-41
L301	COIL, RADIO FREQUENCY: 125 turns of no. 34 AWG wire; 0.406 in. by 0.936 in. by 1.500 in. o/a dim.; Mfr 13499 part no. 553-1701$003 \mathrm{P} / 0 \mathrm{Z} 301, \mathrm{C} / 0$ 0-301	5-41
L 302	COIL, RADIO FREQUENCY: Same as L301 P/o z302, C/O 0-302	5-41
L303	COIL, RADIO FREQUENCY: Same as L301 P/0 Z303, C/O 0-303	5-41
L304	COIL, RADIO FREQUENCY: Same as L301 P/0 Z304, C/O 0-304	5-41
L305	COIL, RADIO FREQUENCY: Same as L301 P/0 Z305, C/O 0-305	5-41
L306	COIL, RADIO FREQUENCY: Same as L301 P/O Z306, C/O 0-306	5-41
L307	COIL, RADIO FREQUENCY: Single layer wound, 46 turns, 非25 AWG wire; 6.5 uh nominal inductance, 0.05 ohms dc resistance, 1.5 amps current rating; Mfr 99800 part no. BP868	5-42
L308	COIL, RADIO FREQUENCY: Same as L307	5-42
L309	COIL, RADIO FREQUENCY: Single layer wound; magnet wire; 39 uh inductance, 2.00 ohms dc; 500 ma current rating; Mfr 82142 part no. 4422-11-117	5-42
L310	COIL, RADIO FREQUENCY: 132 turns of no. 34 AWG wire; 0.406 in. by 0.936 in. by 1.500 in. o/a dim.; Mfr 13499 part no. 553-1697-003 P/O Z307, C/O 0-307	5-41
L311	COIL, RADIO FREQUENCY: MIL type MS75008-33	5-42
L312	COIL, RADIO FREQUENCY: Same as L309	5-42
L313	COIL, RADIO FREQUENCY: MIL type MS75008-23	5-42
L314	SUPPRESSOR, PARASITIC: Ferrite; 0.16 uh, 80 ohms; 0.047 in. id, 0.318 in. od by $0.118 \mathrm{in}$.1 g ; Mfr 02114 part no. $56-590-65-3 \mathrm{~B}$	5-42
L315	SUPPRESSOR, PARASITIC: Same as L314	5-42
L316	SUPPRESSOR, PARASITIC: Same as L314	5-42
L317	SUPPRESSOR, PARASITIC: Same as L314	5-42
L318	SUPPRESSOR, PARASITIC: Same as L314	5-42
L319	SUPPRESSOR, PARASITIC: Same as L31.4	5-42
0301	CORE ASSEMBLY: 0.200 in. dia by 2.208 in. 1 g o/a dim.; Mfr 13499 part no. 553-1674-002 P/O L301	5-42
0302	CORE ASSEMBLY: Same as $0301 \mathrm{P} / \mathrm{O}$ L302	5-42
0303	CORE ASSEMBLY: Same as $0301 \mathrm{P} / 0 \mathrm{~L} 303$	5-42
0304	CORE ASSEMBLY: Same as $0301 \mathrm{P} / 0 \mathrm{~L} 304$	5-42
0305	CORE ASSEMBLY: Same as 0301 P/0 L305	5-42
0306	CORE ASSEMBLY: Same as $0301 \mathrm{P} / 0 \mathrm{~L} 306$	5-42
0307	CORE ASSEMBLY: 0.200 in. dia by 2.083 in. o/a lg; Mfr 13499 part no. 553-1678-002 P/O L310	5-42

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581()/URC-9, FIRST IF AMPLIFIER ASSEMBLY (Continued)		
0308	SPRING, HELICAL, EXTENSION: Cres; 28, 0.017 in. dia wire coils, 0.825 ± 0.032 in. free length inside loops; Mfr 13499 part no. 553-1690-002	5-41
0309	SPRING, HELICAL, EXTENSION: Cres; $24,0.020$ in. dia wire coils, 0.167 in. dia, 0.790 in. 1 g ; Mfr 13499 part no. 553-1691-002	5-45
0310	SPRING, HELICAL, EXTENSION: Same as 0309	5-41
0311	TABLE ASSEMBLY: 0.800 in. by 2.437 in. by 3.796 in. o/a dim; Mfr 13499 part no. 553-1709-002	5-42
0312	TABLE ASSEMBLY: 0.656 in . by 0.748 in . by 2.718 in . o/a dim; Mfr 13499 part no. 553-1714-002	5-43
0313	SHAFT: Cres; 0.1870 in. dia, 6.250 in. $1 g$; Mfr 13499 part no. 553-1719-002	$5-42$
0314	CAM ASSEMBLY: Brass cam, cres hub; 0.625 in. 1 g o/a; Mfr 13499 part no. 553-1720-002	5-43
0315	CAM ASSEMBLY: Brass cam, cres hub; 0.625 in. 1 g o/a; Mfr 13499 part no. 553-1723-002	5-42
0316	COUPLING ASSEMBLY: 0.875 in . dia by 0.483 in .1 g o/a dim.; Mf.r 13499 part no. 553-1724-002	5-44
0317	COUPLING ASSEMBLY: Same as 0316	5-44
0318	GEAR: Brass; 51 teeth, 48 diametral pitch; 1.104 in. dia by 0.125 in. 1 g o/a dim.; Mfr 03565 part no. B-6613	5-43
0319	SHAFT ASSEMBLY: 21 teeth, 48 diametral pitch; 0.479 in. dia by 1.125 in. 1 g o/a dim.; Mfr 13499 part no. 553-1741-002	5-43
0320	SHAFT ASSEMBLY: 21 teeth, 48 diametral pitch; $1.281 \mathrm{in} .1 \mathrm{~g} \mathrm{o} / \mathrm{a}$ dim; Mfr 13499 part no. 553-1744-002	5-44
P301	CONNECTOR, RECEPTACLE, ELECTRICAL: 14 male contacts, 5 amps, 300 vac, straight shape; Mfr 80586 part no. GM14M才9	5-41
P302	P/O W302	5-41
P303	P/O W303	5-19
P304	P/O W304	5-41
R 301	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF104K	5-42
R 302	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF221K	5-42
R303	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF823K	5-42
R304	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF102J	5-42
R305	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF333K	5-42
R306	RESISTOR, FIXED, COMPOSITION: Same as R301	5-42
R307	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF100K	5-42
R308	RESISTOR, FIXED, FILM: MIL-R-10509 type RN65B2050F	5-42
R309	RESISTOR, FIXED, COMPOSITION: Same as R304	5-42
R310	RESISTOR, FIXED, COMPOSITION: Same as R301	5-42
R311	RESISTOR, FIXED, COMPOSITION: Same as R304	5-42
R312	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF334K	5-42
R313	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF153K	5-42
R314	RESISTOR, FIXED, COMPOSITION: Same as R301	5-42
R 315	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF122K	5-42
R316	RESISTOR, FIXED, COMPOSITION: Same as R312	5-42

Table 6-2. Maintenance Parts List (Continued)

| REF |
| :--- | :---: | :--- |
| DESIG |\quad NAME AND DESCRIPTION \quad| FIG |
| :--- |
| RT-581()/URC-9, FIRST IF AMPLIFIER ASSEMBLY (Continued) |

R317
R318
R319
R320
R321
R322
R323
R324
R325
R326
S301
S302
V301
V302
V303
V304
v305
W301

W302
W303
W304
xv301
xv302
xv303
XV 304
XV 305
Y301
Y302
Y303
Y304
Y305
Y306
Y307
Y308
Y309
Y310

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581()/URC-9, FIRST IF AMPLIFIER ASSEMBLY (Continued)		
Z301	COIL ASSEMBLY: 0.437 in. by 0.912 in . by 1.500 in . o/a dim., excl wire leads; Mfr 13499 part no. 553-1702-004 C/0 C302 \& L301	5-41
2302	COIL ASSEMBLY: Same as Z301 C/O C304 \& L302	5-41
Z303	```COIL ASSEMBLY: 0.437 in. by 0.912 in. by 1.500 in. o/a dim. excl wire leads; Mfr 13499 part no. 553-1700-004 C/0 C306, C307, & L303```	5-41
2304	COIL ASSEMBLY: Same as Z303 C/O C309, C310 \& L304	5-41
Z305	COIL ASSEMBLY: Same as Z303 C/O C313, L305, \& C312	5-41
Z306	COIL ASSEMBLY: Same as Z301 c/o C317 \& L306	5-41
2307	COIL ASSEMBLY: 0.437 in. by 0.912 in. by 1.500 in . o/a dim. excl wire leads; Mfr 13499 part no. 553-1693-003 C/O C340 \& L310	5-41
RT-581A/URC-9, SECOND IF AMPLIFIER ASSEMBLY (AN/URC-9A ONLY)		
1A1A5		
(401-499)	FINAL ASSEMBLY - 2nd IF AMPLIFIER: Mfr 03565 Part no. D-6239	5-46
C401	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 200 uuf $\pm 20 \%$, 500 vdc , Mfr 71590 part no. DA933-048 P/0 Z401	5-46
C402	```CAPACITOR, FIXED, MICA DIELECTRIC: MIL type CMO5FD111G03 P/O Z401```	5-46
C403	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 6.8 uuf $\pm 5 \%$, 500 vdc ; Mfr 78488 part no. GA6-8UUFPORM5PCT	5-46
C404	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C401, P/0 Z402	5-46
C405	CAPACITOR, FIXED, MICA DIELECTRIC: MIL type CM05FD161G03 P/O Z402	5-46
C406	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 1,000 uuf $-0 \%+100 \%$ 500 vdc; Mfr 72982 part no. 2465-009W5T0102P	5-47
C407	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C403	5-46
C408	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C401, P/0 Z403	5-46
C409	```CAPACITOR, FIXED, MICA DIELECTRIC: MIL type CM05FD131G03 P/O Z403```	5-46
C410	CAPACITOR, FIXED, MICA DIELECTRIC: MIL type CM06FD511G03	5-47
C411	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 100 uuf $+2 \%$, 500 vdc at $85^{\circ} \mathrm{C}, 400 \mathrm{vdc}$ at $100^{\circ} \mathrm{C}, 250$ vdc at $125^{\circ} \mathrm{C}$; Mfr 72982 part no. 338026T2H0101G	5-47
C412	CAPACITOR, FIXED, CERAMIC DIELECTRIC: MIL type CC22H150G	5-47
C413	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 82 uuf $+2 \%$, 500 vdc at $85^{\circ} \mathrm{C}, 400 \mathrm{vdc}$ at $100^{\circ} \mathrm{C}, 250 \mathrm{vdc}$ at $125^{\circ} \mathrm{C}$; Mfr 72982 part no. 338026U2J0820G	5-47
C414	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 2000 uuf - $20 \%+100 \%$, 350 vdc; Mfr 72982 part no. 2467001W5T0202Z	5-47
C415	NOT USED	
C416	CAPACITOR, FIXED, MICA DIELECTRIC: 1000 uuf $+20 \%$, 500 vdc, MIL type CB11PE102M	5-47

Table 6-2. Maintenance Parts List (Continued)

REF DESIG	NAME AND DESCRIPTION	FIG NO. RT-581A/URC-9, SECOND IF AMPLIFIER ASSEMBLY (AN/URC-9A ONLY) (Continued)

C417
C418
FL401

FL402
FL403
FL404
H401
H402
H403
H404
J401

J402
J403
J404
K401

K402
L401

L402

L403
L404
L405
L406
L407

L408

CAPACITOR, FIXED CERAMIC DIELECTRIC: Same as C411
CAPACITOR, FIXED, MICA DIELECTRIC: Same as C416
FILTER, RADIO INTERFERENCE: $500 \mathrm{vdc}, 5 \mathrm{amps}$; metal case;
2 feed thru type terminals; $21 / 32$ in. $1 \mathrm{~g}, 21 / 64$ in. dia
o/a excluding wire leads; Mfr 01121 part no. FISA
FILTER, RADIO INTERFERENCE: Same as FL401
FILTER, RADIO INTERFERENCE: Same as FL401
FILTER, RADIO INTERFERENCE: Same as FL401
SCREW, MACHINE: Cres; phillips pan head; $6-32 \mathrm{NC}-2 \mathrm{~A}$ thd, $1 / 2$ in.
1g; Mfr 13499 part no. 553-1664-002
SCREW: Cres; phillips fillister head; 6-32NC-2A thd, 1-9/16 in. 1 g ; Mfr 13499 part no. 553-1824-002
WASHER, FLAT: Brass; 0.125 in. id, 0.1875 in. od, 0.010 in. thk;
5-46
Mfr 13499 part no. 553-1784-002
WASHER, FLAT: Cres; 0.125 in. id, 0.250 in. od, 0.031 in. thk;
Mfr. 13499 part no. 553-1785-002
CONNECTOR, RECEPTACLE, ELECTRICAL: 850 v rms peak voltage; 70 ohms impedance; low loss plastic dielectric; 5/8 in. 1 g ; Mfr 94375 part no. R700
JACK, TIP: For use with 0.080 in. dia plug tip; 5.5 amps;
Mfr 98291 part no. SKTIORED
CONNECTOR, RECEPTACLE, ELECTRICAL: Same as J401
JACK, TIP: For use with 0.080 diameter plug tip; part no. SKT1OYELLOW Mfr 98291
RELAY, ARMATURE: $1 \mathrm{C}, 30 \mathrm{UA}$ at 50 mv dry circuit, $1 \mathrm{C}, 10 \mathrm{MA}$ at
125 vdc resistive; 26.5 vdc nom coil, 552 ohms $\pm 10 \%-20 \%$ at $+25^{\circ} \mathrm{C}$; continuous duty; hermetically sealed; Mf $\overline{\mathrm{r}} 01526$ part no. 3S2791G200A16C
RELAY, ARMATURE: MIL type M5757/9-005
COIL ASSEMBLY: 23 turns of no. 34 AWG wire; 0.406 in. by 0.906
in. by 1.500 in. o/a dim.; Mfr 13499 part no. 553-1970-002 P/O Z401
COIL ASSEMBLY: 19 turns of no. 32 AWG wire; 0.250 in. w. across flats by 1.186 in .1 g o/a dim.; excl terminals; Mfr 13499 part no. 553-1789-002 P/O Z401
COIL ASSEMBLY: Same as L401 P/O Z402

COIL ASSEMBLY: Same as L402 P/O 2402
COIL ASSEMBLY: Same as L401 P/O 2403
COIL ASSEMBLY: Same as L402 P/O Z403
COIL, RADIO FREQUENCY: 3 universal wound pi sections, 225 turns ea section; 2.0 uh inductance, 35 ma current; Mfr 99800 part no. BP123
COIL, RADIO FREQUENCY: Single layer wound, 46 turns \#25 AWG
5-46
5-46
5-46
5-47
wire; 6.5 uh nominal inductance, 0.05 ohms dc resistance, 1.5 amps current rating; Mfr 99800 part no. BP868

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \hline \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRPTION	$\begin{aligned} & \hline \text { FIG } \\ & \text { NO.. } \end{aligned}$
RT-581A/URC-9, SECOND IF AMPLIFIER ASSEMBLY (AN/URC-9A ONLY) (Continued)		
0401	CORE ASSEMBLY: 0.200 in. dia by 1.942 in 1 g o/a dim., Mfr 13499 part no. 553-1778-002 U/W L401, L403, L405	5-47
0402	RETAINER, CRYSTAL HOLDER: Cooper; 0.125 in. by 0.735 in. by 1.687 in. o/a dim.; Mfr 13499 part no. 553-1781-002	5-47
0403	SPRING, HELICAL, EXTENSION: Cres; 24, 0.020 in. dia wire coils, 0.167 in. dia, 0.790 in. Ig; Mfr 13499 part no. 553-1691-002	5-46
0404	CAM FOLLOW, NEEDLE BEARING: 0.406 in. by 1.425 in. by 2.499 in. o/a dim.; Mfr 03565 part no. B-6181	5-47
0405	COUPLING ASSEMBLY: 0.875 in . dia by 0.483 in .1 g o/a dim.; Mfr 13499 part no. 553-1724-002	5-47
0406	SHAFT ASSEMBLY: Brass cam, cres; shaft; $2.094 \mathrm{in} .1 \mathrm{~g} o / a$, Mfr 13499 part no. 553-1812-003	5-47
0407	SPRING: Copper; 0.156 in. by 0.511 in. by 0.718 in. o/a dim.; Mfr 13499 part no. 553-1650-002	5-46
P401	CONNECTOR, RECEPTACLE, ELECTRICAL: 11 male contacts; 5 amps; 7/16 in. dia, 13/32 in. 1 g ; Mfr 80586 part no. GM11M79	5-46
R401	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF563K	5-47
R402	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF104K	5-47
R403	RESISTOR, FIXED, COMPOSITION: Same as R402	5-47
R404	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF221K	5-47
R405	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF103K	5-47
R406	RESISTOR, FIXED, COMPOSITION: Same as R402	5-47
R407	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF273K	5-47
R408	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF262J	5-47
R409	RESISTOR, FIXED, COMPOSITION: Same as R402	5-47
R410	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF823K	5-47
S401	SWITCH SECTION, ROTARY: 2 circuit, 2 pole, 12 position; Mfr 03565 part no. B-6241	5-47
S402	SWITCH SECTION, ROTARY: Same as S401	5-47
V401	ELECTRON TUBE: MIL-E-1 type 5670	5-46
W401	CABLE ASSEMBLY, SPECIAL PURPOSE, ELECTRICAL, BRANCHED: 8 conductors terminated one end w/connector; 5.075 in. 1 g o/a excl wire leads; Mfr 03565 part no. D-6206	$5-46$ $5-46$
XK401	```SOCKET, RELAY: Copper base alloy contacts; silver plated; 8 con- tact position; 0.234 in. h, 0.291 in. w, 0.719 in. 1g; Mfr 71785 part no. 54A20730```	5-46
XV401	SOCKET, ELECTRON TUBE: Phosphor bronze, silver plated; Mfr 91662 part no. BRTL669SPHSPTC125	5-46
XY401	SOCKET, CRYSTAL: Copper base alloy contacts, silver plated; 20 contact position; 0.343 in. h, 1.5000 in. w, $1.725 \mathrm{in} . \mathrm{lg} ; \mathrm{Mfr}$ 03565 part no. B-6238	5-46
Y401	CRYSTAL UNIT, QUARTZ: Mfr 03565 part no. B-6177-1	5-48
Y402	CRYSTAL UNIT, QUARTZ: Mfr 03565 part no. B-6177-2	5-48
Y403	CRYSTAL UNIT, QUARTZ: Mfr 03565 part no. B-6177-3	5-48
Y404	CRYSTAL UNIT, QUARTZ: Mfr 03565 part no. B-6177-4	5-48
Y405	CRYSTAL UNIT, QUARTZ: Mfr 03565 part no. B-6177-5	5-48

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581A/URC-9, SECOND IF AMPLIFIER ASSEMBLY (AN/URC-9A ONLY) (Continued)		
Y406	CRYSTAL UNIT, QUARTZ: Mfr 03565 part no. B-6177-6	5-48
Y407	CRYSTAL UNIT, QUARTZ: Mfr 03565 part no. B-6177-7	5-48
Y408	CRYSTAL UNIT, QUARTZ: Mfr 03565 part no. B-6177-8	5-48
Y409	CRYSTAL UNIT, QUARTZ: Mfr 03565 part no. B-6177-9	5-48
Y410	CRYSTAL UNIT, QUARTZ: Mfr 03565 part no. B-6177-10.	5-48
Z401	COIL ASSEMBLY: 0.468 in. by 0.718 in. by 1.875 in. o/a dim.; Mfr 13499 part no. 553-1793-003 C/O C401, C402, L401, L402, C414	5-48
Z402	COIL ASSEMBLY: 0.937 in. by 0.406 in. by 1.812 in. o/a dim; Mfr 13499 part no. 553-1787-003 C/0 C404, C405, L403, L404	
Z403	COIL ASSEMBLY: 0.468 in. by 0.718 in. by 1.875 in. o/a dim.; Mfr 13499 part no. 553-1848-004 C/0 C408, C409, L405, L406	
RT-581/URC-9, SECOND IF AMPLIFIER ASSEMBLY (AN/URC-9, ONLY)		
$\begin{aligned} & \text { 1A1A5 } \\ & (401-499) \end{aligned}$	FINAL ASSEMBLY - 2nd IF AMPLIFIER: Mfr 13499 part no. 553-1776-004	5-46
C401	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 200 uuf $\pm 20 \%$, 500 vdc , Mfr 71590 part no. DA933-048 P/O $Z 401$	5-46
C402	CAPACITOR, FIXED, MICA DIELECTRIC: MIL type CM05F111G03 P/0 Z401	5-46
C403	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 6.8 uuf $+5 \%$, 500 vdc ; Mfr 78488 part no. GA6-8UUFPORM5PCT	5-46
C404	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C401 P/O Z402	5-46
C405	CAPACITOR, FIXED, MICA DIELECTRIC: MIL type CM05FD161G03 P/O 2402	5-46
C406	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 1,000 uuf -0%, $+100 \%$ 500 vdc ; Mfr 72982 part no. 2465-009W5T0102P	5-47
C407	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C403	5-46
C408	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C401 P/0 Z403	5-46
C409	CAPACITOR, FIXED, MICA DIELECTRIC: MIL type CM05F131G03 P/0 Z403	5-46
C410	CAPACITOR, FIXED, MICA DIELECTRIC: 510 uuf $\pm 2 \%, 300 \mathrm{vdc}$, Mfr 72136 part no. DM15F10G03	5-47
C411	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 100 uuf $+2 \%$, 500 vdc at $85^{\circ} \mathrm{C}, 400 \mathrm{vdc}$ at $100^{\circ} \mathrm{C}, 250 \mathrm{vdc}$ at $125^{\circ} \mathrm{C}$, Mfr 72982 part no. 338026 T 2 H 0101 G	$5-47$
C412	CAPACITOR, FIXED, CERAMIC DIELECTRIC: MIL type CC22CH150G	5-47
C413	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 82 uuf $\pm 2 \%$, 500 vdc at $85^{\circ} \mathrm{C}, 400 \mathrm{vdc}$ at $100^{\circ} \mathrm{C}, 250 \mathrm{vdc}$ at $125^{\circ} \mathrm{C}, \operatorname{Mfr} 72982$ part no. 338026U2J0820G	5-47
C414	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 2000 uuf $-20 \%+100 \%$, 350 vdc; Mfr 72982 part no. 2467001W5TO2022	5-47
C415	NOT USED	
C416	CAPACITOR, FIXED, MICA DIELECTRIC: 1000 uuf $\pm 20 \%, 500 \mathrm{vdc}$; Mfr 72982 part no. 650256A4102M	5-47

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581/URC-9, SECOND IF AMPLIFIER ASSEMBLY (AN/URC-9, ONLY) (Continued)		
C417	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 100 uuf $+2 \%$, 500 vdc at $85^{\circ} \mathrm{C}, 400 \mathrm{vdc}$ at $100^{\circ} \mathrm{C}, 250 \mathrm{vdc}$ at $25^{\circ} \mathrm{C}$, Mfr $7 \overline{2} 982$ part no. 338026 T 2 HO 101 G	5-47
C418	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C416	5-47
FL401	```FILTER, RADIO TNTERFERENCE: 500 vdc, 5 amps; metal case; 2 feed thru type terminals; 21/32 in. 1g, 21/64 in. dia o/a excluding wire leads; Mfr 01121, part no. FISA```	5-46
FL 402	FILTER, RADIO INTERFERENCE: Same as FL401	5-46
FL403	FILTER, RADIO INTERFERENCE: Same as FL401	5-47
FL404	FILTER, RADIO INTERFERENCE: Same as FL401	5-47
H401	SCREW, MACHINE, Cres; phillips pan head; 6-32NC-2A thd, $1 / 2$ in. 1 g ; Mfr 13499 part no. 553-1654-002	5-48
H402	SCKEW: Cres; phillips fillister head; 6-32NC-2A thd, 1-9/16 in. 1 g ; Mfr 13499 part no. 553-1824-002	5-46
H403	WASHER, FLAT: Brass; 0.125 in. id, 0.1875 in. od, 0.010 in. thk; Mfr 13499 part no. 553-1784-002	5-46
H404	WASHER, FLAT: Cres; 0.125 in. id, 0.250 in. od, 0.031 in. thk, Mfr 13499 part no. 553-1785-002	5-46
J401	```CONNECTOR, RECEPTACLE, ELECTRICAL: }850\mathrm{ v rms peak voltage; 70 ohms impedance; low loss plastic dielectric; 5/8 in. 1g; Mfr 94375 part no. R700```	5-46
J402	JACK, TIP: Fo: use with 0.080 in. dia plug tip; $5.5 \mathrm{amps} ; \mathrm{Mfr}$ 98291 part no. SKTIORED	5-46
J 403	CONNECTOR, RECEPTACLE, ELECTRICAL: Same as J401	5-46
J404	JACK, TIP: For use with 0.080 diameter plug tip; part no. SKT10 YELLOW, Mfr 98291	5-4:6
K401	RELAY, ARMATURE: $1 \mathrm{C}, 30$ ua at 50 mv dry circuit, $1 \mathrm{C}, 10 \mathrm{ma}$ at 125 vdc resistive; 26.5 vdc nom coil, 552 ohms $+10 \%-20 \%$ at $+25^{\circ} \mathrm{C}$, continuous duty; hermetically sealed; Mfr 01526 part no. 3S2791G200A16C	9-46
L401	```COIL ASSEMBLY: }23\mathrm{ turns of no. 34 AWG wire; 0.406 in. by 0.906 in. by 1.500 in. o/a dim.; Mfr 13499 part no. 553-1790-002 P/0 Z401```	5-46
L402	```COIL ASSEMBLY: }19\mathrm{ turns of no. 32 AWG wire; 0.250 in. w across flats by 1.186 in. lg o/a dim., excl terminals; Mfr 13499 part no, 553-1789-002 P/O Z401```	5-46
L403	COIL ASSEMBLY: Same as L401 P/O Z402	5-46
L404	COIL ASSEMBLY: Same as L402 P/O Z402	$5-46$
L405	COIL ASSEMBLY: Same as L401 P/O Z403	5-46
L406	COIL ASSEMBLY: Same as L402 P/O Z403	5-46
L407	COIL, RADIO FREQUENCY: 3 universal wound pi sections, 225 turns ea section; 2.0 uh inductance, 35 ma current; Mfr 99800 part no. BP123	5-47
L408	```COIL, RADIO FREQUENCY: Single layer wound, 46 turns #25 AWG wire; 6.5 uh nominal inductance, 0.05 ohms dc resistance, 1.5 amps current rating; Mfr 99800 part no. BP868```	5-47

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581/URC-9, SECOND IF AMPLIFIER ASSEMBLY (AN/URC-9 ONLY) (Continued)		
0401	CORE ASSEMBLY: 0.200 in . dia by 1.942 in .1 g o/a dim., Mfr 13499 part no. 553-1778-002 U/W L401, L403, L405	5- +7
0402	SPRING: Copper; 0.125 in. by 0.735 in. by 1.687 in. o/a dim.; Mfr 13499 part no. 553-1781-002	5-47
0403	SPRING: HELICAL, EXTENSION: Cres; 24, 0.020 in. dia wire coils, 0.167 in. dia, 0.790 in. $1 g ;$ Mfr 13499 part no. 553-1691-002	5-46
0404	TABLE ASSEMBLY, SHAFT: 0.406 in. by 1.425 in . by 2.499 in . o/a dim.; Mfr 13499 part no. 553-1809-002	5-47
0405	COUPLING ASSEMBLY: 0.875 in. dia by 0.483 in .1 g o/a dim.; Mfr 13499 part no. 553-1724-002	5-47
0406	SHAFT ASSEMBLY: Brass cam, cres; shaft; 2.094 in .1 g o/a, Mfr 13499 part no. 553-1812-003	5-47
0407	SPRING: Copper, 0.156 in. by 0.511 in. by 0.718 in. o/a dim.; Mfr 13499 part no. 553-1650-002	5-46
P401	CONNECTOR, RECEPTACLE, ELECTRICAL: 11 male contacts; $5 \mathrm{amps} ;$ 7/16 in. dia, 13/32 in. lg; Mfr 80586 part no. GM11M79	5-46
R401	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF563K	5-47
R402	RESISTOR, FIXED, CDMPOSITION: MIL-R-11 type RC20GF104K	5-47
R403	RESISTOR, FIXED, COMPOSITION: Same as R402	5-47
R404	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF221K	5-47
R405	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF103K	5-47
R406	RESISTOR, FIXED, COMPOSITION: Same as R402	5-47
R407	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF273K	5-47
R408	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF622J	5-47
R409	RESISTOR, FIXED, COMPOSITION: Same as R402	5-47
R410	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF823K	5-47
S401	SWITCH, SECTION ROTARY: 1 circuit, 1 pole, 12 position; 2 moving and 11 fixed contacts; Mfr 76854 part no. 217387FX	5-47
S402	SWITCH SECTION, ROTARY: 1 circuit, 1 pole, 12 position; 2 moving and 11 fixed contacts; Mfr 76854 part no. 218282FX	5-47
V401	ELECTRON TUBE: MIL-E-1 type 5670	5-46
W401	CABLE ASSEMBLY, SPECIAL PURPOSE, ELECTRICAL, BRANCHED: 6 conductors terminated one end $\mathrm{w} / \mathrm{connector} ; 5.075 \mathrm{in}$. 1 g o/a exc1 wire leads; Mfr 13499 part no. 553-1820-004	5-46
XK401	SOCKET, RELAY: Cooper base alloy contacts; silver plated; 8 contact position; 0.234 in. h. 0.291 in. w, 0.719 in. 1 g ; Mfr 71785 part no. 54A20730	5-46
XV401	SOCKET, ELECTRON TUBE: Phosphor bronze, silver plated; Mfr 91662 part no. BRTL669SPHSPTD125	5-46
XY401	SOCKET, CRYSTAL: Copper base alloy contacts, silver plated; 20 contact position; 0.343 in. , h, $1.5000 \mathrm{in} . \mathrm{w}, 1.725 \mathrm{in} .1 \mathrm{~g}$; Mfr 02660 part no. 33-819	5-46
Y401	CRYSTAL UNIT, QUARTZ: MIL-C-3098C type CR18AU3-000000 MHz	5-48
Y402	CRYSTAL UNIT, QUARTZ: MIL-C-3098C type CR18AU3-100000 MHz	5-48
Y403	CRYSTAL UNIT, QUARTZ: MIL-C-3098C type CR18AU3-200000 MHz	5-48
Y404	CRYSTAL UNIT, QUARTZ: MIL-C-3098C type CR18AU3-300000 MHz	5-48

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581/URC-9, SECOND IF AMPLIFIER ASSEMBLY (AN/URC-9 ONLY) (Continued)		
Y405	CRYSTAL UNIT, QUARTZ: MIL-C-3098C type CR18AU3-400000 MHz	5-48
Y406	CRYSTAL UNIT, QUARTZ: MIL-C-3098C type CR18AU3-500000 MHz	5-48
Y407	CRYSTAL UNIT, QUARTZ: MIL-C-3098C type CR18AU3-600000 MHz	5-48
Y408	CRYSTAL UNIT, QUARTZ: MIL-C-3098C type CR18AU3-700000 MHz	5-48
Y409	CRYSTAL UNIT, QUARTZ: MIL-C-3098C type CR18AU3-800000 MHz	5-48
Y410	CRYSTAL UNIT, QUARTZ: MIL-C-3098C type CR18AU3-900000 MHz	5-48
2401	COIL ASSEMBLY: 0.468 in . by 0.718 in. by $1.875 \mathrm{in} . \mathrm{o} / \mathrm{a}$ dim.; Mfr 13499 part no. 553-1793-003 C/0 C401, C402, L401, L402	5-48
Z402	COIL ASSEMBLY: 0.937 in . by 0.406 in . by 1.812 in . o/a dim; Mfr 13499 part no. 553-1787-003 C/O C404, C405, L403, L404	5-48
2403	COIL ASSEMBLY: 0.468 in. by 0.718 in. by 1.875 in . o/a dim; Mfr 13499 part no. 553-1848-004 C/0 C408, C409, L405, L406	
RT-581()/URC-9, THIRD IF AMPLIFIER ASSEMBLY		
$\begin{aligned} & \text { 1A1A6 } \\ & (501-599) \end{aligned}$	THIRD IF AMPLIFIER: Mfr 03565 part no. C-6491	5-49
C501	NOT USED	
C502	CAPACITOR, FIXED, MICA DIELECTRIC: MIL type CM15CD101J03	5-51
C503	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C502	5-51
C504	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 0.02 uf $-20 \%+100 \%$, $500 \mathrm{vdc}, \mathrm{Mfr} 72982$ part no. 841011W5V0203Z	5-50
C505	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C504	5-50
C506	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C504	5-51
C507	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C504	5-50
C508	NOT USED	
C509	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C504	5-50
C510	CAPACITOR, FIXED, PAPER DIELECTRIC: $0.1 \mathrm{uf} \pm 20 \%$, 300 vdc ; Mfr 56289 part no. 186P10403S15	5-49
C511	NOT USED	
C512	NOT USED	
C513	NOT USED	
C514	CAPACITOR, FIXED, PAPER DIELECTRIC: 0.47 uf $+20 \%$, 100 vdc ; Mfr 56289 part no. 186P47401S15	5-49
C515	CAPACITOR, FIXED, PAPER DIELECTRIC: 220,000 uuf $\pm 20 \%, 100 \mathrm{vdc}$, Mfr 56289 part no. 186P22401S15	5-49
C516	CAPACITOR, FIXED, PAPER DIELECTRIC: Same as C510	5-49
C517	CAPACITOR, FIXED, PAPER DIELECTRIC: MIL type CQ09A1KC333K3	5-50
C518	NOT USED	
C519	CAPACITOR, FIXED, PAPER DIELECTRIC: Same as C510	5-49
C520	CAPACITOR, FIXED, MICA DIELECTRIC: MIL type CM15CD470J03	5-51
C521	CAPACITOR, FIXED, MICA DIELECTRIC: MIL type CM15ED471G03	5-51
C522	CAPACITOR, FIXED, PAPER DIELECTRIC: 0.033 uuf $\pm 20 \%, 100 \mathrm{vdc}$; Mfr 14655 part no. TWU1S33-4P	5-51
C523	CAPACITOR, FIXED, PAPER DIELECTRIC: 0.10 uf $+20 \%, 100 \mathrm{vdc}$; Mfr 56289 part no. 86P10401S1	5-51

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581()/URC-9, THIRD IF AMPLIFIER ASSEMBLY (Continued)		
C524	CAPACITOR, FIXED, ELECTROLYTIC: MIL type CL64BP1R7MPE	5-51
C525	NOT USED	
C526	CAPACITOR, FIXED, PAPER ELECTRIC: $0.33 \pm 20 \%$, $100 \mathrm{vdc} ; \mathrm{Mfr}$ 56289 part no. 86P33401T15	5-49
C527	CAPACITOR, FIXED, PAPER DIELECTRIC: Same as C510	5-49
C528	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C520	5-51
C 529	CAPACITOR, FIXED, ELECTROLYTIC: MIL type CSR13E106MP	5-50
C530	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C502	5-50
CR501	SEMICONDUCTOR DEVICE, DIODE: MIL type IN658	5-50
CR502	NOT USED	
CR503	SEMICONDUCTOR DEVICE, DIODE: MIL type IN483B	5-50
CR504	SEMICONDUCTOR DEVICE, DIODE: MIL type IN485B	5-51
CR 505	SEMICONDUCTOR DEVICE, DIODE: Same as CR504	5-50
H501	SCREW, MACHINE: Cres; phillips pan head; 6-32NC-2A thd, 1/2 in. 1 g ; Mfr 13499 part no. 553-1664-002	5-49
H502	WASHER, FLAT: Cres; 0.127 in. id, 0.250 in. od, 0.033 in. thk; Mfr 13499 part no. 553-1854-002	5-51
H503	NUT, PLAIN, CLINCH: Cres; 6-32 thd; 0.250 in. dia by 0.281 in. 1 g o/a dim.; Mfr 13499 part no. 553-1671-002	5-50
J501	NOT USED	
J 502	NOT USED	
J503	JACK, TIP: For use with 0.080 diameter plug tip; Mfr 98291 part no. SKT100RANGE	5-49
J504	JACK, TIP: For use with 0.080 diameter plug tip; Mfr 98291 part no SKT1OYELLOW	5-49
J505	JACK, TIP: u/w 0.080 in. dia plug tip; $5.5 \mathrm{amps} ;$ Mfr 98291 part no. SKT1OGREEN	5-49
J506	JACK, TIP: For $u / \mathrm{w} 0.080$ in. dia plug tip; $5.5 \mathrm{amps} ;$ Mfr 98291 part no. SKT10BLUE	5-49
J507	NOT USED	
J508	JACK, TIP: For use with 0.080 diameter plug tip; $5.5 \mathrm{amps} ; ~ M f r$ 98291 part no. SKT10GRAY	5-49
L501	COIL, RADIO FREQUENCY: 500 Mh nom inductance, 48.3 ohms dc resistance, 82 ma current rating; Mfr 99800 part no. 25nn-62	5-50
L502	COIL, RADIO FREQUENCY: Same as L501	5-50
L503	COIL, RADIO FREQUENCY: 2.0 Mh nom inductance, 35 ma current rating, Mfr 13499 part no. 548-7661-002	5-51
0501	RING, CRES: Cres; 0.062 in. by 9.437 in. by 0.937 in. o/a dim.; Mfr 13499 part no. 553-1413-002	5-49
0502	SPRING, FAN: Copper. 0.156 in. by 0.511 in. by 0.718 in . o/a dim.; Mfr 13499 part no. 553-1650-002	5-49
P501	CONNECTOR, RECEPTACLE, ELECTRICAL: 14 male contacts 5 amps, 300 vac, straight shape; Mfr 80586 part no. GM14M79 P/O W501	5-49
P502	```CABLE ASSEMBLY, RADIO FREQUENCY: Stranded conductor, single shield, teflon jacket; 75 ohms impedance; terminated one end w/angle plug connector; 16.234 in. 1g o/a; P/O W502; Mfr 98278 part no. 30-186-2```	5-49

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \hline \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581()/URC-9, THIRD IF AMPLIFIER ASSEMBLY (Continued)		
R501	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF104K	5-50
R502	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF271K	5-51
R503	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC32GF222K	5-50
R504	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF183K	5-51
R505	RESISTOR, FIXED, COMPOSITION: Same as R501	5-50
R506	RESISTOR, FIXED, COMPOSITION: Same as R502	5-50
R507	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF473K	5-50
R508	RESISTOR, FIXED, COMPOSITION: Same as R504	5-50
R509	RESISTOR, FIXED, COMPOSITION: Same as R501	5-51
R510	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF181K	5-50
R511	RESISTOR, FIXED, COMPOSITION: Same as R507	5-51
R512	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF122K	5-51
R514	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF474K	5-50
R515	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC07GF103J	5-50
R516	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC07GF682J	5-50
R517	RESISTOR, FIXED, COMPOSITION: MIL type RC07GF133J	5-50
R518	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC07GF243J	5-50
R519	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC07GF474K	5-51
R520	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC07GF564K	5-50
R525	RESISTOR, FIXED, COMPOSITION: Same as R514	5-51
R526	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF221K	5-51
R527	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC32GF123K	5-51
R528	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF223K	5-50
R529	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC07GF683K	5-51
R530	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC07GF104K	5-51
R531	RESISTOR, FIXED, COMPOSITION: Same as R519	5-51
R532	RESISTOR, FIXED, COMPOSITION: Same as R501	5-51
R533	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RCO7GF224K	5-51
R537	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC07GF333K	5-50
R538	RESISTOR, FIXED, COMPOSITION: Same as R529	5-51
R539	RESISTOR, FIXED, COMPOSITION: Same as R501	5-51
R540	RESISTOR, FIXED, COMPOSITION: Same as R507	5-51
R541	RESISTOR, FIXED, COMPOSITION: Same as R519	5-50
T501	TRANSFORMER, INTERMEDIATE FREQUENCY: Glass tubing; $485 \mathrm{KC}-515 \mathrm{kHz}$ frequency range; unshielded; $1.500 \mathrm{in} .1 \mathrm{~g}, 0.875 \mathrm{in} . \mathrm{w}, 0.875$ in. h ; two screw type terminals; Mfr 81815 part no. X144-1	5-49
V501	ELECTRON TUBE: MIL-E-1 type 5654	5-49
V502	ELECTRON TUBE: Same as V501	5-49
V503	ELECTRON TUBE: Same as V501	5-49
V504	ELECTRON TUBE: Same as v501	5-49
W501	CABLE ASSEMBLY, SPECIAL PURPOSE, ELECTRICAL: 11 conductors, terminated w/connector shield assy one end, other end stripped and tinned; Mfr 13499 part no. 549-2244-004	5-49
W502	CABLE ASSEMBLY, RADIO FREQUENCY: One end terminated w/connector; Mfr 13499 part no. 549-3372-002	5-19

Table 6-2. Maintenance Parts List (Continued)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581()/URC-9, THIRD IF AMPLIFIER ASSEMBLY (Continued)		
XV501	SOCKET, ELECTRON TUBE: 7 contact miniature; two 0.125 in. dia mtg holes spaced 0.875 in. c to c; Mfr 80368 part no. V24-6034	5-49
XV502	SOCKET, ELECTRON TUBE: Same as XV501	5-49
XV503	SOCKET, ELECTRON TUBE: Same as VX501	5-49
XV504	SOCKET, ELECTRON TUBE: Same as XV501	5-49
RT-581 ()/URC-9, RELAY-FILTER ASSEMBLY		
1A1A7		
(601-699)	RELAY-FILTER: Mfr 13499 part no. 528-0255-005	5-54
C601	CAPACITOR, FIXED, PAPER DIELECTRIC: 1 uf $\pm 20 \%$, 600 vdc ; Mfr 56289 part no. 118P10506T13	5-55
C602	CAPACITOR, FIXED, PAPER DIELECTRIC: MIL type CQ09AlKC473K3	5-55
C603	CAPACITOR, FIXED, ELECTROLYTIC: MIL type CSRIE107MP	5-55
C604	CAPACITOR, FIXED, ELECTROLYTIC: MIL type CL21BQ040SPE	5-56
C605	CAPACITOR, FIXED, ELECTROLYTIC: Same as C604	5-55
C606	CAPACITOR, FIXED, ELECTROLYTIC: MIL type CL33BZR75LNG	5-55
C607	CAPACITOR, FIXED, ELECTROLYTIC: Same as C603	5-54
CR601	SEMICONDUCTOR DEVICE DIODE: MIL-S-19500/124 (SIG C) type IN2982B	5-55
H601	SCREW, MACHINE: Stainless steel, passivate finish; 8-32NC-2A thd, 5-8 in. 1 g ; Mfr 13499 part no. 553-1847-002	5-55
H602	STUD, TERMINAL INSULATED: 6 in. $1 \mathrm{~g} ; 1 / 4 \mathrm{in}$. hex base with 6-32 threaded hole; diallyl phthalate or similar insulation	5-55
J601	JACK, TIP: For use on 0.080 diameter male contacts; 5.5 amps; Mfr 98291 part no. SKT5BCBROWN	5-17
K601	RELAY, ARMATURE: $2 \mathrm{C}, 2 \mathrm{amps}$ at 28 vdc , or 120 vac resistive; 35 ma at $125^{\circ} \mathrm{C}$ coil current; 200 ohms $\pm 10 \%$ at $125^{\circ} \mathrm{C}$ coil resistance; continuous duty cycle; hermetically sealed; Mfr 78277 part no. 95263	5-54
K602	RELAY, ARMATURE: 6C contact; 28 vdc ; 1 amp resistive; 1 inductive winding, 200 ohms dc coil resistance; hermetically sealed; air arc quenching; Mfr 99699 part no. 26SJl8SD	5-55
K603	RELAY, ARMATURE: 4PDT; 2 amps at 28 vdc resistive circuit; 26.5 vdc coil voltage; $500 \pm 10 \%$ ohms at $25^{\circ} \mathrm{C}$ coil resistance; continuous duty cycle, micro-miniature; hermetically sealed; Mfr 01526 part no. 3SAH1072	5-54
P601	CONNECTOR, RECEPTACLE, ELECTRICAL: Arc resistant plastic dielectric; Mfr 80586 part no. GM20M79	5-56
P602	CONNECTOR, RECEPTACLE, ELECTRICAL: Same as P601	5-56
R601	RESISTOR, FIXED, WIREWOUND: MIL type RW31V632	5-56
R602	RESISTOR, VARIABLE: 2500 ohms $\pm 10 \%, 12.5 \mathrm{w}$; Mfr 44655 part no. E2500S1	5-54
R603	RESISTOR, FIXED, WIREWOUND: MIL-R-26 type RW30V252	5-56
R604	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC42GF102K	5-56
R605	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF621J	5-55
R606	RESISTOR, FIXED, WIREWOUND: MIL-R-26 type RW30V122	5-56
R607	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC32GF273K	5-56

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	FIG NO.
RT-581()/URC-9, RELAY-FILTER ASSEMBLY (Continued)		
R608	RESISTOR, VARIABLE, COMPOSITION: MIL-R-94 type RV6LAYS102B	5-54
R609	RESISTOR, VARIABLE, COMPOSITION: Same as R608	5-17
R610	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC07GF102K	5-56
R611	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC42GF221K	5-54
R612	RESISTOR, FIXED, WIREWOUND: MIL-R-26 type RW69V820	5-55
R613	NOT USED	
R614	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC42GF121K	5-54
R615	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF822K	5-55
R616	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF103K	5-56
R617	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF474K	5-56
R618	RESISTOR, FIXED, COMPOSITION: Same as R617	5-55
R619	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC32GF101K	5-55
R620	RESISTOR, FIXED, COMPOSITION: Same as R611	5-54
RV601	```RESISTOR, VOLTAGE SENSITIVE: Silicon carbide body; 48 vdc nom; 42 to 56 vdc range; 7/8 in. dia. by l/4 in. w; 2 wire leads, 1-1/2 in. 1g; Mfr 04773 part no. RY57```	5-55
RV602	RESISTOR, VOLTAGE, SENSITIVE: Zero ohms at $120 \mathrm{vdc}, 5000$ ohms at $80 \mathrm{vdc}, 75,000$ ohms at $40 \mathrm{vdc}, 290,000$ ohms at 25 vdc ; 0.250 in. h, 0.875 in. w, 2.375 in. 1 g ; Mfr 04773 part no. RY56	5-54
T601	TRANSFORMER, AUDIO FREQUENCY: 82 ohms, 50 ma $\pm 10 \%$ primary; 1200 ohms secondary; 300 Hz to 5000 Hz frequency response; continuous duty cycle; Mfr 97965 part no. 31487	5-55
RT-581A/URC-9, FRONT PANEL ASSEMBLY (AN/URC-9A ONLY)		
$\begin{aligned} & \text { 1A1A8 } \\ & (701-799) \end{aligned}$		
C701	CAPACITOR, FIXED, CERAMIC DIELECTRIC: MIL type CK14BX223M	$5-65$ $5-66$
C702	CAPACITOR, FIXED, ELECTROLYTIC: MIL type CSRO9G274KP	5-66
C703	CAPACITOR, FIXED, ELECTROLYTIC: Same as C702	5-66
C704	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 0.02 uf $-20 \%,+100 \%$, 500 vdc; Mfr 72982 part no. 841011W5V0203A	5-66
CR701	SEMICONDUCTOR, DIODE: MIL type IN4002	5-66
CR702	SEMICONDUCTOR, DIODE: Same as CR701	5-66
DS701	LAMP, INCANDESCENT: MIL-L-6363 type MS25237-327	5-65
DS702	LAMP, INCANDESCENT: Same as DS701	5-65
DS703	LAMP, INCANDESCENT: Same as DS701	5-65
FL 701	FILTER, ASSEMBLY: 0.375 in. dia by 1.015 in. ' 1 g excl terminal; Mfr 13499 part no. 553-2124-003	5-66
FL 702	FILTER, ASSEMBLY: Same as FL701	5-66
FL703	FILTER, ASSEMBLY: Same as FL701	5-66
FL 704	FILTER, ASSEMBLY: Same as FL701	5-66
FL 705	FILTER, ASSEMBLY: Same as FL701	5-66
H701	WASHER, FLAT: Cres; 0.515 in. id, 0.828 in. od, 0.031 in. thk; Mfr 13499 part no. 553-2115-002	5-65
H702	WASHER, LOCK: Mfr 78189 part no. 1724-02	5-65

