# INSTRUCTION BOOK <br> for <br> <br> FACSIMILE RECORDER <br> <br> FACSIMILE RECORDER RD-92A/UX 

TIMES FACSIMILE CORP. NEW YORK, N. Y.

## LIST OF EFFECTIVE PAGES

| PAGGE <br> NUMBERS | CHANGE IN <br> EFFECT | PAGE <br> NUMBERS | CHANGE IN <br> EFFECT |
| :--- | :--- | :--- | :--- |
| Title page | Original | $4-1$ to $4-4$ | Original |
| A to C | Original | $5-1$ to $5-3$ | Original |
| i to viii | Original | $6-0$ to $6-6$ | Original |
| $1-0$ to $1-9$ | Original | $7-1$ to $7-54$ | Original |
| $2-0$ to $2-22$ | Original | $8-1$ to $8-41$ | Original |
| $3-1$ to $3-6$ | Original | $i-1$ to $\mathbf{i - 1 2}$ | Original |

## INSTRUCTION BOOK for FACSIMILE RECORDER RD-92A/UX

TIMES FACSIMILE CORP. NEW YORK, N. Y.

Published by Direction of the Chief, Bureau of Ships, and accepted by the Secretary of the Air Force. Printed for USAF distribution 15 August 1957. Prior printing for Navy distribution only.

Reproduction for non-military use of the information or illustrations contained in this publication is not permitted without specific approval of the issuing service (BuAer or AMC). The policy for use of Classified Publications is established for the Air Force in AFR 205-1 and for the Navy in Navy Regulations. Article 1509.

LIST OF REVISED PAGES ISSUED
insert latest revised pages. destroy superseded paces.
NOTE: The portion of the text affected by the carrent revision is indicated by a vertical line in the outer margins of the page.

|  | Page No. | Issue |
| :---: | :---: | :---: |
|  | Title Page | - Change |
|  |  | . Change 1 |
|  | i to v .... | . Original |
|  | 1-0 to 1-9 . | Original |
|  | 2-0 to 2-22 | - Original |
|  | 3-1 to 3-6. | . Original |
|  | 4-1 to 4-4. | - Original |
|  | 5-1 to 5-3 . | - Original |
|  | 6-0 to 6-1 | - Original |
| * | 6-2... | - Change-1 |
|  | 6-3 to 6-6. | - Original |
|  | 7-1 to 7-12 | Original |
|  | 7-13 | Change 1 |
|  | 7-14 to 7-32 | Original |
|  | 7-33/34 | Change |
|  | 7-35/36 | Original |
|  | 7-37/38.. | Change 1 |
|  | 7-39/40 | Original |
|  | 7-41/42 | Change 1 |
|  | $7-43 / 44$ to 7 | Original |
|  | 8-1.. | Original |
|  | 8-2 | Change 1 |
|  | 8-3 to 8-6 | Original |
|  | 8-7 to 8-9 | Change 1 |
|  | 8-10 to 8-11 | Original |
|  | 8-12 to 8-14 | Change 1 |
|  | 8-15.. | Original |
|  | 8-16 to 8-23 | Change 1 |
|  | 8-24 to 8-31 | Original |
|  | 8-32 ... | Change I |
|  | 8-33 .... | Original |
|  | 8-34 ... | Change I |
|  | 8-35. | Original |
|  | 8-36 to 8-37 | Change 1 |
|  | 8-38 to 8-41 | Original |
|  | i-1 to i-12 | Original |

## ADOE NDUM TO NAVSHIPS 91630 MANUAX

RD-92()/UX is the Navy designation for the Times facsimile CORPORATION RG FACSIMILE RECORDER.

The ro-92/ux is equivalent to 300 and 400 series RG recorders. 500 series RG's are equivalent to the rD-92a/UX except the RG has no drum shielo assembly or noise suppression filter Z2.
in 500 series RG and ro-92/UX recorders, the pilot lamp is connected between one side of power line and ground. In rD92a/UX recorders, the pilot lamp is connected across the line.

ADDITIONAL COMMENTS ON COMMERCIAL MODELS OF THE RG RECORDER:
100 series: Permits manual (local) operation only. Use 100 series schematic for servicing.

200 series: Should be useo for manual operation only. Contains obsolete circuits for automatic (remote) operation. They will not interfere with manual operation if the relay on the phasing switch is tied down or if the phasing button is in local position. Use a 200 series SCHEMATIG FOR SERVICING.

200A SERIES: A MODERNIZED 200 sERIES MODEL. CONTAINS REVISeo automatic circuits. Equivalent to 300 series except does not include wiring to Jb for use with continuous recorders. Can be used for automatic operation. Use schematic in rd-92a/ux manual for servicing.

300, 400 \& 500 SERIES: CAN bE USED FOR MANUAL (LOCAL) or AUTOMATIC (REMOTE) OPERATION. CONTAINS PROVISIONS FOR USE WITH CONTINUOUS RECORDERS. USE SChematic in RD92a/ux manual for servicing.

Mechanical units: All mech units received from tfC will be MODERNIZED TO PERMIT USE in any of Above series electrical units.

All RG's except the 100 series will eventually contain a potentiometer behind the left hand gear box. This control SHOULD BE ADJUSTED ONLY WHEN THE RECORDING DENSITY OBTAINED by "peaking" the density" control is not satisfactory. To adjust, peak the density control on phasing signals and set the above potentiometer for suitable recording. See schematic below.

TO JI
PIN 9

# DEPARTMENT OF THE NAVY 

 BUREAU OF SHIPSWASHINGTON 25, D. C.
in reply refer to
Code 993-100

6 November 1952
From: Chief, Bureau of Ships
To: All Activities Concerned with the Installation, Operation and Maintenance of the Subject Equipment
Subj: Instruction Book for Facsimile Recorder RD-92A/UX, NAVSHIPS 91630

1. This is the instruction book for the subject equipment and is in effect upon receipt.
2. When superseded by a later edition, this publication shall be destroyed.
3. Extracts from this publication may bo made to facilitate the preparation of other Department of Defense Publications.
4. All Navy requests for NAVSHIPS Electronics publications should be directed to the nearest District Publications and Printing Office. When changes or revised books are distributed, notice will be included in the BuShips ELECTRON and in the Index of Bureau of Ships General and Electronics Publications, NAVSHIPS 250-020.
H. N. WALLIN

Chief of Bureau

RECORD OF CORRECTIONS MADE

| CHANGE NO. | DATE |  |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

## TABLE OF CONTENTS

ParagraphSECTION 1-GENERAL DESCRIPTION

1. Introduction ..... 1-1Page
2. Purpose and Basic Principles ..... 1-1
a. Purpose ..... 1-1
b. Basic Principles ..... 1-1
c. General Description of Facsimile Re- corder RD-92A/UX ..... 1-1
d. Applications of Facsimile Recorder ..... 1-1
(1) Wire Circuits ..... 1-1
(2) Radio Circuits ..... 1-1
(a) Amplitude Modulation ..... 1-1
(b) Audio-Frequency Shift Mod- ulation ..... 1-1
(c) Radio Carrier Frequency Shift Modulation ..... 1-1
(3) Automatic Phasing and Starting. ..... 1-1
3. Description of Units ..... 1-2
a. Recorder Subassembly ..... 1-2
b. Amplifier-Detector ..... 1-3
c. Amplifier-Modulator ..... 1-3
d. Audio-Frequency Oscillator ..... 1-3
e. Amplifier-Power Supply ..... 1-3
$f$. Control Panel ..... 1-3
(1) Pilot Lamp ..... 1-3
(2) $1 / 8$ AMP B + Fuse ..... 1-3
(3) Selector Switch ..... 1-3
(a) OFF ..... 1-3
(b) STANDBY ..... 1-4
(c) START ..... 1-4
(d) SYNC ..... 1-4
(e) RUN ..... 1-4
(4) PHASE Switch ..... 1-4
(a) LOCAL ..... 1-4
(b) REMOTE ..... 1-5
(5) Meter ..... 1-5
(6) PRESS TO TEST Switch ..... 1-5
(7) CIRCUIT TEST Switch ..... 1-5
(a) POWER ..... 1-6
(b) SIG AMP OUT ..... 1-6
(c) PHASE AMP OUT ..... 1-6
(d) $\mathbf{L O} \mathrm{B}+$ ..... 1-6
(e) $\mathrm{HI} \mathrm{B}+$ ..... 1-6
(f) SYNC DRIVE ..... 1-6
(g) PRINT ..... 1-6
(b) OSC ..... 1-6
(i) 60-CYCLE MOTOR ..... 1-6
(j) VR 75 ..... 1-6
(k) SYNC MA ..... 1-6
(8) 2 AMP POWER ..... 1-6
(9) DENSITY Control ..... 1-6
(10) TEST SIGNAL ..... 1-6
Paragrapb ..... Page
g. Controls on Recorder Subassembly ..... 1-6
(1) RECORD Button ..... 1-6
(2) PAPER LOAD ..... 1-6
4. Description of Auxiliary Equipment ..... 1-7
a. Frequency Shift Converter CV-172- ()/U ..... $1-7$
b. Automatic Start and Transfer Unit, Times Facsimile Model AST-() ..... 1-7
5. Reference Data ..... 1-7
6. Equipment Lists ..... 1-8
7. Differences Between RD-92/UX and RD-92A/UX Facsimile Recorders ..... 1-9
8. Electron Tube Complement ..... $1-9$
SECTION 2-THEORY OF OPERATION
9. Introduction ..... 2-0
a. The Facsimile Transmitter ..... 2-0
b. The Facsimile Recorder ..... 2-0
10. General Description of Electrical Circuits ..... 2-0
a. Amplifier-Power Supply ..... 2-0
b. Amplifier-Detector ..... 2-0
c. Amplifier-Modulator ..... 2-1
d. Print Driver and Amplifier ..... 2-1
e. Phasing Detector and Amplifier ..... 2-1
$f$. Phasing Actuator ..... 2-1
g. Audio-Frequency Oscillator ..... 2-1
b. Sync, Start and Run Motors ..... 2-1
11. Circuit Analysis ..... 2-1
a. General ..... 2-1
b. Amplifier-Detector ..... 2-2
(1) Signal Amplifier ..... 2-2
(2) Demodulator ..... 2-2
(3) Plate Voltage ..... 2-2
(4) Filament Voltage ..... 2-2
c. Amplifier-Modulator ..... 2-2
(1) 15 KC Oscillator ..... 2-2
(2) Modulator ..... 2-2
(3) Peak Limiter ..... 2-5
(4) Print Driver ..... 2-7
(5) Phasing Detector and Amplifier ..... 2-7
(6) Pulse Amplifier ..... 2-7
(7) Plate Voltage ..... 2-7
(8) Filament Voltage ..... 2-7
d. Audio-Frequency Oscillator ..... 2-7
(1) Tuning Fork ..... 2-7
(2) Fork Amplifier ..... 2-7
(3) Fork Limiter Amplifier ..... 2-7
(4) Fork Feedback Amplifier ..... 2-9
(5) Audio-Frequency Oscillator Output ..... 2-9
(6) Plate Voltage ..... 2-9
(7) Filament Voltage ..... 2-9
Paragraph
e. Amplifier-Power Supply ..... 2-9(1) Motor Amplifier2-10
(2) Print Amplifier ..... 2-10
(3) Low Voltage Power Supply ..... 2-10
(a) Unregulated Voltage ..... 2-11
(b) Regulated Voltage ..... 2-11
(4) High Voltage Power Supply ..... 2-11
(a) Voltage Tripler ..... 2-12
(b) Voltage Tripler Output ..... 2-12
(c) One-Eighth Amp B + Fuse. ..... 2-12
(5) Switching Circuits on Control Panel ..... 2-12
(a) Selector Switch Circuit ..... 2-12
12. OFF ..... 2-13
13. STANDBY ..... 2-13
14. START ..... 2-13
15. SYNC ..... 2-13
16. RUN ..... 2-13
(b) PHASE Switch ..... 2-13
17. LOCAL ..... 2-13
18. REMOTE ..... 2-13
(c) CIRCUIT TEST Switch ..... 2-13
19. Mechanical Functions ..... 2-16
a. General ..... 2-16
b. Synchronous and Start Motors ..... 2-17
c. Run Motor System ..... 2-17
d. Drive Subassembly and Phasing System ..... 2-17
$e$. Drum Assembly and Paper Load Mech- anism ..... 2-18
f. Leădscrew Shaft Gearing System ..... 2-19
g. Carriage Assembly and Return Spring ..... 2-20
b. Stylus Carriage Control Mechanism ..... 2-20
20. Test Procedures ..... 2-21
a. Neon Light Indicators ..... 2-22
b. CIRCUIT TEST Switch ..... 2-22
(1) POWER ..... 2-22
(2) SIG AMP OUT ..... 2-22
(3) PHASE AMP OUT ..... 2-22
(4) $\mathrm{LO} \mathrm{B}+$ ..... 2-22
(5) $\mathrm{HI} \mathrm{B}+$ ..... 2-22
(6) SYNC DRIVE ..... 2-22
(7) PRINT ..... 2-22
(8) OSC ..... 2-22
(9) 60-CYCLE MOTOR ..... 2-22
(10) VR 75 ..... 2-22
(11) SYNC MA ..... 2-22
SECTION 3-INSTALLATION
21. Unpacking ..... 3-1
22. Installation ..... 3-1
a. Location ..... 3-1
(1) Weight ..... 3-1
(2) Space ..... 3-1Page Paragraph
Page
(3) Ventilation ..... 3-1
(4) Position ..... 3-1
b. Mounting ..... 3-2
(1) Cabinet Mounting ..... 3-2
(2) Relay Rack Mounting ..... 3-2
c. Connections to Transmission Circuit ..... 3-2
(1) Wire Lines ..... 3-2
(2) Radio Circuits ..... 3-2
(a) Amplitude or Frequency Modulation ..... 3-5
(b) Audio-Frequency Shift Modulation ..... 3-5
(c) Radio Carrier Frequency Shift Modulation ..... 3-5
(d) Connection for Automatic Phasing and Starting ..... 3-5
23. Initial Adjustments ..... 3-5
a. Mechanical Inspection ..... 3-6
b. Check Power Circuit ..... 3-6
c. Check Fuses and Tubes ..... 3-6
d. Check Motors ..... 3-6
e. Check Carriage Release Mechanism ..... 3-6
$f$. Adjust SYNC MA Control ..... 3-6
g. Check Hi B + Fuse ..... 3-6
b. CIRCUIT TEST Check ..... 3-6
SECTION 4-OPERATION
24. Introduction ..... 4-1
25. Capabilities and Limitations ..... 4-1
26. Operation of Facsimile Recorder RD-92A/UX ..... 4-1
a. Start Equipment ..... $4-1$
b. Load Paper ..... 4-1
c. Adjust DENSITY Control ..... $4-1$
d. Phase Recorder ..... 4-3
e. Reload Paper ..... 4-4
27. Operation for Remote Phasing and Starting ..... 4-4
a. Inspect Installation ..... 4-4
b. Turn on Equipment ..... 4-4
c. Reload Paper ..... 4-4
28. Operator Adjustments ..... 4-4
a. DENSITY Adjustment ..... $4-4$
b. SYNC MA Control ..... 4-4
29. Summary of Operation ..... 4-4
30. Test Procedures ..... 4-4
SECTION 5-OPERATOR'S MAINTENANCE
31. Introduction ..... 5-1
32. Routine Check Chart ..... 5-1
33. Emergency Maintenance ..... 5-1
a. Notice to Operators ..... 5-1
b. Replacement of Fuses ..... 5-1
Paragrapb Page
c. Replacement of Tubes ..... 5-1
(1) Location of Tubes ..... 5-1
(2) Replacing Tubes ..... 5-1
(3) Tubes Requiring Special Care ..... 5-3
(a) Replacing V102 and V202 ..... 5-3
(b) Replacing V302 ..... 5-3
SECTION 6-PREVENTIVE MAINTENANCE
34. Preventive Maintenance ..... 6-0
35. Routine Maintenance Procedures ..... 6-0
a. Changing the Stylus Needle ..... 6-0
b. Cleaning the Recorder ..... 6-0
c. Electrical Circuits ..... 6-0
d. Recorder Subassembly ..... 6-0
36. Lubrication ..... 6-2
37. Retropicalization ..... 6-2
SECTION 7-CORRECTIVE MAINTENANCE
38. Corrective Maintenance ..... 7-1
39. Failure Report ..... 7-1
40. Theory of Localization ..... 7-1
41. System Trouble Shooting ..... 7-2
a. Neon Indicators ..... 7-2
b. Locating Trouble from Front Panel Checks. ..... 7-2
(1) Normal Test Conditions ..... 7-2
(2) CIRCUIT TEST Positions ..... 7-2
(a) POWER ..... 7-2
(b) SIG AMP OUT ..... 7-2
(c) PHASE AMP OUT ..... 7-2
(d) $\mathrm{LO} \mathrm{B}+$ ..... 7-2
(e) $\mathrm{HI} \mathrm{B}+$ ..... 7-2
(f) SYNC DRIVE ..... 7-2
(g) PRINT ..... 7-4
(b) OSC ..... 7-4
(i) 60 MOTOR ..... 7-4
(i) VR75 ..... 7-4
(k) SYNC MA ..... 7-4
c. Trouble Shooting Chart ..... $7-4$
42. Unit Trouble Shooting and Mechanical Repair ..... 7-7
a. Trouble Shooting ..... 7-7
(1) Trouble Shooting Chart ..... 7-7
(2) Circuit Constants ..... 7-7
Page
(a) Location of Circuit Components ..... 7-7
(b) Resistance and Voltage Measurements ..... 7-14
b. Repair ..... 7-17
(1) Removing Recorder Subassembly ..... 7-17
(2) Removing Drum ..... 7-17
(3) Replacing Thrust Bearing Spring ..... 7-18
(4) Disassembly of the Left-Hand Gear Box ..... 7-18
(5) Replacing Synchtonous Motor Coils ..... 7-18
(6) Replacing Phasing Actuator ..... 7-20
(7) Replacing Coupling Section ..... 7-21
(8) Replacing Carriage ..... 7-21
(9) Replacing Carriage Return Spring ..... 7-22
(10) Adjusting Carriage Return Spring ..... 7-22
(11) Removing Half Nut ..... 7-22
(12) Replacing Paper Guide ..... 7-22
(13) Positioning the Paper Guide ..... 7-22
c. Electrical Adjustments ..... 7-22
(1) Normal Operating Adjustments ..... 7-22
(a) Adjusting SYNC MA Con- trol (R41) ..... 7-22
(b) Adjusting DENSITY Con- trol (R38) ..... 7-22
(2) Corrective Adjustments ..... 7-23
(a) Adjusting BIAS Control (R222) ..... 7-23
(b) Adjusting Fork Frequency Control (R312) ..... 7-23
(c) Adjusting Fork Frequency ..... 7-23
(3) Calibration of CIRCUIT TEST Circuits ..... 7-24
(a) Selection of R2 ..... 7-25
(b) Selection of Other Calibrat- ing Resistors ..... 7-25
(c) Calibration Chart, Table 7-5 ..... 7-25
(d) Component Characteristics ..... 7-26
43. Electron Tubes ..... 7-26
44. Replacement Data ..... 7-26
45. Crystal Rectifier Data ..... 7-26
46. Coil Winding Data ..... 7-28
47. Attenuation Characteristics ..... 7-31

## LIST OF ILLUSTRATIONS

Figure ..... Page
SECTION 1-GENERAL DESCRIPTION
1-1 Facsimile Recorder RD-92A/UX ..... 1-0
1-2 Location of Subassemblies ..... 1-2
1-3 Recorder Subassembly ..... 1-3
1-4 Amplifier-Detector Subassembly ..... 1-4
1-5 Amplifier-Modulator Subassembly ..... 1-4
1-6 Audio Frequency Oscillator Subassembly ..... 1-4
1-7 Amplifier-Power Supply Chassis ..... 1-5
1-8 Identification of Front Panel Controls ..... 1-6
SECTION 2-THEORY OF OPERATION
2-1 Simplified Block Diagram of Facsimile Recorder RD-92A/UX ..... 2-1
2-2 Block Diagram of Facsimile Recorder RD-92A/UX ..... 2-3,2-4
2-3 Block Diagram of Amplifier-Detector . ..... 2-5
2-4 Schematic Diagram of Amplifier-Detector ..... 2-5
2-5 Block Diagram of Amplifier-Modulator ..... 2-6
2-6 Schematic Diagram of Amplifier-Modu- lator ..... 2-6
2-7 Block Diagram of Audio Frequency Os- cillator ..... 2-8
2-8 Schematic Diagram of Audio Frequency Oscillator ..... 2-8
2-9 Schematic Diagram of Motor Amplifier. ..... 2-9
2-10 Schematic Diagram of Print Amplifier. ..... 2-10
2-11 Schematic Diagram of Low Voltage Power Supply ..... 2-11
2-12 Schematic Diagram of High Voltage Power Supply ..... 2-11
2-13 Block Diagram of Selector Switch Func- tions ..... 2-12
2-14 Simplified Schematic of Phasing Control Circuit ..... 2-14
2-15 Schematic Diagram of Test Circuits ..... 2-15
2-16 Details of Synchronous Drive and Phas- ing Mechanism ..... 2-16
2-17 Synchronous Motor, Start Motor and Re- duction Gear Assembly ..... 2-18
2-18 PAPER LOAD Operation ..... 2-19
2-19 Detail of Stylus Carriage ..... 2-20
2-20 Stylus Carriage Control Mechanism ..... 2-21
SECTION 3-INSTALLATION
3-1 Unpacking Facsimile Recorder RD-92A/UX ..... 3-1
3-2 Details of Installation ..... 3-3,3-4
3-3 Input Terminals and Connector Cord ..... 3-5

| Figure | SECTION 4-OPERATION |  |
| :---: | :---: | :---: |
|  |  |  |
|  | Pan |  |
| 4-2 | Rec | 4-3 |
|  | SECTION 5-OPERATOR'S MAINTENANCE |  |
|  | Tube Location |  |
| 5-2 | Rem | 5-3 |
| SECTION 6-PREVENTIVE MAINTENANCE |  |  |
| 6-1 | Lubrication of Sync Worm and Gear and PAPER LOAD Lever | 6-2 |
|  | Lubrication of Right-Hand Gea | -3 |
| 6-3 | Lubrication of Latch Pivot | 4 |
| 6-4 | Lub | 6-5 |
| 6-5 | Lubrication | 6-6 |
| SECTION 7-CORRECTIVE MAINTENANCE |  |  |
| 7-1 | Simplified Schematic of Circuit Test Switch Circuits . . . . . . . . . . . . . . . . . . . 7-3 |  |
| 7-2 | Location of Parts and Wiring Diagram of Amplifier-Detector Subassembly |  |
| 7-3 | Location of Parts and Wiring Diagram |  |
| 7-4 | Location of Parts and Wiring Diagram of Audio-Frequency Oscillator Subassembly |  |
| 7-5 | Location of Parts and Wiring Diagram of Recorder Subassembly |  |
| 7-6 | Bottom View of Amplifier-Power Supply |  |
| 7-7 | Identification and Connection of Synchronous Motor Coils |  |
| 7-8 | Separation of Right- and Left-Hand Gear |  |
|  | Boxes Prior to Carriage Removal | -21 |
| 7-9 | Connection Diagram for Selection of |  |
| 7-10 |  |  |
| 7-11 | Attenuation Characteristics - Low Pass Filter $\mathbf{Z 1}$. . . . . . . . . . . . . . . . . . | 7-31 |
| 7-12 | Attenuation Characteristics - Noise Sup- |  |
| 7-13 | Over-all Schematic Diagram of Facsimile |  |
| 7-14 | Location of Parts and Wiring Diagram of Amplifier-Power Supply Chassis. . . . .7-35/36 |  |
| 7-15 | Main Mechanical Assembly . . . . . . . . . . 7-37/38 |  |
| 7-16 | Upper Front Panel Assembly . . . . . . . . $7-39 / 40$ |  |
| 7-17 | Right-Hand Gear Box . . . . . . . . . . . . $7-41 / 42$ |  |
| 7-18 | Drum Shaft Assembly . . . . . . . . . . . . . $7-43 / 44$ |  |
| 7-19 | Left-Hand Gear Box . . . . . . . . . . . . . . $7-45 / 46$ |  |
| 7-20 | Synchronous Motor Assembly . . . . . . . . $7-47 / 48$ |  |
| 7-21 | Drum Assembly . . . . . . . . . . . . . . . . 7-49/50 |  |
| 7-22 | Return Spring and Top Cover Assembly . 7-51/52 |  |
| 7-23 | Stylus and Carriage Assembly . . . . . . . .7-53/54 |  |SECTION 4-OPERATION

## LIST OF TABLES

Table Page Figure ..... PageSECTION 1-GENERAL DESCRIPTION
1-1 Equipment Supplied ..... 1-8
1-2 Equipment Required But Not Supplied ..... 1-8
1-3 Shipping Data ..... 1-8
1-4 Basic Differences Between RD-92/UX and RD-92A/UX Facsimile Recorders ..... 1-9
1-5 Electron Tube Complement ..... 1-9
SECTION 5-OPERATOR'S MAINTENANCE
5-1 Routine Check Chart ..... 5-1
5-2 Symptoms of Fuse Failure ..... 5-1
5-3 Fuse Location ..... 5-2
SECTION 6-PREVENTIVE MAINTENANCE
6-1 Routine Maintenance Check Chart ..... 6-1
SECTION 7-CORRECTIVE MAINTENANCE
7-1 Trouble Shooting Chart ..... 7-4
7-2 Resistor and Capacitor Values for Plug-In ..... 7-13
7-3 Socket Resistance Measurements ..... 7-15
7-4 Socket Voltage Measurements ..... 7-16
7-5 Calibration Chart of CIRCUIT TEST Circuit ..... 7-26
7-6 Tube Operating Voltages and Currents ..... 7-27
7-7 Tube Characteristics ..... 7-28
7-8 Crystal Rectifier Data ..... 7-28
7-9 Coil Winding Data ..... 7-29
SECTION 8-PARTS LISTS
8-1 Weights and Dimensions of Spare Parts Boxes ..... 8-1
8-2 Shipping Weights and Dimensions of Spare Parts Boxes ..... 8-1
8-3 List of Major Units ..... 8-1
8-4 Table of Replaceable Parts ..... 8-2
8-5 Maintenance Parts Kit ..... 8-38
8-6 Cross Reference Parts List ..... 8-39
8-7 Applicable Color Codes and Miscellaneous Data ..... 8-40
8-8 List of Manufacturers ..... 8-41

## SAFETY NOTICE

The attenicion of officers and operating personnel is directed to Chapter 67 of the Bureau of Sbips Manual or superseding instructions on the subject of radio-safety precautions to be observed.

This equipment employs voltages which are dangerous and may be fatal if contacted by operating personnel. Voltages as high as 1,000 volts, 1800 cycles alternating current may be developed in the motor amplifier circuit of Facsimile Recorder RD-92A/UX. Voltages as high as 350 volts direct current are developed in the RD-92A/UX recorder. Extreme caution should be exercised when working with the equipment. Make sure that the equipment is well grounded.

While every practicable safety precaution has been incorporated in this equipment, the following rules must be strictly observed:

## KEEP AWAY FROM LIVE CIRCUITS:

Operating personnel must at all time observe all safety regulations. Do not change tubes or make adjustments inside equipment with high voltage supply on. Keep one hand in your pocket while making high voltage measurements. This precaution will help prevent touching the electrical circuit with more than one part of the body at one time. To avoid casualties always remove power and discharge and ground circuits prior to touching them.

NEVER MEASURE POTENTIALS IN EXCESS OF 1,000 VOLTS BY MEANS OF FLEXIBLE TEST LEADS OR PROBES.

## RESUSCITATION

AN APPROVED POSTER ILLUSTRATING THE RULES FOR RESUSCITATION BY THE PRONE PRESSURE METHOD SHALL BE PROMINENTLY DISPLAYED IN EACH RADIO, RADAR, OR SONAR ENCLOSURE. POSTERS MAY BE OBtained upon request to the bureau of MEDICINE AND SURGERY.



Figure 1-1. Facsimile Recorder RD-92A/UX

## SECTION 1 <br> GENERAL DESCRIPTION

## 1. INTRODUCTION.

This instruction book covers the essential information for installation, operation, and maintenance of Facsimile Recorder RD-92A/UX. It is a revision and extension of material covered in NAVSHIPS 91401, Instruction Book for Facsimile Recorder RD-92/UX. Auxiliary equipment, not supplied, which may be used with this equipment are: Frequency Shift Converter CV-172( )/U and Automatic Start and Transfer Unit, Times Facsimile Model AST-( ). The Automatic Start and Transfer Unit is commercial equipment not purchased by the Navy Department at present. Full details as to its application, installation and operation will accompany the unit when it is procured.

## 2. PURPOSE AND BASIC PRINCIPLES.

a. PURPOSE.-Facsimile equipment is used to transmit fixed images over an electrical communication system, such as wire or radio telephone circuits. These images may be pictures, maps, sketches, typewritten and printed text, or handwriting.
b. BASIC PRINCIPLES.-A facsimile system consists of a facsimile transmitter and a facsimile recorder. The facsimile transmitter resolves a sheet of copy to be transmitted into elemental areas, develops electrical signals corresponding to each elemental area in sequence, and transmits these signals for reception by the facsimile recorder. The facsimile recorder accepts and amplifies the facsimile signals and converts them back into corresponding density variations on a recording sheet.
c. GENERAL DESCRIPTION OF FACSIMILE RECORDER RD-92A/UX.-Facsimile Recorder RD-92A/ UX, figure $1-1$, makes direct recordings of copy transmitted from a Facsimile Transceiver, TT-41( )/ TXC -1 B , or equipment having the same transmission characteristics. The facsimile recorder is a self-contained unit mounted on a standard relay rack panel $121 / 4$ inches high. The recorder may be installed in a 19 -inch rack with rollers which permit it to be pulled in and out as a file cabinet drawer, enabling easy operation and rapid servicing.

The unit consists of an amplifier-power supply chassis and four plug-in subassemblies. These subassemblies are: audio-frequency oscillator, marked FORK AMP;
amplifier-detector, marked SIG AMP; amplifier-modulator, marked REMODULATOR; and the recorder subassembly.
A test switch mounted on the front panel provides means for quickly testing all important circuits. Neon light indicators across individual fuses and tube heaters instantly indicate a blown fuse or burned out tube heater.
d. APPLICATIONS OF FACSIMILE RECORDER. -Facsimile Recorder RD-92A/UX is used for recording facsimile signals from either wire or radio communications circuits.
(1) WIRE CIRCUITS.-When used with wire lines, the recorder is connected directly to the line. No external coupling transformer is required.
(2) RADIO CIRCUITS.--When used to record facsimile signals from radio circuits, the auxiliary equipment required is determined by the type of modulation used. This may be amplitude modulation (AM), audio-frequency shift modulation (AFS), or radio carrier frequency shift modulation (RFS).
(a) AMPLITUDE MODULATION.--When receiving amplitude modulation, the 500 -ohm output of the radio receiver is connected directly to the INPUT terminals of the facsimile recorder. If the radio receiver has no 500 -ohm output, use the lowest output impedance available.
(b) AUDIO-FREQUENCY SHIFT MODULA-TION.-When receiving AFS, the 500 -ohm output of the radio receiver is connected to the INPUT terminals of the auxiliary equipment, Frequency Shift Converter CV-172( )/U. The output from the converter is connected to the input terminals of the facsimile recorder.
(c) RADIO CARRIER FREQUENCY SHIFT MODULATION.-When receiving RFS, Frequency Shift Converter CV-172( )/U is used. Additional auxiliary equipment may be required.
(3) AUTOMATIC PHASING AND STARTING. -Auxiliary equipment, Automatic Start and Transfer Unit, Times Facsimile Model AST-( ), when used in a facsimile installation, enables unattended automatic phasing and starting, with the operator merely unloading received copy and putting in fresh paper. This auxiliary equipment may be used for recorder installations operating from automatic phasing and start
signals sent by the facsimile transmitter. With two facsimile recorders, it is possible to provide 40 minutes of continuous unattended operation of the recorders. At the end of one transmission, the auxiliary equipment transfers the signal to the second recorder, which is automatically phased and started on the succeeding transmission. The operator need not be present at the beginning of the transmission. He merely unloads received copy and puts in fresh paper whenever convenient in 25 to $\mathbf{4 0}$ minute intervals.

## 3. DESCRIPTION OF UNITS.

While Facsimile Recorder RD-92A/UX is a complete unit in itself, it is made up of a number of plug-in
subassemblies, each providing specific functions. The locations of these subassemblies is shown in figure 1-2. The individual assemblies are: the recorder subassembly, figure 1-3; the amplifier-detector, figure $1-4$; the amplifier-modulator, figure $1-5$; the audio-frequency oscillator, figure $1-6$; and the amplifier-power supply, figure $1-7$, which serves as the basic chassis on which the four subassemblies are plugged-in.
a. RECORDER SUBASSEMBLY.-Facsimile Recorder RD-92A/UX performs its function of recording pictures, drawings, or messages by rotating a drum at a constant speed, while feeding a stylus needle along the drum, one scanning line for each revolution, until the complete drum has been covered. This function is


Figure 1-2. Location of Subassemblies


Figure 1-3. Recorder Subassembly
performed by means of three motors and suitable gears and mechanical linkages contained within the recorder subassembly. The power, signal, and phasing currents for proper operation of the recording mechanism are obtained from the outputs of the electronic subassemblies.
b. AMPLIFIER - DETECTOR.-The amplifier-detector unit, mounted at the right side of the recorder, receives the input facsimile signal. It consists of the complete signal amplifier and the rectifiers of the demodulator unit, in addition to an amplifier for the meter test circuit.
c. AMPLIFIER - MODULATOR. - The amplifiermodulator unit, located at the rear of the recorder, contains a 15 kc oscillator, a modulator, a driver amplifier, and the electrical portion of the phasing circuit.
d. AUDIO-FREQUENCY OSCILLATOR. - The audio-frequency oscillator, located on the left side of the recorder, contains a tuning fork and electronic amplifier which provides an 1,800 -cycle signal for the motor amplifier and TEST SIGNAL circuits in the amplifier-power supply assembly.
e. AMPLIFIER-POWER SUPPLY.-The amplifierpower supply assembly contains the power supply circuits, print amplifier, motor driver, power amplifier, and various metering and switching circuits. Operating, indicating, and testing controls are mounted on the panel on the front of this assembly. A tool rack is mounted at the rear.
f. CONTROL PANEL.-The control panel at the front of the amplifier-power supply chassis contains the following controls, in order from left to right:
(1) PILOT LAMP.-Indicates when the equipment is turned on.
(2) ONE EIGHTH AMP B + FUSE.-Protects the high voltage circuits for the motor, print, and phasing amplifiers. The neon lamp directly above this fuse indicates when the fuse is blown.
(3) SELECTOR SWITCH.--Provides the circuit connections to start and operate the recorder. The five positions of the selector switch are:
(a) OFF.-Opens one side of the a-c line to turn off the recorder.


Figure 1-4. Amplifier-Detector Subassembly


Figure 1-5.
Amplifier-Modulator Subassembly
(b) STANDBY.-Turns on heaters of all tubes.
(c) START.-Connects a-c power to the start motor and applies plate voltage to the fork controlled audio-frequency oscillator and signal amplifier circuits. The start motor brings the synchronous motor above synchronous speed.
(d) SYNC.-Reduces and regulates current to start motor, and applies 1,800 -cycle power to the synchronous motor. Applies plate voltage to all circuits. The synchronous motor speed coasts down and locks into synchronism, while the drum remains stationary.
(e) RUN.-Switches a-c power from start motor to run motor, which turns the drum and drives it against the stop bar rotated by the synchronous motor.
(4) PHASE SWITCH.--Located just above the selector switch RUN position, the two positions of the switch are:
(a) LOCAL.-The PHASE switch is normally left in this position. When phasing pulses are being received, the operator presses the PHASE switch to actuate circuits which set the drum synchronizing mechanism in step with the phasing pulses.


Figure 1-7. Amplifier-Power Supply Chassis
(b) REMOTE.-This position is used only with auxiliary equipment, Automatic Start and Transfer Unit AST-( ), in an installation requiring a facsimile transmitter that transmits a start signal. When the AST-( ) unit is not connected, the PHASE switch operates the same in either LOCAL or REMOTE position.
(5) METER.-The meter located in the center of the control panel is a $0-1$ ma meter with a scale calibrated 0 to 200 . The meter connects to a bridge rectifier circuit so that it can measure either d-c or a-c input voltages. The meter is normally connected to serve as
an indicator for adjusting the DENSITY CONTROL.
(6) PRESS TO TEST SWITCH.-This switch is used only in connection with the meter and the CIRCUIT TEST switch as a means for quickly locating circuit trouble.
(7) CIRCUIT TEST SWITCH.-This switch enables a quick circuit check when trouble is encountered. The pointer is rotated to the circuit to be tested and the PRESS TO TEST switch is depressed to obtain the test reading. With the synchronous motor running in SYNC position and the DENSITY control in TEST SIGNAL position, the normal meter reading is 100 on the 0 to


Figure 1-8. Identification of Front Panel Controls

200 scale for all positions of the switch except PHASE AMP and PRINT. The circuit test positions are:
(a) POWER
(b) SIG AMP OUT
(c) PHASE AMP OUT
(d) $\mathrm{LOB}+$
(e) $\mathrm{HI} \mathrm{B}+$
(f) SYNC DRIVE
(g) PRINT
(b) OSC
(i) G0-CYCLE MOTOR
(j) VR75
(k) SYNC MA

The interpretation of the test readings is explained in Section 2.
(8) TWO AMP POWER FUSES.--These fuses are connected in the input power lines for protection of the facsimile recorder.
(9) DENSITY CONTROL.-This control serves
to adjust the print circuit, utilizing the meter as indicator.
(10) TEST SIGNAL.-The bottom position of the DENSITY control is labelled TEST SIGNAL. In this position, a signal is fed from the audio-frequency oscillator to the input of the signal amplifier for testing the various circuits with the CIRCUIT TEST switch, when no signal is available from the line.
$g$. CONTROLS ON RECORDER SUBASSEMBLY.On the right side of the recorder subassembly are located two additional controls. These are:
(1) RECORD BUTTON.-This button, located at the upper right side of the recorder, starts recording when it is depressed. It releases automatically at the end of travel of the stylus carriage.
(2) PAPER LOAD.-This control serves to stop the drum and open the clamping fingers for loading or unloading the recording paper.

## 4. DESCRIPTION OF AUXILIARY EQUIPMENT.

a. FREQUENCY SHIFT CONVERTER CV-172 ( )/U.-This unit converts 1,500 to $2,300 \mathrm{cps}$ facsimile signals received from a radio circuit to AM signals for the RD-92A/UX facsimile recorder. The unit contains provision for audible monitoring of the incoming signal and for visual checking of frequency limits. The facsimile signal obtained from the radio receiver is fed through an amplifier to a limiter and then through a frequency discriminator. The output of the amplifier is controlled by an INPUT LEVEL potentiometer to adjust the signal level fed to the limiter. A loudspeaker, with a separate volume control, connects to the output of the line amplifier. This output also feeds two tuned circuits, resonated at 1,500 and 2,300 cycles respectively, to operate a tuning eye frequency indicator.

Frequency Shift Converter CV-172( )/U is used at the receiving terminal of a radio facsimile circuit of the AFS or RFS type. The signal from the radio receiver is an audio-frequency shift signal in which 1,500 cycles represents black and 2,300 cycles represents white for the RD 92A/UX recorder. The frequency shift converter converts this signal from the radio receiver into one that may be used by the facsimile recorder.
b. AUTOMATIC START AND TRANSFER UNIT, TIMES FACSIMILE MODEL AST-( ).-This unit is used on recorder installations operating from automatic phasing and start signals sent by the facsimile transmitter for remote control of phasing and starting the RD-92A/UX recorder. The PHASE switch on the recorders must be in the REMOTE position. Normally two recorders are operated by a single AST-( ) unit, with the operator's attention required only at 25 to 40 minute intervals to unload received copy and load fresh paper.

The AST-( ) unit provides a holding current which is electronically controlled so that after approximately three phasing pulses are received at the start of a facsimile transmission, one of the recorders is permitted to phase in the normal manner. Immediately following the last phasing pulse, the facsimile transmitter sends a 60 -cycle modulated 1,800 -cycle tone, stari signal, which actuates relays to begin printing the facsimile copy.

At the end of one transmission the AST-( ) unit automatically stops the recording operation and transfers the signal circuit to the second recorder.

The AST-( ) unit contains a monitor amplifier and speaker, so that voice announcements and facsimile signals on the incoming line may be heard. A volume control on the monitor amplifier has no effect on the automatic operation of the recorders.

The AST-( ) unit may be mounted on a standard relay rack using a panel $53 / 4$ inches high. It may also be mounted between two RD-92A/UX recorders which are in their cabinets, by using special side plates provided with the unit. The AST-( ) unit has its own selfcontained power supply and operates from a 115 -volt, 60 -cycle a-c power line. It has two interconnecting cables which fasten to the rear of the RD-92A/UX recorders.

## 5. REFERENCE DATA.

Facsimile Recorder RD-92A/UX
Contract: NObsr-52050, 18 October 1950
Times Facsimile Corp., New York, N. Y.
Cognizant Naval Inspector:
Inspector of Naval Material New York, N. Y.

Number of packages per complete shipment of equipment, including equipment spares........ 3
Total cubical contents, including equipment spares: Crated $10.4 \mathrm{cu} . \mathrm{ft}$. Uncrated 3.2 cu ft .

Total weight, including equipment spares:
Crated . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 lbs.
$\qquad$
Type of recording mechanism

Rotating drum
Over-all size with cabinet $141 / 2 \times 20 \times 161 / 2$ in.
Weight—rack mounting. 50 lb
Weight—with cabinet... 71 lb
Recording sheet size. . . . 12 by $191 / 8$ in.
Maximum received copy
size ................. 12 by $18 \frac{3}{4}$ in.
Index of cooperation.... 576 (International index)
Type of recording. . . . . . . Direct stylus
Drum speed . . . . . . . . . . 60 rpm
Drum speed control.... . Synchronous motor controlled by $1,800 \mathrm{cps}$ fork oscillator
Number of tubes . . . . . . . 15
Type of modulation. . . . AM
Input frequency . . . . . . . 500 to $10,000 \mathrm{cps}$
Signal level . . . . . . . . . . . 0 to minus 40 dbm
Input impedance . . . . . . 2,000 ohm
Black to white signal con-
trast ................ Adjustable from 10 db to 20 db
Power source . . . . . . . . . 90 to 130 V , 55 to 65 cps ac
Power consumption ..... 150 W at 117 V
Heat dissipation ........ 150 W
6. EQUIPMENT LISTS.

TABLE 1-1. EQUIPMENT SUPPLIED

| QUAN- <br> TITY <br> PER | NAME OF UNIT | NAVY TYPE DESIGNA. TION | OVER-ALL DIMENSIONS |  |  | VOLUME CU. FT. | WEIGHT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MENT |  |  | HEIGHT | WIDTH | DEPTH |  |  |
| 1 | Facsimile Recorder | RD-92A/UX | 14 in. | 191/8 in. | $\begin{gathered} 17-21 / 32 \\ \text { in. } \end{gathered}$ | 2.7 | 75 lb . |

TABLE 1-2. EQUIPMENT REQUIRED BUT NOT SUPPLIED

| $\begin{aligned} & \text { QUAN- } \\ & \text { TITY } \\ & \text { PER } \\ & \text { EQUUP- } \\ & \text { MENT } \end{aligned}$ | NAME OF UNIT | NAVY TYPE DESIGNATION | REQUIRED USE | REQUIRED CHARACTERISTICS |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Power source |  | For operation of RD92A/UX. | Single phase $115 \mathrm{v}, 60 \mathrm{cps}$. |
| 1 | Frequency Shift Converter | CV-172( )/U | For radio operation of RD-92A/UX. | Give required output and contrast level for operation of RD-92A/UX. |
| 1 | Automatic Start and Transfer Unit | Commercial equip ment. Not pro cured by Navy at present. | For automatic phasing and starting of RD92A/UX. | Give necessary control signals for phasing and starting of RD-92A/UX. |

TABLE 1-3. SHIPPING DATA

| SHIPPING BOX NO. | CONTENTS |  | OVER-ALL DIMENSIONS |  |  | vol. | WEIGHT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | NAME | designation | HEIGHT | WIDTH | DEPTH |  |  |
| 1 | Facsimile Recorder | RD-92A/UX | 26 in. | 19 in. | 22 in. | $6.3 \mathrm{cu} . \mathrm{ft}$. | 140 lbs . |
|  | Instruction Book (2) | NAVSHIPS 91630 |  |  |  |  |  |
|  | $1 / \mathrm{s} \mathrm{amp}$ fuses (5) |  |  |  |  |  |  |
|  | Stylii (100) |  |  |  |  |  |  |
| 2 | Recording paper ( 10 pg ) | TIMEFAX ND | 231/2 in. | 26 in. | $91 / 2 \mathrm{in}$. | $3.4 \mathrm{cu} . \mathrm{ft}$. | 100 lbs . |
| 3 | Equip. spares (1 set) |  | 16 in. | $101 / 2 \mathrm{in}$. | 71/2 in. | . $7 \mathrm{cu} . \mathrm{ft}$. | 40 lbs. |

1-8
7. DIFFERENCES BETWEEN RD-92/UX AND RD92A/UX RECORDERS.
Fundamentally, there is very little difference between the RD-92/UX and the RD-92A/UX facsimile re-
corders. The controls of the two equipments are physically located in identical positions and function in the same manner.