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581A/URC-9, FRONT PANEL ASSEMBLY (AN/URC-9A ONLY) (Continued)		
H703	NUT, PLAIN, ROUND: Cres; 0.687 in. dia by 0.125 in. thk; 1/2 - 32 thd; Mfr 13499 part no. 553-2119-002	5-65
H704	WASHER, LOCK: Mfr 78189 part no. 1220-02	5-66
H705	NUT, PLAIN, ROUND: Cres; 0.562 in. dia by 0.125 in. thk; Mfr 13499 part no. 553-2079-002	5-66
H706	SCREW, SELF-LOCKING: Stainless steel, chemical black finish; slotted head; $6-32 \mathrm{NC}-2 \mathrm{~A}$ thd, $5 / 16$ in. 1 g ; Mfr 02615 part no. M36CR632-5B0	5-65
H707	WASHER, LOCK: Stainless steel, passivate finish; internal teeth; 0.659 in. id, 0.883 in. od, 0.022 in. thk; Mfr 78189 part no. 1728-02	5-65
H708	NUT, PLAIN, ROUND: Cres; 0.843 in. dia by 0.125 in. thk; 5/8 - 24 thd; Mfr 13499 part no. 553-2113-002	5-65
H709	POST: Cres; $1 / 4$ in. h head; $4-40$ thd, 0.258 in. $1 g ; 23 / 32$ in. 1 g o/a; Mfr 13499 part no. 593-4471-002	5-66
H710	STUD, CONTINUOUS THREAD: Stainless steel; 6-32NC-2 thd. 7/16 in. 1 g o/a; Mfr 13499 part no. 312-0074-00	5-66
H711	POST: Aluminum, chromate dip; open end type; hex. head; $6-32 N C-2 B$ thd, 0.922 in. $1 g$; Mfr 13499 part no. 015-0552-00	5-66
H712	INSULATOR, WASHER: Mica; red, flat, 0.4375 in. dia, 0.007 in. to 0.025 in. thk; $13 / 64$ in. dia hole; Mfr 13499 part no. 302-0087-00	5-66
H713	WASHER, FLAT: Stainless steel, passivate finish; 0.0312 in. thk, 0.147 in. id, 0.437 in. od; Mfr 13499 part no. 310-0447-00	5-66
H714	WASHER, LOCK: Stainless steel, 0.267 in. od, 0.408 in. od, 0.018 in. thk; Mfr 78189 part no. 1714-05PLAIN	5-66
H715	NUT, PLAIN, ROUND: Cres; 0.437 in. dia by 0.125 in. thk; 1/4 - 32 thd; Mfr 13499 part no. 553-2116-002	5-66
H716	WASHER, LOCK: Stainless steel, cadmium plated; . 018 in. thk; 0.267 in. id, 0.408 in. od; Mfr 78189 part no. 1214-05	5-65
H717	```SCREW, MACHINE: Stainless steel, passivate finish; phillips recessed pan head; 3-48NC-2A thd, 7/16 in. 1g; Mfr 13499 part no. 343-2717-00```	5-66
H718	SETSCREW: Stainless steel, plain finish; multiple spline oval point; 4-40UNC-3A thd, $1 / 4$ in. 1 g ; Mfr 08664 part no. 4-40X1-4 6SPINEOVPT18-8SST	5-65
H719	WASHER, THRUST: Aluminum alloy; 0.437 in. id, 0.740 in. od, 0.0280 in. thk; Mfr 13499 part no. 553-2111-002	5-66
H720	WASHER, THRUST: Aiuminum alloy; 0.812 in. id, 1.240 in. id, 0.280 in. thk; Mfr 13499 part no. 553-2112-002	5-66
H721	NUT: Cres; $1 / 2$ in. w across flat by $1-9 / 16$ in. $1 \mathrm{~g} ; 1 / 4-20$ internal thd, 0.437 in. deep; Mfr 13499 part no. 593-4473-002	5-65
H722	POST: Cres; $1 / 4 \mathrm{in} . \mathrm{w}$ across flats by 0.266 in. h head; 6-32 thd, 0.421 in. 1 g o/a; Mfr 13499 part no. 553-2117-002	5-66
H723	NUT: Cres; 0.500 in. dia by 0.125 in. thk; $1 / 4-20$ thd; Mfr 13499 part no. 548-8957-002	5-65

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \hline \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	FIG No.
RT-581A/URC-9, FRONT PANEL ASSEMBLY (AN/URC-9A ONLY) (Continued)		
H724	SCREW: Cres; 0.406 in. dia by 0.218 in. h fillister head; 1/4-20 thd, $15 / 32$ in. $1 g$; 1.468 in. $1 g$ o/a; Mfr 13499 part no. 553-2114-002	5-65
H725	WASHER, STAINLESS steel, passivate finish; 0.250 in. thk; Mfr 13499 part no. 506-5173-002	5-65
H726	NOT USED	
H727	SCREW, MACHINE: Stainless steel, passivate finish; 4-40NC-2A thd, $9 / 16$ in. $1 \mathrm{~g} ; \mathrm{Mfr} 13499$ part no. 343-0282-00	5-65
H728	POST: $3 / 16 \mathrm{in} . \mathrm{w}$ across flats by $0.453 \mathrm{in} . \mathrm{h}$ head; $4-40$ thd, $0.187 \mathrm{in} .1 \mathrm{~g} ; 41 / 64 \mathrm{in}$.1 g o/a; Mfr 13499 part no. 553-2123-002	5-66
H729	NUT, SELF-LOCKING, HEXAGON: Aluminum; 4-40UNC-3B thd, 0.190 in . hex., 0.110 in. h; Mfr 72962 part no. 68-1660-40	5-66
H730	WASHER, LOCK: Stainless steel, passivate finish; sp1it helical ring; 0.397 in. od, 0.3125 in. screw size, 0.031 in. thk material; Mfr 13499 part no. 310-0421-00	5-66
H731	INUT: Brass, bright alloy; 0.281 in. id, 0.385 in. od, 0.156 in. thk; Mfr 13499 part no. 544-5050-002	5-66
H732	WASHER, SPRING TENSION: Phosphor bronze, cadmium plated; 0.203 in. id, 0.375 in. od, 0.0154 in. thk; 0.0625 in. h o/a; Mfr 13499 part no. 310-4780-00	5-65
H733	PIN, SPRING: MIL part no. MS16562-191	5-65
H734	SLEEVE, SPRING: Sleeve type, copper; 0.185 in. dia, for size 8 screw; Mfr 13499 part no. 340-0642-00	5-65
H735	WASHER: Cies; $0.187 \mathrm{in} . \mathrm{id}, 0.312 \mathrm{in} . \mathrm{od}, 0.020 \mathrm{in}$. thk; Mfr 13499 part no. 500-1099-00	5-65
H736	SCREW, MACHINE: Stainless steel, passivate finish; fillist.rr head, slot drive; $8-32 \mathrm{NC}-2 \mathrm{~A}$ thd, $9 / 16$ in. 1 g ; Mfr 13499 part no. 321-0388-00	5-65
J701	ADAPTER, CONNECTOR: Brass body, teflon insulation; two female contacts; 0.812 in . dia by 1.703 in .1 g o/a dim; Mfr 94375 part no. 0991	5-65
J702A, B	JACK ASSEMBLY, TIP: Inc1 2 tip jacks; 1.281 in. by 1.312 in. by 1.421 in.; Mfr 13499 pait no. 593-4479-003	5-65
J703	CONNECTOR, RECEPTACLE, ELECTRICAL: MIL-C-5015D type MS 3102R14S5S	5-65
J704	CONNECTOR, RECEPTACLE, ELECTRICAL: Same as J703	5-65
L701	REACTOR: Swinging inductance type; 0.3 hy to $0.15 \mathrm{hy}, 0.020$ amp, 25 ohms; $11 / 32$ in. dia by $15 / 32$ in. 1 g ; Mfr 80223 part no. DOT28	5-66
M701	METER, ARBITRARY SCALE: Dc panel type; 0 to 100 cw scale, 8 scale linear; scale marked "NORMAL" spaced 20° either side of center; 1 in . deep to mtg flange, 1.750 in .1 g of flange, 1.750 in. w of flange, 1.510 in. dia body; Mfr 13499 part no. 476-0228-00	5-65
0701	GASKET: MIL-P-5516 type AN6227-5	5-65
0702	GASKET: MIL-P-5516 type AN6227-1	5-66

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \overline{\text { REF }} \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581A/URC-9, FRONT PANEL ASSEMBLY (AN/URC-9A ONLY) (Continued)		
H703	NUT, PLAIN, ROUND: Cres; 0.687 in. dia by 0.125 in. thk; 1/2 - 32 thd; Mfr 13499 part no. 553-2119-002	5-65
H704	WASHER, LOCK: Mfr 78189 part no. 1220-02	5-66
H705	NUT, PLAIN, ROUND: Cres; 0.562 in. dia by 0.125 in. thk; Mfr 13499 part no. 553-2079-002	5-66
H706	SCREW, SELF-LOCKING: Stainless steel, chemical black finish; slotted head; $6-32 \mathrm{NC}-2 \mathrm{~A}$ thd, $5 / 16$ in. 1 g ; Mfr 02615 part no. M36CR632-5B0	5-65
H707	WASHER, LOCK: Stainless steel, passivate finish; internal teeth; 0.659 in. id, 0.883 in. od, 0.022 in. thk; Mfr 78189 part no. 1728-02	5-65
H708	NUT, PLAIN, ROUND: Cres; 0.843 in. dia by 0.125 in. thk; 5/8 - 24 thd; Mfr 13499 part no. 553-2113-002	5-65
H709	POST: Cres; $1 / 4$ in. h head; 4-40 thd, 0.258 in. $1 \mathrm{~g} ; 23 / 32$ in. 1 g o/a; Mfr 13499 part no. 593-4471-002	5-66
H710	STUD, CONTINUOUS THREAD: Stainless steel; 6-32NC-2 thd. 7/16 in. 1 g o/a; Mfr 13499 part no. 312-0074-00	5-66
H711	POST: Aluminum, chromate dip; open end type; hex. head; 6-32NC-2B thd, 0.922 in. 1g; Mfr 13499 part no. 015-0552-00	5-66
H712	INSULATOR, WASHER: Mica; red, flat, 0.4375 in. dia, 0.007 in. to 0.025 in. thk; $13 / 64$ in. dia hole; Mfr 13499 part no. 302-0087-00	5-66
H713	WASHER, FLAT: Stainless steel, passivate finish; 0.0312 in. thk, 0.147 in. id, 0.437 in. od; Mfr 13499 part no. 310-0447-00	5-66
H714	WASHER, LOCK: Stainless steel, 0.267 in. od, 0.408 in. od, 0.018 in. thk; Mfr 78189 part no. 1714-05PLAIN	5-66
H715	NUT, PLAIN, ROUND: Cres; 0.437 in. dia by 0.125 in. thk; 1/4-32 thd; Mfr 13499 part no. 553-2116-002	5-66
H716	WASHER, LOCK: Stainless steel, cadmium plated; . 018 in. thk; 0.267 in. id, 0.408 in . od; Mfr 78189 part no. 1214-05	5-65
H717	SCREW, MACHINE: Stainless steel, passivate finish; phillips recessed pan head; $3-48 \mathrm{NC}-2 \mathrm{~A}$ thd, $7 / 16$ in. $1 \mathrm{~g} ; \mathrm{Mfr} 13499$ part no. 343-2717-00	5-66
H718	SETSCREW: Stainless steel, plain finish; multiple spline oval point; $4-40 \mathrm{UNC}-3 \mathrm{~A}$ thd, $1 / 4 \mathrm{in} .1 \mathrm{~g}$; Mfr 08664 part no. 4-40X1-4 6SPINEOVPT18-8SST	5-65
H719	WASHER, THRUST: Aluminum alloy; $0.437 \mathrm{in} . i d, 0.740 \mathrm{in} . ~ o d$, 0.0280 in. thk; Mfr 13499 part no. 553-2111-002	5-66
H720	WASHER, THRUST: Aiuminum alloy; 0.812 in. id, 1.240 in. id, 0.280 in. thk; Mfr 13499 part no. 553-2112-002	5-66
H721	NUT: Cres; $1 / 2$ in. w across flat by $1-9 / 16$ in. $1 \mathrm{~g} ; 1 / 4-20$ internal thd, 0.437 in. deep; Mfr 13499 part no. 593-4473-002	5-65
H722	POST: Cres; $1 / 4$ in. w across flats by 0.266 in. h head; 6-32 thd, 0.421 in. 1 g o/a; Mfr 13499 part no. 553-2117-002	5-66
H723	NUT: Cres; 0.500 in. dia by 0.125 in. thk; $1 / 4-20$ thd; Mfr 13499 part no. 548-8957-002	5-65

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \overline{\text { REF }} \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { No. } \end{aligned}$
RT-581A/URC-9, FRONT PANEL ASSEMBLY (AN/URC-9A ONLY) (Continued)		
H724	SCREW: Cres; 0.406 in. dia by $0.218 \mathrm{in} . \mathrm{h}$ fillister head; 1/4-20 thd, $15 / 32$ in. $1 \mathrm{~g} ; 1.468 \mathrm{in} .1 \mathrm{~g}$ o/a; Mfr 13499 part no. 553-2114-002	5-65
H725	WASHER, STAINLESS stee1, passivate finish; 0.250 in. thk; Mfr 13499 part no. 506-5173-002	5-65
H726	NOT USED	
H727	SCREW, MACHINE: Stainless steel, passivate finish; 4-40NC-2A thd, 9/16 in. 1g; Mfr 13499 part no. 343-0282-00	5-65
H728	POST: 3/16 in. w across flats by 0.453 in. h head; 4-40 thd, 0.187 in. $1 \mathrm{~g} ; 41 / 64 \mathrm{in} .1 \mathrm{~g}$ o/a; Mfr 13499 part no. 553-2123-002	5-66
H729	NUT, SELF-LOCKING, HEXAGON: Aluminum; 4-40UNC-3B thd, 0.190 in. hex., 0.110 in. h; Mfr 72962 part no. 68-1660-40	5-66
H730	WASHER, LOCK: Stainless steel, passivate finish; split helic	5-66

H731
H732

H733
H734
H735
H736

J701

J702A, B
$J 703$
J704
L701

M701

0701
0702
ring; 0.397 in. od, 0.3125 in. screw size, 0.031 in. thk material; Mfr 13499 part no. 310-0421-00
NUT: Brass, bright alloy; 0.281 in. id, 0.385 in. od, 0.156
in. thk; Mfr 13499 part no. 544-5050-002
WASHER, SPRING TENSION: Phosphor bronze, cadmium plated; 0.203
in. id, 0.375 in. od, 0.0154 in. thk; 0.0625 in. h o/a;
Mfr 13499 part no. 310-4780-00
PIN, SPRING: MIL part no. MS16562-191
5-65
SLEEVE, SPRING: Sleeve type, copper; 0.185 in. dia, for size 5-65
8 screw; Mfr 13499 part no. 340-0642-00
WASHER: Cies; 0.187 in. id, 0.312 in. od, 0.020 in. thk; 5-65
Mfr 13499 part no. 500-1099-00
SCREW, MACHINE: Stainless steel, passivate finish; fillist.3r 5-65 head, slot drive; 8-32NC-2A thd, 9/16 in. 1g; Mfr 13499 part no. 321-0388-00
ADAPTER, CONNECTOR: Brass body, teflon insulation; two female 5-65 contacts; $0.812 \mathrm{in} . \mathrm{d}$ la by $1.703 \mathrm{in}$.1 g o/a dim; Mfr 94375 part no. 0991
JACK ASSEMBLY, TIP: Incl 2 tip jacks; 1.281 in. by 1.312 in. ${ }^{\text {in }}$-65 by 1.421 in.; Mfr 13499 paict no. 593-4479-003
CONNECTOR, RECEPTACLE, ELECTRICAL: MIL-C-5015D type MS 3102R14S5S
CONNECTOR, RECEPTACLE, ELECTRICAL: Same as J703
REACTOR: Swinging inductance type; 0.3 hy to $0.15 \mathrm{hy}, 0.020$ amp, 25 ohms; 11/32 in. dia by 15/32 in. 1 g ; Mfr 80223 part no. DOT28
METER, ARBITRARY SCALE: Dc panel type; 0 to 100 cw scale, 8 scale linear; scale marked "NORMAL" spaced 20° either side of center; 1 in. deep to mtg flange, 1.750 in .1 g of flange, 1.750 in. w of flange, 1.510 in. dia body; Mfr 13499 part no. 476-0228-00
GASKET: MIL-P-5516 type AN6227-5
GASKET: MIL-P-5516 type AN6227-1

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581A/URC-9, FRONT PANEL ASSEMBLY (AN/URC-9A ONLY) (Continued)		
0703	GASKET: MIL-P-5516 type AN6227-10	5-65
0704	GASKET: MIL-P-5516 type AN6227-11	5-66
0705	GASKET: Synthetic rubber; 0.924 in. dia aperture, 1.130 in. od, 0.103 in. thk material; Mfr 86579 part no. 914-19-711-70	5-66
0706	GASKET: Synthetic rubber; 4.032 in. dia aperture, 4.282 in. od, 0.125 in. thk material; Mfr 13499 part no. 200-1572-00	5-65
0707	BRACKET: MOUNTING: Cres; 0.671 in. by 0.875 in. by $1-5 / 32 \mathrm{in}$.; black enamel finish; Mfr 13499 part no. 593-1404-002	5-65
0708	GASKET, JACK: Rubber; $1 / 32$ in. by $1-5 / 16$ in. by $1-11 / 32$ in. o/a; Mfr 13499 part no. 593-4458-002	5-65
0709	GASKET CONNECTOR: Aluminum mesh cloth, neoprene impregnated; 0.020 in. by 1.187 in. by 1.187 in. o/a; Mfr 13499 part no. 593-4470-002	5-65
0710	LAMPHOLDER: Plastic; $5 / 16$ in. by $11 / 16$ in. by $23 / 32$ in.; Mfr 13499 part no. 593-4463-002	5-66
0711	RING, RETAINING: Stee1, cadmium or zinc plated; 0.938 in. id, 1.250 in. od, 0.015 in. thk; Mfr 79136 part no. 5005-125	5-66
0712	RING, RETAINING: Stee1, cadmium or zinc plated; 0.500 in. id, 0.750 in. od, 0.015 in. thk; Mfr 79136 part no. 5005-75	5-66
0713	CAP, PROTECTIVE DUST AND MOISTURE SEAL: W/chain; $1-1 / 16$ in. dia by $7 / 16$ in. deep; 7/8-20 thd; Mfr 02660 part no. 9760-14	5-65
0714	KNOB: Aluminum body, black enamel finish; accommodates 0.150 in. dia shaft; $23 / 32$ in. dia by 1.146 in. thk; Mfr 13499 part no. 593-4459-002	5-65
0715	KNOB: Aluminum alloy; 0.718 in. dia by 0.484 in. 1 g o/a dim.; Mfr 13499 part no. 59?-4460-003	5-65
0716	KNOB: Aluminum alloy; 0.718 in . dia by 0.484 in. 1 g o/a dim; Mfr 13499 part no. 593-4461-003	5-65
0717	PIVOT DOOR: Cres; 5/16 in. dia by 23/64 in. 1 g o/a; Mfr 13499 part no. 593-1825-002	5-65
0718	PLATE, SWITCH: Brass, light gray enamel finish; 0.025 in. by 1-11/16 in. by $2-11 / 32$ in.; Mfr 13499 part no. 593-4466-002	5-65
0719	PLATE, SQUELCH CONTROL: Brass, light gray enamel finish; 0.025 in. by 1-9/32 in. by i-1/2 in. Mfr 13499 part no. 593-4468-002	5-65
0720	PLATE, CONTROL SWITCH: Brass, gray enamel finish; 0.025 in. by $2-5 / 8$ in. by $7-15 / 32$ in.; Mfr 03565 part no. C-6201	5-65
0721	BUSHING, EXTRACTOR: Beryllium copper; 0.875 in. by $1-1 / 8 \mathrm{in}$. by 2-5/8 in.; Mfr 13499 part no. 593-1429-003	5-65
0722	DOOR, ACCESS: Aluminum door, $3 / 8$ in. by 3.248 in. by 6.093 in.; incl. bracket, pivot and hardware; Mfr 13499 part no. 593-4486-003	5-65
P701	CONNECTOR, RECEPTACLE, ELECTRICAL: 26 male contacts; 5 amps; arc resistant plastic dielectric; Mfr 80586 part no. GM26M79 P/0 W701	5-66
P702	CONNECTOR, RECEPTACLE, ELECTRICAL: 41 male contacts; 5 amps; 7/16 in. dia, $2-5 / 8 \mathrm{in} .1 \mathrm{~g} ; \mathrm{Mfr} 80586$ part no. GM41M79 P/O W702	5-66

p703

9706
0701
R 701
R702

R703
R704
R705
R706
R707
R 708
R709
R710
R711
R712
R713
R714
R715
R716
R 717
R718
R719
R720
R721
S701

S702
S703
S704
S705
5706

S707

S708
W701
 duelectule; mir goset pare no. G20M79
 THANSTSTOE: ME type $2 N 69$
NOT USED
RESISTOR, VARIABLE, COMPOSTTION: 5,000 ohms $+20 \% 1 / 2 \mathrm{w}$: MEr 71450 part no. KQ22582
RESISTOR, FIXED, COMPOSITION: MIL-R゙-11 type RC20GF272K
RESISTOR, FIXED, FILM: MIL-R-10509 type RN65B5113F
RESISTOR, FIXED, WIREWOUND: MIL-R-26 type RW30G560
RESISTOR, FIXED: 2.77 ohms $\pm 1 \%, 2.5 \mathrm{w}$; Mfr 44655 part no. 47682DET2-77
RESISTOR, FIXED, FILM: MIL-R-10509 type RN65B1002F
RESISTOR, FIXED, FILM: MIL-R-10509 type RN65B1004F
RESISTOR, FIXED, FILM: MIL-R-10509 type RN70B1104F
RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC32GF622J
RESISTOR, FIXED, FILM: MIL-R-10509 type RN65B2153F
RESISTOR, VARIABLE, COMPOSITION: MIL-R-94 type RV6LAYSA102B
RESISTOR, FIXED, FILM: MIL-R-10509 type RN65B7501F
RESISTOR, FIXED, FILM: MIL-R-10509 type RN65B2051F
RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF392K
RESISTOR, VARIABLE, COMPOSITION: MIL-R-94 type RV6LAYSA253B
RESISTOR, WIREWOUND POWER: 1500 ohms $\pm 10 \%$, 125 w; Mfr 13499 part no. 749-4626-00
RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC07GF472K
RESISTOR, FIXED, COMPOSITION: Same as R718
RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC07GF102K RESISTOR, FIXED: MIL-R-11 type RC07GF681K SWITCH, ROTARY: 3 circuit, 3 pole, 12 position, 2 section, 3 moving and 26 fixed contacts; Mfr 76854 part no. 221782F3 SWITCH, ROTARY: 6 circuit, 6 pole, 3 position, 3 section; 6 moving and 24 fixed contacts; Mfr 76854 part no. 221781A2 P/O R702
LIGHT INDICATOR: Anodized aluminum; 28 vdc; plastic lens, translucent amber; Mfr 05402 part no. L20028AMI
SWITCH, ROTARY: 15 circuit, 15 pole, 21 position; Mfr 82104 part no. B50244-724LR3
SWITCH, ROTARY: 20 position; "nonpile-up" type, 2 moving contacts, 21 fixed contacts, 1 pole, 19 throws; 230 vac or vdc; 0.25 amp current rating; Mfr 76854 part no. 221783RK1 SWITCH, ROTARY: 12 position; ":onpile-up" type, 2 moving contacts, 11 fixed contacts, 1 pole, 11 throws; 230 vac or vdc at 0.25 amp nom current rating; Mfr 76854 part no. 227658F1 SWITCH, ROTARY: Mfr 03565 part no. C-6124
WIRING HARNESS BRANCHED: C/O P701, P704, Mfr 13499 part no. 593-4494-00
$5-65$
:-66
$5-66$
5-66
5-66
5-66
5-66

5-66
5-66
5-66
5-66
5-66
5-66
5-66
5-66
5-66
5-66
5-66

5-66
5-66
5-66
5-66
5-66
5-66
5-66.
5-66
5-66

5-66

5-66

5-66
5-66

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581A/URC-9, FRONT PANEL ASSEMBLY (AN/URC-9A ONLY) (Continued)		
W702	WIRING HARNESS BRANCHED: C/O P702, Mfr 13499 part no. 593-4495-00	5-66
W703	CABLE ASSEMBLY SPECIAL PURPOSE ELECTRICAL: 20 conductors terminated $w / p l u g$ connector and shield assembly one end, other end stripped and tinned; C/O P703, Mfr 13499 part no. 593-4497-00	5-66
XDS701	LIGHT, INDICATOR: Accommodates a $\mathrm{T}-1-3 / 4$ midget flange base lamp; Mfr 72914 part no. A8630-1C	5-65
XDS 702	LIGHT, INDICATOR: Same as XDS 701	5-65
XDS 703	P/0 S704	5-65
RT-581/URC-9, FRONT PANEL ASSEMBLY (AN/URC-9 ONLY)		
1A1A8		
(701-799)	FRONT PANEL ASSEMBLY: Mfr 13499 part no. 593-4492-005	5-65
C701	CAPACITOR, FIXED, CERAMIC DIELECTRIC: MIL type CK15AX223M	5-66
C702	CAPACITOR, FIXED, ELECTROLYTIC: 0.27 uf $+10 \% 35 \mathrm{vdc}$; Mfr 56289 part no. 150D274X9035A2	5-66
C703	CAPACITOR, FIXED, ELECTROLYTIC: Same as C702	5-66
C704	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 0.02 uf $-20 \%+100 \%$, 500 vdc; Mfr 72982 part no. 841011W5V0203Z	5-66
DS701	LAMP, INCANDESCENT: MIL-L-6363 type MS 25237-327	5-65
DS702	LAMP, INCANDESCENT: Same as DS701	5-65
DS703	LAMP, INCANDESCENT: Same as DS701	5-65
FL701	FILTER, ASSEMBLY: 0.375 in. dia by 1.015 in. 1 g excl terminal; Mfr 13499 part no. 553-2124-003	5-66
FL702	FILTER, ASSEMBLY: Same as FL701	5-66
FL703	FILTER, ASSEMBLY: Same as FL701	5-66
FL704	FILTER, ASSEMBLY: Same as FL701	5-66
FL705	FILTER, ASSEMBLY: Same as FL701	5-66
H701	WASHER, FLAT: Cres; 0.515 in. id, 0.828 in. od, 0.031 in. thk; Mfr 13499 part no. 553-2115-002	5-65
H702	WASHER, LOCK: Mfr 78189 part no. 1724-02	5-65
H703	NUT, PLAIN, ROUND: Cres; 0.687 in. dia by 0.125 in. thk; Mfr 13499 part no. 553-2119-002	5-65
H704	WASHER, LOCK: Mfr 78189 part no. 1220-02	5-66
H705	NUT, PLAIN, ROUND: Cres; 0.562 in. dia. by 0.125 in. thk; Mfr 13499 part no. 553-2079-002	5-66
H706	SCREW, SELF-LOCKING: Stainless steel, chemical black finish; slotted head; 6-32NC-2A thd, 5/16 in. 1 g ; Mfr 02615 part no. M36CR632-5BO	5-65
H707	$\begin{aligned} & \text { WASHER, LOCK: Stainless steel, passivate finish; internal } \\ & \text { teeth; } 0.659 \text { in. id, } 0.883 \text { in. od, } 0.022 \text { in. thk; Mfr } 78189 \\ & \text { part no. } 1728-02 \end{aligned}$	5-65
H708	NUT, PLAIN, ROUND: Cres; 0.843 in. dia by 0.125 in. thk; 5/8 - 24 thd; Mfr 13499 part no. 553-2113-002	5-65

Table 6-2. Maintenance Parts List (Continued)

REF DESIG	NAME AND DESCRIPTION
RT-581/URC-9, FRONT PANEL ASSEMBLY (AN/URC-9 ONLY) (Continued)	

H709
H710
H711

H712

H713
H714
H715
H716
H717

H718

H719
H720
H721
H722
H723
H724

H725
H726
H727
H728
1 g o/a; Mfr 13499 part no. 593-4471-002
STUD, CONTINUOUS THREAD: Stainless steel; 6-32NC-2 thd,
7/16 in. 1 g o/a; Mfr 13499 part no. 312-0074-00
NUT, SLEEVE: Aluminum, chromate dip; open end type; hex. head; 6-32NC-2B thd, 0.922 in. 1 g ; Mfr 13499 part no. 015-0552-00
INSULATOR, WASHER: Mica; rd, flat, 0.4375 in. dia, 0.007 in.
to 0.025 in. thk; $13 / 64$ in. dia hole; Mfr 13499 part no. 302-0087-00
WASHER, FLAT: Stainless steel, passivate finish; 0.0312 in
thk, 0.147 in. id, 0.437 in. od; Mfr 13499 part no. 310-0447-00
WASHER, LOCK: Stainless steel, 0.267 in. id, 0.408 in. od, 0.018 in. thk; Mfr 78189 part no. 1714-05PLAIN

NUT, PLAIN, ROUND: Cres; 0.437 in. dia by 0.125 in. thk; 1/4 - 32 thd; Mfr 13499 part no. 553-2116-002
WASHER, LOCK: Stainless steel, cadmium plated; . 018 in thk;
0.267 in. id, 0.408 in. od; Mfr 78189 part no. 1214-05

SCREW, MACHINE: Stainless steel, passivate finish; phillips recessed pan head; $3-48 \mathrm{NC}-2 \mathrm{~A}$ thd, $7 / 16$ in. 1 g ; Mfr 13499 part no. 343-2717-00
SETSCREW: Stainless steel, plain finish; multiple spline oval point; 4-4OUNC-3A thd, $1 / 4$ in $1 g ;$ Mfr 08664 part no. 4-40x1-4 6SPINEOVPT18-8SST
WASHER, THRUST: Aluminum a11oy; 0.437 in. id, 0.740 in. od, 0.0280 in. thk Mfr 13499 part no. 553-2111-002

WASHER, THRUST: Aluminum alloy; 0.812 in. id, 1.240 in. od, 0.280 in. thk; Mfr 13499 part no. 553-2112-002

NUT: Cres; $1 / 2$ in. w across flat by 1-9/16 in. $1 g ; 1 / 4-20$
SPACER: Cres; $1 / 4$ in. w across flats by 0.266 in. h head; 6-32 thd, 0.421 in. 1 g o/a; Mfr 13499 part no. 553-2117-002
NUT: Cres; 0.500 in. dia by 0.125 in. thk; $1 / 4-20$ thd; Mfr 13499 part no. 548-8957-002
SCREW: Cres; 0.406 in. dia by 0.218 in h fillister head; no. 553-2114-002
WASHER: Stainless steel, passivate finish; 0.250 in. thk; Mfr 13499 part no. 506-5173-002
NOT USED
SCREW, MACHINE: Stainless steel, passivate finish; 4-40NC-2A
STANDOFF: $3 / 16$ in. w across flats by 0.453 in. h head;

SPACER: Cres; $1 / 4$ in. h head; $4-40$ thd, 0.258 in. $1 g ; 23 / 32$ in.

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581/URC-9, FRONT PANEL ASSEMBLY (AN/URC-9 ONLY) (Continued)		
H729	NUT. SELF-LOCKING, HEXAGON: Aluminum; 4-4OUNC-3B thd, 0.190 in. hex., 0.110 in. h; Mfr 72962 part no. $68-1660-40$	5-66
H730	WASHER, LOCK: Stainless steel, passivate finish; split helical ring; 0.397 in. od, 0.3125 in. screw size. 0.031 in. thk material; Mfr 13499 part no. 310-0421-00	5-66
H731	NUT: Brass, bright alloy; 0.281 in. id, 0.385 in. od, 0.156 in. thk; Mfr 13499 part no. 544-5050-002	5-66
H732	WASHER, SPRING TENSION: Phosphor bronze, cadmium plated; 0.203 in. id, 0.375 in. od, 0.0154 in. thk; 0.0625 in. $h o / a ;$ Mfr 13499 part no. 310-4780-00	5-65
H733	PIN, SPRING: MIL part no. MS16562-191	5-65
H734	SLEEVE, SPRING: Sleeve type, copper; 0.185 in. dia. for size 8 screw; Mfr 91314 part no. 340-0642-00	5-65
H735	WASHER: Cres; 0.187 in. id, 0.312 in. od, 0.020 in. thk; Mfr 13499 part no. 500-1099-003	5-65
H736	SCREW, MACHINE: Stainless steel, passivate finish; fillister head, slot drive; 8-32NC-2A thd, $9 / 16$ in. $1 g$; Mfr 13499 part no. 321-0388-00	5-65
J701	ADAPTER, CONNECTOR: Brass body, teflon insulation; two female contacts; 0.812 in. dia by 1.703 in. 1 g o/a dim; Mfr 94375 part no. 0991	5-65
J702A, B	JACK ASSEMBLY, TIP: Inc1 2 tip jacks; 1.281 in. by 1.312 in. by 1.421 in.; Mfr 13499 part no. 593-4479-003	5-65
J703	CONNECTOR, RECEPTACLE, ELECTRICAL; MIL-C-5015D type MS3102R14S5S	5-65
J704	CONNECTOR, RECEPTACLE, ELECTRICAL: Same as J703	5-65
L701	REACTOR: Swinging inductance type; 0.3 hy to $0.15 \mathrm{hy}, 0.020$ amp, 25 ohms; 11/32 in. dia by 15/32 in. 1 g ; Mfr 80223 part no. DOT28	5-66
M701	METER, ARBITRARY SCALE: Dc panel type; 0 to 100 cw scale, 8 scale linear; scale marked "NORMAL" spaced 20° either side of center; 1 in . deep to mtg flange, 1.750 in .1 g of flange, 1.750 in. w of flange, 1.510 in. dia body; Mfr 13499 part no. 476-0228-00	5-65
0701	GASKET: MIL-P-5516 type AN6227-5	5-65
0702	GASKET: MIL-P-5516 type AN6227-1	5-66
0703	GASKET: MIL-P-5516 type AN6227-10	5-65
0704	GASKET: MIL-P-5516 type AN6227-11	5-66
0705	GASKET: Synthetic rubber; 0.924 in. dia aperture, 1.130 in. od, 0.103 in. thk material; Mfr 86579 part no. 914-19-711-70	5-66
0706	GASKET: Synthetic rubber; 4.032 in. dia aperture, 4.282 in. od, 0.125 in. thk material; Mfr 13499 part no. 200-1572-00	5-65
0707	BRACKET, MOUNTING: Cres; 0.671 in. by 0.875 in. by $1-5 / 32$ in.; black enamel finish; Mfr 13499 part no. 593-1404-002	5-65
0708	GASKET: JACK: Rubber; 1/32 in. by $1-5 / 16$ in. by $1-11 / 32$ in. o/a Mfr 13499 part no. 593-4458-002	5-65

Tab1e 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581/URC-9, FRONT PANEL ASSEMBLY (AN/URC-9 ONLY) (Continued)		
0709	GASKET CONNECTOR: Aluminum mesh cloth, neoprene impregnated; 0.020 in. by 1.187 in. by 1.187 in. o/a; Mfr 13499 part no. 593-4470-002	5-65
0710	KEY, LAMP: Plastic; $5 / 16$ in. by $11 / 16$ in. by $23 / 32$ in.; Mfr 13499 part no. 593-4463-002	5-66
0711	RING, RETAINING: Steel, cadmium or zinc plated; 0.938 in. id, 1.250 in. od, 0.015 in. thk; Mfr 89462 part no. 5005-125	5-66
0712	RING, RETAINING: Steel, cadmium or zinc plated; 0.500 in. id, 0.750 in. od, 0.015 in. thk; Mfr 89462 part no. 5005-75	5-66
0713	CAP, PROTECTIVE DUST AND MOISTURE SEAL: W/chain; 1-1/16 in. dia by $7 / 16$ in. deep; 7/8-20 thd; Mfr 02660 part no. 9760-14	5-65
0714	KNOB: Aluminum body, black enamel finish; accommodates 0.150 in, dia shaft; 23/32 in. dia by 1.146 in. thk; Mfr 13499 part no. 593-4459-002	5-65
0715	KNOB: Aluminum alloy; 0.718 in. dia by 0.484 in. 1 g o/a dim.; Mfr 13499 part no. 593-4460-003	5-65
0716	KNOB: Aluminum alloy; 0.718 in. dia by 0.484 in .1 g o/a dim.; Mfr 13499 part no. 593-4461-003	5-65
0717	PIVOT DOOR: Cres; $5 / 16$ in. dia by $23 / 64$ in. 1 g o/a; Mfr 13499 part no. 593-1825-002	5-65
0718	PLATE, SWITCH: Brass, light gray enamel finish; 0.025 in. by $1-11 / 16$ in. by $2-11 / 32$ in.; Mfr 13499 part no. 593-4466-002	5-65
0719	PLATE, SQUELCH CONTROL: Brass, light gray enamel finish; 0.025 in. by $1-9 / 32$ in. by $1-1 / 2$ in. Mfr 13499 part no. 593-4468-002	5-65
0720	PLATE, CONTROL SWITCH: Brass, gray enamel finish; 0.025 in. by $2-5 / 8$ in. by $7-15 / 32$ in. ; Mfr 13499 part no. 593-448-003	5-65
0721	BUSHING, EXTRACTOR: Beryllium copper; 0.875 in. by $1-1 / 8$ in by $2-5 / 8$ in. ; Mfr 13499 part no. 593-1429-003	5-65
0722	DOOR, ACCESS: Aluminum door, $3 / 8 \mathrm{in}$. by 3.248 in. by 6.093 in.; incl bracket, pivot and hardware; Mfr 13499 part no. 593-4486-003	5-65
P701	CONNECTOR, RECEPTACLE, ELECTRICAL: 26 male contacts; 5 amps; arc resistant plastic dielectric; Mfr 80586 part no. GM26M79 P/O W701	5-66
P702	```CONNECTOR, RECEPTACLE, ELECTRICAL: 41 male contacts; 5 amps; \(7 / 16\) in. dia \(2-5 / 8\) in. \(1 g\); Mfr 80586 part no. GM41M79 P/O W702```	5-66
P703	CONNECTOR, RECEPTACLE, ELECTRICAL: Arc resistant plastic dielectric; Mfr 80586 part no. GM20M79 P/O W703	5-66
P704	CONNECTOR, RECEPTACLE, ELECTRICAL: Same as P701 P/O W701	5-66
Q701	TRANSISTOR: MIL type 2 N697	5-66
R701	NOT USED	
R702	RESISTOR, VARIABLE, COMPOSITION: 5,000 ohms $\pm 20 \%, 1 / 2 \mathrm{w}$; Mfr 71450 part no. KQ22582	5-66

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581/URC-9, FRONT PANEL ASSEMBLY (AN/URC-9, ONLY) (Continued)		
R703	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF272K	5-66
R704	RESISTOR, FIXED, FILM: MIL-R-10509 type RN65B5113F	5-66
R705	RESISTOR, FIXED, WIREWOUND: MIL-R-26 type RW30G560	5-66
R706	```RESISTOR, FIXED: 2.77 ohms +1%, 2.5 w; Mfr 44655 part no. 47682DET2-77```	5-66
R707	RESISTOR, FIXED, FILM: MIL-R-10509 type RN65BI002F	5-66
R708	RESISTOR, FIXED, FILM: MIL-R-10509 type RN65B1004F	5-66
R709	RESISTOR, FIXED, FILM: MIL-R-10509 type RN70B1104F	5-66
R710	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC32GF622J	5-66
R 711	RESISTOR, FIXED, FILM: MIL-R-10509 type RN65B2153F	5-66
R712	RESISTOR, VARIABLE, COMPOSITION: MIL-R-94 type RV6LAYSA102B	5-66
R713	RESISTOR, FIXED, FILM: MIL-R-10509 type RN65B7501F	5-66
R714	RESISTOR, FIXED, FILM: MIL-R-10509 type RN65B2051F	5-66
R715	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF392K	5-66
R716	RESISTOR, VARIABLE, COMPOSITION: MIL-R-94 type RV6LAYSA253B	5-66
R717	RESISTOR, WIREWOUND POWER: 1500 ohms $\pm 10 \%, 125 \mathrm{w}$; Mfr 13499 part no. 749-4626-00	5-66
R718	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RCO7GF472K	5-66
R719	RESISTOR, FIXED, COMPOSITION: Same as R718	5-66
R720	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RCO7GFio2k	5-66
R 721	RESISTOR, FIXED: MIL-R-11 type RC07GF681K	5-66
S701	SWITCH, ROTARY: 3 circuit, 3 pole, 12 position, 2 section, 3 moving and 26 fixed contacts; Mfr 76854 part no. 221782 F 3	5-66
S 702	SWITCH, ROTARY: 6 circuit, 6 pole, 3 position, 3 section; 6 moving and 24 fixed contacts; Mfr 76854 part no. 221781A2	5-66
S 703	P/0 R702	
S 704	LIGHT INDICATOR: Anodized aluminum; 28 vdc; plastic lens, translucent amber; Mfr 05402 part no. L20028AMI	5-66
S705	SWITCH, ROTARY: 15 circuit, 15 pole, 21 position; Mfr 82104 part no. B50244-724LR3	5-66
S706	```SWITCH, ROTARY: }20\mathrm{ position; "nonpile-up" type, 2 moving contacts, 21 fixed contacts, 1 pole, 19 throws, 230 vac or vdc, 0.25 amp current rating; Mfr }76854\mathrm{ part no. 221783RKl```	5-66
S 707	SWITCH ROTARY: 12 position; "nonpile-up" type, 2 moving contacts, 11 fixed contacts, 1 pole, 11 throws; 230 vac or vdc at 0.25 amp nom current rating; Mfr 76854 part no. 227658 Fl	5-66
S708	SWITCH, ROTARY: Same as S707	
W701	WIRING HARNESS BRANCHED: C/O P701, P704, Mfr 13499 part no. 593-4494-00	5-66
W702	WIRING HARNESS BRANCHED: C/O P702, Mfr 13499 part no. 593-4495-00	5-66
W703	CABLE ASSEMBLY SPECIAL PURPOSE ELECTRICAL: 20 conductors terminated w/plug connector and shield assy. one end, other end stripped and tinned; C/O P703, Mfr 13499 part no. 593-4497-00	5-66
XDS 701	LIGHT, INDICATOR: Accommodates at $\mathrm{T}-1-3 / 4$ midget $f 1$ ange base lamp; Mfr 72914 part no. A8630-1C	5-65

Table 6-2. Mainzenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581/URC-9, FRONT PANEL ASSEMBLY (AN/URC-9 ONLY) (Continued)		
$\begin{aligned} & \text { XDS } 702 \\ & \text { XDS } 703 \end{aligned}$	LIGHT, INDICATOR: Same as XDS701 P/O 5704	$\begin{aligned} & 5-65 \\ & 5-65 \end{aligned}$
RT-581()/URC-9, AUDIO AMPLIFIER AND MODULATOR ASSEMBLY		
$\begin{aligned} & \text { 1A1A9 } \\ & (801-899) \end{aligned}$	AUDIO AMPLIFIER AND MODULATOR ASSEMBLY: Mfr 03565 part no. C6492	5-52
C801	CAPACITOR, FIXED, PAPER DIELECTRIC: 0.01 uf $\pm 20 \% 100 \mathrm{vdc}$; Mfr 53021 part no. SDB1K01103M	5-53
C802	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 1000 uuf $-20 \% 500 \mathrm{vdc}$ up to $85^{\circ} \mathrm{C}, 200 \mathrm{vdc}$ at $125^{\circ} \mathrm{C}$; Mfr 72982 part no. 301633 W 5 T 0102 A	5-53
C 803	CAPACITOR, FIXED, PAPER DIELECTRIC: Same as C801	5-53
C804	CAPACITOR, FIXED, PAPER DIELECTRIC: Same as C801	5-53
C805	CAPACITOR, FIXED, MICA DIELECTRIC: MIL type CM15ED511G03	5-52
C806	CAPACITOR, FIXED, ELECTROLYTIC: MIL-C-3965 type CL21BQ040SPE	5-53
C807	CAPACITOR, FIXED, ELECTROLYTIC: MIL-C-3965B type CL64BPIR7MPE	5-53
C808	CAPACITOR, FIXED, ELECTROLYTIC: MIL type CL23bl1R5tne	5-53
C809	CAPACITOR, FIXED, PAPER DIELECTRIC: MIL type CQ09A1KF223K3	5-53
C810	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C802	5-52
C811	CAPACITOR, FIXED, ELECTROLYTIC: MIL-C-3965B type CL64BK040TPE	5-53
C812	CAPACITOR, FIXED, ELECTROLYTIC: MIL-C-3965B type CL64BH080TPE	5-53
C813	CAPACITOR, FIXED, PAPER DIELECTRIC: 0.22 uf $\pm 20 \%, 200 \mathrm{vdc}$; Mfr 56289 part no. 186P22402S15	5-52
C814	CAPACITOR, FIXED, PAPER DIELECTRIC: Same as C809	5-53
C815	CAPACITOR, FIXED, ELECTROLYTIC: Same as C812	5-53
C816	CAPACITOR, FIXED, ELECTROLYTIC: Same as C811	5-53
C817	CAPACITOR, FIXED, MICA DIELECTRIC: MIL type CM15ED511G03	5-53
C818	CAPACITOR, FIXED, MICA DIELECTRIC: MIL type 6M15CD131G03	5-53
C819	CAPACITOR, TANTALUM ELECTROLYTIC: $0.2 \mathrm{mfd}, 375 \mathrm{w}$ vdc, $\pm 20 \%$ to 1 ; Mfr 56289 part no. 110D204X8375D; with revised lead length	5-54
C820	CAPACITOR, FIXED, PAPER DIELECTRIC: $100 \mathrm{vdc}, 0.033 \mathrm{uf}, \pm 20 \%$; Mfr 14655 part no. TWU1S33-4P	5-52
C821	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C802	5-53
C822	CAPACITOR, FIXED: MLL type CM05CD100k03	5-52
CR801	SEMICONDUCTOR DEVICE, DIODE: MIL type 1N483B	5-53
CR802	SEMICONDUCTOR DEVICE, DIODE: Same as CR801	5-53
CR803	SEMICONDUCTOR DEVICE: MIL type 1N975B	5-53
CR804	SEMICONDUCTOR DEVICE: Same as CR801	5-53
CR805	SEMICONDUCTOR DEVICE: Same as CR801	5-53
CR806	SEMICONDUCTOR DEVICE: MIL type 1N749A	5-53
CR807	SEMICONDUCTOR DEVICE: Same as CR801	5-53
CR808	SEMICONDUCTOR DEVICE: Same as CR806	5-53
H801	SCREW, MACHINE: Stainless steel, passivate finish; phillips cross recessed fillister head; $8-32 \mathrm{NC}-2 \mathrm{~A}$ thd, 1 in. 1 g ; Mfr 13499 part no. 553-2077-002	5-52