The major differences are indicated in Table 1-4.

TABLE 1-4. BASIC DIFFERENCES RD-92/UX and RD-92A/UX
FACSIMILE RECORDERS

| ITEM | RD-92/UX | RD-92A/UX |
| :---: | :---: | :---: |
| R-f interference reduction | Stylus guard door made of copper laminate to shield arc. | a. Noise suppression filter in power line to reduce conducted noise interference. <br> b. Perforated metal shield over the recording drum to reduce radiated interference. |
| Power line fuse | One side of the power line is fused. | Both sides of the power line are fused. |
| Contrast | Fixed contrast-no adjustment provided. | Internal control provided to vary recording contrast. |
| Power line cord | Power line cord is integral with set. | Power line cord is removable and is terminated in a female Hubbell twist-lock connector. |
| Pilot lamp | Pilot lamp is connected between one side of power line and ground to indicate polarity of power line. | Pilot lamp is connected across the power line. |
| Cabinet | Installation instructions provided on rear of cabinet. | a. A barrier strip on a removable plate is provided in the rear of the cabinet for connecting the input, ground and power leads. <br> b. Interconnecting leads are provided to connect the barrier strip to the recorder chassis. |
| Input signal connections | Input signal connection must be made to the recorder chassis. | Input signal connection can be made to either the barrier strip or to the recorder chassis. |

## 8. ELECTRON TUBE COMPLEMENT.

TABLE 1-5. ELECTRON TUBE COMPLEMENT

| SUBASSEMBLY | NUMBER OF TUBES OF TYPES INDICATED |  |  |  |  |  |  |  | TOTAL NO. OF TUBES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 65N7 | 6517 | 1635 | 2D21 | 6AG7 | 2H2O | 6-36 | VR75/OA3 |  |
| Recorder subassembly |  |  |  |  |  |  |  |  | 0 |
| Amplifier-detector | 2 | 1 |  |  |  |  |  |  | 3 |
| Amplifier-modulator | 1 | 1 |  | 1 |  |  |  |  | 3 |
| Audio-frequency oscillator. | 1 |  |  |  | 1 |  |  |  | 2 |
| Amplifier-power supply | 1 |  | 3 |  |  | 1 | 1 | 1 | 7 |
| Total number per type | 5 | 2 | 3 | 1 | 1 | 1 | 1 | 1 | 15 |

## SECTION 2

## THEORY OF OPERATION

## 1. INTRODUCTION.

Facsimile equipment is used to transmit fixed images over an electrical communication system, such as a wire or radio circuit. These images may be maps, pictures, photographs, sketches, typewritten and printed text, or handwriting.
a. THE FACSIMILE TRANSMITTER.-The facsimile transmitter must resolve the sheet of copy to be transmitted into very small elemental areas and transmit the average density of each area separately. The size of these elemental areas must be small enough to resolve the smallest intelligence that is to be transmitted.

An exciter lamp is used as a source of uniform illumination of the copy and a phototube is used to determine the brightness of each elemental area. The copy to be transmitted is clamped on a drum at the facsimile transmitter. An image of the copy is focused upon an aperture plate which is located immediately in front of a phototube. The size of the hole in the aperture plate determines the area of the copy image (the elemental area) which passes through to the phototube.

The phototube acts as a valve in a modulator circuit to control the amplitude of a carrier frequency or tone. When a dark area of the copy is seen by the phototube through the aperture hole, the phototube allows a maximum signal to pass through the modulator circuit. When a white area is seen by the phototube, a minimum signal results. This signal from the phototube modulator is the facsimile signal which is transmitted to the facsimile recorder.

In order to scan each elemental area of the copy, the drum upon which the copy is clamped rotates and at the same time moves sidewise, so that the relative position of the optical system shifts by one elemental area for each drum revolution. When the optical system has completely scanned the copy, all of the elemental areas on the copy have been seen by the phototube and a corresponding amplitude signal has been transmitted for each elemental area.
b. THE FACSIMILE RECORDER.-The facsimile recorder amplifies this facsimile signal, received at the other end of the communication system, and converts it back into corresponding density variations on the recording sheet.

The received facsimile signal is amplified and applied to a small stylus needle which is in contact with the
recording paper on a drum similar to that of the transmitter. The drum of the facsimile recorder rotates at the same speed as that of the facsimile transmitter so that the two drums are maintained in the same relative position while a signal is being received.

When a black area of the copy to be transmitted is seen by the phototube, a maximum amplitude signal is transmitted, amplified at the recorder, and impressed upon the recording paper by the stylus to print a corresponding elemental area of maximum density (black). When a white area is seen on the transmitter drum, the signal passed by the phototube modulator circuit is so low that no signal records in the corresponding elemental area of the sheet at the facsimile recorder. When the entire copy has been scanned at the facsimile transmitter, the same copy has been reproduced on the recording paper at the facsimile recorder.

## 2. GENERAL DESCRIPTION OF ELECTRICAL CIRCUITS.

The course of signal and power currents through the major circuits of the Facsimile Recorder RD-92A/UX is shown in the simplified block diagram of figure 2-1.
a. AMPLIFIER-POWER SUPPLY.-Facsimile signal input and power input lines connect to the amplifierpower supply assembly, which serves as the basic chassis for the recorder. In addition to power supply and control panel citcuits, this unit contains the signal input transformer and DENSITY control and a number of independent amplifier circuits needed to amplify the outputs of slectronic subassemblies, before passing appropriate signals to the recording mechanism in a separate plug-in subassembly. A comprehensive block diagram of the system is shown in figure 2-2.
b. AMPLIFIER-DETECTOR.-The input facsimile signal, from a wire or radio communication system, consists of phasing pulses and facsimile intelligence between the frequency limits of 900 and 2,700 cycles. This signal, coupled through the input transformer and with signal strength or density level adjusted by the DENSITY control, connects to the amplifier-detector subassembly. Here, it is amplified by a Class $A$ amplifier and demodulated through the action of a full-wave rectifier and low-pass filter to form a varying d-c facsimile signal.


Figure 2-1. Simplified Block Diagram of Facsimile Recorder RD-92A/UX
c. AMPLIFIER-MODULATOR. - The varying d-c facsimile signal output of the amplifier-detector unit is coupled to the amplifier-modulator subassembly, where it combines with a signal from a 15 kc oscillator in a modulator stage. The 15 kc output of the modulator varies with the amplitude of the d-c facsimile signal. The resulting modulated signal connects, through the normally closed contact of relay K 1 , to the print driver and amplifier in the amplifier-power supply assembly.
d. PRINT DRIVER AND AMPLIFIER.-The signal from the amplifier-modulator unit is amplified by the print driver and amplifier to sufficient intensity, so that, when connected to the stylus needle in the recording mechanism assembly, it will record on the recording paper at points representing dark elements of the transmitted copy.
e. PHASING DETECTOR AND AMPLIFIER.-For phasing pulses, relay K 1 is operated to transfer the signal from the amplifier-modulator to the phasing detector and amplifier, located in the amplifier-modulator subassembly. The phasing pulses, which are transmitted at the beginning of each copy, are amplified to operate the phasing actuator in the recorder subassembly.
f. PHASING ACTUATOR.-The phasing actuator, on receiving the phasing pulse, releases the stop bar on the synchronous drive mechanism in the proper position
to frame the recorder drum with the drum of the facsimile transmitter.
g. AUDIO-FREQUENCY OSCILLATOR.-The fork controlled audio-frequency oscillator generates an 1800cycle signal, which is amplified by the buffer amplifier and motor amplifier in the amplifier-power supply assembly and then coupled to the recording mechanism assembly to operate the sync motor. The 1,800 -cycle signal also connects to the TEST SIGNAL position on the DENSITY control, where it is available for connection to the input of the signal amplifier for testing the various circuits with the CIRCUIT TEST switch.
b. SYNC, START, AND RUN MOTORS.-The sync motor, rotating at a synchronous speed of $1,800 \mathrm{rpm}$, is geared down to the required recorder drum speed of 60 rpm . A start motor, mechanically coupled to the sync motor, serves to bring the sync motor up to greater than synchronous speed, after which it coasts down to the sync speed when the sync motor runs on 1,800 -cycle power. The sync motor regulates the speed of the recorder drum.

## 3. CIRCUIT ANALYSIS.

a. GENERAL.-By grouping specific functions of the Facsimile Recorder RD 92A/UX into plug-in subassemblies, a compact circuit arrangement enabling a
quick check of circuit elements is achieved. Block diagrams and circuit schematics of the individual subassemblies serve to explain the specific functions of each unit. Also refer to the over-all schematic, figure 7-4.
b. AMPLIFIER-DETECTOR. - The amplifier-detector subassembly, located at the right side of the recorder, consists of three stages of Class $A$ amplification with inverse feedback for greater stability, a full-wave rectifier as part of the demodulator circuit, and an amplifier for the meter test circuit. A block diagram of the unit and the circuit schematic are shown in figures $2-3$ and $2-4$, respectively.
(1) SIGNAL AMPLIFIER.-The INPUT terminals, located at the top of this unit, connect through the multiple connector, P 2 , to the input transformer, $\mathrm{T}_{1}$, and DENSITY control, R38, located on the amplifierpower supply chassis. The signal, taken from the rotor of the DENSITY control, returns through pin 5 of the multiple connector, P 2 , and connects to the grid of the first amplifier V102A, one-half of a 6SL7. The complete signal amplifier consists of two half sections of this 6SL7 (V102A and B) and a half section of 6SN7 (V101B), connected in cascade. Elimination of cathode bypass capacitors results in inverse feedback to stabilize the circuit. Additional inverse feedback is obtained by means of common cathode resistor, R105, for the first and third amplifier.
(2) DEMODULATOR.-The output of the signal amplifier is coupled through transformer T101 to V103, two sections of a 6SN7 connected as a full-wave rectifier. The remaining half section of a 6 SN7, V101A, serves as a meter amplifier to measure the d-c output of the amplifier-detector unit in connection with the CIRCUIT TEST switch and meter on the amplifierpower supply control panel. The signal output of the full-wave rectifier, d-c pulses, couples through limiting resistor R109 ( 10 K ) to the carrier elimination filter, Z1, located in the amplifier-power supply assembly. Variations in the amplitude of the signal, in the form of varying d-c, are delivered to the load resistor, R33 (22K).
(3) PLATE VOLTAGE.-Plate supply of +100 volts connects directly through P 2 -pin 7 to the plate circuit of the third amplifier tube and, through decoupling resistor R 31 ( 10 K ) and P 2 -pin 1, to the plate circuits of the first and second amplifier tubes.

Regulated +75 volts connects through P 2 -pin 8 to the plate of the circuit test amplifier, V101A. The test signal is taken from the cathode through P 2 -pin 9 to R20 in series with R21 (180K) in the CIRCUIT TEST circuit.
(4) FILAMENT VOLTAGE.-The filaments of the tubes are connected in series in the following order: V102, V101, and V103, with one end of V102 connecting to the B-minus lead of the power supply. Leads are taken from the filament string from the opposite end of V102 to provide a parallel connection for V202 on the modulator-amplifier subassembly, and from V203 to connect through P2-pin 4 to the remaining string of series filaments. Across the filament of each tube is connected a neon tube in series with a 270 K resistor. If one filament in a string of series filaments burns out, its associated neon tube will light up to indicate the defective tube.
c. AMPLIFIER-MODULATOR. - The amplifiermodulator, a plug-in subassembly located at the rear of the recorder, accepts the facsimile signal output from the low pass filter and puts out a signal that may go either to the print amplifier for application to the stylus or to the phasing detector and pulse amplifier for application to the phasing actuator. The subassembly contains two distinct circuits. One comprises the 15 kc oscillator, modulator and print driver, while the other is the electrical portion of the phasing circuit. (See block diagram, figure 2-5, the circuit schematic of the unit, figure 2-6, and the over-all schematic, figure 7-13.)
(1) 15 KC OSCILLATOR.-A half section of a 6SN7 (V201B) is connected as a conventional Colpitts oscillator. The frequency determining network Z201, tuned to approximately 15 kc , is driven from the plate of the oscillator tube through capacitor C203 ( 0.01 mf ) and resistor R210 ( 47 K ). Limiting resistor R210 controls the voltage fed back from the plate of the oscillator tube into the frequency determining network. The value is such that the oscillator will start quickly, while the voltage fed back will be kept to a limit that will prevent severe distortion of the oscillator waveform. The frequency determining network connects to the grid of the oscillator tube through capacitor C205 ( 0.01 mf ), with resistor R 208 (270K) serving as grid leak. The output of the oscillator is coupled through capacitor C204 ( 0.01 mf ) and the voltage divider network of R214 (270K), and R215 (390K), through R213 (1.8 meg), to the grid of the modulator tube V202A.
(2) MODULATOR.-The modulator tube V202A is a half section of a 6SL7. Two voltages applied to the grid of the modulator tube are:
(a) the 15 kc signal from the oscillator
(b) the varying d-c facsimile signal output of the low-pass filter.

The modulator tube is biased beyond cutoff. The bias voltage is obtained from a voltage divider network comprising R211 (15K) and R204 and potentiometer


Figure 2-2. Block Diagram of Facsimile Recorder RD-92A/UX


Figure 2-2. Block Diagram of Facsimile Recorder RD-92A/UX


Figure 2-3. Block Diagram of Amplifier-Detector

R222 in the cathode circuit. When no d.c facsimile signal appears on the control grid, there is no output from the modulator tube. Since the facsimile signal from the low-pass filter is positive with respect to $\mathrm{B}-$, a maximum signal (corresponding to black) applied to the grid brings the modulator tube into the plate current conducting region. This permits the modulator tube to pass and amplify the 15 kc signal from the oscillator.
(3) PEAK LIMITER.-It is essential to limit the maximum amplitude of the d-c fascimile signal so that the grid to cathode voltage of the modulator tube does not become less negative than is required for Class $A$ amplification. To perform this limiting action a crystal rectifier, CR201, is connected between the d-c facsimile signal input lead, P4-pin 1, and the cathode of the modulator tube. When the input d-c facsimile signal overcomes the fixed bias on the modulator cathode, CR201 starts to conduct. This action limits the input d -c facsimile signal to a value equal to the d -c potential at the cathode of V202A. Under this condition the bias
between the grid and cathode of the modulator tube is still negative, since the positive d-c facsimile signal applied to the grid has been dropped in amplitude through the voltage divider network of R212 (470K), R213 ( 1.8 meg ), and R215 (390K).

Correct setting of the DENSITY control on the control panel is necessary for proper operation of the modulator circuit. If the DENSITY control is set too high so that CR201 limits appreciably, the background of the transmitted copy will no longer be white and the black lines will widen out somewhat.

If the DENSITY control is set too high and CR201 is open or disconnected, the black lines become white in the center. If the control is set still higher, a complete reversal of picture tone will result so that a negative is received. This reversal effect is caused by the low tube input impedance when the grid is positive, shorting the 15 kc oscillator signal.

For maximum signal output from the modulator tube, a d-c facsimile signal output of about five volts is needed from the low-pass filter, $\mathrm{Z}_{1}$.


NOTE: UNLESS OTHERWISE SPECIFIED
all resistance values are in ohms, all capacitance values are in microfarads

Figure 2-4. Schematic Diagram of Amplifier-Detector


Figure 2-5. Block Diagram of Amplifier-Modulator


Figure 2-6. Schematic Diagram of Amplifier-Modulator
(4) PRINT DRIVER.-The 15 kc output of the modulator tube is choke coupled to the print driver tube V201A, the remaining half section of the 6 SN 7 . The inductance of the choke, L201, is such that the plate-load reactance is very low for the modulating frequency variations passed by the tube, but is high for the 15 kc signals which represent the black elements of the transmitted facsimile copy and the phasing pulses. The low frequencies are attenuated still further by the short time constant of the coupling capacitor C206 ( 0.0005 mf ) and the grid resistor R206 ( 100 K ). The print driver, V201A, is a Class $A$ amplifier and is transformer coupled to the print amplifier, located on the amplifier-power supply chassis.
(5) PHASING DETECTOR AND AMPLIFIER.When the PHASE switch on the control panel is operated to phase the recorder, the output of the print driver transformer, T3, is connected by relay K1 to the input of the phasing detector and amplifier, V202B, through P4-pin 6, V202B. This stage, the second half of the 6SL7, acts with capacitor C208 ( 0.5 mf ) and resistors R 217 ( 100 K ) and R 218 (10K) to form a grid-leak detector to rectify the incoming phasing pulses, which at this point are a series of bursts of 15 kc energy. The product of R218 (10K) and C208 ( 0.5 mf ) controls the charging time of the capacitor, while the time constant of C208 and R217 (100K) controls the discharge time. The circuit eliminates the 15 kc carrier and passes the phasing pulses.

There is no cathode resistor in the V202B circuit, so that when no signal is being received, the grid is at zero potential with respect to the cathode, and plate voltage is extremely low due to current through the plate resistor R201 (470K). Under phasing conditions the grid of V202B swings from plate current cutoff to practically zero, and the voltage at the plate jumps to a maximum value. Capacitor C202 ( 0.01 mf ) improves filtering of the 15 kc carrier. The d-c pulsed output of V202B is coupled through C201 ( 0.01 mf ) to the grid of the thyratron tube V203, a 2D21.
(6) PULSE AMPLIFIER.-A fixed bias from the voltage divider arrangement of R202 (270K) and R203 ( 68 K ) is applied to the thyratron tube to prevent the tube from firing until a high amplitude pulse drives the grid to nearly zero bias. When the tube fires on a phasing pulse, the voltage at the cathode increases from its fixed bias value to almost $\mathrm{B}+$ voltage. This positive pulse is coupled to the phasing actuator through P4-pin 8 and capacitor C10 ( 2 mf ). The thyratron circuit is self extinguishing so that it is quickly ready for the next phasing pulse. The voltage, generated by the collapsing magnetic field of the phasing actuator at the end of the phasing pulse, is sufficient to raise
the cathode potential of the thyratron momentarily above the plate voltage and extinguish the tube.
(7) PLATE VOLTAGE.-The 15 kc oscillator and modulator require a +75 volt regulated power supply, obtained from the amplifier-power supply chassis through P4-pin 2. Plate voltage for the print driver is obtained through transformer $T 3$, on the amplifierpower supply chassis. The phasing detector and pulse amplifier require a high voltage, +300 volts, obtained from the amplifier-power supply chassis through P4-pin 5. The B- lead connects through P4-pin 10.
(8) FILAMENT VOLTAGE.-The filament of V202, a 6SL7, connects between B-, P4-pin 10, and P4-pin 7 to form a parallel connection with a second 6SL7, V102, on the amplifier-detector subassembly. The filaments of V201, a 6SN7, and V203, a 2D21 thyratron, form part of the series filament string connecting through P4-pin 9 and P4-pin 11. Across the filament of each tube is connected a neon tube in series with a 270 K limiting resistor, to indicate a burned out filament.
d. AUDIO-FREQUENCY OSCILLATOR.--The fork controlled audio-frequency oscillator, a plug-in subassembly located on the left side of the recorder, generates an 1,800 -cycle signal for synchronous motor operation and for use as a test signal. The unit consists of an 1,800 -cycle tuning fork, whose output is amplified by three stages of amplification, with positive feedback to drive the fork. (See block diagram, figure 2-7, the unit circuit scbematic, figure $2-8$, and the overall circuit schematic, figure 7-13.)
(1) TUNING FORK.-The 1,800-cycle tuning fork, I301, has a pick-up coil which provides a signal to the first amplifier stage, V301A, and a drive coil which accepts a feedback signal from the power amplifier stage, V301B.
(2) FORK AMPLIFIER.-The 1,800 -cycle fork signal from the fork pick-up coil is applied through a shielded lead to the grid of the fork amplifier, V301A, a half section of a 6 SN7. V301A is a Class $A$ amplifier with an unbypassed cathode resistor R311 ( 2.2 K ) to provide inverse feedback for this stage to stabilize the circuit. The amplified 1,800 -cycle signal is resistancecoupled through capacitor C302 ( 0.01 mf ) to the control grid of V302, a 6AG7.
(3) FORK LIMITER AMPLIFIER:-The fork limiter amplifier stage, V302, is connected as a conventional pentode amplifier. Sufficient signal is delivered to the control grid of this stage to cause plate current limiting. This action results in a constant level output, regardless of the input signal received from V301A over the operating range of the fork.


Figure 2-7. Block Diagram of Audio Frequency Oscillafor


Figure 2-8. Schematic Diagram of Audio Frequency Oscillator

The suppressor grid, pin 1 of V302, is internally connected to the outer metal shell of the tube. Since the suppressor grid must be returned to $B$-, the outer shell is also at this potential. A bakelite shell is placed over the metal tube to prevent an accidental contact with $B-$, which is one side of the power line.
(4) FORK FEEDBACK AMPLIFIER.-The output of V302 is coupled through capacitor C304 ( 0.01 mf ), R308 ( 100 K ) and R310 ( 100 K ) to the grid of V301B, which acts as a power amplifier feeding the drive coil of the fork. Resistors R308 (100K) and R309 ( 47 K ) form a voltage divider to reduce the input signal to V301B.

A variable wire-wound resistor R 312 ( 20 K ) in the cathode circuit of V301B controls the frequency of the fork oscillator. When this resistor is set at the minimum value, maximum signal is delivered to the fork drive coil. This causes the fork to vibrate at a frequency slightly lower than 1,800 cycles. With R312 adjusted for maximum resistance, a minimum signal is applied to the fork drive coil and the fork vibrates at slightly more than 1,800 cycles. The total range of amplitude variation on the fork drive coil is approximately 8 to 1. This results in a frequency variation of approximately plus or minus 0.04 cps from the tuning fork center frequency of 1,800 cycles.
(5) AUDIO-FREQUENCY OSCILLATOR OUT-PUT.-The output from the fork controlled audio-
frequency oscillator unit is obtained from isolating resistor R 307 (270K). This output feeds through P4-pin 6 to provide signal for the motor amplifier and for the TEST SIGNAL circuits in the amplifier-power supply chassis.
(6) PLATE VOLTAGE.-The plate voltage for all stages is regulated +75 volts, obtained from the amplifier-power supply chassis through P3-pin 4.
(7) FILAMENT VOLTAGE.-The filaments of V302 and V301 connect to the string of series filaments through P3-pin 10 and P3-pin 9. Since the filaments of V302 and V301 are approximately in the center of the string of series filaments, a lead is connected from between these two filaments to P3-pin 15 to serve as a reference point for checking in the event two or more filaments burn out at the same time. If only one filament burns out, it is immediately indicated by the neon tube connected across each individual filament, in series with a 270 K limiting resistor.
e. AMPLIFIER-POWER SUPPLY.-The amplifierpower supply, which serves as the basic chassis for the recorder, contains a low voltage and a high voltage power supply circuit, the motor driver and power amplifier, the print amplifier and the various metering and'switching circuits. (See block diagrams, figures 2-1 and $2-2$, the over-all schematic, figure $7-13$, and the individual schematics for each circuit.)


NOTE: UNLESS OTHERWISE SPECIFIED
all resistance values are in ohms. all capacitance values are in
MICROFARADS.

Figure 2-9. Schematic Diagram of Motor Amplifier
(1) MOTOR AMPLIFIER.-(See schematic, figure 2-9.) The motor amplifier comprises two stages; V1B, which serves as a buffer stage to isolate the fork oscillator from the motor power circuits and provides sufficient amplification to drive the power stage; and V2 and V3, the motor amplifier tubes, which provide the current to operate the synchronous motor.

The 1,800 -cycle signal from the fork oscillator unit connects through J3-pin 6 to the grid of the buffermotor driver tube, V1B, one-half section of a $6 S N 7$. This stage is a transformer coupled amplifier, with an unbypassed cathode to provide greater stability. The SYNC MA potentiometer, R41, connected in the cathode circuit, controls the amplification of this stage to provide the proper amount of drive for the motor amplifier tubes, V2 and V3.

The output of $V 1 B$ is coupled through transformer T4 to the grids of the motor amplifier tabes, two 1635's connected in parallel. These are operated with zero bias as Class $B$ amplifiers.

The plate load of the motor amplifier tubes is the synchronous motor, B-401, shunted by capacitors C11 ( 0.0051 mf ) and C12 ( 0.0051 mf ). These capacitors resonate with the inductance of the motor coils at a frequency of about 2,000 cycles. This resonant frequency determines the fall-in characteristic of the synchronous motor when it is being started.

Plate voltage for both stages is +300 volts, obtained from the high voltage power supply. The filaments of the tubes are connected as part of the string of series filaments, with individual neon indicators across each filament.
(2) PRINT AMPLIFIER.-(See schematic, figure 2-10.) The plate of the print driver in the modulatoramplifier subassembly connects to the print driver transformer, T3, on the amplifier-power supply chassis through J4-pin 12. The secondary of transformer T3 connects to a normally closed contact of relay K1. With the relay deenergized, the print signal is applied to the grid of the print amplifier, V4, when the RECORD button on the recording mechanism assembly is operated. Tube V4, a duo-triode 1635, has both sections connected in parallel to provide power output as a zero biased Class $B$ amplifier. The output is transformer coupled through T2 to the stylus needle in the recording mechanism.
(3) LOW VOLTAGE POWER SUPPLY.-(See schematic, figure 2-11.) A conventional low-voltage $B+$ power supply and voltage regulator is used to provide regulated +75 volts to the fork oscillator, the 15 kc oscillator, and the modulator tubes; unregulated 90 to 130 volts to the signal amplifier; and 30 to 45 volts to provide phasing actuator holding current.


Figure 2-10. Schematic Diagram of Print Amplifier


Figure 2-11. Schematic Diagram of Low Voltage Power Supply


HIGH B+ POWER SUPPLY

Figure 2-12. Schematic Diagram of High Voltage Power Supply

Applied 110 volt, 60 -cycle ac is rectified by a standard 200 ma selenium rectifier, CR4, and the d-c output is filtered by single section filter, C7A ( 15 mf ), R24 ( $500 \mathrm{ohm}, 12 \mathrm{~W}$ ) and C8B ( 40 mf ). The various low voltage needs are provided by connecting voltage dropping resistors to suitable points in the filter circuit.
(a) UNREGULATED VOL'TAGE. - Connection of parallel resistors R44 and R30 (each $10 \mathrm{~K}, 2 \mathrm{~W}$ ) at the input of the filter circuit provides unregulated 30 to 45 volts dc for operation of the phasing actuator holding coil. A second filter section R32 (4.7K) and C8C ( 40 mf ), following the first filter section, provides unregulated 90 to 130 volts for the low current requirements of the signal amplifier.
(b) REGULATED VOLTAGE. - Regulated +75 volts, needed to maintain frequency stability for the fork controlled audio-frequency oscillator, the 15 kc oscillator and the remodulator, is obtained by using
a cold-cathode, gas-filled voltage regulator tube. Resistor R25 ( $1,200 \mathrm{ohm}, 12 \mathrm{~W}$ ) limits the current flow through the VR75 and enables the output voltage to be regulated by the characteristics of the tube.

The regulating action may be explained as follows: When the current drain from the regulated supply is small, most of the current through R25 flows through the regulator tube, V5. If the current drain from the supply is high, the current through the regulator tube is reduced. A similar effect results when the d-c input to the resistor and regulator tube combination is varied. The regulator tube automatically adjusts its current drain, so that the voltage applied to the load is maintained substantially constant at +75 volts.
(4) HIGH VOLTAGE POWER SUPPLY.(See schematic, figure 2-12.) The high voltage power supply is obtained from a voltage tripler circuit, eliminating the need for heavy transformers and chokes.
(a) VOLTAGE TRIPLER.-Voltage tripling of the applied input voltage results from the selective charging of a number of capacitors in such a manner that their voltages add. When the first positive half cycle of the 115 volt, 60 -cycle power source is applied to the voltage tripler circuit the rectifiers CR1, CR2, and CR3, all connected in series, will conduct. As a result, capacitors $C 8 A(40 \mathrm{mf})$ and C 6 B and C (total 30 mf ) which are across the line, charge up to the peak line voltage. On the negative half cycle, since the polarity of the applied voltage has been reversed, rectifiers CR1 and CR3 do not conduct. However, capacitor C8A now discharges through CR2 to charge up capacitor C5 ( 45 mf ) in series with the line voltage. Capacitor C5, therefore, charges to a voltage higher than the peak line voltage. During the next positive half cycle, CR1 conducts and recharges C8A. At the same time the voltage of the charged capacitor $C 5$ in series with the line voltage is applied to CR3, which conducts to charge C 6 B and C (two sections connected in parallel). After a few cycles of operation, the voltage across C5 is twice the line voltage (voltage doubler) and the voltage across $C 6 B$ and $C$ is three times the line voltage (voltage tripler).
(b) VOLTAGE TRIPLER OUTPUT.-Both an unfiltered and a filtered output are taken from the voltage tripler circuit. The unfiltered output is taken
from the junction of CR3, C6 (B and C) and bleeder resistor R 29 ( 150 K ) to provide the charging voltage through $\mathrm{R} 40(47 \mathrm{~K})$ for the carriage release capacitor. The output of the tripler circuit is filtered by a filter section comprised of R23 ( 500 ohm, 12 W ) and capacitor C6A ( 15 mf ) and bleeder resistor R28 ( $150 \mathrm{~K}, 2 \mathrm{~W}$ ), to stabilize the output. The filtered 235 to 375 volt output of the voltage tripler provides the required high voltage for operation of the print driver, print amplifier, sync motor amplifier, and the phase amplifier circuits.
(c) ONE-EIGHTH AMP B + FUSE.-The $1 / 8$ ampere $B+$ fuse, located on the control panel, is connected in the filter section of the voltage tripler to protect the circuit from overload. Neon indicator, E9, is connected across the fuse to indicate when it is blown.
(5) SWITCHING CIRCUITS ON CONTROL PANEL.--There are three switching circuits on the control panel of the amplifier-power supply chassis that control basic functions of the recorder. These are the SELECTOR, PHASE, and CIRCUIT TEST switches.
(a) SELECTOR SWITCH CIRCUIT.-(See figure 2-13.) The selector switch is a three-section twopole wafer switch with five positions. The five switch positions are: OFF, STANDBY, START, SYNC, and RUN.


Figure 2-13. Block Diagram of Selector Switch Functions

1. OFF.-One side of the 115 volt, 60 -cycle a-c input line connects to the rotor of section IIIB of the selector switch. When the switch is in the OFF position, the a-c line is open and there is no connection to any circuit.
2. STANDBY.-When the rotor of switch section IIIB is moved to the STANDBY position, the 115 volt a-c circuit connects to the string of tube heaters in series. All tubes are turned on. From the STANDBY contact of switch Section IIIB, there is connection to the rotating arms of sections IIT, IIB, and IT and through the motor current regulator to IIIT, so that 115 volts ac is now available at those switch sections. However, there is no connection to the STANDBY contact of any section other than IIIB.
3. START.-On switch section IIIB, the STANDBY, START and RUN contacts are all connected together, so that in the STANDBY and succeeding positions voltage continues to be supplied to the tube heaters. The 115 volts ac available at the rotor of section HB now connects to the input of the low voltage power supply, energizing that circuit and providing plate voltage for the signal amplifier, phasing actuator, audio-frequency oscillator, 15 kc oscillator, and remodulator. Sections IT and IIIT close the power circuit to the start motor. The start motor is mechanically coupled to the synchronous motor so that the synchronous motor is brought up to above synchronous speed.
4. SYNC.-Power is now applied through the motor current regulator and section IIIT to reduce and regulate current to the start motor. Section IIT applies 115 volts ac to actuate the high voltage power supply to provide plate voltage to the print driver, print amplifier, sync motor amplifier and phase amplifier. 1,800 -cycle power is applied to the synchronous motor. The synchronous motor speed coasts down and locks into synchronism, while the drum still remains stationary.
5. RUN.-Power is switched through section IIIT from the start to the run motor. The run motor turns the drum and drives it against the stop bar rotated by the synchronous motor. Switch section IB connects the unfiltered output of the high voltage power supply to charge the carriage release capacitor.
(b) PHASE SWITCH.-(See simplified schematic, figure 2-14.) The phasing switch S2, located just above the selector switch RUN position, actuates circuits which set the drum synchronizing mechanism in step with received phasing pulses. The switch has two positions, LOCAL and REMOTE.
6. LOCAL.-The PHASE switch is normally left in the LOCAL position (rotated to the left). When phasing pulses are being received, the PHASE switch is depressed by the operator. This closes normally open contacts, 1-2 and 3-4, and applies 115 volts dc through closed contacts 1-2 of relay K2 to the actuating coil of relay K1. Actuation of relay K1 performs a number of switching operations. In particular, contacts 6-7 open the holding current circuit to the phasing actuator. This causes the phasing actuator armature to release and catch the stop bar of the drum synchronizing mechanism. A phasing pulse, firing the thyratron in the modulator-amplifier unit, causes the phasing actuator armature to retract momentarily and release the stop bar. When the operator releases the PHASE switch, relay K1 is deenergized, the holding current circuit is again closed and the phasing actuator armature retracts to permit continuous rotation of the stop bar in the properly phased position.
7. REMOTE.-The REMOTE position, the PHASE switch rotated to the right, is used only when Automatic Start and Transfer Unit AST-( ) is connected to the recorder and signals are being received from a TXC-A3 or other type facsimile transmitter which transmits a start signal. In the REMOTE position contacts 1-2 are closed, while contacts 3-4 close only when the PHASE switch is depressed. Now, when the operator momentarily depresses the PHASE switcn to energize relay K 1 , contacts $1-2$ of relay K 1 complete a holding circuit through contacts 1-2 of the PHASE switch and a jumper between pins $J$ and $A$ of the connector of the AST unit which plugs into J . This holding circuit continues to apply power to the holding coil of relay K1 after the PHASE switch is released. The recorder is now set to phase and start automatically without the presence of a receiving operator. A start signal from the facsimile transmitter triggers relay K2, which releases relay K 1 and starts the recording.

If an AST unit is not used, the recorder will operate the same as if the PHASE switch were in LOCAL position.
(c) CIRCUIT TEST SWITCH:-(See simplified schematic, figure 2-15.) CIRCUIT TEST switch, S4, provides a means for a quick circuit check when trouble is encountered. Basic circuits are checked at each of eleven test positions. The meter at the center of the control panel, Meter M1, serves as indicator. The normal operating condition for all tests, unless otherwise indicated, is to have the synchronous motor running in SYNC position and the DENSITY control switched to TEST SIGNAL position. The test is then made by rotating the switch pointer to the position indicating the circuit to be tested and depressing the


Figure 2-14. Simplified Schematic of Phasing Control Circuit


Figure 2-15. Schematic Diagram of Test Circuits

Paragraph 4 a

## THEORY OF OPERATION

PRESS TO TEST switch. Under the above conditions, the normal meter reading for all positions except PHASE AMP and PRINT is approximately 100. This uniform test reading for all positions results from the inclusion of a correcting resistor, marked $*$, in each circuit to give the desired uniform meter reading under normal operation.

The specific test circuits are analyzed in par. 5., TES'T PROCEDURES, this Section.

## 4. MECHANICAL FUNCTIONS.

a. GENERAL.-The basic mechanical functions of a facsimile recorder of this type are to rotate a drum at a constant speed in synchronism with that at the trans-
mitter and to feed a stylus needle along the drum, one scanning line for each revolution, until the complete drum has been covered, and then to return the stylus to its initial position for the reception of new copy.

Facsimile Recorder RD-92A/UX uses three motors as prime movers in the performance of these functions. (See figure 2-16.) The run motor (1) drives the drum (8) through the reduction gears (20) and the inner shaft (9). An extension of the inner shaft goes completely through the drum and is fastened to the drum at the opposite end.

The synchronous motor (2) and the start motor (not shown in diagram) are on a common shaft. These motors do not drive the drum directly, but rotate the


STOP BAR 10, ROTATING AT SYNCHRONOUS
SPEED HOLDS BACK DRUM 8, THROUGH
LATCH II. IF DRUM IS NOT MOVING, STOP BAR 10, CAN ROTATE BECAUSE LATCH II, WILL SWING OUT OF THE WAY.
latch 15, is the safety device that WILL PERMIT LATCH II, TO PASS STOP BAR IO, IF THE DRUM IS FORCED FORWARD OR IF STOP BAR IO, IS STANDING STILL WHEN RUN MOTOR I, IS TURNED ON.

Figure 2-16. Details of Synchronous Drive and Phasing Mechanism
ratchet and pawl mechanism (4 and 7) through the shaft sleeve (5). The synchronous motor runs in synchronism with the 1,800 -cycle signal from the fork controlled audio-frequency oscillator, amplified by the motor amplifier tubes. Since it is not self-starting, the synchronous motor must be brought above synchronous speed by the start motor and then allowed to coast down into synchronism. With the motor at synchronous speed, the worm and worm-gear arrangement (3) brings the speed of the sleeve, ratchet, and pawl to 60 rpm .

When power is applied to the run motor, the drum is geared to rotate in the direction indicated at a speed somewhat higher than 60 rpm . The latch (11), attached to the drum, soon catches up with the stop bar (10) on the ratchet and pawl assembly, and is held back so that the drum rotates at the synchronous speed of 60 rpm . The latch is hinged to the drum in such a manner that, when the run motor is not operating, the latch will trip and allow the ratchet and pawl mechanism to rotate without turning the drum.

The stylus needle records on recording paper fastened to the drum, when the RECORD button is depressed with the recorder operating in RUN position. The stylus needle is held in a carriage assembly which moves across the drum to the right when engaged with a leadscrew shaft geared to the drum. When the carriage assembly reaches the right end of the recorder paper, it operates an automatic release mechanism which disengages the carriage mechanism from the leadscrew and lifts the stylus from the paper. A return spring, located in the left-side gear box, then pulls the carriage back to the left-side of the drum, so that it will be ready for the next copy.
b. SYNCHRONOUS AND START MOTORS.-(See figures 2-16 and 2-17.) The model MS synchronous motor used in the recorder is basically a Lacour phonic wheel motor. Its speed is held constant at $1,800 \mathrm{rpm}$ by 1,800 -cycle power supplied by the motor amplifier tubes. A double thread worm on the motor shaft meshes with a worm gear to drive the shaft sleeve, ratchet, and pawl mechanism at 60 rpm . The worm gear (3) is clamped to the sleeve (5) by the clamping screw (23) on the split clamping ring (22). (See figure 2-16.) The rotor of the synchronous motor fastens directly to the shaft. The stator fastens to the casting through a spring ( 24 of figure $2-17$ ), with limiting screws adjusted to allow no more than $1 / 32$ inch rotation of the stator in either direction.

The start motor, shown in figure $2-17$, is a 60 -cycle shaded pole induction motor. The rotor of the start motor is on the same shaft as that of the synchronous motor, so that it can start the synchronous motor by
bringing its rotor up above the synchronous speed of $1,800 \mathrm{rpm}$ when the selector switch is set in START position. In the SYNC position a small amount of power is still applied to the start motor, through the motor current regulator, to prevent the synchronous rotor from coasting down too fast and through synchronous speed. In SYNC position, the current to the start motor is regulated at 0.2 amp by the action of current regulator tube V6, a 2 H 20 located on the amplifier-power supply chassis.
c. RUN MOTOR SYSTEM.-The run motor system which drives the drum and leadscrew shaft consists of a shaded pole 60 -cycle induction motor geared down through a 25 to 1 reduction gear train. The motor attempts to rotate the drum at 90 to 100 rpm , until the drum is held back by the ratchet and pawl mechanism.
d. DRIVE SUBASSEMBLY AND PHASING SYS-TEM.-(See figure 2-16.) The drive subassembly holds back the drum to a synchronous speed of 60 rpm and allows phasing of the drum with the phasing signals from the facsimile transmitter. The mechanism functions as follows:

The latch arm (11), fastened through latch springs (16) to the left-hand side of the drum, drives up against the stop bar (10) on the ring (6) to hold the drum at synchronous speed. The latch arm is so arranged that it cannot pass the stop bar when the drum is trying to rotate faster than the drive subassembly. However, if an abnormal amount of force is exerted, latch springs (16) operate as a safety measure to allow the latch arm to pass the stop bar. When the drum is not rotating, the stop bar, driven by the synchronous motor mechanism, moves past the latch arm. The latch arm is hinged and supported by the light latch spring (14) to permit the stop bar to move past it against only light spring pressure.

When the PHASE button of the recorder is depressed, the armature of the phasing actuator (12) releases and moves into position to stop rotation of the stop bar and ring (6). The synchronous motor drive continues to rotate ratchet plate (4) at 60 rpm , slipping under the pawl (7) attached to the ring. With this arrangement, the synchronous motor need apply only a small amount of power during phasing, since the ratchet and pawl present only a very light load.

When the phasing pulse is received, the armature of the phasing actuator is retracted momentarily to release the stop bar, allowing the pawl to engage the ratchet and the ring to rotate with the ratchet plate. The stop bar picks up speed without the pawl slipping
more than one tooth. The ring is now phased with that of the facsimile transmitter, and the operator may now release the PHASE button. While the PHASE button is still depressed, the armature of the phasing actuator retracts each time a phasing pulse is received at the same instant that the stop bar touches the armature, so that the ring is not thrown out of phase.

When the selector switch is turned to RUN position the drum at first rotates at a speed in excess of 60 rpm , so that the latch on the drum comes up behind the stop bar. This exerts pressure on the ring to force the pawl into one of the ratchet teeth and hold the drum to exactly 60 rpm . Since the load of the drum is applied
against the locking side of the ratchet, the pawl cannot slip regardless of how hard the drum hits the stop bar.
$e$. DRUM ASSEMBLY AND PAPER LOAD MECH-ANISM.-The 6 -inch diameter hollow drum is keyed to a central shaft which rotates in ball bearings. In addition to the latch arrangement within the drum which acts as part of the phasing system, the drum assembly carries the paper clamp on the outside.

The drum shaft is driven by the run motor operated inner shaft (9) which meshes with a key in the drum shaft. A thrust spring on the right-hand gear box cover keeps the drum shaft engaged with the inner shaft. The drum is keyed to the drum shaft by a slide plate on


Figure 2-17. Synchronous Motor, Start Motor and Reduction Gear Assembly


Figure 2-18. PAPER LOAD Operation
the right-hand end bell. This is locked in place by a single screw.

The paper clamp consists of five spring-loaded fingers which grasp the paper on the leading edge. These fingers are operated by rotation of a bar which protrudes from the right edge of the drum. This bar is engaged by the PAPER LOAD mechanism on the panel of the recorder subassembly, to mechanically stop the drum and lift the fingers for removal of copy and reloading fresh paper. The trailing edge of the record-
ing paper is held tight against the drum by a brush located underneath the drum.

## $f$. LEADSCREW SHAFT GEARING SYSTEM.-

 The leadscrew shaft which moves the carriage assembly is a stainless steel screw with ten threads per inch, rotated at a speed of $61 / 4 \mathrm{rpm}$ through a gear system driven by the drum shaft. A reduction of 9.6 to 1 is provided by a three-step gear system. A thrust spring on the right-hand gear box cover removes the end play of the leadscrew shaft.NAVSHIPS 91630
RD-92A/UX


Figure 2-19. Detail of Stylus Carriage
g. CARRIAGE ASSEMBLY AND RETURN SPRING. (See figure 2-19). The stylus needle is held in the carriage assembly, which moves across the drum when engaged with the leadscrew shaft geared to the drum. The carriage is pulled to its starting position, at the left-hand side of the drum, by a nyion string which winds on a spring-actuated drum similar to the type used in typewriters.

The stylus needle detents into a pivoted holder, spring actuated to provide a fixed pressure of the needle against the recording paper. A dampener (28), located directly above the stylus needle, prevents excessive bounce of the needle when it passes over the trailing edge of the recording paper. A bakelite finger, located besides the stylus needle, holds down the trailing edge.

Contactor (27), mounted above the stylus, rides on a trolley rod to supply recording power to the stylus needle. The complete stylus head and trolley-rod are insulated, with the ground return of the recording circuit completed through the recording paper to the drum. When the stylus carriage is lifted from the recording position by the control mechanism, the contactor is disconnected from the trolley-rod and the stylus is raised from the drum. At the same time, switch S6 in the right-hand gear box disconnects the signal from the trolley-rod.
b. STYLUS CARRIAGE CONTROL MECHANISM. -(See figures 2-19 and 2-20). Within the stylus carriage is a nylon feed nut or half nut (29) that engages the leadscrew when actuated by the cam rod (30).

Pressing the RECORD button turns the cam rod to engage the half nut against the leadscrew. When the carriage reaches the end of its travel, it is automatically disengaged from the leadscrew through the action of the trigger-operated latch ( 31 of figure 2-20). The latch (31) may also be operated by the electro-magnet of the carriage release actuator, which is energized when the PAPER LOAD control is operated to stop the drum or when the selector switch is turned from the RUN position.
Figure 2-20 shows the mechanism for actuating the cam rod to engage or disengage the stylus carriage. The spur gear (33) on the end of the cam rod meshes with the rack (34). The rack is supported on the rack-andlatch rod (35) which extends through the front panel as the RECORD button. When the RECORD button is pushed in as far as it will go, the latch assembly engages detent (36) in rod (35) and compresses the load spring (37). Spur gear (33) turns and rotates the cam rod to engage the half nut on the stylus carriage with the leadscrew and drop the carriage into place for recording.

Trigger (32), on the trigger-operated latch, projects through the gear housing so that it can be pushed by the stylus carriage at the end of travel to release the latch. Rod (35) then snaps back to its normal position and rotates the cam rod to disengage the half nut and lift the stylus from the paper.