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \hline \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	FIG NO.
RT-581()/URC-9, AUDIO AMPLIFIER AND MODULATOR ASSEMBLY (Continued)		
H802	SCREW, MACHINE: Steel, cadmium plated; phillips cross recessed fillister head; $8-32 \mathrm{NC}-2 \mathrm{~A}$ thd $1-5 / 8$ in. 1 g ; Mfr 13499 part no. 553-2078-002	5-52
H803	SLEEVE, SPRING: Sleeve type, copper; 0.185 in. dia, for size 8 screw; Mfr 91314 part no. 340-0642-00	5-52
H804	RETAINER: Beryllium copper, bright alloy; 4 holes; 11/16 in. id, 13/16 in. od; Mfr 13499 part no. 553-2303-002	5-15
H805	NQT USED	
H806	NOT USED	
H807	NOT USED	
H808	STANDOFF: Aluminum chromate dip; 4-40 UNC-2B thd, 0.375 in. lg; 0.187 in. w across flats; Mfr 13499 part no. 540-9037-003	5-53
H809	STANDOFF: Same as H808	5-53
J801	JACK, TIP: For use with 0.080 diameter male contact; teflon; 5.5 amps, continuous duty; Mfr 98291 part no. SKT5BCBROWN	5-52
J802	JACK, TIP: For use with 0.080 diameter male contact; teflon; 5.5 amps, continuous duty; Mfr 98291 part no. SKT5BCRED	5-52
J803	JACK, TIP: For use with 0.080 diameter male contacts; teflon; 5.5 amps, continuous duty; Mfr 98291 part no. SKT5BCORANGE	5-15
J804	JACK, TIP: For use with 0.080 diameter male contact; teflon; 5.5 amps, continuous duty; Mfr 98291 part no. SKT5BCYELLOW	5-52
J805	JACK, TIP: For use with 0.080 diameter male contact; teflon; 5.5 amps, continuous duty; Mfr 98291 part no. SKT5BCGREEN	5-52
K801	RELAY, ARMATURE: 1A, 30 u amps at 50 milliwatts (low level RF)	-5

K802

K803
P801
R801
R802
R803
R804
R805
R806
R807
R808
R809
R810
R811
R812
R813
R814
SCREW, MACHINE: Steel, cadmium plated; phillips cross recessed

8 screw; Mfr 91314 part no. 340-0642-00
RETAINER: Beryllium copper, bright alloy; 4 holes; 11/16 in.
lg; 0.187 in. w across flats; Mfr 13499 part no. 540-9037-003
STANDOFF: Same as H808
5-53
5.5 amps, continuous duty; Mfr 98291 part no. SKT5BCRED

JACK, TIP: For use with 0.080 diameter male contacts; teflon;

5-52 $1 \mathrm{~A}, 2 \mathrm{C}, 150 \mathrm{vdc}, 0.5 \mathrm{amps} ; 14,000$ ohms $+10 \%$ at $+25^{\circ} \mathrm{C}$; continuous duty cycle; hermetically sealed; Mfr $7 \overline{14} 82$ part no. RP7044G1
RELAY, ARMATURE: 6C, 1 amp at 28 vdc or 115 vac , and/or low level; 26 vdc coil voltage; 200 ohms $+10 \%$ at $+25^{\circ} \mathrm{C}$; continuous duty cycle; Mfr 99699 part no. 26TD18 $\overline{\text { SA }}$
RELAY, ARMATURE: MIL type M5757/10-141
CONNECTOR, RECEPTACLE, ELECTRICAL: 41 male contacts, 5 amps;
7/16 in. dia, $2-5 / 8$ in. 1 g ; Mfr $80586 \mathrm{P} / \mathrm{O}$ W801 part no. GM41M79
RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF103K
5-53
RESISTOR, FIXED, COMPOSITION: MIL type RC20GF223K $\quad 5$ 5-53
RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF473K

| RESISTOR, VARIABLE: MIL-R-94 type RV6LAYSA105B | $5-52$ |
| :--- | :--- | :--- |

RESISTOR, FIXED, COMPOSITION: MIL type RC07GF474K
RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF391K
RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC42GF562J 5 5-52
RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC42GF823J $\quad 5-52$
RESISTOR, FIXED, COMPOSITION:, Same as R805
5-52
RESISTOR, FIXED, COMPOSITION: MIL type RC20GF474K

RESISTOR, FIXED: MIL-R-11 type RC20GF561K	$5-53$

RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC32GF153J $\quad 5-54$
RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF205J
RESISTOR, FIXED, COMPOSITION:
5-53

Table 6-2. Maintenance Parts List (Continued)

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581()/UR	(-9, AUDIO AMPLIFIER AND MODULATOR ASSEMBLY (Continued)	
T802	TRANSFORMER, AUDIO FREQUENCY: Modulation and output; 29 w power level; $2-1 / 8$ in. by $2-5 / 16$ in. by $2-3 / 8$ in. Mfr 97965 part no. 29396	5-52
TB801	TERMINAL BOARD: Plastic; 0.093 in. by 1 in. by $3-5 / 32$ in.; incl 23 terminals; Mfr 13499 part no. 593-7924-003	5-53
TB802	TERMINAL BOARD: Mfr 13499 part no. 593-7926-003	5-53
V801	ELECTRON TUBE: MIL-E-1 type 5670	5-52
V802	ELECTRON TUBE: Same as V801	5-52
V803	ELECTRON TUBE: MIL-E-1 type 5654	5-52
V804	ELECTRON TUBE: Same as V801	5-52
V805	ELECTRON TUBE: MIL-E-1 type 7558	5-52
V806	ELECTRON TUBE: Same as V805	5-52
V807	ELECTRON TUBE: Same as V805	5-52
V808	ELECTRON TUBE: Same as V805	5-52
W801	WIRING HARNESS, BRANCHED: Mfr 13499 part no. 593-7908-00 C/O P801	5-52
XK801	SOCKET, ELECTRON: MIL-S-12883 type TS1405P01	5-52
XK802	NOT USED	
XK803	NOT USED	
XV801	SOCKET, ELECTRON TUBE: Phosphor bronze, silver plated, Mfr 00614 part no. BRTL669SPHSPT0125	5-52
XV802	SOCKET, ELECTRON TUBE: Same as XV801	5-52
XV803	SOCKET, ELECTRON TUBE: 7 contact miniature; two 0.125 in. dia mtg holes spaced 0.875 in. c to c; Mfr 80368 part no. V24-6034	5-52
XV804	SOCKET, ELECTRON TUBE: Same as XV801	5-52
XV805	SOCKET, ELECTRON TUBE: 9 pin contact, copper; phenolic insulation; 1.125 in. $1 g, 15 / 16$ in. w; $13 / 32$ in. $h ; \operatorname{Mfr} 94991$ part no. 7490-0203	5-52
XV806	SOCKET, ELECTRON TUBE: Same as XV805	5-52
XV807	SOCKET, ELECTRON TUBE: Same as XV805	5-52
XV808	SOCKET, ELECTRON TUBE: Same as XV805	5-52
RT-581()/URC-9, FILTER ASSEMBLY		
$\begin{aligned} & \text { 1AlA10 } \\ & (901-999, \\ & 1101-1199) \end{aligned}$	FILTER ASSEMBLY, ELECTRICAL: C/O 1 radio interference filter $\mathrm{w} / 500 \mathrm{kHz}$ freq, and one low pass filter w/220 to 420 MHz pass band; incl mtg plate and hardware; Mfr 13499 part no. 549-3371-003	5-14
FL901	FILTER, BANDPASS: 6 db at $10 \mathrm{kHz}, 60 \mathrm{db}$ at $150 \mathrm{kHz} ; 5.6$ ohms source impedance; 100 k ohms load impedance; 0.812 in. by 1.012 in. by 3.187 in. o/a dim.; excl terminals; Mfr 81815 part no. X005-2 C/O J901 and J902	5-14
FL902	NOT USED	
H901	SCREW, MACHINE: Phillips recessed fillister head; cres, green enamel finish; 6-32 thd, $1 / 2$ in. $1 g ;$ Mfr 13499 part no. 553-1956-002	5-14

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581()/URC-9, FILTER ASSEMBLY (Continued)		
$\begin{aligned} & \text { J901 } \\ & \text { J902 } \\ & 0901 \\ & \text { FL1101 } \\ & \\ & \text { J1101 } \\ & \text { P1101 } \end{aligned}$	```P/O FL901 P/O FL901 PLATE ASSEMBLY: Aluminum plate, 0.687 in. by 1.039 in. by 4.351 in. approx., Mfr 13499 part no. 553-1952-002 FILTER, LOW PASS: 50 ohms nom impedance, 220 to 420 MHz pass band; Mfr }70998\mathrm{ part no. }5259\mathrm{ c/o J1101 and P1101. P/O FL1101 P/O FL1101```	$5-14$ $5-14$
RT-581()/URC-9 FAN CENTRIFUGAL (Globe Industries, Division of TRW,		
Contract N00039-69-C-1553.)		
$\begin{aligned} & \text { 1A1A11 } \\ & (1001- \\ & 1099) \\ & \text { B1051, } \end{aligned}$	FAN, CENTRIFUGAL: Per MIL-B-23071/13 FAN, CENTRIFUGAL: Per MIL-B-23071/13, Mfr 25140 part no. 19A1906 NOT SHIPBOARD REPAIRABLE	$\begin{aligned} & 5-57 \\ & 5-57 \end{aligned}$
RT-581()/URC-9 FAN, CENTRIFUGAL (Collins Radio Contracts		
NObsr 87290 and 89509.)		
$\begin{aligned} & 1001- \\ & 1099 \end{aligned}$	FAN, CENTRIFUGAL: $\mathrm{ac} ; 115 \mathrm{v}, 50 \% 60 \mathrm{~Hz} ; \mathrm{w} /$ double ended blower and speed increaser; $8000 \mathrm{rpm}, \mathrm{w} /$ connector; Mfr 13499 part no. 553-2422-004	5-58
B1051	FAN, CENTRIFUGAL: 115 vac $\pm 10 \%, 50 / 60 \mathrm{~Hz} ; 8000 \mathrm{rpm}$ impeller speed continuous duty cycle; Mfr 17771 part no. E1321-300	5-58
C1051	CAPACITOR: 17771 part no. 2-635948-01	5-58
C1052	Same as C1051	5-58
01001	RING, CRESS:	5-58
01002	SPRING, FAN: Copper, 0.156 in. by 0.511 in. by 0.718 in. o/a dim. ; Mfr 13499 part no. 553-1650-002	5-58
01003	IMPELLER, FAN, CENTRIFUGAL: Anodized aluminum, 4 blades; ccw rotation; 0.250 in. dia bore; Mfr 60399 part no. 0-327-4	5-58
01004	IMPELLER, FAN, CENTRIFUGAL: 2 section; steel, cadmium plated; double inlet; cw rotation; Mfr 60399 part no. 200D119	5-58
01005	COVER: Aluminum alloy, anodized finish; $3 / 16$ in. by 3.190 in. by 3.217 in. approx; Mfr 13499 part no. 553-2133-003	5-58
01006	SCROLL: Aluminum; 2 in. by 3.062 in. by 3.062 in . by 3.298 in . approx; Mfr 13499 part no. 553-2134-004	5-58

Table 6-2. Maintenance Parts List (Continued)

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581A/URC-9, FREQUENCY SELECTOR ASSEMBLY (AN/URC-9A ONLY)		
$\begin{aligned} & \text { 1A1A12 } \\ & \text { (1201- } \end{aligned}$		
1299)	FREQUENCY SELECTOR, FINAL ASSEMBLY: Mfr 03565 part no. D-6220	5-81
A1201	PLATE, MOUNTING: Aluminum; 0.040 in . by 2.162 in . by $2.185 \mathrm{in} . ;$ Mfr 13499 part no. 553-1458-002	5-81
A1202	NOT USED	
Al203	PLATE, ASSEMBLY, BEARING: Aluminum plate; 0.250 in. by 8.093 in. by 8-11/16 in. excl components Mfr 13499 part no. 553-1583-004	5-81
Al204	PLATE ASSEMBLY, GEAR: Aluminum plate; 59/64 in. by 4.124 in. by 4.405 in.; includes 2 gears; Mfr 13499 part no. 553-1575-002	5-81
A1205	PLATE, ASSEMBLY, BEARING: Aluminum plate; 0.125 in. by 5.625 in . by $8-21 / 32$ in. excl components; Mfr 13499 part no. 553-1592-004	5-81
A1206	NOT USED	
A1207	BRACKET, MOUNTING: Cres; 0.374 in. by 0.984 in. by 1-1/32 in.; Mfr 13499 part no. 553-1455-002	5-81
A1208	BRACKET, MOUNTING: Same as Al207	5-81
A1209	BRACKET, MOUNTING: Same as Al207	5-81
A1210	NOT USED	
A1211	PLATE, MOUNTING: Aluminum; 0.125 in. by 0.821 in. by 1.092 in.; Mfr 13499 part no. 553-1456-002	5-81
A1212	BRACKET ASSEMBLY: Aluminum bracket; Mfr 03565 part no. B-6225	5-81
A1213	BRACKET, MOUNTING: Cres; 0.374 in. by 0.984 in. by 1.032 in.; Mfr 13499 part no. 553-1462-002	5-81
A1214	SCALE, MEMORY DRUM: Aluminum; 1.218 in. by 1.352 in. by 5.314 in. ; Mfr 03565 part no. D-6207	5-81
A1215	PLATE, MOUNTING: Cres; 0.025 in. by 0.436 in. by 2.748 in.; Mfr 13499 part no. 553-1424-002	5-81
A1216	PLATE, MOUNTING: Cres; 0.050 in. by $25 / 32 \mathrm{in}$. by $3.133 \mathrm{in.;}$ Mfr 13499 part no. 553-1425-002	5-81
B1201	MOTOR, DIRECT CURRENT: 0.044 hp at $7400 \mathrm{rpm} ; 30 \mathrm{vdc}$ max voltage; 6 sec on 24 sec off duty cycle; Mfr 13499 part no. 553-1465-002	5-81
H1201	ELECTROMAGNETEC ACTUATOR COIL: Mfr 03565 part no. B-6192	5-81
H1202	WASHER, FLAT: Cres; 0.251 in. id, 0.4375 in. od, 0.0156 in. thk; Mfr 13499 part no. 553-1429-002	5-81
H1203	NUT, SELF-LOCKING, HEXAGON: Steel; 1/4-28 thd; 7/16 in. w across flats by 0.110 in. thk; Mfr 77122 part no. 14 L 28	5-81
H1204	WASHER, FLAT: Cres; 0.191 in . id, 0.375 in . od, 0.0156 in . thk; Mfr 13499 part no. 553-1431-002	5-81
H1205	BRACKET, ANGLE: Mfr 03565 part no. B-6191	5-81
H1206	POST, ELECTRICAL, MECHANICAL, EQUIPMENT: Aluminum alloy; 0.250 in. hex, 0.187 in..dia. 0.718 in . $1 g$; Mfr 13499 part no. 553-1445-002	5-81
H1207	POST, ELECTRICAL, MECHANICAL, EQUIPMENT: Aluminum; 0.375 in. dia, 1.156 in. $1 g ;$ Mfr 13499 part no. 553-1447-002	5-81

Table 6-2. Maintenance Parts List (Continued)

REF		
DESIG	NAME AND DESCRIPTION	FIG

RT-581A/URC-9 FREQUENCY SELECTOR ASSEMBLY (AN/URC-9A ONLY) (Continued)

H1208

H1209
H1210
H1211
H1212
H1213
H1214
H1215
H1216
H1217
H1218
H1219
H1 220
H1221
H1 222
H1223
H1224
H1225
H1226
H1227
H1228
thru
H1255
H1256
H1257 thru H1264 H1265

POST, ELECTRICAL, MECHANICAL, EQUIPMENT: Aluminum, 0.312 in. dia small end, 0.375 in. dia large end, 1.250 in .1 g ; Mfr 13499 part no. 553-1448-002
POST, ELECTRICAL, MECHANICAL, EQUIPMENT: Aluminum, 0.312 in. dia. 0.562 in. $1 g ; \operatorname{Mfr} 13499$ part no. 553-1449-002
POST ELECTRICAL, MECHANICAL, EQUIPMENT: Aluminum, 0.312 in. dia, $0.640 \mathrm{in}$.1 g ; Mfr 13499 part no. 553-1450-002
POST, ELECTRICAL, MECHANICAL, EQUIPMENT: Aluminum; 0.375 in. dia, 0.640 in. $1 \mathrm{~g} ; \mathrm{Mfr} 13499$ part no. 553-1451-002
POST, ELECTRICAL, MECHANICAL, EQUIPMENT: Aluminum; 0.375 in. dia, 0.583 in. $1 g ;$ Mfr 13499 part no. 553-1452-002
SWITCH ACTUATOR: Mfr 03565 part no. C-6223
NOT USED
NOT USED
SPACER, SLEEVE: Aluminum; 0.113 in. id, 0.187 in. od, 0.156 in. 1g; Mfr 13499 part no. 553-1459-002
SPACER, SLEEVE: Aluminum; 0.113 in. id, 0.187 in. od, $0.281 \mathrm{in} . \quad 5-81$ 1g; Mfr 13499 part no. 553-1460-002
SPACER, SLEEVE: A1uminum; 0.135 in. id, 0.225 in. od, 0.125 in.
$1 g$; Mfr 13499 part no. 502-1664-001
WASHER, FLAT: Cres; 0.158 in. id, 0.375 in. od, 0.156 in. thk;
Mfr 13499 part no. 553-1430-002
RING, RETAINING: MIL type MS16624-18
RING, RETAINING: MIL type MS16624-15
RING, RETAINING: Beryllium copper; external type; 0.225 in. id,
5-81
0.025 in. thk material; Mfr 89462 part no. 5100-25-C

RING, RETAINING: Copper, type "E", 0.094 in. id, 0.015 in. thk; Mfr 89462 part no. 5133-12-C
RING, RETAINING: Copper, type "E", 0.145 in. id, 0.025 in. thk; Mfr 89462 part no. 5133-18-C
RING, RETAINING: Copper, type "E", 0.207 in. id, 0.025 in. thk; Mfr 89462 part no. 5133-25-C
RING, RETAINING: Stee1, type "E", 0.051 in. id, 0.010 in. thk; Mfr 89462 part no. 5133-6-C
NUT, PLAIN, HEXAGON: Cres; 5/16-24 thd; 0.500 in. w across flats; by 0.103 in. thk; Mfr 13499 part no. 334-0249-00 NOT USED

POST, MOUNTING: Cres; 0.310 in. dia by 0.609 in. 1 g ; Mfr 13499 part no. 553-1422-002
NOT USED

SPACER, SLEEVE: Aluminum; 0.196 in. id, 0.250 in. od, 0.218

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581A/URC-9, FREQUENCY SELECTOR ASSEMBLY (AN/URC-9A ONLY) (Continued)		
H1266	STUD, MOUNTING: Aluminum; $1 / 4 \mathrm{in}$. w across flats by $29 / 32 \mathrm{in}$. $1 \mathrm{~g} ; 5-40$ thd, $9 / 32 \mathrm{in} .1 \mathrm{~g} ; \mathrm{Mfr} 13499$ part no. 553-1652-002	5-81
I1201	INDICATOR, FREQUENCY: 0.453 in . by 1.343 in . by 1.812 in . o/a dim.; Mfr 13499 part no. 553-1627-002	5-81
I1202	INDICATOR, FREQUENCY: 0.453 in . by 1.343 in . by $1.812 \mathrm{in}. \mathrm{o/a}$ dim.; Mfr 13499 part no. 553-1625-002	5-31
I1203	INDICATOR, FREQUENCY: Mfr 03565 part no. C-6196	5-81
I1204	INDICATOR, CHANNEL: 0.453 in. by 1.343 in . by 1.812 in . o/a dim.; Mfr 13499 part no. 553-1629-002	5-81
J1201	CONNECTOR, RECEPTACLE, ELECTRICAL: 41 female sockets; arc resistant plastic dielectric; 5 amps; Mfr 80586 part no. GM41F79	5-81
K1201	RELAY, ARMATURE: $1 \mathrm{~A}, 32 \mathrm{vdc}, 5 \mathrm{amps}, 1$ inductive winding, 20 ohms dc coil resistance; Mfr 04221 part no. 41-3889	5-81
K1202	RELAY, ARMATURE: Same as K1201	5-81
K1203	RELAY, ARMATURE: Same as K1201	5-81
K1204	RELAY, ARMATURE: $1 \mathrm{C}, 32 \mathrm{vdc}, 5 \mathrm{amps} ; 1$ inductive winding; 20 ohms dc coil resistance; Mfr 04221 part no. 41-3608	5-81
01201	HOUSING: Cres; 0.314 in. dia by 0.449 in .1 g ; Mfr 13499 part no. 553-1427-002	5-81
01202	HOUSING: Same as 01201	5-81
$\begin{aligned} & \text { thru } \\ & 01204 \end{aligned}$		
01205	WASHER, NONMETALLIC: Plastic; 0.859 in. id, 1.187 in. od, 0.070 in. thk; Mfr 13499 part no. 502-1164-002	5-81
01206	WASHER, NONMETALLIC: Same as 01205	5-81
$\begin{aligned} & \text { thru } \\ & 01208 \end{aligned}$		
01209	CLUTCH, FRICTION: Consists of 4 clutch linings, 1 clutch shoe, and 1 solder strip; 1.252 in. dia by $0.375 \mathrm{in} .1 \mathrm{~g} ; \mathrm{Mfr} 13499$ part no. 502-1825-002	5-81
01210	CLUTCH, FRICTION: Same as 01209	5-18
thru 01212		
01213	RING, RETAINING: Stainless steel; 0.320 in, id, 1.156 in. od, 0.0418 in. thk; Mfr 13499 part no. 502-7031-002	5-81
01214	RING, RETAINING: Same as 01213	5-81
thru		
01225	WASHER, SHOULDERED: Cres; 0.313 in . id, 0.843 in. od, 0.093 in. thk; Mfr 13499 part no. 553-1428-002	5-81
01226	WASHER, SHOULDERED: Same as 01225	5-81
thru		
01228		
01229	PAWL: Copper; 0.250 in. by 0.250 in. by 1.247 in.; Mfr 13499 part no. 503-5079-002	5-81

Table 6-2. Maintenance Parts List (Continued)

4841

 0.25801259

01260

01261

01262
01263

01264
01265

01266

01267

01268

01269
01270

01271

01272
01273

01274

01275

 $553-1504-002$
GEAR, SUR: 36 teeth; 20° pressure angle; 48 dametral pitch; 0.790 in . dia by 0.687 in . Ig o/a dim.; Mfr 13499 part no. 553-1438-002
GEAR, SPUR: 54 teeth; 20° pressure angle; 48 diametral pitch; 1.166 in . dia by $0.375 \mathrm{in}, 1 \mathrm{~g}$ o/a din.; Mfr 13499 part no. 553-1476-002
GEAR, SPUR: 96 teeth; 20° pressure angle; 48 diametral pitch; 2.040 in. dia by 0.375 in . 1 g o/a dim.; Mfr 13499 part no. 553-1478-002
SHAF'T, SHOULDERED: Cres; 0.248 in. by $1.656 \mathrm{in} . ~ o / a \operatorname{dim} . ;$ Mfr 13499 part no. 553-1433-002
GEAR, SPUR: 48 teeth; 20° pressure angle; 48 diametral pitch; 1.040 in . dia by 0.437 in .1 g o/a dim.; Mfr 13499 part no. 553-1439-002
NOT USED
GEAR, SPUR: 57 teeth; 20° pressure angle; 48 diametral pitch; 1.229 in. dia by 0.156 in. $1 g$ o/a dim.; Mfr 13499 part no. 553-1442-002
GEAR, SPUR: 57 teeth; 20° pressure angle; 48 diametral pitch; 1.229 in. dia by 0.375 in. 1 g o/a dim.; Mfr 13499 part no. 553-1480-002
GEAR, SPUR: 57 teeth; 20° pressure angle; 48 diametral pitch; 1.229 in. dia by 0.444 in. 1 g o/a dim.; Mfr 13499 part no. 553-1443-002
GEAR, SPUR: 90 teeth; 200 pressure angle; 48 diametral pitch; 1.916 in. dia by 0.140 in . 1 g o/a dim.; Mfr 13499 part no. 553-1444-002
SHAFT, STRAIGHT: Aluminum alloy; 0.187 in. dia by 1.593 in. $1 g$ o/a dim.; Mfr 13499 part no. 553-1446-002
GEAR, SPUR: 86 teeth; 20° pressure angle; 48 diametral pitch; 1.854 in. dia by 0.140 in. 1 g o/a dim.; Mfr 13499 part no. 553-1453-002
GEAR, SPUR: 86 teeth; 20° pressure angle; 48 diametral pitch; 1.854 in. dia by 0.344 in. 1 g o/a dim.; Mfr 13499 part no. 553-1454-002
NOT USED
GEAR, SPUR: 76 teeth; 20° pressure angle; 48 diametral pitch; 1.625 in. dia by 0.187 in. $1 g$ o/a dim.; Mfr 13499 part no. 553-1461-002
GEAR, SPUR: 60 teeth; 20° pressure angle; 48 diametral pitch; 1.291 in . dia by 0.370 in . 1 g o/a dim.; Mfr 13499 part no. 553-1482-002
NOT USED

Table 6-2. Maintenance Parts List (Continued)

REF		
DESIG	NAME AND DESCRIPTION	FIG

RT-581A/URC-9, FREQUENCY SELECTOR ASSEMBLY (AN/URC-9A) (Continued)

01276
01277
01278

01279
01280
thru
01283
01284

01285
01286

01287

01290

01291

01292
01293
thru
01295
01296

01297

01298

01299

NOT USED
GEAR, SPUR: Mfr 13499 part no. 553-1484-003
GEAR, SPUR: 29 teeth; 20° pressure angle; 48 diametral pitch; 0.645 in. dia by 0.370 in. $1 g$ o/a dim.; Mfr 13499 part no. 553-1487-002
GEAR, SPUR: Same as 01278
NOT USED

GEAR, CLUSTER, SPUR: Two complements of 18 and 68 teeth; 20° pressure angle for both gears; 48 diametral pitch for both gears; 1.458 in. dia by 0.281 in. 1 g o/a dim.; Mfr 13499 part no. 553-1489-002
NOT USED
GEAR CLUSTER, SPUR: Two complements of 18 and 68 teeth; 200 pressure angle for both gears; 48 and 64 diametral pitches; 1.093 in. dia by 0.245 in. $1 g$ o/a dim.; Mfr 13499 part no. 553-1492-002
NOT USED
GEAR SPUR: 57 teeth; 20° pressure angle; 64 diametral pitch; 9.928 in. dia by 0.178 in. $1 g$ o/a dim.; Mfr 13499 part no. 553-1495-002
GEAR CLUSTER, SPUR: Two complements of 42 and 84 teeth; 20° pressure angle for both gears; 48 diametral pitch for both gears; 1.791 in. dia by 0.432 in. $1 g$ o/a dim.; Mfr 13499 part no. 553-1497-002
GEARSHAFT, SPUR: 72 teeth; 20° pressure angle; 48 diametral pitch; 1.541 in. dia by 0.843 in. 1 g o/a dim.; Mfr 13499 part no. 553-1501-002
COUPLING HALF, POSITIVE, Cres; 1 in. dia by 0.343 in .1 g ; 0.1875 in. dia bore; Mfr 13499 part no. 553-1463-003

COUPLING HALF, POSITIVE: Same as 01291
COUPLING HALF, POSITIVE: Cres; 0.875 in. dia by 0.343 in. o/a 0.187 in. dia bore; Mfr 13499 part no. 553-1464-003

GEARSHAFT, SPUR: 76 teeth; 20° pressure angle; 48 diametral pitch; 1.625 in. dia by 2.093 in. $1 g$ o/a dim.; Mfr 13499 part no. 553-1522-002
GEAR AND CAM ASSEMBLY: 48 teeth; 20° pressure angle; 48 diametral pitch; 0.828 in. o/a lg; Mfr 13499 part no. 553-1525-002
GEARSHAFT, SPUR: 80 teeth; 200 pressure angle; 64 diametral pitch; 1.281 in. dia by 2.031 in. 1 g o/a dim.; Mfr 13499 part no. 553-1528-002
GEARSHAFT, SPUR: 40 teeth; 20° pressure angle; 64 diametral pitch; 1.125 in. dia by 3.031 in. $1 g$ o/a dim.; Mfr 13499 part no. 553-1532-002

5-81
5-81

5-81

5-81

5-81

5-81

5-81

5-81

5-81
5-81
5-81

5-81

5-81

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { No. } \end{aligned}$
RT-581A/URC-9, FREQUENCY SELECTOR ASSEMBLY (AN/URC-9A ONLY) (Continued)		
01299.1	GEARSHAFT, SPUR: 80 teeth; 200 pressure angle; 64 diametral pitch; 1.281 in. dia by 1.750 in. 1 g o/a dim.; Mfr 13499 part no. 553-1536-002	5-81
01299.2	NOT USED	
01299.3	NOT USED	
01299.4	ARM ASSEMbly: Cres cam; 0.531 in . by 1.437 in . by 2.295 in . o/a dim. approx; Mfr 13499 part no. 553-1544-003	5-81
01299.5	GEAR ASSEMBLY: Aluminum gear with 84 teeth, bronze gear with 21 teeth; 1.791 in. dia by 0.656 in. $1 g$; Mfr 13499 part no. 553-1550-003	5-81
01299.6	SHAFT AND GEAR ASSEMBLY: 1.229 in . dia by 1.500 in .1 g o/a; Mfr 13499 part no. 553-1555-003	5-81
01299.7	GEARSHAFT, SPUR: 72 teeth; 20° pressure angle; 48 diametral pitch; 1.541 in. dia by 1.296 in. $1 g$ o/a dim.; Mfr 13499 part no. 553-1562-002	5-81
01299.8	GEAR CLUSTER, SPUR: Two complements of 57 and 84 teeth; 20° pressure angle for both gears; 48 diametral pitch for both gears; $1.791 \mathrm{in} . \mathrm{dia}^{2} 0.380 \mathrm{in} .1 \mathrm{~g}$ o/a dim.; Mfr 13499 part no. 553-1565-002	5-81
01299.9	CAM FOLLOWER: Cres arm; includes brass gear with 108 teeth Mfr 13499 part no. 553-1568-002	5-81
01299.10	NOT USED	
01299.11	GEAR, SPUR: Aluminum; 96 teeth; with bearing; 2.041 in. dia by 0.312 in. $1 g$; Mfr 13499 part no. 553-1577-002	5-81
01299.12	GEARSHAFT, SPUR: Cres; 30 teeth; 0.666 in. dia by 59/64 in. Ig o/a; Mfr 13499 part no. 553-1576-002	5-81
01299.13	GEAR CLUSTER, SPUR: Aluminum gear with 72 teeth, bronze gear with 18 teeth; 1.541 in . dia by 1.374 in .1 lg approx; Mfr 13499 part no. 553-1599-003	5-81
$\begin{aligned} & 01299.14 \\ & \text { thru } \\ & 01299.21 \end{aligned}$	NOT USED	
01299.22	GEARSHAFT, SPUR: 72 teeth; 20° pressure angle; 48 diametral pitch; 4.541 in. dia by 1.718 in .1 g o/a dim.; Mfr 13499 part no. 553-1506-002	5-81
01299.23	GEARSHAFT, SPUR: 90 teeth; 20° pressure angle; 48 diametral pitch; 1.916 in. dia by $1.328 \mathrm{in}$.1 g o/a dim.; Mfr 13499 part no. 553-1509-002	5-81
01299.24	GEAR, SPUR: 84 teeth; 20° pressure angle; 48 diametral pitch; 1.791 in. dia by 0.290 in. 1 g o/a dim.; Mfr 13499 part no. 553-1515-002	5-81
01299.25	GEAR, SPUR: 76 teeth; 20° pressure ang1e; 48 diametral pitch; 1.625 in. dia by 0.290 in. 1 g o/a dim.; Mfr 13499 part no. 553-1512-002	5-81
01299.26	SHAFT-CAM ASSEMBLY: Brass cam, cres shaft; irregular shape; Mfr 13499 part no. 553-1519-002	5-81

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \\ & \hline \end{aligned}$
RT-581A/URC-9, FREQUENCY SELECTOR ASSEMBLY (AN/URC-9A ONLY) (Continued)		
01299.27	NOT USED	
01299.28	HUB ASSEMBLY: Aluminum alloy; 1.625 in . dia by 0.359 in .1 g o/a dim.; Mfr 13499 part no. 553-1617-002	5-81
01299.29	SWITCH ACTUATOR: Mfr 03565 part no. C-6221	5-81
01299.30	HUB: Aluminum; 0.254 in. id, $1.500 \mathrm{in} . \operatorname{od}, 0.093 \mathrm{in} 1 \mathrm{~g} ;$. 13499 part no. 553-1611-002	5-81
01299.31	SPRING, HELICAL, EXTENSION: Cres; 40.75 coils; 0.023 in. wire dia.; 2.312 lb load at 2.656 in. total $\mathrm{lg} ; 0.190 \mathrm{in}$. dia by 1.515 in. 1 g o/a dim.; Mfr 13499 part no. 553-1434-002	5-81
01299.32	DRIVE, CONSTANT SPEED, MECHANICAL: Mfr 03565 part no. C-6215	5-81
01299.33	HUB, SHAFT: Mfr 13499 part no. 553-1440-002	
01299.34	GEARSHAFT, SPUR: 80 teeth; 20° pressure angle; 64 diametral pitch; 1.281 in. dia by 1.687 in. 1 g o/a dim.; Mfr 13499 part no. 553-1539-002	5-81
01299.35	SPRING, HELICAL, COMPRESSION: Cres; 12 coils; 0.032 in. wire dia; supports 5 lbs at 0.531 in.; 0.245 in. dia by 8.75 in . lg o/a dim.; Mfr 13499 part no. 553-1423-002	5-81
01299.36	SPRING, HELICAL, COMPRESSION: Same as 01299.35	5-81
P1201	CONNECTOR, RECEPTACLE, ELECTRICAL: Arc resistant plastic dielectric; Mfr 80586 part no. GM18M79	5-81
S1201	SWITCH SECTION, ROTARY: 1 circuit, 1 pole, 18 position; 1 moving and 18 fixed contacts; Mfr 76854 part no. 190311 LK	5-81
S1202	SWITCH SECTION, ROTARY: 1 circuit, 1 pole, 18 position; 1 moving and 3 fixed contacts; Mfr 76854 part no. 190312LK	5-81
S1203	SWITCH SECTION, ROTARY: 1 circuit, 1 pole, 12 position; 1 moving and 10 fixed contacts; Mfr 76854 part no. 190313 K	5-81
S1204	SWITCH SECTION, ROTARY: Same as S1203	5-81
S1205	SWITCH, SECTION, ROTARY: 1 section, 2 pole, 20 position; 2 moving and 10 fixed contacts; Mfr 76854 part no. 189665RK	5-81
S1206	SWITCH SECTION, ROTARY: Same as Sl205	5-81
S1207	NOT USED	
thru $\text { S1 } 209$		
S1210	SWITCH ASSEMBLY: 0.531 in. by 1.437 in. by 5.046 in. approx.; o/a dim.; Mfr 03565 part no. D-6227	5-81
RT-581/URC-9, FREQUENCY SELECTOR ASSEMBLY (AN/URC-9 ONLY)		
1A1A12		
(1201-	FREQUENCY SELECTOR, FINAL ASSEMBLY: Mfr 13499 part no.	5-80
1299)	553-1418-004 0.040 in by 2.162 .	
Al201	PLATE, MOUNTING: Aluminum; 0.040 in. by 2.162 in. by 2.185 in.; Mfr 13499 part no. 553-1458-002	5-80
A1202	NOT USED	
A1203	PLATE ASSEMBLY, BEARING: Aluminum plate; 0.250 in. by 8.093 in. by $8-11 / 16 \mathrm{in}$. excl components; Mfr 13499 part no. 553-1583-004	5-80

Table 6-2. Maintenance Parts List (Continued)

REF	NAME AND DESCRIPTION	FIG
DESIG	NO.	

RT-581/URC-9, FREQUENCY SELECTOR ASSEMBLY (AN/URC-9 ONLY) (Continued)

Al 204
A1 205

Al206
A1 207
A1 208
A1209
A1210
A1211
A1212

Al2 23
A1 214
A1215
A1216
B1 201

H1 201
H1 202
H1 203
H1 204
H1 205
H1 206
H1207
H1 208
H1209
H1210
H1211

Plate ASSembly, GEAR: Aluminum plate; 59/64 in. by 4.124 in. by
5-80
4.405 in. ; Includes 2 gears; Mfr 13499 part no. 553-1575-002

PLATE ASSEMBLY, BEARING: Aluminum plate; 0.125 in. by 5.625
5-80
in. by 5.625 in. by $8-21 / 32$ in. excl components; Mfr 13499 part no. 553-1592-004
NOT USED
BRACKET, MOUNTING: Cres; 0.374 in. by 0.984 in. by $1-1 / 32$ in.;
Mfr 13499 part no. 553-1455-002
BRACKET, MOUNTING: Same as Al207
5-80
BRACKET, MOUNTING: Same as Al207
5-80
NOT USED
PLATE, MOUNTING: Aluminum; 0.125 in. by 0.821 in. by 1.092
5-80
in. ; Mfr 13499 part no. 553-1456-002
BRACKET, ASSEMBLY: Aluminum bracket; includes bearing;
5-80 0.375 in. by 1.062 in. by 2.005 in. o/a approx.; Mfr 13499 part no. 553-1542-002
BRACKET, MOUNTING: Cres; 0.374 in. by 0.984 in. by 1.032 in. 5-80 Mfr 13499 part no. 553-1462-002
SCALE, MEMORY DRUM: Aluminum; 1.218 in. by 1.352 in. by 5.314 5-80 in.; Mfr 13499 part no. 553-1426-004
PLATE, MOUNTING: Cres; 0.025 in. by 0.436 in. by 2.748 in.;
5-80
Mfr 13499 part no. 553-1424-002
Plate, mounting: Cres; 0.050 in. by $25 / 32$ in. by $3.113 \mathrm{in.;}$
5-80
Mfr 13499 part no. 553-1425-002
MOTOR, DIRECT CURRENT: 0.044 hp at $7400 \mathrm{rpm} ; 30 \mathrm{vdc}$ max
5-80
voltage; 6 sec on 24 sec off duty cycle; Mfr 13499 part no. 553-1465-002
NOT USED
WASHER, FLAT: Cres; 0.251 in. id, 0.4375 in. od, 0.0156 in. thk;
5-80 Mfr 13499 part no. 553-1429-002
NUT, SELF-LOCKING, HEXAGON: Stee1; 1/4-28 thd; 7/16 in. w
across flats by 0.110 in. thk; Mfr 77122 part no. 14L28
WASHER, FLAT: Cres; 0.191 in. id, 0.375 in. od, 0.0156 in. thk;
5-80
Mfr 13499 part no. 553-1431-002
NOT USED
NUT, SLEEVE: Aluminum alloy; 0.250 in . hex, 0.187 in . dia.
0.718 in. 1 g ; Mfr 13499 part no. 553-1445-002

POST, MOUNTING: Alumjnum; 0.375 in. dia, 1.156 in. $1 \mathrm{~g} ; \mathrm{Mfr}$
5-80 13499 part no. 553-1447-002
POST, MOUNTING: Aluminum; 0.312 in. dia small end, 0.375 in. dia large end, 1.250 in. 1 g ; Mfr 13499 part no. 553-1448-002
POST, MOUNTING: Aluminum; 0.312 in. dia, $0.562 \mathrm{in} .1 g ;$ Mfr
5-80 13499 part no. 553-1449-002
POST, MOUNTING: Aluminum; 0.312 in. dia, 0.640 in .1 g ; Mfr

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581/URC-9, FREQUENCY SELECTOR ASSEMBLY (AN/URC-9 ONLY) (Continued)		
H1212	POST, MOUNTING: Aluminum; 0.375 in. dia, 0.583 in. $1 \mathrm{~g} ; \mathrm{Mfr}$ 13499 part no. 553-1452-002	5-80
H1213	NOT USED	
thru		
H1215 H1216	SPACER, SLEEVE: Aluminum; 0.113 in. id, 0.187 in . od, 0.156 in. 1 g ; Mfr 13499 part no. 553-1459-002	5-80
H1217	SPACER, SLEEVE: Aluminum; 0.113 in. id, 0.187 in . od, 0.281 in . 1 g ; Mfr 13499 part no. 553-1460-002	5-80
H1218	SPACER, SLEEVE; Aluminum; 0.135 in. id, 0.255 in. od, 0.125 in. 1g; Mfr 13499 part no. 502-1664-001	5-80
H1219	WASHER, FLAT: Cres; 0.158 in. id, 0.375 in. od, 0.156 in. thk; Mfr 13499 part no. 553-1430-002	5-80
H1220	RING, RETAINING: MIL type MS16624-18	5-80
H1221	RING, RETAINING: MIL type MS16624-15	5-80
H1222	RING, RETAINING: Beryllium copper; external type; 0.225 in. id, 0.025 in. thk material; Mfr 89462 part no. 5100-25-C	5-80
H1223	RING, RETAINING: Copper, type "E", 0.094 in. id, 0.015 in. thk; Mfr 89462 part no. 5133-12-C	5-80
H1224	RING, RETAINING: Copper, type "E", 0.145 in. id, 0.025 in. thk; Mfr 89462 part no. 5133-18-C	$5-0$
H1225	RING, RETAINING: Copper, type "E"; 0.207 in. id, 0.025 in. thk; Mfr 89462 part no. 5133-25-C	5-80
H1226	RING, RETAINING: Steel, type "E"; 0.051 in. id, 0.010 in. thk; Mfr 89462 part no. 5133-6-C	$5-80$
H1227	NUT, PLAIN, HEXAGON: Cres; 5/16-24 thd; 0.500 in. w across flats by 0.103 in. thk; Mfr 13499 part no. 334-0249-00	5-80
H1228	NOT USED	
thru		
H1255		
H1256	POST, MOUNTING: Cres; 0.310 in. dia by 0.609 in. $1 \mathrm{~g} ; \mathrm{Mfr} 13499$ part no. 553-1422-002	5-80
H1257	NOT USED	
thru H1264		
H1265	SPACER, SLEEVE: Aluminum; 0.196 in. id, 0.250 in . od, 0.218 in . 1g; Mfr 13499 part no. 553-1651-002	5-80
H1266	STUD, MOUNTING: Aluminum; $1 / 4$ in. 2 across flats by 29/32 in. $1 \mathrm{~g} ; 5-40$ thd, $9 / 32$ in. $1 g ;$ Mfr 13499 part no. 553-1652-002	5-80
I1201	WHEEL ASSEMBLY, COUNTER: 0.453 in. by 1.343 in . by 1.812 in . o/a dim.; Mfr 13499 part no. 553-1627-002	5-80
I1202	WHEEL ASSEMBLY, COUNTER: 0.453 in. by 1.343 in . by 1.812 in . o/a dim.; Mfr 13499 part no. 553-1625-002	5-80
11203	WHEEL ASSEMBLY, COUNTER: 0.453 in. by 1.343 in . by 1.812 in . o/a dim.; Mfr 13499 part no. 553-1603-002	5-80
I1204	WHEEL ASSEMBLY, COUNTER: 0.453 in. by 1.343 in . by 1.812 in . o/a dim.; Mfr 13499 part no. 553-1629-002	5-80

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581/URC-9, FREQUENCY SELECTOR ASSEMBLY (AN/URC-9 ONLY) (Continued)		
J1201	CONNECTOR, RECEPTACLE, ELECTRICAL: 41 female sockets; arc resistant plastic dielectric; 5 amps; Mfr 80586 part no. GM41F79	5-80
K120i	RELAY, ARMATURE: $1 \mathrm{~A}, 32 \mathrm{vdc}, 5 \mathrm{amps}, 1$ inductive winding, 20 ohms dc coil resistance; Mfr 04221 part no. 41-3889	5-80
K1202	RELAY ARMATURE: Same as K1201	5-80
K1203	RELAY ARMATURE: Same as Kl201	5-80
K1204	RELAY ARMATURE: $1 \mathrm{C}, 32 \mathrm{vdc}, 5$ amps; 1 inductive winding, 20 ohms dc coil resistance; Mfr 04221 part no. 41-3608	5-80
01201	DRUM, CLUTCH: Cres; 0.314 in. dia by 0.449 in. $1 \mathrm{~g} ; \mathrm{Mfr} 13499$ part no. 553-1427-002	5-80
01202	DRUM, CLUTCE: Same as 01201	5-80
thru 01204		
01205	WASHER, NONMETALLIC: Plastic; 0.859 in . id, 1.187 in. od, 0.070 in. thk; Mfr 13499 part no. 502-1164-002	5-80
01206	WASHER, NONMETALLIC: Same as 01205	5-80
thru 01208		
01209	CLUTCH, FRICTION: Consists of 4 clutch linings; 1 clutch shoe, and 1 solder strip; 1.252 in . dia by $0.375 \mathrm{in} .1 \mathrm{~g} ; \mathrm{Mfr} 13499$ part no. 502-1825-002	5-80
01210	CLUTCH, FRICTION: Same as 01209	5-80
thru 01212		
01213	RING, RETAINING: Stainless steel; 0.320 in. id, 1.156 in. od, 0.0418 in. thk; Mfr 13499 part no. 502-7031-002	5-80
01214	RING, RETAINING: Same as $01<13$	5-80
thru		
01225	WASHER, SHOULDERED: Cres; 0.313 in . id, 0.843 in . od, 0.093 in. thk; Mfr 13499 part no. 553-1428-002	5-80
01226	WASHER, SHOULDERED: Same as 01225	5-80
thru		
01229	PAWL: Copper; 0.250 in. by 0.250 in. by 1.247 in.; Mfr 13499 part no. 503-5079-002	5-80
01230	PAWL: Same as 01229	5-80
thru		
01233	GEAR, SPUR: Bronze; 72 teeth, incl bearings; 1.541 in. dia by 0.326 in. $1 g$; Mfr 13499 part no. 504-7200-002	5-80
01234	GEAR, SPUR: Same as 01233	5-80
thru		
01236		
01237	CLAMP, LOOP: Aluminum; a_commodates 0.312 In. dia material Mfr 13499 part no. 553-1772-002	5-80

Table 6-2. Maintenance Parts List (Continued)

RT-581/URC-9, FREQUENCY SELECTOR ASSEMBLY (AN/URC-9 ONLY) (Continued)

01262

01263

01264
01265

01266

01267

01268

01269

01270

01271

01272
01273

01274

01275
01276
01277
01278

01279
01280
thru
01283
01284

SHAFT, SHOULDERED: Cres; 0.248 in . by $3.656 \mathrm{in} .0 / \mathrm{a}$ dim.; Mfr 13499 part no. 553-1433-002
GEAR, SPUR: 48 teeth; 20° pressure angle; 48 diametral pitch; 1.040 in. dia by 0.437 in. $1 g$ o/a dim.; Mfr 13499 part no. 553-1439-002
NOT USED
GEAR SPUR: 57 teeth; 20° pressure angle; 48 diametral pitch; 1.229 in. dia by 0.156 in. Ig o/a dim.; Mfr 13499 part no. 553-1442-002
GEAR, SPUR: 57 teeth; 20° pressure angle; 48 diametral pitch; 1.229 in. dia by 0.375 in. 1 g o/a dim.; Mfr 13499 part no. 553-1480-002
GEAR, SPUR: 57 teeth; 20° pressure angle; 48 diametral pitch; 1.229 in. dia by 0.444 in. $1 g$ o/a dim.; Mfr 13499 part no. 553-1443-002
GEAR, SPUR: 90 teeth; 20° pressure angle; 48 diametral pitch; 1.916 in. dia by 0.140 in. $1 g$ o/a dim.; Mfr 13499 part no. 553-1444-002
SHAFT, STRAIGHT: Aluminum alloy; 0.187 in. dia by 1.593 in. 1 g o/a dim.; Mfr 13499 part no. 553-1446-002
GEAR, SPUR: 86 teeth; 20° pressure angle; 48 diametral pitch; 1.854 in. dia by 0.140 in. $1 g$ o/a dim.; Mfr 13499 part no. 553-1453-002
GEAR, SPUR: 86 teeth; 20° pressure angle; 48 diametral pitch; 1.854 in. dia by 0.344 in. $1 g$ o/a dim.; Mfr 13499 part no. 553-1454-002
NOT USED
GEAR, SPUR: 76 teeth; 20° pressure angle; 48 diametral pitch; 1.625 in. dia by 0.187 in. 1 g o/a dim.; Mfr 13499 part no. 553-1461-002
GEAR, SPUR: 60 teeth; 20° pressure angle; 48 diametral pitch; 1.291 in. dia by 0.370 in. $1 g$ o/a dim.; Mfr 13499 part no. 553-1482-002
NOT USED
NOT USED
GEAR SPUR: Same as 01261
GEAR, SPUR: 29 teeth; 20° pressure angle; 48 diametral pitch; 0.645 in. dia by 0.370 in. 1 g o/a dim.; Mfr 13499 part no. 553-1487-002
GEAR, SPUR: Same as 01278
NOT USED

GEAR, CLUSTER, SPUR: Two complements of 18 and 68 teeth; 20° pressure angle for both gears; 48 diametral pitch for both gears; 1.458 in. dia by 0.281 in. 1 g o/a dim.; Mfr 13499 part no. 553-1489-002
$5-80$

5-80

Table 6-2. Maintenance Parts List (Continued)

REF DESIG	NAME AND DESCRIPTION	FIG
RT-581/URC-9, FREQUENCY SELECTOR ASSEMBLY (AN/URC-9 ONLY) (Continued)		
01285	NOT USED	
01286	GEAR, CLUSTER, SPUR: Two complements of 18 and 68 teeth; 20°	$5-80$

01287
01288

01289

01290

01291
01292
01293
thru
01295
01296

01297
01298

01299
01299.1
01299.2
01299.3
01299.4
01299.5
01299.6

GEAR, CLUSTER, SPUR: Two complements of 18 and 68 teeth; 20°
pressure angle for both gears; 48 and 64 diametral pitches;
1.093 in. dia by 0.245 in. $1 g$ o/a dim.; Mfr 13499 part no. 553-1492-002
NOT USED
GEAR, SPUR: 57 teeth; 20° pressure angle; 64 diametral pitch;
9.928 in. dia by 0.178 in. $1 g$ o/a dim.; Mfr 13499 part no. 553-1495-002
GEAR CLUSTER, SPUR: Two complements of 42 and 84 teeth; 20° pressure angle for both gears; 48 diametral pitch for both gears; 1.791 in. dia by 0.432 in. $1 g$ o/a dim.; Mfr 13499 part no. 553-1497-002
GEARSHAFT, SPUR: 72 teeth; 20° pressure angle; 48 diametral pitch; 1.541 in. dia by 0.843 in .1 g o/a dim.; Mfr 13499 part no. 553-1501-002
COUPLING HALF, SHAFT: Cres; 1 in. dia by 0.343 in. lg; 0.1875
in. dia bore; Mfr 13499 part no. 553-1463-003
COUPLING HALF, SHAFT: Same as 01291
COUPLING HALF, SHAFT: Same as 01257

GEARSHAFT, SPUR: 76 teeth; 20° pressuri -gle; 48 diametral pitch; 1.625 in. dia by 2.093 in. 1 g o/e tim.; Mfr 13499 part no. 553-1522-002
GEAR AND CAM ASSEMBLY: 48 teeth; 20° pressure angle; 48 diametral pitch; 0.828 in. o/a 1 g; Mfr 13499 part no. 553-1525-002
GEARSHAFT, SPUR: 80 teeth; 20° pressure angle; 64 diametral pitch; 1.281 in. dia by 2.031 in. 1 g o/a dim.; Mfr 13499 part no. 553-1528-002
GEARSHAFT: SPUR: 40 teeth; 20° pressure angle; 64 diametral pitch; 1.125 in. dia by 3.031 in. 1 g o/a dim.; Mfr 13499 part no. 553-1532-002
GEARSHAFT, SPUR: 80 teeth; 20° pressure angle; 64 diametral pitch; 1.281 in. dia by 1.750 in. 1 g o/a dim.; Mfr 13499 part no. 553-1536-002
NOT USED
NOT USED
ARM ASSEMBLY: Cres cam; 0.531 in. by 1.437 in. by 2.295 in. o/a
$5-80$
dim. approx; Mfr 13499 part no. 553-1544-003
GEAR ASSEMBLY: Aluminum gear with 84 teeth, bronze gear with 21 teeth; 1.791 in. dia by 0.656 in. $1 g$; Mfr 13499 part no. 553-1550-003
SHAFT AND GEAR ASSEMBLY: 1.229 in. dia by 1.500 in .1 g o/a; Mfr 13499 part no. 553-1555-003

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581/URC-9 FREQUENCY SELECTOR ASSEMBLY (AN/URC-9 ONLY) (Continued)		
01299.7	GEARSHAFT, SPUR: 72 teeth; 20° pressure ang1e; 48 diametral pitch; 1.541 in. dia by 1.296 in. 1 g o/a dim.; Mfr 13499 part no. 553-1562-002	5-80
01299.8	GEAR CLUSTER, SPUR: Two complements of 57 and 84 teeth; 20° pressure angle for both gears; 48 diametral pitch for both gears; 1.791 in. dia by 0.380 in. 1 g o/a dim.; Mfr 13499 part no. 553-1565-002	5-80
01299.9	ARM ASSEMBLY: Cres arm; includes brass gear with 108 teeth; Mfr 13499 part no. 553-1568-002	5-80
01299.10	NOT USED	
01299.11	GEAR SPUR: Aluminum; 96 teeth; with bearing; 2.041 in. dia by 0.312 in. lg; Mfr 13499 part no. 553-1577-002	5-80
C1299.12	GEARSHAFT, SPUR: Cres; 30 teeth; 0.666 in. dia by 59/64 in. 1 g o/a; Mfr 13499 part no. 553-1576-002	5-80
01299.13	GEAR ASSEMBLY: Aluminum gear with 72 teeth; bronze gear with 18 teeth; 1.541 in. dia by 1.374 in. 1 g approx; Mfr 13499 part no. 553-1599-003	5-80
$\begin{aligned} & 01299.14 \\ & \text { thru } \\ & 01299.21 \end{aligned}$	NOT USED	
01299.22	GEARSHAFT, SPUR: 72 teeth; 20° pressure angle; 48 diametral pitch; 4.541 in. dia by 1.718 in. 1 g o/a dim.; Mfr 13499 part no. 553-1506-002	5-80
01299.23	GEARSHAFT, SPUR: 90 teeth; 20° pressure angle; 48 diametral pitch; 1.916 in. dia by 1.328 in. 1 g o/a dim.; Mfr 13499 part no. 553-1509-002	5-80
01299.24	GEAR, SPUR: 84 teeth; 20° pressure angle; 48 diametral pitch; 1.791 in. dia by 0.290 in. $1 g$ o/a dim.; Mfr 13499 part no. 553-1515-002	5-80
01299.25	GEAR, SPUR: 76 teeth; 20° pressure angle; 48 diametral pitch; 1.625 in. dia by 0.290 in. Ig o/a dim.; Mfr 13499 part no. 553-1512-002	5-80
01299.26	SHAFT-CAM ASSEMBLY: Brass cam, cres shaft; irregular shape; Mfr 13499 part no. 553-1519-002	5-80
01299.27	NOT USED	
01299.28	HUB ASSEMBLY: Aluminum alloy; 1.625 in. dia by 0.359 in. 1 g o/a dim.; Mfr 13499 part no. 553-1617-002	5-80
01299.29	DRUM ASSEMBLY: Mfr 13499 part no. 553-1610-003	5-80
01299.30	HUB: Aluminum; 0.254 in. id, 1.500 in . od, 0.093 in. $\mathrm{lg} ; \mathrm{Mfr}$ 13499 part no. 553-1611-002	5-80
01299.31	SPRING, HELICAL, EXTENSION: Cres; 40.75 coils; 0.023 in. wire dia.; 2.312 Ib load at 2.656 in. total $\mathrm{lg} ; 0.190 \mathrm{in}$. dia by 1.515 in. 1 g o/a dim.; Mfr 13499 part no. 553-1434-002	5-80
01299.32	DRUM ASSEMBLY: Mfr 13499 part no. 553-1612-003	5-80
01299.33	NOT USED	

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{array}{\|l} \hline \text { FIG } \\ \text { NO. } \\ \hline \end{array}$
RT-581/URC-9, FREQUENCY SELECTOR ASSEMBLY (AN/URC-9 ONLY) (Continued)		
01299.34	GEARSHAFT, SPUR: 80 teeth; 20° pressure angle; 64 diametral pitch; 1.281 in. dia by 1.687 in. 1 g o/a dim.; Mfr 13499 part no. 553-1539-002	5-80
01299.35	SPRING, HELICAL, COMPRESSION: Cres; 12 coils; 0.032 in. wire dia; supports 5 lbs at 0.531 in. dia by 9.75 in. 1 g o/a dim.; Mfr 13499 part no. 553-1423-002	5-80
01299.36	SPRING, HELICAL, COMPRESSION: Same as 01299.35	5-80
P1201	CONNECTOR, RECEPTACLE, ELECTRICAL: Arc resistant plastic dielectric; Mfr 80586 part no. GM1-8M79	5-80
S1201	SWITCH SECTION, ROTARY: 1 circuit, 1 pole, 18 position; 1 moving and 18 fixed contacts; Mfr 76854 part no. 190311 LK	5-80
S1202	SWITCH SECTION, ROTARY: 1 circuit, 1 pole, 18 position; 1 moving and 3 fixed contacts; Mfr 76854 part no. 190312LK	5-80
S1203	SWITCH SECTION, ROTARY: 1 circuit, 1 pole, 12 position; 1 moving and 10 fixed contacts; Mfr 76854 part no. 190313K	5-80
S1204	SWITCH SECTION, ROTARY: Same as S1203	5-80
S1205	SWITCH, SECTION, ROTARY: 1 section, 2 pole, 20 position; 2 moving and 10 fixed contacts; Mfr 76854 part no. 189665RK	5-80
S1206	SWITCH SECTION, ROTARY: Same as Sl205	5-80
S1207	NOT USED	
thru		
S1209		
S1210	SWITCH ASSEMBLY: 0.531 in. by 1.437 in. by 5.046 in. approx o/a dim.; Mfr 13499 part no. 553-1631-004	5-80
RT-581/URC-9, DIRECTIONAL COUPLER		
1A1A13		
(1301-		
1399)	COUPLER, DIRECTIONAL: Mfr 13499 part no. 549-3352-004	5-14
C1301	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 500 uuf $-0 \%+100 \%$, 250 vdc; Mfr 71590 part no. DA718-001	5-14
C1302	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 9.1 uuf $\pm 5 \%$, 500 vdc ; Mfr 78488 part no. GA9-1UUFPORM5PCT	5-14
C1303	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C1302	5-14
C1304	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C1301	5-14
CR1301	SEMICONDUCTOR DEVICE, DIODE: Mfr 07688 part no. 1N82A	5-14
CR1302	SEMICONDUCTOR DEVICE, DIODE: Same as CR1301	5-14
J1301	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 rd male contact, 500 vdc ; low loss plastic dielectric; straight shape; Mfr 94375 part no. 0750	5-14
P1301	CONNECTOR, PLUG, ELECTRICAL: Straight shape; low loss plastic dielectric; 5 amps; Mfr 94375 part no. 131 B1100	5-14
R1301	RESISTOR, FIXED, FILM: MIL-R-10509 type RN60B8251F	5-14
R1302	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC07GF101K	5-14
R1303	RESISTOR, FIXED, COMPOSITION: Same as R1302	5-14
R1304	RESISTOR, FIXED, FILM: Same as R1301	5-14

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RT-581(C-9, BROADBAND SIDETONE AMPLIFIER	
$\begin{aligned} & \text { 1A1A14 } \\ & (1601- \end{aligned}$		
1699)	AMPLIFIER, AUDIO FREQUENCY: Mfr 13499 part no. 549-6408-004 CAPACITOR, FIXED, ELECTROLYTIC: MIL type CSR13F476MP	5-19
C1602	CAPACITOR, FIXED, CERAMIC DIELECTRIC: MIL type CK14BX223M	5-19
C1603	CAPACITOR, FIXED, ELECTROLYTIC: Same as C1601	5-19
H1601	SHELL, ELECTRICAL CONNECTOR: Aluminum; for use w/DPD connectors; end bracket mtg w/bushings; 1.875 in. by 2.546 in. by 3.281 in. approx dim.; Mfr 71468 part no. DPD2-19941-2	5-19
J1601	JACK, TIP: For use with 0.080 diameter male contact; teflon insullation; 5.5 amps, continuous duty cycle; Mfr 98291 part no. SKT5BCBROWN	-19
P1601	CONNECTOR, RECEPTACLE, ELECTRICAL: Arc resistant plastic dielectric; Mfr 80586 part no. GM11M79	5-19
P1602	NOT USED	
P1603	NOT USED	
P1604	NOT USED	
P1605	NOT USED	
P1606	NOT USED	
P1607	NOT USED	
Q1601	TRANSISTOR: MIL-S-19500 type 2N697	5-19
Q1602	TRANSISTOR: Same as Q1601	5-19
R1601	RESISTOR, VARIABLE, COMPOSITION: MIL-R-94 type RV6LAYSAIO2B	5-19
R1602	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC07GF152K	5-19
R1603	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF820K	5-19
R1604	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF391K	5-19
R1605	RESISTOR, FIXED, COMPOSITION: MIL type RC20GF220K	5-19
R1606	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type R¢20GF102K	5-19
R1607	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF680K	5-19
R1608	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC07GF561K	5-19
RT1601	RESISTOR, THERMAL: 50 ohms $\pm 10 \%$, at $25^{\circ} \mathrm{C}$, 1 w ; Mfr 10646 part no. 763F92	5-19
T1601	TRANSFORMER, AUDIO FREQUENCY: Plate coupling type; 500 ohms center tapped at 5.5 ma, primary, 600 ohms secondary; 300 to $5000 \mathrm{~Hz}, 500 \mathrm{mw}$; Mfr 70764 part no. Al2808	5-19
T1602	TRANSFORMER, AUDIO FREQUENCY: 500 ohms ct primary; 300 ohms secondary; 200 Hz to 4000 Hz frequency response; continuous duty cycle; Mfr 80223 part no. DOT20	5-19
AN/URC-9 () CASE, RECEIVER-TRANSMITTER CY-2959/URC-9		
$\begin{aligned} & 1 \mathrm{~A} 2 \\ & (1401- \\ & 1499) \end{aligned}$	CASE, RECEIVER-TRANSMITTER GROUP - CY-2959/URC-9; Mfr 03365 part no. D-6434	1-4

Table 6-2. Maintenance Parts List (Continued)

REF DESIG	NAME AND DESCRIPTION
AN/URC-9 () CASE, RECEIVER-TRANSMITTER CY-2959/URC-9 (Continued)	

A1401
FAN, CENTRIFUGAL: ac; direct connected; $115 \mathrm{v}, 60 \mathrm{~Hz}$, single phase; 0.38 amps running, 0.6 amps stalled, current; 40 w ; 3350 rpm ; incl connector, gaskets and hdw; Mfr 13499 part no. 593-8140-004
B1401
FL1401
H1401
H1402
H1403
H1404
H1405
H1406
H1407
H1408
H1409

H1410
H1411
H1412
H1413
H1414
H1415
H1416
H1417

H1423
H1424

H1425

FAN, CENTRIFUGAL: Single unit, direct drive; $115 \mathrm{vac}, 60 \mathrm{~Hz}$, single phase motor 3350 rpm; Mfr 02598 part no. NBCM20B3 FILTER, RADIO INTERFERENCE: Dual section; $130 \mathrm{vac}, 5 \mathrm{amps}, 60$ cps per sect; 0.05 ohms dc res; Mfr 56289 part no. JN14-901A GROMMET, RUBBER: Neoprene; black synthetic rubber; $7 / 16$ in. id, $3 / 4$ ir. od, $1 / 4$ in. thk; Mfr 79497 part no. Gll61NEOPRENE45-55 NUT, SELF-LOCKING, HEXAGON: MIL type MS21044-DO8 WASHER, SEALING: Bolt or stud seal (one piece); 0.234 in. id, 0.364 in. od, 0.041 in. thk; Mfr 86579 part no. 110-8

NOT USED
NOT USED
SCREW, MACHINE: Cres; 0.279 in. dia by 0.500 in. 1 g o/a dim.; 6-32 thd, $1 / 4$ in. lg; Mfr 13499 part no. 553-2178-002
PIN, STRAIGHT, HEADLESS: Cres; 0.093 in. dia by 0.515 in. Ig o/a dim.; Mfr 13499 part no. 553-2168-002
NUT: Bronze; 0.368 in. by 0.718 in. by 0.937 in. o/a dim.; Mfr 13499 part no. 553-2170-002
NUT, PLAIN, HEXAGON: Nickel plated brass; 1/4-20UNF-2B thd, 0.5625 in. hex by 0.125 in. h overall; Mfr 13499 part no. 334-0260-00
SCREW, SHOULDERED: Cres; 0.312 in. w across flats by 0.500 in. lg o/a dim.; 6-32 thd; Mfr 13499 part no. 553-2172-002
WASHER, NONMETALLIC: 0.219 in . d, 0.4375 in . od, 0.125 in .
thk; Mfr 13499 part no. 553-2174-002
WASHER, NONMETALLIC: Rubber; 0.250 in. id, 0.6875 in, od, 0.125 in. thk; Mfr 13499 part no. 553-2175-002

WASHER, THRUST: Cres; 0.171 in. id, 0.812 in. od, 0.062
in. thk; Mfr 13499 part no. 553-2176-002
SPACER, SLEEVE: Cres; 0.171 in. id, 0.250 in. od, 0.312 in. 1g; Mfr 13499 part no. 553-2177-002
CLAMP, LOOP: MIL type MS25281-F3
WASHER, LOCK: Mfr 78189 part no. 1724-02
SCREW, MACHINE: Brass, black oxide, oil strain finish; cross recess drive pan head; $3-48 \mathrm{NC}-2 \mathrm{~A}$ thd, $3 / 16$ in. 1 g ; Mfr 13499 part no. 343-1735-00
PIN, SPRING: MIL type MSI6562-221
NUT, BLIND RIVET: Stee1, cadmium plated; flat head, closed end, keyless; 0.010 in. to 0.075 in. thk; 0.625 in. $1 g ; \operatorname{Mfr} 25472$ part no. S6B75
NUT, BLIND RIVET: Steel, cadmium pla ad; flat head, open end, keyless $4-40$ thd size, 0.370 in. $1 g$; Mfr 25472 part no. 4-60

FIG
No.

5-64

5-64
5-62
5-62

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	FIG NO . .
AN/URC-9 () CASE, RECEIVER-TRANSMITTER CY-2959/URC-9 (Continued)		
H1426	RIVNUT: Steel, cadmium plated; flat head, closed end; keyless; 0.328 in. dia, 0.4695 in. $1 g ; \operatorname{Mfr} 06827$ part no. 2R1083-1	5-62
H1428	INSERT, SCREW THREAD: MIL type MS 21209 C 0420	5-63
H1429	INSERT, SCREW THREAD: MIL type MS124655	5-62
H1430	INSERT, SCREW THREAD: MIL type MS21209C4-15	5-62
H1431	INSERT, SCREW THREAD: MIL type MS122123	5-62
H1432	INSERT, SCREW THREAD: MIL type MS21209C0815	5-62
H1435	INSERT, SCREW THREAD: MIL type MS21209C0615	5-63
H1439	SCREW, MACHINE: Stainless steel, plain finish; 8-32NC-2A thd, 5/8 in. lg; Mfr 13499 part no. 553-220-002	5-62
H1441	SCREW, MACHINE: Brass; Mfr 13499 part no. 313-0140-00	5-62
H1442	SCREW, MACHINE: Stainless stee1, passivate finish; 6-32NC-2A thd, $1 / 4$ in. 1 g ; Mfr 13499 part no. 330-2295-00	5-62
H1443	GROMMET, RUBBER: MIL type MS35489-9	5-62
H1444	BED PLATE ASSEMBLY: 0.080 in. thk; aluminum with nylon slides attached; Mfr 03565 part no. C-6284	5-62
J1401	CONNECTOR, RECEPTACLE, ELECTRICAL: 37 female contacts 700 vdc; 500 vac rms; Mfr 02660 part no. 7-8720	5-62
J1402	CONNECTOR, RECEPTACLE, ELECTRICAL: Aluminum body, plastic insert, 20 female contacts; $1300 \mathrm{v} ; 1.249$ in. by 1.687 in. by 1.687 in. by 3.375 in. o/a dim.; Mfr 71468 part no. DPDF20-33SICPOSNAIO1	5-62
J1403	CONNECTOR, RECEPTACLE, ELECTRICAL: MIL type MS24039	5-62
J1404	CONNECTOR, RECEPTACLE, ELECTRICAL: MIL-C-5015 part no. MS3102R16-10P	5-63
J1405	CONNECTOR, RECEPTACLE, ELECTRICAL: MIL-C-5015 type MS3102R24-7S	5-63
J1406	CONNECTOR, RECEPTACLE, ELECTRICAL: MIL-C-10544, type U79U	5-63
J1407	CONNECTOR, RECEPTACLE, ELECTRICAL: Mfr 13499 part no. 371-6645-00	5-63
01401	GASKET: MIL-P-5516 type AN6227-5	5-62
01402	GASKET: Same as 01401	5-62
01403	NOT USED	
01404	NOT USED	
01405	NOT USED	
01406	NOT USED	
01407	PIVOT ASSEMBLY: 0.938 in. by 2.250 in. o/a dim.; Mfr 13499 part no. 553-2189-002	5-62
01408	PIVOT ASSEMBLY: Same as 01407	5-62
01409	COVER, ELECTRICAL CONNECTOR: With chain, type MS25043-14C	5-63
01410	NOT USED	
01411	NOT USED	
J1408	CONNECTOR, RECEPTACLE, ELECTRICAL: 3 female contacts, type MS3102R14S-7S	5-63
K1401	RELAY, ARMATURE: 26 vdc coil, DPDT, Miniature case; Mfr 82768 part no. MV2C600D13-26V, Mfr 70309 part no. KHYX41	

Table 6-2. Maintenance Parts List (Continued)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
AN/URC-	CASE, RECEIVER-TRANSMITTER CY-2959/URC-9 (Continued)	
$\begin{aligned} & \text { K1402 } \\ & 01412 \end{aligned}$	```RELAY, ARMATURE: Same as K1401 COVER, ELECTRICAL CONNECTOR: Cadmium plated finish; 1.687 in. dia by 0.437 in. 1g approx; incl chain; Mfr 02660 part no. 9760-24```	5-63
$\begin{aligned} & 01413 \\ & 01414 \end{aligned}$	COVER, ELECTRICAL CONNECTOR: Same as 01412 COVER, ELECTRICAL CONNECTOR: With rubber gasket and chain; $1-1 / 8$ in. dia gasket, $4-5 / 8$ in. 1 g chain; $\operatorname{Mfr} 02660$ part no. 9760-16	$5-63$ $5-63$
01415	LOCK RING, CONNECTOR: Brass; 0.155 in. by 0.625 in. by 0.725 in. overal1; 0.510 in. dia to accommodate connector; Mfr 02660 part no. 126-1069	5-62
01416	VALVE, PNEUMATIC TANK: Brass; 1/8-27 thd on outlet connection; $0.302-32$ thd on inlet connection; 0.437 in. w across flats by 0.906 in. 1 g o/a dim.; Mfr 17875 part no. 26-20420BB655-13	5-63
01417	VALVE, SAFETY RELIEF: Brass; 3.5 psi cracking pressure, 2.5 psi min reseating pressure; minus 80 to plus 400 deg F temperature; 0.630 in. w across flats by 1.200 in .1 g o/a dim.; Mfr 91816 part no. 524B2M3-5	5-63
01418	NOT USED	
01419	NOT USED	
01420	NOT USED	
01421	FILTER, AIR-CONDITIONING: Aluminum mech., 5 in. by 3.25 in. by 10.75 in. approx. o/a dim.; Mfr 95347 part no. F-249	5-62
01422	GASKET: Rubber; 0.187 in. by 5.124 in. by 12.437 in. o/a dim.; Mfr 13499 part no. 553-2182-004	5-62
01423	GASKET: Same as 01422	5-62
P1402	CONNECTOR, RECEPTACLE, ELECTRICAL: MIL type MS24040	5-64
S1401	```SWITCH, ROTARY WAFER: 2 circuit, 2 pole, 2 position, 1 section; 2 moving and 4 fixed contact; Mfr }76854\mathrm{ part no. 22525F1```	5-63
POWER SUPPLY, PP-2702/URC-9		
$\begin{aligned} & \text { 1A3 } \\ & (1501- \\ & 1599) \end{aligned}$	POWER SUPPLY: PP-2702/URC-9; meta11ic type rectification, full wave; $115 \mathrm{vac}, 50$ to 60 Hz , single phase, operating power, 230 vac, 50 to 60 Hz , single phase, alternate operating power; $7-1 / 32$ in. by $11-13 / 16$ in. by 19 in. o/a; Mfr 03565 part no. D-6441	5-82
C1501	CAPACITOR, FIXED, PAPER DIELECTRTC. 10 uf $\pm 10 \%, 600 \mathrm{vdc} ; \mathrm{Mfr}$ 56289 part no. P50816	5-83
C1502	CAPACITOR, FIXED, PAPER DIELECTRIC: Same as C1501	5-83
C1503	CAPACITOR, FIXED, PAPER DIELECTRIC: MIL-C-25 type CP53B4EF104V1	5-84

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAYE AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
POWER SUPPLY, PP-2702/URC-9 (Continued)		
C1504	CAPACITOR, FIXED, PAPER DIELECTRIC: MIL-C-25 type CP70B1EF405K1	5-83
C1505	CAPACITOR, FIXED, PAPER DIELECTRIC: Same as C1501	5-83
C1506	CAPACITOR, FIXED, PAPER DIELECTRIC: MIL Type CP54B1KE504K1	5-84
C1507	CAPACITOR, FIXED, PAPER DIELECTRIC: 1 uf $-10 \%+20 \%$, 330 vac , $60 \mathrm{cps} ; \mathrm{Mfr} 13499$ part no. 931-1100-00	5-84
C1508	CAPACITOR, ELECTROLYTIC: $12 \mathrm{mfd} 250 \mathrm{w} v d c,+50 \%,-10 \%$ tol; MIL-C-62 type M62/02-045	5-85
CR1501	SEMICONDUCTOR DEVICE: MIL type 1N561	5-84
CR1502	SEMICONDUCTOR DEVICE: Same as CR1501	5-84
CR1503	SEMICONDUCTOR DEVICE: Same as CR1501	5-84
CR1504	SEMICONDUCTOR DEVICE: Same as CR1501	5-84
CR1505	SEMICONDUCTOR DEVICE, DIODE: Mfr 07688 type 1N249AR	5-84
CR1506	SEMICONDUCTOR DEVICE, DIODE: Same as CR1505	5-84
CR1507	SEMICONDUCTOR DEVICE, DIODE: Same as CR1505	5-84
CR1508	SEMICONDUCTOR DEVICE, DIODE: Same as CR1505	5-84
CR1509	SEMICONDUCTOR DEVICE, DIODE: MIL type 1N547	5-84
CR1510	SEMICONDUCTOR DEVICE, DIODE: Same as CR1509	5-84
CR1511	SEMICONDUCTOR DEVICE, DIODE: Same as CR1509	5-84
CR1512	SEMICONDUCTOR DEVICE, DIODE: Same as CR1509	5-84
CR1513	SEMICONDUCTOR DEVICE, DIODE: MIL type 1N538	5-84
CR1514	SEMICONDUCTOR DEVICE, DIODE: MIL type IN2975RB	5-84
F1501	FUSE, CARTRIDGE: Brass, nickel, or bright alloy plated; 5 amps rating; 125 v max; $1-1 / 4$ in. 1 g o/a; Mfr 71400 part no. MDX5	5-82
F1502	FUSE, CARTRIDGE: MIL-F-15160 type F02B125V3AS	5-82
F1503	FUSE, CARTRIDGE: MIL-F-15160 type FO2B125V1 1-2AS	5-82
F1504	FUSE, CARTRIDGE: MIL-F-15160 type F02A250V1-2AS	5-82
F1505	FUSE, CARTRIDGE: MIL type F03A250V15A	5-82
F1506	FUSE, CARTRIDGE: MIL-F-15160 type FO2A250V1-4AS	5-82
F1507	FUSE, CARTRIDGE: $250 \mathrm{v}, 0.175 \mathrm{amps}$; glass case, 0.250 in . dia by $1-1 / 4$ in. $1 g ;$ Mfr 71400 part no. AGC175-1000	5-82
F1508	FUSE, CARTRIDGE: MIL-F-15160 type FO2B250V3-4AS (SPARE)	5-82
H1501	NUT, SLEEVE: Aluminum; tapped no. 6-32 thd. 0.375 in .1 g ea end; 0.094 in. h head; 0.433 in. hex by $3.016 \mathrm{in} 1 \mathrm{~g} \mathrm{o} /$. dim.; Mfr 13499 part no. 015-0555-00	5-84
H1502	$\begin{aligned} & \text { BRACKET, MOUNTING: Accommodate CP70 capacitors; MIL type } \\ & \text { CP07SB5 } \end{aligned}$	5-83
H1503	BRACKET, MOUNTING: Accommodate CP70 capacitors; MIL type CP07SB4	5-83
H1504	WASHER, KEY: For togg1e switch, 0.484 in. id, 0.719 in. od, 0.032 in. thk; Mfr 13499 part no. 139-0261-00	5-82
H1505	BOOT, DUST AND MOISTURE SEAL: MIL type MILB5423-2	5-82
H1506	NOT USED	
H1507	NOT USED	
H1508	WASHER, FLAT: Cres 0.127 in. id, 0.250 in. od, 0.033 in. thk; Mfr 13499 part no. 553-1854-002	5-82

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
POWER SUPPLY, PP-2702/URC-9 (Continued)		
H1509	NUT, PLAIN, KNURLED: Brass, nickel plated; 3/8-32NF-2 thd; 0.094 in. h, 0.052 in. w, 0.515 in. od, 0.437 in. dia small end; Mfr 13499 part no. 503-8686-002	5-82
H1510	WASHER, FLAT: Stain1ess steel, passivate finish; 0.250 in. dia rd hole; 0.406 in. dia, 0.025 in. thk; Mfr 13499 part no. 506-5173-002	5-83
H1511	POST, SPACING: Aluminum; chromate dip; $\# 6$-32 thd; 0.375 in. 1 g ; Mfr 13499 part no. 540-9205-003	5-84
H1512	POST: Aluminum, chromate dip. 0.375 in. od, 0.089 in. thk; 0.750 in. 1 g ; no. 10 screw size; Mfr 13499 part no. 541-6141-002	5-84
H1513	SCREW, EXTERNALLY RELIEVED BODY: Cres; 0.406 in. dia by 0.218 in. h fillister head; $1 / 4-20$ thd, $15 / 32$ in. $1 g ; 1.468$ in. $1 \mathrm{~g} \mathrm{o/a;} \mathrm{Mfr} 13499$ part no. 553-2114-002	5-83
H1514	NOT USED	
H1515	POST, ELECTRICAL-MECHANICAL EQUIPMENT: Aluminum alloy; 0.312 in. w across flats by 1.600 in .1 g o/a dim.; Mfr 13499 part no. 553-2225-002	5-84
H1516	SCREW, CAP, HEXAGON HEAD: Cres; $1 / 4-20 U N C-2 A$ thd, $1-1 / 4 \mathrm{in}$. lg/ Mfr 13499 part no. 553-2227-002	5-82
H1517	NOT USED	
H1518	CLAMP, LOOP: Nylon; accommodates 0.42 in. dia component; 0.38 in. w, 0.045 in. thk material; MIL type MS25281-7P	5-84
H1519	NOT USED	
H1520	COLLAR, SHAFT: Cres; 0.625 in. dia by 0.125 in. 1 g o/a dim.; Mfr 13499 part no. 553-2224-002	5-82
H1521	WASHER, SEALING: Synthetic rubber and steel; 0.280 in. id, 0.516 in. od, 0.054 in. thk; Mfr 86579 part no. 110 1-4CADPL	5-82
H1522	POST: Aluminum, chromate dipped; 6-32NC-2 thd; $1 / 4$ in. w across flats, $5 / 8$ in. h o/a; Mfr 13499 part no. 540-9213-003	5-84
11501	LAMP, INCANDESCENT: MIL-L-6363 type MS25237-327	5-82
L1501	REACTOR: 4 henries inductance, 400 ma dc current, 55 ohms de res, $150 \mathrm{v}, 110$ to 130 to 800 Hz ; 3.062 in. by 3.562 in. by 4.375 in. o/a dim; Mfr 97965 part no. 21913	5-83
L1502	REACTOR: Same as L1501	5-83
L1503	REACTOR: 6 henries inductance; 150 ma de current; 100 ohms dc res, $75 \mathrm{v}, 110$ to 130 to $800 \mathrm{~Hz} ; 2.125$ in. by 2.750 in . by 3.375 in. o/a dim; Mfr 97965 part no. 21914	5-83
L1504	REACTOR: Same as L1503	5-83
01501	GASKET: MIL-P-5516 type AN6227-7	5-82
01502	GASKET: MIL-P-5516 type AN6227-5	5-82
01503	GASKET: Synthetic rubber; 10.142 in. dia aperture, 10.562 in. od, 0.210 in. thk; Mfr 13499 part no. 200-1600-00	5-84
01504	NOT USED	
01505	GASKET: Rubber; 0.062 in. by 1.093 in. by 2.156 in. o/a dim.; Mfr 13499 part no. 553-2108-002	5-82

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
POWER SUPPLY, PP-2702/URC-9 (Continued)		
01506	KNOB: Setscrew type; rd w/bar face, plain gripping surface; zinc alloy body; $15 / 16$ in. od, $3 / 4$ in. thk o/a; Mfr 81183 part no. 15015	5-82
01507	BRACKET, LOCK: Aluminum; $11 / 16$ in. by $15 / 16$ in. by 3 in.; including post; Mfr 13499 part no. 593-7793-002	5-83
01508	BRACKET, MOUNTING: Cres; 0.671 in. by 0.875 in . by $1-5 / 32 \mathrm{in}$. ; black enamel finish; Mfr 13499 part no. 593-1404-002	5-84
01509	BUSHING, EXTRACTOR: Beryllium copper; 0.875 in. by $1-1 / 8 \mathrm{in}$. by $2-5 / 8$ in.; Mfr 13499 part no. 593-1429-003	5-84
P1501	CONNECTOR, PLUG, ELECTRICAL: Aluminum body, plastic insert, 20 copper male contacts; 1300 v ; 1.390 in . by 1.687 in . by $3.375 \mathrm{in} . \mathrm{o} / \mathrm{a}$ dim.; Mfr 71468 part no. DPDF20-34PILPOSNA101	5-84
R1501	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC42GF474K	5-84
R1502	RESISTOR, FIXED, COMPOSITION: Same as R1501	5-84
R1503	RESISTOR, FIXED, COMPOSITION: Same as R1501	5-84
R1504	RESISTOR, FIXED, COMPOSITION: Same as R1501	5-84
R1505	RESISTOR, FIXED, WIREWOUND: MIL-R-26 type RW33V102	5-84
R1506	RESISTOR, VARIABLE: Wirewound power type; 500 ohms $\pm 10 \%$,	5-82

R1507
R1508
R1509
S1501
S1502
S1503
T1501

T1502

TB1501
TB1502
TB1503
XF1501

XF1502 25 w; Mfr 12697 part no. CM25550

| RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC42GF334K | $5-84$ |
| :--- | :--- | :--- |

RESISTOR, FIXED, WIREWOUND: MIL-R-26 type RW29V121
5-84
RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC32GF301J
SWITCH, TOGGLE: MIL-S-3950A type SM35059-23
SWITCH, TOGGLE: Same as S1501
5-85

SWITCH, TOGGLE: 4 pst1 lever up, off; lever down, on; Mfr 15605 part no. 7661K6
TRANSFORMER, POWER STEP-DOWN AND STEP-UP: 115 v ; primary; $300 \mathrm{vdc}, 26.5 \mathrm{vdc}$ secondaries; 4 in. by 4.687 in. by 5.499 in. o/a dim.; Mfr 97965 part no. 24565
TRANSFORMER, POWER STEP-DOWN AND STEP-UP: 115.v primary; 155 vdc at 150 ma and 6.7 vac at 13 amps secondary, 50 to 60 to 400 cps; 3.062 in. by 3.562 in. by 4.500 in. o/a dim.; Mfr 97965 part no. 31793
TERMINAL BOARD: 0.282 in. by 1.500 in. by 3.000 in . o/a dim.; incl 4 terminals; Mfr 13499 part no. 593-7804-002
TERMINAL BOARD: 0.282 in. by 1.500 in. by 3.000 in . o/a dim.; incl 4 terminals; Mfr 13499 part no. 593-7805-002 TERMINAL BOARD: $0.437 \mathrm{in}$. by 1.750 in . by 3.875 in . o/a dim.; incl 8 terminals; Mfr 13499 part no. 593-7800-002 FUSEHOLDER: c/o four extractor post type fuseholders inclosed in phenolic; accommodates four cartridge type fuses, $1 / 2 \mathrm{in}$. dia by $1-1 / 4 \mathrm{in} .1 \mathrm{~g} ; 300 \mathrm{vdc}$ at $0.5 \mathrm{amps}, 26 \mathrm{vdc}$ at $30 \mathrm{amps} ;$ 1.125 in. by 2.093 in. by 2.280 in . o/a; Mfr 75915 part no. 340129
FUSEHOLDER: Same as XF1501

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{array}{\|l\|l} \hline \text { FIG } \\ \text { NO. } \end{array}$
POWER SUPPLY, PP-2702/URC-9 (Continued)		
XI1501	LIGHT, INDICATOR: Supplied with lens; $7 / 16$ in. dia; nylon clear smooth face frosted back, flange mtd lens holder, nickel plated; Mfr 99707 part no. L1020R	5-82
AN/URC-9 () CABLE ASSEMBLIES AND INSTALLATION KIT		
1 A 4	INSTALLATION KIT ELECTRONIC EQUIPMENT: MK-620/UR inc1 2 mtg angles and 12 screws in bag; Mfr 13499 part no. 593-8149-00	$\begin{array}{\|l} \text { Table } \\ 1-5 \\ \text { Table } \end{array}$
1W1	CABLE ASSEMBLY, POWER ELECTRICAL (AN/URC-9, 9A ONLY); CX-7258/U (10 ft 6 in.) 3 conductors, No. 16 AWG; 600 v ; terminated ea end w/connector; $10 \mathrm{ft} 6 \mathrm{in}$.1 g o/a; C/O P1905, and P1906; Mfr 13499 part no. 593-7852-002	1-5 ${ }^{\text {Table }}$
1W1	CABLE ASSEMBLY, POWER ELECTRICAL (AN/URC-9Y, -9AY ONLY): CX-10332/URC-9Y	$\begin{aligned} & 1-5 \\ & \text { Table } \end{aligned}$
1W2	CABLE ASSEMBLY, SPECIAL PURPOSE, ELECTRICAL: CX-7259/U; 5 conductors, no. 22 awg, stranded, plastic insulation; terminated ea end w/connector; 5 ft 1 g o/a; C/O P1907 and P1908; Mfr 13499 part no. 593-7858-003	1-5
1W3	CABLE ASSEMBLY, SPECIAL PURPOSE, ELECTRICAL: CX-8521/URC-9; 32 conductors, no. 26 AWG, 1 conductor, no. 22 AWG; rubber jacket; 25 ft 0.500 in .1 g o/a; terminated one end $\mathrm{w} / 2 \mathrm{plug}$ connectors, other end w/2 jack connectors; C/O P-1, P-2, J-1, J-2, Mfr 13499 part no. 548-9031-004	1-5
1W1605	CABLE ASSEMBLY, SPECIAL PURPOSE, ELECTRICAL: CX-7300/URC-9; 23 conductors, six no. AWG, twelve no. 18 AWG, five no. 22 AWG; 3 ft 1g, exc1 terminations; C/O P1606\& C1607; Mfr 13499 part no. 593-1515-003	1-5 ${ }^{\text {Table }}$
1W2202	CABLE ASSEMBLY, SPECIAL PURPOSE, ELECTRICAL: CX-7260/URC-9; 40	1-5

1W2202

J1
J2
P1

P2
P1606

P1607

P1905

CABLE ASSEMBLY, SPECIAL PURPOSE, ELECTRICAL: CX-7260/URC-9; 40 conductors terminated ea end w/one connector and one adapter; 36 in. 1 g o/a; C/O items C462 \& C463; Mfr 13499 pt. no. 549-3384-004 CONNECTOR, RECEPTACLE, ELECTRICAL: 20 female contacts; 7.5 amps, straight shape; Mfr 80586 part no. GM20F79
CONNECTOR, RECEPTACLE, ELECTRICAL: Same as JI
CONNECTOR, RECEPTACLE, ELECTRICAL: Arc resistant plastic dielectric; Mfr 80586 part no. GM20M79
CONNECTOR, RECEPTACLE, ELECTRICAL: Same as P1
CONNECTOR, PLUG, ELECTRICAL: Aluminum body, plastic insert, 20 copper male contacts; $1300 \mathrm{v} ; 1.390$ in. by 1.687 in. by 3.375 in. o/a dim.; Mfr 71468 part no. DPDF20-34PILPOSN P/O CX-7300/URC-9
CONNECTOR, PLUG, ELECTRICAL: Aluminum body, plastic insert, 20 female contacts; 1300 v ; 1.249 in. by 1.687 in. by 3.375 in . o/a dim.; Mfr 71468 part no. DPDF20-33ICPOSN
CONNECTOR, PLUG, ELECTRICAL: MIL type MS3108R16-10S

Table
Table
1-5

Table
1-5
Table
1-5

Table
1-5

1-5

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { No. } \end{aligned}$
AN/URC-9 () CABLE ASSEMBLIES AND INSTALLATION KIT (Continued)		
P1906	CONNECTOR, PLUG, ELECTRICAL: Female contacts, 1 connector mating end; synthetic rubber dielectric; straight shape; w/enclosing she11, $1-11 / 32 \mathrm{in}$.lg by $1-17 / 32 \mathrm{in} .1 \mathrm{~g}$ by $1-17 / 32 \mathrm{in} . \mathrm{dia} ; \mathrm{Mfr}$ 74545 part no. 7567	
P1907	CONNECTOR, PLUG, ELECTRICAL: 10 female contacts; 1-9/32 in. by 3-7/32 in. o/a; Mfr 09299 part no. U77U	
P1908	CONNECTOR, PLUG, ELECTRICAL: Same as P1907	
P2201	CONNECTOR, PLUG, ELECTRICAL: 37 female contacts, 22 amps; straight shape; Mfr 71468 part no. CA2631-2874	
P2202	CONNECTOR, PLUG, ELECTRICAL: 37 female contacts, 22 amps; straight shape; Mfr 71468 part no. CA301E28-21 PME	
RADIO SET CONTROL C-3866/SRC		
Unit 2 (101299)	CONTROL, RADIO SET-C-3866/SRC; Mfr 03365 part no. C-6438	
A101	INSTALLATION KIT, ELECTRONIC EQUIPMENT: MK-622/UR; incl 2 mtg angles and 8 machine screws in draw string bag; Mfr 13499 part no. 522-3134-00	5-116
A102	CONTROL SUB ASSEMBLY-CHASSIS: Mfr 13499 part no. 548-9092-005	5-116
A103	CHASSIS, ELECTRICAL EQUIPMENT: aluminum, chromate dip finish; 6.859 in. by $14-1 / 4$ in. by 16.624 in.; Mfr 13499 part no. 548-9090-005	5-121
A104	COVER, CONTROL: Aluminum; 1.031 in. by 8.468 in. by 17.260 in.; Mfr 13499 part no. 548-9081-004	5-121
A105	DOOR, ACCESS: $1 / 4 \mathrm{in}$. by 4.109 in. by $7.124^{\circ} \mathrm{in}$. approx; incl fuseholder, plate \& hardware; Mfr 13499 part no. 548-9075-003	5-116
A106	CABINET ASSEMBLY, ELECTRICAL EQUIPMENT: Mfr 13499 part no. 548-9093-005	5-116
A107	CABINET, ELECTRICAL EQUIPMENT: Aluminum; 8.468 in. by 16.718 in. by 17.250 in.; Mfr 13499 part no. 548-9088-005	5-116
A108	BRACKET, FILTER: aluminum; 8.468 in. by by $2-1 / 2$ in. by $13-7 / 16$ in.; Mfr 13499 part no. 548-9069-003	5-116
FL101	CAPACITOR, FIXED, PAPER DIELECTRIC: MIL type CX24BKF103	5-122
FL102	CAPACITOR, FIXED, PAPER DIELECTRIC: Same as FL101	5-122
FL103	CAPACITOR, FIXED: Same as FL101	5-122
FL104	CAPACITOR, FIXED: Same as FL101	5-122
FL105	CAPACITOR, FIXED: Same as FL101	5-122
FL106	CAPACITOR, FIXED: Same as FL101	5-122
FL107	CAPACITOR, FIXED: Same as FL101	5-122
FL108	CAPACITOR, FIXED: Same as FL101	5-122
FL109	CAPACITOR, FIXED: Same as FL101	5-122
FL110	CAPACITOR, FIXED: Same as FL101	5-122
FL111	CAPACITOR, FIXED: Same as FL101	5-122