The longitudinal movement of rack (34), which is fitted freely to rod (35), is restricted at one end by


Figure 2-20. Stylus Carriage Control Mechanism
collar (38) and at the other end by load spring (37). If the RECORD button is pressed at a time when the half nut cannot drop into the threads of the leadscrew, rod (35) slides through the rack depressing the load spring and becomes latched in position by the normal action of the latch assembly. When the leadscrew shaft rotates to a position that permits the half nut to fall into place, the load spring pushes the rack up against collar (38) and rotates the cam rod to the proper position.
A limiting screw, located on the drum side of the right-side gear box, controls the depth of engagement of the half nut in the threads of the leadscrew by limiting the rotation of the cam rod. Cam (39) is placed at the end of the cam rod to actuate lever (40) and operate switches S6 and S8, which control the signal to the stylus needle. The lever is spring loaded against the cam and stroke adjustment is provided by limiting screws at the switch end.

The RECORD button releases automatically, disengag-
ing the carriage and lifting the stylus, under the following conditions:
(1) At the end of travel of the stylus carriage, through action of the trigger-latch assembly.
(2) When the PAPER LOAD control is operated while selector switch is in RUN position. Switch S7 on the PAPER LOAD mechanism closes a circuit to operate the carriage release actuator.
(3) When the selector switch is turned from RUN to SYNC. Contacts on the selector switch close to complete a circuit to operate the carriage release actuator.

## 5. TEST PROCEDURES.

Two methods are built into the Facsimile Recorder RD-92A/UX for quickly locating circuit troubles. Neon light indicators are connected across each tube heater and across the high $\mathrm{B}+$ fuse. A CIRCUIT TEST switch, used in conjunction with the front panel meter, provides a means for quickly checking the basic circuits at each of eleven test positions.
a. NEON LIGHT INDICATORS.-When a neon light connects across a circuit element it does not indicate as long as that circuit element continues to operate. However, when the circuit element, such as a fuse or tube heater, burns out, an open circuit develops, current ceases to flow through that element, and the open circuit voltage appears across the neon tube indicator paralleling the element that has burned out. This causes the neon tube to light up. A resistor in series with the neon tube limits current through the indicaor.

Where a number of circuit elements, such as tube heaters, connect in series, it is possible for two or more heaters to burn out at the same time. This condition, however, is very unlikely, since the circuit is opened as soon as the first tube burns out and the load immediately removed from the other tubes. In the event that there are two burnouts simultaneously, the neon tubes across the defective heaters do not light up. It is then necessary to test for the open heaters with a continuity checker, such as an ohmmeter.
b. CIRCUIT TEST SWITCH.-(See simplified schematic, figure 2-15). CIRCUIT TEST switch S4, enables a quick circuit check at eleven test positions with the use of meter, M1, as indicator. To obtain comparable readings, it is necessary to specify normal operating conditions for the test. For the RD-92A/UX, for all test positions except PHASE AMP and PRINT, the normal meter reading is 100 when the synchronous motor is running in SYNC position and the DENSITY control is at the TEST SIGNAL position. Each test position is checked as follows:
(1) POWER.-In this position, the line voltage available at the recorder is measured ahead of the power switch. A reading of 100 on the meter indicates a normal voltage of 117 volts on the power line.
(2) SIG AMP OUT.-To obtain the proper reading in this position, the DENSITY control is adjusted for maximum signal if a facsimile signal is being received or, if no signal is received, the control is rotated to TEST SIGNAL position. The meter reading is an indication of the amount of d-c signal available at the output of the signal amplifier unit for keying the modulator tube V202A. With no input or test signal, the meter reading should be about 45 .
(3) PHASE AMP OUT.-For proper reading in this position, the DENSITY control must be adjusted for maximum signal and phasing pulses must be received. When PRESS TO TEST and PHASE switches are both depressed and the phasing thyratron V203 is functioning properly, the meter pointer will pulse upward once each second.
(4) LO B+.-In this position, the $B+$ voltage for the signal amplifier is measured. If the meter reads' 100 in POWER position and does not read 100 in LO $\mathrm{B}+$ position, selenium rectifier CR4 or capacitor C7 or C8 may be defective.
(5) $\mathrm{HI} \mathrm{B}+$.-In this position, the $\mathrm{B}+$ voltage applied to the phase, synchronous motor, and print amplifiers is measured. The meter should read about 100 when the synchronous motor is running. If the meter reads 100 in the POWER position and does not register near 100 in HI B+ position, rectifiers CR1, CR2 and CR3 or capacitors C5, C6, or C8 may be defective.
(6) SYNC DRIVE--This position measures the signal applied to the grids of the motor amplifier tubes V2 and V3. The meter reading may vary widely from 100 , depending on the setting of the SYNC MA potentiometer at the back of the recorder. An exceptionally low reading may be caused by a defective tube-V1, V301, or V302.
(7) PRINT.-For this test, DENSITY control is adjusted for maximum signal input and the stylus engaged so that copy is being printed on the recording paper. Under steady state maximum signal, the meter should read about 100 . If the reading is exceptionally low, the fault may be a defective tube - V4, V201, or V202.
(8) OSC.-This position measures the voltage output of the 15 kc oscillator. A meter reading considerably less than 100 may be caused by a defective tube V201 or V1.
(9) SIXTY-CYCLE MOTOR. - This position measures the voltage applied to the start or run motor. This voltage is regulated by voltage regulator tube V6 and should give a reading of nearly 100 in the SYNC or RUN position of the selector switch. If the reading is not near 100, tube V6 may be defective. In STANDBY or START position, the reading should be high since the motors are not drawing current.
(10) VR75.-This position checks the voltage regulator VR75/OA3. If the meter does not read approximately 100 , tube V5, or capacitors C7 or C8 may be defective.
(11) SYNC MA.-This position checks the d-c current through the synchronous motor. The meter should read between 85 and 100 with the synchronous motor running and may be adjusted by means of the SYNC MA control at the rear of the recorder. If a reading higher than 85 cannot be obtained, tube V2 or V5 may be defective.

## SECTION 3 INSTALLATION

## 1. UNPACKING.

Take care when unpacking or handling the equipment. It may be damaged when not protected by the packing case. Do not discard the shipping container and inside packing material. Store them for future use.

Unpack the facsimile recorder as follows: (See figure 3-1).
a. Cut the steel straps with a suitable cutting device or twist with pliers until the straps crystallize and break.
$b$. Remove the nails with a nail puller and lift off the top of the shipping container. Do not pry with a crowbar or other tool.
c. Remove the packaging material as follows:
(1) Tear open the heavy waterproof paper.
(2) Open the flaps on the first cardboard box.
(3) Tear open the hermetically sealed foil.
(4) Open flaps on the second cardboard box.
(5) Remove all cardboard fillers from second cardboard box.
d. Lift recorder from the container and place on a prepared table or bench.
$e$. Place inside packing material in the shipping container and store for future use.

## 2. INSTALLATION (see figure 3-2).

a. LOCATION.-The following factors should be considered when selecting the permanent location for the recorder.
(1) WEIGHT.-The weight of the recorder is approximately 75 pounds. Make certain that the table or bench will sustain the weight.
(2) SPACE-Be sure that the space allocated allows for sliding the recorder in and out of its cabinet.
(3) VENTILATION.-Adequate ventilation must be available.
(4) POSITION.-The recorder must be placed in


Figure 3-1. Unpacking Facsimile Recorder RD-92A/UX
a position such that the front panel controls are immediately available.
b. MOUNTING.-Facsimile Recorder RD-92A/UX may be mounted either on its shock mounted cabinet on a table or in a standard Navy relay rack, such as CY597/G.
(1) CABINET MOUNTING. - For cabinet mounting proceed as follows:
(a) Remove the shipping chock screws located in the rear of the unit.
(b) Loosen the four knurled screws on the front panel and pull the recorder forward about 8 inches.
(c) Remove the leads at the INPUT terminals and the ground post, located at rear of chassis. Disconnect the twist-lock power plug by turning the plug counter-clockwise and pulling it out. (See figure 3-3).
(d) Pull the latches on the slides to the front and remove the recorder from its cabinet.
(e) Examine the tubes and capacitors for damage.
(f) Mount the shock mounted cabinet as indicated in figure 3-2, detail A and B. Allow about 3 feet in front of the cabinet for service and maintenance.
( $g$ ) Power and input signal leads must be available at the rear of the cabinet. Remove the plate from the rear of the cabinet and drill the necessary holes for cable fittings to allow the power, ground, and input signal leads to enter.
(b) Connect the input signal lines to the terminals marked INPUT on the barrier strip. If the input line is unbalanced, place a jumper between the cold side of the line and the terminal marked GND. Shields on signal leads, if used, should be connected to GND terminal.
(i) Connect a-c power to the terminals marked 115 VOLTS AC.
(i) Connect a lead from a known ground point to the terminal marked GND.
(k) Replace the recorder in the cabinet, connect the input signal and ground leads from the cabinet to the recorder, and insert the power twist-lock connector.
(l) Slide the recorder into the cabinet and tighten the knurled panel screws.
(2) RELAY RACK MOUNTING. - Proceed as follows in mounting the recorder in a relay rack such as CY597/G.
(a) Remove the recorder from its cabinet as in steps (a), (b), (c) and (d), for cabinet mounting.
(b) Remove the slide roller assembly from the recorder cabinet by removing the four Phillips-head screws in front, slightly bending the two side supports to the center and pulling the assembly out of the cabinet.
(c) Mount the slide roller assembly in the relay rack using the same Phillips-head screws.
(d) Slide the recorder part way into the slide roller assembly and connect the input signal leads to the terminal marked INPUT. Use the removable power cord with the Hubbell twist-lock connector to supply the a-c power to the unit. Connect a wire from a known ground point to the ground terminal.
(e) Slide the recorder into the rack and fasten the four knurled front panel screws.
c. CONNECTION TO TRANSMISSION CIRCUIT. -Facsimile signals can be received over a transmission circuit for at least as great a distance as voice signals; however, some circuit requirements are more severe for facsimile than for voice transmission. For best results, the circuit should have a frequency response flat within 2 db between the frequency limits of 900 and 2,700 cycles with a total delay distortion not exceeding 500 microseconds. Where the transmission circuit has a flat frequency response between 900 and $1,800 \mathrm{cps}$ or between 1,800 and $2,700 \mathrm{cps}$, fairly good results are still obtained. For high quality reception, the transmission circuit must be free from noise. However, readable copy will be obtained when the peak noise is considerably higher than the facsimile signal level.
(1) WIRE LINES.-The wire line circuit used should be free of amplitude variations and reflections. "Schedule one" or "Schedule two" AT\&T lines are recommended for fixed land installations. Conventional voice circuits are satisfactory for distances of less than 100 miles.
When used with wire lines, connect the recorder INPUT terminals directly to the line. No external coupling transformer is required.
(2) RADIO CIRCUITS.-The radio circuit selected should be free from interference and multipath transmissions. If facsimile signals are received from an FM radio circuit, a short haul AM radio circuit with no fading, or a microwave radio relay, an auxiliary converter is not required. The radio circuit output is connected directly to the INPUT terminals of the recorder. It may be necessary to connect a resistance pad between the radio receiver output and the facsimile recorder input to keep the signal level to the recorder at no more than 0.7 volts.

When used to record facsimile signals from radio circuits, the type of modulation determines the auxiliary equipment required. This may be amplitude modulation (AM) or frequency modulation (FM) giving a conventional audio output, audic frequency shift modulation (AFS), or radio carrier frequenc, shift modulation (RFS).


REAR VIEW OF RECORDER




REAR VIEW OF RECORDER

 Li-24 ThREAD IN Rack

> DETAIL OF CHASSIS MOUNTED IN RACK


ASSEMBLY OF CHASSIS MOUNTED IN RACK

[^0](a) AMPLITUDE OR FREQUENCY MODU-LATION.-When receiving facsimile signals from a conventional AM or FM receiver, connect the 500 -ohm output of the radio receiver directly to the INPUT terminals of the facsimile recorder. If the radio receiver has no 500 -ohm output, use the Inwest output impedance available.
(b) AUDIO-FREQUENCY SHIFT MODULA-TION.-When receiving AFS, the 500 -ohm output of the radio receiver connects to the INPUT terminals of auxiliary equipment, Frequency Shift Converter, CV172( )/U. Connect the output from the converter to the INPUT terminals of the facsimile recorder.
(c) RADIO CARRIER FREQUENCY SHIFT

MODULATION. - When receiving RFS, Frequency Shift Converter, CV-172( )/U, is used. Additional auxiliary equipment may be required.
d. CONNECTION FOR AUTOMATIC PHASING AND STARTING.-In an installation providing for start signals from the facsimile transmitter, Automatic Start and Transfer Unit AST-( ) may be used. This equipment is a relay rack mounted unit using a $53 / 4$ inch panel, or it may be mounted between two RD-92A/UX recorders which are in their cabinets by using special side plates provided with the unit.

The Automatic Start and Transfer Unit has its own self-contained power supply and operates from the 115 volt, a-c power line. Two interconnecting cables fasten to the rear of the RD-92A/UX recorders.

## 3. INITIAL ADJUSTMENTS.

With the equipment completely installed, make the following checks and adjustments. If difficulty is experienced in obtaining the results specified, refer to the adjustments and corrective procedures indicated in Section 7-Maintenance.


Figure 3-3. Input Terminals and Connector Cord

## a. MECHANICAL INSPECTION.

## WARNING

Be sure that the recorder is not connected to the power source when making mechanical inspection.
After installation and electrical connections are completed, make a thorough inspection of the equipment and its associated wiring. Check for:
(1) Any damage to the equipment.
(2) Any loose material, dirt, or lint. Wipe clean with a clean, lint free cloth.
(3) Any clogging of mechanical parts.
(4) Any loose wiring.
(5) Possible shorted wiring.
b. CHECK POWER CIRCUIT.-Proceed as follows:
(1) Turn the front panel selector switch to OFF position.
(2) Connect power to the recorder and turn on power source.
(3) Turn the selector switch to STANDBY position. Note that the pilot lamp lights.
(4) Turn CIRCUIT TEST switch to POWER position and operate the PRESS TO TEST switch. The front panel meter should read 100 if the power line voltage is normal, at 117 volts.
c. CHECK FUSES AND TUBES.-Proceed as follows:
(1) Loosen the four knurled front panel screws and pull the recorder forward on its slides. Note that all tube heaters are lit.
(2) Remove the two 2 AMP power fuses, one at a time, and note that the pilot lamp extinguishes.
(3) Turn the front panel selector switch to OFF. Remove retainers from tubes V202 and V102 and remove both tubes. (See figure 5-1 for tube location.)
(4) Turn the selector switch to STANDBY position. The heaters of V202 and V102 are connected in parallel; both have to be removed to open the series heater circuit. Note that the neon indicators next to the empty sockets are lit.
(5) Turn the selector switch to OFF and replace the tubes, clamping each in place with its retainer.
(6) Repeat steps (3), (4) and (5) for the following tubes in order, taking out one tube at a time: V1, V2 V3, V4, V7, V101, V103, V201, V203, and V301.
(7) Check the V302 heater indicator as follows:
(a) Turn the front panel selector switch to OFF position and remove the power source from the equipment.
(b) Take off the tube retainer and the bakelite cover, and remove V302.
(c) Turn on the power source to the equipment and turn the selector switch to STANDBY position. Note that the indicator next to the V302 socket is lit.
(d) Turn the selector switch to OFF position and remove the power source to the recorder. Replace V302, the bakelite cover and clamp the retainer in place.

## d. CHECK MOTORS.-

(1) Turn the selector switch to STANDBY position and allow a warm up period of about one minute.
(2) Turn the switch to START position and note that the start motor is turned on. This is distinguished by a purring sound.
(3) Turn the selector switch to SYNC position and note that the synchronous motor is turned on. This is distinguished by a high pitched tone. The synchronous motor should fall into synchronism in this position.
(4) Turn the selector switch to RUN position. The recorder drum should rotate.
e. CHECK CARRIAGE RELEASE MECHANISM.The carriage release mechanism can now be checked as follows:
(1) Depress the RECORD button until it locks in position.
(2) Push the PAPER LOAD lever to the left. The RECORD button should release to its unoperated position.
(3) Again depress the RECORD button until it locks in position.
(4) Turn the selector switch from RUN to SYNC position. The RECORD button should release to its unoperated position.
f. ADJUST SYNC MA CONTROL.-Adjust as follows:
(1) Turn the CIRCUIT TEST switch to SYNC MA position.
(2) Depress the PRESS TO TEST switch.
(3) Adjust the SYNC MA control at the rear of the recorder so that the front panel meter reads 100.
g. CHECK HI B + FUSE.-Proceed as follows:
(1) Turn the selector switch to OFF position.
(2) Remove the $1 / 8$ AMP B + fuse.
(3) Turn the selector switch to SYNC position. The neon light indicator above the fuse should light.
(4) Turn the selector switch to OFF position.
(5) Wait until the fuse indicator extinguishes before replacing fuse.
b. CIRCUIT TEST CHECK.-Check the readings of all CIRCUIT TEST switch positions as outlined in Section 7.

## SECTION 4 OPERATION

## 1. INTRODUCTION.

Facsimile Recorder RD-92A/UX is used to receive fixed images transmitted over an elcctrical communication system, such as wire or radio circuits. The operator must be sufficiently familiar with the communication system used to know that proper connection is made to the facsimile recorder, and when facsimile signals are being received. In most cases a monitoring speaker in the receiver, converter, or other auxiliary equipment gives audible signals to indicate reception of a facsimile transmission.

The operator must at all times keep the facsimile recorder in operating condition and ready for the reception of copy.

## 2. CAPABILITIES AND LIMITATIONS.

Facsimile Recorder RD-92A/UX was designed to make direct recordings of maps, sketches, typewritten and printed text, or handwriting, transmitted from TT41( )/TXC-1B types of facsimile equipment. Facsimile signals may be recorded from either wire or radio communications circuits.

The recorder was designed primarily for recording black and white copy. It records some halftone shadings, but these do not accurately represent the copy transmitted when it is a halftone photograph or picture. For this reason, Facsimile Recorder RD-92A/UX is not recommended for recording facsimile signals transmitted from photographic copy.

Delay distortion, frequency response characteristics, and other characteristics of the transmission medium may degrade the quality of the recorded copy. Interference and spurious signals may also affect the recording.

## 3. OPERATION OF FACSIMILE RECORDER RD-92A/UX.

(See Figure 4-1.)
On the front panel of the recorder is listed a brief resume of the operating instructions. Follow the instructions when operating the equipment. A more detailed explanation follows:
a. START EQUIPMENT.-Before starting the equipment for the first time, check with installation personnel to be sure that the recorder, and any auxiliary equipment, is completely installed and initial adjustments listed in Section 3 have been made. Then proceed as follows:
(1) Turn selector switch to STANDBY position. Note that the pilot light lights up, indicating that power is being applied to the recorder. Wait about one minute for the tubes to warm up. The recorder may be left at STANDBY while waiting for a transmission so that the set is ready for immediate operation.
(2) Turn selector switch to START position. Wait about 5 seconds for the start motor to bring the synchronous motor above synchronous speed.
(3) Turn selector switch to SYNC position. Wait until the synchronous motor coasts down and locks in synchronous speed. This is distinguished by the distinctive high pitched tone.
(4) If the motor does not lock in but falls through the synchronous speed, switch back to START position and repeat steps (2) and (3). If the motor does not come down to synchronous speed, turn to STANDBY and allow the motor to stop. Omit step (2) and switch directly to SYNC position.
(5) Turn selector switch to RUN position. It is necessary for the drum to rotate into proper position for loading paper.

## b. LOAD PAPER.

(1) With the selector switch in RUN position, push PAPER LOAD lever to the left and hold there until the drum stops rotating. Then lift the projecting lever.
(2) Open the hinged cover over the drum. (See figure 4-2.)
(3) When the PAPER LOAD lever is lifted, the paper clamp fingers on the drum open. The PAPER LOAD lever remains in the up position. Drop a fresh sheet of recording paper into the space between the paper guide and the drum so that it rests up against the clamp fingers.
(4) Flip down the PAPER LOAD lever. This causes the fingers to close quickly and grab the paper. This action also releases the drum, which quickly picks up speed to the synchronous speed of 60 rpm .
(5) Close the hinged cover.
c. ADJUST DENSITY CONTROL.-This adjustment controls thè gain of the signal amplifier so that the proper d-c voltage is obtained to key the print oscillator signal. Incorrect setting of the DENSITY control may result in faulty recording.


Figure 4-1. Control Panel


Figure 4-2. Recorder With Drum Cover Opened
(1) Set the DENSITY control when facsimile signals are being received. When steady signals of maximum signal level are received, preferably on phasing signal, start near zero and advance the control to the lowest point that gives maximum reading on the meter on the front panel. This reading is normally about 100 .
(2) In some types of copy it is desirable to advance the dial setting of the DENSITY control slightly beyond the point that gives maximum meter reading. Try this procedure if the recorded copy is too light.
(3) Leave the DENSITY control at the setting that gives best recording.
d. PHASE RECORDER.-The phasing operation is performed with the recorder drum stationary. Phasing pulses may be identified by a downward dip of the meter pointer occurring once a second.
(1) Switch to SYNC position and wait for drum to stop.
(2) Tutn PHASE button to LOCAL.
(3) When phasing pulses are received, depress PHASE button and hold depressed for five pulses. While phasing, two clicks per second are usually heard; one when the phasing actuator trips and another when the stop bar passes the drum drive coupler.
(4) Turn selector switch to RUN position. The drum will rotate in the properly phased position.
(5) Press RECORD button when the copy starts. This is indicated by a change in meter pulses. Usually, the meter reading drops down to about zero and flicks upward instead of downward.

The sty us now feeds across the drum to print the copy, and releases automatically at the end of travel.

If it is desired to take less than a complete copy, release the stylus by:
(a) turning selector switch from RUN to SYNC position, or
(b) operating the PAPER LOAD lever.

The stylus returns automatically to the left-hand end of the drum when it is released.
$e$. RELOAD PAPER.-When the recorded copy is removed from the drum at the end of a run, it is convenient to load up with a new sheet of paper to prepare the recorder for the next transmission. Operate PAPER LOAD lever as in b., steps (1) to (5).

## 4. OPERATION FOR REMOTE PHASING AND STARTING.

Remote phasing and starting of the facsimile recorder is provided in installations that include an Automatic Start and Transfer Unit, Model AST-( ), usually with two recorders.

Operating instructions which apply specifically to the AST unit are printed on the front panel of that unit. The AST unit contains a monitor amplifier and speaker, so that voice announcements and facsimile signals coming in on the communications line may be heard.
a. INSPECT INSTALLATION.-Check installation to be sure that AST unit connects properly to the facsimile recorders and the communications line. See Section 3, par. $2 d$.
b. TURN ON EQUIPMENT.-Turn on both the AST unit and the facsimile recorders.
(1) Turn on the AST unit as specified on front panel of units.
(2) Turn on facsimile recorders and adjust for operation as specified on special operating plate provided with the AST unit. This is similar to LOCAL operation, except that phasing and starting operations are omitted.
(3) Load paper on facsimile recorders and leave selector switches at RUN position and PHASE buttons depressed at REMOTE position. The facsimile recorders are now set for automatic phasing and starting from signals from the facsimile transmitter.
c. RELOAD PAPER.-Check periodically at from 20 to 40 minute intervals to reload paper, if required.

## 5. OPERATOR ADJUSTMENTS.

Only two control adjustments are to be made by the operator. These are adjustment to the DENSITY control and the SYNC MA control.
a. DENSITY ADJUSTMENT.-Adjust Density control as outlined in $2 c$, steps (1) to (3), this Section.
b. SYNC MA CONTROL ADJUSTMENT.-Adjust SYNC MA control as outlined in Section 3, paragraph $3 f$, steps (1) to (3).

## 6. SUMMARY OF OPERATION.

A summary of operation of the Facsimile Recorder RD-92A/UX is printed on the front panel of the unit, as shown below.

1. Switch to STANDBY. Wait 1 minute for tube warmup.
2. When ready to receive copy, switch to START.
3. After 5 seconds, switch to SYNC.
4. When motor coasts into SYNC, (constant speed) switch to RUN.
5. Push and hold PAPER LOAD lever to left to stop drum and lift to open paper clamp.
6. Load paper and push PAPER LOAD lever down.
7. Switch to SYNC, and wait for drum to stop
8. On phasing signal (indicated by meter pulsing downward once per drum rev.) adjust DENSITY control for highest meter reading.
9. Turn PHASE button to LOCAL, press and hold for 5 meter pulses.
10. Switch to RUN.
11. When copy starts (indicated by change in meter pulses) press RECORD button.
12. At termination of copy, operate PAPER LOAD lever as in steps 5 and 6 to remove copy and reload.

## 7. TEST PROCEDURES.

The meter on the front panel, together with the CIRCUIT TEST switch and the PRESS TO TEST button, provide means for checking the principal circuits of the recorder.

Refer to Section 7, paragraph 4b, for test procedures and interpretation of test readings.

# SECTION 5 OPERATOR'S MAINTENANCE 

## 1. INTRODUCTION.

To maintain peak performance of the facsimile recorder, it is necessary that the operator perform a routine check when coming on watch and during each period that he is responsible for the operation of the equipment.

Minor defects may develop during operation which may be rectified without difficulty by the operator. The operator should be sufficiently familiar with the details of the facsimile recorder and associated equipment to service minor defects that may develop when technical aid is not available.

## 2. ROUTINE CHECK CHART.

Routine items to check are listed in Table 5-1.

TABLE 5-1. ROUTINE CHECK CHART

| WHAT TO CHECK | HOW TO CHECK | PRECAUTIONS |
| :---: | :---: | :---: |
| Information from previous operator. | Review history in log book. <br> Receive verbal instructions. | Note atny changes in operation schedule. |
| Recording paper supply. | See that ample supply of paper is available. | A sheet of recording paper is required for each reception. |
| Stylus needle. | Open stylus guard door and examine needle. | If needle length is less than $1 / 32$ in. replace with a new needle. |
| Operation of the equipment. | Turn on equipment and check operation of recorder as outlined in Section 4. |  |
| Operation of auxiliary equipment. | Follow instructions for auxiliary equipment, from instruction books for equipment involved. | Note any signs of improper opera tion. |

## 3. EMERGENCY MAINTENANCE.

a. NOTICE TO OPERATORS. - Secure proper authorization before attempting emergency maintenance.

## Notice to Operators

Operators shall not perform any of the following emergency maintenance procedures without proper authorization.
b. REPLACEMENT OF FUSES.-All fuses of the facsimile Recorder RD-92A/UX are located on the front panel and are readily available to the operator. See Table 5-2 for symptoms of fuse failure.

## WARNING

Never replace a fuse with one of higher rating, unless continued operation of the equipment is more important than the probable damage. If a fuse burns out immediately after replacement, do not replace it a second time until the cause has been corrected.

## TABLE 5-2. SYMPTOMS OF FUSE FAILURE

| SYMPTOM | FUSE |
| :---: | :---: |
| Characteristic tone of synchronous motor <br> not heard and neon indicator above $1 / 8$ <br> AMP fuse on front panel lights. | F1 (1/8 AMP B + ) |
| Pilot lamp on front panel does not light. |  |
|  | F2 and/or F3 <br> (2 AMP. POWER) |

c. REPLACEMENT OF TUBES.-Check correct locations of tubes before handling, and use care in handling.

## WARNING

Turn off equipment and allow tubes to cool before handling. If immediate replacement is required, use a piece of cloth or an asbestos glove.
(1) LOCATION OF TU̇BES.-_Before replacing an electronic tube, note the location from figure 5-1.
(2) REPLACING TUBES.
(a) Remove the tube retainer, as shown in figure 5-2.
(b) Use a gentle rocking motion when removing tubes.

TABLE 5-3. FUSE LOCATION

| 5YMBOL | LOCATION | PROTECTS | AMPS | VOLTS | NUMBER |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{F}_{1}$ | Front panel-to the right of pilot lamp. | High voltage circuits. | 1/8 | 250 | 28032-1-8 |
| F2 | Front panel-between DENSITY and CIRCUIT TEST controls. | Input power circuit of recorder. | 2 | 250 | 28061-2 |
| F3 | Front panel--between DENSITY and CIRCUIT TEST controls. | Input power circuit of recorder. | 2 | 250 | 28061-2 |



Figure 5-1. Tube Location


TO APPLY figure 5-2. Removing Tube Retainer


TO REMOVE
(c) When inserting the replacement tube, align the tube pins with the socket, use a steady pressure, and push straight downward until the tube is seated properly.
(d) Replace the tube retainer.
(3) TUBES REQUIRING SPECIAL CARE.-Removal of V102, V202, and V302 requires a degree of caution and care.
(a) REPLACING V102 and V202. - When heater failure occurs in either V102 or V202, the recorder must be turned off and both tubes replaced.

## WARNING

Do not remove either of these tubes while the
power is on. Removal of either one of these tubes while the power is on will cause a heater failure in the other tube.
(b) REPLACING V302. - When replacing V302, this procedure must be followed:

1. Turn off the recorder and disconnect power source from equipment.
2. Remove the tube retainer.
3. Remove the bakelite cover of the tube.
4. Remove the tube.
5. After replacing the tube, put on the tube cover, and then clamp the tube with its retainer.

## SECTION 6

## PREVENTIVE MAINTENANCE

## 1. PREVENTIVE MAINTENANCE.

For the purpose of preventing failure or impairment of the equipment, the maintenance procedures and adjustments specified in this section are to be performed periodically as indicated in the Routine Maintenance Check Chart, Table 6-1.

## NOTE

THE ATTENTION OF MAINTENANCE PERSONNEL IS INVITED TO THE REQUIREMENTS OF THE MOST RECENT ISSUE OF CHAPTER 67 OF THE BUREAU OF SHIPS MANUAL.

## 2. ROUTINE MAINTENANCE PROCEDURES.

The following routine maintenance procedures are followed in carrying out the checks specified in Table 6-1.
a. CHANGING THE STYLUS NEEDLE. - The stylus needle should be changed when the recording stylus wears down and the tungsten tip is less than $1 / 32$ inch long, or when the recording gets spotty and does not register properly part of the way around the drum.
(1) Turn the selector switch to OFF.
(2) Lift up the stylus guard door in front of the stylus needle.
(3) Remove the old stylus needle by pulling it straight out.
(4) Insert the new stylus needle by pushing it into the hole in the stylus mount until the shank seats itself.

On most stylus needles, it is possible to get longer life by removing the stylus needle from the mount and pulling on the tungsten wire until a longer piece extends beyond the brass holder. Care is necessary to prevent splitting the stylus needle. Because of the danger of splitting the stylus needle, stretching the tungsten wire is not recommended as a general practice.
b. CLEANING THE RECORDER. - The stylus guard door in front of the stylus needle, the dust pan beneath the drum, and the drum itself, should be cleaned periodically.
(1) Lift up the stylus guard door and wipe it with a dry cloth.
(2) Pull out the dust pan beneath the drum and shake out any carbon deposits.
(3) Inspect the drum and wipe off any carbon deposits. Use a damp cloth.
c. ELECTRICAL CIRCUITS.-To be sure that electrical circuits continue to function properly, check meter readings in all positions of the CIRCUIT TEST switch at not less than two week intervals. The test conditions, typical readings and remedies for improper readings are given in Section 7.
d. RECORDER SUBASSEMBLY. - The recording mechanism needs a routine check every two to four weeks, depending on the amount of use. It is best to remove the recorder subassembly from the amplifierpower supply chassis to adequately service the recording mechanism.
(1) Check to be sure that the two shipping chock screws have been removed from the rear of the recorder.
(2) Loosen the four knurled screws from the front panel and pull the set forward about 8 inches.
(3) Pull out the dust pan from underneath the drum and shake out any accumulation of carbon dust.
(4) Remove the four hexagonal head $1 \% 2$ screws which hold the recorder subassembly to the amplifierpower supply chassis.
(5) Lift the recorder subassembly straight up and remove it from the amplifier-power supply chassis.
(6) Remove the housing at the rear and bottom of the drum and clean out any accumulated carbon dust. Replace housing.
(7) Every two months lubricate the recording mechanism by placing ten drops of light machine oil, in the oil hole at the top left end of the recorder subassembly. (See figure 6-1.)
It is not necessary to oil the gears of the left-hand gear box individually.
(8) Put one drop of oil on the cam rod.
(9) Remove the six screws holding the right-side cover of the right-hand gear box. Put one drop of oil on each gear and on each gear shaft once every 2 months. (See figure 6-2.)
(10) Use a clean dry cloth to clean the leadscrew shaft of all foreign matter. Do not use cleaning material containing lint or loose fibers. Use a knit material which reaches down into the threads of the shaft when looped underneath the leadscrew shaft and pulled tightly.

TABLE 6-1. ROUTINE MAINTENANCE CHECK CHART

| PERIOD | WHAT TO CHECK | HOW TO CHECK | Precautions and remedies |
| :---: | :---: | :---: | :---: |
| Daily | 1. Stylus. | Open the stylus guard door and examine the stylus needle. | If needle is less than $1 / 32$ in. long, replace. See par. 2a. |
| Weekly | 1. Drum. <br> 2. Stylus guard door. <br> 3. Dust pan. <br> 4. Meter readings. | Inspect drum. See that it rotates freely and is clean. <br> Inspect the guard door and see that it is free of dust and dirt. <br> Inspect for deposits of dust and dirt in pan. <br> Record in appropriate chart meter readings for each position of CIRCUIT TEST switch, when PRESS TO TEST switch is operated. | Clean drum with a damp cloth, if necessary. <br> Clean door with a damp cloth, if necessary. <br> Remove pan and clean out dust and dirt. See par. $2 b$. <br> Improper readings indicate trouble Refer to Section 7, Corrective Maintenance. |
| Monthly | 1. Leadscrew shaft. <br> 2. Carriage return spring. <br> 3. Motors. <br> 4. Switches. <br> 5. Transformers, chokes, capacitors, resistors, etc. <br> 6. Half nut. <br> 7. Nylon string. <br> 8. Paper guide blade. <br> 9. Recorder subassembly. | Inspect for deposits of carbon particles on shaft. <br> Slide equipment out of cabinet to its stops. Move the stylus carriage to the right as far as it will go and release it. Note how it returns to its normal position. <br> Turn on equipment and listen for any unusual motor noises. <br> Inspect switches visually and operate them to see that they function properly. <br> Visually and manually inspect all parts of the equipment for overheating and damage. <br> Remove half nut and inspect for carbon deposits in thread. <br> Slide equipment from cabinet to its stops. Move stylus carriage to right and inspect for carbon dust on string. <br> Open stylus guard door and examine the position of the paper guide blade. <br> Operate the recorder and note any looseness or binding of gears. | Brush out carbon particles with a nylon toothbrush. <br> If the carriage does not return smoothly and quickly, check for dirt that may cause faulty operation. Increase spring tension, if necessary. <br> Refer to Section 7, Corrective Maintenance. <br> Clean and repair when necessary. <br> Replace or repair any part showing signs of breakdown, overheating, or damage. <br> Clean half nut with nylon toothbrush. <br> Clean string with a damp cloth. <br> Reposition the blade, if necessary. <br> Apply lubricant when necessary. See Lubrication Chart. |
| Quarterly | Tubes. | Check tubes with a suitable tube tester. | Replace tubes as necessary. |
| Semiannually | Recorder overhaul. | Disassemble and check every component possible. <br> Replace parts where necessary. | An experienced technician should be pres ent for reassembly. |

PREVENTIVE
RD-92A/UX
(11) Loop the cloth underneath the leadscrew shaft and pull it back and forth to remove the dirt. Use a nylon bristle brush to clean out particles of dirt not removed by the cloth.
(12) Inspect carefully to be sure that no fibers from the cleaning cloth are left on the leadscrew shaft or the carriage subassembly, since this could cause the stylus carriage to jam.
(13) Wipe off any accumulation of carbon or dirt from the nylon string used to return the stylus carriage.
(14) Remove the four screws on top of the carriage subassembly and take off the plate which holds down the nylon half nut.
(15) Lift out the nylon half nut and clean with a nylon bristle toothbrush.
(16) Reassemble in the reverse order of disassembly.

## 3. LUBRICATION.

Lubrication data, showing the parts to be lubricated, the lubricant to use, and the frequency of lubrication, is given in figures 6-1 to 6-5. These show:

Figure 6-1. Lubrication of Sync Worm and Gear, and PAPER LOAD Lever.

Figure 6-2. Lubrication of Right-hand Gear Box.
Figure 6-3. Lubrication of Latch Pivot.
Figure 6-4. Lubrication of Left-hand Gear Box.
Figure 6-5. Lubrication of Drive Subassembly.

## 4. RETROPICALIZATION.

No provision for tropicalization has been made at the factory and, in general, no retropicalization is required.

*Formerly 14-L-7 (ORD) and O. S. 1362.

Figure 6-1. Lubrication of Sync Warm and Gear, and PAPER LOAD Lever

# PREVENTIVE MAINTENANCE 

(11) Loop the cloth underneath the leadscrew shaft and pull it back and forth to remove the dirt. Use a nylon bristle brush to clean out particles of dirt not removed by the cloth.
(12) Inspect carefully to be sure that no fibers from the cleaning cloth are left on the leadscrew shaft or the carriage subassembly, since this could cause the stylus carriage to jam.
(13) Wipe off any accumulation of carbon or dirt from the nylon string used to return the stylus carriage.
(14) Remove the four screws on top of the carriage subassembly and take off the plate which holds down the nylon half nut.
(15) Lift out the nylon half nut and clean with a nylon bristle toothbrush.
(16) Reassemble in the reverse order of disassembly.

## 3. LUBRICATION.

Lubrication data, showing the parts to be lubricated, the lubricant to use, and the frequency of lubrication, is given in figures 6-1 to 6-5. These show:

Figure 6-1. Lubrication of Sync Worm and Gear, and PAPER LOAD Lever.

Figure 6-2. Lubrication of Right-hand Gear Box.
Figure 6-3. Lubrication of Latch Pivot.
Figure 6-4. Lubrication of Left-hand Gear Box.
Figure 6-5. Lubrication of Drive Subassembly.

## 4. RETROPICALIZATION.

No provision for tropicalization has been made at the factory and, in general, no retropicalization is required.


Figure 6-1. Lubrication of Sync Worm and Gear, and PAPER LOAD Lever

| SPECIFICATION NUMBER AND TITLE | TYPE | GRADE | CLASS | MILITARY SYMBOL | STANDARD NAVY STOCK NUMBER |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 4 Oz. | 1 Qt. | 5 Gal. | 1 Lb. | 5 Lb . |
| MIL-L-3503* <br> Lubricating oil, preservative, light |  |  |  |  | $\begin{aligned} & \text { W } 14.0 \\ & 2831-800 \end{aligned}$ | $\begin{aligned} & \text { W14-0- } \\ & 2831-810 \end{aligned}$ | $\begin{aligned} & \text { W 14-0- } \\ & 2833-65 \end{aligned}$ | ..... |  |
| 14 L 3 <br> Lubricant, balland roller bearing |  | 1 | . . . $\cdot$ |  |  |  | .... | $\begin{aligned} & \text { W 14-L } \\ & 84-900 \end{aligned}$ | $\begin{aligned} & \text { W14-L- } \\ & 84-910 \end{aligned}$ |

[^1]

LEGEND
SA-SEMIANNUALLY

|  | TYPE | GRADE | CLASS | MILITARY SYMBOL | STANDARD NAVY STOCK NUMBER |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NUMBER AND TITLE |  |  |  |  | 4 Oz | 1 Qt. | 5 Gal . | 1 Lb . | 5 lb. |
| MIL-L-3503* <br> Lubricating oil, preservative, light |  |  |  |  | $\begin{aligned} & \text { W 14-0- } \\ & 2831-800 \end{aligned}$ | $\begin{aligned} & \text { W } 14-0 \\ & 2831-810 \end{aligned}$ | $\begin{aligned} & \text { W 14-0- } \\ & 2833-65 \end{aligned}$ | . . . . . |  |
| 14 L 3 <br> Lubricant, balland roller bearing | . | 1 |  |  |  |  |  | W14-L- <br> 84-900 | $\begin{aligned} & \text { W14-L- } \\ & 84-910 \end{aligned}$ |

*Formerly 14-L-7 (ORD) and O. S. 1362.

Figure 6-2. Lubrication of Right-Hand Gear Box

6

SA-SEMIANNUALLY

| SPECIFICATION NUMBER. AND TITLE | TYPE | GRADE | CLASS | MILITARY SYMBOL | STANDARD NAVY STOCK NUMBER |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 408. | 1 Qt. | 5 Gal . | 1 Lb . | 5 Lb. |
| MIL-L-3503* <br> Lubricating oil, preservative, light | . . . |  |  |  | $\begin{aligned} & \text { W14-0- } \\ & 2831-800 \end{aligned}$ | $\begin{aligned} & \text { W 14-0- } \\ & 2831-810 \end{aligned}$ | $\begin{aligned} & \text { W14-0- } \\ & 2833-65 \end{aligned}$ | . . . |  |

*Formerly 14-L-7 (ORD) and O. S. 1362.

Figure 6-3. Lubrication of Latch Pivot


LEGEND
SA-SEMIANNUALLY

| SPECIFICATION number and title | TYPE | GRADE | CLASS | MILITARY SYMBOL | STANDARD NAVY STOCK Number |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 407. | 1 Qt. | 5 Gal . | 1 Lb . | 5 Lb. |
| 14 L 3 <br> Lubricant, balland roller bearing | $\ldots$ | 1 |  |  |  | . |  | $\begin{aligned} & \text { W14-L- } \\ & \text { 84-900 } \end{aligned}$ | $\begin{aligned} & \text { W14-L- } \\ & 84-910 \end{aligned}$ |

Figure 6-4. Lubrication of Left-Hand Gear Box


## LEGEND

| SPECIFICATION NUMBER AND TITLE | TYPE | GRADE | CLASS | MILITARY SYMBOL | STANDARD NAVY STȮCK NUMBER |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 4 Or. | 1 Qt. | 5 Gel . | 1 Lb. | 5 Lb. |
| MIL-L-3503* <br> Lubricating oil, preservative, light |  |  | . . . . |  | $\begin{aligned} & \text { W 14-0. } \\ & 2831-800 \end{aligned}$ | $\begin{aligned} & \text { W14-0- } \\ & 2831-810 \end{aligned}$ | $\begin{aligned} & \text { W 14-0- } \\ & 2833-65 \end{aligned}$ | . |  |

*Formerly 14-L-7 (ORD) and O. S. 1362.

Figure 6-5. Lubrication of Drive Subassembly



Figure 6-4. Lubrication of Left-Hand Gear Box


| SPECIFICATION NUMBER AND TITLE | TYPE | GRADE | CLAS5 | MILITARY SYMBOL | STANDARD NAVY STOCK NUMBER |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 4 Oz. | 10. | 5 Gal . | 1 lb . | 5 Lb. |
| MIL-L-3503* <br> Lubricating oil, preservative, light |  |  |  |  | $\begin{aligned} & \text { W 14-0- } \\ & 2831-800 \end{aligned}$ | $\begin{aligned} & \text { W14-0- } \\ & 2831-810 \end{aligned}$ | $\begin{aligned} & \text { W14-0- } \\ & 2833-65 \end{aligned}$ |  |  |

[^2]Figure 6-5. Lubrication of Drive Subassembly

## SECTION 7

## CORRECTIVE MAINTENANCE

## 1. CORRECTIVE MAINTENANCE.

This section contains all information necessary to a technician for locating trouble and for making repairs and adjustments to the Facsimile Recorder RD-92A/UX. The calibration and the operation of the built-in test circuit are also fully explained.

## 2. FAILURE REPORT.

In the event of equipment failure, a failure report must be filled out in accordance with the requirements given below. Keep a careful record of performance and of all failures, corrections, adjustments, and repairs both for reference purposes and as a standard for comparison.

## 3. THEORY OF LOCALIZATION.

Facsimile Recorder RD-92A/UX is so designed that most operating troubles may be isolated to a particular circuit by operating the CIRCUIT TEST switch on the
front panel and reading the associated meter. Operation of this built-in test circuit is fully described in paragraph $7-5 c(3)$. As a further aid in localizing trouble, neon indicators are connected across tube heaters and fuses. These indicators are mounted near the socket in the case of tubes and on the front panel in the case of 'fuses. A lighted neon bulb indicates that its associated component is open. Wiring and operation of these indicators is further discussed in paragraph 7-4a.

To facilitate trouble shooting and servicing, the recorder is composed of four subassemblies plugged in to the amplifier-power supply, which serves as the basic chassis. When a second set that is known to operate properly is available, trouble may be quickly located by substituting in turn the plug-in subassemblies.

When trouble shooting, keep in mind that not all faulty operation is due to defects in the equipment. The operator may have failed to perform one of the required functions at the proper time, or there may be interference, such as intermittent or spurious signals, in the transmission circuit.

## FAILURE REPORTS

AFAILURE REPORT must be filled out for the failure of any part of the equipment whether caused by defective or worn parts, improper operation, or external influences. It should be made on Failure Report, form NBS383, which has been designed to simplify this requirement. The card must be filled out and forwarded to BUSHIPS in the franked envelope which is provided. Full instructions are to be found on each card.

Use great care in filling the card out to make certain it carries adequate information. For example, under "Circuit Symbol" use the proper circuit identification taken from the schematic drawings, such as $\mathrm{T}-803$, in the case of a transformer, or $\mathrm{R}-207$, for a resistor. Do not substitute brevity for clarity. Use the back of the card to completely describe the cause of failure and attach an extra piece of paper if necessary.

The purpose of this report is to inform BUSHIPS of the cause and rate of failures. The information is used by the Bureau in the design of future equipment and in the maintenance of adequate supplies to keep the present equipment going. The cards you send in, together with those from hundreds of other ships, furnish a store of information permitting the Bureau to keep in touch with the performance of the equipment of your ship and all other ships of the Navy.

This report is not a requisition. You must request the replacement of parts through your Officer-in-Charge in the usual manner.

Make certain you have a supply of Failure Report cards and envelopes on board. They may be obtained from the nearest district printing and publications office.

NAVSHIPS 91630
CORRECTIVE
RD-92A/UX

## 4. SYSTEM TROUBLE SHOOTING.

a. NEON INDICATORS.-Since a burned-out tube or fuse is a common source of trouble in electronic equipment, a means for quickly locating the faulty tube or fuse can save operating time. In the Facsimile Recorder RD-92A/UX, neon indicators are connected across each tube heater and across the high $B+$ fuse.

Since the heaters of the tubes are connected in series, normally the voltage drop across each tube is quite small, much too small to operate a neon light. However, when an element in the series circuit, such as a fuse or tube heater, burns out, an open circuit develops, current ceases to flow through the series circuit, and the open circuit voltage appears across the neon indicator paralleling the element that has burned out. The neon tube, its current limited by a series resistor, lights, indicating the defective tube or fuse.

Before replacing the burned-out tube or fuse, be sure to determine and correct the cause of the failure. Refer to the trouble shooting chart, Table 7-1.

It may happen that two or more elements in a series circuit may burn out at the same time, although this condition is unlikely since as soon as the first element burns out, the circuit opens and the load is removed from the other parts. When two burn-outs occur simultaneously, the neon indicators across the defective parts will not light. It is then necessary to test for the open heaters or fuses with an ohmmeter or other continuity checker.
b. LOCATING TROUBLE FROM FRONT PANEL CHECKS.-General experience shows that trouble symptoms reported by the operator are not necessarily accurate. When trouble is reported check the operation of the recorder by taking meter readings for each position of the CIRCUIT TEST switch, under the conditions outlined below. After all the readings have been taken and recorded, refer to the trouble shooting chart, Table 7-1, for the possible cause of trouble.

Refer to simplified schematic, figure 7-1 and over-all schematic, figure 7-13. The CIRCUIT TEST switch, S4, with the meter, M1, at the center of the control panel as indicator, enables a quick circuit check when trouble is encountered.
(1) NORMAL TEST CONDITIONS.-In order to obtain comparable readings, the setting of the recorder controls must be standardized. Unless otherwise specified, standard conditions for all tests are: synchronous motor running in SYNC position and DENSITY control switched to TEST SIGNAL position. The test is then made by rotating the switch pointer to the position indicating the circuit to be tested and depressing the PRESS TO TEST switch. The normal meter
reading for all positions except PHASE AMP OUT and PRINT is approximately 100.

This uniform test reading for all positions is obtained by including in each circuit a correcting resistor, marked *, which is selected to give the desired uniform meter reading under normal test conditions. The procedure for calibrating the test circuits and for determining the proper values of correcting resistors is given in paragraph 7-5c(3).
(2) CIRCUIT TEST POSITIONS. - There are eleven CIRCUIT TEST positions. Each test position is checked as follows:
(a) POWER.-This position measures the line voltage at the recorder, ahead of the power switch. A reading of 100 on the meter indicates a normal voltage of 117 volts on the power line.
(b) SIG AMP OUT.-To obtain the proper reading, adjust the DENSITY control to lowest position that will give maximum reading on the meter if a facsimile signal is being received or, if no signal is received, rotate the control to the TEST SIGNAL position. The meter reading indicates a value proportional to the amount of $d-c$ signal available at the output of the signal amplifier unit for keying the modulator tube V202A. With no input or test signal the meter reading should be about 45.
(c) PHASE AMP OUT.-For proper reading adjust the DENSITY control as indicated in subparagraph (b) above. Phasing pulses must be received. With the PHASE and PRESS TO TEST switches both depressed and the phasing thyratron V203 functioning properly, the meter pointer pulses upward once each second as the phasing pulses are received.
(d) LO $\mathrm{B}+$.-This position checks the $\mathrm{B}+$ voltage for the signal amplifier. If the meter reads 100 in POWER position and does not read 100 in LO $\mathrm{B}+$ position, selenium rectifier CR4 or capacitor C 7 or C 8 may be defective.
(e) HI B+.-This position checks the $\mathrm{B}+$ voltage applied to the phase, synchronous-motor, and print amplifiers. The meter should read about 100 when the synchronous motor is running. If the meter reads 100 in the POWER position and does not register near 100 in HI B + position, rectifiers CR1, CR2, or CR3 or capacitors C5, C6, or C8 may be defective.
(f) SYNC DRIVE.-This position checks the signal applied to the grids of the motor amplifier tubes V2 and V3. The meter reading may vary widely from 100 , depending on the setting of the SYNC MA potentiometer at the back of the recorder. An exceptionally low reading may be caused by a defective tube V 1 , V301, or V302.


NOTE: UNLESS OTHERWISE SPECIFIED
ALL RESISTANCE VALUES ARE IN OHMS.
all capacitance values are in MICROFARADS.


(g) PRINT.-Adjust the DENSITY control as indicated in subparagraph (b) above, and engage the stylus so that copy is being printed on the recording paper. Under steady-state maximum signal, the meter should read about 100 . If the reading is exceptionally low, the fault may be a defective tube V4, V201, or V202.
(b) OSC.-This position checks the voltage output of the 15 kc oscillator. If the meter reading is considerably less than 100 , the fault may be a defective tube V201 or V1.
(i) $60 \sim$ MOTOR.-This position checks the voltage applied to the start or run motor. This voltage is regulated by tube V6 and a reading of nearly 100 should result in the SYNC or RUN position of the selector switch. If the reading is not near 100 , tube V6 may be defective. In STANDBY or START position,
since the motors are not drawing current, the reading should be high.
(j) VR75.-This position checks the voltage at the voltage regulator, VR75/OA3. If the meter does not read approximately 100 , tube V5 or capacitors C7 or C8 may be defective.
(k) SYNC MA.-This position checks the direct current through the synchronous motor. The meter should read between 85 and 100 with the synchronous motor running, when the SYNC MA control at the rear of the recorder is properly adjusted. If a reading above 85 cannot be obtained, tube V2 or V5 may be defective.
c. TROUBLE SHOOTING CHART.-After observing the operation of the recorder and the meter indications for each position of the CIRCUIT TEST switch, refer to the trouble shooting chart Table 7-1 for the probable cause and meanis of correction.

## TABLE 7-1. TROUBLE SHOOTING CHART

| TROUBLE | PROBABLE CAUSE | CORRECTION |
| :---: | :---: | :---: |
| 1. Drum does not rotate and Sync tone heard. <br> a. No reading in $60 \sim$ MOTOR position. <br> b. Reading about 150 in $60 \sim$ MOTOR position selector switch in RUN. <br> c. Reading about 100 in $60 \sim$ MOTOR position. | a. V6 ( 2 H 20 ) burned out (neon light beside tube lit). <br> b. Circuit is open to RUN motor. <br> (1) PHASE button in REMOTE. <br> (2) Poor contact in switch S2, selector switch $\mathrm{S}_{1}$ or relay K1. <br> c. (1) Dust pan or brush jammed against drum. <br> (2) PAPER LOAD mechanism holding drum. <br> (3) Gears in RH or LH gear box frozen to shaft or dirty. <br> (4) Sync motor did not fall into synchronism. <br> (5) If buzzing sound is heard, phasing actuator has not operated. <br> (6) Drum key disengaged from drum shaft. <br> (7) Paper load blade jammed against drum. <br> (8) Pin outside gear hub on drum drive shaft broken (LH gear box). <br> (9) Paper clamp fingers open and hit against dust pan. | a. Replace V6. <br> b. (1) Turn to LOCAL. <br> (2) Clean contacts and adjust if necessary. <br> c. (1) Reposition dustpan and brush. <br> (2) Release PAPER LOAD mechanism. <br> (3) Clean and oil gears. <br> (4) See 6 under "Trouble" column. <br> (5) See 7 under "Trouble" column. <br> (6) Engage drum shaft and tighten locking screw. <br> (7) Remove blade and straighten. <br> (8) Replace gear. <br> (9) Close clamping fingers. |
| 2. Drum does not rotate and Sync tone not heard. <br> a. No reading in POWER position. <br> b. CIRCUIT TEST readings in only LO $\mathrm{B}+$, HI $\mathrm{B}+$, $60 \sim$ MOTOR and VR75 positions. <br> c. Same as b. except not all tubes light and V7 may be bright. | a. A-C plug out or no a-c power. <br> b. Burned-out tube heater (any tube). <br> c. Tube heater to cathode short. | a. Plug in a-c power. <br> b. See 6 b under TROUBLE column. <br> c. Replace last tube in heater string which is lit. If this does not work, replace the adjacent tube in string which is not lit. |

TABLE 7-1. TROUBLE SHOOTING CHART (Continued)

| TROUBLE | PROBABLE CAUSE | CORRECTION |
| :---: | :---: | :---: |
| 3. Drum rotates slower than 60 rpm . a. Click heard occasionally. <br> b. Click not heard. | a. (1) Brush loading drum too heavily. <br> (2) Gears in RH or LH gear box do not turn freely. <br> b. (1) Sync motor did not fall into synchronism. | a. (1) Adjust dust pan. <br> (2) Check gears. <br> b. See 5 and 6b under "Trouble" column. |
| 4. Drum rotates faster than 60 rpm . a. Loud "bang" heard. <br> b. Loud "bang" not heard. | a. (1) Sync motor stopped or running below synchronous speed. <br> (2) Intermediate latch springs in coupling section too weak or one disengaged. <br> (2) $B+$ fuse blown. Lamp above fuse lit. <br> b. (1) Dog arm spring broken or dog arm stuck (coupling section). <br> (2) Intermediate latch springs in coupling section broken or disengaged. <br> (3) Clamp ring on sync gear in LH gear box loose. <br> (4) Compo thrust bearing spring on RH gear box cover broken or defective allowing drum to shift to right. <br> (5) Stop bar in the drive subassembly out of position. | a. (1) See 5 and 6b under "Trouble" column. <br> (2) Replace spring. <br> (3) Turn off set and wait for lamp to go out before replacing fuse. <br> b. (1) Replace spring and clean dog arm pivot. <br> (2) Replace springs. <br> (3) Tighten clamp ring screw. <br> (4) Replace spring. <br> (5) Reposition the stop bar and tighten screw. |
| 5. Motor falls through sync speed when attempting to start. <br> a. Low reading in SYNC MA position and other readings normal. <br> b. Same as 5a except SYNC DRIVE reading low. <br> c. SYNC MA reading about 100 . <br> d. Same as 5 b and $60 \sim$ MOTOR reads 0 . | a. Motor current too low. <br> b. (1) SYNC MA pot set too low. <br> (2) Defective V1, V301, V302 or V7. <br> $c$. (1) Decoupling of sync motor stator too stiff or too weak. <br> (2) Start motor weak. <br> (3) Mechanical interference between motor and gear box. <br> d. V6 burned out (neon beside tube lit). | a. (1) Adjust SYNC MA pot for reading of 100. <br> (2) Replace V2 and V3. <br> b. (1) Adjust SYNC MA pot for reading of 100 . <br> (2) Replace defective tube. <br> c. (1) Check adjusting screw setting. <br> d. Replace V6 (2H20). |
| 6. a. SYNC motor drops out of sync in RUN position. <br> b. CIRCUIT TEST readings in only POWER, LO B + , HI B + , 60 ~ MOTOR, and VR75. | a. (1) Motor current too low. <br> (2) Decoupling of sync motor stator too stiff or too weak. <br> (3) Run motor too strong. <br> b. Burned-out tube heater (any tube). | a. (1) See 5a under "Trouble" column. <br> (2) Check adjusting screw setting. <br> (3) Reduce rotor diameter in steps of 0.005 in. until satisfactory operation is obtained. <br> b. In STAND BY position examine lamps beside each tube. Replace tubes or tubes adjacent to neons which were lit. |

NAVSHIPS 91630
RD-92A/UX
CORRECTIVE

TABLE 7-1. TROUBLE SHOOTING CHART (Continued)

| trouble | Probable cause | CORrection |
| :---: | :---: | :---: |
| 7. Does not phase properly. <br> a. Meter pulses upward once a second in PHASE AMP OUT position when the PHASE button is depressed and phasing pulses are received. <br> b. Meter pulses as in 7a, but phases in wrong position. <br> c. Same as 7a, but phases on every other pulse. | a. (1) Phasing actuator armature sticks. <br> (2) Holding current contact on relay K1 does not open. <br> b. Screw which clamps the coupling section on drum is loose. <br> c. Dog arm spring too strong or clutch pawl spring too weak. | a. (1) Remove actuator and clean. <br> (2) Readjust contact. <br> b. Center position of coupling section and tighten screw. <br> c. Release PHASE button immediately after pulse which releases drive subassembly for emergency operation. Remedy fault by replacing defective coupling section or drive subassembly. |
| 8. Stylus does not feed properly. | a. Poor engagement of half nut. <br> b. Dirty lead screw or cam rod. <br> c. Stylus carriage return spring jammed. <br> d. Return spring cord hole in casting jammed with dirt. | a. Clean half nut and cam rod. <br> b. Clean with soft cloth. <br> c. Loosen and repair spring. <br> $d$. Clean the hole. |
| 9. Stylus carriage does not return. | a. Dirty leadscrew, cam rod, or bushing. <br> $b$. Weak stylus carriage return spring. <br> c. Switch $\mathbf{\$ 7}$ out of adjustment. <br> d. Return spring cord hole in casting jammed with dirt. | a. Clean with soft cloth. <br> b. Tighten spring. <br> c. Reposition switch. <br> d. Clean the hole. |
| 10. Does not print. <br> a. No meter reading DENSITY con,trol is turned to TEST SIGNAL position and reading of about 50 in SIG AMP OUT position. <br> b. Same as 10 a except for reading of about 100 in SIG AMP OUT position and 100 in OSC position. <br> c. Meter reading of about 100 when DENSITY control is turned to TEST SIGNAL position. Meter reading drops to about 50 when RECORD button is pressed and reading of about 100 in PRINT position. <br> d. Same as 10 c except for reading of about 15 in PRINT position. <br> e. Same as 10 c except for a reading of about 130 in PRINT position. <br> f. Same as 10 c except for a reading of about 5 in PRINT position. <br> $g$. Same as 10 c except that meter reading does not drop when RECORD button is depressed. <br> h. Same as 10 b except meter reads nearly 0 in OSC position. | a. Defective 6SN7 tube V101 or 6SL7 tube V102. <br> b. (1) Defective 6SL7 tube V202 or 6SN7 tube. <br> (2) Defective crystal CR201. <br> c. (1) No signal being received. <br> (2) DENSITY control set too low. <br> d. (1) Stylus assembly or trolley rod shorted to ground (possibly inside top cover for LH gear box). <br> e. (1) Stylus needle worn too short so that it doesn't touch the drum. <br> (2) Stylus assembly contact to trolley rod dirty, broken, or out of adjustment. <br> (3) Wire to trolley rod broken. <br> $f$. Stylus transformer T2 defective. <br> g. Switch S6 in RH gear box out of adjustment or defective. <br> b. Defective V201 (6SN7). | a. Replace tubes. <br> b. (1) Replace tubes. <br> (2) Remove crystal if no replacement is available. <br> c. (1) Wait for facsimile transmission. <br> (2) Set DENSITY control higher. <br> d. Locate short and take precautions so that it will not reoccur. <br> e. (1) Replace stylus needle. <br> (2) Clean and adjust contact. <br> (3) Replace wire. <br> f. Replace $\mathbf{T} 2$. <br> g. Replace or repair $\mathbf{S} 6$. <br> b. Replace tube. |

TABLE 7-1. TROUBLE SHOOTING CHART (Continued)

| trouble | Probable Cause | CORRECTION |
| :---: | :---: | :---: |
| 11. Poor quality of received copy. <br> a. Lines too broad. <br> b. Background prints. <br> c. Copy fuzzy. <br> d. Blank spaces in copy. <br> e. Light copy. <br> f. HI $\mathrm{B}+$ reads about 20 lower than in POWER position. | a. DENSITY control set too high. <br> b. (1) DENSITY control set too high. <br> (2) Defective IN34A crystal, CR 201. <br> c. (1) Defective stylus needle. <br> (2) Ditty stylus needle. <br> (3) Radio receiver being overloaded. <br> d. (1) Stylus needle worn too short. <br> (2) Drive subassembly shaft bent or drum is eccentric. <br> (3) Trolley rod bent so that stylas assembly contact does not touch for a portion of recording. <br> (1) Dirty trolley rod and stylus assembly. <br> (2) DENSITY control set too low. <br> (3) Weak 1635 tube (V4). <br> (4) Dirty drum. <br> f. Selenium rectifiers CR1, CR2, and CR3 are defective. | a. Reduce DENSITY control. <br> b. (1) Reduce DENSITY control. <br> (2) Remove crystal if no replacement is available. <br> c. (1) Replace stylus needle. <br> (2) Clean stylus needle. <br> (3) Reduce RF gain so that radio receiver output is undistorted and tune for maximum signal. <br> d. (1) Replace stylus needle. <br> (2) Replace faulty component. <br> (3) Adjust stylus rod contact. <br> e. (1) Clean with a soft cloth. <br> (2) Increase DENSITY control. <br> (3) Replace V4. <br> (4) Clean with damp cloth. <br> $f$. Replace rectifiers. |
| 12. Hum prints in received copy ( 60 or 120 lines across length of sheet). | Defective 6SL7 tube. V102 or V202 (heater to cathode short). | Replace tube. |
| 13. 2 AMP POWER fuses open. | Defective electrolytic capacitor C5, CG, C 7 , or C 8 . | Replace capacitor and fuses |
| 14. $1 / 8$ AMP $\mathrm{B}^{+}+$fuse open (neon lights above fuse-holder). | a. Defective 2D21 tube V203. <br> b. Defective electrolytic capacitor C6 and fuse. <br> c. Sync motor current too high. | a. Replace tube and fuse. <br> b. Replace capacitor and fuse. <br> c. Readjust SYNC MA and replace fuse. Reduce reading to 100 in SYNC MA position with SYNC MA potentiometer, located on rear of chassis. |

## 5. UNIT TROUBLE SHOOTING AND MECHANICAL REPAIR.

a. TROUBLE SHOOTING.
(1) TROUBLE SHOOTING CHART.-The CIRCUIT TEST switch with the meter on the front panel enables tests to be made on the Facsimile Recorder RD-92A/UX as a single unit. The readings obtained, when checked with the Trouble Shooting Chart, Table $7-1$, give an indication of the particular section of the recorder and frequently the particular part that is at fault.
(2) CIRCUIT CONSTANTS.
(a) LOCATION OF CIRCUIT COMPO. NENTS.-Circuit components may be readily identified
by reference to the following illustrations:
Figure 7-2. Location of Parts and Wiring Diagram: Amplifier-Detector Subassembly.
Figure 7-3. Location of Parts and Wiring Diagram: Amplifier-Modulator Subassembly.
Figure 7-4. Location of Parts and Wiring Diagram: Audio-Frequency Oscillator Subassembly.
Figure 7-5. Location of Parts and Wiring Diagram: Recorder Subassembly.
Figure 7-6. Bottom View of AmplifierPower Supply Chassis.
Figure 7-14. Location of Parts and Wiring Diagram: Amplifier-Power Supply Chassis.


Figure 7-2. Location of Parts and Wiring Diagram of Amplifier-Detector Subassembly

NAVSHIPS 91630
section 7
MAINTENANCE
RD-92A/UX


Figure 7-3. Location of Parts and Wiring Diagram of Amplifier-Modulator Subassembly


Figure 7-4. Location of Parts and Wiring Diagram of Audio-Frequency Oscillator Subassembly


Figure 7-5. Location of Parts and Wiring Diagram of Recorder Subassembly


Figure 7-6. Bottom View of Amplifier-Power Supply Chassis

The values of resistors and capacitors for the plug-in subassemblies are listed in Table 7-2.

TABLE 7-2. RESISTOR AND CAPACITOR VALUES FOR PLUG-IN SUBASSEMBLIES
AMPLIFIER-DETECTOR. (See figure 7-2.)

| SYMBOL | JAN DESIGNATION | Value | WVDC |
| :---: | :---: | :---: | :---: |
| C101 | CN35A103K | $0.01 \mathrm{mf} \pm 10 \%$ | 600 V |
| C102 | CN35A103K | $0.01 \mathrm{mf} \pm 10 \%$ | 600 V |
| C104 | CN35A103K | $0.01 \mathrm{mf} \pm 10 \%$ | 600 V |
|  |  | OHMS | WATTS |
| R101 | RC20BF274K | $270 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R102 | RC20BF274K | $270 \mathrm{~K} \pm 10 \%$ | $1 / 2 W$ |
| R103 | RC20BF470K | $47 \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R104 | RC20BF222K | $2.2 \mathrm{~K} \quad \pm 10 \%$ | 1/2W |
| R105 | RC20BF101K | $100 \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R106 | RC20BF104K | $100 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R107 | RC20BF222K | 2.2K $\pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R108 | RC20BF104K | $100 \mathrm{~K} \pm 10 \%$ | $1 / 2 W$ |
| R109 | RC20BF103K | $10 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |

AMPLIFIER-MODULATOR. (See figure 7-3.)

| SYMBOL | JAN DESIGNATION | VALUE | WVDC |
| :---: | :---: | :---: | :---: |
| C201 | CN35A103K | $0.01 \mathrm{mf} \pm 10 \%$ | 600 V |
| C202 | CN35A103K | $0.01 \mathrm{mf} \pm 10 \%$ | 600 V |
| C203 | CN35A103K | $0.01 \mathrm{mf} \pm 10 \%$ | 600 V |
| C204 | CN35A103K | $0.01 \mathrm{mf} \pm 10 \%$ | 600 V |
| C205 | CN35A103K | $0.01 \mathrm{mf} \pm 10 \%$ | 600 V |
| C206 | CM20A511J | $510 \mathrm{mmf} \pm 5 \%$ | 500 V |
| C207 | CP53BIEF504V | 0.5mf $+20 \%-10 \%$ | 600 V |
| C208 | CP53BIEF504V | 0.5mf $+20 \%-10 \%$ | 600 V |
|  |  | OHMS | WATTS |
| R201 | RC20BF474K | $470 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R202 | RC20BF274K | $270 \mathrm{~K} \pm 10 \%$ | $1 / 2 W$ |
| R203 | RC40BF683K | $68 \mathrm{~K} \pm 10 \%$ | 2W |
| R204 | RC20BF471K | $470 \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R205 | RC20BF105K | $1 \mathrm{Meg} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R206 | RC20BF104K | $100 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R207 | RC20BF222K | $2.2 \mathrm{~K} \pm 10 \%$ | $1 / 2 W$ |
| R208 | RC20BF274K | $270 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R209 | RC20BF473K | $47 \mathrm{~K} \quad \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R210 | RC20BF473K | $47 \mathrm{~K} \quad \pm 10 \%$ | $1 / 2 W$ |
| R211 | RC20BF153K | $15 \mathrm{~K} \pm 10 \%$ | 1/2W |
| R212 | RC20BF474K | $470 \mathrm{~K} \pm 10 \%$ | $1 / 2 W$ |
| R213 | RC20BF185K | 1.8Meg $\pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R214 | RC20BF274K | $270 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R215 | RC20BF394K | $390 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R216 | RC20BF472K | $4.7 \mathrm{~K} \pm 10 \%$ | $1 / 2 W$ |
| R217 | RC20BF104K | $100 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R218 | RC20BF103K | $10 \mathrm{~K} \pm 10 \%$ | $1 / 2 W$ |
| R219 | RC20BF274K | $270 \mathrm{~K} \pm 10 \%$ | $1 / 2 W$ |
| R220 | RC20BF274K | $270 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R221 | RC20BF274K | $270 \mathrm{~K} \pm 10 \%$ | $1 / 2 W$ |
| R222 | Wire wound potentiometer | $2000 \pm 10 \%$ | 2W |

Section 7
Table 7-2

The values of resistors and capacitors for the plug-in subassemblies are listed in Table 7-2.

TABLE 7-2. RESISTOR AND CAPACITOR VALUES FOR PLUG-IN SUBASSEMBLIES

AMPLIFIER-DETECTOR. (See figure 7-2.)

| SYMBOL | JAN DESIGNATION | Value | WVDC |
| :---: | :---: | :---: | :---: |
| C101 | CN35A103K | $0.01 \mathrm{mf} \pm 10 \%$ | 600 V |
| C102 | CN35A103K | $0.01 \mathrm{mf} \pm 10 \%$ | 600 V |
| C104 | CM20A511J | $510 \mathrm{mmf} \pm 5 \%$ | 500 V |
|  |  | OHMS | WATTS |
| R101 | RC20BF274K | $270 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R102 | RC20BF274K | $270 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R103 | RC20BF470K | $47 \quad \pm 10 \%$ | 1/2W |
| R104 | RC20BF222K | $2.2 \mathrm{~K} \pm 10 \%$ | $1 / 2 W$ |
| R105 | RC20BF101K | $100 \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R106 | RC20BF104K | $100 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R107 | RC20BF222K | $2.2 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R108 | RC20BF104K | $100 \mathrm{~K} \pm 10 \%$ | $1 / 2 W$ |
| R109 | RC20BF103K | $10 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |

AMPLIFIER-MODULATOR. (See figure 7-3.)

| SYMBOL | JAN DESIGNATION | VALUE | WVDC |
| :---: | :---: | :---: | :---: |
| C201 | CN35A103K | $0.01 \mathrm{mf} \pm 10 \%$ | 600 V |
| C202 | CN35A103K | $0.01 \mathrm{mf} \pm 10 \%$ | 600 V |
| C203 | CN35A103K | $0.01 \mathrm{mf} \pm 10 \%$ | 600 V |
| C204 | CN35A103K | $0.01 \mathrm{mf} \pm 10 \%$ | 600 V |
| C205 | CN35A103K | $0.01 \mathrm{mf} \pm 10 \%$ | 600 V |
| C206 | CM20A511J | $510 \mathrm{mmf} \pm 5 \%$ | 500 V |
| C207 | CP53BIEF504V | 0.5mf $+20 \%-10 \%$ | 600 V |
| C208 | CP53BIEF504V | 0.5mf $+20 \%-10 \%$ | 600 V |
|  |  | OHMS | WATTS |
| R201 | RC20BF474K | $470 \mathrm{~K} \quad \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R202 | RC20BF274K | $270 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R203 | RC40BF683K | $68 \mathrm{~K} \pm 10 \%$ | 2W |
| R204 | RC20BF471K | $470 \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R205 | RC20BF105K | $1 \mathrm{Meg} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R206 | RC20BF104K | $100 \mathrm{~K} \pm 10 \%$. | 1/2W |
| R207 | RC20BF222K | $2.2 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R208 | RC20BF274K | $270 \mathrm{~K} \pm 10 \%$ | 1/2W |
| R209 | RC20BF473K | $47 \mathrm{~K} \pm 10 \%$ | 1/2W |
| R210 | RC20BF473K | $47 \mathrm{~K} \pm 10 \%$ | 1/2W |
| R211 | RC20BF153K | $15 \mathrm{~K} \pm 10 \%$ | 1/2W |
| R212 | RC20BF474K | $470 \mathrm{~K} \pm 10 \%$ | 1/2W |
| R213 | RC20BF185K | $1.8 \mathrm{Meg} \pm 10 \%$ | $1 / 2 W$ |
| R214 | RC20BF274K | $270 \mathrm{~K} \pm 10 \%$ | 1/2W |
| R215 | RC20BF394K | $390 \mathrm{~K} \pm 10 \%$ | $1 / 2 W$ |
| R216 | RC20BF472K | $4.7 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R217 | RC20BF104K | $100 \mathrm{~K} \pm 10 \%$ | 1/2W |
| R218 | RC20BF103K | $10 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R219 | RC20BF274K | $270 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R220 | RC20BF274K | $270 \mathrm{~K} \pm 10 \%$ | $1 / 2 W$ |
| R221 | RC20BF274K | $270 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R222 | Wire wound potentiometer | $2000 \pm 10 \%$ | 2W |

TABLE 7-2. RESISTOR AND CAPACITOR VALUES FOR PLUG-IN SUBASSEMBLIES (Continued)

| AUDIO FREQUENCY OSCILLATOR. (See figure 7-4.) |  |  |  |
| :---: | :---: | :---: | :---: |
| SYMBOL | jan designation | value | wVdC |
| C301 | CP53B1EF504V | 0.5mf $+20 \%-10 \%$ | 600 V |
| C302 | CN35A103K | $0.01 \mathrm{mf} \pm 10 \%$ | 600 V |
| C303 | CN35A103K | $0.01 \mathrm{mf} \pm 10 \%$ | 600 V |
| C304 | CN35A103K | $0.01 \mathrm{mf} \pm 10 \%$ | 600 V |
| C305 | CP25A1EF104M | $0.1 \mathrm{mf} \pm 20 \%$ | 600 V |
|  |  | OHMS | WATTS |
| R301 | RC20BF222K | $2.2 \mathrm{~K} \pm 10 \%$ | 1/2W |
| R302 | RC20BF104K | $100 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R303 | RC20BF104K | $100 \mathrm{~K} \pm 10 \%$ | 1/2W |
| R304 | RC20BF274K | 270K $\pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R305 | RC20BF104K | $100 \mathrm{~K} \pm 10 \%$ | 1/2W |
| R306 | RC20BF473K | $47 \mathrm{~K} \quad \pm 10 \%$ | 1/2W |
| R307 | RC20BF274K | 270K $\pm 10 \%$ | 1/2W |
| R308 | RC20BF104K | $100 \mathrm{~K} \pm 10 \%$ | 1/2W |
| R309 | RC20BF473K | $47 \mathrm{~K} \quad \pm 10 \%$ | $1 / 2 W$ |
| R310 | RC20BF104K | $100 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R311 | RC20BF222K | $2.2 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |
| R312 | Wire wound potentiometer | 20,000 $\pm 10 \%$ | 3W |
| R313 | RC20BF274K | $270 \mathrm{~K} \pm 10 \%$ | 1/2W |
| R314 | RC20BF274K | $270 \mathrm{~K} \pm 10 \%$ | $1 / 2 \mathrm{~W}$ |

(b) RESISTANCE AND VOLTAGE MEAS-UREMENTS.-If the trouble appears to be electrical in nature and cannot be located from the meter readings at the various CIRCUIT TEST positions or by replacing plug-in subassemblies, the recorder must be removed from the cabinet for resistance and voltage measurements.

When making resistance measurements, be sure that the power plug is removed from the a-c outlet and that controls are set as indicated in the socket resistance measurements chart, Table 7-3.

Before making voltage measurements, connect the recorder chassis to a known ground. All measurements
are made to B - (pin 1 of $\mathrm{XC8}$ ) unless otherwise specified. See socket voltage measurements chart, Table 7-4.

When making voltage measurements, use extreme caution to prevent coming in contact with the high potential points in the electrical circuit.

## VOLTMETER DATA

Except as otherwise indicated, all voltages apply to actual readings obtained when using a 1,000 -ohms-per-volt voltmeter, whose maximum scale reading is not more than approximately three times the value given in the voltage table.

TABLE 7-3. SOCKET RESISTANCE MEASUREMENTS

## TEST CONDITIONS

Selector switch in STANDBY.
Power plug out of a-c socket.
All measurements made to B - (pin 1 of XC8).
All readings are in ohms.

| SYMBOL | PIN NUMBERS |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|  |  |  |  |  |  | $\begin{aligned} & 500 \text { (d) } \\ & \text { to } \end{aligned}$ |  |  |
| XV1 | 90 K | 68 K | 0 | 255K | 50K | 5.5K | 11 | 13 |
| XV2 | 0 | 15 | 50K | 300 | 300 | 50K | 12 | 100 |
| XV3 | 0 | 16 | 50K | 300 | 300 | 50K | 15 | 100 |
| XV4 | NC | 19 | 50K | 0 | 0 | 50K | 18 | 0 |
| XV5 | NC | 0 | NC | NC | 5K | NC | NC | NC |
| XV6 | NC | 70 | NC | NC | NC | NC | 50 | NC |
| XV7 | 50 | 50 | 0 | 20 | - | - | - | - |
| XC5 | 180K | 0 | 80 K | NC | 78K | NC | 78K | NC |
| XC6 | 0 | 50K | 50K | NC | 50K | 100 K | 50K | - |
| XC7 | 0 | NC | 5K | NC | 91K (a) | 2K | 20K | NC |
| XC8 ${ }^{\prime}$ | 0 | 8.2 | 150K | 10K | 5K | NC | 10K | 0 |
| XV101 | 250K | 10K | 2.3 K | 2.5K | 5K | 20K (b) | 2 | 4 |
| XV102 | 250K | 120 K | 2.2K | 1200 | 120 K | 100 | 0 | 2 |
| XV103 | 400 | 400 | 15K | 650 | 650 | 15K | 5 | 3.5 |
| XV201 | 100K | 50K | 2.2 K | 270K | 50 K | 0 | 5 | 7 |
| XV202 | 110K | 500 K | 0 | 325K | 6K | 1 K (e) | 1 | 0 |
| XV203 | 1 meg . | 50K | 8 | 11 | 50K | $\begin{gathered} 50 \mathrm{~K} \\ 0 \text { to } \end{gathered}$ | 50K | - |
| XV301 | 1.4K | 100K | 2.2K | 135K | 50K | 20K (c) | 7 | 9 |
| XV302 | 0 | 12 | 0 | 100K | 2.2K | 270K | 10 | 100K |

notes
(a) Selector switch in RUN position.
(b) CIRCUIT TEST in SIG AMP OUT and PRESS TO TEST switch depressed.
(c) Reading depends on potentiometer setting (R312).
(d) Reading depends on potentiometer setting (R41).
(e) Reading depends on potentiometer setting (R222).
$\mathrm{NC}=$ no connection.

TABLE 7-4. SOCKET VOLTAGE MEASUREMENTS
TEST CONDITIONS
Readings taken on $\mathbf{1 0 0 0}$-ohms-per-volt meter from tube or capacitor pin to B -.
Selector switch in RUN position. 117-volt, 60 -cycle, a-c input.

| SYMBOL | PIN Numbers |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $\begin{aligned} & \text { XV1 } \\ & \text { (6SN7) } \end{aligned}$ | -1 | -18 | 0 | 0 | 320 | $\begin{gathered} 14 \\ \text { (a) } \end{gathered}$ | $\frac{45}{\mathrm{ac}}$ | $\frac{51.5}{\mathrm{ac}}$ |
| $\begin{aligned} & \text { XV2 } \\ & (1635) \end{aligned}$ | 0 | $\frac{58}{\mathrm{ac}}$ | 320 | -2.5 | -2.5 | 320 | $\frac{51.5}{\mathrm{ac}}$ | 0.4 |
| $\begin{aligned} & \text { XV3 } \\ & (1635) \end{aligned}$ | 0 | $\frac{64.5}{90}$ | 320 | $-2.5$ | -2.5 | 320 | $\frac{58}{\mathrm{ac}}$ | 0.4 |
| XV4 <br> (1635) | - | $\frac{71}{\mathrm{ac}}$ | 320 | 0 | 0 | 320 | $\frac{64.5}{\mathrm{ac}}$ | 0 |
| XV5 <br> (VR75) | - | 0 | - | - | 75 | - | - | - |
| $\begin{aligned} & \text { XV6 } \\ & \text { (2H20) } \end{aligned}$ | - | 75 | - | - | - | - | $\frac{117}{\text { ac }}$ | - |
| $\begin{aligned} & \text { XV7 } \\ & (6-30) \end{aligned}$ | $\frac{117}{\text { ac }}$ | $\frac{117}{\text { ac }}$ | 0 | $\frac{71}{\mathrm{ac}}$ | - | - | - | - |
| XC5 | 0 | 0 | 250 | - | 250 | - | 250 | - |
| XC6 | 0 | 330 | 330 | - | 350 | 350 | 350 | - |
| XC7 | 0 | 135 | 135 | - | 0 | 40 | 90 | - |
| XC8 | 0 | 4 | 120 | 100 | 120 | - | 100 | 0 |
| $\begin{aligned} & \text { XV101 } \\ & \text { (6SN7) } \end{aligned}$ | 0 | 100 | 3.5 | 1.4 | 75 | 10 | $\frac{6.4}{\text { ac }}$ | $\frac{13}{\mathrm{ac}}$ |
| $\begin{aligned} & \text { XV102 } \\ & \text { (6SL7) } \end{aligned}$ | 0 | 25 | 0.5 | 0 | 21 | 0.8 | 0 | $\frac{6.4}{\mathrm{ac}}$ |
| $\begin{aligned} & \text { XV103 } \\ & \text { (6SN7) } \end{aligned}$ | 0 | 0 | 18 | 0 | 0 | 18 | $\frac{19}{\mathrm{ac}}$ | $\frac{13}{\mathrm{ac}}$ |
| $\begin{aligned} & \text { XV201 } \\ & \text { (6SN7) } \end{aligned}$ | 0 | 330 | 11 | 0 | $\therefore 28$ | 0 | $\frac{25}{\mathrm{ac}}$ | $\frac{32}{\mathrm{ac}}$ |
| $\begin{aligned} & \text { XV202 } \\ & \text { (6SL7) } \end{aligned}$ | -0.5 | 19 | 0 | 0 | 60 | 5 (b) | $\underline{6.4}$ | 0 |
| $\begin{aligned} & \text { XV203 } \\ & \text { (2D21) } \end{aligned}$ | 0 | 25 | $\frac{25.5}{\text { ac }}$ | $\frac{19}{\mathrm{ac}}$ | 25 | 280 | - | - |
| $\begin{aligned} & \text { XV301 } \\ & \text { (6SN7) } \end{aligned}$ | 0 | 15 | 0.8 | 0 | 26 | $\begin{aligned} & 2.8 \\ & \text { (c) } \end{aligned}$ | $\frac{32}{\text { ac }}$ | $\frac{38.5}{\text { ac }}$ |
| $\begin{aligned} & \text { XV302 } \\ & \text { (6AG7) } \end{aligned}$ | 0 | $\frac{45}{\mathrm{ac}}$ | 0 | 0 | 1.0 | 10 | $\frac{38.5}{\text { ac }}$ | 38 |

## notes

(a) Varies with setting of SYNC MA control (R41).
(b) Varies with setting of BIAS control (R222).
(c) Varies with setting of R312.

Underlined readings are a-c.
b. REPAIR.-As the trouble shooting chart, Table $7-1$, indicates, mechanical failure in the recorder subassembly is a major cause of faulty operation in the RD-92A/UX. If mechanical trouble exists, it must be cleared before the electrical circuits can be properly adjusted. The procedures given below are to be followed for removing and replacing the components of the recorder subassembly.
(1) REMOVING RECORDER SUBASSEMBLY.To remove the recorder subassembly from the set, proceed as follows:
(a) Loosen the four knurled-head captive screws that hold the set in the cabinet. Remove the set from the cabinet.
(b) Remove the two hex-head screws at the top of the lower front panel that enter the channel under the drum.
(c) Loosen the two hex-head captive screws (56, figure 7-15) that bolt the recorder subassembly to the amplifier-power supply at the back of the channel under the drum.
(d) Place fingers under channel at the sides of the recorder chassis and work the entire channel and subassembly up and out.
(e) Place the subassembly on a flat working surface.
(2) REMOVING DRUM.-If the mechanical trouble is such that the drum must be removed, proceed as follows:
(a) Remove the recorder subassembly as given in (1) above.
(b) Lower the antiradiation screen, and unscrew the two Phillips-head screws that attach the paper load blade (5, figure 7-16) and the screen chains to the front panel. Remove the paper load blade and the chains.
(c) For convenience in working, the antiradiation screen may be removed as follows:

1. Unscrew the screen hinges from the front panel.
2. Unscrew the Phillips-head screw (3, figure $7-15$ ) to which the lug of the screen ground strap is attached. Remove the lug and replace the screw.
(d) Remove the dust pan from under the drum by pulling straight out on both sides.
(e) Move the stylus carriage to the extreme right and lock it in place by depressing the RECORD button.
( $f$ ) Partially disassemble the right-hand gear box as follows. Refer to the exploded view of the gear box, figure 7-17.
3. Remove the six screws from the cover plate of the gear box. Remove the cover plate.
4. Remove the screw (2) that holds the switch lever assembly (1). Let the switch lever hang by its lower spring (4).
5. Using the truarc pliers, remove the retaining rings (21), (23), and (25) that hold the upper gears (20), (22), and (24) in place.
6. Remove the gears. Do not remove the gears on the leadscrew or drum shafts.
(g) Position the drum as though operating the paper clamp.
(b) Loosen the slide plate clamping screw, (9, figure 7-21) on the right end of the drum. Push the slide plate toward the edge of the drum, disengaging the drum from the shaft.
(i) Support the drum with the left hand. Grasp the drum shaft by the little gear on the end (1, figure 7-18) and, with a twisting motion, withdraw the shaft from the drum.

## NOTE

If the drum shaft sticks and cannot be removed by pulling on its gear, carefully slide the drum along the shaft, hitting retaining ring ( 5 , figure $7-18$ ) briskly until bearing (3) is loosened. The drum shaft may then be easily removed.
( $j$ ) Remove the drum from the front of the recorder, freeing the right side first. Be careful not to damage the stylus during this operation.
( $k$ ) For reassembly, replace the drum in the recorder, placing the left side in first, then swinging in the right side. Be careful not to damage the stylus in this operation.
( $l$ ) Replace the drum shaft in the drum, taking care to line up the drive slot at the left side of the drum shaft. With the drum shaft aligned at the left, press in on the shaft and rotate it until it becomes engaged with the drive subassembly. Make certain that the bearing on the right end of the shaft is fully seated.
( $m$ ) Replace the gears, retaining rings, and switch lever in the reverse order of disassembly.
( $n$ ) Lock the drum to the drum shaft as follows:

1. Slide the drum to the right until it bears against the retaining ring on the drum shaft.
2. Then, while pressing the slide plate in toward the center of the drum, slowly rotate the drum shaft within the drum until the slide plate falls into poistion in its slot.
3. Tighten the slide plate clamping screw.
(3) REPLACING THRUST BEARING SPRING. --The compo thrust bearing springs attached to the right-hand gear box cover are a possible source of trouble. Inspect as follows:
(a) Remove the six screws from the cover plate of the right-hand gear box.
(b) Examine the two compo thrust bearings attached to the inside of the cover plate.
(c) Replace if worn or broken.
(d) Apply a dab of grease, Spec. 14-L-3, to the friction surfaces.
(e) Replace the cover plate and its six screws.
(4) DISASSEMBLY OF THE LEFT-HAND GEAR BOX.-The drum is first removed as described in paragraph $5 b(2)$. Then proceed as follows:
(a) Remove the cover plate of the left-hand gear box:
4. Loosen the two binding-head screws on the top of the cover plate. Remove only the screw on the left.
5. Loosen the four Phillips-head screws on the left side of the front panel. Remove only the two screws on the left.
6. Remove the four binding-head screws on the left side of the gear box.
7. Remove the two binding-head screws on the rear of the gear box, above and below the synchronous motor.
8. Pull the cover plate to the left and slide it away from the casting.
(b) Remove the front panel as follows:
9. Remove the RECORD button knob on the right-hand gear box by taking out its set screw.
10. Remove the remaining Phillips-head screws from the front panel. There are two Phillips-head screws in the right-hand gear box and two in the left-hand gear box.
11. Remove the front panel.
(c) Expose the synchronous motor worm and worm wheel as follows. Refer to the exploded view of the left-hand gear box, figure 7-19.
12. Remove the four recessed screws (2) holding the bearing plate casting (1) on the left end of the gear box.
13. Pull out the bearing plate assembly. This exposes the synchronous worm and worm wheel (24).
14. Be sure to put aside all spacers for use in reassembly.
(d) Remove the drive subassembly (30) as follows. Refer to figure 7-19.
15. At the right side of the gear box, insert the special "T" wrench, H3, through the center of the bearing (29).
16. Engage the wrench with the retaining nut (31) and unscrew the nut.
17. Remove the drive subassembly (30).
(c) Remove the worm wheel assembly (24) as follows. Refer to figure 7-19.
l. Rotate the worm by hand until the set screw (26) in the clamp ring (25) faces the front of the gear box.
18. Loosen the set screw and remove the worm wheel assembly from its shaft.
( $f$ ) Remove the synchronous motor assembly as follows. Refer to figure 7-20.
19. Remove the retaining ring (2) from the sync motor shaft on the front of the gear box.
20. Unsolder the wires to the sync motor.
21. Withdraw the sync motor by pulling it away from the gear box.
(g) Remove the start motor rotor from within the start motor field coil assembly.
(b) Remove the gear box cover assembly by unhooking the draw string from the stylus carriage and untieing string from hook.
(i) The start motor field coil assembly may then be removed by taking out the two screws (53, figure 7-19) near the top of the motor and the one screw near the bottom (56, figure 7-19).
(5) REPLACING SYNCHRONOUS MOTOR COILS.-If the synchronous motor coils require replacement, proceed as follows:
(a) Remove the synchronous motor from the left-hand gear box, following instructions in paragraphs $5 b(4)$ through (f).
(b) Mark the end bells of the synchronous motor before disassembling, so that later they may be reassembled in the same relative position to each other. When looking at the solid or terminal end of the motor with the terminals at 6 o'clock, the decoupling spring nut on the other bell should be at 9 o'clock.
(c) Remove the four round-head screws and nuts from the outside flange of the motor.
(d) Hold the motor in one hand and lightly tap the end of the motor shaft with a nonmetallic object until the two motor bells can be separated. Take note of the position of washers on the motor shaft, so that they can be properly positioned for reassembly later.