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RADIO SET CONTROL C-3866/SRC (Continued)		
FL112	CAPACITOR, FIXED: Same as FL101	5-122
FL113	CAPACITOR, FIXED: Same as FL101	5-122
FL114	CAPACITOR, FIXED: Same as FL101	5-122
FL115	CAPACITOR, FIXED: Same as FL101	5-122
FL116	CAPACITOR, FIXED: Same as FL101	5-122
FL117	CAPACITOR, FIXED: Same as FL101	5-122
FL118	CAPACITOR, FIXED: Same as FL101	5-122
FL119	CAPACITOR, FIXED: Same as FL101	5-122
FL120	CAPACITOR, FIXED: Same as FL101	5-122
FL121	CAPACITOR, FIXED: Same as FL101	5-122
FL122	CAPACITOR, FIXED: Same as FL101	5-122
FL123	CAPACITOR, FIXED: Same as FL101	5-122
FL124	CAPACITOR, FIXED: Same as FL101	5-122
FL125	CAPACITOR, FIXED: Same as FL101	5-122
FL126	CAPACITOR, FIXED: Same as FL101	5-122
FL127	CAPACITOR, FIXED: Same as FL101	5-122
FL128	CAPACITOR, FIXED: Same as FL101	5-122
FL129	CAPACITOR, FIXED: Same as FL101	5-122
FL130	CAPACITOR, FIXED: Same as FL101	5-122
FL131	CAPACITOR, FIXED: Same as FL101	5-122
FL132	CAPACITOR, FIXED: Same as FL101	5-122
FL133	CAPACITOR, FIXED: Same as FL101	5-122
FL134	CAPACITOR, FIXED: Same as FL101	5-122
J101	CONNECTOR, RECEPTACLE, ELECTRICAL: MIL-C-5015 type MS3102R24-7SX	5-122
J102	CONNECTOR, RECEPTACLE, ELECTRICAL: MIL-C-5015 type MS3102R24-20S	5-122
J103	CONNECTOR, RECEPTACLE, ELECTRICAL: MIL-C-5015 type MS 3102R24-27S	5-122
J104	CONNECTOR, RECEPTACLE, ELECTRICAL: MIL-C-5015 type MS3102R24-7SY	5-122
J105	CONNECTOR, RECEPTACLE, ELECTRICAL: MIL-C-5015 type MS3102R16-10SX	5-122
J106	CONNECTOR, RECEPTACLE, ELECTRICAL: MIL-C-5015 type MS3102R16-10S	5-122
J107	CONNECTOR, RECEPTACLE, ELECTRICAL: Same as J106	5-122
J108	CONNECTOR, RECEPTACLE, ELECTRICAL: MIL-C-5015 type MS3102R20-24P	5-122
P101	NOT USED	
P102*	CONNECTOR, PLUG, ELECTRICAL: MIL-C-5015 type MS3108R24-20P	7-1
P103*	CONNECTOR, RECEPTACLE, ELECTRICAL: MIL-C-5015 type MS3108R24-27P	7-1
P104*	```CONNECTOR, PLUG, ELECTRICAL: MIL-C-5015 type MS3108R-24-7PY *Part of connector kit supplied with radio set control C-3866/SRC (P102 mates with J102 etc.)```	7-1

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{array}{\|l} \hline \text { FIG } \\ \text { NO } \\ \hline \end{array}$
RADIO SET CONTROL C-3866/SRC (Continued)		
P105*	CONNECTOR, PLUG, ELECTRICAL: MIL-C-5015 type MS3108R16-10PX	7-1
P106	NOT USED	
P107	NOT USED	
P108*	CONNECTOR, PLUG, ELECTRICAL: MIL-C-5015 type MS 3108R20-24S	7-1
C201	CAPACITOR, FIXED, PAPER DIELECTRIC: 1 uf $\pm 20 \%, 400 \mathrm{v} \mathrm{dc}$; part no. 186P10504T15; Mfr 56289	5-118
C202	CAPACITOR, FIXED, ELECTROLYTIC: MIL type CL53CF132UP3	5-118
C203	CAPACITOR, FIXED, ELECTROLYTIC: Same as C202	5-118
C204	CAPACITOR, FIXED, ELECTROLYTIC: MIL type CE-13-C-151-G	5-119
CR201	SEMICONDUCTOR DEVICE, DIODE: MIL type 1 N 538	5-118
CR202	SEMICONDUCTOR DEVICE, DIODE: Same as CR201	5-118
CR203	SEMICONDUCTOR DEVICE, DIODE: Same as CR201	5-118
CR204	SEMICONDUCTOR DEVICE, DIODE: Same as CR201	5-118
CR205	SEMICONDUCTOR DEVICE, DIODE: MIL-S-19500/134 (SIGC). type 1N249B	5-118
CR206	SEMICONDUCTOR DEVICE, DIODE: Same as CR205	5-118
CR207	SEMICONDUCTOR DEVICE, DIODE: Same as CR205	5-118
CR208	SEMICONDUCTOR DEVICE, DIODE: Same as CR205	5-118
CR209	SEMICONDUCTOR DEVICE, DIODE: Same as CR201	5-118
CR210	SEMIDONDUCTOR DEVICE, DIODE: Same as CR201	5-118
CR211	SEMIDONDUCTOR DEVICE, DIODE: Same as CR201	5-118
CR212	SEMICONDUCTOR DEVICE, DIODE: Same as CR201	5-118
CR213	SEMICONDUCTOR DEVICE, DIODE: MIL type 1N547	5-119
DS201	LAMP, INCANDESCENT: MIL type MS25237-328	5-118
DS202	LAMP, INCANDESCENT: Same as DS201	5-118
F201	FUSE, CARTRIDGE: MIL type FO3A250V5AS	5-119
F202	FUSE, CARTRIDGE: MIL type FO2A250V2AS	5-119
F203	FUSE, CARTRIDGE: MIL type FO3A250V1AS	5-119
F204	FUSE, CARTRIDGE: MIL type FO3A250V10AS for AN/SRC-21; and $25 \mathrm{~A}, 125 \mathrm{~V}$ ferrule type $1-1 / 4 \mathrm{in} .1 \mathrm{~g}$ by $1 / 4 \mathrm{in}$. dia., Bussmann Mfg. Co., part no. MBO25 for AN/SRC-20	5-119
F205	FUSE, CARTRIDGE: MIL type FO3A250V3AS	5-119
F206	FUSE, CARTRIDGE: Same as F204	5-119
F207	FUSE, CARTRIDGE: Same as F205	5-119
F208	FUSE, CARTRIDGE: MIL type FO3A250V15AS	5-119
FL201	FILTER, RADIO INTERFERENCE: $230 \mathrm{v} \mathrm{ac} 60 \mathrm{~Hz},, 2 \mathrm{amps} ; 0.5$ ohms dc resistive; Mfr 56289 part no. JN14-806A	5-119
FL202	FILTER, RADIO INTERFERENCE: Same as FL201	5-119
H201	WASHER, FLAT: cres, passivate finish; 0.120 in. id, 0.375 in. od, 0.018 in. thk; Mfr 13499 part no. 504-0730-003	5-119
H2O2	GASKET: synthetic rubber; oval shape; 1-29/32 in. id, 2-5/32 in. od; Mfr 13499 part no. 548-9062-002 *Part of connector kit supplied with radio set control C-3866/SRC (P102 mates with J102 etc.)	5-119

Table 6-2. Maintenance Parts List (Continued)

REF	NAME AND DESCRIPTION	FIG
DESIG	NO.	

RADIO SET CONTROL C-3866/SRC (Continued)
H203
THUMBSCREW: cres; 8-32NC-2A thd, 1 in. 1 g ; Mfr 13499
5-118
H204 part no. 548-9061-002

H205
GASKET: synthetic rubber; 2-9/32 in. id, 2-61/64 in. od;
5-118
Mfr 13499 part no. 548-9056-002

H206
GASKET: synthetic rubber; 5.859 in. aperture, 6.137 in.
5-116 dia by 0.139 in. thk o/a; Mfr 86579 part no. 909-35-711-70
SCREW: cres; 6-32 NC-2B thd, 0.250 in. dia, 0.5625 in. $1 g$;
5-116
Mfr 13499 part no. 593-8029-002

| J201 CONNECTOR, RECEPTACLE, ELECTRICAL: MIL-C-5015 type | 5-118 |
| :--- | :--- | :--- | :--- | MS3102A36-7P

K201
RELAY, ARMATURE: 1B, $1 \mathrm{C}, 3 \mathrm{amps}$ at 28 v dc or 115 v ac, nom inductive; 300 ma nom coil current; 40 ohms $\pm 10 \%$ at $+25^{\circ} \mathrm{C}$ coil resistance; $1 / 2$ on and $1 / 2$ off duty cycle; Mfr 71482 part no. A106786
K202
RELAY, ARMATURE: $4 \mathrm{C}, 3 \mathrm{amps}$ at 28 v dc or 115 v ac, non inductive; 100 ma nom coil current; 125 ohms $+10 \%$ at $+25^{\circ} \mathrm{C}$ coil resistance; continuous duty cycle; Mfr $7 \overline{1} 482$ part no. B106786
RELAY, ARMATURE: $1 \mathrm{~A}, 2 \mathrm{~B}, 3 \mathrm{amps}$ at 28 v dc or 115 v ac, non inductive; 370 ma dc max operating current; 75 ohms coil resistance; continuous duty cycle; Mfr 71482 part no. C106786
K204
RELAY, ARMATURE: 1A, 1C contact arrangement, 3 amps at 28 v dc or 115 v ac; 240 ma dc, 50 ohms, one coil, $96 \mathrm{ma}, 125$ ohms other coil; Mfr 71482 part no. D106786
K205
RELAY, ARMATURE: 2A contact arrangement; 3 amps at 28 v dc or 115 v ac; 1 winding, $70 \mathrm{ma}, 175$ ohms; Mfr 71482 part no. E106786
K206
SWITCH, TELEPHONE, ROTARY: 26 point, 13 leve1, spring driven
$24 \mathrm{v}, 20$ ohms, coil ratings; 3 amps carrying capacity, 0.1 amps interrupting capacity at 115 v ac non inductive or 0.1 amp at 30 v dc resistive, contact ratings; Mfr 71482 part no. RP12360G2
K207
RELAY, ARMATURE: 2 C contact arrangement; 2 amps at 28 v dc, or $115 \mathrm{v} \mathrm{ac} ; 1$ winding, 15 ma dc, 1000 ohms dc res; Mfr 78377 part no. 92397
K208
RELAY, ARMATURE: 3 pole st; 25 amps at $115 / 200 \mathrm{v}$ ac, 400 Hz , 29 v dc , resistive; 1 winding, 28 v dc, 100 ohms resistance, coil rating; Mfr 35344 part no. 9071
K209
RELAY, ARMATURE: 2 C contact arrangement; 3 amps at 28 v dc or 2 amps at 115 v ac; 1 winding, 26.5 v dc, 600 ohms; Mfr 01526 part no. 3SAF1242
L201
REACTOR: fixed inductance type; 0.08 henries, measured at $10 \mathrm{v} \mathrm{ac}, 60 \mathrm{~Hz} ; 1 \mathrm{amp}, 1.0$ ohms dc res; metal case, hermetically sealed; Mfr 88063 part no. 96-0362-00
REACTOR: Same as L201

5-118

5-118

5-119

5-118

5-118

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RADIO	ONTROL $\mathrm{C}-3866 / \mathrm{SRC}$ (Continued)	
0201	CAP, PROTECTIVE, DUST AND MOISTURE SEAL: aluminum, cadmium plated w/supplementary chromat treatment, olive drab color; w/internal rubber gasket; 1-1/2-18 thd; 1-7/16 in. dia by $7 / 16$ in. thk; Mfr 02660 part no. 9760-24	5-120
0202	CAP, PROTECTIVE, DUST AND MOISTURE SEAL: Same as 0201	5-120
0203	CAP, PROTECTIVE, DUST AND MOISTURE SEAL: Same as 0201	5-120
0204	CAP, PROTECTIVE, DUST AND MOISTURE SEAL: Same as 0201	5-120
0205	CAP, PROTECTIVE, DUST AND MOISTURE SEAL: Aluminum, cadmium plated w/supplementary chromate treatment, olive drab color; w/internal rubber gasket; 1-1/4 -18 thd; 1-7/16 in. dia by $7 / 16$ in. thk; Mfr 02660 part no. 9760-20	5-120
0206	CAP, PROTECTIVE, DUST AND MOISTURE SEAL: Aluminum, cadmium plated w/supplementary chromate treatment, olive drab color; w/internal rubber gasket; $1-20$ thd; $1-1 / 8$ in. dia by 7/16 in. thk; Mfr 02660 part no. 9760-16	5-120
0207	CAP, PROTECTIVE, DUST AND MOISTURE SEAL: Same as 0206	5-120
0208	CAP, PROTECTIVE, DUST AND MOISTURE SEAL: Same as 0206	5-120
P201	CONNECTOR, PLUG, ELECTRICAL: 47 female contacts; 7 \#12 contacts 41 amps; 40 \#16 contacts 22 amps; Mfr 02660 part no. 97-3106A36-7S212	5-117
R201	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC32GF101K	5-119
R202	RESISTOR, FIXED, COMPOSITION: 22 ohms $+5 \%, 1 / 2$ watt, 3.3 maximum dcwv; Mfr 75042 part no. GBT1-222M5 (P/O K206)	5-127
R203	P/O K206, Same as R202	5-127
R204	P/O K206, Same as R202	5-127
R205	P/O K206, Same as R202	5-127
R206	P/O K206, Same as R202	5-127
R207	P/O K206, Same as R202	5-127
R208	P/O K206, Same as R202	5-127
R209	P/O K206, Same as R202	5-127
R210	P/0 K206, Same as R202	5-127
R211	P/O K206, Same as R202	5-127
R212	P/O K206, Same as R202	5-127
R213	P/O K206, Same as R202	5-127
R214	P/O K206, Same as R202	5-127
R215	P/0 K206, Same as R202	5-127
R216	P/O K206, Same as R202	5-127
R217	P/0 K206, Same as R202	5-127
R218	P/O K206, Same as R202	5-127
R219	P/O K206, Same as R202	5-127
R220	P/O K206, Same as R202	5-127
R221	P/O K206, Same as R202	5-127
R222	P/O K206, Same as R202	5-127
R223	P/0 K206, Same as R202	5-127
R224	P/O K206, Same as R202	5-127
R225	P/0 K206, Same as R202	5-127

Table 6-2. Maintenance Parts List (Continued)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RADIO	TROL C-3866/SRC (Continued)	
R226	RESISTOR, FIXED, WIREWOUND: MIL type RW29V800	5-121
R227	RESISTOR, FIXED, WIREWOUND: 250 ohms $\pm 3 \%, 50 \mathrm{w}$; Mfr 91637 part no. RH50-250R0G	5-119
R228	```RESISTOR, FIXED, WIREWOUND: 1600 ohms }\pm3%,50\mathrm{ w; Mfr }9163 part no. RH50-16000G```	5-119
R229	RESISTOR, VARIABLE, COMPOSITION: MIL-R-94 type RV6LAYSA502B	5-124
R230	RESISTOR, VARIABLE: Same as R229	5-124
R231	RESISTOR, VARIABLE: Same as R229	5-124
R232	RESISTOR, VARIABLE: Same as R229	5-124
R233	RESISTOR, VARIABLE: Same as R229	5-124
R234	RESISTOR, VARIABLE: Same as R229	5-124
R235	RESISTOR, VARIABLE: Same as R229	5-124
R236	RESISTOR, VARIABLE: Same as R229	5-124
R237	RESISTOR, VARIABLE: Same as R229	5-124
R238	RESISTOR, VARIABLE: Same as R229	5-124
R239	RESISTOR, VARIABLE: Same as R229	5-124
R240	RESISTOR, VARIABLE: Same as R229	5-124
R241	RESISTOR, VARIABLE: Same as R229	5-124
R242	RESISTOR, VARIABLE: Same as R229	5-124
R243	RESISTOR, VARIABLE: Same as R229	5-124
R244	RESISTOR, VARIABLE: Same as R229	5-124
R245	RESISTOR, VARIABLE: Same as R229	5-124
R246	RESISTOR, VARIABLE: Same as R229	5-124
R247	RESISTOR, VARIABLE: Same as R229	5-124
R248	RESISTOR, FIXED, WIREWOUND: MIL-R-26 type RW29V101	5-119
R249	P/O K206	5-125
R250	RESISTOR, FIXED, COMPOSITION: Type RC42GF150J	5-119
R251	RESISTOR, FIXED, WIREWOUND: 20 ohms, $\pm 1 \% 30$ watts, MIL-R-39009/2A Mfr 91637 Part No. ARH-50-13	5-119
RV201	```RESISTOR, VOLTAGE SENSITIVE: Silicon-carbide body; 24 v dc; black insulation; Mfr 04773 part no. RY56```	5-119
RV202	P/O K206	5-125
RV203	RESISTOR, VOLTAGE SENSITIVE: Same as RV201	5-119
RV204	RESISTOR, VOLTAGE SENSITIVE: Same as RV201	5-119
RV205.	RESISTOR, VOLTAGE SENSITIVE: Same as RV201	5-119
RV206	RESISTOR, VOLTAGE SENSITIVE: Same as RV201	5-119
RV207	RESISTOR, VOLTAGE SENSITIVE: Same as RV201	5-119
S201	SWITCH, ROTARY: 3 section, 12 poles, 2 position; 12 moving and 36 fixed contacts; Mfr 76854 part no. 225250 F 3	5-121
S 202	```DIAL, TELEPHONE: }11\mathrm{ hole; "C" type norma1ly open shunt springs; w/shield cover under dial plate; black paint finish housing; Mfr 04773 part no. Z26277-1```	5-121
S203	NOT USED	
S204	SWITCH, PUSH: normally open and closed; black push button; $440 / 550 \mathrm{v}$ ac at $1 \mathrm{amp}, 110 \mathrm{v}$ ac at $3 \mathrm{amps}, 230 \mathrm{v}$ dc at 0.5 amp, 115 v dc at 1 amp ; Mfr 04009 part no. B-2BLACK	5-118

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
RADIO S	NTROL C-3866/SRC (Continued)	
S 205	```SWITCH, PUSH: Normally open and closed; red pushbutton; 440/550 v ac at 1 amp, 110 v ac at 3 amp, 230 v dc at 0.5 amp, 115 v ac at l amp; Mfr 04009 part no. B-2 RED```	5-118
S206	SWITCH, TOGGLE: MIL type MS35059-22	5-118
T201	TRANSFORMER, POWER STEP-DOWN: 115 v ac input; 27.5 v dc at $275 \mathrm{ma}, 6.0 \mathrm{v}$ ac at 200 ma outputs; metal case, hermetically sealed; Mfr 95105 part no. 94-0708-672	5-118
T202	TRANSFORMER, POWER STEP-DOWN: 115 v ac, 230 v inputs 57 to 63 $\mathrm{Hz}, 27.5 \mathrm{v} \mathrm{dc}, 13.5 \mathrm{v} \mathrm{dc}, 6.3 \mathrm{v}$ at 0.5 amps outputs; hermetically sealed; Mfr 13499 part no. 672-0117-00	5-118
T203	TRANSFORMER, AUDIO FREQUENCY: Primary impedance 820 ohms and 32 ohms; 15 ma dc; secondary impedance 600 ohms; Mfr 13499 part no. 677-0134-00	5-118
T204	TRANSFORMER, AUDIO FREQUENCY: 600 ohms input, 600 ohms output, 300 to $500 \mathrm{~Hz} \pm 0.5 \mathrm{db}$; 4 w power level; Mfr 70674 part no. A12241	5-118
TB201	TERMINAL BOARD: P1astic; 0.093 in. by $1-5 / 16$ in. by 1-9/16 in. inc1 3 terminals; Mfr 13499 part no. 593-8042-002	5-119
TB202	TERMINAL BOARD: Plastic; 0.093 in. by $2-1 / 8$ in. by $2-5 / 8 \mathrm{in}$. incl 11 terminals, 1 c1ip; Mfr 13499 part no. 593-8040-002	5-119
TB203	TERMINAL BOARD: Plastic; 0.062 in. by $2-1 / 4$ in.; incl 4 terminals and 4 clips; Mfr 13499 part no. 593-8055-002	5-118
TB204	TERMINAL BOARD: Plastic; 0.062 in. by $1-1 / 2$ in. by $2-1 / 4 \mathrm{in}$.; incl 4 terminals; Mfr 13499 part no. 593-8056-002	5-118
XDS201	LIGHT, INDICATOR: Panel mtd; w/red transparent plastic lens; Mfr. 99707 part no. Ll02R-GR	5-118
XDS202	LIGHT, INDICATOR: Same as XDS201	5-118
XF201	FUSEHOLDER: Extractor post type; accommodates four 1-1/4 by $1 / 4$ fuses; phenolid body; Mfr 75915 part no. 340129	5-119
XF202	FUSEHOLDER ASSEMBLY: Same as XF201	5-119
XK201	NOT USED	
XK2 02	NOT USED	
XK203	NOT USED	
XK204	NOT USED	
XK205	NOT USED	
XK206	NOT USED	
XK207	```SOCKET, RELAY: 9 silver plated copper contacts; phenolic insulation; 0.738 in. dia body accommodation hole required; Mfr.78277 part no. C-132```	5-119
AM-1565/URC, RF AMPLIFIER		
UNIT 3	AMPLIFIER, RADIO FREQUENCY: AM-1565/URC; 225 to 399.9 MHz freq range; $100 \mathrm{w}, 50$ ohm output; $16 \mathrm{w}, 50$ ohms input; 115 v ac, 50 to 60 Hz operating power; 16 in . by 19-5/8 in. by 26-1/4 in.; Mfr 03565 part no. C-6437	1-2

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, CHASSIS		
UNIT 3AI H1	PIN, REAR, HOLD DOWN: cres, passivate finish; 11/16 in. dia, 1-3/4 in. 1g; mfr 13499 part no. 548-8302-002	5-89
H2	NOT USED	
H3	NOT USED	
H4	SPACER: Aluminum, chromate dip finish; 0.250 in. hex; 1.937 in. 1g; mfr 13499 part no. 548-8305-002	5-89
H5	NOT USED	
H6	NOT USED	
H7	NOT USED	
H8	NOT USED	
H9	NOT USED	
H10	POST, SHIELD, CONNECTOR: Brass bright alloy; 0.1875 in. hex., $0.500 \mathrm{in} .1 \mathrm{~g} ; \mathrm{mfr} 13499$ part no. 548-8947-002	5-87
H11	POST, ELECTRICAL MECHANICAL EQUIPMENT: Aluminum, chromate dip finish; $1 / 4$ in. hex; 6-32 thd, 1.250 in. $1 g ; \operatorname{mfr} 13499$ part no. 540-9184-003	5-89
H12	POST, ELECTRICAL MECHANICAL EQUIPMENT: A1uminum, chromate dip finish; 0.250 in. hex by 1.500 in. $1 g$; tapped 6-32 thd ea end, 0.375 in . deep; chamfered ends; mfr 13499 part no. 540-9229-003	5-89
H13	POST, ELECTRICAL MECHANICAL EQUIPMENT: Aluminum; chromate dip, \#6-32 thd ; 1.000 in. 1g; mfr 13499 part no. 540-9221-003	5-89
H14	```POST, ELECTRICAL MECHANICAL EQUIPMENT: Aluminum; chromate dip finish; open end type; headless; 4-40NC-2B thd, 0.187 in. w across flats; 1.000 in. 1g o/a; mfr 13499 part no. 540-9053-003```	5-89
H15	NOT USED	
H16	NOT USED	
H17	WASHER, NONMETALLIC: Acetate; 17/64 in. id, 5/8 in. od, 0.015 in. thk; mfr 13499 part no. 303-1034-00	5-89
H18	NOT USED	
H19	CLAMP, LOOP: MIL type MS 25281-F6	5-89
H20	INSULATOR, STANDOFF: MIL type NS5W0206	5-89
H21	CLIP, ELECTRICAL: Silver plated copper; accommodates 13/32 in. dia fuse; mfr 71400 part no. 4464	
H22	POST, ELECTRICAL MECHANICAL EQUIPMENT: Aluminum alloy, chromate dip finish; $4-40$ thd, 0.312 in. deep both ends; 0.343 in. w across flats by 1.769 in. 1 g o/a; Mfr 13499 part no. 015-0558-00	5-89
H23	POST, ELECTRICAL, MECHANICAL EQUIPMENT: Aluminum; 4-40 internal thd ea end; 0.312 in. w across flats by 1.219 in . 1 g o/a dim; Mfr 13499 part no. 548-8303-002	5-89
H30	NUT, SELF-LOCKING, HEXAGON: Aluminum, chromate finish; 4-40 UNC $-3 B$ thd; $0.190 \mathrm{in}$.w across flats, $0.110 \mathrm{in}. \mathrm{ho/a;} \mathrm{Mfr}$ 72962 part no. $68-1660-40$	5-89

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { ivo. } \end{aligned}$
AM-1565/URC RF, AMPLIFIER, CHASSIS (Continued)		
H31	NUT, SELF-LOCKING, HEXAGON: MIL type MS20365-440A	5-89
H32	CONNECTOR, MALE: $3 / 16$ in. by $11 / 16$ in. 1 g ; stainless steel; 4-40 thread one end and 6-32 thread other end; mounts in J6 and mates with H407; BuShips Dwg. STD 404SK1659334/8	5-89
H33	CONNECTOR, FEMALE: $3 / 16$ in. by 51/64 in. 1g; stainless steel; 4-40 thread one end and 6-32 threaded receptacle other end; mounts in J6 and mates with H408; BuShips Dwg STD 404/SK1659334/9	5-89
J2	CONNECTOR, RECEPTACLE, ELECTRICAL: 34 female contacts, 7.5 amps; arc resistant plastic dielectric; Mfr 81312 part no. MRE34SJ6TYPE11	5-14
J3	CONNECTOR, RECEPTACLE, ELECTRICAL: ITT Cannon Mfr Part no. TNC-PL-M-55, High Voltage (5000 vdc) P/O W210	5-87
J4	CONNECTOR, PLUG, ELECTRICAL: Modified UG-909B; bulkhead mounted; brass teflon insulation; one beryllium copper coax contact; Mfr 94375 part no. $100 \mathrm{~B} 3000 \mathrm{C} 75 \mathrm{P} / 0 \mathrm{~W}-1$	5-87
J5	CONNECTOR, RECEPTACLE, ELECTRICAL: MIL type MS 24039	5-89
J6	CONNECTOR, RECEPTACLE, ELECTRICAL: 26 female contacts with two polarizing guide pins; 5 amps; arc resistant plastic die1ectric, Mfr 80586 part no. GM26F79	5-89
J7	CONNECTOR, RECEPTACLE, ELECTRICAL: 75 female contacts and 2 male and 2 female guide pins; 7.5 amps; arc resistant plastic dielectric; Mfr 81312 part no. MRE75SNSSTYPE11	5-89
J8	CONNECTOR, RECEPTACLE, ELECTRICAL: 26 male contacts with two polarizing guide pins; 5 amps; arc resistant plastic dielectric; Mfr 80586 part no. GM26M79	5-87
J9	CONNECTOR, RECEPTACLE, ELECTRICAL: Same as J8	5-87.
01	SPRING, RETAINING, PULL RING: Bery11ium copper, bright alloy; 0.018 in. thk, 0.781 in. $1 g ;$ Mfr 13499 part no. 548-8960-002	5-89
05	RING, RETAINING: Brass; 0.155 in. by 0.625 in. by 0.725 in . o/a; 0.510 in . dia to accommodate connector, Mfr 02660 part no. 126-1069	5-89
010	GASKET, MOUNTING BRACKET: Chemically blown cellular; rubber; 1-3/32 in. dia, 1-13/32 in. $1 \mathrm{~g}, 1 / 16$ in. thk Mfr 13499 part no. 548-8348-002	5-87
011	RETAINER, CAPACITOR: MIL-C-25 type CP072FE6	5-87
012	RETAINER, CAPACITOR: Same as 011	5-87
013	RETAINER, CAPACITOR: MIL type CP072SB5	5-87
014	RETAINER, CAPACITOR: Same as 013	5-87
015	RETAINER, CAPACITOR: Same as 013	5-87.
016	RETAINER, CAPACITOR: Same as 013	5-87
P1	CONNECTOR, PLUG, ELECTRICAL: MS35168-88E; type UG-88E/U P/O W-205	5-87
W1	CABLE ASSEMBLY, RADIO FREQUENCY: Terminated ea end w/connectors; 7.937 in. o/a 1 g ; mfr 13499 part no. 548-8328-002 C/0 J-4 \& P-403	5-87

Table 6-2. Maintenance Parts List (Continued)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, CHASSIS (Continued)		
W2	WIRING HARNESS, BRANCHED-CHASSIS, AM1565: Mfr 13499 part no. 548-8300-00	5-87
C301	CAPACITOR, FIXED, PAPER DIELECTRIC: 2 uf $\pm 20 \%, 3000 \mathrm{v} \mathrm{dc}$; mfr 56289 part no. P52408	5-87
C302	CAPACITOR, FIXED, PAPER DIELECTRIC: 10 uf $\pm 10 \%, 600 \mathrm{v}$ dc; mfr 56289 part no. P50816	5-87
C303	CAPACITOR, FIXED, PAPER DIELECTRIC: Same as C302	5-87
C304	CAPACITOR, FIXED, ELECTROLYTIC: MIL-C-3965 type CL21BLIO1TPG	5-87
C 305	CAPACITOR, FIXED, ELECTROLYTIC: MIL type CL64BN220MPE	5-89
C306	CAPACITOR, FIXED, ELECTROLYTIC: Same as C 305	5-89
C307	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 0.001 uf $\pm 20 \%, 1000$ vdc; mfr 01939 part no. 40C286A	5-89
C308	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C309	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C310	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C311	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C312	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C313	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C314	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C315	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C316	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C317	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C318	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C319	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C320	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C321	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C322	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C323	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C324	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C325	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C326	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C 327	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C 328	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C329	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C330	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C331	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C332	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C333	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C334	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C335	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C336	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C337	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C338	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C307	5-89
C339	CAPACITOR, FIXED, CERAMIC DIELECTRIC: $2 \mathrm{uf} \pm 20 \%, 600 \mathrm{v} \mathrm{dc}$; mfr 56289 part no. 118P20506S4	5-89

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION		$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, CHASSIS (Continued)			
CR301	SEMICONDUCTOR DEVICE, DIODE:	MIL type 1N547	5-89
CR302	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR303	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR304	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR305	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR306	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR307	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR308	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR309	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR310	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR311	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR312	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR313	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR314	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR315	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR316	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR317	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR318	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR319	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR320	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR321	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR322	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR323	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR324	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR325	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR326	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR327	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR328	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR329	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR330	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR331	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR332	SEMICONDUCTOR DEVICE, DIODE:	Same as CR301	5-89
CR333	SEMICONDUCTOR DEVICE, DIODE:	MIL-S-19500/134 type 1N249B	5-89
CR334	SEMICONDUCTOR DEVICE, DIODE:	Same as CR333	5-89
CR335	SEMICONDUCTOR DEVICE, DIODE:	Same as CR333	5-89
CR336	SEMICONDUCTOR DEVICE, DIODE:	Same as CR333	5-89
CR337	NOT USED		
CR338	SEMICONDUCTOR DEVICE, DIODE:	MIL-S-19500/202 type 1N538	5-89
CR339	SEMICONDUCTOR DEVICE, DIODE:	Same as CR338	5-89
CR340	SEMICONDUCTOR DEVICE, DIODE:	Same as CR338	5-89
CR341	SEMICONDUCTOR DEVICE, DIODE:	Same as CR338	5-89
CR342	SEMICONDUCTOR DEVICE, DIODE:	Same as CR338	5-89
CR343	SEMICONDUCTOR DEVICE, DIODE:	Same as CR338	5-89
CR344	SEMICONDUCTOR DEVICE, DIODE:	Same as CR338	5-89
CR345	SEMICONDUCTOR DEVICE, DIODE:	Same as CR338	5-89

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, CHASSIS (Continued)		
CR346	SEMICONDUCTOR DEVICE, DIODE: Silicon; hermetically sealed; Mfr 04713 part no. S2578	5-89
F301	FUSE, CARTRIDGE: MIL type F28LR500A	5-89
H301	SPACER, SLEEVE: Plastic nylon; 0.250 in. dia, 0.625 in. 1 g ; Mfr 13499 part no. 548-8351-002	5-89
H302	NOT USED	
H303	```POST, ELECTRICAL-MECHANICAL: Cres; 4-40 and 6-32 thds; 0.250 in. w across flats by l in. 1g o/a dim.; Mfr 03565 part no. B-6615```	5-89
H304	POST, ELECTRICAL-MECHANICAL: Aluminum, $8-32$ thd ea end; 0.312 in. dia by 4.875 in .1 g o/a dim.; Mfr 13499 part no. 548-8308-002	5-89
H305	NOT USED	
H306	SPACER, SLEEVE: Aluminum, chromate dip; 0.250 in. od, 0.049 in. thk, 0.312 in. $1 g$; no. 6 screw size; Mfr 13499 part no. 541-6023-002	5-89
H307	STUD, CONTINUOUS THREAD: Stainless steel, passivate finish; 4-40 UNC-2A thd, $1 / 2$ in. $1 g$; Mfr 13499 part no. 312-0009-00	5-89
H308	NOT USED	
H309	NOT USED	
H310	NOT USED	
H311	NOT USED	
H312	NOT USED	
H313	NOT USED	
K301	RELAY, ARMATURE: $4 \mathrm{C}, 5 \mathrm{amps}$ at 230 vac or 10 amps at 115 vac ; 27.5 vdc nom coil voltage; 110 ohms $\pm 10 \%$, at $+25^{\circ} \mathrm{C}$ coil resistance; continuous duty cycle; Mfr 35344 part no. 9224-3951	5-89
K302	RELAY, MOTOR DRIVEN: dpdt, 5 amps at 30 vdc or $115 \mathrm{v}, 50 \mathrm{~Hz}$; 2.500 in. dia by 4.155 in. 1 g o/a dim.; Mfr 82227 part no. N11449	5-89
K303	RELAY, ARMATURE: 2C, 2 amps at 28 vdc or 115 vac , resistive load and/or low current at $300 \mathrm{vdc} ; 15 \mathrm{ma}$ dc 1000 ohms $\pm 10 \%$ at $20^{\circ} \mathrm{C}$ coil resistance; continuous duty cycle; Mfr 78277 part no. 92397	5-89
K304	RELAY, ARMATURE: Same as K303	5-89
L301	REACTOR: 15 henries inductance, 0.350 amp dc, 90 ohms dc res; Mfr 49956 part no. 292-5744G1	5-87
L302	REACTOR: 6 henries inductance, 0.200 amps dc, 113 ohms dc res, $195 \mathrm{vac}, 100$ to $130 \mathrm{~Hz} ; 2.375 \mathrm{in}$. by 2.750 in . by 4.124 in . o/a dim.; Mfr 97965 part no. 29420	5-87
L303	REACTOR: Same as L302	5-87
L304	REACTOR: 3.5 henries inductance, $0.060 \mathrm{amps} \mathrm{dc}, 200$ ohms dc res; Mfr 97965 part no. 27825	5-89
0301	LOCK, SELECTOR: Aluminum, marked S301A, S301B, S301C; 0.090 in. by 1.125 in. by 2.562 in. o/a dim.; Mfr 13499 part no. 548-8336-002	5-89

Table 6-2. Maintenance Parts List (Continued)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, CHASSIS (Continued)		
0302	INSULATOR, BUSHING: Teflon; 1.312 in. dia by 0.875 in .1 g o/a dim.; Mfr 13499 part no. 548-8307-002	5-89
R301	RESISTOR, FIXED, FILM: MIL-R-11804 type RD37P2263G	5-89
R302	RESISTOR, FIXED, FILM: MIL-R-10509 type RN70B82R5F	5-89
R303	RHEOSTAT: 1000 ohms $\pm 10 \%, 12.5$ w; Mfr 44655 part no. 44968DET1000	5-89
R304	RHEOSTAT: Same as R303	5-89
R305	RESISTOR, FIXED, WIREWOUND: MIL type RW79U4R42F	5-89
R306	RESISTOR, FIXED, WIREWOUND: MIL type RW29V801	5-89
R307	RESISTOR, FIXED, WIREWOUND: Same as R305	5-89
R308	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC42GF124K	5-89
R309	RESISTOR, FIXED, COMPOSITION: Same as R308	5-89
R310	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC42GF222K	5-89
R311	RESISTOR, FIXED, COMPOSITION: MIL-R-10509 type RN75B2261F	5-89
R312	RESISTOR, FIXED, WIREWOUND: MIL type RE70G632	5-89
R313	RESISTOR, FIXED, WIREWOUND: MIL type RE70G202	5-89
R314	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC32GF223K	5-89
S301A	SWITCH, TOGGLE: MIL-S-3950 type MS35059/23	5-89
S301B	SWITCH, TOGGLE: Same as S301A	5-89
S301C	SWITCH, TOGGLE: Same as S301A	5-89
S302	NOT USED	
S303	SWITCH, INTERLOCKING: spdt; $30 \mathrm{vdc} ; 60 \mathrm{amp}$ and $10 \mathrm{amp} ;$ Mfr 13499 part no. 548-8943-003	5-89
S303A	SWITCH, SENSITIVE: MIL type MS25253-1	5-89
S303B	SWITCH, SENSITIVE: Same as S303A	5-89
S303C	SWITCH, SENSITIVE: Same as S303A	5-89
T301	TRANSFORMER, POWER, STEP-UP: $115 \mathrm{v}, 115 \mathrm{v}$ primary; 1800v at 350 ma secondary; $50 / 60$ cps; continuous duty. cycle; Mfr 97965 part no. 29423	5-87
T302	TRANSFORMER, POWER, STEP-DOWN AND STEP-UP: 115 v at l amp, 115 v at 0.6 amp primary, 6 v at $2.6 \mathrm{amp}, 6 \mathrm{v}$ at $2.6 \mathrm{amp}, 6.3 \mathrm{v}$ center tapped at $3.2 \mathrm{amp}, 60 \mathrm{v}$ at $.05 \mathrm{amp}, 31 \mathrm{v}$ at 1.69 amp , 300 v at $130 \mathrm{ma}, 50 \mathrm{v}$ at .06 amp and 30 v at 0.02 amp secondaries, 3.500 in. by 4.125 in. by 4.125 in.; Mfr 97965 part no. 29422	5-87
TB301	AMPLIFIER SUBASSEMBLY: 0.514 in. by 2.562 in. by 3.750 in. o/a dim.; Mfr 13499 part no. 548-8389-002	5-89
TB302	TERMINAL BOARD: Plastic; inc1 4 terminals; 0.062 in. by 2 in. by 2.250 in. board dim.; Mfr 13499 part no. 548-8334-002	5-89
TB303	TERMINAL BOARD: Plastic; incl 4 terminals; 0.062 in. by 1.500 in. by 2.250 in. board dim.; Mfr 13499 part no. 548-8335-002	5-89
XK301	SOCKET, RELAY: MIL type MS25328-4	5-89
XK302	SOCKET, ELECTRON TUBE: MIL-S-12883 type TS101P01	5-89
XK303	SOCKET, RELAY: 9 contact relay socket for use with Sigma type 22 KNCC series relay of equivalent contact positions are regularly spaced. Copper contacts silver plated; Mfr 78277 part no. E132	5-89

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, CHASSIS (Continued)		
XK304	SOCKET, RELAY: Same as XK303	5-89
$\frac{\text { AM-1565/URC, }}{3 \text { A } 2}$		
$\begin{aligned} & \text { (101- } \\ & \text { 199) } \end{aligned}$	CABINET, ELECTRICAL EQUIPMENT: Mfr 13499 part no. 756-0460-001	5-90
FL101	```FILTER, RADIO INTERFERENCE: 250 vac or 400 vdc; 50 amps; 0.875 in. w across flats by 3.188 in. lg; Mfr 56289 part no. JN17-936A1```	5-90
FL102	FILTER, RADIO INTERFERENCE: Same as FL101	5-90
FL103	```FILTER, RADIO INTERFERENCE: - 500 vdc; 1/4 amp rf current, 25 amp dc and low freq ac current; 21/64 in. dia by 1.187 in. lg; Mfr 0l121 part no. FISA```	5-90
FI104	FILTER, RADIO INTERFERENCE: Same as FLl 03	5-90
FL105	FILTER, RADIO INTERFERENCE: Same as FLl 03	5-90
FL106	FILTER, RADIO INTERFERENCE: Same as FLl03	5-90
FL107	FILTER, RADIO INTERFERENCE: Same as FL103	5-90
FL108	FILTER, RADIO INTERFERENCE: Same as FL103	5-90
FL109	FILTER, RADIO INTERFERENCE: Same as FL103	5-90
FL1 10	FILTER, RADIO INTERFERENCE: Same as FLl 03	5-90
FL111	FILTER, RADIO INTERFERENCE: Same as FLl03	5-90
FL112	FILTER, RADIO INTERFERENCE: Same as FLl 03	5-90
FL1 13	FILTER, RADIO INTERFERENCE: Same as FLl03	5-90
FL1 14	FILTER, RADIO INTERFERENCE: Same as FLl 03	5-90
FL115	FILTER, RADIO INTERFERENCE: Same as FLl03	5-90
FL116	FILTER, RADIO INTERFERENCE: Same as FLl 03	5-90
FL117	FILTER, RADIO INTERFERENCE: Same as FLl 03	5-90
FL1 18	FILTER, RADIO INTERFERENCE: Same as FLl03	5-90
FL1 19	FILTER, RADIO INTERFERENCE: Same as FLl 03	5-90
FL1 20	FILTER, RADIO INTERFERENCE: Same as FLl 03	5-90
FL1 21	FILTER, RADIO INTERFERENCE: Same as FLl 03	5-90
FL1 22	FILTER, RADIO INTERFERENCE: Same as FLl 03	5-90
FL1 23	FILTER, RADIO INTERFERENCE: Same as FL103	5-90
FL124	FILTER, RADIO INTERFERENCE: Same as FL103	5-90
FL125	FILTER, RADIO INTERFERENCE: Same as FL103	5-90
FL1 26	FILTER, RADIO INTERFERENCE: Same as FLl03	5-90
H101	NOT USED	
H102	NOT USED	
H103	NOT USED	
H104	MOUNT, RESILIENT: Brass rigid member, neoprene rubber resilient member; 1.2 lbs lqad rating; Mfr 82877 part no. B2	5-90
H105	NOT USED	
H106	NOT USED	
H107	SLEEVE-ADJUSTMENT SCREW: Cres; $1 / 4-20$ thd, 0.500 in . dia by 0.437 in .1 g o/a dim.; Mfr 13499 part no. 548-8426-002	5-90

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	FIG NO .
AM-1565/URC, RF AMPLIFIER, ELECTRICAL EQUIPMENT CABINET (Continued)		
H108	STUD, FAN PLATE: Cres; 0.500 in. dia. by 0.842 in .1 g o/a dim.; Mfr 13499 part no. 548-8416-002	5-90
H109	RING, RETAINING: Brass; 0.118 in. by 0.625 in. by 0.725 in. approx o/a dim.; Mfr 02660 part no. 126-1069	5-89
H110	SPACER, CONNECTOR: Cres; 0.312 in. w across flats by 0.875 in. 1 g o/a dim.; Mfr 13499 part no. 548-8413-002	5-90
H111	NOT USED	
H112	NOT USED	
H113	NOT USED	
H114	NOT USED	
H115	NOT USED	
H116	NOT USED	
H117	SCREW, SWITCH ADJUSTING: Cres, passivate finish; 1/4-20NC-2A thd, $1-1 / 8$ in. $1 g$; Mfr 13499 part no. 548-8423-002	5-90
H118	NOT USED	
H119	SHIELD, ELECTRICAL CONNECTOR: Metallic and nonmetallic material; 0.781 in. dia, 1.281 in. lg; friction mounted; Mfr 02660 part no. 126-834	5-90
H1 20	SPACER, SLEEVE: Aluminum, chromate dip; 0.125 in. thk, 0.312 in. dia.; no. 8 screw size; Mfr 13499 part no. 541-6087-002	5-90
H121	TERMINAL, LUG: Brass, hot tin dipped; 0.172 in. by 0.187 in . thk, 0.531 in. 1 g o/a; Mfr 71785 part no. 14690	5-90
H122	EYELET, METALLIC: Brass; 0.105 in. dia by 0.093 in. 1 g ; flanged; Mfr 07707 part no. SE23PLAIN	5-90
H123	BUTTON, CABLE: Plastic; 4-40NC-2B internal thd; 0.250 in. hex by 0.187 in .1 g ; Mfr 13499 part no. 541-5177-002	5-90
H124	CLAMP, LOOP: MIL type MS25281-F7	5-89
H125	CLAMP, LOOP: MIL type MS25281-F5	5-90
H126	```WASHER, SEALING: Synthetic rubber inner seal bonded to outer steel ring; 0.184 in. id, 0.364 in. od, 0.041 in. thk; Mfr 86579 part no. 110-8```	5-90
H127	SCREW, MACHINE-FILTER: Stainless steel, hexagon head machine screw; 6-32NC-2 thd, 0.562 in. $1 g$; Mfr 13499 part no. 548-8435-002	5-90
H128	INSERT, SCREW THREAD: MIL type MS122123	5-90
H129	INSERT, SCREW THREAD: MIL type MS122116	5-90
H130	INSERT, SCREW THREAD: MIL type MS122118	5-90
H131	INSERT, SCREW THREAD: MIL type MS122119	5-90
H1 32	INSERT, SCREW THREAD: MIL type MS122121	5-90
H133	INSERT, SCREW THREAD: MIL type MS124695	5-90
H134	NUT, BLIND, RIVET: Flat head, open end, 0.357 in. dia by 0.460 in. 1g; Mfr 25472 part no. $8-75$	5-90
H135	CLAMP, LOOP: MIL type MS25281-F3	5-89
H136	CLAMP, LOOP: Nylon; accommodates 1.05 in. dia component; 0.070 in. thk material; Mfr 09922 part no. HP18N	5-89
H1 37	NOT USED	