Figure 7-7. Identification and Connection of Synchronous Motor Coils
(e) Examine the inside of the terminal bell assembly. See figure 7-7. The six coils are arranged in two sets of three coils each, with the coils arranged alternately as " $A$ " and " $B$ " types. If a single coil is found to be defective, it is advisable to replace all three coils of the set.
( $f$ ) Remove the defective set of motor coils as follows:

1. Lift up the soldered leads between coils and cut them close to the coils.
2. Unsolder the leads from the input and interconnecting terminals.
3. Insert the blades of two thin-bladed screw drivers between the insulating plate and the laminations on each side of the bobbin close to the pole piece.
4. Gently pry off the coil from the pole piece, working the bobbins completely off, one at a time. Take care not to bend the pole piece either up or down or to separate the laminations.
5. Examine the insulating plate. If it is cracked, scorched, or otherwise damaged, the plate should be replaced.
6. Clean and remove all excess hardened varnish that may be left on the laminations.
(g) Select a replacement coil for each coil removed from the set, using the correct types "A" or " $B$ " as indicated in figure 7-7. Identify the coils as follows:
7. Arrange the green and white leads so that they come out straight from the coil and are not twisted around each other. Hold the leads with the coil hanging down and facing away from the observer.
8. If the lead at the left is green, the coil is type "A" (E404). If the lead at the left is white, the coil is type " $B$ " (E405).
(b) Install the replacement coils as follows:
9. Push the coils onto their respective pole pieces with the leads coming up from the top of each coil and away from the rotor. The coil should fit snugly on the pole piece.
10. If a coil fits loosely on its pole piece, insert a flat toothpick or piece of wood as a wedge in the space between the sides of the pole piece and the window of the coil form. Make sure that the end of the wooden wedge does not extend beyond the coil form.
11. Apply a small amount of insulating varnish to keep the coil in place.
12. Reconnect leads by soldering together the same color leads of adjacent coils. Keep the leads short and away from the space occupied by the rotor.
13. Connect two white leads to the intercon-
necting terminal, as shown in figure 7-7 and two green leads to the input terminals.
14. Apply insulating varnish to all soldered connections.
15. Bend the soldered joints down into the space between the coils, making sure that the joint and its leads are clear of the casting and the coils.
16. Allow the varnish to dry for three or four hours under a 100 -watt lamp placed about three inches away from the center of the bell assembly.
17. Thoroughly clean off any varnish from the projecting pole pieces or pole faces.
(i) Reassemble the two bells, replacing all washers in their original position as noted in step (d). Be careful to realign the bells as noted in step (b).
(j) Replace the four screws which hold the motor together, making them hand-tight only.
(k) Spin the motor by hand and, holding it close to your ear, listen for any evidence of the rotor hitting the pole faces.
( $l$ ) If the motor does not turn freely, disassemble, determine the cause of trouble, and correct it.
( $m$ ) If the motor turns freely, tighten the screws alternately to $51 / 2-6$ inch-pounds torque. This is equivalent to a one-quarter to one-baif turn beyond the snug condition.
(n) Retest the motor for free spinning and free coasting.
(o) Reinstall the left-hand gear box motor and the drum in the reverse order of disassembly. Refer to paragraphs $7-5 b(2)$ and (4).
(6) REPLACING PHASING ACTUATOR.-See figure 7-19.
(a) Remove the drum, following the instructions given in paragraph 7-5b(2).
(b) Remove the hood (59) attached to the lefthand gear box covering the phasing actuator. Note the arangement of the wires to the coil, in order to reconnect them properly when reassembling.
(c) Unscrew the phasing actuator (62) from the gear box casting and unsolder the leads to the coil.
(d) Solder the leads of the replacement actuator and screw it loosely to the casting.
(e) Position the actuator so that with the armature in the energized position a 0.005 -inch feeler gauge will just fit between the armature and the stop bar (32) on the drive subassembly (30).
( $f$ ) Tighten the holding screws to 7 inch-pounds torque. This setting should allow a 0.016 -inch interference between the armature and the stop bat when the actuator is not energized.
(7) REPLACING COUPLING SECTION.-Refer to figure 7-21.
(a) If the coupling section (1) sticks, clean it without removing the drum from the recorder. If the trouble is not remedied, remove the drum as described in paragraph 7-5b(2).
(b) If any of the three springs are defective, it is best to replace the assembly.

## CAUTION

Before removing the defective assembly, trace an outline in pencil of its position on the drum. Place the replacement assembly in the same position. If necessary, shift the phasing position of the drum by sliding the assembly in the slotted hole. Tighten the screw (2) securely to prevent the assembly from shifting position.
(c) As a temporary expedient, the springs may be repaired or replaced with materials available. If temporary repairs are made, the top spring should be
very light and the bottom springs should be very heavy.
(8) REPLACING CARRIAGE.-If the entire carriage assembly must be replaced, proceed as follows. Refer to figure 7-15.
(a) Remove the drum, following instructions in paragraph 7-5b(2).
(b) Remove the front panel, following instructions in paragraph $7-5 b(4)(b)$.
(c) Detach the string from the carriage.
(d) Remove the two screws in the front (24) and the two screws in the rear (25) that hold the righthand gear box casting to the channel.
(e) Pivoting it at the bottom, swing the righthand gear box casting to the right. See figure 7-8. Note that the lead screw assembly and the cam rod remain attached to the right-hand gear box and the trolley rod remains attached to the left-hand gear box.
( $f$ ) Remove defective carriage assembly from the left end of the lead screw and the cam rod. Put on replacement.
(g) Reassemble in reverse order of disassembly.


Figure 7-8. Separation of Right- and Left-hand Gear Boxes Prior to Carriage Removal

NAVSHIPS 91630
CORRECTIVE
RD-92A/UX

## MAINTENANCE

(9) REPLACING CARRIAGE RETURN SPRING. -See figure 7-22.
(a) Be sure that the power cord is disconnected from the a-c outlet.
(b) Slide the recorder out of its cabinet to the roller stops.
(c) Remove the two screws holding the lefthand gear box cover.
(d) Remove the gear box cover.
(e) Remove the nut (3) holding the spring to the cover. Put aside spacers for reassembly.
( $f$ ) Unwind the string on the spring and cut as close as possible to the knot holding the string to the spring.
(g) Attach the string to the replacement spring.
(b) Wind the string around the replacement spring.
(i) Attach the spring to the cover with the nut removed in step (e). Be sure to replace the spacers.
( $j$ ) Replace the gear box cover, using the screws removed in step (c).
(k) Adjust tension on the spring following instructions given in paragraph (10) below.
(10) ADJUSTING CARRIAGE RETURN SPRING.-Be sure that the lead screw, the half nut, and the cam rod are cleaned thoroughly before adjusting the tension of the carriage return spring.
(a) Slide the equipment out of the cabinet to its stops.
(b) Detach the string from the carriage.
(c) Hold the knurled spring screw firmly and remove the two screws which hold it in place.
(d) Adjust the spring to 8 to 12 ounces of tension with the string extended 12 inches. To increase tension, turn the knurled spring screw counterclockwise. To decrease tension, turn clockwise.
(e) Replace and tighten the screws in the cap.
(f) Replace the string on the carriage.
( $g$ ) Check to be sure the carriage returns with a "snap".
(11) REMOVING HALF NUT.--See figure 7-23. If it becomes necessary to remove the half nut (6) for cleaning or repair, proceed as follows:
(a) Check to see that the RECORD button is in the outward position.
(b) Remove the four screws (2) on the top of the stylus carriage assembly. Carefully roll the nylon strip (4) out of the way.
(c) Lift the half nut out of the opening.
(d) Clean the half nut with a nylon tooth brush and wash with soapy water. Dry the half nut thoroughly.
(e) Replace in the reverse order of disassembly.
(12) REPLACING PAPER GUIDE.-If the paper guide requires replacement, proceed as follows. Refer to figure 7-23.
(a) Turn off power to the recorder.
(b) Slide the recorder out of its cabinet to the roller stops.
(c) Slide the stylus carriage to the middle of the lead screw and depress the RECORD button to lock it in position.
(d) Hold the paper guide (13) and remove the screw (11) holding it to the stylus carriage.
(e) Replace the paper guide and tighten the replacement in position, using the screw removed in step (d).
(13) POSITIONING THE PAPER GUIDE.-If the paper guide is not properly positioned, proceed as follows:
(a) With the power off and the recorder out of its cabinet to the roller stops, slide the stylus carriage to the middle of the lead screw and depress the RECORD button to lock it in place.
(b) Insert a screw driver in the slot of the paper guide holder (15, figure 7-23) and rotate the holder to position the paper guide, so that the sapphire bearing at the end of the paper guide is $1 / 32$ inch from the drum surface.
c. ELECTRICAL ADJUSTMENTS.-There are very few electrical adjustments that must be made. The settings of the DENSITY control on the front panel and the SYNC MA control at the rear of the recorder, however, need to be checked occasionally for normal operation.

The BIAS control on the amplifier-modulator and the fork frequency control may need adjustment. These controls are not to be touched, however, unless these circuits are definitely known to be out of adjustment.
(1) NORMAL OPERATING ADJUSTMENTS.
(a) ADJUSTING SYNC MA CONTROL (R41).-Check and adjust SYNC MA control as follows:

1. Turn on equipment and, following normal operating procedure, turn selector switch to SYNC position.
2. Turn the CIRCUIT TEST switch to SYNC MA position.
3. Depress the PRESS TO TEST switch.
4. Adjust the SYNC MA control at the rear of the recorder so that the front panel meter reads $100 \pm 10$.
(b) ADJUSTING DENSITY CONTROL (R38).-This adjustment controls the gain of the signal amplifier so that the proper $\mathrm{d}-\mathrm{c}$ voltage is obtained
to key the print oscillator signal. Incorrect setting of the DENSITY control may cause faulty recording.

Adjust the DENSITY control as follows:

1. Turn on the recorder following normal operating procedure up to SYNC position. Wait until steady, maximum-level facsimile signals or phasing signals are being received.
2. Start the DENSITY control near zero and advance the control to the lowest point that will give the maximum reading on the front panel meter. This meter reading is normally $100 \pm 10$.
3. For some types of copy it is desirable to advance the dial setting of the DENSITY control slightly beyond the lowest point that will give maximum meter reading. Try this procedure if the recorded copy is too light. Leave the DENSITY control at the setting that gives best recording.
(2) CORRECTIVE ADJUSTMENTS.-The following adjustments are to be made only when it is definitely known that the associated circuits are not functioning properly.

## CAUTION

Do not make the adjustments outlined below without proper authorization.
(a) ADJUSTING BIAS CONTROL (R222).This control, located on the amplifier-modulator subassembly, adjusts the bias applied to the cathode of the modulator tube. The operating contrast of the recorder can be set from 8 to 15 db by the BIAS control. The factory adjustment is for 12 db . If readjustment becomes necessary, proceed as follows:
l. Turn the BIAS control to its midposition.
2. Turn the selector switch to SYNC position, as in normal operating procedure.
3. Connect an 1800 -cycle signal of about 0.1 $\pm 0.025$ volts from a signal generator such as Audio Oscillator TS-382A/U or higher to the input terminals of the recorder.

## NOTE

Signal level readings are normally available on the signal generator used as an external signal source. Otherwise a separate meter such as Electronic Multimeter ME- $6 / \mathrm{U}$ series together with Audio Oscillator Navy model LAJ series can be used.
4. Adjust the DENSITY control for optimum recording as described in paragraph $7-5 c(1)(b)$.
5. Reduce the level of the 1800 -cycle input signal until the recording has the desired contrast.
6. Adjust the BIAS control until the front panel meter reads zero.
7. Increase the level of the external 1800-cycle signal to the original signal level (step 3 above) and again adjust the DENSITY control for optimum recording.
8. Repeat steps 3, 4, 5, 6, and 7 until the desired contrast is obtained. This is indicated by a meter reading of zero at minimum signal level and $100 \pm 10$ at 0.1 volt signal level.
(b) ADJUSTING FORK FREQUENCY CONTROL (R312).-The fork controlled audio-frequency oscillator generally does not require any adjustment. Do not touch the adjustment control until it is absolutely established that the oscillato is off frequency.

Station WWV of the National Bureau of Standards transmits signals that can be used for checking and adjusting the fork frequency. A pulse occurring once each second modulates transmissions at $2.5,5,10,15$, $20,25,30$, and 35 mc . To check the fork frequency against this standard, proceed as follows:

1. Tune a radio receiver to a WWV trans. mission and adjust the volume control to accentuate the pulse occurring once each second.
2. Connect the output of the receiver to the input terminals of the recorder.
3. Slide the recorder out of its cabinet to the roller stops.
4. Turn on the recorder and record about one inch of copy.
5. Turn the selector switch to SYNC.
6. After 20 minutes, turn the recorder to RUN.
7. Slide the stylus carriage to the point where recording was stopped in step 5 , above and depress RECORD button.

## WARNING

DO NOT TOUCH THE TROLLEY ROD. HIGH POTENTIALS EXIST.
8. Record another inch of copy.
9. Examine the copy. If the fork is exactly on frequency, the pulse recording will line up exactly with the previous recording. If frequency shift (skew) exists, the new pulse line will be above or below the first one.

When the new pulse line is below the first one, the frequency of the fork oscillator is less than 1800 cycles. If the new pulse line is above the first line, the frequency of the fork oscillator is greater than 1800 cycles.
(c) ADJUSTING FORK FREQUENCY.

1. Check the fork frequency as outlined above.
2. Measure the displacement. With a 20 -minute interval between the first and second pulse line, the error (skew) is recorded in inches per foot.


Figure 7-9. Fork Frequency Correction Chart.
3. If the displacement is more than one eighth of an inch, use the correction chart of figure 7-9 and make the required adjustment of the fork frequency control to obtain the corrected dial reading.
4. Recheck the fork frequency, to be sure that the correct frequency setting has been obtained.
(3) CALIBRATION OF CIRCUIT TEST CIRCUITS. See schematic diagram of test circuits, figure

7-1. In order to obtain a uniform test reading of 100 for the various positions of the CIRCUIT TEST switch, it is necessary to include a correcting resistor (marked *) in each circuit. A resistor is selected which will result in the desired uniform meter reading under normal test conditions. One-half watt carbon resistors, with a tolerance of plus or minus 10 per cent, are used. There is no need for precision adjustment of the cir-


Figure 7-10. Connection Diagram for Selection of CIRCUIT TEST Correction Resisfors
cuits. It is satisfactory if the meter test reading is brought as close as possible to 100 with the use of regular resistors. Approximate resistor values for each circuit are given in Table 7-5. If insertion of one of these resistors in its test circuit does not give a meter reading of 100 , try a slightly larger or smaller value as indicated in subparagraph (b) below. Select the resistor which gives a reading closest to 100 , within plus or minus 10. Determine calibrating resistors as follows:
(a) SELECTION OF R2. It is first necessary to insert the correct value of R 2 in order to have the meter read 100 for the lowest setting of the DENSITY control which will give maximum meter reading. This is necessary, since adjustment of the DENSITY control affects adjustment of other circuits. Proceed as follows:

1. Remove the recorder from cabinet and place it so that the under part of the chassis is accessible.
2. Connect a 6800 ohm, $\pm 10 \%, 1 / 2$-watt resistor across the R2 terminals.
3. Connect the test circuit as shown in figure 7-10.
4. Set the Variac to 117 -volt a-c output.
5. Following normal operating procedure, turn on the recorder and bring selector switch up to SYNC position.
6. Adjust the DENSITY control for the lowest setting which will give maximum meter reading.
7. If the meter is not 100 , within $\pm 10$, turn off the recorder and replace R2. If the reading in step 6 is less than 100 , try a lower value of R 2 . If the reading is more than 100 , try a larger value of $\mathbf{R} 2$.
8. Repeat steps 5, 6, and 7 until a resistor is installed which gives a meter reading closest to 100 within the required limits.
(b) SELECTION OF OTHER CALIBRATING RESISTORS.
9. Check the value of $R 2$ as outlined in subparagraph (a) above.
10. Turn off the recorder and insert a resistor of the approximate value listed in Table 7-5 across the terminals for the calibrating resistor being selected.
11. Turn on the Variac and set for 117 -volt a-c output.
12. Following normal operating procedure, turn on the recorder up to SYNC position.
13. Adjust the DENSITY control up to the lowest setting which gives maximum meter reading, normally 100.
14. Turn the CIRCUIT TEST switch to the circuit position being tested, and operate the PRESS TO TEST switch.
15. Observe the meter reading. If the reading is not 100 , within $\pm 10$, turn off the power and replace the resistor under test. If the meter reading is less than 100 , try a smaller resistor value; if more than 100 , try a larger resistor value.
16. Repeat steps 3, 4, 5, 6, and 7 until a resistor is installed which gives a meter reading closest to 100 within the required limits.
(c) CALIBRATION CHART, TABLE 7-5. Repeat the procedure of subparagraph (b) above for all calibrating resistors as indicated in Table 7-5. Note variations in procedure indicated in REMARKS column.
table 7-5. CAlibration Chart of circuit test circuit

| CIRCUIT | CORRECTING RESISTOR | APPROXIMATE RESISTANCE (Ohms) | first check value of | REMARKS |
| :---: | :---: | :---: | :---: | :---: |
| POWER | R22 | 20,000 | - | No DENSITY control adjustment needed. |
| SIG AMP OUT | R20 | 1,000 | R2 | - |
| LO $\mathrm{B}^{+}$ | R16 | 20,000 | R2 | - |
| HI B + | R14 | 68,000 | R2 and R55 | Adjust SYNC MA control so meter reads 100. |
| OSC | R8 | 4,700 | R2 | - |
| $60 \sim$ MOTOR | R6 | 15,000 | R2 | - |
| VR75 | R4 | 12,000 | R2 | - |
| Across Terminals $T$ and $C$ of DEN. SITY Control | R39 | 1,000 | R2 and R20 | 1. Remove input signal leads. <br> 2. Turn DENSITY control to TEST SIGNAL position. Meter should read 100. |
| PRINT | R10 | 47,000 | $\begin{aligned} & \text { R2, R20, R55 } \\ & \text { and R39 } \end{aligned}$ | 1. Adjust SYNC MA reading to 100 . <br> 2. Load recording paper. <br> 3. Set DENSITY control to TEST SIGNAL position, selector switch to RUN position, and depress RECORD button. <br> 4. Turn CIRCUIT TEST switch to PRINT position and depress PRESS TO TEST switch. |
| SYNC DRIVE | R12 | 2,700 | R2 and R55 | 1. Turn CIRCUIT TEST switch to SYNC MA position and operate PRESS TO TEST switch. <br> 2. Adjust SYNC MA control so that meter reads 100. <br> 3. Turn CIRCUIT TEST switch to SYNC DRIVE position and operate the PRESS TO TEST switch. |
| SYNC MA | R55 | 10,000 | - | I. Connect a d-c voltmeter across R34. <br> 2. Adjust SNYC MA control so that voltmeter reads 5 volts. <br> 3. Select R5s so that front panel meter reads 100. |

## (d) COMPONENT CHARACTERISTICS.

1. ELECTRON TUBES.-The operating voltages and currents of the electron tubes used in Facsimile Recorder RD-92A/UX are given in Table 7-6. The tube characteristics are listed in Table 7-7.

The voltage readings in Table 7-6 are taken with a 1000 -ohms-per-volt meter with the equipment operating in RUN position at 117 -volts a-c input power.
2. REPLACEMENT DATA.-Tube checker readings do not necessarily indicate whether or not tubes are defective. Replace tubes in a particular circuit
when the CIRCUIT TEST meter reading for that circuit is below 80 .

## NOTE

ALL TUBES OF A GIVEN TYPE SUPPLIED WITH THE EQUIPMENT SHALL BE CONSUMED PRIOR TO EMPLOYMENT OF TUBES FROM GENERAL STOCK.
3. CRYSTAL RECTIFIER DATA.-Data for the crystal rectifiers are listed in Table 7-8.

TABLE 7-6. TUBE OPERATING VOLTAGES AND CURRENTS

| SYMBOL | TUBE TYPE | FUNCTION | PLATE VOLTAGE (V) | PLATE CURRENT (Ma) | SCREEN voltage (V) | SCREEN CURRENT (Ma) | SUPPRESSOR voltage (V) | CATHODE voltage (V) | GRID voltage (V) | HEATER VOLTAGE (V-ac) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { V1A } \\ & \text { V1B }^{1} \end{aligned}$ | 6SN7 | Meter Amplifier Motor Driver | $\begin{array}{r} 30 \\ 280 \end{array}$ | $\begin{aligned} & 0.75 \\ & 7.5 \end{aligned}$ | - | — | - | $\begin{array}{r} 0 \\ 14 \end{array}$ | $\begin{gathered} -0.4 \\ 0 \end{gathered}$ | $\begin{aligned} & 6.1 \\ & 6.1 \end{aligned}$ |
| V2 ${ }^{1}$ | 1635 | Motor Amplifier | 280 | 25 | - | - | - | 5 | -2.5 | 6.1 |
| V3 ${ }^{1}$ | 1635 | Motor Amplifier | 280 | 25 | - | - | - | 5 | $-2.5$ | 6.1 |
| V4 ${ }^{2}$ | 1635 | Print Amplifier | 280 | 20 | - | - | - | 0 | -3 | 6.1 |
| $\begin{aligned} & \text { V101A } \\ & \text { V101B } \end{aligned}$ | 6SN7 | SIG AMP OUT <br> Meter Amplifier <br> 3rd Signal Amplifier | $75$ <br> 100 | $\begin{aligned} & 0.5 \\ & 1.8 \end{aligned}$ | $\begin{aligned} & - \\ & - \end{aligned}$ | $\begin{aligned} & - \\ & - \end{aligned}$ | $-$ | 10 $3.5$ | $1.4$ $0$ | $\begin{aligned} & 6.1 \\ & 6.1 \end{aligned}$ |
| $\begin{aligned} & \text { V102A } \\ & \text { V102B } \end{aligned}$ | 6SL7 | 1st Signal Amplifier 2nd Signal Amplifier | 25 <br> 25 | $\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$ | $-$ | $\begin{aligned} & - \\ & - \end{aligned}$ | - | $\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $6.1$ $6.1$ |
| V103 | 6SN7 | Detector | - | - | - | - | - | - | - | 6.1 |
| $\begin{aligned} & \text { V201A } \\ & \text { V201B } \end{aligned}$ | 6SN7 | Print Driver Oscillator (15kc) | $\begin{array}{r} 300 \\ 28 \end{array}$ | $\begin{aligned} & 5 \\ & 0.9 \end{aligned}$ | - | — | - | $\begin{array}{r} 11 \\ 0 \end{array}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 6.1 \\ & 6.1 \end{aligned}$ |
| $\begin{aligned} & \text { V202A } \\ & \text { V202B } \end{aligned}$ | 6SL7 | Modulator Phase Amplifier | $\begin{aligned} & 60 \\ & 19 \end{aligned}$ | $\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$ | — | - | - | $\begin{aligned} & 5 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 6.1 \\ & 6.1 \end{aligned}$ |
| Y203 | 2D21 | Phase Pulse Amplifier | 280 | 0 | - | - | 25 | 25 | 0 | 6.1 |
| $\begin{aligned} & \text { V301A } \\ & \text { V301B } \end{aligned}$ | 6SN7 | Fork Pickup Amplifier Fork Drive Amplifier | $\begin{aligned} & 13 \\ & 26 \end{aligned}$ | $\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & - \\ & - \end{aligned}$ | $-$ | $-$ | $\begin{aligned} & 0.8 \\ & 2.8 \end{aligned}$ | 0 | $\begin{aligned} & 6.1 \\ & 6.1 \end{aligned}$ |
| V302 | 6AG7 | Fork Limiter Amplifier | 37 | 0.45 | 10 | 0.24 | 0 | 1 | 0 | 6.1 |

notes:
${ }^{1}$ Readings vary with SYNC MA control setting.
${ }^{2}$ Recorder printing in TEST SIGNAL position.
${ }^{3}$ Readings vary with BIAS setting.
${ }^{4}$ Readings vary with fork frequency control (R312) setting.

NAVSHIPS 91630
RD-92A/UX

TABLE 7-7. TUBE CHARACTERISTICS

| TUBE <br> TYPE | HEATER <br> VOLTAGE <br> (V-ac) | HEATER <br> CURREN <br> (Amps) | PLATE <br> VOLTAGE <br> (V) | GRID <br> BIAS <br> (V) | SCREE <br> VOLTAGE <br> (V) | PLATE <br> CURENT <br> (Ma) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 16351 | 6.3 | 0.6 | 300 | 0 | - | 54 |
| $2 D 21$ | 6.3 | 0.6 | - | - | - | - |
| 6 6AG7 | 6.3 | 0.65 | 300 | -10.5 | 300 | 25 |
| 6 6SL7 | 6.3 | 0.3 | 250 | -2 | - | 2.3 |
| $6 S N 7$ | 6.3 | 0.6 | 250 | -8 | - | 9 |


| TUBE TYPE. | screen CURRENT (Ma) | AC PLATE RESISTANCE (Ohms) | AMPLIFI- <br> FACTOR <br> (Mu) | TRANSCONDUCTANCE (Micromhos) |  | Emission |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 15 | test |
| 16351 | - | - | - | - | - | $100^{2}$ | 50 |
| 2D21 | - | - | - | - | - | - | - |
| 6AG7 | 6.5 | - | - | 11,000 | 9,200 | 180 | 20 |
| 6SL7 | - | 44,000 | 70 | 1,600 | 1,200 | $40^{2}$ | 30 |
| 6SN7 | - | 7,700 | 20 | 2,600 | 2,400 | $40^{2}$ | 30 |

NOTES:
${ }^{1}$ Current rating is for both triodes.
${ }^{2}$ Test each unit separately.

TABLE 7-8. CRYSTAL RECTIFIER DATA

| CRYSTAL | FORWARD CURRENT (at -1 volt) (Min. Ma) | $\begin{aligned} & \text { MAX. REVERSE } \\ & \text { CURRENT } \\ & \text { (at }-50 \text { volts) } \\ & \text { (Ma) } \end{aligned}$ | AVERAGE RECTIFIED CURRENT (Ma) | PEAK ANODE CURRENT (Ma) | PEAK INVERSE VOLTAGE (Volts) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1N34A | 5.0 | 0.800 | 40 | 150 | 50 |
| 1N48 | 4.0 | 0.833 | 50 | 150 | 85 |

3. COIL WINDING DATA.-Coil winding data is given in Table 7-9.


7 Section
Table 7-9

TABLE 7-9. COIL WINDING DATA (Continued)

| $\begin{aligned} & \text { REFER- } \\ & \text { ENCE } \\ & \text { SYMBOL } \end{aligned}$ | TIMES FACSIMILE CORP. PART NUMBER | diAgram | WINDING | WIRE sIZE | TURNS | $\begin{aligned} & \text { D-C } \\ & \text { RESISTANCE } \\ & \text { IN OHMS } \end{aligned}$ | IMPEDANCE RATIO (Pri. to Soc.) | TEST VOLTAGE A-C $v$ 60 cps | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T101 | 41B-11-00-00-V |  | Pri., <br> random wound <br> Sec. No. 1, random wound <br> Sec. No. 2, random wound | No. 41 <br> heavy <br> formex <br> No. 41 <br> heavy <br> formex <br> No. 41 <br> heavy <br> formex | 3300 <br> 1900 <br> 1900 | 1200 max. <br> 500 max. <br> 650 max. | 3:1 $3: 1$ | 1000 | BLU, BRN, and GRN terminals connect to start of windings. |
| Z1 | 41B-11-07-00-V |  | Coil No. 1, random wound <br> Coil No. 2, random wound | No. 40 formex <br> No. 40 formex | 4300 $4300$ | $630 \text { to } 770$ $630 \text { to } 770$ |  | 1000 | Inductance: 3.1 to 3.5 henries at 1000 cps Q: 10 minimum. <br> Inductance: adjust for parallel with 0.001 mf at 2600 $\pm 50 \mathrm{cps} \mathrm{Q}$ of coil - 8 minimum. |
| Z201 | $\begin{gathered} 41 B-11-04-00 \\ \text { or } \\ 41 B-11-04-00-B \end{gathered}$ |  | Random wound | No. 36 formex | 2150 | 120 to 140 | - | 1000 | Parallel resonance occurs between 14 and 18 kc across IN and OUT terminals. |


5. ATTENUATION CHARACTERISTICS.The attenuation characteristics of low pass filter $\mathrm{Z}_{1}$ and
noise suppressor filter Z 2 are shown in the curves of figures 7-11 and 7-12, respectively.


Figure 7-11. Attenuation Characteristics-Low Pass Filter Z1


Figure 7-12. Attenuation Characteristics-Noise Suppression Filter Z2

CORRECTIVE
MAINTENANCE



original
7-35/36

PARTS IDENTIFICATION FOR FIGURE 7-15

| INDEX NO. | REF DESIG | NAME | index NO. | $\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$ | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | p/o U4 | Knob | 30 |  | Screw |
|  |  | Screw | 31 |  | Washer, lock |
| 3 |  | Screw | 32 | 0478 | Shaft |
| 4 | p/o U4 | Plate and drum shield | 33 |  | Nut |
|  |  | ass'y | 34 | $\mathrm{p} / \mathrm{o} 44$ | LH cover ass'y |
| 5 | 0474 | Holder | 35 |  | Screw |
| 6 | 0471 | Brush, bristle | 36 |  | Washer, lock |
| 7 | p/o U4 | RH end cover ass'y | 37 | p/o U4 | LH gear box ass'y |
| 8 |  | Screw | 38 |  | Screw |
| 9 |  | Screw | 39 |  | Washer, lock |
| 10 |  | Washer, lock | 40 | p/o U4 | Drum shield ass'y |
| 11 | 0417 | Spring | 41 |  | Screw |
| 12 |  | Screw | 42 |  | Washer, lock |
| 13 |  | Washer, lock | 43 | E409 | Terminal board |
| 14 | p/o U4 | RH end cover | 44 |  | Screw |
| 15 | 0487 | Shaft | 45 |  | Washer, lock |
| 16 | 0476 | Drum, facsimile | 46 | p/o U4 | Plate |
| 17 | 0467 | Cam | 47 |  | Screw |
| 18 | 0454 | Retainer, mechanical | 48 | P1 | Insert, electrical con- |
| 19 | 0429 | Gear |  |  | nector |
| 20 | p/o U4 | Gear | 49 |  | Screw |
| 21 | 0444 | Retainer, mechanical | 50 |  | Nut |
| 22 | 0410 | Bearing, ball | 51 |  | Washer, lock |
| 23 | p/o U4 | RH gear box | 52 | p/o U4 | Clamp |
| 24 |  | Screw | 53 |  | Screw |
| 25 |  | Screw | 54 |  | Washer, lock |
| 26 | 0465 | Shaft ass'y | 55 | p/o U4 | Base channel |
| 27 | p/o U4 | Stylus carriage ass'y | 56 |  | Screw |
| 28 | 0476 | Shaft ass'y | 57 |  | Spacer |
| 29 | p/o U4 | Top cover and return spring ass'y |  |  |  |



Figure 7-15. Exploded View of Main Mechanical Assembly

PARTS IDENTIFICATION FOR FIGURE 7-15

| index NO. | $\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$ | NAME | $\begin{aligned} & \text { INDEX } \\ & \text { NO. } \end{aligned}$ | $\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$ | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | p/o U4 | Knob | 30 |  | Screw |
| 2 |  | Screw | 31 |  | Washer, lock |
| 3 |  | Screw | 32 | 0478 | Shaft |
| 4 | p/o U4 | Plate and drum shield | 33 |  | Nut |
|  |  | ass'y | 34 | p'o U4 | LH cover ass'y |
| ; | 0474 | Holder | 35 |  | Screw |
| 6 | 0471 | Brush, bristle | 36 |  | Washer, lock |
| 7 | p/o U4 | RH end cover ass'y | 37 | p/o U4 | LH gear box ass'y |
| 8 |  | Screw | 38 |  | Screw |
| 9 |  | Screw | 39 |  | Washer, lock |
| 10 |  | Washer, lock | 40 | p/o U4 | Drum shield ass'y |
| 11 | 0417 | Spring | 41 |  | Screw |
| 12 |  | Screw | 42 |  | Washer, lock |
| 13 |  | Washer, lock | 43 | E409 | Terminal board |
| 14 | p/o U4 | RH end cover | 44 |  | Screw |
| 15 | 0487 | Shaft | 45 |  | Washer, lock |
| 16 | 0476 | Drum, facsimile | 46 | p/o U4 | Plate |
| 17 | 0467 | Cam | 47 |  | Screw |
| 18 | 0454 | Retainer, mechanical | 48 | P1 | Insert, electrical con- |
| 19 | 0429 | Gear |  |  | nector |
| 20 | p/o U4 | Gear | 49 |  | Screw |
| 21 | 0444 | Retainer, mechanical | 50 |  | Nut |
| 22 | 0410 | Bearing, ball | 51 |  | Washer, lock |
| 23 | p/o U4 | RH gear box | 52 | p/o U4 | Clamp |
| 24 |  | Screw | 53 |  | Screw |
| 25 |  | Screw | 54 |  | Washer, lock |
| 26 | 0465 | Shaft ass'y | 55 | $\mathrm{p} / \mathrm{o}$ U4 | Base channel |
| 27 | p/o U4 | Stylus carriage ass'y | 56 |  | Screw |
| 28 | 0473 | Shaft ass'y | 57 |  | Spacer |
| 29 | p/o U4 | Top cover and return spring ass'y |  |  |  |



Figure 7-16. Exploded View of Upper Front Panel Assembly

PARTS IDENTIFICATION FOR FIGURE 7-17

| INDEX | REF DESIG | NAME | $\begin{aligned} & \text { INDEX } \\ & \text { No. } \end{aligned}$ | ¢ $\begin{gathered}\text { REF } \\ \text { DESIG }\end{gathered}$ | name |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 2 | p/o U4 | Switch lever assembly Screw | 26 | E406 | Electromagnetic actuator |
| 3 |  | Screw | 27 |  | Screw |
| 4 | 0419 | Spring | 28 |  | Washer, lock |
| 5 | p/o U4 | Post, spring | 29 | p/o E406 | Base |
| 6 | S6 | Switch, sensitive | 30 |  | Screw |
| 7 |  | Nut | 31 | p/o E406 | Magnet |
| 8 | p/o U4 | Stud | 32 | 0438 | Retainer, Mechanical |
| 9 |  | Screw | 33 | p/o U4 4 | Spring, locator |
| 10 |  | Nut | 34 | 0423 | Spring |
| 11 | p/o U4 | Lever | 35 | 0430 | Gear, circular rack |
| 12 | p/o U4 | Bracket | 36 | p/o U4 | Spring, locator |
| 13 |  | Screw | 37 | 0426 | Spring |
| 14 |  | Washer, lock | 38 | p/o U4 | Shaft |
| 15 | p/o U4 | Plate | 39 | p/o U4 | Plate |
| 16 | S7 | Switch, sensitive | 40 |  | Screw |
| 17 18 18 |  | Screw | ${ }^{41}$ |  | Washer, lock |
| 18 19 |  | Nut | 42 | 0422 | Spring |
| 19 20 | 0434 | Washer, lock Gear | 43 44 4 | p/o U4 | ${ }^{\text {Screw }}$ Latch ass'y |
| 21 | 0453 | Retainer, mechanical | 45 |  | Screw |
| 22 | 0435 | Gear | 46 | p/o U4 | Pin |
| 23 | 0451 | Retainer, Mechanical | 47 |  | Nut |
| 24 | 0436 | Gear | 48 | 0421 | Spring |
| 25 | 0452 | Retainer, Mechanical | $\begin{aligned} & 49 \\ & 50 \end{aligned}$ | $\begin{aligned} & \mathrm{p} / \mathrm{o} \mathrm{U} 4 \\ & \text { p/o U4 } \end{aligned}$ | Spring post Insulator |



PARTS IDENTIFICATION FOR FIGURE 7-17

| $\begin{gathered} \text { index } \\ \text { No. } \end{gathered}$ | ReF | name | $\begin{aligned} & \text { INDEX } \\ & \text { NO. } \end{aligned}$ | $\underset{\text { desic }}{\substack{\text { REF }}}$ | name |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | p/o U4 | Switch lever assembly | 27 |  | Screw |
| 2 |  | Screw | 28 |  | Washer, lock |
| 3 |  | Screw | 29 | P/o E406 | Base |
| 4 | 0419 | Spring | 30 |  | Screw |
| 5 | p/o U4 | Post, spring | 31 | p/o E406 | Magnet |
| 6 | S6 | Switch, sensitive | 32 | 0438 | Retainer, Mechanical |
| 7 |  | Nut | 33 | p/o U4 | Spring, locator |
| 8 | p/o U4 | Stud | 34 | 0423 | Spring |
| 9 |  | Screw | 35 | 0430 | Gear, circular rack |
| 10 |  | Nut | 36 | p/o U4 | Spring, locator |
| 11 | p/o U4 | Lever | 37 | 0426 | Spring |
| 12 | p/o U4 | Bracket | 38 | p/o U4 | Shaft |
| 13 |  | Screw | 39 | p/o U4 | Plate |
| 14 |  | Washer, lock | 40 |  | Screw |
| 15 | p/o U4 | Plate | 41 |  | Washer, lock |
| 16 | S7 | Switch, sensitive | 42 | 0422 | Spring |
| 17 |  | Screw | 43 |  | Screw |
| 18 |  | Nut | 44 | p/o U4 | Latch ass'y |
| 19 |  | Washer, lock | 45 |  | Screw |
| 20 | 0434 | Gear | 46 | p/o U4 | Pin |
| 21 | 0453 | Retainer, mechanical | 47 |  | Nut |
| 22 | 0435 | ${ }_{\text {Gear }}$ Retainer | 48 | 0421 | Spring |
| 23 | 0451 | Retainer, Mechanical | 49 | p/o U4 | Spring post |
| 24 <br> 25 | 0436 | Gear Re , Mechaner, Mechal | *50 | P/o U4 | $\xrightarrow{\text { Insulator }}$ Retainer, ring |
| 25 26 | 0452 E406 | Retainer, Mechanical Electromagnetic | *51 | 0496 0497 | Retainer, ring Retainer, ring |
| 26 | E400 | $\begin{aligned} & \text { Electromagnetic } \\ & \text { actuator } \end{aligned}$ | *5 | 0497 | Retainer, ring |

*On RD-92A/UX, serial no. 338 and higher


PARTS IDENTIFICATION FOR FIGURE 7-19

| $\begin{array}{\|l\|l\|} \hline \text { indiex } \\ \text { Not } \end{array}$ | $\underset{\text { ReFsig }}{\substack{\text { Reg }}}$ | NAME | index $\begin{gathered}\text { no. }\end{gathered}$ | ${ }_{\text {der }}^{\text {REF }}$ | name |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | p/o U4 | Bearing plate assembly | 43 | p/o U4 | Spac |
| 2 |  |  | 44 |  | Motor, self synchronous |
| 3 |  | Washer, lock | 45 | p/o U4 | Oil duct assembly |
| 4 | 0406 | Bearing, ball | 46 |  | $\underset{\text { Screw }}{\text { Washer, lock }}$ |
| 5 | 0449 | Retainer, mechanical Rotor | 47 48 | R401 | Washer, lock Resistor, fixed |
| 7 | p/o 0433 | Rotor Retainer, mechanical |  |  | composition |
| 8 | 0407 | Bearing, ball | 49 | E408 | Terminal board |
| 9 | 0404 | Bearing, ball | 50 |  | Screw |
| 10 | 0447 | Retainer, mechanical | 51 |  | Washer, |
| 11 | 31 | Shaft assembly | 52 | E401 | Winding, motor field |
| 12 | 0405 | Bearing, ball | 53 |  | Screw |
| 13 | p/o U4 | Shaft | 54 |  | Washer, lock |
| 14 | p/o U4 | Pin | 55 | p/o U4 | Spacers |
| 15 | H406 | Washer, flat | 56 |  | Screw |
| 16 | p/o U4 | Gear | 57 |  | Washer, lock |
| 18 19 | 0402 | Bearing, ball Screw | 59 60 | p/o U4 | Cover Screw |
| 20 |  | Washer, lock | 61 |  | Washer, lock |
| 21 | p/o U4 | Bearing, plate | 62 | E403 | Electromagnetic |
| 22 | H409 | Washer, flat |  |  | actuator |
| 23 | p/o U4 | Spacer | 63 |  | Screw |
| 24 | 0437 | Gear, worm | ${ }^{64}$ |  | Washer, lock |
| 25 | p/o U4 | ${ }^{\text {Clamp }}$ | 65 | p/o U4 | Spacer |
| 26 |  | Screw | 66 | p/o E403 | Armature |
| 27 |  | Washer, lock | 67 | p/o E403 | Spring |
| 28 | 0403 | Bearing, ball | 68 |  | Screw |
| 29 | 0415 | Bearing, ball | 69 |  | Nut |
| 30 | 0464 | Drive subassembly | 70 |  | Washer, lock |
| 31 32 3 | H/818 | Nut, plain, round Stop bar |  | p/o E403 | Coil and field assembly Screw |
| $\begin{aligned} & 32 \\ & 33 \end{aligned}$ | p/o 0464 | Stop bar Screw | 72 73 |  | ${ }^{\text {Screw }}$ Nut |
| 34 |  | Washer, lock | 74 | p/o U4 | Holder for 0426 |
| 35. | p/o 0464 | Sync drive assembly | 75 | 0426 | Spring |
| 36 | p/o U4 | Shaft | 76 |  | Screw |
| 37 | $\mathrm{E}_{6} 02$ | Winding, motor field | 77 78 |  |  |
| $\begin{aligned} & 38 \\ & 39 \end{aligned}$ |  | Screw Washer, lock | 78 79 | 0459 | $\begin{aligned} & \text { Bumpe } \\ & \text { Screw } \end{aligned}$ |
| 40 | p/o U ${ }^{\text {a }}$ | Clamp | 80 | p/o U4 | Insulator |
| 41 |  | Screw Washer, lock | 81 82 | P/o U4 | Grommet Gear box casting |
|  |  | Washer, lock |  | $\mathrm{p} / \mathrm{o} \mathrm{U}^{4}$ | Gear box casting |




Figure 7-21. Exploded View of Drum Assembly


PARTS IDENTIFICATION FOR FIGURE 7-22

| index No. | $\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$ | name | INDEX | $\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$ | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | p/o U4 | Pivot ass'y | 7 | 0420 | Spring |
| 2 |  | Screw | 8 |  | Spacer |
| 3 |  | Nut | 9 | p/o U4 | Pivot plate |
| 4 |  | Washer, lock | 10 |  | Screw |
| 5 | p/o U4 | Hook | 11 |  | Screw |
| 6 | MS401 | String | 12 | p/o U4 | Cover ass'y |



Figure 7-22. Exploded View of Return Spring and Top Cover Assembiy

PARTS IDENTIFICATION FOR FIGURE 7-23

| INDEX NO. | $\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$ | NAME | INDEX no. | $\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$ | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | p/o U4 | Cover Screw | 16 | 0401 | Stylus, recording, electric |
| 3 |  | Washer, lock | 17 | $\mathrm{p} / \mathrm{o}$ U4 | Block ass'y |
| 4 | p/o U4 | Insulator | 18 | p/o U4 | Contact spring |
| 5 |  | Screw | 19 | $\mathrm{p} / \mathrm{o}$ U4 | Cover |
| 6 | 0468 | Nut, half | 20 | p/o U4 | Spring |
| 7 | p/o U4 | Holder ass'y | 21 | p ${ }^{\text {co U4 }}$ | Left hand plate |
| 8 |  | Screw | 22 | 0460 | Holder, stylus |
| 9 |  | Washer, lock | 23 | 0425 | Spring |
| 10 | p/o U4 | Bracket | 24 | p/o U4 | Right hand plate |
| 11 |  | Screw | 25 |  | Screw |
| 12 |  | Washer, lock | 26 |  | Nut |
| 13 | 0462 | Guide, paper | 27 |  | Washer, lock |
| 14 |  | Screw | 28 | p/o U4 | Block |
| 15 | p/o U4 | Holder | 29 | 0461 | Carriage subassembly |



Figure 7-23. Exploded View of Stylus and Carriage Assembly

TABLE 8-1. WEIGHTS AND DIMENSIONS OF SPARE PARTS BOXES

| EQUIPMENT SPARES |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SPARE PARTS BOX | OVERALL dimensions |  |  | VOLUME | WEIGHT |
|  | height | WIDTH | DEPTH |  |  |
| 1 | 12 in . | 9 in . | 6 in. | $\begin{gathered} 648 \\ \text { cu. in. } \end{gathered}$ | $\begin{gathered} 30 \\ \text { lbs. } \end{gathered}$ |

TABLE 8-2. SHIPPING WEIGHTS AND DIMENSIONS OF SPARE PARTS BOXES

| EQUIPMENT SPARES |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { SHIPPING } \\ & \text { BOX } \\ & \text { NUMBER } \end{aligned}$ | SPARE PARTS BOX | OVERALL dimensions |  |  | VOLUME | WEIGHT |
|  |  | HEIGHT | WIDTH | DEPTH |  |  |
| 1 | 1 | 16 in . | 101/2 in. | $71 / 2 \mathrm{in}$. | $\begin{gathered} 1260 \\ \text { cu. in. } \end{gathered}$ | 40 lbs . |