Table 6-2. Maintenance Parts List (Continued)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, ELECTRICAL EQUIPMENT CABINET (Continued)		
H138	VALVE, PNEUMATIC TANK: Nickel plated brass; 1/8-27 N.P.T. thd, $11 / 32$ in. 1 g one end, $0.305-32$ thd, $5 / 16 \mathrm{in} . \mathrm{lg}$ other end; w/valve cap; Mfr 13499 part no. 013-3131-00	6-67
H139	VALVE, SAFETY RELIEF: Body and internal parts brass; valve seat and exposed surface chromium plated; $1 / 4$ in. pipe thd; 0.63 in. w across flats by 1.20 in. 1 g ; Mfr 91816 part no. 524B2M3-5	6-67
H140	NOT USED	
H141	NUT, SELF-LOCKING, HEXAGON: MIL type MS20365D832A	6-67
H142	WASHER; Steel; 0.140 in. id, 0.500 in. od, 0.3125 in. thk; Mfr 13499 part no. 540-3017-003	6-67
H143	NOT USED	
H144	NOT USED	
H145	WASHER, LOCK: Type 302 stainless steel; split helical ring; 0.221 in. id, 0.380 in. od, 0.056 in. thk; Mfr 13499 part no. 310-0286-00	6-66
H146	NOT USED	
H147	NOT USED	
H148	NOT USED	
H149	NOT USED	
H150	WASHER: Cres; 0.018 in. thk, 0.120 in. id, 0.375 in. od; Mfr 13499 part no. 504-0730-003	6-67
H151	EYELET, METALLIC: Brass; cadmium plated; flanged; 0.188 in. dia by 0.216 in. 1 g ; Mfr 01881 part no. A382BRSCADPL	6-67
H152	NOT USED	
H153	RIVET, SOLID: MIL type MS20426AD5-6	6-67
J101	CONNECTOR, RECEPTACLE, ELECTRICAL: MIL-C-5015 type MS3102R16-10P	6-67
J102	CONNECTOR, RECEPTACLE, ELECTRICAL: MIL-C-5015 type MS3102R24-7SX	6-67
J103	CONNECTOR, RECEPTACLE, ELECTRICAL: MIL-C-5015 type MS3102R24-7S	6-67
J104	CONNECTOR, RECEPTACLE, ELECTRICAL: MIL-C-5015 type MS3102R24-20S	6-67
J105	CONNECTOR, RECEPTACLE, ELECTRICAL: MIL type MS24039	6-67
0101	ADJUSTER, SLIDE: Aluminum; 0.581 in. by 4.499 in. by 14.000 in. o/a dim.; Mfr 13499 part no. 548-8436-003	6-67
0102	ADJUSTER, SLIDE: Same as 0101	6-67
0103	SLIDE, DRAWER: Right hand; 175 1b vertical load per pair; Mfr 01561 part no. CTRD118MODRH	6-67
0104	SLIDE, DRAWER: Left hand; 175 Ib vertical load per pair; Mfr 01561 part no. CTRD118MODLH	6-67
0105	ADJUSTER, SLIDE: Aluminum; 0.662 in by 4.380 in. by 14 in. approx o/a dim.; Mfr 13499 part no. 548-8458-004	6-67
0106	ADJUSTER, SLIDE: Same as 0105	6-67

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, ELECTRICAL EQUIPMENT CABINET (Continued)		
0107	FILTER, AIR-CONDITIONING: Aluminum wire cloth media, cres frame; 0.687 in. by 7.609 in. by 10.218 in.; Mfr 13499 part no. 548-8986-004	5-89
0108	GASKET, AIR FILTER: Rubber, black synthetic; 7-3/4 in. w 10-1/4 in. $1 \mathrm{~g}, 1 / 8 \mathrm{in} . \operatorname{thk} ; \operatorname{Mfr} 13499$ part no. 548-8443-003	5-90
0109	GASKET, AIR FILTER; R.F.: Aluminum; 7-3/4 in. w 10-1/4 in. $1 \mathrm{~g}, 0.020$ in. $w ;$ Mfr 13499 part no. 548-8445-003	5-90
0110	GASKET, CASE, FAN: Rubber; 2-1/4 in. w, 3-25/64 in. 1g 1/8 in. thk; Mfr 13499 part no. 548-8419-002	5-90
0111	GASKET, ACCESS PLATE: Aluminum; 5-1/4 in. w, 7-1/2 in. 1 g , 0.020 in. thk; Mfr 13499 part no. 548-8452-003	5-90
0112	GASKET: Synthetic rubber; 2.859 in. id, 3.137 in . od, 0.139 in. thk; Mfr 86579 part no. 909-11-711-70	5-90
0113	NOT USED	
0114	SHIELDING GASKET, ELECTRONIC: Aluminum wire; $1 / 8$ in. dia, 23-1/4 in. 1g; Mfr 13499 part no. 548-8429-002	5-90
0115	GASKET, SYNTHETIC RUBBER: 13.672 in. id. 14.092 in . od, 0.210 in. thk; Mfr 13499 part no. 200-1784-00	5-90
0116	SLEEVE, SPRING: Beryllium, copper; for no. 8 screw size, 0.185 in. dia, by 0.156 in. $1 g$; Mfr 91314 part no. 340-0642-00	5-90
0117	PAD, CAPACITOR MOUNTING: Black synthetic rubber; 2 in. w, $2-1 / 2$ in. $1 \mathrm{~g}, 1 / 8$ in. thk; Mfr 13499 part no. 548-8420-002	5-90
0118	SLIDE, LEFT: Left hand; 175 1b vertical load per pair, 0.047 per slide side play; Mfr 13499 part no. 548-8438-003	5-90
0119	SLIDE, RIGHT: Right hand; 175 lb vertical load per pair; 0.047 per slide side play; Mfr 13499 part no. 548-8439-003	5-90
0120	SPRING, HELICAL, TORSION: . 018 dia music wire; cadmium plated; 5/32 in. id, $3 / 16$ in. od, 3-7/32 free coil length; full rounded hook ends; right hand wound; Mfr 13499 part no. 340-2180-00	5-90
0121	NOT USED	
0122	SHIELDING GASKET, ELECTRONIC: Woven aluminum cloth impregnated w/synthetic rubber; 0.020 in. by 1.281 in. by $1.281 \mathrm{in.;}$ accommodates 1 in. dia connector; Mfr 82805. part no. 40-016	5-90
0123	SHEILDING GASKET, ELECTRONIC: Woven aluminum cloth impregnated w/synthetic rubber; 0.020 in. by 1.750 in. by 1.750 in.; accommodates 1.500 in. dia connector; Mfr 82805 part no. 40-024	5-90
0124	SHIELDING GASKET, ELECTRONIC: Same as 0123	5-90
0125	SHIELDING GASKET, ELECTRONIC: Same as 0123	5-90
0126	PLATE, SEALING FILTER: Aluminum and rubber; 0.126 in. by 10.625 in. o/a dim.; Mfr 13499 part no. 548-8444-003	5-90
0127	SLEEVE, SPRING: Same as 0116	
0128	SLEEVE, SPRING: Same as 0116	
0129	SLEEVE, SPRING: Same as 0116	

Table 6-2. Maintenance Parts List (Continued)

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, POWER AMPLIFIER ASSEMBLY (Continued)		
C211	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C210	5-110
C212	CAPACITOR, FIXED, MICA DIELECTRIC: Cathode blocking; 500 v dc min test voltage, 0.004 in . by 1.450 in . by 1.540 in . o/a dim.; Mfr 13499 part no. 548-8535-002	5-110
C213	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C212	5-110
C214	C/O 0-299.30, 0-299.33, 0-299.34	5-110
C215	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 500 uuf $\pm 10 \%, 350 \mathrm{v} \mathrm{dc}$; Mfr 72982 part no. 331031W5P0501K	5-111
C216	CAPsiCITOR, FIXED, MICA DIELECTRIC: MIL type CB11RE51IJ	5-109
C217	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 5 uuf ± 1 uuf, 5000 v dc; Mfr 71590 part no. DA855-013	5-109
C218	CAPACITOR, FIXED, CERAMIC DIELECTRIC: Same as C217	5-109
C219	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C216	5-109
C220	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C216	5-109
C221	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C216	5-109
C222	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C216	5-109
C223	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C216	5-109
C224	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C216	5-109
C225	CAPACITOR, FIXED, MICA DIELECTRIC: 500 uuf $\pm 20 \%$, 500 v dc ; Mfr 72982 part no. 65401706 B 3501 M	5-111
C226	CAPACITOR, FIXED, MICA DIELECTRIC: Same as C216	5-109
DC201	COUPLER, DIRECTIONAL: 220 to 400 MHz ; rf power monitor	5-87

DS201

FL201
FL202

H2O1
H202
H203

H2O4
H2O5 consisting of an assembly of 2 couplers, one for forward power and one for reflected power; 0 to 200 w ; 50 ohms nom impedance; l v dc output v; 100 ua output current; Mfr 82144 part no. 576BP
DIAL, SCALE: Aluminum, nonlinearly marked from 23 to 400; \quad 5-103 3 in. dia by 0.063 in. thk o/a dim.; Mfr 13499 part no. 548-8687-002
FILTER, LOW PASS: 50 ohms nom impedance; 220 to 400 MHz pass $5-87$ band; 150 w nom; Mfr 70998 part no. 526100
FILTER, RADIO INTERFERENCE: 5500 uuf, GMV; 200 v dc; 0.25
amp rf current, 5 amp dc and loss freq current; designed to suppress radio noise over freq range from 100 to 1000 MHz ; Mfr 01121 part no. SMFBA2
SHIM: Teflon; 0.203 in. id, 0.375 in. od, 0.010 in. thk; Mfr 13499 part no. 547-2303-003
WASHER, FLAT: Teflon; 0.413 in. id, 0.625 in. od, 0.010 in. thk; Mfr 13499 part no. 547-2304-003
SCREW, SHOULDERED: Cres, passivate finish; no. 6-32 NC-2A, 5-105 0.107 in. $1 \mathrm{~g} ; 0.312$ in. w across flats by $0.374 \mathrm{in} .1 \mathrm{~g} o / \mathrm{a}$; Mfr 13499 part no. 548-8569-002
NOT USED
WASHER, FLAT: Brass, bright alloy plate; 0.120 in. id, 0.218 in. od, 0.093 in. thk; Mfr 13499 part no. 547-2306-003

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, POWER AMPLIFIER ASSEMBLY (Continued)		
H206	WASHER, BUMPER: Elastomer; 0.265 in. id, 0.625 in. od, 0.125 in. thk; Mfr 13499 part no. 548-8619-002	5-107
H207	SHAFT, SHOULDERED: Cres, passivate finish; $1 / 4 \mathrm{in}$. hex, 1-1/16 in. 1 g ; Mfr 13499 part no. 548-8401-002	5-108
H208	WASHER, FLAT: Cres; 0.128 in. id, 0.312 in. od, 0.031 in. thk; Mfr 13499 part no. 547-2307-003	5-103
H209	SCREW, ADJUSTMENT: Cres; $6-32$ thd; 0.625 in. dia by 0.500 in. 1 g o/a dim.; Mfr 13499 part no. 548-8710-002	5-104
H210	WASHER: Cres, passivate finish; 0.1875 in. id, 0.4375 in. od, 0.031 in. thk; Mfr 13499 part no. 547-2310-002	5-103
H211	WASHER, THRUST: Cres, 0.437 in. dia by 0.062 in. thk o/a dim.; Mfr 13499 part no. 548-8692-002	5-103
H212	NOT USED	
H213	RING, RETAINING: MIL type MS16632-1050	5-104
H214	RETAINER, BEARING: Aluminum; 0.265 in. by 1.250 in. o/a dim.; Mfr 13499 part no. 548-8670-002	5-104
H215	WASHER, FLAT: Cres, passivate finish; 0.191 in. id, 0.375 in. od, 0.156 in. thk; Mfr 13499 part no. 547-2319-003	5-103
H216	NOT USED	
H217	WASHER, FLAT: Cres, passivate finish; 0.196 in. id, 0.375 in. od, 0.010 in. thk; Mfr 13499 part no. 543-5656-003	5-104
H218	CLAMP, RIM CLENCHING: Cres; 0.368 in. dia by 0.126 in. 1 g o/a dim.; Mfr 13499 part no. 548-8700-002	5-104
H219	CLAMP, LOOP: Stainless steel; 0.200 in. by 0.656 in. by 0.656 in. o/a dim.; Mfr 03565 part no. B-6457	5-104
H220	WASHER, STOP: Cres; $0.812 \mathrm{in} . \mathrm{dia}$ by 0.346 in .1 g o/a dim.; Mfr 13499 part no. 548-8707-002	5-103
H221	NOT USED	
H222	NOT USED	
H223	NOT USED	
H224	WASHER, SPRING TENSION: Beryllium copper; bright alloy plating; 0.193 in. id, 0.312 in. od, 0.063 in. thk; 0.062 in. h o/a; Mfr 13499 part no. 505-8341-002	5-103
H225	WASHER, FLAT: Brass, bright alloy; 0.187 in. id, 0.625 in. od, 0.010 in. thk; Mfr 13499 part no. 506-2938-002	5-103
H226	WASHER, KEY: Steel; passivate finish; 1 external key; 0.187 in. hole dia, 0.7125 in. o/a dim. including key, 0.043 in. washer thk; Mfr 13499 part no. 506-2937-002	5-103
H227	WASHER, KEY: Steel; passivate finish; 1 external key; 0.187 in. hole dia., 0.750 in. o/a dim.; including key, 0.062 in. washer thk; Mfr 13499 part no. 506-2936-002	5-103
H228	RING, RETAINING: MS type MS16633-1018	5-103
H229	PIN, SPRING: MIL type MS16562-192	5-103
H230	SPACER, SLEEVE: Aluminum; 0.625 in . dia by 0.218 in .1 g o/a dim.; Mfr 13499 part no. 548-8694-002	5-103
H231	NOT USED	

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, POWER AMPLIFIER ASSEMBLY (Continued)		
H232	STUD, CONTINUOUS THREAD: Cres; 8-32 thd, 1 in. 1g; Mfr 13499 part no. 312-0099-00	5-103
H233	NOT USED	
H234	NOT USED	
H235	NOT USED	
H236	CLAMP, LOOP: MIL type MS25281-F5	5-102
H237	WASHER, FLAT: Cres; 0.172 in. id, 0.437 in. od, 0.036 in. thk; Mfr 13499 part no. 310-0048-00	5-103
H238	PIN, SPRING: MS type MS16562-193	5-108
H239	RING, RETAINING: MIL type MS16624-1050	5-108
H240	RING, RETAINING: Beryllium copper; external type; 0.225 in. id, 0.025 in. thk material; Mfr 89462 part no. 5100-25C	5-107
H241	SLEEVE, SPRING: Copper; 0.215 in. dia for size 10 screw; Mfr 91314 part no. 340-0643-00	5-107
H242	CLAMP, LOOP: Aluminum, anodized, 0.200 in. by 0.344 in. 0.656 in. o/a; Mfr 13499 part no. 504-7537-002	5-107
H243	CLAMP, LOOP: MIL type MS25281-F3	5-109
H244	STRAP, RETAINING: Carbon steel; accommodates 7/16 in. dia component; Mfr 13499 part no. 139-0647-00	5-108
H245	BUTTON, CABLE: Plastic; $4-40 \mathrm{NC}-2 \mathrm{~B}$ thd, 0.312 in. hex, 0.250 in. 1 g o/a; Mfr 13499 part no. 541-5178-002	5-109
H246	NOT USED	
H247	NOT USED	
H248	NOT USED	
H249	NOT USED	
H250	FASTENER, ANGLE: Brass, $4-40$ thd, 0.187 in. by 0.187 in. by 0.280 in. o/a dim.; Mfr 13499 part no. 504-7699-002	5-111
I201	COUNTER, ROTATING, FIXED, MOUNTING: 2 wheel, non-reset; 0.734 in. dia unit wheel, 50 graduations; number increases as wheels rotate CCW; Mfr 18911 part no. 2 Y8823SAC	5-102
J201	P/O K-201	5-87
J202	P/O K-201	5-87
J203	P/0 K-201	5-87
J204	CONNECTOR, PLUG, ELECTRICAL: MIL type MS35169-89C type no. UG89CU	5-102
J205	CONNECTOR, RECEPTACLE, ELECTRICAL: MIL type UG625BU	5-101
J206	P/O DC-201	5-87
J207	P/O DC-201	5-87
J208	P/O FL-201	5-87
J209	P/O FL-201	5-87
J210	P/O K-202	5-87
J211	P/O K-202	5-87
J212	P/O K-202	5-87
J213	P/O DC-201	5-87
J214	P/0 DC-201	5-87

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, POWER AMPLIFIER ASSEMBLY (Continued)		
K201	RELAY, ARMATURE: spdt, 1 inductive winding, $26.5 \mathrm{v} \mathrm{dc}, 275$ ohms, 220 to 400 MHz frequency range; 0.750 in . by 1.687 in . by 1.937 in. o/a dim.; excl terminals; Mfr 74868 part no. 300-11399	5-87
K202	RELAY, ARMATURE: Same as K201	5-87
L201	COIL, RADIO FREQUENCY: Two turns of no. 20 AWG wire, 0.215 in. dia by 0.156 approx dim. excl terminals; Mfr 13499 part no. 548-8644-002	5-110
L202	COIL, RADIO FREQUENCY: MIL type MS75008-21	5-110
L203	COIL, RADIO FREQUENCY: Same as L202	5-110
L204	COIL, RADIO FREQUENCY: 21 turns of no. 22 AWG wire; 0.172 in. dia by 0.525 in . lg ; excl terminals; Mfr 13499 part no. 548-8643-002	5-110
L205	COIL, RADIO FREQUENCY: Same as L204	5-110
L206	COIL, RADIO FREQUENCY: Same as L204	5-110
L207	COIL, RADIO FREQUENCY: Same as L204	5-106
L208	COIL, RADIO FREQUENCY: Same as L202	5-106
L209	SOLENOID, ELECTRICAL: 4 amps at $28 \mathrm{v} \mathrm{dc}, 2 \mathrm{sec}$ on, 10 sec off duty cycle; 1.500 in. dia by 3.624 in. 1 g o/a dim.; Mfr 13499 part no. 548-8637-002	5-101
MG201	MOTOR-TACHOMETER GENERATOR: 115 v ac, 60 Hz fixed phase, 288 v ac, 60 Hz control phase, motor, 2900 rpm at 60 Hz , no load; $115 \mathrm{v}, 60 \mathrm{~Hz}$, excitation phase generator, 750 mv at $1000 \mathrm{rpm}, 570 \mathrm{mv}$ at 1000 rpm voltage gradient, output phase; 1.750 in. dia by 3.680 in. $1 g$; Mfr 73138 part no. 1018-131-011	5-102
0201	ARM, SHORTING BAR: Cres, passivate finish; 0.125 in. by 1.125 in. by 1.577 in. o/a dim.; Mfr 13499 part no. 548-8525-002	5-106
0202	LEAD SCREW, AMPLIFIER: Copper, 0.233 in. dia by 11.156 in. $1 g$ o/a dim.; right hand bolt thd groove, 0.250 in. ball circle dia.; Mfr 13499 part no. 548-8720-003	5-105
0203	LEAD SCREW, AMPLIFIER: Copper; 0.233 in. dia by 9.656 in. 1 g o/a dim.; rh ball groove, 0.250 in. ball circle dia.; Mfr 13499 part no. 548-8719-003	5-105
0204	SLEEVE, BEARING: Cres; 21/32-48 external thd, 0.250 in. lg; 0.375 in. dia counterbore to 0.500 in. id; Mfr 13499 part no. 548-8526-002	5-105
0205	INSULATOR, BUSHING: Ceramic; shoulder type; 0.281 in. dia by 0.117 in. 1 g o/a dim.; 0.120 in. dia conductor passage hole; Mfr 13499 part no. 548-8541-002	5-108
0206	INSULATOR, BUSHING: Ceramic, shoulder type; 0.281 in. dia by 0.184 in. 1 g o/a dim.; 0.120 in . dia conductor passage hole; Mfr 13499 part no. 548-8542-002	5-110
0207	BAR, CLAMPING: Brass, alloy plated; 0.125 in. by 0.312 in. by 0.875 in. o/a dim.; two 0.156 in. dia holes spaced 0.531 in. c to c; Mfr 13499 part no. 548-8574-002	5-106

Table 6-2. Maintenance Parts List (Continued)

REF	NAME AND DESCRIPTION	FIG
DESIG	NO.	

AM-1565/URC, RF AMPLIFIER, POWER AMPLIFIER ASSEMBLY (Continued)

0208
INSULATOR, BUSHING: Ceramic; 0.120 in . dia conductor passage hole; rd shank type; 0.562 in. dia by 0.187 in .1 g o/a dim.; Mfr 13499 part no. 548-8522-002 BRACKET, COUPLING: Brass, silver plated finish; 90 deg angle; $1.093 \mathrm{in} . \lg \operatorname{leg} \mathrm{A}, 0.499 \mathrm{in} . \lg \operatorname{leg} \mathrm{B}, 1.000 \mathrm{in} . \mathrm{w}$ $\operatorname{leg} A, 0.875$ in. w leg B; 0.051 in. thk material of both legs two 0.156 in. dia holes spaced 0.500 in . c to c leg B ; Mfr 13499 part no. 548-8591-002
CONTACT, ELECTRICAL: Copper, gold-plated finish; 1.670 in. dia by 0.250 in .1 g o/a dim.; four 0.128 in . dia holes on a 1.187 in. dia bolt circle; Mfr 13499 part no. 548-8730-003 HUB, SLOTTED: Aluminum; $0.625 \mathrm{in} .\mathrm{dia} \mathrm{by} 0.438 \mathrm{in}$.1 g o/a dim.; one no. 2-56 thd hole, 0.125 in. deep, two slots 0.040 in. w spaced 90 deg apart, Mfr 13499 part no. 548-8623-002 SHIM, OUTPUT COUPLING: Brass; 0.010 in. by 0.875 in. by 0.921 in o/a dim.; Mfr 13499 part no. 548-8624-002 SPRING, HELICAL, EXTENSION: Music wire; cadmium plated finish; 0.200 in. max od, 0.125 in. min id; 1.312 in. free $\mathrm{lg} ; 0.022$ in. wire dia, 0.182 in. od, 41 coils; 1 lb initial tension; load 1.6 lbs at 1.625 in.; Mfr 13499 part no. 548-8625-002
INSULATOR, BUSHING: Plastic; 0.099 in. id, 0.218 in. od, 0.125 in. 1 g o/a dim.; Mfr 13499 part no. 548-8627-002 SPRING, LEAD SCREW: Copper; 0.008 in. by 0.500 in. by 1.062 in. o/a dim.; 150,000 P.S.I. min tensile strength; Mfr 13499 part no. 548-8634-002
SHAFT, OUTPUT COUPLING: Copper shaft, aluminum hub; 0.625 in. dia by 9.875 in. 1 g o/a dim.; Mfr 13499 part no. 548-8638-002
SHIM, SPACER: Brass, chemical polish finish; 0.010 in. by 0.312 in. by 2.062 in. o/a dim.; Mfr 13499 part no. 548-8639-002
ARM, SHORTING: Same as 0201
LEAD SCREW, AMPLIFIER: Same as 0203
CONTACT ASSEMBLY, ELECTRICAL: 8 contacts; 2.687 in. dia by 0.437 in. 1 g o/a dim.; 8 terminals solder stud type; two 0.169 in. dia holes spaced 2.312 in. c to c ; Mfr 13499 part no. 548-8560-002
CONTACT, ELECTRICAL: Copper contact surface; silver-plated contact surface finish; 0.164 in . dia by 0.610 in . 1 g o/a dim.; one hole type terminal located at base; Mfr 13499 part no. 548-8533-002
CONTACT, ELECTRICAL: 1 copper, gold plated finish, point; 0.171 in. thk by $0.343 \mathrm{in} . \mathrm{w}$ by 0.625 in .1 g ; copper contact surface; 0.406 in. by 0.770 in . by 1.250 in . o/a dim.; mtd by two no. $4-40$ holes spaced 25 deg c to c; Mfr 13499 part no. 548-8563-002

Table 6-2. Maintenance Parts List (Continued)

REF	NAME AND DESCRIPTION	FIG
DESIG	NO.	
AM-1565/URC, RF AMPLIFIER, POWER AMPLIFIER ASSEMBLY (Continued)		

0223

0224

0225

0226

0227

0228
0229

0230

0231

0232

0233

0234
0235
0236

0237
0238

0239

SEAL, SOLENOID: 0.953 in. id, 1.250 in. od, $0.187 \mathrm{in} .1 \mathrm{~g} ;$ Mfr 13499 part no. 548-8709-002
ARM, SHORTING: Cres, passivated finish; 0.125 in. by 1.062
in. by 1.125 in. o/a dim.; Mfr 13499 part no. 548-8524-002
CONTACT ASSEMBLY, ELECTRICAL: 3 contacts; 0.437 in. by 1.625
5-107
in. by 1.625 in. o/a dim.; 3 terminals, solder stud type; three 0.152 in. dia holes spaced 70 deg apart; Mfr 13499 part no. 548-8561-002
CONTACT, ELECTRICAL: 1 copper point, gold plated finish; 0.119 in. thk by 0.312 in. w by 0.693 in. $1 \mathrm{~g} ; 0.693$ in. by 0.500 in. by 0.875 in. o/a dim.; 1 solder stud type terminal located at base, $\operatorname{Mfr} 13499$ part no. 548-8562-002
CONTACT ASSEMBLY, ELECTRICAL: Incl 3 contacts; 0.343 in. 1 g by 3.097 in. dia o/a dim.; four 0.161 in . dia holes spaced on 2.280 in. dia bolt circle; Mfr 13499 part no. 548-9007-003 CLIP, CABLE: Brass; 0.0159 in. by 0.156 in. 0.187 in. o/a dim.; Mfr 13499 part no. 548-8585-002
CONTACT, ELECTRICAL: Copper, silver plated finish; 0.010 in. by 0.180 in. by 0.587 in. o/a dim.; Mfr 13499 part no. 548-8633-002
BEARING, BALL, ANNULAR: Single row, radial, two removable shields; 0.187 in. id, 0.500 in. od, 0.196 in. w; Mfr 21335 part no. AM33KDD5FS227
BEARING, BALL BUSHING: Cres; 3 ball circuits; $1 / 16$ in. dia balls; $0.250 \mathrm{in} . \mathrm{id}, 0.500 \mathrm{in} . \mathrm{od}, 0.750 \mathrm{in} .1 \mathrm{~g} ; \mathrm{Mfr} 01471$ part no. A4812SSMILL6085
PLATE: Aluminum plate; 0.900 in. by 4.187 in. by 4.625 in. by 4.625 in. o/a dim.; includes cres bearing and shaft; Mfr 13499 part no. 548-8703-002
BEARING, SLEEVE: Bronze; flanged; 0.1895 in. id, $7 / 16$ in. od, $1 / 4$ in. $1 g ;$ Mfr 13499 part no. 309-0081-00
BEARING, SLEEVE: Bronze, flanged; 0.187 in. id, $3 / 8$ in. od, 3/8 in. Ig; Mfr 13499 part no. 309-0078-00
SHAFT, SHOULDER: Cres, passivated finish; 0.375 in. dia by 0.890 in. 1 g o/a dim.; Mfr 13499 part no. 548-8651-002

CLAMP, RIM CLENCHING: Aluminum, chromate dipped finish 0.375 in. dia by 0.968 in. 1 g o/a dim.; tapped no. 8-32 thd, 0.312 in. deep both ends; Mfr 13499 part no. 548-8752-003
PLATE, GEAR, NO. 2: Aluminum plate; 0.568 in. by 7 in. by 7.562 in. o/a dim.; Mfr 13499 part no. 548-8762-004

BEARING, SLEEVE: Flanged, porous bronze; $5 / 16$ in. dia undercut to 0.252 in. dia, $1 / 4$ in. $1 g$; Mfr 70417 part no. F207-2MILL6085A
PLATE, GEAR NO. l: Aluminum plate; 1.049 in. by 6.953 in. by 7.234 in. o/a dim.; includes shaft and bearing; cres: Mfr 13499 part no. 548-8751-003

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { No. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, POWER AMPLIFIER ASSEMBLY (Continued)		
0240	GEARSHAFT, SPUR: Cres gear; cres shaft; 1.104 in. dia by 2.562 in. 1 g o/a dim.; 51 teeth complement, 20 degree pressure angle; Mfr 13499 part no. 548-8696-002 c/o 0299.31 and P/N 311-0420-00	5-104
0241	SHAFT, SHOULDERED: Cres, passivated finish; 0.187 in. dia by $3.453 \mathrm{in}$.lg o/a dim.; Mfr 13499 part no. 548-8688-002	5-103
0242	STOP ECCENTRIC: Cres, passivated finish; 0.375 in. dia by 0.687 in .1 g o/a dim.; Mfr 13499 part no. 548-8693-002	5-103
0243	GEAR ASSEMBLY: Aluminum gears, two complements of 76 teeth; 1.625 in. dia by 0.500 in . 1 g o/a dim.; Mfr 13499 part no. 548-8750-003	5-104
0244	GEAR, SPUR: Aluminum; 1.625 in. dia by 0.132 in .1 g o/a dim.; 0.500 in. dia bore, 0.070 in. w face; 76 teeth complement; Mfr 13499 part no. 548-8650-002	5-104
0245	GEAR, IDLER: 76 teeth; 20 deg pressure angle; 0 deg helix angle; 48 diametral pitch; 1.623 in. dia by 0.500 in .1 g o/a dim.; Mfr 13499 part no. 548-8746-003	5-104
0246	CLAMP, LOOP: Stainless steel; 0.219 in . dia bore; 0.156 in . axial $1 \mathrm{~g} ; 0.500 \mathrm{in} .1 \mathrm{~g}$ o/a; Mfr 03565 part no. B-6456	5-103
0247	GEAR, BEVEL: Cres; 0.792 in. dia by 0.530 in .1 g o/a dim.; beveled $0.156 \mathrm{in} . ;$ face angle 47 deg 40 to $48 \mathrm{deg} 00^{\prime}$ to 44 deg 54'; 36 teeth complement; Mfr 13499 part no. 548-8689-002	5-103
0248	MASK, DIAL: Aluminum; 0.063 in. by $3-1 / 16$ in. by $3-3 / 8$ in.; w/indicator; Mfr 13499 part no. 548-8785-003	5-103
0249	GEARSHAFT, SPUR: Cres shaft, aluminum gear; 1.468 in .1 g by 2.208 in. dia o/a dim. 104 teeth complement; 20 deg pressure angle; Mfr 13499 part no. 548-8685-002	5-103
0250	GEAR CLUSTER, SPUR: Bronze; $2.354-\mathrm{in}$. dia by•0.504 in. 1 g o/a dim.; two complements of teeth 111 and 33; Mfr 13499 part no. 548-8682-002	5-103
0251	GEAR, SPUR: Aluminum; 0.771 in. dia by 0.531 in. 1 g o/a dim.; 20 degree pressure angle; 35 teeth complement; Mfr 13499 part no. 548-8679-002	5-103
0252	GEAR, SPUR: Cres; 0.792 in. dia by 0.469 in. 1 g o/a dim.; 36 teeth complement; 20 deg pressure angle; Mfr 13499 part no. 548-8678-002	5-103
0253	GEARSHAFT, SPUR: Cres shaft \& aluminum gear; 1.854 in. dia by 1.375 in. 1 g o/a dim.; 87 teeth complement; Mfr 13499 part no. 548-8677-002	5-104
0254	CLAMP, LOOP: Stainless steel; 0.343 in. bore dia, 0.200 in . axial $\mathrm{lg}, 0.760 \mathrm{in}$. $\mathrm{lg} \mathrm{o} / \mathrm{a}$ one 0.116 in . dia securing hole; Mfr 03565 part no. B-6458	5-103
0255	GEAR CLUSTER, SPUR: Aluminum; 2.104 in . dia by $0.656 \mathrm{in} . \mathrm{ig}$ o/a dim.; two complements of teeth; 99 and 36; Mfr 13499 part no. 548-8673-002	5-103

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, POWER AMPLIFIER ASSEMBLY (Continued)		
0256	```GEAR CLUSTER, SPUR: Aluminum; 1.396 in. od by 0.625 in. lg o/a dim.; two complements of teeth; 40 and 65; Mfr 13499 part no. 548-8669-002```	5-104
0257	GEARSHAFT, SPUR: Aluminum; 0.875 in. dia by 1.219 in. $1 \mathrm{~g} \mathrm{o} / \mathrm{a}$ dim.; two complements of teeth; 40 and 29 , Mfr 13499 part no. 548-8666-002	5-104
0258	GEAR SHAFT, SPUR: Aluminum 0.792 in. dia by 1.219 in. 1 g o/a dim.; two complements of teeth; 36 and 22 ; Mfr 13499 part no. 548-8663-002	5-104
0259	GEARSHAFT, SPUR: Aluminum; 0.542 in. dia by 1.219 in .1 g o/a; two complements of teeth 24 and 22; Mfr 13499 part no. 548-8660-002	5-104
0260	COLLAR, SHAFT: Cres, passivated finish; 0.2812 in. bore dia, 0.562 in. od, 0.218 in. axial $1 g$; two no. $4-40$ securing holes spaced 90 degrees apart; $\operatorname{Mfr} 13499$ part no. 548-8658-002	5-103
0261	GEAR, SPUR: Cres; 0.375 in. dia by $0.500 \mathrm{in}$.1 g o/a; 16 teeth complement; 20 deg pressure angle; Mfr 13499 part no. 548-8656-002	5-103
0262	LOADING ASSEMBLY, GEAR: Includes two aluminum gears; two complements of 76 teeth; 20 degree pressure angle, 1 steel loading spring; 1.625 in. dia by 0.500 in .1 g o/a dim.; Mfr 13499 part no. $548-8749-003 \mathrm{c} / \mathrm{o} 0244,245,263$, washer 547-2309-00 and ring 340-0118-00	5-104
0263	SPRING, LOADING: Steel, 1.045 in . od, by $0.295 \mathrm{in}$.Ig o/a dim.; w/90 deg opening; Mfr 13499 part no. 548-8655-002	5-104
0264	GEAR, IDLER: Same as 0245	
0265	GEAR, SPUR: Same as 0244	
0266	```GEAR, SPUR: Aluminum; 0.833 in. dia by 0.562 in. 1g o/a dim.; 0.280 in. dia hub slotted w/38 teeth complement; Mfr 13499 part no. 548-8649-002```	5-104
0267	BEARING, BALL, BUSHING: Same as 0231	
0268	CLAMP, RIM CLENCHING: Same as 0236	
0269	```SCREW ASSEMBLY, COUPLING: Brass disk, silver plated brass screw; 0.875 in. dia by l.113 in. 1g; 8-32 thd, 0.438.in. 1g; Mfr no. 13499 Part no. 548-8593-002```	5-108
0270	STOP, ECCENTRIC: Same as 0242	
0271	GEAR ASSEMBLY: Same as 0243	
0272	GEAR, BEVEL: Same as 0247	
0273	LOADING ASSEMBLY, GEAR: Same as 0262	
0274	LOADING ASSEMBLY, GEAR: Same as 0262	
0275	GEAR: Same as 0266	
0276	GEAR : Same as 0266	
0277	GEAR : Same as 0266	
0278	SHAFT, OUTPUT COUPLING: Same as 0216	
0279	SLEEVE, BEARING: Same as 0204	
0280	BEARING, BALL, ANNULAR: Same as 0230	

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
AM-1565/	RF AMPLIFIER, POWER AMPLIFIER ASSEMBLY (Continued)	
0281	BEARING, BALL, ANNULAR: Same as 0230	
0282	BEARING, BALL, ANNULAR: Same as 0230	
0283	BEARING, BALL, ANNULAR: Same as 0230	
0284	SHIM, SPACER: Same as 0217	
0285	SHIM, SPACER: Same as 0217	
0286	SHIM, SPACER: Same as 0217	
0287	SPRING, LEAD SCREW: Same as 0215	
0288	INSULATOR, BUSHING: Same as 0214	
0289	SHIM, COUPLING: Same as 0212	
0290	BEARING, BALL, ANNULAR: Same as 0230	
0291	BEARING, BALL, ANNULAR: Same as 0230	
0292	BEARING, BALL, ANNULAR: Same as 0230	
0293	ARM, SHORTING: Same as 0224	
0294	LEAD SCREW, AMPLIFIER: Same as 0203	
0295	CONTACT, ASSEMBLY, ELECTRICAL: Same as 0225	
0296	CONTACT, ELECTRICAL: Same as 0226	
0297	CONTACT, ELECTRICAL: Same as 0229	
0298	BEARING, SEEEVE: Same as 0238	
0299	INSULATOR, BUSHING: Same as 0205	
0299.1	INSULATOR, BUSHING: Same as 0205	
0299.2	INSULATOR, BUSHING: Same as 0205	
0299.3	INSULATOR, BUSHING: Same as 0205	
0299.4	INSULATOR, BUSHING: Same as 0205	
0299.5	INSULATOR, BUSHING: Same as 0205	
0299.6	INSULATOR, BUSHING: Same as 0205	
0299.7	INSULATOR, BUSHING: Same as 0205	
0299.8	INSULATOR, BUSHING: Same as 0205	
0299.9	INSULATOR, BUSHING: Same as 0205	
0299.10	INSULATOR, BUSHING: Same as 0205	
0299.11	CONTACT, ELECTRICAL: Same as 0221	
0299.12	INSULATOR, BUSHING: Same as 0206	
0299.13	INSULATOR, BUSHING: Same as 0206	
0299.14	INSULATOR, BUSHING: Same as 0206	
0299.15	CONTACT, ELECTRICAL; Same as 0222	
0299.16	INSULATOR, BUSHING: Same as 0208	
0299.17	INSULATOR, BUSHING: Same as 0208	
0299.18	INSULATOR, BUSHING: Same as 0208	
0299.19	INSULATOR, BUSHING: Same as 0208	
0299.20	INSULATOR, BUSHING: Same as 0208	
0299.21	INSULATOR, BUSHING: Same as 0208	
0299.22	INSULATOR, BUSHING: Same as 0208	
0299.23	CONTACT ASSEMBLY: Mfr 13499 part no. 548-9013-004	5-114
0299.24	INSULATOR, PLATE: Plastic; 0.062 in. by $3 / 8 \mathrm{in}$. by $21 / 32 \mathrm{in}$. P/O S-201; Mfr 13499 part no. 548-8626-002	5-107
0299.25	CONTACT, ELECTRICAL: Bronze contact arm w/silver point; 0.062 in. by 0.312 in. by 1.217 in. approx $\mathrm{P} / \mathrm{O} \mathrm{S}-201$; Mfr 13499 part no. 548-8640-002	5-107

Table 6-2. Maintenance Parts List (Continued)

REF DESIG	NAME AND DESCRIPTION
AM-1565/URC, RF AMPLIFIER, POWER AMPLIFIER ASSEMBLY (Continued)	

0299.26
0299.27
0299.28
0299.29
0299.30
0299.31
0299.32
0299.33
0299.34
0299.35
0299.36
0299.37
0299.38
0299.39
0299.40
0299.41
0299.42

P201
P202
P203

P204
P205
P206
P207
P208A, B

CONTACT, ELECTRICAL: Bronze contact arm w/silver point; incl
actuator button; 0.144 in . by 0.312 in . by 1.217 in . approx; P/O S-201; Mfr 13499 part no. 548-8641-002
SUPPORT, COUPLING: Brass, silver plated; 0.312 in. by 1.250 in. by 1.562 in. approx; P/O C-206; Mfr 13499 part no. 548-8586-002
INSULATOR, COUPLING: Mica; 0.030 in. by 0.875 in. by 1.375 in.; P/O C-206; Mfr 13499 part no. 548-8597-002
PLATE, COUPLING: Silver plated brass; 0.189 in. by 0.750 in. by 1.281 in. approx; P/O C-206; Mfr 13499 part no. 548-8592-002
PLATE, CATHODE COUPLING: Silver plated brass; 1.720 in. dia by 0.120 in. thk; P/O C-214; Mfr 13499 part no. 548-8536-002
GEAR, SPUR: Cres; 1.104 in. dia by 0.390 in. \lg o/a dim.; 51 teeth complement; 20 degree pressure angle; Mfr 13499 part no. 548-8691-002
SHAFT, STRAIGHT: Cres; 0.187 in. dia by 2.562 in . 1 g o/a dim;
two 0.147 in. dia by 0.028 in . 1 g groove; Mfr 13499 part no. 548-8695-002
INSULATOR, COUPLING: Teflon; 0.812 in. id, $1-27 / 32$ in. od, 0.015 in. thk; P/O C-214; Mfr 13499 part no. 548-8537-002

INSULATOR, DISK: Teflon; 0.812 in. id; $1-27 / 32 \mathrm{in}$. od; 0.005
in. thk; P/O C-214; Mfr 13499 part no. 548-8609-002
BEARING, BALL, ANNULAR: Same as 0230
BEARING, BALL, ANNULAR: Single row; radial, flanged, double 5-103 shielded; cres 0.125 in. id, 0.319 in. od, $0.140 \mathrm{in} . \mathrm{w}$; Mfr 40920 part no. S518FCHHP37L02
BEARING, BALL, ANNULAR: Same as 0299.36
BUSHING, SHIELD: Same as 0205
CONNECTOR, RECEPTACLE, ELECTRICAL: Arc resistant p1astic dielectric; Mfr 81312 part no MRE34PJTC6H1
CONNECTOR, PLUG, ELECTRICAL: MS35168-88E type UG-88E/U P/O W-206
CONNECTOR, PLUG, ELECTRICAL: UG-913A/U brass shell, teflon insulation; silver plated finish; rt angle; one coaxial contact; P/O W-553
CONNECTOR, PLUG, ELECTRICAL: P/O W-205 same as P202
CONNECTOR, PLUG, ELECTRICAL: P/O W-204 same as P203
CONNECTOR, PLUG, ELECTRICAL: P/O W-203 same as P203
CONNECTOR, PLUG, ELECTRICAL: P/O W-203 same as P203
ADAPTER, CONNECTOR, ELECTRICAL: MS 35176 -491B, MIL type UG-491B/U

5-107

5-108

5-108

5-103
FIG
NO.

5-108

5-103

5-110
5-110

5-103
5-103
5-103
5-103
5-103
5-103
5-87
5-87
5-87

5-87
5-102
5-101
5-87
5-87

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, POWER AMPLIFIER ASSEMBLY (Continued)		
P209	CONNECTOR, PLUG, ELECTRICAL: P/O W-207 same as P202	5-87
P210	CONNECTOR, PLUG, ELECTRICAL: P/0 W-207 same as P203	5-87
P211	CONNECTOR, PLUG, ELECTRICAL: P/O W-552 same as P202	5-87
P212	CONNECTOR, PLUG, ELECTRICAL: $\mathrm{P} / 0 \mathrm{~W}-206$ same as P202	5-87
P213	P/O DC-201	5-87
P214	P/O DC-201	5-87
P215	CONNECTOR, PLUG, ELECTRICAL: ITT Cannon, Mfr part no. TNC-RL-12-M-55, High Voltage (5000 vdc) P/O W-210	5-101
R201	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF224K	5-111
R202	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF225K	5-111
R203	RESISTOR, VARIABLE, WIREWOUND: MIL type RR2100E2G91502	5-102
R204	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF471J	5-101
R205	RESISTOR, FIXED, COMPOSITION: Same as R204	5-101
R206	RESISTOR, FIXED, FILM: MIL-R-10509 type RN65B1103F	5-107
S201	C/0 0-299.24 thru 0-299.26	
V201	ELECTRON TUBE: Tetrode; Mfr 72902 part no. 4CX250K	5-108
V202	ELECTRON TUBE: Same as V201	5-108
V203	ELECTRON TUBE: Pencil diode; Mfr 49671 type 6173	5-111
W203	CABLE ASSEMBLY, RADIO FREQUENCY: Terminated both ends w/connector; 11.687 in. 1 g o/a dim.; Mfr 13499 part no. 548-8774-002 C/O P-206 \& P-207	5-101
W204	CABLE ASSEMBLY: Terminated both ends w/connector; 10.375 in. o/a lg; Mfr 13499 part no. 548-8775-002 C/O P-205 \& P-402	5-102
W205	CABLE ASSEMBLY, RADIO FREQUENCY: Terminated both ends w/connector; 6.562 in. o/a $1 g$; Mfr 13499 part no. 548-8776-002 C/O P-1 \& P-204	5-87
W206	```CABLE ASSEMBLY, RADIO FREQUENCY: Terminated both ends w/connector; 5.250 in. o/a lg; Mfr 13499 part no. 548-8777-002 C/O P-202 & P-212.```	5-87
W207	```CABLE ASSEMBLY, RADIO FREQUENCY: Terminated both ends w/connector; 4.687 in. o/a 1g; Mfr 13499 part no. 548-8778-002 C/O P-209 & P-210```	5-87
W208	NOT USED	
W209	WIRING HARNESS: 22 conductors, 1 clip; Mfr 13499 part no. 548-8520-00	5-102
W210	CABLE ASSEMBLY, RADIO FREQUENCY: Terminated one end w/connector; P-215; Cable type RG-142 B/U	5-101
XV201	NOT USED	
XV202	NOT USED	
XV203	SOCKET, ELECTRON TUBE: 2 contact; phenolic insulation; 0.0250 in. dia by $7 / 16$ in. $1 g$; Mfr 71785 part no. 131-52-12-016	5-111
AM-1565/URC, RF AMPLIFIER, SERVO AMPLIFIER SUBASSEMBLY		
$\begin{aligned} & \text { UNIT 3A4 } \\ & (401-499) \\ & \text { AT401 } \end{aligned}$	AMPLIFIER, ELECTRONIC CONTROL: Mfr 03565 part no. D-6493 ATTENUATOR, VARIABLE: 1330 ohms res, 500 v , 25 ma current; Mfr 13499 part no. 548-8394-003 C/O J401 \& J-402	$\begin{aligned} & 5-112 \\ & 5-87 \end{aligned}$

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	FIG NO.
AM-1565/URC, RF AMPLIFIER, SERVO AMPLIFIER SUBASSEMBLY (Continued)		
C401	CAPACITOR, FIXED, CERAMIC DIELECTRIC: MIL-C-20B type CC31PG510F	5-114
C402	CAPACITOR, FIXED, PAPER DIELECTRIC: 0.47 uf $\pm 20 \%$, 50 vdc ; Mfr 56289 part no. 186P47406T15	5-112
C403	CAPACITOR, FIXED, PAPER DIELECTRIC: MIL type CQ09A1KE104K3	5-114
C404	CAPACITOR, FIXED, PAPER DIELECTRIC: Same as C403	5-114
C405	CAPACITOR, FIXED, PAPER DIELECTRIC: Same as C403	5-103
C406	CAPACITOR, FIXED, PAPER DIELECTRIC: Same as C402	5-112
C407	CAPACITOR, FIXED, PAPER DIELECTRIC: Same as C403	5-114
C408	CAPACITOR, FIXED, PAPER DIELECTRIC: MIL type CQ09A1KE473K3	5-114
C409	CAPACITOR, FIXED, PAPER DIELECTRIC: Same as C403	5-114
C410	CAPACITOR, FIXED, PAPER DIELECTRIC: Same as C403	5-114
C411	CAPACITOR, FIXED, PAPER DIELECTRIC: Same as C403	5-114
C412	CAPACITOR, FIXED, ELECTROLYTIC: MIL type CL65BG101MPE	5-113
C413	CAPACITOR, FIXED, PAPER DIELECTRIC: 0.47 uf $\pm 20 \%, 600 \mathrm{vdc}$; Mfr 56289 part no. 196P47406T4	5-113
C414	CAPACITOR, FIXED, PAPER DIELECTRIC: MIL type CQ09AlKF682K3	5-113
C415	CAPACITOR, FIXED, PAPER DIELECTRIC: MIL type CQ09A1KF222K3	5-113
C416	CAPACITOR, FIXED, CERAMIC DIELECTRIC: MIL-C-11015B type CK60AW102M	5-113
C417	CAPACTTOR, FIXED, CERAMIC DIELECTRIC: Same as C416	5-114
CR401	SEMICONDUCTOR DEVICE, DIODE: MIL type 1N483B	5-114
CR402	SEMICONDUCTOR DEVICE, DIODE: Same as CR401	5-114
H401	KNOB: $3 / 8$ in. by $9 / 16$ in.; stainless steel; p/o P401 retaining assembly. BuShips Dwg. STD 404SK1659334/4	5-112
H402	KNOB: Same as H401	5-112
H403	SETSCREW: 4-40 thread 3/16 in. 1 g ; spline type; p/o knob H401	5-112
H404	SETSCREW: Same as H403; p/o H402	5-112
H405	SPACER: $1 / 4$ in. dia by $13 / 16$ in. $1 g$; stainless steel; p/o P401 retaining assembly; BuShips DWG STD 404SKl659334/5	5-112
H406	SPACER: Same as H405	5-112
H407	```KEY, FEMALE: 3/16 in. by l-7/8 in. lg. stainless steel; 6-32 threaded receptacle; mates with H32; p/o P401 retaining assembly; BuShips Dwg. STD 404SK1659334/8```	5-112
H408	```KEY, MALE: 3/16 in. by 1-47/64 in. lg; stainless steel; 6-32 thread screw; mates with H33; p/o P40l retaining assembly; BuShips Dwg. STD 404SK1659334/6```	5-112
J401	ADAPTER, CONNECTOR: 1500 vac test voltage, 60 Hz 50 ohms impedance; brass body, teflon insulation, 1 female contact, 0.593 in. dia by 1.000 in. 1 g o/a dim.; Mfr 94375 part no. 01069	5-87
J402	ADAPTER, CONNECTOR: Same as.J401	5-87
L401	COIL, RADIO FREQUENCY: MIL type MS75008-22	5-113
L402	COIL, RADIO FREQUENCY: Same as L401	5-113
P401	CONNECTOR, RECEPTACLE, ELECTRICAL: 26 male contacts; 5 amps; arc resistant plastic dielectric; Mfr 80586 part no. GM26M7.9	5-112

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO: } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, SERVO AMPLIFIER SUBASSEMBLY (Continued)		
P402	CONNECTOR, PLUG, ELECTRICAL: MIL type UG-913A/U; Brass shell, teflon ins; silver pl finish; rt angle; one coaxial contact	5-87
P403	CONNECTOR, PLUG, ELECTRICAL: Same as P402	5-87
R401	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF104K	5-114
R402	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF564K	5-114
R403	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF473K	5-114
R404	RESISTOR, FIXED, COMPOSITION: Same as R403	5-114
R405	RESISTOR, VARIABLE, COMPOSITION: 250,000 ohms $\pm 20 \%, 2 \mathrm{w}$; Mfr 13499 part no. 380-3466-00	5-112
R406	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF474K	5-114
R407	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF224K	5-114
R408	RESISTOR, FIXED, COMPOSITION: Same as R407	5-114
R.409	RESISTOR, VARIABLE, COMPOSITION: 500,000 ohms, $\pm 20 \%, 2 \mathrm{w}$; Mfr 13499 part no. 380-3467-00	5-112
R410	RESISTOR, VARIABLE, COMPOSITION: Same as R409	5-112
R411	RESISTOR, VARIABLE, COMPOSITION: Same as R405	5-112
R412	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF103K	5-114
R413	RESISTOR, FIXED, COMPOSITION: Same as R412	5-114
R414	RESISTOR, FIXED, COMPOSITION: Same as R407	5-114
R415	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GFl52K	5-114
R416	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC32GF104K	5-114
R417	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF124K	5-114
R418	RESISTOR, FIXED, COMPOSITION: Same as R417	5-113
R419	RESISTOR, FIXED, COMPOSITION: Same as R417	5-113
R420	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF102K	5-114
R421	RESISTOR, FIXED, COMPOSITION: Same as R417	5-113
R422	RESISTOR, FIXED, COMPOSITION: Same as R417	5-114
R423	RESISTOR, FIXED, COMPOSITION: Same as R417	5-114
R424	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF472K	5-114
R425	RESISTOR, FIXED, WIREWOUND: MIL-R-26 type RW30V121	5-113
R426	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC32GF103K	5-113
R427	RESISTOR, FIXED, COMPOSITION: Same as R426	5-113
R428	RESISTOR, FIXED, COMPOSITION: Same as R402	5-113
R429	RESISTOR, FIXED, COMPOSITION: Same as R403	5-113
R430	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF332K	5-113
R431	RESISTOR, FIXED, COMPOSITION: Same as R430	5-113
R432	RESISTOR, FIXED, COMPOSITION: Same as R407	5-113
R433	RESISTOR, FIXED, COMPOSITION: Same as R403	5-113
R434	RESISTOR, FIXED, COMPOSITION: MIL type RW29V502	5-113
R435	RESISTOR, FIXED, COMPOSITION: Same as R412	5-113
R436	RESISTOR, VARIABLE, COMPOSITION: 100,000 ohms $\pm 20 \%$, 2 w ; Mfr 13499 part no. 380-3465-00	5-112
R437	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF184K	5-113
R438	RESISTOR, FIXED, COMPOSITION: Same as R401	5-113
TB401	TERMINAL BOARD: Plastic; 0.093 in. by 3.250 in. by 4.437 in. o/a dim.; Mfr 13499 part no. 548-8512-003	5-114

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, SERVO AMPLIFIER SUBASSEMBLY (Continued)		
TB402	TERMINAL BOARD: Plastic; 0.093 in. by 1.375 in. by 3.250 in. o/a dim.; Mfr 13499 part no. 548-8514-002	5-113
TP401	JACK, TIP: For use with 0.080 diameter plug tip; Mfr 98291 part no. SKTlOBROWN	5-112
TP402	JACK, TIP: For use with 0.080 diameter plug tip; Mfr 98291 part no. SKTlORED	5-112
TP403	JACK, TIP: For use with 0.080 diameter plug tip; Mfr 98291 part no. SKT100RANGE	5-112
V401	ELECTRON TUBE: MIL type 5751	5-112
V402	ELECTRON TUBE: Same as V401	5-112
V403	ELECTRON TUBE: Pentode; Mfr 73445 part no. 6BQ5	5-112
V404	ELECTRON TUBE: Same as V403	5-112
V405	ELECTRON TUBE: MIL-E-1 type 5814A	5-112
V406	ELECTRON TUBE: Same as V401	5-112
V407	ELECTRON TUBE: MIL-E-1 type OA2WA	5-112
XV401	SOCKET, ELECTRON TUBE: MIL type TS103C01	5-112
XV402	SOCKET, ELECTRON TUBE: Same as XV401	5-113
XV403	SOCKET, ELECTRON TUBE: Same as XV401	5-113
XV404	SOCKET, ELECTRON TUBE: Same as XV401	5-113
XV405	SOCKET, ELECTRON TUBE: Same as XV401	5-113
XV406	SOCKET, ELECTRON TUBE: Same as XV401	5-113
XV407	SOCKET, ELECTRON TUBE: MIL type TS102C01	5-113
Z401	SUPPRESSOR, PARASITIC: Single layer wound; \#30 AWG wire; 100 ohms $\pm 10 \%$, $1 / 2$ wa Mfr 13499 part no. 548-8506-002	5-113
Z402	SUPPRESSOR, PARASITIC: Same as Z 401	5-113
AM-1565/URC, RF AMPLIFIER, FRONT PANEL ASSEMBLY		
$\begin{aligned} & \text { UNIT 3A5 } \\ & (501-599) \end{aligned}$	FRONT PANEL ASSEMBLY: Mfr 03565 part no. C-6496	5-94
A502	```ACTUATOR, ROTARY: 27.5 vdc, 1.6 amp; 0.01 hp., 12,000 rpm motor; 5 sec on 10 sec off; intermittent operation; Mfr 13499 part no. 548-8900-005```	$\begin{aligned} & 5-99 \\ & 5-100 \end{aligned}$
A503	ADJUSTMENT COUPLING: 2.416 in. dia by 2.437 in. $1 g ;$ Mfr 13499 part no. 548-8923-003	5-94
B501	MOTOR, DIRECT CURRENT: Permanent magnet; $27.5 \mathrm{v} ; 12,000 \mathrm{rpm}$ no load speed; ccw rotation; fully enclosed; 5 sec on 10 sec off; $1.992 \mathrm{in} .1 \mathrm{~g} ; 1.255 \mathrm{in} . \mathrm{dia}$. by $0.382 \mathrm{in}$.lg shaft; Mfr 13499 part no. 230-0228-00	5-96
CR501	SEMICONDUCTOR DEVICE, DIODE: MIL type 1N538	5-94
DS501	LAMP, INCANDESCENT: MIL type MS25237-327	5-94
DS502	LAMP, INCANDESCENT: Same as DS501	5-94
DS503	LAMP, INCANDESCENT: Same as DS501	5-88
DS504	LAMP, INCANDESCENT: Same as DS501	5-88
DS505	LAMP, INCANDESCENT: Same as DS501	5-88
DS506	LAMP, INCANDESCENT: Same as DS501	5-88

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { No. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, FRONT PANEL ASSEMBLY (Continued)		
F501	FUSE, CARTRIDGE: MIL type F03A250V15AS	5-88
F502	FUSE, CARTRIDGE: MIL type F03A250V5AS	5-88
F503	FUSE, CARTRIDGE: Same as F502	5-88
F504	FUSE, CARTRIDGE: MIL type FO2B125v3AS	5-88
F505	FUSE, CARTRIDGE: Same as P502	5-88
F506	FUSE, CARTRIDGE: MIL type FO2GR250A	5-88
F507	FUSE, CARTRIDGE: MIL type F02B32V5AS	5-88
F508	FUSE, CARTRIDGE: Same as F506	5-88
H501	NOT USED	
H502	SCREW, SPECIAL: Cres, passivate finish; 1/4-20NC-2A thd, 0.406 dia head, 1.468 in. $1 g$; Mfr 13499 part no. 548-8954-002	5-88
H503	NOT USED	
H504	NOT USED	
H505	NUT, CASTELLATED: Cres, passivate finish; 2 slots 0.093 in. w by 0.046 in. $d ; 1 / 4-20 N C-2 B$ thd, 0.125 in. thk, 0.500 in . dia.; Mfr 13499 part no. 548-8957-002	5-88
H506	NUT, CASTELLATED: Cres, passivate finish; 2 slots 0.093 in. w by 0.046 in. id, $5 / 8-24 \mathrm{NX}-2 \mathrm{~B}, 0.125 \mathrm{in}$. thk, 0.843 in . dia; Mfr 13499 part no. 548-8953-002	5-94
H507	NUT, CASTELLATED: Cres, passivate finis²: 2 slots 0.093 in . w by 0.046 in. d; 3/8-NEF-2B, 0.125 ir $k, 0.562$ in. dia; Mfr 13499 part no. 548-8951-002	5-88
H508	WASHER, FLAT: Stainless steel, passivace finish; rd shape; 0.250 in. id, 0.406 in. od, 0.025 in. thk; Mfr 13499 part no. 506-5173-002	5-88
H509	WASHER, LOCK: Stainless steel, plain finish; split helical ring; 0.269 in. id, 0.373 in. od, 0.078 in. thk; Mfr 76665 part no. 6922D	5-88
H510	CLAMP, LOOP: MIL type MS25281-F4	5-94
H511	CLAMP, LOOP: MIL type MS25281-F5	5-100
H512	WASHER, SEALING: Inner sealing ring of synthetic rubber bonded to an outer confining steel ring; 0.208 in. id, 0.328 in. od, 0.041 in. thk; Mfr 86579 part no. 110-6	5-94
H513	NOT USED	
H514	RING, RETAINING: MIL type MS16633-1025	5-88
H515	RING, RETAINING: Stee 1 , cadmium or zinc plated; internal, self-locking; 0.175 in. od, 0.010 in. thk; Mfr 89462 part no. 5005-75	5-88
H516	WASHER, LOCK: Steel, cadmium plated, internal teeth, 0.391 id, 0.507 od, 0.022 thk; use with $3 / 8 \mathrm{in}$. screw; Mfr 13499 part no. 373-0081-00	5-94
H517	WASHER, LOCK: Stainless steel, plain finish; flat internal teeth; 0.408 in. max od, 0.018 in. thk, 0.250 nom bolt size; Mfr 78189 part no. 1714-05	5-94.
H518	WASHER, FLAT: Stee1; rd shape; 0.127 in. id, 0.250 in . od, 0.033 in. thk; Mfr 13499 part no. 502-1515-002	5-100

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { No. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER FRONT PANEL ASSEMBLY (Continued)		
H519	WASHER, FLAT: Cres, passivate finish; 0.413 in. id, 0.640 in. od, 0.031 in. thk; Mfr 13499 part no. 547-2311-003	4
H520	CLAMP, CABLE: Brass, alloy-plated finish; 0.082 in . by 0.875 in. by 1. in. o/a dim.; $0.656 \mathrm{in} . \mathrm{id}$; Mfr 13499 part no. 548-8829-002	5-9
H521	SPACER, CONNECTOR: Aluminum, chromate dip; $1 / 4 \mathrm{in}$. hex., 1 in. lg; Mfr 13499 part no. 548-8824-002	5-94
H522	STANDOFF: Cres, passivate finish; $1 / 4$ hex, rod; 2 in. $1 g$; Mfr 13499 part no. 548-8828-002	5-
H523	STANDOFF: Cres, passivate finish; $1 / 4 \mathrm{in}$. hex. rod, 1-19/32 in. 1g; Mfr 13499 part no. 548-8811-002	5-94
H524	CLIP, ELECTRICAL: Brass, alloy plated finish; 0.082 in. by 0.250 in . by 0.500 in . o/a dim.; Mfr 13499 part no. 548-8827-002	5-94
H525	WASHER, FLAT: Aluminum, black anodize; 0.437 in. id, 0.740 in. od, 0.031 in . thk; Mfr 13499 part no. 547-2312-003	5-88
H526	SPACER: Cres, passivate finish; 1-3/32 in. 1g; Mfr 13499 part no. 548-8831-002	5-94
H527	WASHER, SPRING TENSION: Bronze; $13 / 64 \mathrm{in}$. id, $3 / 8 \mathrm{in}$. od, 0.0159 in.thk; Mfr 13499 part no. 310-4780-00	5-88
H528	PIN, SPRING: MS type MS16562-191	
H529	SLEEVE, SPRING: Beryllium copper; for No. 8 screw size; 0.185 in. dia; by 0.156 in .1 g ; Mfr 91314 part no. 340-0642-00	5-88
H530	WASHER, FLAT: Cres; $0.187 \mathrm{in} . \mathrm{id}, 0.312 \mathrm{in}$. od, 0.020 in . thk; Mfr 13499 part no. 500-1099-003	5-88
H531	RING, RETAINING: MIL type MS16624-18	5-88
H532	RING, RETAINING: Beryllium copper ; MS type MS16624-12	4
H533	WASHER, FLAT: Cres, passivate finish; 0.203 in. id, 0.500 in. od, 0.006 in. thk; Mfr 13499 part no. 547-2316-003	5-9
H534	SHIM: Cres, passivate finish; 0.140 in. id, 0.296 in. od, 0.006 in. thk; Mfr 13499 part no. 547-2317-003	5-94
H535	```NUT, SELF-LOCKING: Cres, passivate finish; 8-32NC-2B thd; 0.125 in. thk; 0.437 in. dia.; Mfr 13499 part no. 548-8902-002```	5-88
H536	NOT USED	
H537	WASHER, SEALING: Synthetic rubber and steel; $0.280 \mathrm{in} . \mathrm{id}$, 0.516 in. od, 0.054 in. thk; Mfr 86579 part no. 110 1-4CADPL	5-88
H538	WASHER, FLAT: Stee1, passivate finish; 0.260 in . id, 0.500 in. od, 0.016 in. thk; Mfr 13499 part no. 540-3007-003	5-94
н539	NUT, RETAINING: Cres, passivate finish; $7 / 16$ in. dia, $1 / 2 \mathrm{in}$. 1 g ; Mfr 13499 part no. 548-8790-002	5-94
H540	NOT USED	
H541	SCREW, CAP, HEXAGON HEAD: Stainless steel, chemical black; $7 / 16 \mathrm{in}$. wide across flats; $1 / 4-20 \mathrm{UNC}-2 \mathrm{~A}$ thd, $1 \mathrm{in} . \mathrm{lg}$; Mfr 13499 part no. 548-8805-002	5-88
H542	NOT USED	

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO.. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, FRONT PANEL ASSEMBLY (Continued)		
H543	NUT, SELF-LOCKING, HEXAGON: MIL type MS21044-D08	5-100
H544	SCREW, ADJUSTMENT: Cres, passivate finish; 0.187 in. dia by $0.953 \mathrm{in} .1 \mathrm{~g} ; 8-32$ thd; 0.651 in .1 g in center; Mfr 13499 part no. 548-8867-002	5-95
H545	SETSCREW: Stainless steel, passivate finish; fluted socket, oval point; $5-40 \mathrm{NC}-3 \mathrm{~A}$ thd, $3 / 16$ in. 1 g ; Mfr 13499 part no. 335-0095-00	5-86
H546	NOT USED	
H547	SCREW, MACHINE: Stain1ess steel, passivate finish; phillips recessed pan head; 2-56NC-2A thd, 1-1/16 in. 1g; Mfr 13499 part no. 343-2724-00	5-100
H548	SPACER, SLEEVE: Aluminum; Fed QQ-A-351, temp T4; Mfr 13499 part no. 548-7774-002	5-96
H549	WASHER, FLAT: Cres, passivate finish; 0.203 in. id, 0.375 in. od, 0.006 in. thk; Mfr 13499 part no. 547-2314-003	5-100
H550	CLAMP, LOOP: Same as H511	5-100
H551	WASHER, NONMETALLIC: Phenolic; 0.116 in. id, 0.187 in. od, 0.031 in. thk; Mfr 13499 part no. 302-0262-00	5-100
H552	STUD, CONTINUOUS THREAD: Stainless steel, passivate finish; 4-40UNC-2A thd, 1-7/8 in. 1g; Mfr 13499 part no. 312-0024-00	5-100
H553	SCREW, MACHINE: Stainless steel, plain finish; 0.272 in. hex head; 6-32NC-2 thd, $3 / 8$ in.1g; Mfr 13499 pait no. 325-0064-00	5-100
H554	NUT, SELF-LOCKING; HEXAGON: Aluminum chromate dip; 4-40UNC-3B thd, 0.190 in. hex, 0.110 in. h; Mfr 13499 part no. 333-0605-00	5-100
H555	SETSCREW: Steel, cadmium plated; multiple spline, cup point; $6-40 \mathrm{NF}-2$ thd, $3 / 16$ in. 1 g ; Mfr 13499 part no. 328-0007-00	5-96
H556	RING, RETAINING: Same as H531	5-88
H557	RING, RETAINING: MIL type MSl6624-1025	5-88
H558	SHIM: Cres; 0.190 in. id, 0.406 in . od, 0.12 in. thk; Mfr 13499 part no. 500-2112-002	5-100
H559	WASHER, FLAT: Same as H518	5-100
H560	WASHER, FLAT: Cres, 0.020 in. thk by 0.3154 in. id by $13 / 16$ in. od; Mfr 13499 part no. 540-3040-003	5-100
H561	WASHER, FLAT: Brass; 0.0030 in. thk by 0.191 in. id by 0.343 in . od; Mfr 13499 part no. 542-1589-003	5-100
H562	SCREW, PIVOT, NO. 4: Cres; 0.187 in. dia undercut \& groved; 0.281 in. 18 ; thd $4-40 \mathrm{NC}-2 \mathrm{~A}, 0.030$ in w slot on head; Mfr 03565 part no. B-6468	5-100
H563	NOT USED	
H564	SCREW, CAP, SOCKET HEAD: Steel; fluted socket head; 4-40NC-2 thd, $1 / 2$ in. $1 g ;$ Mfr 08664 part no. 4-40X1-2 6SPLINECADC	5-100
H565	NUT, PLAIN, SQUARE: Steel; 4-40NC-2B thd, $3 / 16$ in. w, 0.062 in. thk; Mfr 13499 part no. 334-0485-00	5-100
H566	WASHER, SEALING: Same as H512	5-100

Table 6-2. Maintenance Parts List (Continued)

REF		
DESIG	NAME AND DESCRIPTION	N

AM-1565/URC, RF AMPLIFIER, FRONT PANEL ASSEMBLY (Continued)
SPACER, PLATE: Cres; 0.375 in. dia by 0.875 in. 1 g o/a dim.;
FIG
NO.
no. 6-32 thd, 0.343 in. 1 g ; tapped no. 6-32 thd, 0.312 in. deep; Mfr 13499 part no. 548-8890-002
INDEX, GEARPLATE: Aluminum; 0.370 in . dia by 0.597 in . 1g. o/a; stepped each end, 0.249 in. dia by $0.080 \mathrm{in} . \mathrm{ig}$; 0.156 in. id; Mfr 13499 part no. 548-8889-002

INDEX, GEARPLATE: Aluminum; 0.307 in. dia by $0.785 \mathrm{in} . \mathrm{lg}$; o/a dim.; stepped each end 0.249 in. dia by $0.080 \mathrm{in}$.lg ; no. 6-32 thd tapped; Mfr 13499 part no. 548-8891-002
SPACER, GEARPLATE: NO. 3: Aluminum, chromate dip; 6-32NC-2B thd, 0.375 in. dia, 1.218 in. $1 g$; Mfr 13499 part no. 548-8892-002
INDEX, GEARPLATE: Aluminum; 0.370 in. dia by 1.378 in .1 g o/a dim.; stepped each end 0.249 in. dia by $0.080 \mathrm{in}$.1 g ; no. 6-32 internal thd, $0.375 \mathrm{in}$.1 g each end; Mfr 13499 part no. 548-8893-002
SPACER, SWITCH: Aluminum, chromate dip; 0.116 in. id, 0.195 in. od, 0.0281 in. 1 g ; Mfr 13499 part no. 542-4690-003
SPACER, SWITCH: Aluminum, chromate dip; 0.116 in. id, 0.195 in. od, 0.375 in. 1 g ; Mfr 13499 part no. 542-4691-003
SPRING, CLUTCH: Copper; 0.020 in. thk by 0.328 in. id by 0.750 in. od; Mfr 13499 part no. 546-2213-002

WASHER, THRUST: Cres, passivate finish; 0.265 in. id, 0.500 in. od, 0.006 in. thk; Mfr 13499 part no. 547-2315-003
ADAPTER, CONNECTOR: Brass body, teflon insulation, two female contacts; 0.812 in. dia, 1.703 in .1 g o/a dim.; Mfr 94375 part no. 0991
ADAPTER, CONNECTOR: Same as J501
CONNECTOR, RECEPTACLE, ELECTRICAL: 41 female contacts; arc resistant plastic dielectric; 5 amps; Mfr 80586 part no. GM41F79
CONNECTOR, RECEPTACLE, ELECTRICAL: Same as J503
SHELL ASSEMBLY: Single layer wound; 825 turns of \#32 AWG wire; $500 \mathrm{vac} ; 2$ solder lug type terminals 0.75 in .1 g by 1.093 in . w by 1.312 in. h o/a dim.; excl terminals; Mfr 13499 part no. 542-4614-002
LEAF SWITCH: Contacts for K501, Mfr 13499 part no. 548-8924-003 FSN 5930-087-1496
METER,ARBITRARY: 0 to 100 ua; 1090 ohms; 2.635 in. dia by 1.980 in. 1 g o/a dim.; Mfr 16688 part no. 26-5325

GEAR, IDLER: Bronze; 1.854 in. dia by 0.250 in. 1 g o/a dim.; 87 teeth complement; diametral pitch, $48 ; 0.125$ in. w across face; Mfr 13499 part no. 548-8885-002
GEAR CLUSTER, SPUR: Bronze; 0.750 in. dia by 0.812 in. 1 g o/a dim; two complements of teeth, one 17 tooth complement, one 34 tooth complement, diametral pitch 48; Mfr 13499 part no. 548-8887-002

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \hline \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, FRONT PANEL ASSEMBLY (Continued)		
0503	KNOB: Screw on type; rd shape; pos. gripping surface; aluminum body; 0.500 in . dia by 0.468 in .1 g o/a dim.; straight shank; no. 8-32 internally thd, 0.468 in .1 g ; Mfr 13499 part no. 548-8903-002	5-88
0504	GASKET: MIL-P-5516 type AN6227-7	
0505	PLATE, GEAR: Aluminum; 0.250 in. by $2-1 / 2$ in. by 3.968 in.; incl 3 sleeve bearings; Mfr 13499 part no. 548-8904-002	5-100
0506	GASKET: Same as 0504	5-88
0507	GASKET: MIL-P-5516 type AN6227-5	5-88
0508	GASKET: Same as 0507	5-88
0509	GASKE'T: Same as 0507	5-94
0510	GASKET: Same as 0507	5-94
0511	PLATE, GEAR: Aluminum plate, 0.187 in. by $3-3 / 16$ in. by 3.968; inc. pin; Mfr 13499 part no. 548-8905-002	5-100
0512	PLATE, GEAR: Aluminum plate, 0.159 in. by $1-11 / 16$ in. by 3in.; incl 1 pin; Mfr 13499 part no. 548-8906-002	5-100
0513	GASKET: Synthetic rubber; 0.114 in. id, 0.254 in . od, 0.070 in. thk; Mfr 88044 part no. AN6227-1	5-88
0514	GASKET: Same as 0513	5-88
0515	NOT USED	
0516	GASKET, RUBBER: 0.549 in. id, 0.755 in. od, 0.103 in. thk; Mfr 88044 part no. AN6227-11	5-94
0517	GASKET: Same as 0516	5-94
0518	GASKET: Synthetic rubber; $0.924 \mathrm{in} . \mathrm{id}, 1.130 \mathrm{od}, 0.103 \mathrm{in}$. thk; Mfr 86579 part no. 914-19-711-70	5-94
0519	GASKET: Synthetic rubber; 1.737 in. id, 1.943 in. od, 0.103 in. thk; Mfr 86579 part no. 914-32-711-70	5-94
0520	NOT USED	
0521	KNOB: Setscrew type; rd w/bar face; plain gripping surface; zinc alloy body; 15/16 in. max od, 3/4 in. thk o/a; Mfr 81183 part no. 15015	5-89
0522	KNOB: Same as 0521	5-88
0523	KNOB; Same as 0521	5-88
0524	KNOB: Same as 0521	5-88
0525	KNOB: Same as 0521	5-88
0526	KNOB: Same as 0521	5-88
0527	KNOB: Same as 0521	5-88
0528	CAP, PROTECTIVE, DUST AND MOISTURE SEAL: Aluminum cap; rubber gasket; friction type; anodized finish; 0.937 in. dia by 0.750 in. 1 g o/a dim.; Mfr 02660 part no. 67-1464	5-88
0529	```CONNECTOR, RECEPTACLE: Steel shell, cres ring, rubber "0" ring; cadmium plated finish; 0.815 in. w across flats by 0.850 in. lg. o/a dim.; 1.160 in. o/a dia; bayonet locking; Mfr 02660 part no. 100x3840-14```	5-88
0530	GASKET, METER: Synthetic rubber, 2-3/16 in. id, 2-5/8 in. od, 0.062 in. thk; Mfr 13499 part no. 548-8825-002	5-88

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, FRONT PANEL ASSEMBLY (Continued)		
0531	NOT USED	
0532	```SHIELD, ELECTRICAL CONNECTOR: Cres, passivated finish; 1.411 in. by 1.425 in. by 2.912 in. o/a dim.; Mfr 13499 part no. 548-8801-002```	5-94
0533	WINDOW, DIAL: Glass; colorless; 0.586 in. dia, 0.093 in. thk o/a dim.; Mfr 13499 part no. 548-8949-002	5-88
0534	WINDOW, DIAL: Glass; colorless; 0.961 in. dia, 0.093 in. thk o/a dim.; Mfr 13499 part no. 548-8950-002	5-94
0535	WINDOW, DIAL: Glass; 0.093 in. by 1.046 in. by 1.890 in. o/a dim.; Mfr 13499 part no. 548-8807-002	5-94
0536	GASKET, FLAT: Synthetic rubber; 0.062 in. by 1.093 in. by 2.156 in. o/a dim.; four 0.116 in. dia holes mtg centers; $0.468 \mathrm{in} . \mathrm{w}$ by 1.906 in .1 g aperture; Mfr 13499 part no. 548-8948-002	5-88
0537	GASKET, FLAT: Same as 0536	5-88
0538	GASKET, PLATE: Synthetic rubber; 0.062 in. by 2.750 in. by 2.750 in. o/a dim.; Mfr 13499 part no. 548-8810-002	5-88
0539	BUTTON, DETENT: Cres; 0.468 in. dia by 2.250 in. 1 g o/a dim.; no. 6-32 thd, 0.040 in. dia w/undercut; Mfr 13499 part no. 548-8792-002	5-88
0540	BUTTON, DETENT: Same as 0539	5-88
0541	EXTENTION, BUTTON: Cres, passivated finish; 0.312 in. by 0.312 by 0.750 in. o/a dim, no. 6-32 tapped hole, 0.250 in. deep one end; Mfr 13499 part no. 548-8793-002	5-88
0542	EXTENSION, BUTTON: Same as 0541	5-88
0543	SPRING, BUTTON: Cres, passivated finish 0.038 in. dia wire, squared and ground ends; 8-3/4 total coils; 6-3/4 active coils; 0.270 in. id; 0.346 in. od; 0.718 in. lg; Mfr 13499 part no. 548-8799-002	5-88
0544	SPRING, BUTTON: Same as 0543	5-88
0545	TOOL, ADJUSTMENT: Two working ends; 0.187 in. dia by 5.179 in. 1 g o/a dim.; Mfr 13499 part no. 548-8856-002	5-88
0546	SHAFT, BEARING: Cres, passivated finish; 0.500 in.dia by 2.437 in. $1 g$; no. $8-32$ external thd, 0.345 in .1 g one end, 0.715 in. lg other end; Mfr 13499 part no. 548-8894-002	5-95
0547	INSERT, FRICTION: Vulkolon; 2.234 in. dia by 0.125 in. thk o/a dim.; twenty 0.140 in . dia holes equally spaced 18 degrees apart on a 1.875 in. dia bolt circle; 1.025 in. id; Mfr 13499 part no. 548-8895-002	5-95
0548	GEAR, SPUR: Bronze; 2.417 in. dia by 0.515 in .1 g o/a dim.; 114 teeth; 20 degree pressure angle; 48 diametral pitch; Mfr 13499 part no. 548-8896,002	5-95
0549	RETAINER, BEARING: Aluminum, chromate dip; 0.305 in. id, 1.000 in. od, 0.125 in. thk; Mfr 13499 part no. 548-8899-002	5-95
0550	RETAINER, BEARING: Same as 0549	5-95

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, FRONT PANEL ASSEMBLY (Continued)		
0551	SLEEVE, BEARING, INNER: Cres, passivate finish; 0.1885 in. id; 0.250 in. od, 0.250 in. $1 g$; Mfr 13499 part no. 548-8898-002	5-95
0552	WASHER, FLAT: Cres, passivate finish; 0.312 in. id, 0.498 in. od, 0.006 in. thk; Mfr 13499 part no. 547-2318-003	5-95
0553	WASHER, FLAT: Same as 0552	5-95
0554	SLEEVE, BEARING: Cres, passivate finish; 0.400 in. id, 0.4980 in. od, 0.118 in. thk; Mfr 13499 part no. 548-8897-002	5-95
0555	BEARING, BALL, ANNULAR: Stainless steel; extra small single row radial bearing, with two removable shields; 0.1875 in. by 0.1960 in. by 0.5000 in.; Mfr 21335 part no. AM33KDD5FS227	5-95
0556	BEARING, BALL, ANNULAR: Same as 0555	5-95
0557	NOT USED	
0558	HOLDER: Synthetic rubber; 0.281 in. by 0.375 in. by 0.500 in . o/a dim.; 0.093 in. w opening; Mfr 13499 part no. 548-8826-002	5-88
0559	HOLDER: Same as 0558	5-88
0560	GASKET: Synthetic rubber; 5.859 in. id, 6.137 in. od, 0.139 in. thk; Mfr 86579 part no. 909-35-722-70	5-88
0561	PIVOT, DOOR: Cres, enameled finish; 0.312 in. dia by 0.359 in. $1 g$ o/a dim; groove 0.047 in. w by 0.175 in. dia; Mfr 13499 part no. 548-8968-00	5-88
0562	PIVOT, DOOR: Same as 0561	5-88
0563	BEARING, BALL, ANNULAR: Single row; radial; flanged, double shielded; cres; 0.125 in. id, 0.319 in. od, 0.140 in. w; Mfr 40920 part no. S518FCHHP37L02	5-100
0564	BEARING, BALL, ANNULAR: Same as 0563	5-100
0565	BEARING, BALL, ANNULAR: Same as 0563	5-100
0566	BEARING, BALL, ANNULAR: Same as 0563	5-100
0567	BEARING, BALL, ANNULAR: Same as 0563	5-100
0568	BEARING, BALL, ANNULAR: Same as 0563	5-100
0569	DISK, CLUTCH: Cres, 0.0250 in. thk by 0.937 in. dia; 3 grooves 1/16 in. w; Mfr 13499 part no. 542-4525-002	5-100
0570	DISK, CLUTCH: Same as 0569	5-100
0571	GEAR, CLUTCH: C/O bronze bearing; 0.050 in. thk by 0.3130 in. id by 0.4395 in. od and copper spur gear w/52 teeth, diametral pitch $48,20^{\circ}$ pressure angle, 1.0833 in. std pitch dia, 0.040 in. w face, 0.070 in. w overall; Mfr 13499 part no. 542-4560-002	5-100
0572	GEAR, CLUTCH: Same as 0571	5-100
0573	BEARING, FLANGE: Bronze; flanged; 0.171 in. by 0.500 in. by 1.124 in. o/a; 0.1875 in. dia bore; Mfr 13499 part no. 542-4607-002	5-100
0574	PAWL ASSEMBLY: 0.128 in. by 1.118 in. by 1.147 in o/a dim; Mfr 13499 part no. 〔48-8911-002	5-100

Table 6-2. Maintenance Parts List (Continued)

REF DESIG	NAME AND DESCRIPTION
AM-1565/URC, RF AMPLIFIER, FRONT PANEL ASSEMBLY (Continued)	

0575

CLAMP: Stainless steel, anodized finish; 0.200 in. w o/a 0.295 in. from loop center to nearest mtg hole center; 0.250 in. loop 1d; 0.468 in. approx distance from loop center to end of tongues; w/o fastening device; Mfr 03565 part no. B-6455
CLAMP: Cres, passivate finish; two no. 6-40 securing holes spaced 90 degrees apart; 0.625 in. dia by 0.200 in . 1 g o/a dim.; 0.250 in. id; Mfr 13499 part no. 548-8907-002
GEAR: Cres; 0.968 in. dia by 0.860 in. 1 g o/a dim.; two complements of teeth, 16 and 60; diametral pitch; 48 and 64 respectively; Mfr 13499 part no. 548-8870-002
GEAR: Cres; 1.291 in. dia by 0.907 in .1 g o/a dim.; two complements of teeth; 14 and 60; diametral pitch for both gears; 48; Mfr 13499 part no. 548-8873-002
GEAR: Cres; 1.416 in . dia by $0.907 \mathrm{in}$.lg o/a dim, two complements of teeth, 16 and 66; diametral pitch for both gears; 48; Mfr 13499 part no. 548-8876-002
ARM, LEFT, ACTUATING: 0.562 in. by 2.406 in .6 .281 in o/a dim.; Mfr 13499 part no. 548-8832-003
ARM ASSEMBLY, RIGHT, ACTUATING: 0.562 in. by 2.406 in. by 6.281 in. o/a dim.; Mfr 13499 part no. 548-8833-003

NOT USED
SHAFT, SWITCH: Cres, passivate finish; 0.186 in. dia by 3.750 in. 1 g o/a dim.; Mfr 13499 part no. 548-8879-002

SHAFT: Cres shaft; 1.000 in. dia by 3.750 in. 1 g o/a dim.; Mfr 13499 part no. 548-8883-002
DIAL, CHANNEL: Aluminum, black anodized finish; 1.937 in. dia by 0.063 in. thk o/a; two 0.136 in.dia holes countersunk to 0.230 in . dia, equally spaced on a 0.656 in . dia bolt circle; one 0.203 in. dia hole centrally located; marked w/numbers 1 thru 19, m; Mfr 13499 part no. 548-8884-002
GEAR, IDLER: Cres; 0.896 in. dia by $0.687 \mathrm{in}$.1 g o/a dim.; 41 teeth complement; diametral pitch; 48; 0.125 in. w across face; Mfr 13499 part no. 548-8918-003
CLAMP: Cres; 0.562 in. dia by $1.687 \mathrm{in}$.lg o/a dim; two no. $6-40$ thd holes spaced 90 deg c to c; Mfr 13499 part no. 548-8880-002
CLAMP: Cres; 0.562 in. dia by $1.531 \mathrm{in}$.lg o/a dim.; two no. $6-40$ thd holes spaced 90 deg apart; Mfr 13499 part no. 548-8881-002
NOT USED
NOT USED
PIN, ACTUATING: Plastic, 0.140 in . dia by $0.449 \mathrm{in} . \mathrm{lg}$ o/a; Mfr 13499 part no. 548-7773-002
CONNECTOR,RECEPTACLE, ELECTRICAL: 75 male contacts and 2 male and 2 female guide pins; 7.5 amps; arc resistant plastic dielectric; Mfr 81312 part no. MRE75PNSSTYPEll

FIG NO.

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{array}{\|l\|} \hline \text { FIG } \\ \text { NO } \end{array}$
AM-1565/URC, RF AMPLIFIER, FRONT PANEL ASSEMBLY (Continued)		
P502	CONNECTOR, PLUG, ELECTRICAL: MS35168-88E type UG-88E/U P/O W-552	5-94
P503	CONNECTOR, RECEPTACLE: 41 male contacts with 2 polarizing pins; arc resistant plastic dielectric; 5 amps; Mfr 80586 part no. GM41M79	5-94
P504	CONNECTOR, RECEPTACLE: Same as P503	5-94
P505	CONNECTOR, PLUG, ELECTRICAL: UG-913A/U; brass she11, tefion ins; silver plated finish; rt angel, one coaxial contact P/O W-553	5-94
R501	RESISTOR, VARIABLE: 500 ohms $\pm 10 \%$, 25 w; Mfr 13499 part no. 749-4715-00	5-94
R502	RESISTOR, FIXED; MIL-R-10509 type RN70B1003F	5-94
R503	RESISTOR, FIXED: MIL-R-10509 type RN75B10004F	5-94
R504	RESISTOR, FIXED: MIL-R-10509 type RN70B2261F	5-94
R505	RESISTOR, FIXED: MIL-R-10509 type RN70B10004F	5-94
R506	RESISTOR, VARIABLE: LINEAR PRECISION: One section 10,000 ohms $\pm 5 \%$, 5% independent linearity; Mfr 13499 part no. 381-1452-00	5-94
R507	RESISTOR, VARIABLE: 10,000 ohms $\pm 5 \%$, 1.5 w; Mfr 13499 part no. 381-1453-00	5-94
R508	RESISTOR, VARIABLE: Same as R507	5-94
R509	RESISTOR, VARIABLE: Same as R507	5-94
R510	RESISTOR, VARIABLE: Same as R507	5-94
R511	RESISTOR, VARIABLE: Same as R507	5-94
R512	RESISTOR, VARIABLE: Same as R507	5-94
R513	RESISTOR, VARIABLE: Same as R507	5-94
R514	RESISTOR, VARIABLE: Same as R507	5-94
R515	RESISTOR, VARIABLE: Same as R507	5-94
R516	RESISTOR, VARIABLE: Same as R507.	5-94
R517	RESISTOR, VARIABLE: Same as R507	5-94
R518	RESISTOR, VARIABLE: Same as R507	5-94
R519	RESISTOR, VARIABLE: Same as R507	5-94
R520	RESISTOR, VARIABLE: Same as R507	5-94
R521	RESISTOR, VARIABLE: Same as R507	5-94
R522	RESISTOR, VARIABLE: Same as R507	5-94
R523	RESISTOR, VARIABLE: Same as R507	5-94
R524	RESISTOR, VARIABLE: Same as R507	5-94
R525	RESISTOR, VARIABLE: Same as R507	5-94
R526	RESISTOR, FIXED, COMPOSITION: MIL-R-11 type RC20GF154K	5-94
R527	RESISTOR, VARIABLE: 10,000 ohms $\pm 10 \%$, 2 w ; Mfr 13499 part no. 750-4625-00	5-94
R528	RESISTOR, FIXED: MIL-R-11 type RC20GF123k	5-94.
R529	NOT USED	
R530	RESISTOR, FIXED: Same as R504	5-94
K531	RESISTOR, VARIABLE: 2000 ohms $\pm 5 \%$, 1 w; Mfr 80294 part no. $224 \mathrm{~S} 1-202 \mathrm{M}$	5-94

Table 6-2. Maintenance Parts List (Continued)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, FRONT PANEL ASSEMBLY (Continued)		
R532	RESISTOR, VARIABLE: Same as R531	5-94
R533	RESISTOR, FIXED: MIL-R-10509 type RN70B7871F	5-94
R534	RESISTOR, FIXED: Same as R502	5-94
R535	RESISTOR, FIXED: Same as R504	5-94
R536	RESISTOR, FIXED: MIL-R-10509 type RN70B17R8F	5-94
S 501	SWITCH, TOGGLE: MLL type MS35059-22	5-94
S502	SWITCH, ROTARY: 2 circuit, 2 pole, 12 positions 2 section; 1 moving and 12 fixed contacts; Mfr 76854 part no. $217381 F 2$	5-94
S503A	SWITCH SECTION, ROTARY: 2 poles, 2 moving and 12 fixed contacts; 2 amp, $28 \mathrm{vdc}, 1$ amp $100 \mathrm{vac} ; \operatorname{Mfr} 76854$ part no. 217317 RK	5-96
S503B	SWITCH SECTION, ROTARY: Same as S503A	5-96
S503C	SWITCH, SECTION, ROTARY: Same as S503A	5-96
S503D	SWITCH, SECTION, ROTARY: 1 pole, 1 moving and 2 fixed contacts; 2 amp, $28 \mathrm{vdc}, 1 \mathrm{amp} 100 \mathrm{vac} ; \operatorname{Mfr} 76854$ part no. 217316 RK	5-96
S503E	SWITCH SECTION, ROTARY: 1 pole, 2 moving and 9 fixed contacts; $2 \mathrm{amp}, 28 \mathrm{vdc}, 1 \mathrm{amp}, 100 \mathrm{vac} ; \mathrm{Mfr} 76854$ part no. 217319 RK	5-96
S503F	SWITCH SECTION, ROTARY: 1 pole, 1 moving and 21 fixed contacts; $2 \mathrm{amp}, 28 \mathrm{vdc}, 1 \mathrm{amp}, 100 \mathrm{vac}, \mathrm{Mfr} 03565$ part no. B-6469	5-96
S503G	SWITCH SECTION, ROTARY: Same as S503F	5-96
S504	SWITCH, ROTARY: 2 circuit, 2 pole, 20 position, 1 section; 2 moving and 12 fixed contacts; Mfr 76854 part no. 191996RKl	5-94
S505	SWITCH, ROTARY: 4 circuit, 4 pole, 12 position, 1 section; 4 moving and 12 fixed contacts; Mfr 76854 part no. 192194 Fl	5-94
S506	SWITCH, ROTARY: 1 circuit, 1 pole, 12 position, 1 section; 1 moving and 5 fixed contacts; Mfr 76854 part no. $192193 F 1$	5-94
S507	SWITCH, ROTARY: Same as S505	5-94
S508	SWITCH, TOGGLE: MIL type MS35058-22	5-94
TB501	TERMINAL BOARD: Plastic; incl 4 terminals 0.093 in. by 1.750 in. by 2.125 in. board dim.; Mfr 13499 part no. 548-8841-002	5-94
TB502	TERMINAL BOARDS: Plastic; inc1 24 terminals; 0.093 in. by 2.500 in. by 3.156 in. board dim.; Mfr 13499 part no. 548-8844-003	5-94
W500-551	NOT USED	
W552	CABLE ASSEMBLY: Coaxial cable terminated ea end w/plug connector; 3-9/16 in. 1 g o/a; Mfr 13499 part no. 548-8779-002 P/0 P-211 \& P-502	5-87
W553	CABLE ASSEMBLY: Coaxial cable terminated ea end w/plug connector; 20 in 1 g o/a; $\mathrm{P} / \mathrm{O} \mathrm{P}-2 \mathrm{C3} \& \mathrm{P}-505$; Mfr 13499 part no. 548-8780-002	5-87
XDS501	LIGHT, INDICATOR: Aluminum alloy case, ceramic insulation, silver plated brass contactis, red transperent plastic lens; 0.745 in. dia by 1.203 in . Ig o/a dim.; Mfr 81640 part no. L5105BR1	5-94
XDS502	```LIGHT, INDICATOR: Supplied with lens 7/16 in. dia, nylon clear smooth face frosted back; flange mtd lens holder, nickel plated; Mfr 99707 part no. Ll025RGR```	5-94

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
AM-1565/URC, RF AMPLIFIER, FRONT PANEL ASSEMBLY (Continued)		
XDS503	LIGHT, MODIFIED: w/lens, 0.406 in. dia, plastic black smooth face; lamp accommodation - 1 incandescent type midget flange base; T-1-3/4 bulb; 0.750 in . by 1.187 in . by 1.291 in . o/a dim.; 2 terminals solder lug w/white lacquer on end of bulb; Mfr 13499 part no. 548-8806-002	5-88
XDS504	LIGHT, MODIFIED: Same as XDS503	5-88
XDS505	LIGHT, INDICATOR: To accommodate T-1-3/4 midget flange base lamp; Mfr 72914 part no. A8630-1C	5-88
XDS506	LIGHT, INDICATOR: Same as XDS502	5-88
XF501	FUSEHOLDER: C/O four extractor post type fuseholders, inclosed in phenolic; accommodates four cartridge type fuses $1 / 4$ dia by $1-1 / 4 \mathrm{in} .1 \mathrm{~g} ; 300 \mathrm{vdc}$ at $0.5 \mathrm{amps} ; 2.280 \mathrm{in}$. o/a; Mfr 75915 part no. 340129	5-94
XF502	FUSEHOLDER: Same as XF501	5-94
AM-1565/URC, RF AMPLIFIER, BLOWER ASSEMBLIES \& INSTALLATION KIT		
$\begin{aligned} & \text { UNIT 3A6 } \\ & (\mathbf{1 0 0 1 -} \\ & 1099) \end{aligned}$	BLOWER ASSEMBLY: ac; direct connected, $115 \mathrm{v}, 60 \mathrm{~Hz}$, single phase; 0.38 amps running, 0.77 amps stalled; 40 w full load; 3350 rpm ; incl mtg plate; Mfr 13499 part no. 548-8493-004	5-115
B1001	FAN, CENTRIFUGAL: 115 vac, 0.380 amp input, 60 cycle single phase; $40 \mathrm{w} ; 3350 \mathrm{rpm} ; 4.468 \mathrm{in}$. by 6.062 in. by 6.406 in. o/a dim.; Mfr 82877 part no. AO-34404	5-115
C1001	CAPACITOR, FIXED, PAPER DIELECTRIC: $220 \mathrm{vac}, 1.0$ uf $\pm 20 \%-10 \%$ metal case, uninsulated, hermetically sealed; $1-1 / 6$ in. thk, 1-13/16 in. w, 2 in. high; Mfr 56289 part no. P47201	5-115
H1001	BUSHING, CAPTIVE: Cres; 0.312 in. dia by 0.671 in .1 g o/a dim.; Mfr 13499 part no. 548-8961-002	5-115
01001	GASKET, BLOWER: Synthetic rubber; 0.375 in. by 1.140 in. by 2.453 in. o/a dim.; Mfr 13499 part no. 548-8490-003	5-115
01002	GASKET, DUCT: Synthetic rubber; 0.031 in. by 2.750 in . by 6.437 in. o/a dim.; Mfr 13499 part no. 548-8485-002	5-115
01003	NOT USED	
01004	PAD: Rubber; 0.093 in. by 1.062 in. by 2.031 in. o/a dim.; Mfr 13499 part no. 548-8963-002	5-115
01005	ARM, SWITCH ACTUATOR: Stainless steel, 2.65 in. 1 g , Vane no. 1350; Mfr 82877 part no. KM1 0935-2	5-115
01006	COVER, ELECTRICAL CONNECTOR: Metallic and nonmetallic materials $0.781 \mathrm{in} . \mathrm{dia} 1.281 ; \mathrm{Mfr} 02660$ part no. 26-834	5-115
01007	AIR DUCT: Brass; 2.500 in . by 2.643 in. by 6-19/64 in.; Mfr 13499 part no. 548-8495-004	5-115
P1001	CONNECTOR, RECEPTACLE: MIL type MS24040	5-115
S1001	SWITCH, SENSITIVE: spdt; 125 or 250 vac, $5 \mathrm{amps} ;$ Mfr 13499 part no. 260-3039-00	5-115