TABLE 8-3. LIST OF MAJOR UNITS

| SYMBOL GROUP | QUANTITY |  |  |  | NAME OF MAJOR UNIT | NAVY TYPE DESIGNATION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 115 \mathrm{~V} . \\ & \text { A. C. } \end{aligned}$ | $\begin{aligned} & 230 \mathrm{~V} . \\ & \text { A. C. } \end{aligned}$ | $\begin{aligned} & 220 / \\ & 3 / 60 \end{aligned}$ | $\begin{aligned} & 440 / \\ & 3 / 60 \end{aligned}$ |  |  |
| 1-499 | 1 |  |  |  | FACSIMILE RECORDER | RD-92A/UX |


| $\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$ | STOCK NUMBER: SIGNAL CORPS, STANDARD NAVY, AIR FORCE | NAME AND DESCRIPTION |
| :---: | :---: | :---: |
| A1 | Std Navy: <br> N17-M-88180-3019 | MOUNTING: CRS; grey enamel finish; rectangular shape; over-all dim. $\mathrm{s}^{3} / 4 \mathrm{in} . \lg , 4 \mathrm{in}$. wd, $5 / 16 \mathrm{in}$. d ; six mtg holes, three 0.152 in . dia holes on a center line $3_{16}$ in. fom ea $\lg$ edge of plate, $4 \cdot 3 / 316$ in. between centers; has five $8-32$ clinch nuts, silk-screened; 115 v 60 cyc , and Sig Input: used to mount a five term. barrier strip; Times Facsimile Corp; part/dwg No. 43C-21-00-20 Rev. A. |
| A2 | Std Nayy: <br> N16-C-10630-9408 | CABINET, FLECTRICAL EQUIPMENT: one compartment; steel; zinc chromate prime paint with grey enamel finish; over-all dim. $195 / 8 \mathrm{in} . \mathrm{lg}, 143 / 4 \mathrm{in}$. wd, $121 / 2 \mathrm{in} . \mathrm{h}$; $\operatorname{mtg}$ method 1: one group of four $9 / 32$ in. dia holes spaced $21 / 2 \mathrm{in}$. by $21 / 2 \mathrm{in}$. located at each of four corners at bottom of cabinet to accommodate Barry Corp. No. C-2035-T6 shock mts or equivalent; hole centers located as follows: $133 / 8$ in. by 9 in., $183 / 8$ in. by 9 in., $133 / 8$ in. by 14 in., and $183 / 8 \mathrm{in}$. by 14 in .; mtg method 2 : four $1 / 4 \mathrm{in}$. dia holes spaced $1515 / 16 \mathrm{in}$. by $113 / 4 \mathrm{in}$. between centers on bottom of cabinet; not waterproof or watertight; has four $10-32$ clinch nuts located underneath top of cabinet spaced $1515 / 16$ in. by $113 / 4 \mathrm{in}$., has four dimples on top of cabinet ea $15 / 16$ in. dia by $1 / 8 \mathrm{in}$. d, spaced $151 / 8 \mathrm{in}$. by $113 / 4$ in. between centers; has six $6-32$ clinch nuts on upper rear of cabinet to accommodate an electrical connector mtg plate; has 16 louvers on ea side; has caution instructions in front of cabinet; Times Facsimile Corp, part/dwg No. 43C-21-00-10. |
| A3 | Std Navy: <br> N16-S-469501-114 | SLIDE ROLLER ASSY: consists of one ea RH support, LH support, RH guide roller assy, L.H guide roller assy, and two tie plates; 187/8 in. $\mathrm{lg}, 91 / 2 \mathrm{in} . \mathrm{h}, 131 / 6 \mathrm{in}$. d over-all; mtg data : two rows of three ea Boots Aircraft, F55S832S anchor nuts to accommodate $8-32$ screws, nut centers spaced $31 / 2$ in. by $21 / 4 \mathrm{in}$. apart; painted grey; Times Facsimile Corp, part/dwg No. 43C-22-00-00. |
| A101 | Std Navy: <br> N17-M-88476-2494 | MOUNTING, TRANSFORMER: aluminum; light grey enamel finish: over-all dim., $27 / 16$ in. $\mathrm{lg}, 21 / 16 \mathrm{in}$. wd, and $117 / 32 \mathrm{in}$. h ; has one $4-40 \mathrm{in}$. clinch nut on ea of two flanges; has $11 / 18 \mathrm{in}$. dia hole, and two 0.152 in . dia spaced $15 / 32 \mathrm{in}$. by $9 / 16 \mathrm{in}$. from the center of the $11_{18} \mathrm{in}$. dia hole to accommodate a transfer; Times Facsimile Corp, part/dwg No. 41B-13-01-20. |
| A301 | Std Navy: <br> N16-C-650001-366* | COVER, ELECTRON TUBE: black bakelite; $21 / 4 \mathrm{in} \lg , 1 \mathrm{in}$. ID, $11 / 16 \mathrm{in}$. OD; incl caution label; Times Facsimile Corp, part/dwg No. 41-05-00-10. |
| A302 | Std Navy: <br> N17-B-750001-207 | BRACKET: dial pointer " Z " shaped; steel, copper and nickel plated; $21 / 16 \mathrm{in}$. lg by $1 / 2$ in h by $5 / 8 \mathrm{in}$. wd ovec-all; two $4-40$ tapped holes .0312 in . C to C, $7 / 32 \mathrm{in}$. from one end; $3 / 8 \mathrm{in}$. dia hole $3 / 8 \mathrm{in}$. from other end; Times Facsimile Corp dial pointer bkt, part/dwg No. 90-05-05-08. |
| B401 | Std Nayy: <br> N17-M-61891-1001 | MOTOR, SELF-SYNCHRONOUS: phonic wheel type; oper power requirements: 15 W , 1800 cps , single phase; mechanical output data: $1 / 100 \mathrm{hp}, 6 \mathrm{in} . \mathrm{oz}$ torque, single take-off shaft, $1800 \mathrm{rpm}, \mathrm{ccw}$ or cw rotation; closed frame; temp rise $60 \mathrm{deg} C$; continuous oper; HV term. cover; power take-off data: keyed shaft, $1 / 16$ in. wd by $1 / 32 \mathrm{in}$. d keyway; motor dim.: $1^{15} / 16$ in. excluding shaft, $37 / 8$ in. dia, $11 / 4 \mathrm{in}$. dia shaft protruding 3 in. from one end; two solder lug term.; mtg data: two moller brg on shaft space $23 / 8 \mathrm{in}$. apart and provision for spring-retaining housing; Times Facsimile Corp, part/dwg No. 42-06-00-00. |


| C1 | Std Navy: <br> N16-C-42736-8356 |
| :--- | :--- |
| C2 | x |
| C3 | x |

Sig C: 3K3522221 Std Navy: N16-C-31908-1608

Std Navy: N16-C-22573-7501
x
$\mathbf{x}$
Std Navy: N16-C-22736-3660

Sig C:
3DB2-142
Std Navy:
N16-C-49221-9883
Std Navy:
N16-C-32721-9493
$\mathbf{x}$

Std Navy: N16-C-44287-6663

Std Navy: N16-C-31091-6112 Sig C: 3K4510211

CAPACITOR, FIXED, PAPER DIELECTRIC: $10,000 \mathrm{mmf}$, plus or minus $10 \%, 600 \mathrm{v}$ DC; JAN Type No. CN35A103K; Tobe; Spec. No. JAN-C-91.

Same as C1.
Not used.
CAPACITOR, FIXED, MICA: 2200 mmf , plus or minus $10 \%$; 500 v DC; JAN Type No. CM35B222K; Aerovox; Spec. No. JAN-C-5.

CAPACITOR, FIXED, ELECTROLYTIC: case style 13, MBCA Ref Dwg Group 1; three sect; 15 mf per sect; 450 v DC; minus 40 deg $F$ to plus 149 deg $F$ working temp range; HS metal can $27 / 8$ in. $\lg$ by $13 / 8$ in. dia; four pins $3 / 8$ in. $\lg$ located at base spaced $1 / 2$ in. by $1 / 2 \mathrm{in}$.; plugs into 0.687 in . dia circle std metal octal socket; case has precipitated nylon coating approx 0.015 in. thick; general purpose; Times Facsimile Corp, part/dwg No. 41-00-00-27.

Same as C5.
Same as C5.
CAPACITOR, FIXED, FLECTROLYTIC: case style 13, MBCA Ref Dwg Group 1; three sect; 40 mf per sect; 250 v DC; minus 40 deg F to plus 185 deg F working temp range HS metal can $31 / 2 \mathrm{in}$. Ig by $13 / 8 \mathrm{in}$. dia; four pins $3 / 8 \mathrm{in}$. Ig located at base spaced $1 / 2 \mathrm{in}$. by $1 / 2$ in.; plugs into 0.687 in. dia pin circle std metal octal socket; case has precipitated nylon coating approx 0.015 in . thick; general purpose; Times Facsimile Corp, part/dwg No. 41-00-00-26.

Not used.
CAPACITOR, FIXED, PAPER DIELECTRIC: 2 mf plus $20 \%$ minus $10 \%$; 600 v DC ; JAN Type No. CP53B1EF205V; Aerovox; Spec No. JAN-C-25.

CAPACITOR, FIXED, MICA: 5100 mmf plus or minus $5 \%, 2500$ v DC; JAN Type No. CM50A512J; Aerovox; Spec No. JAN-C-5.

Same as C11.

CAPACITOK, FIXED, PAPER DIELECTRIC: $50,000 \mathrm{mmf}$ plus or minus $20 \%$, 600 v DC; JAN Type No. CP25A1EF503M; Spec No. JAN-C-25.

CAPACITOR, FIXED, MICA DIELECTRIC: 1000 mmf plus or minus $10 \%, 2500 \mathrm{v}$ DC; JAN Type No. CM-45A102K; Aerovox; Spec No. JAN-C-5.

RF bypass.

Coupling V1 to meter.

Coupling to meter.

B plus filter.

B plus filter.
B plus filter.
B plus filter.

Coupling V203 to phasing actuator.

Motor tuning.

Motor tuning.
Provides AC ground.

RF suppressor.

* Not furnished as a maintenance part. If failure occurs, do not request replacement unless the item cannot be repaired or fabricated.

TABLE 8-4. TABLE OF REPLACEABLE PARTS-Cont.

| $\begin{gathered} \text { REF. } \\ \text { dESIG. } \end{gathered}$ | STOCK NUMBER: SIGNAL CORPS, STANDARD NAVY, AIR FORCE | NAME AND DESCRIPTION | LOCATING FUNCTION |
| :---: | :---: | :---: | :---: |
| C101 | x | Same as C1. | V-101A plate to V102B grid coupling. |
| C102 | x | Same as C1. | V102B plate to V101B grid coupling. |
| C103 | x | Not used. |  |
| C104 | Std Navy: <br> N16-C-30188-4991 | CAPACITOR, FIXED, MICA: 510 mmf plus or minus $5 \%$; 500 v DC; JAN Type No. CM20A511J; Aerovox; Spec No. JAN-C-S. | V102B plate RF bypass. |
| C201 | x | Same as Ci. | V202B plate to V203 grid coupling. |
| C202 | x | Same as C 1. | V202B plate filter. |
| C203 | x | Same as C1. | 15 kc osc feedback coupling. |
| C204 | x | Same as C1. | 15 kc output coupling. |
| C205 | x | Same as C1. | Z201 to V202B coupling. |
| C206 | x | Same as C104. | V202A plate to V201A grid coupling. |
| C207 | Sig C: <br> 3DA500-451 <br> Std Navy: <br> N16-C-47321-9648 | CAPACITOR, FLXED, PAPER DIELECTRIC: 0.5 mf plus $20 \%$ minus $10 \%$; 600 v DC ; JAN Type No. CP53B1EF504V: Aerovox; Spec No. JAN-C-25. | V201A cathode bypass. |
| C208 | x | Same as C207. | V202B grid leak bias. |
| C301 | x | Same as C207. | V302 cathode bypass. |
| C302 | x | Same as C1. | Couples V301A plate to V302 grid. |
| C303 | x | Same as C 1. | V302 screen grid bypass. |
| C304 | x | Same as C1. | V302 output. |
| C305 | Std Navy: <br> N16-C-45814-9335 | CAPACITOR, FIXED, PAPER DIELECTRIC: 100,000 mmf plus or minus $20 \%$; 600 v DC; JAN Type No. CP25A1EF104M; Aerovox; Spec No. JAN-C-25. | Fork feedback from V301B. |



TABLE 8-4. TABLE OF REPLACEABLE PARTS-Cont.


Pilot light.

High B plus blown fuse indicator.

For 3AG high B plus fuse.

For 4AG power fuse.

For external ground connection.

For 4AG power fuse.
Provides junction for R6, R51 and R52.

Provides junction for E7, R53 and R54. Provides junction for E4 and R50.

Provides junction for E3 and R49.
Provides junction for E2 and R48.
Provides junction for E1 and R47.

TERMINAL BOARD: molded phenolic; two solder lug term.; $11 / 18 \mathrm{in} . \lg , 1 / 8 \mathrm{in} . \mathrm{wd}, 1 / 2$ in. h over-all; one $1 / 8$ in. mtg hole; Radio Essentials No. 5201; Times Facsimile Corp, part/ dwg No. 90-15-23-00.

INSULATOR, PLATE: XP grade bakelite; moisture and fungus proof varnish; no voltage rating; flat rectangular shape, MBCA ref dwg group 9; item code No. 185; dim. as indicated: $\mathrm{J}=1 / 2 \mathrm{in}$., $\mathrm{K}=13 / 64$ in., $\mathrm{L}=325 / 32 \mathrm{in}$., $\quad \mathrm{N}=0.29 \mathrm{in}$. dia, $\mathrm{T}=1 / 32 \mathrm{in}$., $\mathrm{W}=11 / 2 \mathrm{in}$.; mtg data : four 0.209 dia meg holes located $33 / 8$ in. by $1 / 2$ in. centers; Jones HB catalog No. MSX-5-142-FV with no markings; general purpose; Times Facsimile Corp, part/dwg No. 43C-00-00-03.

Same as E1.
Same as E1.
Same as E1.
TERMINAL BOARD: molded phenolic; incl two term. posts, screwcap type; over-all dim.: $21 / 8$ in by $19 / 16$ in. by $3 / 4$ in.; two tapped No. $6-32$ holes spaced $1^{11 / 16}$ in. C to C; two remov$21 / 8$ in. by $19 / 16 \mathrm{in}$. by $3 / 4 \mathrm{in}$.; two tapped No. $6-32$ holes spaced $11 / 16 \mathrm{in}$. C to C; two remov-
able solder lugs; general purpose; National Co No. FWG; Times Facsimile Corp, part/dwg No. 16-00-13-00. Starting with serial No. 1030 input terminal board replaced by 2 ea binding post insulators TFC part/dwg 41-13-01-02 (General Radio Co catalog 938Z with ing post insulators $1 / 16$ in. milled off ea straight edge), binding posts TFC part/dwg 41C-13-01-03 (General $1 / 16 \mathrm{in}$. milled off ea straight edge), binding posts TFC part/dwg 41C-13-01-03 (General
Radio Co catalog 938 A with Ni pl brass washer, $6-32 \mathrm{Ni}$ pl brass hex nut $\& \mathrm{No} 6 \mathrm{Ni}$ pl Radio Co catalog 938 A with Ni pl brass washer, $6-32 \mathrm{Ni}$ pl brass hex nut \& No. 6 Ni pl
split washer, with shaft length below mtg surface cut off to $5 / 8$ in. lg ) and washer TFC part/ steel dwg 41C-13-01-04, .150 in. ID (General Radio Co catalog WAM-56).

Same as E15.
Same as E15.
Same as E15.
Same as E1.
Same as E1.
Same as E1
Same as E15.
Same as E15.
Same as E15.

Same as E1.

Same as E1.
Same as E15.

Same as E15.

## Support for R30 and R40.

Insulator for TB3.

V101 open fil indicator.
V102 open fil indicator.
V103 open fil indicator.
Input terminals.

Provides junction for E102 and R111.
Provides junction for E101 and R110.
Provides junction for E103 and R112.
V201 open fil indicator.
V202 open fil indicator.
V203 open fil indicator.
Provides junction for E201 and R219.
Provides junction for E202 and R220.
Provides junction for E203 and R221.
V301 open fil indicator.

V302 open fil indicator.
Provides junction for E301 and R313.

Provides junction for E302 and R314.

* Not furnished as a maintenance part If failure occurs, do not request replacement unless the item cannot be repaired or fabricated.

| $\begin{aligned} & \text { ? } \\ & \vdots \\ & \vdots \\ & \mathbf{z} \\ & \boldsymbol{n} \\ & -1 \end{aligned}$ | F1F2 | Std Navy: N17-F-16302-30 | FUSE, CARTRIDGE: $1 / 8 \mathrm{amp}, 250 \mathrm{v}$; instantaneous oper; Littlefuse catalog No. 312.125; Times Facsimile Corp, part/dwg No. 34-00-00-19. | High B plus fuse. |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Std Navy: N17-F-14310-560 | FUSE, CARTRIDGE: $2 \mathrm{amp}, 250 \mathrm{v}$; time delay oper; life $110 \%$ overload rated, $135 \%$ for 0 to 1 hour, $200 \%$ for 0 to 2 min ; Littlefuse No. 413002; Times Facsimile Corp, part/dwg No. 41-00-00-38. | Power line fuse. |
|  | F3 | $\times$ | Same as F2. | Power line fuse. |
|  | H 1 | Std Navy: <br> N41-P-53251-2180 | PLIERS: for use with Waldes Kohinoor Truarc retainer; noncutting, nonadjustable, normally closed jaws; non-insulated, spring loaded, normally open handles; parkerized steel; one pair of auxiliary fixed jaws; $53 / 8$ in. max over-all lgth; Waldes Plier No. 0018; general purpose; Times Facsimile Corp, part/dwg No. 41B-00-00-31. | For installing and removing Truarc retainers. |
|  | H2 | Std Navy: <br> N41-P-1992-27 | PLIERS: for use with Waldes Kohinoor Truarc retainer; noncutting, normally closed adjustable jaws; noninsulated, spring loaded, normal!; open handles; parkerized steel; bkt and set screw for jaw adjustment; 6 in . max over-all lgth; general purpose; Waldes Plier No. 2, Times Facsimile Corp, part/dwg No. 41B-00-00-32. | For installing and removing Truarc retainers. |
|  | H3 | Std Navy: <br> N16-W-920001-151* | WRENCH: blade data: two $1 / 16 \mathrm{in}$. wd, $1 / 16$ in. thick, $3 / 2 \mathrm{in}$. Ig prongs, spaced 0.185 in . apart from end of a $5 / 16 \mathrm{in}$. dia. shank having a 0.185 in . dia. and $1 \mathrm{in} . \lg \mathrm{d}$ hole; shank data: chrome-yanadium steel, $5 / 16$ in. dia. by 3 in. lgth, "T" shaped CRS handle; for Times Facsimile Corp, part/dwg No. 42-16-01-10 coupler subassy retaining nut; part of Times Facsimile Recorder Model RG; Times Facsimile Corp, part/dwg No. 41B-00-00-30. | For installing and removing nut H418. |
|  | H4 | Std Navy: <br> N16-R-651091-275 | RING RETAINER: annular shape; type 302 stainless steel; dim. $0.415 \mathrm{in} . \mathrm{OD}, \%_{32} \mathrm{in}$. dia. hole with $1 / 16$ in. wd segment removed, $1 / 16$ in. thick; Times Facsimile Split Ring, part/dwg No. 41-00-01-03. | Retainer for H6. |
|  | H5 | x | Same as H4. | Retainer for H 7. |
|  | H6 | Std Navy: N43-W-99500-60 | WASHER, FLAT: "C" shaped; type 302, stainless steel; dim. 0.390 in . OD, 0.145 in . ID, radial slot, 0.0371 in . lgth from circum with 0.0725 in . radius at end, $1 / 32 \mathrm{in}$. thk; Times Facsimile Corp Captive Screw Retainẹ, part/dwg No. 41-00-00-15. | Retainer for H8. |
|  | H7 | x | Same as H6. | Retainer for H 9. |
|  | H8 | Std Navy: <br> N16-S-118401-158 | SCREW, THUMB: dull nickel plated steel; cylindrical, med diamond knurl, finger-grip drive, head $23 / 32 \mathrm{in}$.lg by $1 / 2 \mathrm{in}$. dia; cone point; $12-24$ NCT, class 2 fit, $9 / 64 \mathrm{in}$. min lgth; $15 / 32 \mathrm{in}$. nom lgth $13 / 16$ in. o/a Igth; Times Facsimile Corp, part/dwg No. 41B-00-00-14-B. | Fastens chassis to cabinet. |
|  | H9 | x | Same as H8. | Fastens chassis to cabinet. |
| $\infty$ | H201 | Std Navy: <br> N16-C-300767.995 | CLAMP, LOCKING: brass, nickel plated finish; two friction gripping type fasteners; over-all dim. $5 / 8 \mathrm{in}$. $\lg$ hex cross section $7 / 16$ in. across flats; one $11 / 32 \mathrm{in}$. (.343) drilled hole $7 / 16$ in. $d$ tapped $3 / 8-32,5 / 16$ in. d; designed to lock controls having $1 / 4 \mathrm{in}$. dia. shafts and $3 / 8-32$ threaded bushing; Times Facsimile Corp, part/dwg No. 26-00-45-00. | Locking device for R222. |

* Not furnished as a maintenance part. If failure occurs, do not request replacement unless the item cannot be repaired or fabricated.

| $\begin{aligned} & \text { REF. } \\ & \text { DESIG. } \end{aligned}$ | STOCK NUMBER: SIGNAL CORPS, STANDARD NAVY, AIR FORCE | NAME AND DESCRIPTION |
| :---: | :---: | :---: |
| H202 | Std Navy: N17-P-69720-5601 | POST, SPACING: brass, nickel plated finish; cylindrical shape over-all dim. $31 / 32 \mathrm{in} . \lg , 5 / 18$ in. dia, 0.152 in . dia mtg hole concentric with longitudinal axis $31 / 32 \mathrm{in}$. lg ; general purpose; Times Facsimile Corp, part/dwg No. 41-14-01-02. |
| H203 | x | Same as H202. |
| H204 | x | Same as H202. |
| H205 | x | Same as H202. |
| H206 | x | Same as H202. |
| H207 | x | Same as H202. |
| H401 | Std Navy: N42-P-99500-84 | PIN: SAE 1090 steel, bonderize finish; cylindrical shape; 0.078 in. dia, 7 7 6 in. lg ; Times Facsimile Corp, part/dwg No. 42-16-03-12. |
| Hi402 | x | Same as H4. |
| H403 | x | Same as H4. |
| H404 | x | Same as H6. |
| H405 | $\mathbf{x}$ | Same as H6. |

IVNIפוצO
table 8-4. TABLE OF REPLACEABLE PARTS-Cont.

Spacer for mtg "Bathtub" type cans.

Spacer for mtg "Bathtub" type cans.
Spacer for mtg "Bathtub" type cans.
Spacer for mtg "Bathtub" type cans.

Spacer for mtg "Bathtub" type cans.

Pin in 0432.

Retainer for H404.
Retainer for H405

Retainer for H414.
Retainer for H415.

Spacer in U4.

Gear spacer in U4.

Gear spacer in U4

Spacer in U4

Spacer in U4

Spacer in U4.


* Not furnished as a maintenance part. If failure occurs, do not request replacement unless the item cannot be repaired or fabricated.

| $\begin{aligned} & \text { REF. } \\ & \text { DESIG. } \end{aligned}$ | STOCK NUMBER: SIGNAL CORPS, STANDARD NAVY, AIR FORCE | NAME AND DESCRIPTION | LOCATING FUNCTION |
| :---: | :---: | :---: | :---: |
| HE203 | x | Same as HE1. | Holder for E203. |
| HE301 | x | Same as HE1. | Holder for E301. |
| HE302 | x | Same as HE1. | Holder for E302. |
| 1301 | Std Navy: <br> N17-F-61127-8109 | FORK, TUNING: fixed frequency, 1800 cps ; body dim. $43 / 4$ in. by $29 / 18$ in. by $15 / 8$ in.; three solder lug term.; HS in vacuum metal case; temp compensated $0^{\circ} \mathrm{C}$ to plus $65^{\circ} \mathrm{C}$; high stability; accuracy 10 parts per million from $0^{\circ}$ to $65^{\circ} \mathrm{C}$; one hole in each of 4 mtg flanges, hole centers spaced $31 / 8$ in. by $225 / 32$ in.; Times Facsimile Corp, part/dwg No. 41-05-04-00. | 1800 cycles source. |
| I302 | Std Navy: <br> N16-S-117101-557* | SCALE: consists of dial, Times Facsimile Corp, part/dwg No. 12-05-06-01, dial bushing, Times Facsimile Corp, part/dwg No. 12-05-06-02, and one $6-32$ by $1 / 8 \mathrm{in}$. SHCP set screw; $17 / 8 \mathrm{in}$. by ${ }^{21 / 64} \mathrm{in}$. lg over-all; dial marked with 50 graduations, every fifth marked 0,10 , 20 . . 90, 100; Times Facsimile Corp Dial Assy, part/dwg No. 12-05-06-00. | Indicates potentiometer (R312) setting. |
| ${ }^{1}$ | Std Navy: N17-I-36480-5468 | INSERT, ELECTRICAL CONNECTOR: high dielectric type; contact data: 15 round female contacts, 12 No. 20 contacts, 3 No. 12 contacts, $500 \mathrm{v}, 5 \mathrm{amp}$ for No. 20 contacts; 25 amp for No. 12 contacts; rectangular phenolic body; over-all dim.: $11 / 2 \mathrm{in}$. Ig by $3 / 4 \mathrm{in}$. wd by $11 / 32$ in. thick incl term.; two $1 / 8 \mathrm{in}$. dia. mtg holes spaced $13 / 18 \mathrm{in}$. C to C polarized; general purpose; Amphenol Catalog No. 26-150; Times Facsimile Corp, part/dwg No. 41-00-00-07. | Connects U4 to US. |
| J2 | x | Same as J1. | Connects U2 to US. |
| J3 | x | Same as J1. | Connects U1 to US. |
| J4 | x | Same as J1. | Connects U3 to U5. |
| J5 | Std Navy: N17-C-72273-4276 | CONNECTOR, RECEPTACLE: 14 contacts, female round; polarized; 10 amp for No. 16 contacts, 200 v peak; Jan Type AN 3102-20-1S; Times Facsimile Corp, part/dwg No. 41-40-00-05. | Connects recorder to auxiliary equipment. |
| J6 | Std Navy: N16-C-72263-4966 | CONNECTOR, RECEPTACLE: 8 round female contacts; polarized straight type; 10 amp , for No. 16 contacts 200 v peak; JAN Type AN-3102-20-7S; Cannon Elec No. 2062-34; Times Facsimile Corp, part/dwg No. 41B-40-00-07. | Connects recorder to auxiliary equipment. |
| J7 | Std Navy: N17-C-73470-1265 Sig C: 6Z7798-4 | CONNECTOR, RECEPTACLE: contact data: three male contacts, one round and two curved; polarized; straight type; over-all dim.: $21 / 16 \mathrm{in} . \lg 17 / 18 \mathrm{in}$. wd, 1 in . h; contact rating: 15 amp, 125 v not for RF; body data: cylindrical body with oval metal mtg flange, bakelite locking type; mtg data: two $5 / 3 \mathrm{in}$. dia mtg holes spaced $13 / 4 \mathrm{in}$. C to C; flush type mount with twist lock contacts requiring $11 / 4 \mathrm{in}$. hole; Hubbell catalog No. 7486; Times Facsimile Corp, part/dwg No. 61-15-00-05. | AC power connector. |

RELAY, ARMATURE: contact data: contact arrangement data: contact arrangement 1A2B1C, single break, 3 amp AC non-inductive, 6200 ohms, 110 v D-C term, data: solder lugs, nine on contacts, two on coil; continuous duty; over-all dim. $11 / 32$ in. by $11 / 4 \mathrm{in}$. by 1 in.; two No. 5-40 tapped holes, spaced $7 / 10$ in. C to C; general purpose; Clare Mfg No. A-51205; Times Facsimile Corp, part/dwg No. 41-40-04-00.

RELAY, ARMATURE: contact data: contact arrangement MBCA Ref Dwg Group 4, form 2B, single break, $3 \mathrm{amp} A C, 150 \mathrm{~W}$, non-inductive; coil data: single winding, inductive, 300 ohms, 24 v dc; term. data: solder lug term. two on contacts, two on coil; continuous duty; over-all dim. $117 / 32 \mathrm{in}$. by 1 in . by 1 in.; two $5-40$ tapped mtg holes spaced $7 / 16$ in. between centers; general purpose; Clare Mfg No. A-30566; Times Facsimile Corp, part/dwg No. 41-40-05-00.

REACTOR: audio reactor; 1 sect; electrical data: 1 plus or minus 0.05 henrys, 5 ma dc; 270 - to 330 -ohm de resistance; 1000 v rms, 60 cps test voltage; HS metal case; over-all dim.; $21 / 2 \mathrm{in}$. by 1 in . by 1 in .; two $\frac{5 / 32}{} \mathrm{in}$. dia mtg holes $21 / 8 \mathrm{in}$. C to C ; two solder lug term. on side; Times Facsimile Corp, part/dwg No. 41B-11-05-00-B

METER, ARBITRARY SCALE: panel mtd; for D-C circuit; scale data: measurement inscription 0 to 200 left to right, graduated in increments of 5 , scale marked at $0,50,100$, 150, and 200; case data: style 15, MBCA Ref Dwg Group 27 round bakelite; dim.; 2.69 in. dia flange, 2.2 in. dia body, 0.89 in . body depth; accuracy plus or minus $2 \%$ at full scale reading; sensitivity 1 ma dc for full scale deflection; calibrated for nonmagnetic panel; black scale markings on white background; self-contained; three $1 / 8 \mathrm{in}$. dia mtg holes on $17 / 32$ in. radius, spaced 120 deg apart; two No. $8-32$ screw stud term., 0.53 in . Ig Times Facsimile Corp, part/dwg No. 41-00-00-13.

STRING: nylon type FM-10001; solid; $1 / 32$ in. dia; natural color; 17 in . lg ; Times Facsimile Corp, part/dwg No. 42-18-04-01.

RETAINER, ELECTRON TUBE: stainless steel; over-all dim.: $2 \mathrm{in} .1 \mathrm{~g}, \mathrm{l}^{15} / 32 \mathrm{in} . \mathrm{w}, 29 / 32 \mathrm{in}$. d ; mts on $8-32$ stud by means of slot in tab; distance from center of retained tube to $\mathrm{r} . \mathrm{tg}$ stud $29 / 32$ in.; $3 / 16$ in. dia. hole in top; Times Facsimile Corp catalog No. 2, part/dwg No. 2000.

Same as 01 .
Same as 01.
Same as 01.
Same as 01.
RETAINER, ELECTRON TUBE: stainless; over-all dim.; $1^{13} / 16$ in. dia by $3 / 16$ in. excluding tab; mts on stud by means of slot in tab; used to hold electron tube in socket; Times Facsimile Corp catalog No. 3, part/dwg No. 3000.

Stari relay.

Trip relay.

Plate load for V202A.

Circuit test meter.

To return stylus carriage.

Retainer for V1.

Retainer for V2.
Retainer for V3.

Retainer for V4.

Retainer for V5.
Retainer for V6.

| $\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$ | STOCK NUMBER: SIGNAL CORPS, STANDARD NAVY, AIR FORCE | NAME AND DESCRIPTION |
| :---: | :---: | :---: |
| 07 | Std Navy: N16-R-503580-210 | RETAINER, ELECTRON TUBE: stainless steel; over-all dim. $21 / 8 \mathrm{in}$. dia by $5 / 16$ in. excluding tab; mts on stud by means of slot in tab; used to hold electron tube in socket; Times Facsimile Corp catalog No. 4, part/dwg No. 4000. |
| 08 | Std Navy: N16-R-503580-213 | RETAINER, CAPACITOR: stainless steel; over-all dim. $11 / 2$ in. by $3 / 18$ in. excluding tab; mts on stud by means of slot in tab; used to hold capacitor in socket; Times Facsimile Corp catalog No. 3T, part/dwg No. 3010. |
| 09 | x | Same as 08. |
| 010 | x | Same as 08. |
| 011 | x | Same as 08. |
| 012 | Std Navy: <br> N16-K-700627-101 | KNOB: bar w/single pointer, Ref Dwg Group 16; plastic, black, natural finish; plain gripping surface; $1^{13 / 16} \mathrm{in}$. Ig, $11 / 8 \mathrm{in}$. wide, $13 / 16$ in. thick overall; $11 / 8 \mathrm{in}$. OD integrally molded skirt; designed to accomodate $1 / 4 \mathrm{in}$. dia round unthreaded shaft, $1 / 2 \mathrm{in}$. d hole; 1 set screw hole, $4-40$ thread size, w/set screw; radial white line depressed marking; United States Instrument Co. catalog no. 1627; TFC part/dwg no. 41-00-00-81. |
| 013 | * | Same as 012. |
| 014 | $\mathbf{x}$ | Same as 012. |
| 015 | Std Navy: <br> N16-K-700271-601 | KNOB: round shape; bakelite; black; designed to accommodate $1 / 4$ in. dia shaft, $5 / 18$ in. shaft hole; no insert; over-all dim. ${ }^{13 / 32}$ in. h by $11 / 16$ in. dia; general purpose; Gen Cement No. 1114; Times Facsimile Corp, part/dwg No. 41-00-00-06. |
| 016 | Std Navy: <br> N16-S-800661-175 | STUD: stainless steel; no protective finish; over-all dim. excluding accessories; $31 / 4 \mathrm{in} .1 \mathrm{~g}$ 0.142 in . dia; has a No. 8-32 NCT $1 / 2 \mathrm{in}$. lg at one end and approx. 2 in . on opposite end; stud is mtd with the $1 / 2 \mathrm{in}$. long threaded end through a No. 18 ( 0.177 in . dia) hole and locked with two hex nuts and lockwashers; accessories: two No. 8 hex nuts and one No. 8 external lockwasher; Times Facsimile Corp catalog No. 32, dwg No. 3202. |
| 017 | x | Same as 016. |
| 018 | x | Same as 016. |
| 019 | x | Same as 016. |

Std Navy: N16-S-800652-101

Std Navy: N16-R-503580-183
$\mathbf{x}$
x
Std Navy: N16-S-800650-101

STUD: stainless steel; no protective finish; over-all dim. excluding accessories: $41 / 4 \mathrm{in}$. lg 0.142 in . dia, has a No. $8-32$ NCT $1 / 2 \mathrm{in}$. $\lg$ on one end and a No. $8-32$ NCT $11 / 2 \mathrm{in}$. 1 g on the opposite end; stud is mounted with the $1 / 2 \mathrm{in}$. lg thd end through a No. 18 ( 0.177 in . dia) hole and locked with two hex nuts and a lockwasher; accessories: two No. 8 hex nuts and one No. 8 external lockwasher; Times Facsimile Corp catalog No. 42, dwg No. 4202.

Same as 020.

Same as 020.
Same as 01.

Same as 01.
Same as 01.
Same as 016.

Same as 016.

Same as 016.
Same as 01.
Same as 01.
RETAINER, ELECTRON TUBE: stainless steel; designed to retain 7-pin and 9-pin miniature type electron tubes; mts on No. 8-32 NCT stud by means of slot in metal tab; distance between centers of retained object and metg stud $11 / 16 \mathrm{in}$., $21 / 32$ in. dia hole on top; general purpose; Times Facsimile Corp catalog No. 1, part/dwg No. 1000.

Same as 016.
Same as 016.
STUD: stainless steel; no protective finish; over-all dim. excluding accessories: $25 / 8 \mathrm{in}$. lg 0.142 in . dia; has a No. $8-32$ NCT $11 / 2 \mathrm{in} . \lg$ on one end and a No. 8-32 NCT $1 / 2 \mathrm{in} . \lg$ on opposite end; stud is mtd with the $1 / 2 \mathrm{in}$. Ig thd end through a 0.177 in . dia hole and held in place with accessories consisting of two No. 8-32 hex nuts and one No. 8 external lockwasher; Times Facsimile Corp catalog No. 25, part/dwg No. 2502.

## Mounting post for retainet 05.

Mounting for retainer 06.
Mounting for retainer 07.
Mounting for retainer 08.
Mounting for retainer 09.
Mounting for retainer 010.
Mounting for retainer 011.
Retainer for V101.
Retainer for V102.
Retainer for V103.
Mounting for retainer 0101.
Mounting for retainer 0102.
Mounting for retainer 0103.
Retainer for V201
Retainer for V202.
Retainer for V203.

Mounting for retainer 0201.
Mounting for retainer 0202.
Mounting for retainer 0203.

| $\overrightarrow{0}$ | $\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$ | STOCK NUMBER: SIGNAL CORPS, STANDARD NAVY, AIR FORCE | NAME AND DESCRIPTION |
| :---: | :---: | :---: | :---: |
|  | 0301 | x | Same as 01. |
|  | 0302 | x | Same as 01. |
|  | 0303 | x | Same as 016. |
|  | 0304 | x | Same as 016. |
|  | 0305 | Std Navy: N17-P-500001-104* | POINTER, INDICATOR: nickel plated steel; rectangular, $13 / 16 \mathrm{in} . \lg , 3 / 8 \mathrm{in} . \mathrm{wd}, 1 / 16$ in. thick over-all; two No. 30 ( 0.128 in .) drilled holes $5 / 16$ in. C to C and $1 / 8$ in. from straight end; Times Facsimile Corp, part/dwg No. 90-05-05-09. |
|  | 0401 | Std Navy: N17-S-50541-1006 Sig C. 6C295-4 | STYLUS, RECORDING, REPRODUCING: tungsten needle point 0.008 in. dia by $1 / 8 \mathrm{in} . \mathrm{lg}$; shank over-all dim.: $25 / 32 \mathrm{in}$. $\lg$ by $13 / 32$ in. h by 0.062 in. thick; shank data : brass bent at 22 deg; will record on aprox fifty 12 in . by 19 in . sheets; total approx recording life 17 hr , slight depression on side of shank $3 / 32$ in. from end opposite needle; Times Facsimile Corp, part/dwg No. 42-00-10-00. |
|  | 0402 | Std Navy: G77-B-115-00619-2000 | BEARING, BALL: single row radial; double shield; light duty; $3 / 8$ in. bore, $7 / 8$ in. OD., 0.281 in. wd; 7 balls; standard fit; ABEC-1 tolerance; general purpose; ND No. 77R6; Times Facsimile Corp, part/dwg No. 42-16-01-17. |
|  | 0403 | x | Same as 0402. |
|  | 0404 | Std Navy: <br> N77-B-115-00319-2000 | BEARING, BALL: single row radial; double shield; light duty; $3 / 16$ in. bore, $11 / 2$ in. OD, 0.197 in. wd; 7 balls; standard fit; ABEC-1 tolerance; general purpose; ND No. 77R3; Times Facsimile Corp, part/dwg No. 0i-12-03-04. |
|  | 0405 | x | Same as 0404. |
|  | 0406 | $\mathbf{x}$ | Same as 0404. |
|  | 0407 | x | Same as 0404. |
|  | 0408 | x | Same as 0404. |
|  | 0409 | Std Navy: <br> G77-B-115-00409-2000 | BEARING, BALL: single row radial; double shield; light duty; $1 / 4$ in. bore, $5 / 8$ in. OD, 0.197 in. wd; 8 balls; standard fit; ABEC-1 tolerance; ND No. 77R4; Times Facsimile Corp, part/dwg No. 42-00-00-12. |
|  | 0410 | x | Same as 0409. |


| 울 | 0411 | x | Same as 0409. | Shaft bearing for shaft 0465 . |
| :---: | :---: | :---: | :---: | :---: |
| 2 ¢ - | 0412 | Sig C: 3H320-29 <br> Std Navy: <br> N77-B-111-00810-2050 | BEARING, BALL: single row radial; double shield; 8 mm bore, $22 \mathrm{~mm} \mathrm{OD}, 7 \mathrm{~mm} \mathrm{wd}$; 7 balls; high temp grease; tight fit; ABEC-5 tolerance; polished bore; Barden Mfg No. 38SSX 3 with polished bore; Times Facsimile Corp, part/dwg No. 26-06-01-12. | Shaft bearing on motor B401. |
|  | 0413 | $\mathbf{x}$ | Same as 0412. | Shaft bearing on motor B401. |
|  | 0414 | x | Same as 0412. | Shaft bearing on motor B401. |
|  | 0415 | Std Navy: <br> G77-B-111-00810-2000 | BEARING, BALL: single row radial; double shield; light duty; 8 mm bore, 22 mm OD, 7 mm wd; 7 balls; standard fit; ABEC-1 tolerance; general purpose; SKF No. R82Z; Times Facsimile Corp, part/dwg No. 42-00-00-11. | Shaft bearing on drum shaft. |
|  | 0416 | x | Same as 0415. | Shaft bearing for drum shaft. |
|  | 0417 | Std Navy: <br> N17-S-46768-5556 | SPRING ASS'Y: thrust type; type 25S beryllimm copper; $11 / 4 \mathrm{in} .1 \mathrm{~g}, .3125 \mathrm{in} . \mathrm{wd}^{2}, 208 \mathrm{in}$. deep; mtg data: two 089 in. holes spaced $3 / 16 \mathrm{in}$. C to C; Times Facsimile Corp, part/dwg No. 42-00-06-10. | Drum shaft thrust spring. |
|  | 0418 | x | Same as 0417. | Feed shaft 0465 thrust spring. |
|  | 0419 | Std Navy: <br> N17-S-46730-8191 | SPRING: helical extension; 0.013 in . dia stainless steel wire; $1 / 8 \mathrm{in}$. dia $1 / 2 \mathrm{in}$. $\mathrm{lg} ; 20$ turns; parallel hook term.; Times Facsimile Corp, part/dwg No. 42-00-00-20. | To return lever which actuates S6 and S8. |
|  | 0420 | Std Navy: <br> N17-S-46836-1128 | SPRING: motor type, beryllium copper strip, $3 / 18$ in. $\mathbf{w d}$, $60 \mathrm{in} . \lg$; over-all dim.: $3 / 8 \mathrm{in}$. wd, 2 in. dia; mtg data: one $5 / 32$ in. hole in center; Times Facsimile Corp, part/dwg No. 42B-18.02-00. | To return stylus carriage containing 0460 and 0461. |
|  | 0421 | Std Navy: N17-S-46707-1700 | SPRING: helical extension type; 0.013 in . dia stainless steel wire; $11 / 32 \mathrm{in} . \lg , 1 / 8 \mathrm{in}$. dia; 7 turns; parallel hook term.; Times Facsimile Corp, part/dwg No. 42-17-00-14. | Detent latch spring. |
|  | 0422 | Std Navy: <br> N17-S-46716-8121 | SPRING: helical extension type; 0.013 in . dia, stainless steel wire; $11 / 32 \mathrm{in} . \mathrm{lg}, 1 / 8 \mathrm{in}$. dia; 13 turns; hook term.; Times Facsimile Corp, part/dwg No. 42-17-00-13. | Carriage release actuator. |
|  | 0423 | Std Navy: N17-S-46701-1801 | SPRING: helical compression type; 0.032 in., stainless steel wire; $7 / 8 \mathrm{in}$. $\mathrm{lg}, 5 / 16 \mathrm{in}$. dia; 8 turns; squared ends ground; Times Facsimile Corp, part/dwg No. 42-17-00-05. | Half nut 0468 disengagement spring. |
|  | 0424 | Std Navy: N17-S-46701-9784 | SPRING: helical compression type; 0.032 in., stainless steel wire; $11 / 16 \mathrm{in} . \lg , 5 / 18 \mathrm{in}$. dia; 10 turns; open ends ground; Times Facsimile Corp, part/dwg No. 42-17-00-04. | Half nut 0468 engagement load spring. |
|  | 0425 | Std Navy: N17-S-46743-6921 | SPRING: helical extension type; 0.008 in., stainless steel wire; $13 / 32 \mathrm{in} . \lg , 1 / 8 \mathrm{in}$. dia; approx 19 turns; one hook and one eye term., indexed 90 deg close wound; Times Facsimile Corp, part/dwg No. 42-03-02-06. | Spring to pivot stylus holder 0460. |
| $\infty$ |  |  |  |  |

[^3]| $\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$ | STOCK NUMBER: SIGNAL CORPS, STANDARD NAVY, AIR FORCE | NAME AND DESCRIPTION |
| :---: | :---: | :---: |
| 0426 | Std Navy: N17-S-46764-7710 | SPRING: flat type; 0.010 in. thick, beryllium copper type 25 S , No. 1 hardened; $\% 16 \mathrm{in} . \mathrm{lg}$, ${ }^{21} / 32 \mathrm{in}$. wd, $9 / 32 \mathrm{in}$. h ; mtg data: two holes 0.128 in . dia spaced $1 / 4 \mathrm{in}$. C to C ; two round shaped bearing surfaces; Times Facsimile Corp, part/dwg No. 42-16-01-08. |
| 0427 | Std Navy: <br> N16-G-431695-924 | GEAR: brass; straight teeth; 40 teeth; 48 pitch; 0.831 in. PD; 0.873 in . OD; bore D hole 0.250 in dia, 0.203 in. from flat; $1 / 4$ in thick; straight face; counterbore $1 / 2 \mathrm{in}$. dia, $1 / 8 \mathrm{in}$. deep ; Times Facsimile Corp, part/dwg No. 42-00-00-02. |
| 0428 | Std Navy: <br> N16-G-431296-417 | GEAR: spur; brass ; straight teeth; 20 teeth; 48 pitch; PD 0.4166 in.; pressure angle $141 / 2$ deg; $0.458 \mathrm{in} . \mathrm{OD}$; bore: D hole 0.250 in . dia; 0.203 in . from flat; straight face; Times Facsimile Corp, part/dwg No. 42-00-09-03 |
| 0429 | Std Navy: <br> N16-G-431209-212 | GEAR: spur; brass; teeth data: 16 straight teeth, 32 diametral pitch, PD 0.500 in.; 0.556 in. OD; bore: D hole 0.186 in. dia; 0.156 in. from flat; $11 / 64$ in. thick; straight face; Times Facsimile Corp, part/dwg No. 42-00-00-04. |
| 0430 | Std Navy: N16-G-423525-122 | GEAR, CIRCULAR RACK: spur; naval bronze; straight teeth; 6 teeth; 32 pitch; circular pitch 0.098 in ., 500 in rack gear; $0.562 \mathrm{in} . \mathrm{OD}, 0.532 \mathrm{in} . \mathrm{lg}, 0.191 \mathrm{in}$. ID; straight face; Times Facsimile Corp, part/dwg No. 42-17-00-08. |
| 0431 | Std Navy: <br> N16-S-21226-1135 | SHAFT ASSEMBLY: consists of: 1 shaft, 1 gear, 2 mechanical ring retainers, and 1 pinion; over-all dim.; $219 / 22 \mathrm{in} . \mathrm{lg}, 1.533 \mathrm{in}$. dia; mtg data: two 0.1872 in . dia journals on opposite ends; pinion is fitted to gear; gear is pinned to shaft; Times Facsimile Corp, part/dwg No. 42-16-03-30. |
| 0432 | Std Navy: <br> N16-G-432998-461 | GEAR: spur; free machining yellow brass, smooth finish; straight teeth; 105 teeth, $141 / 2 \mathrm{deg}$ pressure angle, $3 / 16$ in. wide straight face; diametral pitch 60; 1.732 in . PD; dim.: 1.765 in . OD, 0.188 in . dia bore, 0.593 in . over-all wd; hub $0.375 \mathrm{in} . \lg , 7 / 16 \mathrm{in}$. dia w/0.085 in. w, $3 / 32$ in. d slot in end; mtg data: slide fit on $3 / 16$ shaft; Times Facsimile Corp, part/dwg No. 42-16-03-20. |
| 0433 | Std Navy: <br> N16-S-21226-1121 | SHAFT ASSEMBLY: consists of: 1 shaft, 1 gear, 1 AC motor rotor, 2 mechanical ring retainers; over-all dim.; $2^{19} / 32 \mathrm{in} . \lg , 0.990 \mathrm{in}$. dia; mtg data: two 0.1870 in . dia journals; rotor is press fitted to shaft; gear is press fitted and pinned to shaft; Times Facsimile Corp, part/dwg No. 42-16-03-40. |
| 0434 | Std Navy: <br> N16-G-435001-594 | GEAR: dual spur; brass; teeth data; gear No. 1: straight teeth, 20 teeth, $141 / 2$ deg pressure angle, $5 / 32$ in. face, straight face; gear No 2: straight teeth, 60 teeth, $141 / 2 \mathrm{deg}$ pressure angle, $3 / 16$ in. face, straight face; 48 diametral pitch: gear No. 1 and gear No. 2-48; PD, gear 1: 0.458 in . OD, gear 2: 1.289 in . OD, 0.188 in . ID, $7 / 16 \mathrm{in}$. over-all width; no hub; composition bushing $0.189 \mathrm{in} . \mathrm{ID}, 0.253 \mathrm{in}$. $\mathrm{OD}, 7 / 18 \mathrm{in} . \mathrm{lg}$ press fitted into gear; Times Facsimile Corp, part/dwg No. 42-17-05-00. |


| 0435 | Std Navy: N16-G-435002-402 |
| :---: | :---: |
| 0436 | Std Navy: <br> N16-G-432095-416 |
| 0437 | Std Navy: N17-G-436547-444 |
| 0438 | Std Navy: <br> N42-R-2047-500 |
| 0439 | x |
| 0440 | x |
| 0441 | Std Nayy: <br> N17-R-651091-124 |
| 0442 | Std Navy: <br> N16-R-651091-103 |
| 0443 | x |
| 0444 | $\mathbf{x}$ |
| 0445 | x |
| 0446 | x |
| 0447 | Std Navy: <br> N16-R-651091-102 |
| 0448 | x |
| 0449 | x |
| 0450 | x |

GEAR: dual spur; brass; teeth data: gear 1: straight teeth, 40 teeth, pressure angle, $5 / 32$ in. face, straight face, gear 2: straight teeth, 64 teeth, $141 / 2$ deg pressure angle, $3 / 16$ in. face, straight face; diametral pitch gear 1 and gear 2-48; PD: gear 1: 0.831 in. gear 2: 1.331 in.; dim.: gear 1: 0.873 in . OD, gear 2: 1.372 in . OD, 0.188 in . ID, $7 / 6 \mathrm{in}$. over-all wd; no hub; composition bushing 0.189 in. $1 \mathrm{D}, 0.253 \mathrm{in}$. OD, $7 / 6 \mathrm{in}$. lg press-fitted into gear; Times Facsimile Corp, part/dwg No. 42-17-06-00.

GEAR : spur; brass; teeth data: straight teeth, 60 teeth, $141 / 2$ deg pressure angle, 0.218 in. face, straight face; diametral pitch 48; PD 1.248 in .; dim.: 1.289 in . OD, 0.188 in . ID, 0.249 in . over-all wd; hub data: one $1 / 64 \mathrm{in}$. $\lg$ projection, $13 / 8 \mathrm{in}$. OD; composition bushing 0.189 in. ID, 0.253 in OD, $7 / 32$ in. 1 g press-fitted into gear; Times Facsimile Corp, part/dwg No. 42-17-07-00.

GEAR, WORM: nylon base bakelite gear, brass hub; teeth data: RH helical teeth, 6 deg $57 \mathrm{~min}, 14$ deg helix angle, 60 teeth, 14 deg pressure angle, 318 in. face width concave face; diametral pitch 41.275 ; PD 1.464 in.; dim.: 1.546 in . OD, 0.376 in . ID, $57 / 84$ in. over-all wd; hub data: one projection 0.436 in . OD, $0.562 \mathrm{in} . \mathrm{lg}$ with shoulder $5 / \mathrm{in}$. dia, 0.093 in . lg ; two $1 / 32 \mathrm{in}$. wd axial slots on end of hub; one $1 / 32 \mathrm{in}$. wd traverse slot adjacent to shoulder; Times Facsimile Corp, part/dwg No. 42-16-01-40.

RETAINER, MECHANICAL: circular E shape; steel, zinc plated; dim.: 0.335 in. OD, 0.145 in. ID, 0.025 in. wd; Waldes Kohinoor No. 5133-18-ST-17.

Same as 0438.
Same as 0438 .
RETAINER, MECHANICAL: open ring-shaped; steel, zinc plated; dim.: 0.28 in. ID, 0.540 in. OD fully spread, 0.025 in. thick; Waldes Kohinoor No. 5100-31-ST-17.

RETAINER, MECHANICAL: open ring-shaped; steel; zinc plated; dim.: 0.225 in. ID, 0.450 in. OD fully spread, 0.025 in. thick; Waldes Kohinoor No. 5100-25-ST-17.

Same as 0442 .
Same as 0442.
Same as 0442.
Same as 0442.

RETAINER, MECHANICAL: open ring-shaped; beryllium copper, zinc plated; dim.: 0.168 in. ID, 0.298 in. OD fully spread, 0.015 in. thick; Waldes No. $5100-18$-C-17.

Same as 0447 .

Same as 0447.
Same as 0447.

Gear in threaded shaft 0465 gear train.

Gear in threaded shaft 0465 gear train.

For speed reduction from 1800 rpm to 60 rpm.

## Mechanical retainer.

Mechanical retainer.
Mechanical retainer.
Mechanical retainer on drum shaft 0487.

Mechanical retainer on drum shaft 0487.

Mechanical retainer on B401.

Mechanical retainer on 0465.
Mechanical retainer on 0465.
Mechanical retainer on 0465.

Mechanical retainer on shaft assembly 0431 .

Mechanical retainer on shaft assembly 0431.
Mechanical retainer on shaft assembly 0433.
Mechanical retainer on shaft assembly 0433.

TABLE 8-4. TABLE OF REPLACEABLE PARTS-Cont.

| $\begin{aligned} & \text { REF. } \\ & \text { DESIG. } \end{aligned}$ | STOCK NUMBER: SIGNAL CORPS, 5TANDARD NAVY, AIR FORCE | NAME AND DESCRIPTION | LOCATING FUNCTION |
| :---: | :---: | :---: | :---: |
| 0451 | x | Same as 0447 . | Mechanical retainer for gear 0435. |
| 0452 | x | Same as 0447 . | Mechanical retainer for gear 0436 . |
| 0453 | x | Same as 0447 . | Mechanical retainer for gear 0434. |
| 0454 | x | Same as 0447. | Mechanical retainer on 0473. |
| 0455 | x | Same as 0447 . | Mechanical retainer on 0473. |
| 0456 | x | Same as 0447. | Mechanical retainer on 0473. |
| 0457 | x | Same as 0447. | Mechanical retainer on 0473. |
| 0458 | Std Navy: N16-R-651091-226 | RETAINER, MECHANICAL: open ring-shaped; steel, zinc plated; dim.: 0.338 in . ID, 0.618 in. OD fully spread, 0.025 in. thick; Waldes Kohinoor No. 5100-37-ST-17. | Mechanical retainer on drum shaft. |
| 0459 | Std Navy: N17-B-775001-183* | BUMPER: rubber, med grade; cylindrical shape; dim.: $5 / 16 \mathrm{in}$. dia, $9 / 16 \mathrm{in} . \mathrm{lg} ; \mathrm{mtg}$ dim. : 0.111 in. dia, axial hole $1 / 4 \mathrm{in}$. d; Times Facsimile Corp, part/dwg No. 42-16-01-14. | Absorbs shock of carriage return. |
| 0460 | Std Navy: <br> N17-H-77691-1013 | HOLDER, STYLUS: consists of: 1 pivoted stylus holder, 1 detent rod, 1 dampener rod, and 2 mechanical ring retainers; over-all dim.: $23 / 32$ in. $\lg$, $11 / 10$ in. wd, $1 / 2 \mathrm{in} . \mathrm{h}$; mtg data: two journals, one on ea end: one journal has 60 deg conical end; Times Facsimile Corp, part/dwg No. 42-03-02-20. | Holds stylus 0401. |
| 0461 | Std Navy: <br> N16-C-159001-103 | CARRIAGE SUBASSEMBLY: consists of: 1 bushing, 1 LH side plate and 1 RH side plate; over-all dim.: $1^{31 / 32}$ in. $\lg , 3 / 4 \mathrm{in}$. wd, $7 / \mathrm{B}$ in. $\mathrm{h}, 0.0002 \mathrm{in}$. thick; hard chrome finish inside bushing; 0.0005 in. thick nickel plate finish on both side plates; Times Facsimile Corp, part/ dwg No. 42-03-01-00. | Guides stylus and carriage. |
| 0462 | Std Nayy: N16-G-934761-102 | GUIDE, PAPER: nylon base bakelite; flat rectangular shape; over-all dim.: $11 / 4 \mathrm{in} . \mathrm{Ig}, 3 / 16$ in. wd, $3 / 32 \mathrm{in}$. thick; one 0.093 in . dia mtg hole located on center line $3 / 32 \mathrm{in}$. from end; one sapphire rod 0.065 in . dia, $3 / 16 \mathrm{in}$. Ig located transversely $1 / 16 \mathrm{in}$. from end opposite that of mtg hole; Times Facsimile Corp, part/dwg No. 42-03-03-10. | Guides recording paper. |
| 0463 | Std Navy: N17-C-98611-1072 | COUPLING SECTION: consists of: 1 base plate, 1 latch, 2 helical extension springs, and 1 torsion spring; over-all dim.: $29 / 16$ in. $\lg , 1^{51 / 64}$ in. wd, $7 / 8$ in. tbick; mtg data: one $15 / 32$ in. dia hole and one $3 / 32$ in. wd curved slot approx $7 / 8 \mathrm{in}$. Ig; 0.00025 in. thick copper flash and 0.0005 in. thick nickel plate finish on base plate; 0.00025 in. thick copper flash and 0.0005 in. thick hard chrome plate finish on latch; Times Facsimile Corp, part/dwg No. 42-08-04-00. | Couples drum to drive synchronizing mechanism. |


| 2 <br>  | 0464 | Std Navy: <br> N16-D-905001-113 | DRIVE SUBASSEMBLY: consists of: 1 hub, 1 key, 1 ring, 1 ratchet, 1 pawi and 1 adjustable stop bar; over-all dim.: $13 / 8$ in. $1 \mathrm{~g}, 19 / 16$ in. dia excluding stop bar and pawl; one $3 / 8 \mathrm{in}$. dia, $9 / 10 \mathrm{in}$. Ig mtg hole; ratchet and pawl provide for unidirectional drive; Times Facsimile Corp, part/dwg No. 42-26-00-00. | Drive syachronizing mechanism. |
| :---: | :---: | :---: | :---: | :---: |
|  | 0465 | Std Navy: <br> N16-S-21226-1136 | SHAFT ASSEMBLY: type 303 stainless steel; $141 / 2 \mathrm{in} . \mathrm{lg}, 5 / 8 \mathrm{in}$. dia; ACME 29 deg LH , single thd, 10 thd per in.; Times Facsimile Corp, part/dwg No. 42-00-11- | Feeds carriage. |
|  | 0466 | x | Not used. |  |
|  | 0467 | Std Navy: <br> N16-C-125001-263 | CAM: brass; "D" shaped; dim.: $1 / 2$ in. dia, $3 / 16$ in. thick; $D$ hole in center, $3 / 16$ in. dia 0.156 in. from flat; Times Facsimile Corp, part/dwg No. 42-00-00-05. | To actuate lever operating S6. |
|  | 0468 | Std Navy: <br> N16-N-87874-1001 | NUT, HALF: nylon, grade FM10001; $5 / 8$ in. ACME 29 deg thd, LH, single thd, 10 thd per in.; $677 \mathrm{in} .1 \mathrm{~g}, 11 / 16$ in. h, . 244 in. thick overall; Times Facsimile Corp, part/dwg No. 42-00-00-07. | Engages in feed shaft. |
|  | 0469 | x | Not used. |  |
|  | 0470 | x | Not used. |  |
|  | 3471 | Std Navy: <br> N38-B-855-20 | BRUSH, BRISTLE: rectangular; $12 \mathrm{in} . \mathrm{lg}, 11 / 2 \mathrm{in} . \mathrm{wd}, 3 / 16$ in. thick over-all; hair bristles crimped onto supporting member; Fuller Brush Co No. 8M1453-3-L; Times Facsimile Corp, part/dwg No. 42-00-03-01. | Holds recording paper against drum. |
|  | 0472 | x | Not used. |  |
|  | 0473 | Std Navy: <br> N16-S-21226-1146 | SHAFT ASSEMBLY: stainless steel; $143 / 8$ in. over-all lgth; one cam; journal shaft ends; Times Facsimile Corp, part/dwg 42-oo-o2-ol. | Engages half nut. |
|  | 0474 | Std Navy: <br> N16-H-78399-1001 | HOLDER: aluminum; grey; holds brush by three leaf springs 5 in. apart in a row; has two slots 8 in. apart to allow two leaf springs on supporting surface to clamp holder; tray shaped; Times Facsimile Corp, part/dwg No. 42B-00-03-10. | Holds bristle brush and collects recording dust particles. |
|  | 0475 | Std Navy: N16-G-934761-103 | GUIDE, PAPER: aluminum; grey; rectangular; $135 / 8 \mathrm{in} . \mathrm{Ig}, 1 \mathrm{in} . \mathrm{wd}, 3 / 16 \mathrm{in}$. d; two 0.152 in . dia meg holes spaced $135 / 16$ in. C to C ; contour of cross section has $3 / 8 \mathrm{in}$. straight portion, $3 / 8$ in. portion bent 35 deg on one end from straight portion, and $3 / 16$ in. portion bent 6 deg in opposite direction on the other end of the straight portion; Times Facsimile Corp, part/ dwg No. 42B-00-00-09. | Guides recording paper into drum. |
| $\infty$ | 0476 | Std Navy: <br> N16-D-84032-6901 | DRUM, FACSIMILE: aluminum; $121 / 2 \mathrm{in} . \mathrm{lg}, 6 \mathrm{in}$. dia over-all; supplementary parts consist of 5 clamping fingers, 1 coupler subassy, 1 clamping finger operating yoke, 1 drum slide locating plate, one $3 / 8 \mathrm{in}$. dia mtg hole located at each end to accommodate a $3 / 8 \mathrm{in}$. dia shaft; dynamically balanced; Times Facsimile Corp, part/dwg No. 42-08-00-00. | Supports recording paper. |

[^4]| REF. DESIG. | STOCK NUMBER: SIGNAL CORPS, STANDARD NAVY, AIR FORCE | NAME AND DESCRIPTION | LOCATING FUNCTION |
| :---: | :---: | :---: | :---: |
| 0477 | x | PLATE, COVER: consists of one ea " $U$ " shaped aluminum plate, hinged door, and paper load actuator subassy and two ea captive thumb bolts and studs; $187 / 8$ in $\lg , 75 \% 4 \mathrm{in} . \mathrm{h}$, $13 / 6$ in. thick over-all excluding thumb bolts; four 0.180 in . dia mtg holes spaced $163 / 16$ in. <br>  RECORD, PAPER LOAD and LOCAL OPERATING PROCEDURE (with procedure); "U" shaped plate has two $4-40$ tapped holes $9 / 32 \mathrm{in}$. apart at center of cross piece and two 4-40 tapped holes $3 / 8 \mathrm{in}$. apart at the bottom edge of ea leg; Times Facsimile Corp, part/dwg No. 42C-00-04-00. | Front plate for recorder subassembly. |
| 0478 | Std Navy: N16-S-21065-3825 | SHAFT: brass; 0.0005 in. nickel plated finish; $3 / 16$ in. dia; $13 \% / 16$ in. over-all lgth; two journals ea $1 / 8$ in. dia, by $1 / 8 \mathrm{in}$. $\lg , 2-56$ NFT $3 / 8 \mathrm{in} . \lg$, on one end; Times Facsimile Corp, part/dwg No. 42-00-00-06. | Trolley rod. |
| 0481 | Std Navy: N17-L-250842-551 | LENS, INDICATING LIGHT: white, translucent, $1 / 2 \mathrm{in}$. dia, convex, glass lens, frosted back; $5 / 8 \mathrm{in} . \mathrm{lg}, 5 / 8$ in. dia over-all; mtd in chrome plated aluminum holder; thd type mtg; thd dim.: $9 / 18$ in. dia, No. 27 male thd, $3 / 16 \mathrm{in}$. Ig ; Dialco Inc. No. 81-115. | Lens for XE8 and XE9. |
| 0482 | Std Navy: <br> N42-R-2052-3960 | RING, RETAINER: ring shaped, steel; zinc plated; dim.: 0.450 in . OD, 0.250 in . ID, 0.010 in. thick; used to lock and position machine parts; has six equally spaced radial teeth on inside dia; general purpose; W'aldes Kohinoor type No. 5105-25-ST-17-ZF. | Mechanical retainer in motor B401. |
| 0483 | x | Same as 0482. | Mechanical retainer in B401. |
| 0484 | $\mathbf{x}$ | Same as 0482. | Mechanical retainer in B401. |
| 0485 | Std Navy: N42-R-2047-174 | RING, RETAINER: open ring-shaped; beryllium copper; zinc plated; dim.: 0.184 in. dia face OD, 0.112 in. dia face ID, 0.010 in. thick, 0.222 in. dia max OD spread; used to lock and position machine parts; has two 0.026 in . dia holes in lugs for spreading the retainer; general purpose; Waldes Kohinoor No. 5100-12-C-17-ZF. | Mechanical retainer in holder 0460. |
| 0486 | x | Same as 0485. | Mechanical retainer in holder 0460. |
| 0487 | x | SHAFT: stainless steel; cylindrical shape; annealed, cold drawn and centerless ground to size; $12^{29} / 32 \mathrm{in} . \mathrm{lg}, 3 / 8 \mathrm{in}$. dia overall; two mtg journals, one end .3147 in . dia, other end .3150 in . dia, ea $9 / 32 \mathrm{in}$. lg ; one end of shaft drilled and slotted and other end $1 / 8 \mathrm{in}$. spherical radius; has one keyway $1 / 16 \mathrm{in}$. wide; has 3 grooves for retainer rings; Times Facsimile Corp, part/dwg No. 42-00-09-01. | Supports drum 0476. |
| 0488 | x | CLIP, MECHANICAL: beryllium copper; ${ }^{27 / 32} \mathrm{in}$. $\mathrm{lg},{ }^{19} / 32 \mathrm{in}$. high, $1 / 2 \mathrm{in}$. wide overall; two mtg slotted holes, $9 / 32$ in. C to C; S-shaped hook for catching action; Times Facsimile Corp, part/dwg No. 42C-00-00-33. | Catches and holds door knob. |

$\mathbf{x}$
$\mathbf{x}$
$\mathbf{x}$
x

CHAIN：brass；nickel plated；ball shaped links； $1 / 8$ in．overall dia；approx 32 lbs breaking strength；approx 0.13 lbs ．per ft linear weight； 7 in ．lg；Charles Brand No． 6 （ $1 / \mathrm{s}$ in．dia ball）nickel plated beaded chain 7 in ． Ig ；Times Facsimile Corp，part／dwg No．42C－00－00－32．

SHIELD，DRUM：steel；semi－cylindrical shell with sides； $15 \mathrm{in}, \mathbf{l g}, 8 \% / 16$ in．wide excel knob， $247 / 64$ in．thick overall；mounted by means of two pivoted brackets；solder lug and chain holder attached to ea side；Times Facsimile Corp，pari／dwg No．42C－00－20－00．

HOLDER，CHAIN：brass；nickel plated；holds end of beaded ball chain by means of socket； mounted to supporting surface by means of eyelet；mounting eyelet offset with respect to socket；Charles Brand Co．type A offset socket and ring coupling for No． 6 beaded chain； Times Facsimile Corp，part／dwg No．42C－00－00－24．

Same as 0489.
Same as 0491.

CHAIN AND HOLDER ASSEMBLY：brass；nickel plated；consists of chain（ref desig 0489） and holder（ref desig 0491）； $81 / 4 \mathrm{in} . \lg$ overall；mounted to supporting surface by means of eyelet；Times Facsimile Corp，part／dwg No．42C－00－00－35．

Same as 0404，except consists of chain（ref desig 0492）and holder（ref desig 0493）．
RING，RETAINER：＂e＂shaped；carbon spring steel；oil dipped；dim．：． 437 in ．OD，． 025 in ． thick；for .218 in ．shaft；used to position machine parts；general purpose；Waldes Kohinoor No．X5133－21；TFC part／dwg．No．42－00－00－26．（on serial nos． 388 and up）．

RING，RETAINER：＂e＂shaped；carbon spring steel；oil dipped；dim．：． 437 in ．OD， .015 in ． thick；for .218 in ．shaft，used to position machine parts；general purpose；Waldes Kohinoor No．X5133－21，． 015 in．thick；TFC part／dwg．No．42－00－00－27．（on serial nos． 388 and up）．

Stop for drum shield 0490.

Radiation shield for drum 0476.

Holder for chain 0489.

Stop for drum shield 0490
Holder for chain 0492.
Stop for drum shield 0490 ．
*

Stop for drum shield 0490.
Spacer in U4．

Spacer in U4．


| Sig C: 3 RC20BF623J |
| :--- |
| Std Navy: |
| N16-R-50533-431 |
| $\quad \mathrm{x}$ |

RESISTOR, FIXED, COMPOSITION: 62,000 ohms plus or minus $5 \%, 1 / 2$ W; AB No. EB6235; JAN Type No. RC20BF623J; JAN Spee No. R-11A.

RESISTOR, FIXED, COMPOSITION: $1 / 2 \mathrm{~W}$; selected for meter to read " 100 " when set is under the following conditions: 117 VAC line, OFF-STANDBY etc., switch in SYNC position; DENSITY in TEST SIGNAL position (CIRCUIT TEST switch in any position). Listed for reference only.

RESISTOR, FIXED, COMPOSITION: 120,000 ohms plus or minus $5 \%, 1 / 2 \mathrm{~W}$; AB No. EB1245; JAN type No. RC20BF124J; JAN Spec No. R-11A.

RESISTOR, FIXED, COMPOSITION: $1 / 2 \mathrm{~W}$; selected as R2 except CIRCUIT TEST switch in VR75 position. Push PUSH TO TEST switch. Listed for reference only.

RESISTOR, FIXED, COMPOSITION: 130,000 ohms plus or minus $5 \%, 1 / 2 \mathrm{~W}$; AB No. EB1345; JAN Type No. RC20BF134J; JAN Spec No. R-11A.

RESISTOR, FIXED, COMPOSITION: $1 / 2 \mathrm{~W}$; selected as R2 except CIRCUIT TEST switch in 60 cyc position. Push PUSH TO TEST switch. Listed for reference only.

RESISTOR, FIXED, COMPOSITION: 56,000 ohms plus or minus $5 \%, 1 / 2 W$; AB No. EBS635; JAN Type No. RC20BF563J; JAN Spec No. R-11A.

RESISTOR, FIXED, COMPOSITION: $1 / 2 \mathrm{~W}$; selected as R2 except CIRCUIT TEST switch in OSC position. Push PUSH TO TEST switch. Listed for reference only.

RESISTOR, FIXED, COMPOSITION: 470,000 ohms plus or minus $5 \%, 1 / 2 \mathrm{~W}$; AB No. EB4745; JAN Type No. RC20BF474J; JAN Spec No. R-11A.

RESISTOR, FIXED, COMPOSITION: $1 / 2 \mathrm{~W}$; selected as R2 except OFF-STANDBY etc. switch in RUN position. RECORD button depressed. CIRCUIT TEST switch in PRINT position. Push PUSH TO TEST switch. Listed for reference only.

RESISTOR, FIXED, COMPOSITION: 27,000 ohms plus or minus $5 \%, 1 / 2 \mathrm{~W}$; AB No. EB2735; JAN Type No. RC20BF273J; JAN Spec No. R-11A.

Test meter multiplier resistor.

Std Navy:
N16-R-50398-0431

| $\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$ | STOCK NUMBER; SIGNAL CORPS, STANDARD NAVY, AIR FORCE | NAME AND DESCRIPTION | LOCATING FUNCTION |
| :---: | :---: | :---: | :---: |
| R12 | x | RESISTOR, FIXED, COMPOSITION: $1 / 2 \mathrm{~W}$; selected as R2 except CIRCUIT TEST switch in SYNC DRIVE position. Push PUSH TO TEST switch. Listed for reference only. | Test meter multiplier resistor. |
| R13 | Sig C: 3RC20BF564J Std Navy: N16-R-50857-0431 | RESISTOR, FIXED, COMPOSITION: 560,000 ohms plus or minus $5 \%, 1 / 2 \mathrm{~W}$; AB No. EB5645; JAN Type No. RC20BF564J; JAN Spec No. R-11A. | Test meter multiplier resistor. |
| R14 | x | RESISTOR, FIXED, COMPOSITION: $1 / 2$ W; selected as R2 except CIRCUIT TEST switch in HI B plus position. Push PUSH TO TEST. Listed for reference only. | Test meter multiplier resistor. |
| R15 | Sig C: 3RC20BF184J Std Navy: N16-R-50695-0431 | RESISTOR, FIXED, COMPOSITION: 180,000 ohms plus or minus $5 \%, 1 / 2 \mathrm{~W}$; AB No. EB1845; JAN Type No. RC20BF184J; JAN Spec No. R-11A. | Test meter multiplier resistor. |
| R16 | x | RESISTOR, FIXED, COMPOSITION: $1 / 2 \mathrm{~W}$; selected as R2 except CIRCUIT TEST switch in LO B plus position. Push PUSH TO TEST switch. Listed for reference only. | Test meter multiplier resistor. |
| R19 | Sig C: 3RC20BF113J <br> Std Navy: <br> N16-R-50299-0431 | RESISTOR, FIXED, COMPOSITION: 11,000 ohms plus or minus $5 \%, 1 / 2 \mathrm{~W}$; AB No. EB1135; JAN Type No. RC20BF113J; JAN Spec No. R-11A. | Test meter multiplier resistor. |
| R20 | x | RESISTOR, FIXED, COMPOSITION: $1 / 2$ W; selected as R2 except CIRCUIT TEST switch in SIG AMP OUT position. Push PUSH TO TEST switch. Listed for reference only. | Test meter multiplier resistor. |
| R21 | x | Same as R15. | Test meter multiplier resistor. |
| R22 | x | RESISTOR, FIXED, COMPOSITION: $1 / 2 \mathrm{~W}$; selected as R2 except CIRCUIT TEST switch in POWER position. Push PUSH TO TEST switch. Listed for reference only. | Test meter multiplier resistor. |
| R23 | Std Navy: <br> N16-R-65882-7901 | RESISTOR, FIXED, WIRE WOUND: 500 ohms plus or minus $5 \%$; 12 W ; WL JAN Type No. RW32G501; JAN Spec No. R-26A. | High B plus filter. |
| R24 | x | Same as R23. | Low B plus filter. |
| R25 | Std Navy: <br> N16-R-66048-6926 | RESISTOR, FIXED WIRE WOUND: 1,200 ohms plus or minus $5 \%$, 12 W; WL JAN Type No. RW32G122; JAN Spec No. R-26A. | Low B plus filter. |
| R27 | Std Navy: <br> N16-R-65430-8796 | RESISTOR, FIXED, WIRE WOUND: 25 ohms plus or minus 5\%, 12 W; WL JAN Type No. RW32G250; JAN Spec No. R-26A. | Charging current limiter high B plus. |
| R28 | Sig C: 3RC40BF154K Std Navy: N16-R-50679-0551 | RESISTOR, FIXED, COMPOSITION: 150,000 ohms plus or minus $10 \%, 2 \mathrm{~W}$; AB Type No. HB1541; JAN Type No. RC40BF154K; JAN Spec No. R-11A. | High B plus bleeder. |



TABLE 8-4. TABLE OF REPLACEABLE PARTS-Cont.

| $\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$ | STOCK NUMBER: SIGNAL CORPS, STANDARD NAVY, AIR FORCE | NAME AND DESCRIPTION | LOCATING FUNCTION |
| :---: | :---: | :---: | :---: |
| R41 | Std Navy: <br> N16-R-91031-2985 | RESISTOR, VARIABLE: wire wound element; one sect 5000 ohms plus or minus $10 \%, 3 \mathrm{~W}$ nominal power rating; taper data: std A taper, MBCA Ref dwg group 3; three solder lug term.; enclosed bakelite body, $1^{21 / 32}$ in. dia by $25 / 32$ in. $d ; 1 / 4$ in. dia by $1 / 8$ in. $\lg$ normal torque shaft, contact arm insulated from case, no OFF position; mtg data: bushing mtd, $3 / 8$ in. dia, 32 thd per in., $3 / 8$ in. lg ; nonturning device on $17 / 32 \mathrm{in}$. radius at 9 o'clock; general purpose; Clarostat No. 58-5,000; Times Facsimile Corp, part/dwg No. 41C-20-03-01. | Sync ma control. |
| R42 | Sig C: 3RC20BF104K Std Navy: N16-R-50633-0811 | RESISTOR, FIXED, COMPOSITION: 100,000 ohms plus or minus $10 \%, 1 / 2 \mathrm{~W}$; AB Type No. EB1041; JAN Type No. RC20BF104K; JAN Spec No. R-11A. | Grid resistor V1A. |
| R43 | Std Navy: <br> N16-R-49769-0811 | RESISTOR, FIXED, COMPOSITION: 470 ohms plus or minus $10 \%, 1 / 2 \mathbb{W}$; JAN Type No. RC20BF471K; JAN Spec No. R-11A. | Cathode resistor V1B. |
| R44 | x | Same as R30. | Voltage dropping resistor for E403. |
| R45 | Sig C: 3RC20BF473K Std Navy: <br> N16-R-50480-0811 | RESISTOR, FIXED, COMPOSITION: 47,000 ohms plus or minus $10 \%, 1 / 2$ W; AB Type No. EB4731; JAN Type No. RC20BF473K; JAN Spec No. R-11A. | Part of voltage divider on output of limiter V302. |
| R46 | x | Same as R45. | Grid resistor V4. |
| R47 | Sig C: 3RC20BF274K Std Navy: <br> N16-R-50741-0811 | RESISTOR, FIXED, COMPOSITION: 270,000 ohms plus or minus $10 \%, 1 / 2 \mathrm{~W}$; AB Type No. Eb2741; JAN Type No. RC20BF274K; JAN Spec No. R-11A. | Current limiter for E1. |
| R48 | x | Same as R47. | Current limiter for E2. |
| R49 | x | Same as R47. | Current limiter for E3. |
| R50 | x | Same as R47. | Current limiter for E4. |
| R51 | x | Same as R15. | Part of voltage divider across V6. |
| R52 | x | Same as R47. | Part of voltage divider across V6. |
| R53 | x | Same as R15. | Part of voltage divider across V 7 . |
| R54 | x | Same as R47. | Part of voltage divider across V7. |
| R55 | Sig C: 3RC20BF682J Std Navy: N16-R-50200-0431 | RESISTOR, FIXED, COMPOSITION: 6,800 ohms plus or minus $5 \%, 1 / 2$ W; JAN Type No. RC20BF682J; JAN Spec No. R-11A. | Test meter multiplier resistor. |



| $\begin{aligned} & \text { REF. } \\ & \text { DESIG. } \end{aligned}$ | STOCK NUMBER: SIGNAL CORPS, STANDARD NAVY, AIR FORCE | NAME AND DESCRIPTION | LOCATING FUNCTION |
| :---: | :---: | :---: | :---: |
| R210 | $\times$ | Same as R45. | V201B feedback resistor. |
| R211 | Sig C: 3RC20BF153K Std Navy: N16-R-50336-0811 | RESISTOR, FIXED, COMPOSITION: 15,000 ohms plus or minus $10 \%, 1 / 2 \mathrm{~W}$; AB Type No. EB1531; JAN Type No. RC20BF153K; JAN Spec No. R-11A. | Part bias voltage divider for V202A. |
| R212 | x | Same as R36. | Part voltage divider on V202A grid. |
| R213 | Sig C: 3RC20BF185K Std Navy: N16-R-51038-0811 | RESISTOR, FIXED, COMPOSITION: 1.8 meg plus or minus $10 \%, 1 / 2 \mathrm{~W}$; AB Type No. ED1851; JAN Type No. RC20BF185K; JAN Spec No. R-11A. | Part of voltage divider of V202A. |
| R214 | x | Same as R47. | Part of voltage divider on output of V201B. |
| R215 | Sig C: 3RC20BF394K Std Navy: N16-R-50786-0811 | RESISTOR, FIXED, COMPOSITION: 390,000 ohms plus or minus $10 \%, 1 / 2 \mathrm{~W}$; AB Type No. EB3941; JAN Type No. RC20BF394K; JAN Spec No. R-11A. | Part of voltage divider on grid of V202A. |
| R216 | Sig C: 3RC20BF472K Std Navy: N16-R-50129-0811 | RESISTOR, FIXED, COMPOSITION: 4700 ohms plus or minus $10 \%, 1 / 2$ W; AB Type No. EB4721; JAN Type No. RC20BF472K; JAN Spec No. R-11A. | Grid leak resistor on V202B. |
| R217 | x | Same as R42. | Grid leak bias resistor for V202B. |
| R218 | x | Same as R31. | Grid current limiter for V202B. |
| R219 | x | Same as R47. | Current limiter for E201. |
| R220 | x | Same as R47. | Current limiter for E202. |
| R221 | x | Same as R47. | Current limiter for E203. |
| R222 | Std Navy: <br> N16-R-90835-6027 | RESISTOR, VARIABLE: wire wound; rotating brush type; resistance and tolerance data: one sect, 2000 ohms plus or minus $10 \%$ tolerance; 2 W nominal; std A taper MBCA Ref Dwg Group 3; three solder lug term.; case data: enclosed molded bakelite case, $11 / 8 \mathrm{in}$. dia, $9 / 16$ in. $d ; 1 / 4 \mathrm{in}$. dia round metal shaft $7 / 8 \mathrm{in}$. $\lg$ from mtg surface, normal torque; ins contact arm, no OFF position; mtg data: one $3 / 8 \mathrm{in}$. dia, 32 threads per in. bushing, $3 / 8 \mathrm{in}$. lg ; nonturning device located on $9 / 16$ in. radius at $9 o^{\circ}$ clock; $1 / 16 \mathrm{in}$. by $3 / 64 \mathrm{in}$. wd slot on shaft end; Clarostat Mfg Co Type No. $43-2000$ with $1 / 4 \mathrm{in}$. dia shaft $1 / 2 \mathrm{in} . \lg$ projecting beyond mtg bushing with std screw driver slot; general purpose; Times Facsimile Corp, part/dwg No. 41B-14-01-06. | Bias control V202A. |

$\mathbf{x}$
x
$\mathbf{x}$
$\mathbf{x}$
$\mathbf{x}$
$\mathbf{x}$
$\mathbf{x}$
$\mathbf{x}$
$\mathbf{x}$
$\mathbf{x}$
$\mathbf{x}$
Std Navy: N16-R-91373-3010
$\mathbf{x}$
$\mathbf{x}$


Same as R104.
Same as R42.

Same as R42.
Same as R47.
Same as R42.
Same as R45. *
Same as R47.
Same as R42.
Same as R45.
Same as R42.
Same as R104.
RESISTOR, VARIABLE: wire wound element; one sect, 20,000 ohms plus or minus $10 \%$; 3 W nominal power rating; taper data: std A taper, MBCA Ref Dwg Group 3; three solder lug term.; enclosed bakelite body, $121 / 32$ in. dia by $25 / 32$ in. $d$; shaft data: round metal shaft, $1 / 4 \mathrm{in}$. dia, $7 / 8 \mathrm{in}$. Ig from mtg surface, normal torque; contact arm ins from case, no OFF position; mtg data: bushing mtd, $3 / 8$ in $\lg$; nonturning device on $17 / 32$ in. radius at 9 o'clock; general purpose; Clarostat No. 58-20,000; Times Facsimile Corp, part/dwg No. 41-05-01-31.

Same as R47.

Same as R47.

RESISTOR, FIXED, COMPOSITION: 2200 ohms plus or minus $10 \%, 2 \mathrm{~W}$; AB No. HB2221; JAN Type No. RC40BF222K; JAN Spec No. R-11-A.

SWITCH, ROTARY: three sections; five positions max, adj stop incl; non "Pile-Up"; two poles, ten stator contacts per sect; two sect shorting type, one sect nonshorting type contacts; steatite sect; approx over-all dim.: $23 / 8$ in. by $21 / 8$ in. by $13 / 4$ in.; one matg bushing $3 / 8-32$ thd per in., $3 / 8$ in. $1 g$; round shaft $7 / 8$ in. $\lg$ by $1 / 4$ in. dia; solder lug term.; general purpose; Times Facsimile Corp, part/dwg No. 41-40-01-00.

SWITCH, PUSH: two rotary positions; position one, two form A contacts; position two, one form A contact and one form A contact continuously closed; approx over-all dim.: $21 / 8 \mathrm{in}$. by $13 / 4$ in. by $3 / 4 \mathrm{in}$; plunger with knob $11 / 2 \mathrm{in}$. Ig. over-all; four solder lug term. $; 3 / 8 \mathrm{in}$. dia 32 thd mtg bushing, $3 / 8 \mathrm{in}$. 1 g from mtg surface; Times Facsimile Corp, part/dwg No. 41-40-03-00.

Cathode resistor V302.
Grid resistor V302.
Plate load V302.
Screen resistor V302.
Plate load V301A.
Plate load V301B.
Isolation output V302.
Part of voltage divider for V301B grid.
Part of voltage divider V301B grid.
Grid current limiter for V301.
Cathode bias, V301.

Frequency vernier control.

Current limiter E301.
Current limiter for E302.

Filter resistor in V4.

OFF-STANDBY-START-SYNC-RUN switch.

PHASE switch.

| $\begin{aligned} & \text { REF. } \\ & \text { DESIG. } \end{aligned}$ | STOCK NUMBER: SIGNAL CORPS, STANDARD NAVY, AIR FORCE | NAME AND DESCRIPTION | LOCATING FUNCTION |
| :---: | :---: | :---: | :---: |
| S3 | Std Navy: N17-S-58883-1901 | SWITCH, PUSH: SPDT; momentary; approx over-all dim.: 2 in. by $15 \%$ in. by $7 / 8$ in.; plunger with bakelite knob, $11 / 8 \mathrm{in}$. lg over-all; four solder lug term. at rear; one mtg bushing $3 / 8-32$ thd, $3 / 8 \mathrm{in}$. $\lg$ from mtg surface; general purpose; Mallory Type No. 2003; Times Facsimile Corp, part/dwg No. 41-42-00-02. | PRESS TO TEST switch. |
| S4 | Std Navy: N17-S-60618-4463 | SWITCH, ROTARY: one sect; 12 positions max; single pole; metal body; approx over-all dim.: $13 / 4 \mathrm{in}$. $\lg$ by $11 / 4 \mathrm{in}$. dia; one $3 / 8-32$ thd per in. mtg bushing $3 / 8 \mathrm{in}$. Ig from mtg surface; round shaft, $1 \mathrm{in} . \lg$ by $1 / 4 \mathrm{in}$. dia; solder lug term.; nonshorting; general purpose; Times Facsimile Corp, part/dwg No. 41-42-00-01. | CIRCUIT TEST switch. |
| S6 | Std Navy: N17-S-68755-3224 | SWITCH, SENSITIVE: 1A1B contact arrangement, one unit, two circuits, one normally open, one normally closed; AC and DC, $10 \mathrm{amp} ; 230 \mathrm{v} ; 8 \mathrm{oz}$ oper pressure, 0.59 in . max pre-travel, 0.020 in max differential travel, 0.010 in . min overtravel; phenolic body; $11 / 4 \mathrm{in} . \lg 1 / 2 \mathrm{in} . \mathrm{wd}$, $1 / 2 \mathrm{in}$. h over-all excluding term. and actuator; phenolic resin button external actuator, $19 \% 4 \mathrm{in}$. Ig ; four solder lug term., two at ea end; two $3 / 32$ in. dia mtg holes spaced $19 / 32$ in. C to C; silver contact tips; GE type CR1070-C103C3; Times Facsimile Corp, part/dwg No. 42-17-00-01. | RECORD switch. |
| S7 | x | Same as S6. | Carriage release switch. |
| S8 | $\mathbf{x}$ | Same as S6. | Signal transfer switch. |
| Ti | Std Navy: <br> N17-T-61540-6915 | TRANSFORMER, AUDIO FREQUENCY: line type; 250 ohms impedance split primary, 12,500 ohms impedance secondary; HS steel case; silicon-steel core lamination; over-all dim.; excluding mtg studs and term. $15 / 8 \mathrm{in} . \lg , 17 / 16 \mathrm{in} . \mathrm{wd}, 21 / 8 \mathrm{in} . \mathrm{h} ;$ max oper power level 20 db ; turns ratio 10:1 secondary to half primary; seven solder lug term. all located on same end as mtg studs; two No. $6-32 \mathrm{mtg}$ studs, $15 / 32 \mathrm{in} . \mathrm{lg}$, spaced $15 / 32 \mathrm{in}$. between centers; varnish impr and filled with Mitchell Rand battery seal; incl static shield; Times Facsimile Corp, part/dwg No. 41B-11-06-00. | Input transformer. |
| T2 | Std Navy: <br> N17-T-64545-1416 | TRANSFORMER, AUDIO FREQUENCY: plate coupling type; 5000 ohms impedance primary, 16,000 ohms impedance secondary; HS steel case; silicon-steel laminated core; over-all dim., excluding mtg studs and term.: $27 / 16 \mathrm{in}$. $\lg$ by $2 \mathrm{in} . \mathrm{wd}$ by $33 / 8 \mathrm{in}$. h ; max oper power level 10 W ; four solder lug term. all located on same side as mtg studs; four no. 8-32 mtg studs $1 / 2 \mathrm{in}$. Ig spaced on $21 / 32$ in. by $1 \%$ in. mtg centers; varnish impr and filled with Mitchell Rand battery seal; Times Facsimile Corp, part/dwg No. 41B-11-02-00. | Stylus output. |
| T3 | Std Navy: <br> N17-T-64538-6426 | TRANSFORMER, AUDIO FREQUENCY: plate coupling type; 5000 ohms impedance primary, 900 ohms impedance secondary; HS steel case; silicon-steel core; over-all dim. excluding mtg studs and term.: $15 / 8 \mathrm{in} . \mathrm{lg}, 13 / 8 \mathrm{in} . \mathrm{wd}, 17 / 8 \mathrm{in} . \mathrm{h}$; four solder lug term. all located on same side as mtg studs, $7 / 6 \mathrm{in}$. $\lg$ spaced $11 \% / 2 \mathrm{in}$. C to C ; varnish impr and filled with Mitchell Rand battery seal; Times Facsimile Corp, part/dwg No. 41B-11-01-00. | V4 driver. |

T4

T101

Std Navy: N17-T-64540-3647

TRANSFORMER, AUDIO FREQUENCY: plate coupling type; 5000 ohms impedance primary, 500 ohms impedance secondary; HS steel case; silicon-steel core; over-all dim. excluding mig studs and term.: $15 / 8 \mathrm{in} . \lg , 17 / 16 \mathrm{in}$. wd, $21 / 8 \mathrm{in} . \mathrm{h}$; four solder lug term. all located on same side as mtg studs, $15 / 32 \mathrm{in}$. lg , spaced $15 / 32 \mathrm{in}$. C to C ; varnish impr filled with Mitchell Rand battery seal; Times Facsimile Corp, part/dwg No. 41B-11-03-00.