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \end{aligned}$
AM-1565/U	RF AMPLIFIER, BLOWER ASSEMBLIES \& INSTALLATION KIT (Continued)	
$\begin{aligned} & \text { UNIT 3A7 } \\ & (1101- \\ & 1199) \end{aligned}$	BLOWER ASSEMBLY: ac; direct connected; $115 \mathrm{v}, 60 \mathrm{~Hz}$, single phase; 1.0 amp running; 2.05 amp stalled; 110 w full load; 3200 rpm ; incl mtg plate; Mfr 13499 part no. 548-8471-005	5-90
B1101	FAN, CENTRIFUGAL: $115 \mathrm{vac}, 1$ amp input, 60 cycle, single phase; $110 \mathrm{w} ; 3200 \mathrm{rpm} ; 2.250 \mathrm{in}$. by 7.218 in . by 7.781 in . o/a dim.; Mfr 82877 part no. AO-34403	5-90
C1101	CAPACITOR, FIXED, PAPER DIELECTRIC: 4 uf $\pm 10 \%, 600 \mathrm{vdc}$; Mfr 01002 part no. 23Fl011G2	5-90
P1101	CONNECTOR, RECEPTACLE: MIL type MS24040	5-90
S1101	SWITCH, THERMOSTATIC: Metal case; 5 amps at 240 vac resistive load; manual reset type; \#l8 wire; hermetically sealed; Mfr 96214 part no. C4391S14-37	5-90
UNIT 3A8	INSTALLATION KIT: MK-621/UR; inc1 2 mtg angles, 2 supports and hardware in cotton bag; Mfr 13499 part no. 548-8409-00	5-90
AN/SRC-20() and AN/SRC-21() CABLE ASSEMBLIES		
4W-1604	CABLE ASSEMBLY, RADIO FREQUENCY: CG-2232/U, RG-213/U Coaxial cable terminated ea. end w/plug connector; 4-1/2 in. long excl termination; 7-1/2 in. lg. o/a; Mfr 13499 part no. 593-8294-002	7-1
P-1921	CONNECTOR, PLUG, ELECTRICAL: MIL type UG710AU	
P1922	CONNECTOR, PLUG, ELECTRICAL: Same as P1921	
5W-1902	CABLE ASSEMBLY, POWER ELECTRICAL: CX-6102/U (2 ft) 600 vac voltage rating; 2 conductors terminated ea end w/2 bushing and 1 plug connector; 1 ft 11-3/4 in. 1g. o/a; Mfr 13499 part no. 593-7986-003	$\begin{aligned} & 7-1 \\ & 7-2 \end{aligned}$
P1914	CONNECTOR, PLUG, ELECTRICAL: MIL type MS3108R16-10P	
P-1911	CONNECTOR, PLUG, ELECTRICAL: MIL type MS3108R16-10S	
6W-1905	CABLE ASSEMBLY, POWER, ELECTRICAL: CX-6102/U (3.5 ft) 600 vac voltage rating; 2 conductor cable; terminated ea end w/bushing and plug connector; 3 ft 8 - $3 / 4 \mathrm{in} .1 \mathrm{~g}$. o/a; Mfr 13499 part no. 593-7989-003	7-1
P-1909	CONNECTOR, PLUG, ELECTRICAL: Same as P-1914	
P-1915	CONNECTOR, PLUG, ELECTRICAL: Same as P-1911	
7W-1906	CABLE ASSEMBLY, POWER ELECTRICAL: CX-6105/U (1.5 ft) 600 vac voltage rating; 16 conductor terminated ea end w/2 bushings and plug connector; i ft 6-5/32 in. lg. o/a; Mfr 13499 part no. 593-7990-003	7-1
P-1916	CONNECTOR, PLUG, ELECTRICAL: MIL type MS3108R24-7PY	
P-1917	CONNECTOR, PLUG, ELECTRICAL: MIL type MS3108R24-7P	
8W-1907	CABLE ASSEMBLY, POWER ELECTRICAL: CX-6105/U (3.5 ft) 600 vac voltage rating; 16 conductors terminated ea end w/2 bushings and plug connector; $3 \mathrm{ft} 4-5 / 32 \mathrm{in} .1 \mathrm{~g}$. o/a; Mfr 13499 part no. 593-7991-003	7-1

Table 6-2. Maintenance Parts List (Continued)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG } \\ & \text { NO. } \\ & \hline \end{aligned}$
AN/SRC-20() and AN/SRC-21() CABLE ASSEMBLIES (Continued)		
$\begin{aligned} & \text { P1918 } \\ & \text { P-1919 } \\ & 9 W-1908 \end{aligned}$	CONNECTOR, PLUG, ELECTRICAL: Same as P-1917 CONNECTOR, PLUG, ELECTRICAL: Same as P-1916 CABLE ASSEMBLY, POWER, ELECTRICAL: CX-6104/U 600 vac voltage rating; 16 conductors terminated ea end $w / 1$ bushing and 1 plug connector; $2 \mathrm{ft} 5 / 32 \mathrm{in} .1 \mathrm{~g} / \mathrm{o} / \mathrm{a} ; \mathrm{Mfr} 13499$ part no. 593-7992-003	7-2
$\begin{aligned} & \text { P-1917 } \\ & \text { P-1919 } \end{aligned}$	CONNECTOR, PLUG, ELECTRICAL: Same as P-1917 CONNECTOR, PLUG, ELECTRICAL: Same as P-1916	
ELECTRICAL EQUIPMENT RACKS MT-2299/UR and MT-2300/UR		
$\begin{aligned} & \text { UNIT } 10 \\ & \text { MT-2300/ } \\ & \text { UR } \end{aligned}$	RACK, ELECTRICAL EQUIPMENT: MT-2300/UR; aluminum, gray enameled finish; 22.062 in. by 27 in. by 32.032 in. o/a dim. provides mtg. facilities for the AN/URC-9A and C-3866/SRC; Mfr 03565 part no. D-6439	1-1B
H2004	LEAD, GROUND: Bronze, silver plated; 0.010 in. by $3 / 4$ in. by 6-1/2 in.; Mfr 13499 part no. 593-7969-002	7-2
H2005	SPACER, SLEEVE: Cres, cadmium plated; 0.390 in. id, 0.625 in. od, $0.515 \mathrm{in}$.1 g ; Mfr 13499 part no. 593-7967-002	7-2
H2006	MOUNT, RESILIENT: Aluminum and synthetic rubber; 2.53 in . by 3.25 in. by 3.25 in.; Mfr 76005 part no. HTCl10	7-2
H2007	GUIDE PIN ASSEMBLY: $5 / 8 \mathrm{in}$. by $2-1 / 8 \mathrm{in} .1 \mathrm{~g}$; stainless steel; threaded $3 / 8-16$ one end with hex nut and lock washer; mounts on H2003 in MT-2299/UR and one 02003 in MT-2300/UR BuShips Dwg. STD 404/S6700-SK1659333	$\begin{aligned} & 7-1 \\ & 7-2 \end{aligned}$
H2008	GUIDE PIN ASSEMBLY: Same as H2007	$7-1$, $7-2$
02001	ANGLE, HOLDDOWN: Steel w/rubber: bumper; $1-1 / \dot{4}$ in. by $1-1 / 2$ in. by 13-3/4 in.; Mfr 13499 part no. 554-7068-003	7-2
02002	BAR, HOLDDOWN: Cres, grey enamel finish; 0.500 in. by $1-1 / 2$ in. by 13-3/4 in.; Mfr 13499 part no. 756-3156-003	7-2
02003	PLATE, HOLDDOWN: Cres, grey enamel finish; 0.250 in. by 8 in. by 20-1/4 in.; Mfr 13499 part no. 554-7069-003	1-1A
$\begin{aligned} & \text { MT-2299/ } \\ & \text { UR } \end{aligned}$	```RACK, ELECTRICAL EQUIPMENT MT-2299/UR: Aluminum, grey enameled finish; 22.062 in. by 27 in. by }52.593 in. o/a dim. provides mtg facilities for the AN/URC-9A, C-3866/SRC and AM-1565/URC; Mfr 03565 part no. D-6440```	7-1
H2004	LEAD, GROUND: Bronze, silver plated; 0.010 in. by $3 / 4$ in. by by 6-1/2 in.; Mfr 13499 part no. 593-7969-002 (MT-2299/UR)	7-1
H2005	MOUNT, RESILIENT: Aluminum \& synthetic rubber; 2.53 in. by 3.25 in. by 3.25 in.; Mfr 76005 part no. HTC-110	7-1
02001	ANGLE, HOLDDOWN: Steel w/rubber bumper; 1-1/4 in. by 1-1/2 in. by 13-3/4 in.; Mfr 13499 part no. 554-7068-003	7-1
02002	BAR, HOLDDOWN: Cres, grey ename1 finish; 0.500 in. by $1-1 / 2$ in by 13-3/4 in.; Mfr 13499 part no. 756-3156-003	7-1
02003	PLATE, HOLDDOWN: Cres, grey enamel finish; 0.250 in . by 8 in . by 20-1/4 in.; Mfr 13499 part no. 554-7069-003	7-1

Table 6-3. Manufacturer's Name and Code

MPR CODE	NAME
00614	Leach Corp.
00853	Sangamo Electric Co. Pickens Division
01002	Capacitor Department GECO
01121	Allen-Bradley Co.
01471	Thomas Industries Inc.
01526	General Electric Co. Specialty Control Dept. GECO

Compton, California
Pickens, S.C.
Hudson Falls, N.Y.
Milwaukee, Wisc.
Fort Atkinson, Wisc.
Waynesboro, Virginia

Indianapolis, Indiana
Waterbury, Conn.
Grafton, Wisc.
Saugerties, N.Y.
Somerville, Mass.
Paramus, N.J.
Broadview (Chicago), Ill.
Dayton, Ohio
Hartford, Conn.
Mankato, Minn.
Phoenix, Arizona

Northlake, 111.
Schiller Park, Ill.
Marion, Ohio

San Carlos, Calif.
Washington, D.C.

Table 6-3. Manufacturer's Name and Code (Continued)

MFR CODE	NAME	ADDRESS
07707	United Shoe Machinery Corp. Fastener Division	Shelton, Conn.
08664	Bristol Co., The	Waterbury, Conn.
09299	Frank Industries Division of Franklin Research and Development Corp.	Worcester, Mass.
09922	Burndy Corp.	Norwalk, Conn.
10646	Carborundum Co.	Niagara Falls, N.Y.
11453	Precision Connectors Inc.	Jamaica, N.Y.
12697	Clarostat Mfg. Co., Inc.	Dover, N.H.
13499	Collins Radio Company	Cedar Rapids, Iowa
14655	Corne11-Dublier Electric Corp.	Newark, N.J.
14674	Corning Glass Works	Corning, N.Y.
15605	Cutler-Hammer Inc.	Milwaukee, Wisc.
16688	Ideal Precision Meter Co. Inc. De Jur Meter Division	Brooklyn, N.Y.
17771	Singer Co. the Diehl Division Finderne Plant	Somerville, N.J.
17875	Diehl Mfg. Co., The	Cleveland, Ohio
18911	Durant Mfg. Co.	Milwaukee, Wisc.
21335	Fafnir Bearing Co., The	New Britian, Conn.
25117	Globe Co., The	Chicago, Ill
25140	Globe Industries, Inc., Div. of TRW	Dayton, Ohio
25472	Goodrich, B.F. Co., The	Akron, Ohio
35344	Leach Corp. Leech Relay Co. Division	Los Angeles, Calif.
44655	Ohmite Mfg. Co.	Skokie, I11.
49671	Radio Corp. of America	New York, N.Y.

Table 6-3. Manufacturer's Name and Code (Continued)

MFR CODE	NAME	ADDRESS
49956	Raytheon Co.	Lexington, Mass.
53021	Sangamo Electric Co.	Springfield, I.11.
56289	Sprague Electric Co.	North Adams, Mass.
60399	Torrington Mfg. Co.	Torrington, Conn.
70417	Amplex Div. of Chrysler Corp.	Detroit, Mich.
70674	ADC Products Inc.	Minneapolis, Minn.
70764	Wilson Fastener	Cleveland, Ohio
70998	Bird Electronic Corp.	Cleveland, Ohio
71400	Bussmann Fuse Division of McGrawEdison, Co.	St. Louis, Mo.
71450	C.T.S. Corp.	E1khart, Ind.
71468	I.T.T. Cannon Electric Inc.	Los Angeles, Calif.
71482	Clare, C.P. and Co.	Chicago, 111.
71590	Centralab Division of Globe-Union Inc.	Milwaukee, Wisc.
71785	Daval Rubber Co.	Providence, R.I.
72002	Eitel-McCullough Inc.	San Bruno, Calif.
72136	Electro Motive Mfg. Co.	Willimantic, Conn.
72914	Grimes Mfg. Co.	Urbana, Ohio
72962	Elastic Stop Nut Corp. of America	Union, N.J.
72982	Erie Technological Products Inc.	Erie, Pa.
73138	Helipot Division of Beckman Instruments Inc.	Fullerton, Calif.
73899	J.F.D. Electronics Corp.	Brooklyn, N.Y.
78468	FXR Division of Amphenol-Borg Electronics Corp.	Danbury, Conn.
75915	Littlefuse, Inc.	Des Plaines, Ill.

Table 6-3. Manufacturer's Name and Code (Continued)

MFR CODE	NAME	ADDRESS
76005	Lord Mfg. Co.	Erie, Pa.
76665	National Lock Washer Co.	Newark, N.J.
76854	Oak Mfg. Co.	Crystal Lake, 111.
77523	R.B.M. Mfg. Co.	Fort Wayne, Ind.
78189	Shakeproof Division of Illinois Tool Works	Elgin, Ill
78277	Sigma Instruments Inc.	So. Braintree, Mäss.
78488	Stackpole Carbon Co.	St. Marys, Pa.
79136	Waldes Kohinoor Inc.	Cambridge, Mass.
79497	Western Rubber Co.	Goshen, Ind.
80058	Joint Electronic Type Designation System	
80223	United Transformer Co.	New York, N.Y.
80294	Bourns Laboratories Inc.	Riverside, Calif.
80368	Sylvania Electric Products Inc.	New York, N.Y.
80586	Gorn Electric Co. Inc.	Stamford, Conn.
81183	Doehler Jarvis Corp. Division of National Lead Co.	Grand Rapids, Mich.
81312	Winchester Electronics Co. Inc:	Norwalk, Conn.
81349	Military Specifications Promulgated by Standardization Div. Directorate of Logistic Services DSA	
81350	Joint Army-Navy Specifications Promulgated by Standardization Div. Directorate of Logistic Services DSA	
81460	Control Switch Division Controls of America	Folcroft, Pa.
81815	Communications Coil Co.	Chicago, Ill.
81860	Barry Controls Division of Barry	Watertown, Mass.
82104	Grigsby Co. Inc., The	Arlington, Heights, t 11.

Table 6-3. Manufacturer's Name and Code (Continued)

MFR CODE	NAME	ADDRESS
82142	Jeffers Electronics Div. of Speer Carbon, Co.	DuBois, Pa.
82144	Jones M. C. Electronics Co.	Bristol, Conn.
82227	Haydon A. W. Co.	Waterbury, Conn.
82805	Metal Textile Corp.	Rosell, N.J.
82877	Rotron Mfg Co. Inc.	Woodstock, N.Y.
83827	Resistors, Inc.	Chicago, Ill.
86579	Precision Rubber Products Corp.	Dayton, Ohio
88044	Aeronautical Standards Group Dept. of Navy and Air Force	
88063	Collins Radio Company Components Div.	Santa Ana, Calif.
89114	DuBrow Electronic Industries, Inc.	Burlington, N.J.
90177	Solar Capacitor Sales Corp.	North Bergen, N.J.
90526	Clippard Instrument Laboratory Inc.	Cincinnati, Ohio
91314	Lewis Spring and Mfg Co.	Chicago, Ill.
91491	Lionel Electronic Laboratories Division of the Lionel Toy Corp.	Hillside, N.J.
91637	Dale Electronics Inc.	Columbus, Nebraska
91662	Elco Corp.	Willow Grove, Pa.
91816	James-Pond-Clark Co.	Pasadena, Calif.
91929	Honeywell Inc. Micro Switch Division	Freeport, Ill.
94375	Automatic Metal Products Co.	Brooklyn, N.Y.
94991	Sylvania Electric Products Inc. Wire, Metal and Plastics Parts Div.	Warren, Pa.
95105	Collins Radio Company Information Science Center	Newport Beach, Calif.
95238	Continental Connector Corporation	Woodside, N.Y.

Table 6-3. Manufacturer's Name and Code (Continued)

MFR CODE	NAME	ADDRESS
96214	Texas Instruments Inc. Apparatus Division	Dallas, Texas
96906	```Military Standard Promulgated by Standardization Div. Directorate of Logistic Services DSA```	
97954	U.S. Components, Inc.	Bronx, N.Y.
97965	Stancor Electronics Inc.	Chicago, Ill.
98278	Microdot Inc.	South Pasadena, Calif.
98291	Selectro Corp.	Mamaroneck, N.Y.
98738	Stewart-Warner Electronics	Chicago, Ill.
99699	Filtors Inc.	East Northport, N.Y.
99707	Control Switch Division Controls Co. of America	El Segundo, Calif.
99800	Delevan Electronics Corp.	East Aurora, N.Y.

CHAPTER 7

INSTALLATION

7-1. UNPACKING AND HANDLING.

> CAUTION

Handle the equipment with care; use adequate lifting and transport gear to avoid mechanical shock which might cause component damage.

7-2. GENERAL. The radio set is packed for shipment in a single crate. When it is received, select a convenient location where it may be unpacked without exposure to the elements. Set the crate in the position indicated by crate markings before opening.

CAUTION

When removing nails from the packing crate, use a nail puller. Never use a bar or other tool that may damage the equipment.

7-3. MECHANICAL CHECK. Check the equipment against the packing slip and list of equipment supplied (see table 1-5). Check equipment for internal damage; determine that all tubes are in place. Immediately report any shortage of material or damaged parts.

7-4. POWER REQUIREMENTS.
7-5. Radio Sets AN/SRC-20() and AN/SRC21 () can be operated from a primary power source of 115 or 230 volts, $50 / 60 \mathrm{~Hz}$.

CAUTION

The servo system in Radio Frequency Amplifier AM-1565/ URC is factory-tuned for 60 Hz ; when the AN/SRC-20() is to be used on 50 Hz , this servo system
must be retuned to 50 Hz , using the procedure in Chapter 5, paragraph 5-106.

7-6. Primary power distribution is shown in figures 5-131, 5-132, and 5-134. Radio Set AN/SRC-20() requires 540 watts on receive and 1550 watts on transmit, both at 0.9 power factor; Radio Set AN/SRC-21() requires 290 watts at 0.92 power factor on receive and 455 watts at 0.95 power factor on transmit.

7-7. Both the AN/SRC-20() and the AN/ SRC-21() are shipped ready for 115volt operation. To operate either set on 230 volts, it is necessary to change the primary power fuses and voltage selectors; see paragraph 7-17, steps b through d.

7-8. SITE SELECTION.

7-9. The selected location should provide sufficient space and light to operate and maintain the equipment properly. It should be noted that sufficient space is required in front of the equipment to allow individual units to be extended or removed from the mounting rack.

7-10. INSTALLATION REQUIREMENTS.
7-11. SHIP INSTALLATION. The latest approved ship installation plans should be used for installation of this equipment. The installing personnel should be familiar with the operation of Radio Sets AN/SRC-20() and AN/SRC-21 () before attempting installation.

7-12. EQUIPMENT MOUNTING. Radio Set AN/ SRC-20() installation is shown in figure 1-A. Radio Set AN/SRC-21() installation is shown in figure $1-B$. The
corresponding outline and mounting dimensions for these installations are shown in figures 7-1 and 7-2.

7-13. INTERCONNECTING CABLING. A11 interconnecting cable drawings are contained in Chapter 5. For Radio Set AN/SRC-20 (), refer to figure 5-128; for Radio Set AN/SRC-21() refer to figure 5-129.

CAUTION

When Antenna Coupler Group AN/SRC-33 is not used, a
jumper must be installed between line filters FLll7 and FL118 (pins G and H of J 102) in Radio Set Control C-3866/ SRC (figure 5-157) to enable the transmit-receive (t / r) key line.

7-14. CABLE ASSEMBLIES.
7-15. The cable assemblies required for installation of Radio Sets AN/SRC20() and AN/SRC-21 () are listed in table 7-1.

Table 7-1. Cable Assemblies for Radio Sets AN/SRC-20() and AN/SRC-21() (Part of Equipment Supplied)

CABLE	LENGTH	AN/SRC-20()	AN/SRC-21 ()
Cable Assembly, Power CX-6102/U; Wl 902 ($115 / 230$ volts, 14.5 amp)	$1 \mathrm{ft} \mathrm{11-3/4} \mathrm{in}$.	X	X
Cable Assembly, Power CX-6102/U; W1905 (115/230 volts, 14.5 amp)	$3 \mathrm{ft} \mathrm{8-3/4} \mathrm{in}$.	X	
Cable Assembly, Special Purpose CX-6104/U, W1908	$2 \mathrm{ft} \mathrm{5/32} \mathrm{in}$.		X
Cable Assembly, Special Purpose CX-6105/U; W1906	$1 \mathrm{ft} \mathrm{6-5/32} \mathrm{in}$.	X	
Cable Assembly, Special Purpose CX-6105/U; W1907	$3 \mathrm{ft} \mathrm{4-5/32} \mathrm{in}$.		
Cable Assembly, Radio Frequency CG-2232/U; W1604	7-1/2 in.	X	
Cable Assembly, Power CX-7258/U (Maintenance cable for AN/URC-9())	10 ft	X	X
Cable Assembly, Special Purpose CX-7259/U (Retransmission cable)	5 ft	X	X

7-16. INSPECTION AND ADJUSTMENT.
7-17. POST INSTALLATION CHECK. Perform the following before applying power to Radio Sets AN/SRC-20() and AN/ SRC-21 ().
a. Check cabling against cabling diagrams.
b. Check for proper primary voltage operation and proper fusing; fuses are located on front panels with rating marked adjacent to the fuse holders.

NOTE
The equipment is supplied ready for 1.15 -volt, 50/60 Hz operation. Perform steps

 AN ADEOUTE ELLECTRICAL GROUND BETWEEN CHASSIS A
NO CABLES WILL PROTRUDE BE YOND BACK OF RACK.

Figure 7-1. Radio Set AN/SRC-20(), Outline and Mounting Dimensions

Figure 7-2. Radio Set AN/SRC-21(), Outline and Mounting Dimensions
c and d only when 230 -volt operation is required.
c. For Radio Set AN/SRC-20():

1. Slide Radio Frequency Amplifier AM-1565/URC from case, remove bottom panel and place selector switch S301 in the 230 -volt position (see figure 5-89). Return unit to normal position in case.
2. Slide out Power Supply PP-2702/URC-9 from Radio Set AN/URC-9() and set S1501 and S1502 (figure 5-83) to the 230 -volt position. Return unit to normal position in case. On the front panel of the PP-2702/URC-9, change MAIN AC, Tl501 PRI and Tl502 PRI fuses to 230 -volt ratings (fuses for $230-$ volt operation are in spare fuse holders).
3. Slide Radio Set Control C-3866/SRC out of case, remove bottom pane1 and set links on TB2O2 (figure $5-119$) to the 230 -volt position. Return unit to normal position. On the front panel of the C-3866/SRC, change MAIN, CONTROL, and RADIO SET fuses to 230 -volt ratings (fuses are in spare fuse holders).

NOTE

Radio Set Control C-3866/SRC supplies 12 vdc for the radiophone. When shipped, this 12 -volt supply is ungrounded. If required, the positive side may be grounded by placing link TB201 (figure 5-121) to GND position.
d. For Radio Set AN/SRC-21 () perform foregoing steps c2 and c3 only.
e. Check that air vent covers on side of Radio Set AN/URC-9() are in operating position. That is, make sure that the covers are detached from the louvered ports and relocated above the louvered ports.
f. Remove air filter sealing plate in bottom of AM-1565/URC and install on left side; rotate air outlet cover at rear of unit to open.
g. Check that EMERGENCY POWER switch on Radio Set Control C-3866/SRC is in the OFF position.

7-18. POWER TURN ON. To apply power to Radio Set AN/SRC-20() and AN/SRC-21(), perform the following:
a. For Radio Set AN/SRC-20();

1. Set POWER switches on Radio Set AN/URC-9 (), Radio Frequency Amplifier AM-1565/URC, and Antenna Coupler Group AN/SRA-33 to the POWER position. (Power for the AN/SRA-33 is supplied and controlled separately from the AN/SRC-20().
2. To apply power to the START-STOP circuit, place the EMERGENCY POWER switch (on Radio Set Control c-3866/SRC) in the POWER position.
3. Press RADIO SET POWER START button. The EMERGENCY POWER indicator and the RADIO SET POWER indicator on the C-3866/SRC and the POWER indicators on the AN/URC-9 () and the AM1565/URC should light. The DIMMER coritrols on the AN/URC-9 () and the AM1565/URC adjust the intensity of the panel indicators.
4. Check Radio Set AN/URC9() supply voltage by setting the METER switch to BIAS, $+26.5 \mathrm{~V},+125 \mathrm{v}$, and +325 v positions. On all positions the meter pointer should be near the center mark on the meter scale.
5. Stop equipment by pressing RADIO SET POWER STOP button. Pressing the STOP button removes primary power from all operating circuits of Radio Set AN/SRC-20().
6. Disable the START-STOP circuit by placing EMERGENCY POWER switch to OFF.
b. For Radio Set AN/SRC-21(), the power turn-on and turn-off sequence is the same except for reference to Radio Frequency Amplifier AM-1565/URC.

7-19. SQUELCH OPTION. Two types of squelch circuits are incorporated in Radio Sets AN/SRC-20() and AN/SRC-21 (); they are signal-plus-noise to noise ($\mathrm{S}+\mathrm{N} / \mathrm{N}$) squelch and carrier squelch. When shipped, the equipment is connected for carrier squelch. To reconnect equipment for signal-plus-noise to noise ($\mathrm{S}+\mathrm{N} / \mathrm{N}$) squelch, perform the following:
a. Remove power from equipment.
b. Remove Receiver-Transmitter RT-581 ()/URC-9 from Radio Set AN/URC9() (see paragraph 5-121).
c. Remove Audio Amplifier and Modulator from the RT-581()/URC-9 (see paragraph 5-146).
d. Refer to figure 5-53 and the instructions lettered on the right side of the Audio Amplifier and Modulator; make the signal-plus-noise to noise squelch connection. (In the retransmit (RETRANS) mode, carrier squelch is
selected regardless of the link connection.)
e. Return equipment to normal configuration and secure.

NOTE
It is recommended that the equipment be connected for carrier squelch operation. This connection allows one setting of the squelch potentiometers in Radio Set Control C-3866/SRC for the normal, retransmit, and tone modes. This connection eliminates the problem of slow reaction time of the signal-plus-noise to noise squelch circuit.

7-20. OVERALL PERFORMANCE CHECK. Instructions for checking the performance of Radio Sets AN/SRC-20() and AN/SRC21() are covered in Volume 2, Chapter 2 , paragraphs $2-29$ and $2-36$.

7-21. INTERFERENCE REDUCTION.
7-22. Under normal conditions of installation and operation, the equipment will not interact with other equipment. For best performance, interconnections to auxiliary equipment should be made with the shortest practicable cable lengths.

Subject

Paragraph, Figure, Table, Number
Adjustments, operator. 2-18
Alignment and adjustments
AM-1565/URC :
automatic drive control regulator. 5-108
autopositioner 5-102
directional coupler DC-201 5-112
power amplifier bias voltage 5-98
servo amplifier. 5-106
AN/URC-9 () :
audio amplifier and modulator. 5-59
carrier squelch level. 5-81
first if amplifier 5-73
frequency multiplier-oscillator. 5-77
frequency selector 5-64
procedures T2-2
receive audio level. 5-60
retransmit audio level 5-62
rf and pa amplifier. 5-52
S-meter, zero adjustment 5-43
second if amplifier. 5-31
signal-plus-noise to noise squelch 5-81
transmit audio level 5-60
C-3866/SRC:
programing relays 5-91
stepping relay K 206 5-92
Anciliary circuit description, C-3866/SRC. 3-310
Audio amplifier and modulator
checks. 5-59, 5-67
block diagram F5-10
receive circuits. 3-134
repair. 5-146
schematic diagram F5-146
transmitter circuits. 3-52
troubleshooting, receive. 5-69, T5-22
troubleshooting, transmit 5-63, T5-21
Automatic drive control
check and alignment 5-108
circuit description 3-95
troubleshooting 5-111, T5-33
Automatic frequency selection. 3-291
Autopositioner
5-102
5-102
check and alignment
check and alignment
3-277,3-364
3-277,3-364
circuit description
circuit description F5-154
troubleshooting 5-105, T5-31

INDEX (Cont)
Paragraph, Figure, Table, Number
Avc circuit
description 3-158
schematic diagram F3-11
B
Block diagrams
functional:
frequency conversion system. F3-15, F3-16
overall functional F3-1
radio frequency amplifier AM-1565/URC. F3-6
radio set control C-3866/SRC F3-17
radio set AN/URC-9(). F3-3
receive function F3-9
transmit function. F3-2
servicing:
audio amplifier and modulator. F5-10
first if amplifier F5-6
frequency multiplier-oscillator. F5-5
power amplifier subassembly. F5-11
rf and pa amplifier. F5-4
second if amplifier. F5-7, F5-8
servo amplifier subassembly. F5-12
third if amplifier F5-9
troubleshooting:
receive function F5-2
transmit audio function. F5-3
transmit function. F5-1
Broadband mode description 3-11
operation 2-24
Broadband receive circuit. F5-3
Broadband sidetone amplifier repair. 5-162
schematic diagram F5-147
troubleshooting F5-3
Broadband transmit circuit 3-70
Cable assemblies 5-20, 7-14, T7-1
Carrier squelch
functional description. 3-177, F3-12
level adjustment. 5-83
Case, centrifugal fan, AM-1565/URC, repair 5-211
Case, centrifugal fan AN/URC-9 (), repair. 5-173
Centrifugal fan, r/t, AN/URC-9()
check 5-88
Index-2

INDEX (Cont)

Subject

Paragraph, Figure, Table, Number
repair 5-155
troubleshooting. 5-89, T5-28
Channel dialingcircuit.3-314, F3-18
procedure. 2-27, 2-28
Channel selection
functional description, general. 3-12
from AN/URC-9() 3-288
from AN/SRC-20()
from AN/SRC-21()
Chassis, C-3866/SRC, repair 5-179
Compression rectifier circuit 3-60
Controls, description of. 2-13, T2-1
Crystal frequencies T1-3
Description of units
radio frequency amplifier AM-1565/URC. 1-10
radio set AN/URC-9 1-12
radio set AN/URC-9A. 1-16
radio set control C-3866/SRC 1-17
Directional coupler DC-201, AM-1565/URC
alignment. 5-114
check. 5-113
troubleshooting. 5-115, T5-34
Directional coupler, AN/URC-9()receiver circuits.3-117
schematic diagram. F5-138, F5-139
transmitter circuits 3-75
Duplex transmission
functional description 3-68
schematic diagram. F3-5
E
Electro-mechanical tuning 3-277
Emergency
maintenance 2-43
operation. 2-31
Equipment lists T1-5, T1-6, T5-1, T5-3
Equipment mounting 7-12
Equipment required not supplied 1-24, T1-6
Equipment require 1-22, T1-5
Field changes 1-26, T1-7
Filter, FL901 and FL1101, repair 5-159

INDEX (Cont)

Paragraph,Number
First if amplifier
alignment and adjustment 5-37, 5-73
Subject
Figure, Table,
crystal frequencies T5-11
block diagram F5-6
mechanical alignment reference procedure 5-39
rf injection chart T3-3
receiver circuit 3-130
repair 5-130
schematic diagram F5-142
transmitter circuits 3-30
troubleshooting, receive 5-76, T5-25
troubleshooting, transmit 5-44, T5-12
Five wire channel code T3-5
Frequency conversion 3-271, F3-15, F3-16
Frequency multiplier-oscillatoralignment and adjustment5-45, 5-77
block diagram F5-5
crystal frequencies T5-14
mechanical alignment reference procedure 5-47
receiver circuits 3-123
repair 5-135
schematic diagram F5-141
tracking tabs T5-15
transmitter circuits 3-37
troubleshooting, receive 5-77, T5-16, T5-17
troubleshooting, transmit 5-50, T5-13
UHF injection chart T3-4
Frequency selection 3-291
automatic 3-271
frequency conversion 3-286
functional description 3-304, 3-370
manual 2-39
procedures 2-39
tuning elements 3-277
Frequency selector
adjustment and alignment 5-64
functional description 3-285
repair 5-168
Front panel AM-1565/URC
checkout procedure T5-7
repair 5-194
schematic diagram 5-153
Front panel, AN/URC-9()checkout procedureT5-7
repair 5-165
schematic diagram F5-149, F5-150, F5-151

Subject

Paragraph, Figure, Table, Number
Functional block diagrams(see block diagrams)Functional description
frequency selection 3-270
metering circuits 3-1
overall. 3-179
power distribution 3-204
radio set control C-3866/SRC 3-307
receive function 3-108
system channel selection 3-361
system keying 3-380
transmit function 3-13
Functional operation
radio frequency amplifier AM-1565/URC 2-4
radio set AN/URC-9() 2-5
radio set control C-2383/URC-9 2-10
radio set control C-3866/SRC 2-7
Fuse location and function. 2-46
radio frequency amplifier AM-1565/URC 2-46, T2-4, F2-7
radio set AN/URC-9() 2-46, T2-4, F2-8
radio set control C-3866/SRC 2-46, T2-4, F2-9
General description, equipment 1-3
I
Installation
inspection and adjustment 7-16
interconnecting cables 7-14, T7-2
requirements 7-10
Interference reduction 7-21
If filter (500 kHz)
schematic diagram F3-10
receiver circuits 3-150
repair 5-159
J
Jamming 2-35
K
Keying circuits
functional description 3-380
schematic diagram F3-22

Paragraph,
Subject
Figure, Table, Number

L

List of units 6-3, T6-1
Local-remote switch 3-311
Low-pass filter
repair 5-159
transmitter circuits 3-53
Lubrication
autopositioner. 5-200
centrifugal fan 5-157
first if amplifier 5-110
frequency selector. 5-171
r / t power amplifier subassembly 5-206
second if amplifier 5-128
stepping relay K 206 5-188
M
Maintenance
emergency 2-43
general information 5-4
operator's 2-36, T2-3
parts list 6-5, T6-2
preventive 4-1
responsibility 5-1
standards 5-6
Manual frequency selection functional description. 3-304, 3-370
operation 2-25
Manufacturer's list of 6-7, T6-3
Mechanical alignment reference procedure
autopositioner 5-104
frequency multiplier-oscillator 5-47
frequency selector 5-65
first if amplifier 5-39
rf and pa amplifier 5-53
second if amplifier 5-33
stepping relay K206 5-92
Metering circuits
description F3-14
radio frequency amplifier AM-1565/URC 3-192
radio set AN/URC-9() 3-180, F3-13
Modulation circuits, schematic diagram F3-4
Mounting dimensions
radio set AN/SRC-20() F7-1
radio set $A N / S R C-21()$. F7-2

INDEX (Cont)

Subject

Paragraph, Figure, Table, Number

N
Noise limiter, schematic diagram F3-11
Normal mode
functional description. 3-8
keying. 3-380
operation 2-21
Normal transmit audio circuit 3-56
0
Operating procedures
broadband mode 2-24
controls 2-13, T2-1, F2-1 thru F2-3
emergency 2-31
normal mode 2-21
retransmit mode 2-22
summary T2-2
tone mode 2-23
Operator's maintenance
adjustments 2-38
checks. 2-37
Operator's troubleshooting T2-3
P
Parts list, introduction 6-1, T6-5
Parts location
radio frequency amplifier AM-1565/URC F5-85 thru F5-115
radio set AN/URC-9() F5-13 thru F5-84
radio set control C-3866/SRC F5-116 thru F5-127
Performance check. 5-7
Post installation check. 7-17
Power amplifier subassembly
alignment and adjustment. 5-98
block diagram F5-11
repair. 5-202
schematic diagram F5-155
transmit function 3-81
troubleshooting 5-101, T5-30
Power distribution
ac distribution:
radio set AN/SRC-20() 3-215, F5-131
radio set AN/SRC-21() 3-206, F5-132
dc distriuution:
radio fiequency amplifier AM-1565/URC 3-249, F5-135
radio set AN/URC-9 () - receive. 3-241, F5-134

INDEX (Cont)

Paragraph,
Figure, Table, Number
Subject
radio set AN/URC-9() - transmit 3-229, F5-133
radio set control C-3866/SRC. 3-265
Power requirements 7-4
Power supply PP-2702/URC-9
description. 1-14
functional description 3-225
repair 5-118
schematic diagram. F5-136
Power turn-on 7-18
Preliminary control settings 5-24
Preparation for reshipment 1-30
Preset channel selection. 3-361
Preset channel memory drum. 3-285
Preset frequency selection. 3-270
Preventive maintenance. 4-1, T4-1
Programing relays (K201 thru K205 and K209)
adjustment5-91
functional description 3-314, 3-361, F3-21
R
Radio frequency amplifier AM-1565/URC
adjustment and alignment 5-97
block diagram. F5-11
functional block diagram F3-6
channel selection. 3-364, 3-370, F3-21
description. $1-10, \mathrm{~T} 1-1,3-79$, 3-115
metering circuits 3-192, F3-14
operation 2-4
power distribution 3-249, F5-135
repair 5-189
schematic diagram. F5-152
Radio-path transmission T1-8
Radio set AN/SRC-20()
channel selection 3-361
functional block diagram F3-1
general description. 1-3
interconnection diagram. F5-128
outline and mounting dimensions F7-1
power distribution F5-131
schematic diagram F5-128
system keying. 3-380
Radio set AN/SRC-21()
channel selection. 3-375
functional block diagram F3-1

INDEX (Cont)

Subject

Paragraph, Figure, Table, Number
general description 1-3
interconnection diagram. F5-129
outline and mounting dimensions F7-2
power distribution 3-206, F5-132
schematic diagram F5-129
system keying 3-380
Radio set AN/URC-9()
functional block diagram F3-3
general description. 1-12, 1-16
interconnection diagram F5-129
metering circuits 3-180, F3-13
operation. 2-5
power distribution 3-299, 3-241, F5-133, F5-134
schematic diagram F5-130
Radio set control C-2383/URC-9, schematic diagram F5-158
Radio set control C-3866/SRC
adjustment 5-90
functional block diagram F3-17
channel selection. 3-371
control settings 5-28
description 3-307
frequency selectionoperation2-7
power distribution 3-265
repair 5-177
schematic diagram F5-157
troubleshooting 5-96, T5-29
Receive audio level adjustment. 5-61
Receiver circuits
audio amplifier and modulator. 3-164
block diagram. F3-9
directional coupler. 3-117
first if amplifier 3-1 30
frequency multiplier-oscillator. 3-123
functional description 2-113
operation. 2-15
radio frequency amplifier AM-1565/URC 3-115
rf and pa amplifier. 3-118
$500-\mathrm{kHz}$ if filter 3-118
second if amplifier. 3-143
signal path. 3-109
third if amplifier 3-152
troubleshooting T5-22 thru T5-27, F5-2
Receiver section
block diagram F3-9
functional circuits. 3-108Receiver-transmitter

INDEX (Cont)

Paragraph
Subject
Figure, Table, Number
description. 1-13, F1-3
interconnection diagram.
5-25, 5-29
5-25, 5-29
removal and replacement 5-121
Receiver-transmitter case 1-15, F5-137
Reference data $1-20,5-8$, T1-1, T1-2, Tl-4
Reference designations. 5-18, T5-4 thru T5-6
Reference standards 5-6
Relay-filter
removal and replacement 5-152
schematic diagram. F5-148
Removal
radio frequency amplifier AM-1565/URC: 5-192
air filter and case fan 5-212
autopositioner 5-198
front panel 5-195
power amplifier 5-203
servo amplifier 5-209 5-209
radio set AN/URC-9():
audio amplifier and modulator 5-147
broadband sidetone amplifier. 5-163
case receiver transmitter 5-173
filters 5-160
first if amplifier. 5-131
frequency multiplier-oscillator 5-136
frequency selector. 5-169
front panel 5-166
rf and pa amplifier 5-142
relay-filter 5-153
second if amplifier 5-125
third if amplifier. 5-150
power supply pp-2702. 5-119
receiver-transmitter. 5-122
r/t centrifugal fan 5-156
radio set control C-3866/SRC: 5-180
rear cabinet panel 5-182
relay dust covers 5-186
Repair
radio frequency amplifier AM-1565/URC 5-189
radio set AN/URC-9(). 5-116
radio set control C-3866/SRC 5-177
Replacement
radio frequency amplifier AM-1565/URC: 5-193
air filter and case fan 5-213
autopositioner. 5-201
front panel 5-196
power amplifier 5-207
servo amplifier 5-210

INDEX (Cont)

Paragraph,
Subject
Figure, Table Number
radio set AN/URC-9 () :
audio amplifier and modulator. 5-148
broadband sidetone amplifier 5-164
case receiver transmitter. 5-176
filters 5-161
first if amplifier 5-134
frequency multiplier-oscillator. 5-140
frequency selector 5-172
front panel 5-167
power supply pp-2702 5-120
receiver-transmitter 5-123
relay-filter 5-154
rf and pa amplifier. 5-145
r/t centrifugal fan. 5-158
second if amplifier. 5-129
third if amplifier 5-151
radio set control C-3866/SRC: 5-181
rear cabinet panel 5-183
relay dust covers 5-187
Reports, failure, maintenance and operational. 5-5
Reshipment, preparation for 1-30
Retransmit audio circuits 3-64, F3-5
Retransmit audio level adjustment. 5-62
Retransmit mode
functional description 3-9
operation 2-22
schematic diagram F3-5
RF and pa amplifier5-56
block diagram F5-4
mechanical alignment reference procedure. 5-54
receiver circuits 3-118
repair 5-141
schematic diagram F5-140
tracking tabs T5-18
transmitter circuits 3-43
troubleshooting, receive. 5-80, T5-26
troubleshooting, transmit 5-57, T5-19
RF tuners. 5-13
R / T centrifugal fan
repair. 5-155
strobe check. 5-88
troubleshooting 5-89, T5-28
S-meter zero check and adjustment. 5-43, 5-44
Scope. 1-1
Paragraph,
Subject
Figure, Table,Number
Second if amplifier
alignment and adjustment 5-31, 5-70
block diagram F5-7, F5-8
crystal frequencies T5-9
mechanical alignment reference procedure. 5-124
receiver circuits 3-135, 3-143
repair 5-124
rf injection chart T3-1, T3-2
schematic diagram F5-143, F5-144
transmitter circuits 3-23, 3-27
troubleshooting, receive 5-72, T5-23,T5-24
troubleshooting, transmit 5-36,T5-10
Servicing block diagrams
(see Block diagrams)
Servo amplifier
alignment 5-106
block diagram F5-12
repair. 5-208
schematic diagram F5-156
transmitter circuits 3-89
troubleshooting 5-107, T5-32
Signal flow
receiver circuits 3-109
transmitter circuits 3-14
Signal-plus-noise to noise
alignment 5-85
discriminator 3-175, F3-12
Site selection 7-8
S-Meter adjustment 5-43
Squelchcircuit2-7 thru 2-9, 3-169, F3-12
operation 2-16 thru 2-18
troubleshooting 5-86, T5-27
Stage and special circuit description receive function. 3-20
transmit function 3-113
Start-up T2-2
Stepping relay (K206)
adjus tment. 5-92
circuit description 3-339
Summary of operating procedures 2-29
Switch contact combinations for channel selection. T3-6
System keying
functional description. 3-380
schematic diagram F3-22

Subject

Paragraph, Figure, Table, Number
T
Test equipment 5-11, T5-1, T5-3
Test points 5-12
Test procedures
control settings:preliminary.5-24
radio set AN/URC-9() 5-27
radio set control C-3866/SRC 5-28
initial setup 5-25
Third if amplifier
check 5-68
block diagram F5-9
receiver circuits 3-152
repair. 5-149
schematic diagram F5-145
troubleshooting 5-69, T5-22
Tone mode
functional description 3-10
circuit 3-73
operation 2-23
Tone oscillator
ground circuits F5-3
schematic diagram F5-149
Tools, special T5-2
Transmit audio level adjustment. 5-61
Transmission range 1-28, T1-8
Transmitter circuits
audio amplifier and modulator 3-54
block diagram F3-2
broadband sidetone amplifier. 3-70
directional coupler 3-75
first if amplifier 3-30
frequency multiplier-oscillator 3-37
functional description. 3-13
operation 2-14
radio frequency amplifier 3-79
radio set AN/URC-9() 3-22
rf and pa amplifier 3-43
second if amplifier 3-23, 3-27
troubleshooting, audio function F5-3
troubleshooting, rf function. F5-1
Troubleshooting
directional coupler DC-201 5-115
frequency selector 5-64
keying circuits T5-7

INDEX (Cont)

U

Uhf maintenance . 5-9
Unpacking . 7-1

[^0]: *F204 and F206 ratings are for AN/SRC-20() installation; for AN/SRC-21() installation the ratings of those fuses are 10A(115V), and 5A(230V).

[^1]: WARNING
 High voltages ($\mathrm{B}+$) that are dangerous to life are present at trimmer shafts of capacitors C306 and C312. Use insulated tuning tool (FSN 9Q5120-720-1908).