TRANSFORMER, AUDIO FREQUENCY: plate coupling type; 5000 ohms impedance primary, 6800 ohms impedance secondary; HS case; silicon-steel core; over-all dim. excluding mtg studs and term. $15 / 8 \mathrm{in}$. $\mathrm{Ig}, 17 / 16 \mathrm{in}$. wd, $21 / 8 \mathrm{in} . \mathrm{h} ;$ six solder lug term. all on same side as mtg studs; two No. $6-32 \mathrm{mtg}$ studs $15 / 32 \mathrm{in}$. Ig, spaced $15 / 32$ in. C to C ; varnish impr and filled with Mitchell Rand battery seal; Times Facsimile Corp, part/dwg No. 41B-11-00-00.
TERMINAL BOARD: consists of paper base bakelite board and 41 solder lug term.; $61 / 8$ in. $\mathrm{lg}, 17 / 8 \mathrm{in}$ : $\mathrm{wd}, 3 / 8 \mathrm{in}$. thick over-all; two 0.128 in . dia mtg holes spaced $57 / 8 \mathrm{in}$. C to C ; wp; labeled R1 through R22 and C1 through C4; Times Facsimile Corp, part/dwg No. 41-42-01-00.

TERMINAL BOARD: consists of 1 paper base bakelite board and 2 solder lug term.; $13 / 4$ in. $\lg , 13 / 4 \mathrm{in}$. wd, $5 / 8$ in. thick over-all; two $5 / 16$ in. dia mtg holes spaced 1 in. C to C ; wp; labeled CR5, CR6, CR7, CR8; Times Facsimile Corp, part/dwg No. 41-00-51-00.

TERMINAL BOARD: molded bakelite; incl five double screw type term.; barrier type; over-all dim.: $325 / 32$ in. $\lg ,{ }^{15} / 16 \mathrm{in}$. wd, $5 / 8 \mathrm{in}$. h; four 0.209 in . dia mig holes on $33 / 8$ in. by $1 / 2$ in. centers; term. and screws are nickel-plated brass; Jones HB catalog No. 5-142; general purpose; Times Facsimile Corp, part/dwg No. 40-00-00-02.

TERMINAL BOARD: consists of 1 paper base bakelite board and 24 solder lug term. $35 / 32$ in. $\mathrm{lg}, 21 / 2$ in. wd, $3 / 8$ in. thick over-all; two 0.128 dia mtg holes spaced $227 / 32 \mathrm{in}$. C to C ; wp; labeled R101 through R109, C101, C102 and C104; Times Facsimile Corp, part/dwg No. 41-13-02-10.

TERMINAL BOARD: consists of 1 paper base bakelite board and 50 solder lug term.; $41 / 8$ in. $\mathrm{Ig}, 3 \mathrm{in}$. wd, $3 / 8 \mathrm{in}$. thick over-all two 0.128 in . dia mtg holes spaced $313 / 1 \mathrm{in}$ in. C to C ; wp ; labeled R201 through R218, C201 through C205, and CR201; Times Facsimile Corp, part/dwg No. 41-14-02-10.

TERMINAL BOARD: consists of 1 paper base bakelite board, 30 solder lug term. and 2 No. $6-32$ clinch nuts; $51 / 8$ in. $\operatorname{Ig}, 31 / 2$ in. wd, $9 / 16$ in. thick over-all; two 0.128 dia mtg holes spaced $413 / 16$ in. C to C; wp; labeled R301 through R311 and C301 through C305; Times Facsimile Corp, part/dwg No. 41-05-02-10.
OSCILLATOR, AF: consists of one removable box cover (incl two electron tube sockets XV301 and XV302, one variable resistor R312 and one resistor-capacitor assy board), one box (incl one tuning fork 1301 and one male electrical connector insert P 3 ) and two electron tubes V301 and V 302 ; over-all dim.: $71 / 2 \mathrm{in} . \lg , 21 / \mathrm{in}$. wd, $73 / 4 \mathrm{in}$. h ; plug-in type of chassis mtd by means of two Camloc Fastener Corp catalog No. 2600-7 fasteners spaced approx 7 in . C to C and positioned by means of four $1 / 2 \mathrm{in} . \lg 1 / 4 \mathrm{in}$. dia locating pins; labeled FORK AMP; glow lamp indicators for open electron tube fil; Times Facsimile Corp, part/ dwg No. 41-B-05-00-00.

V2, V3 driver.


Vi02 input.

Mounts resistors and capacitors in U5.

Mounts CR5, CR6, CR7 and CR8.

Terminal board mounting plate A1.

Mounts resistor and capacitor in U2.

Mounts resistor and capacitors in U3.

Mounts resistors and capacitors in U1.

Generates 1800 cps signal high stability.

* Not furnished as a maintenance part. If failure occurs, do not request replacement unless the item cannot be repaired or fabricated.

Sig C: 2J6SN7
Std Navy: N16-T-56682
Sig C: 2 J 1635
Std Navy: N16-T-71350
x
x

Sig C: 2J0A3
Std Navy: N16-T-53030
Std Navy:
N16-R-85006-1525

Std Navy:
N16-R-85003-2396
x
Sig C: 2J6SL7GT Std Navy: N16-T-56677
x
x
x
Sig C: 2J2D21
Std Navy:
N16-T-52421
dielectric capacitors $\mathrm{C} 9, \mathrm{C10}$ and C 13 , three fixed mica dielectric capacitors, $\mathrm{C11}, \mathrm{C} 12$ and C14, four wire wound fixed power resistors R23 through R25 and R27, one electrical noise suppressor Z 2 , one male receptacle connector J 7 and one bottom cover; over-all dim.: 187/8 in. $\mathrm{Ig}, 15 \mathrm{in}$. wide, $113 / 8 \mathrm{in}$. high; mtg data: two angle bkt guides A 3 , one on ea side, for sliding into cabinet A2, two front panel captive screws H 8 and H 9 ; meter set circuit for operational and functional checks; glow lamp fil indicators for open electron tube fil; Times Facsimile Corp, part/dwg No. 41C-20-00-00.

ELECTRON TUBE: twin triode; receiving tube; general purpose; Sylvania Prod; JAN Type No. 6SN7.

ELECTRON TUBE: twin triode; class B amplifier; general purpose; RCA; JAN Type No. 1635.

Same as V2.
Same as V2.
ELECTRON TUBE: Gaseous diode; voltage regulator, glow discharge type; general purpose; RCA: JAN Type No. 0A3.

RESISTOR, THERMAL: 100 ohms nominal resistance at $25 \mathrm{v}, 20 \mathrm{deg} \mathrm{C}$ ambient temp; 0.25 to 0.27 amp nom oper current, 9.1 W ; 50 v max oper voltage, 25 to 50 v working range; AC or DC; ballast tube type, RMA No. ST-14 bulb, $41 / 16$ in. over-all $\operatorname{lgth}$ of bulb and base excluding pins; 7-pin octal base; general purpose; Amperite No. 2 H 20 .

RESISTOR, THERMAL: 43.1 ohms nominal resistance at $25 \mathrm{v}, 20 \mathrm{deg} \mathrm{C}$ ambient temp; 0.58 to 0.66 amp nom oper current, $24 \mathrm{~W} ; 55 \mathrm{v}$ max oper voltage, 25 to 55 v working range; AC or DC; ballast tube type, RMA ST16 bulb, $43 / 4 \mathrm{in}$. over-all lgth of bulb and base excluding pins; 4-prong base for socket mtg ; has starting resistor; general purpose; Amperite No. 6-36.

Same as Vi.
ELECTRON TUBE: twin triode; high-mu; receiving tube; general purpose; Sylvania Prod; JAN Type No. 6SL7GT.

Same as V101.
Same as V1.
Same as V102.
ELECTRON TUBE: gas tetrode; thyratron; general purpose; RCA; JAN Type No. 2D21.

Motor driver and meter amplifier.

Motor power amplifier.

Motor power amplifier.
Print power amplifier.
Voltage regulator.

Motor current regulation.

Fil current regulator.

Amplifier/cathode follower.
Amplifier.

Detector rectifier.
15 kc oscillator/print driver.
Phasing amplifier/remodulator.
Phase pulse amplifier.

Amplifier.

TABLE 8-4. TABLE OF REPLACEABLE PARTS-Cont.


|  | XV7 | Std Navy: <br> N16-S-60852-2111 | SOCKET, ELECTRON TUBE: 4 phosphor-bronze cadmium plated contacts; round, low-loss, mica-filled, bakelite body; over-all dim. excluding term.: $17 / 8 \mathrm{in} . \lg$ by $1 \% / 3$ in. wd by $7 / 16$ in. h ; mtg data: molded-in plate, mtg dim.: $11 / 8$ in. dia chassis hole required, two $5 / 32$ in. dia mtg holes spaced $11 / 2$ in. C to C; general purpose: Amphenol No. 77M1P-4TM; Times Facsimile Corp, part/dwg No. 90-15-20-00. | Power cord. |
| :---: | :---: | :---: | :---: | :---: |
|  | XV101 <br> through <br> XV103 <br> incl | x | Same as XC5. | Sockets for V101, V102, V103. |
|  | $\begin{aligned} & \text { XV201, } \\ & \text { XV202 } \end{aligned}$ | $x$ | Same as XC5. | Sockets for V201, V202. |
|  | XV203 | Std Navy: <br> N16-S-62603-6676 | SOCKET, ELECTRON TUBE: 7 contacts, beryllium copper, silver plated; miniature; metal shock shield incl; center shield incl; Eby catalog No. 7676; Times Facsimile Corp, part/dwg No. 34-00-43-00. | Socket for V203. |
|  | $\begin{aligned} & \text { XV301, } \\ & \text { XV302 } \end{aligned}$ | x | Same as XC5. | Sockets for V301, V302. |
|  | Z1 | Std Navy: <br> N16-F-44027-4616 | FILTER, LOW PASS: cut-off frequency 900 cps ; impedance: 25,000 ohms input, 25,000 ohms output; over-all dim. $211 / 16$ in. by $11 / 2$ in. by $15 / 16$ in.; rectangular metal case; two No. 6.32 mtg studs $15 / 32$ in. apart; three solder lug term.; HS; general purpose; Times Facsimile Corp, part/dwg No. 41B-11-07-00. | Carriet elimination. |
|  | Z2 | Std Navy: N17-S-50967-6969 | SUPPRESSOR, ELECTRICAL NOISE: 2 inductances, 8 uh to 1 mh ea; 2 capacitors, 2 mf , 200 vdc working ea; 2 capacitors 1 mf , 200 v dc working ea; 3 amp dc or ac current rating; metal; $31 / 4 \mathrm{in} .1 \mathrm{~g}, 21 / 32 \mathrm{in}$. w, 1 in . high; screw mounted, 2 mtg ears ea w/one $3 / 16 \mathrm{in}$. dia mtg hole $23 / 8 \mathrm{in}$. apart; 4 solder lug terminals; shock \& vibration proof; Hopkins Engineering Co. part no. HE-1-3115; TFC part/dwg no. 41C-00-00-85. | Conducted noise suppressor. |
|  | Z-201 | Std Navy: <br> N16-N-48901-1029 | NETWORK, PHASE SHIFTING: used in Colpitts oscillator; causes 180 deg phase shift at $14-18 \mathrm{kc}$; three solder lug term.: over-all dim. $21 / 2$ in. by $121 / 32$ in. by 1 in ; two $5 / 32$ in. dia mtg holes spaced $21 / 8$ in. C to C; HS metal case; Times Facsimile Corp, part/dwg No 418-11-04-00B. | 15 kc oscillator tank. |

* Not furnished as a maintenance part. If failure occurs, do not request replacement unless the item cannot be repaired or fabricated.
table 8-5. maintenance parts kit

| REF. DESIG. | ITEM | Quantity PER SET | REF. desig. | ITEM | QUANTITY PER SET |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C 5 | CAPACITOR, FIXED, ELECTROLYTIC | 1 | O 426 | SPRING | 2 |
| C 8 | CAPACITOR, FIXED, ELECTROLYTIC | 1 | O 437 | GEAR, WORM | 1 |
|  |  |  | O 438 | RETAINER, MECHANICAL | 6 |
| CR 1 | RECTIFIER, METALLIC | 2 | O 441 | RETAINER, MECHANICAL | 2 |
|  |  |  | O 442 | RETAINER, MECHANICAL | 10 |
| E 403 | ELECTROMAGNETIC ACTUATOR | 1 | O 447 | RETAINER, MECHANICAL | 22 |
| E 404 | WINDING, MOTOR FIELD | 3 | O 458 | RETAINER, MECHANICAL | 2 |
| E 405 | WINDING, MOTOR FIELD | 3 | O 460 | HOLDER, STYLUS | 1 |
| E 406 | ELECTROMAGNETIC ACTUATOR | 1 | O 462 | GUIDE, PAPER | 1 |
|  |  |  | 0463 | COUPLING SECTION | 1 |
| H 401 | PIN | 1 | O 464 | DRIVE SUBASSEMBLY | 1 |
| H 412 | SCREW, DOWEL | 1 | O 468 | NUT, HALF | 1 |
| J 1 | INSERT, ELECTRICAL CONNECTOR | 1 | P 1 | INSERT, ELECTRICAL CONNECTOR | 2 |
| K 1 | RELAY, ARMATURE | 1 | R 38 | RESISTOR, VARIABLE | 1 |
| K 2 | RELAY, ARMATURE | 1 | R 312 | RESISTOR, VARIABLE | 1 |
| L 201 | REACTOR, AUDIO | 1 | S 1 | SWITCH, ROTARY | 1 |
|  |  |  | S 2 | SWITCH, PUSH | 1 |
| O 402 | BEARING, BALL | 1 | S 4 | SWITCH, ROTARY | 1 |
| O 404 | BEARING, BALL | 1 |  |  |  |
| O409 | BEARING, BALL | 1 | T 2 | TRANSFORMER, AF | 1 |
| O 412 | BEARING, BALL | 1 | T 3 | TRANSFORMER, AF | 1 |
| O 415 | BEARING, BALL | 1 | T 4 | TRANSFORMER, AF | 1 |
| O 417 | SPRING | 2 | T 101 | TRANSFORMER, AF | 1 |
| O 419 | SPRING | 2 |  |  |  |
| O 420 | SPRING | 1 | V 6 | RESISTOR, THERMAL | 1 |
| O 421 | SPRING | 2 | V7 | RESISTOR, THERMAL | 1 |
| O 422 | SPRING | 2 |  |  |  |
| O 423 | SPRING | 2 | Z 1 | Filter, LOW PASS | 1 |
| 0424 | SPRING | 2 | Z 201 | NETWORK, PHASE SHIFTING | 1 |
| O 425 | SPRING | 2 |  |  |  |

TABLE 8-6. CROSS REFERENCE PARTS LIST

| JAN (OR AWS) DESIGNATION | $\begin{gathered} \text { KEY } \\ \text { SYMBOL } \end{gathered}$ | JAN (OR AWS) dESIGNATION | $\begin{gathered} \text { KEY } \\ \text { SYMBOL } \end{gathered}$ | NaVY <br> TYPE | $\begin{gathered} \text { KEY } \\ \text { SYMBOL } \end{gathered}$ | SIGNAL CORP. STOCK NUMBER | $\begin{gathered} \text { KEY } \\ \text { SYMBOL } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CM20A511J | C 104 | RC20BF474K | R 36 | 63360-102 | R39 | 3RC20BF101K | R105 |
| CM35B222K | C 4 | RC20BF563J | R 7 | 63360-103 | R30 | 3RC20BF102K | R39 |
| CM45A102K | C 14 | RC20BF564J | R 13 | 63360-104 | R42 | 3RC20BF 103K | R30 |
| CM50A512J | C 11 | RC20BF623J | R 1 | 63360-105 | R35 | 3RC20BF104K | R42 |
| CMS0A. ${ }^{\text {J }}$ |  | RC20BF682J | R 55 | 63355-113 | R19 | 3RC20BF105K | R35 |
| CN35A103K | C 1 | RC30BF101J | R 34 | 63355-124 | R3 | 3RC20BF113J | R19 |
| CN3SA103K |  | RC30BF472K | R 32 | 63355-134 | R5 | 3RC20RF124J | R3 |
| CP25A1EF 104 M | C 305 | RC30BF473K | R 40 | 63360-153 | R211 | 3RC20BF134J | R5 |
| CP25A1EF503M | C 13 | RC40BF103K | R 30 | 63355-184 | R15 | 3 CC 20 BF 153 K | R211 |
| CP53B1EF205V | C 10 | RC40BF154K | R 28 | 63360-185 | R213 | 3RC20BF183J | R15 |
| CP53B1EF504V | C 207 | RC40BF222K | R 401 | 63360-222 | R103 | 3RC20BF185K | R213 |
|  |  | RC40BF683K | R 203 | 63360-223 | R33 | 3RC20BF222K | R104 |
| RC20BF101K | R 105 |  |  | 63355-273 | R11 | 3RC20BF223K | R33 |
| RC20BF102K | R 39 | RW32G122 | R 25 | 63360-274 | R101 | 3RC20BF273J | R11 |
| RC20BF103K | R 31 | RW32G250 | R 27 | 63360-394 | R215 | 3RC20BF274K | R47 |
| RC20BF104K | R 42 | RW32G501 | R 23 | 63360-470 | R105 | 3RC20BF394K | R215 |
| RC20BF105K | R 35 |  |  | 63360-472 | R216 | 3RC20BF470K | R103 |
| RC20BF113J | R 19 | TSB8T102 | XC 5 | 63360-473 | R45 | 3RC20BF471K |  |
| RC20BF124J | R 3 |  |  | 63355-474 | R9 | 3RC20BF472K | R216 |
| RC20BF134J | R 5 | 1635 | V 2 | 63360-474 | R36 | 3RC20BF473K |  |
| RC20BF153K | R 211 | 2D21 | V 203 | 63355-563 | R7 | 3RC20BF474J | R9 |
| RC20BF184J | R 15 | 6AG7 | V 302 | 63355-564 | R13 | 3RC20BF474K | R36 |
| RC20BF185K | R 213 | 6SL7GT | V 102 | 63355-623 | R1 | 3RC20BF563J | R7 |
| RC20BF222K | R 104 | 6SN7 | V 1 | 63291-101 | R34 | 3RC20BF564J | R13 |
| KC20BF223K | R 33 | 0A3 | V 5 | 63288-472 | R32 | 3RC20BF623J | R1 |
| RC20BF273J | R 11 |  |  | 63288-473 | R40 | 3RC20BF682J |  |
| RC20BF274K | $\begin{array}{ll}\text { R } 47 \\ \text { R } & 215\end{array}$ | ARMY-NAVY TYPE | KEY SYMBOL | $63474-103$ $63474-154$ | R30 | 3RC30BF101J 3RC30BF472K | R34 |
| RC20BF394K | R 215 |  | SYMBOL | 63474-154 $43474-222$ | R28 R401 | 3RC30日F472K | R40 |
| RC20BF470K | R 103 R 43 | AN-3102-20-1S | J5 | 63474-683 | R203 | 3RC40BF103K | R30 |
| RC20BF471K | R 43 R 216 | AN-3102-20-7S | J6 |  |  | 3RC40BF154K | R28 |
| RC20BF473K | R 45 |  |  |  |  | 3RC40BF222K | R401 |
| RC20BF474J | R 9 |  |  |  |  | 3RC40BF683K | R203 |



TABLE 8-8. LIST OF MANUFACTURERS


## INDEX

## SUBJECT <br> A

## Adjustments-

BIAS control (R222) ........................................... 7
carriage return spring
7
DENSITY
FIGURE OR table

APPENDIX SECTION

PARAGRAPH

DENSITY control (R38)
electrical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
fork frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9
fork frequency control (R312)
initial
operator
7
paper guide, positioning
7

SYNC MA
SYNC MA control (R41)
7
plifier-detector-
circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3, 4
general description . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
location of parts and wiring diagram ......... 7 -2
resistor and capacitor values . . . . . . . . . . . . . . . . . . 7-2
Amplifier-modulator-
circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2-5,6
general description . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
location of parts and wiring diagram ......... 7 . 3
resistor and capacitor values . . . . . . . . . . . . . . . . . 7-2
Amplifier-power supply-
bottom view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6
circuit
2
general description . . . . . . . . . . . . . . . . . . . . . . . . $1-7$
location of parts and wiring diagram ......... . 7-14
Amplitude modulation-
connections for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Attentuation characteristics-
low pass filter Z1 . . . . . . . . . . . . . . . . . . . . . . . 7-11 7
noise suppression filter Z2 ................... 7-12 7
Audio-frequency oscillator-
circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7, 8
2
general description . . . . . . . . . . . . . . . . . . . . . . . . 1-6
location of parts and wiring diagram ......... . $7-4$
output
resistor and capacitor values $\ldots . . . . . . . . . .$. . 7
1

Audio-frequency shift modulation-
connections for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
(b)

Automatic phasing and starting-
application

| SUBJECT | FIGURE OR tABLE | APPENDIX SECTION | PARAGRAPH |
| :---: | :---: | :---: | :---: |
| Automatic phasing and starting-Continued |  |  |  |
| auxiliary unit for |  | 1 | $4 b$ |
| connections for |  | 3 | $2 c(2)(d)$ |
| operation for |  | 4 | 4 |
| Automatic Start and 'Transfer Unit AST-( ) |  | 1 | 46 |
| Auxiliary equipment | 1-2 | 1 | 4 |
| B |  |  |  |
| Basic principles |  | 1 | $2 b$ |
| BIAS control (R222), adjustment |  | 7 | $5 c(2)(a)$ |
| Block diagrams-- |  |  |  |
| amplifier-detector | 2-3 | 2 | .......... |
| amplifier-modulator | 2-5 | 2 | . . . . . . |
| audio-frequency oscillator | 2-7 | 2 |  |
| RD-92A/UX | 2-2 | 2 |  |
| selector switch functions | 2-13 | 2 |  |
| simplified, RD-92A/UX | 2-1 | 2 | . . . . . . . |
| C |  |  |  |
| Cabinet mounting |  | 3 | $2 b(1)$ |
| Calibration- |  |  |  |
| chart | 7-5 | 7 |  |
| CIRCUIT TEST circuits | 7-10 | 7 | $5 c(3)$ |
| selection of calibrating resistors |  | 7 | $5 c(3)(a, b)$ |
| Capabilities and limitations |  | 4 | 2 |
| Capacitance, values for plug-in assemblies | 7-2 | 7 |  |
| Carriage assembly- |  |  |  |
| release mechanism, initial check |  | 3 | $3 e$ |
| replacing | ....... | 7 | $5 b(8)$ |
| return spring-- |  |  |  |
| adjusting |  | 7 | $5 b(10)$ |
| exploded view | 7-22 | 7 |  |
| replacing |  | 7 | $5 b(9)$ |
| Checks, initial- |  |  |  |
| carriage release mechanism |  | 3 | $3 e$ |
| fuses and tubes |  | 3 | 3 c |
| motors |  | 3 | 3d |
| power circuit |  | 3 | $3 b$ |
| Circuits- |  |  |  |
| amplifier-detector | 2-3, 4 | 2 | 2b, 36 |
| amplifier-modulator | 2-5,6 | 2 | $2 c, 3 c$ |
| amplifier-power supply |  | 2 | $2 a, 3 e$ |
| analysis |  | 2 | 3 |
| audio-frequency oscillator | 2-7, 8 | 2 | $2 g, 3 d$ |
| CIRCUIT TEST, calibration | 7-10 | 7 | $5 c(3)$ |
| constants |  | 7 | $5 a(2)$ |
| electrical, general description |  | 2 | 2 |
| phasing actuator . . . . . . . . . |  | 2 | $2 f$ |
| phasing detector and amplifier | 2-14 | 2 | $2 e, 3 c(5)$ |
| print driver and amplifier . . . | 2-10 | 2 | $2 d$ |
| preventive maintenance . |  | 6 | $2 c$ |


| SUBJECT | figure or TABLE | APPENDIX SECTION | Paragraph |
| :---: | :---: | :---: | :---: |
| Circuits-Continued radio- |  |  |  |
| application |  | 1 | $2 d(2)$ |
| connections to | . . . . . . | 3 | $2 c(2)$ |
| switching, on control panel | . . . . . | 2 | $3 e(5)$ |
| sync start and run motors wire- | . . . . . . | 2 | $2 b$ |
| application |  | 1 | $2 d$ (1) |
| connections to |  | 3 | $2 c(1)$ |
| CIRCUIT TEST switch-circuit- |  |  |  |
| calibration | 7-10 | 7 | $5 c$ (3) |
| general description | 2-15 | 2 | $3 e(5)(c), 5 b$ |
| general description | 1-8 | 1 | $3 f(7)$ |
| initial check |  | 3 | $3 b$ |
| use in locating trouble | 7-1 | 7 | $4 b(2)$ |
| Cleaning |  | 6 | $2 b$ |
| Coils- |  |  |  |
| sync motor, replacing |  | 7 | $5 b(5)$ |
| winding data | 7-9 | 7 |  |
| Connector cord | 3-3 | 3 | . . . |
| Controls-- |  |  |  |
| BIAS (R222), adjusting | ........ | 7 | $5 c(2)(a)$ |
| DENSITY (R38), adjusting |  | 7 | $5 c(1)(a)$ |
| fork frequency (R312), adjusting |  | 7 | $5 c(2)(b)$ |
| panel | 4-1 | 4 |  |
| general description | 1-8 | 1 | $3 f$ |
| use in locating troubles |  | 7 | 46 |
| Corrective maintenance |  | 7 | 1 |
| Coupling section, replacing |  | 7 | $5 b(7)$ |
| Crystal rectifier characteristics | 7-8 | 7 | $5 c(3)(d) 3$ |
| D |  |  |  |
| Demodulator |  | 2 | $36(2)$ |
| DENSITY control- |  |  |  |
| adjusting R38 |  | 7 | $5 c(1)(b)$ |
| general description | 1-8 | 1 | $3 f(9)$ |
| operation and adjustment | ........ | 4 | $3 c(5)$ |
| Differences between RD-92/UX and RD-92A/UX. | 1-4 | 1 | 7 |
| Drive subassembly- |  |  |  |
| and phasing system | 2-16 | 2 | $4 d$ |
| lubrication | 6-5 | 6 |  |
| Drum- |  |  |  |
| drum assembly and PAPER LOAD mechanism. | 2-18 | 2 | $4 e$ |
| exploded view | 7-21 | 7 | ........... |
| removing |  | 7 | 5b(2) |
| shaft assembly, exploded view | 7-18 | 7 |  |
| E |  |  |  |
| Electron tube complement | 1-5 | 1 | 8 |
| Emergency maintenance |  | 5 | 3 |
| Equipment lists . . . . . | 1-1 thru 1-3 | 1 | 6 |



| SUBJECT <br> 1 | figure or table | APPENDIX SECTION | PARAGRAPH |
| :---: | :---: | :---: | :---: |
| Initial adjustrments | ....... | 3 | 3 |
| Input terminals | 3-3 | 3 | ........... |
| Installation | 3-2 | 3 | 2 |
| L |  |  | . |
| Latch pivot, lubrication | 6-3 | 6 | .......... |
| Leadscrew shaft gearing system |  | 2 | $4 f$ |
| Left-hand gear box- |  |  |  |
| exploded view | 7-19 | 7 | ........... |
| lubrication | 6-4 | 6 | ............ |
| Limitations, capabilities and |  | 4 | 2 |
| Loading paper |  | 4 | $3 b$ |
| LO B+ circuit- |  |  |  |
| calibration chart | 7-5 | 7 | ........... |
| general description |  | 2 | $5 b(4)$ |
| general description | 1-8 | 1 | $3 f(7)(d)$ |
| use in locating trouble |  | 7 | $4 b(2)(d)$ |
| LOCAL- |  |  |  |
| circuit |  | 2 | $3 e(5)(b) 1$ |
| general description | 1-8 | 1 | $3 f(4)(a)$ |
| Location of- |  |  |  |
| components |  | 7 | 5a(2) |
| amplifier-detector | 7-2 | 7 | . . . . . . . . . |
| amplifier-modulator | 7-3 | 7 | ............. |
| amplifier-power supply | 7-14 | 7 | ............ |
| audio-frequency oscillator | 7-4 | 7 | ............ |
| recorder | 7-5 | 7 | ............ |
| fuses | 5-3 | 5 | ............ |
| subassemblies | 1-2 | 1 | ............ |
| trouble- |  |  |  |
| front panel checks, use of |  | 7 | $4 b$ |
| theory of localization . . . |  | 7 | 3 |
| tubes | 5-1 | 5 | . . . . . . . . |
| Low voltage power supply | 2-11 | 2 | $3 e(3)$ |
| Lubrication | 6-1 thru 6-5 | 6 | 3 |
| M |  |  |  |
| Maintenance- |  |  |  |
| corrective | . . . . . . | 7 | 1 |
| emergency |  | 5 | 3 |
| operator's | 5 | 5 | . . . . . . . . . |
| preventive |  | 6 | 1 |
| routine operator's maintenance check chart | 5-1 | 5 | 2 |
| routine preventive maintenance check chart | 6-1 | 6 | 2 |
| Mechanical-- |  |  |  |
| assembly, main, exploded view | 7-15 | 7 | ............ |
| functions |  | 2 | 4 |
| inspection |  | 3 | $3 a$ |
| repair |  | 7 | 5 |
| Meter | 1-8 | 1 | $3 f(5)$ |
| ORIGINAL |  |  |  |

SUBJECT \begin{tabular}{c}
FIGURE OR <br>
TABLE

 

APPENDIX <br>
SECTION
\end{tabular}

## PARAGRAPH

| Modulation-amplitude- |  |  |  |
| :---: | :---: | :---: | :---: |
| general description |  | 1 | $2 d(2)(a)$ |
| audio-frequency shiftconnections for |  | 3 | $2 c(2)(b)$ |
| general description |  | 1 | $2 d(2)(b)$ |
| radio carrier frequency shiftconnections for |  | 3 | $2 d(2)(c)$ |
| general description |  | 1 | $2 d(2)(c)$ |
| Modulator |  | 2 | $3 c(2)$ |
| Motor amplifier | 2-9 | 2 | $3 e(1)$ |
| Motors- |  |  |  |
| initial check |  | 3 | 3d |
| run |  | 1. | $4 c$ |
| start | 2-17 | 2 | $4 b$ |
| synchronous | 2-16, 17 | 2 | $4 b$ |
| Mounting |  | 3 | $2 b$ |
| $\mathbf{N}$ |  |  |  |
| Neon light indicators- |  |  |  |
| general description |  | 2 | $5 a$ |
| use in locating trouble |  | 7 | 4a |
| 0 |  |  |  |
| OFF- |  |  |  |
| circuit |  | 2 | $3 e(5)(a) 1$ |
| general description | 1-8 | 1 | $3 f(3)(a)$ |
| $1 / 8$ AMP B+ fuse- |  |  |  |
| circuit |  | 2 | $3 e(4)(c)$ |
| general description | 1-8 | 1 | $3 f(2)$ |
| initial check |  | 3 | 3 c |
| location of | 1-8, | 1 |  |
|  | 5-3 | 5 |  |
| replacement |  | 5 | $3 b$ |
| symptoms of failure | 5-2 | 5 |  |
| Operation |  | 4 | 3 |
| Operation, theory of |  | 2 |  |
| Operator- |  |  |  |
| adjustments |  | 4 | 5 |
| maintenance |  | 5 |  |
| OSC- |  |  |  |
| circuit- |  |  |  |
| calibration chart | 7-5 | 7 |  |
| general description |  | 2 | $56(8)$ |
| general description. | 1-8 | 1 | $3 f(7)(b)$ |
| use in locating trouble |  | 7 | $4 b(2)(b)$ |
| Over-all schematic, RD-92A/UX | 7-13 | 7 |  |
| P |  |  |  |
| Paper guide- |  |  |  |
| positioning |  | 7 | 5\%(13) |
| replacing . |  | 7 | $5 b(12)$ |

FIGURE OR APPENDIX
table section

## SUBJECT

## PAPER LOAD-

general description . . . . . . . . . . . . . . . . . . . . . . . . . $1-8$
lubrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
mechanism . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . 2-18
reloading
Peak limiter
$\qquad$
PHASE AMP OUT-
circuit-
calibration chart . . . . . . . . . . . . . . . . . . . . . . 7-5
general description
...... 2
general description . . . . . . . . . . . . . . . . . . . . . . . . 1-8 1
PHASE switch-
circuit
general description
1-8
phasing-
actuator-
general description ......................... ......... . . 2
replacing 7
automatic-
application 1
auxiliary unit for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
connections for 3
operation 4
control circuit, schematic . . . . . . . . . . . . . . . . . . . . . 2-14
detector and amplifier 2
drive subassembly and phasing . . . . . . . . . . . . . . . 2-16
operation
. . . . .

Pilot lamp
1-8
Plate voltage-
amplifier-detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
amplifier-modulator 2
audio-frequency oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Plug-in subassemblies, description of 1-2
POWER-
circuit-

> calibration chart . . . . . . . . . . . . . . . . . . . . . . . . 7-5
general description 7
general description . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
use in locating trouble
amplifier-power supply-
circuit ............ .
general description . . . . . . . . . . . . . . . . . . . . . . 1-7
high voltage ............................... . . . . . . . . 2-12
initial check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
low voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $2-11$
regulated voltage
unregulated voltage
. . . . .
PRESS TO TEST switch 1-8
Preventive maintenance
..... 6
routine check chart . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

1
6
2
4
2

7
2
1



## power supply-

................................. 2

PARAGRAPH

$$
3 g(2)
$$

## $4 e$

## $3 e$

## $2 f$

$5 b(6)$
$2 d(3)$
$4 b$
$2 c(2)(d)$
4
$2 e, 3 c(5)$
$4 d$

## $3 d$

$3 f(1)$
$3 b(3)$
$3 c$ (7)
3d(6)
3
$5 b(1)$
$3 f(7)(a)$
$4 b(2)(a)$
$2 a, 3 e$
$3 e$
$3 e(4)$
$3 b$
$3 e(3)$
$3 e(3)$ (b)
$3 e(3)(a)$
$3 f(6)$

FIGURE OR TABLE

APPENDIX SECTION

PARAGRAPH

## PRINT-

circuitcalibration chart . . . . . . . . . . . . . . . . . . . . . . 7-5 7 general description . . . . . . . . . . . . . . . . . . . . . . . . . . . general description . . . . . . . . . . . . . . . . . . . . . . . . . $1-8$ use in locating trouble 2-10
amplifier
driver
Pulse amplifier
Purpose

## R

Radio carrier frequency shift modulation-
connections for
general description
1
Radio circuits-
connections to
general description
RECORD button
1

Recorder subassembly-
general description . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
location of parts and wiring diagram ......... . 7-5
preventive maintenance
removal
7-8
Rectifier, crystal, characteristics
2-17
Reduction gear assembly
Reference data 1
Regulated voltage 2
Relay rack mounting 3
Reloading paper .................................................. 4
REMOTE-
circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
general description . . . . . . . . . . . . . . . . . . . . . . . . . $1-8$
1
Remote phasing and starting-
application
1
auxiliary unit for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
connections for 3
operation for 4
Removal and replacement of components-
carriage ......................................... 7-8 7 7
carriage return spring ...................................... . . . 7
coupling section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
drum ............ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
half nut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
left-hand gear box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
paper guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
phasing actuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
recorder subassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
sync motor coils . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7
thrust bearing spring
Resistance measurements, sockets
7-3
$5 b(7)$
$3 f(7)(g)$
$4 b(2)(g)$
$2 d, 3 e(2)$
$2 d, 3 c(4)$
$3 c(6)$
$2 a$
$2 c(2)(c)$
$2 d(2)(c)$
$2 c(2)(c)$
$2 d(2)$
$3 g(1)$
$3 a$
$2 d$
$5 b(1)$
$5 c(3)(d) 3$

5
$3 e(3)(a)$
$2 b(2)$
$3 e$
$3 e(5)(b) 2$
$3 f(4)(b)$

$$
2 d(3)
$$

$4 b$
$2 c(2)(d)$
4
$5 b(8)$
$5 b(9)$
$5 b(7)$
$5 b(2)$
$5 b(11)$
$5 b(4)$
5b(12)
$5 b(6)$
$5 b(1)$
$5 b(5)$
$5 b(3)$
5a(2)(b)

| SUBJECT | figure or tABLE | APPENDIX SECTION | PARAGRAPH |
| :---: | :---: | :---: | :---: |
| Resistor and capacitor values for plug-in subassemblies | 7-2 | 7 |  |
| Retropicalization |  | 6 | 4 |
| Return spring, carriage assembly and |  | 2 | $4 g$ |
| Right-hand gear box- |  |  |  |
| exploded view | 7-17 | 7 |  |
| lubrication | 6-2 | 6 | ........... |
| Routine check chartsoperator's maintenance | 5-1 | 5 | 2 |
| preventive maintenance | 6-1 | 6 |  |
| RUN- |  |  |  |
| circuit |  | 2 | $3 e(5)(a) 5$ |
| general description | 1-8 | 1 | $3 f(3)(e)$ |
| Run motor- |  |  |  |
| circuit |  | 2 | $2 b$ |
| initial check |  | 3 | $3 d$ |
| mechanical function |  | 2 | $4 c$ |
| 5 |  |  |  |
| Schematic diagrams- | 2-4 | 2 | .... |
| amplifer-detector . | 2-6 | 2 |  |
| audio-frequency oscillator | 2-8 | 2 |  |
| high voltage power supply | 2-12 | 2 | ........ |
| low voltage power supply | 2-11 | 2 | ......... |
| motor amplifier | 2-9 | 2 | ............ |
| phasing control circuit | 2-14 | 2 | . . |
| RD-92A/UX | 7-13 | 7 | . . . |
| print amplifier | 2-10 | 2 | . . . . . |
| test circuits | 2-15 | 2 | . . . . . . . |
| Selector switch- |  |  |  |
| block diagram | 2-13 | 2 |  |
| circuit |  | 2 | $3 e(5)(a)$ |
| general description | 1-8 | 1 | $3 f(3)$ |
| Shipping data | 1-3 | 1 |  |
| SIG AMP OUT-circuit- |  |  |  |
| calibration chart | 7-5 | 7 |  |
| general description |  | 2 | $5 b(2)$ |
| general description | 1-8 | 1 | $3 f(7)(b)$ |
| - use in locating trouble |  | 7 | $4 b(2)(b)$ |
| Signal amplifier |  | 2 | $3 b(1)$ |
| $\begin{aligned} & \text { 60-CYCLE MOTOR- } \\ & \text { circuit- } \end{aligned}$ |  |  |  |
| calibration chart | 7-5 | 7 |  |
| general description |  | 2 | $5 b(9)$ |
| general description | 1-8 | 1 | $3 f(7)(i)$ |
| use in locating trouble . . . . . . . . . . . . . . . . . . . . |  | 7 | $4 b(2)(i)$ |
| STANDBY- |  |  |  |
| circuit |  | 2 | $3 e(5)(a) 2$ |
| general description | 1-8 | 1 | $3 f(3)(b)$ |


| SUBJECT | figure OR table | APPENDIX SECTION | Paragraph |
| :---: | :---: | :---: | :---: |
| START- |  |  |  |
| circuit |  | 2 | $3 e(5)(a) 3$ |
| general description | 1-8 | 1 | $3 f(3)(c)$ |
| Start motor- |  |  |  |
| circuit |  | 2 | $2 b$ |
| initial check |  | 3 | $3 d$ |
| mechanical function | 2-17 | 2 | $4 b$ |
| Starting- |  |  |  |
| application |  | 1 | $2 d(3)$ |
| auxiliary unit for |  | 1 | $4 b$ |
| connections for |  | 3 | $2 c(2)(d)$ |
| operation for |  | 4 | 4 |
| equipment |  | 4 | $3 a$ |
| Stylus-. |  |  |  |
| carriage- |  |  |  |
| exploded view | 7-23 |  |  |
| general description | 2-19, 20 | 2 | $4 b$ |
| changing needle |  | 6 | $2 a$ |
| Subassemblies- |  |  |  |
| amplifier-detector- |  |  |  |
| circuit | 2-3,4 | 2 | $2 b \cdot 3 b$ |
| general description | 1-4 | 1 | $3 b$ |
| location of parts and wiring diagram | 7-2 | 7 |  |
| resistor and capacitor values | 7-2 | 7 |  |
| amplifier-modulator- |  |  |  |
| circuit | 2-5,6 | 2 | 2c, 3c |
| general description | 1-5 | 1 | 3 c |
| location of parts and wiring diagram | 7-3 | 7 |  |
| resistor and capacitor values | 7-2 | 7 |  |
| amplifier-power supply- |  |  |  |
| bottom view | 7-6 | 7 |  |
| circuit |  | 2 | 2a, 3 e |
| general descrif ${ }^{\text {+ion }}$ | 1-7 | 1 | $3 e$ |
| location of parts and wiring diagram | 7-14 | 7 |  |
| audio-frequency oscillator- |  |  |  |
| circuit ..... | 2-7, 8 | 2 | $2 g, 3 d$ |
| general description | 1-6 | 1 | $3 d$ |
| location of parts and wiring diagram | 7-4 | 7 |  |
| resistor and capacitor values | 7-2 | 7 |  |
| location of | 1-2 | 1 |  |
| recorder- |  |  |  |
| general description | 1-3 | 1 | $3 a$ |
| location of parts and wiring diagram | 7-5 | 7 |  |
| preventive maintenance |  | 5 | $2 d$ |
| removal |  | 7 | $5 b(1)$ |
| Summary of operation |  | 4 | 6 |
| Switches- |  |  |  |
| CIRCUIT TEST- |  |  |  |
| calibration | 7-5 | 7 | . . . . . . . . |
| general description | 2-15 | 2 | $3 e(5)(c)$ |Figure orTABLE

APPENDIX
SECTION
PARAGRAPH
Switches-Continued
CIRCUIT TEST-Continued
general description . . . . . . . . . . . . . . . . . . . . . . 1-8 ..... 1-8
initial checkuse in locating trouble7-1
PHASE-
circuit ..... 2
general description ..... 1-8
PRESS TO TEST ..... 1-8
selector-
circuit ..... 2-13
general description ..... 1-8Switching circuits on control panel1
SYNC
circuit2
general description ..... 1-81
SYNC DRIVE-
circuit-
calibration chart ..... 7-5
general description7
general tescription ..... 1-8
use in locating trouble2
Sync drive and phasing mechanism ..... 2-16
SYNC MA-
circuit-
calibration chart ..... 7-5
general description7
control (R41) adjustment ..... 72
general description ..... 1-8
use in locating troubleSync motor-
circuit1coils, replacement2
exploded view ..... 77
initial check ..... 3
mechanical functions ..... 2-17 ..... 2
Sync worm and gear, lubrication ..... 6-1
System trouble shooting ..... 76
T
Test procedures-
circuit ..... 2-15
operation ..... 4
1-8
TEST SIGNAL ..... 1
Theory of localization of trouble ..... 7
Theory of operation ..... 2
facsimile recorder ..... 2
facsimile transmitter ..... 2
Thrust bearing spring, replacing
Transmission circuit, connections to ..... 3
Trouble shooting-
chart ..... 7-1 ..... 7

APPENDIX
SECTION

SUBJECT
Trouble shooting-Continued system FIGURE OR TABLE

PARAGRAPH

$$
4
$$

5
$5 c(3)(d)$
8
$3 c$

2 AMP power fuse-
general description . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
initial check
location of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
replacement
symptoms of failure . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
$\mathbf{U}$
Unpacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3
Unregulated voltage

## V

Voltage-
high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
regulated
tripler
unregulated
....... 2
. .......................................... . . . . . . . . . .
measurements, socket . . . . . . . . . . . . . . . . . . . . . . . 7-4
7

## VR75-

circuit-
calibration chart . . . . . . . . . . . . . . . . . . . . . . . 7-5 7
general description . . . . . . . . . . . . . . . . . . . . . . . . . . .
general description . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
use in locating trouble
w
Wire circuits-
connection to
general description .......................................... 1
Wiring diagrams-
amplifier-detector
7-2
amplifier-modulator . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
amplifier-power supply . . . . . . . . . . . . . . . . . . . . . . 7-14
audio-frequency oscillator . . . . . . . . . . . . . . . . . . . 7-4
recorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5
Worm and gear, sync, lubrication of . . . . . . . . . . . . . . 6-1
$3 e(4)$
$3 e(3)$
$3 e(3)(a)$
$3 e(4)(a, b)$
$3 e(3)(b)$
$5 b(10)$
$3 f(7)(j)$
$4 b(2)(j)$
$2 c(2)$
$2 d(1)$


[^0]:    Figure 3-2. Details of Installation

[^1]:    *Formerly 14-L-7 (ORD) and O. S. 1362.

[^2]:    *Formerly 14-L-7 (ORD) and O. S. 1362.

[^3]:    * Not furnished as a maintenance part. If failure occurs, do not request replacement unless the item cannot be repaired or fabricated.

[^4]:    * Not furnished as a maintenance part. If failure occurs, do not request replacement unless the item cannot be repaired or fabricated.

