NAVSHIPS 0967-063-2010

TECHNICAL MANUAL

OPERATION, MAINTENANCE AND INSTALLATION INSTRUCTIONS WITH PARTS LIST

RADIO RECEIVER R-390A/URR

EACH TRANSMITTAL OF THIS DOCUMENT OUTSIDE OF THE DEPARTMENT OF DEFENSE MUST HAVE APPROVAL OF THE ISSUING SERVICE.

This manual supersedes NAVSHPS 93053 Vols I, II, III and NAVSHIPS 93053.42 A . Destroy all copies of these manuals, their changes and/or revisions.

NAVSHIPS 0967-063-2010

TECHNICAL MANUAL

OPERATION, MAINTENANCE AND INSTALLATION INSTRUCTIONS WITH PARTS LIST

RADIO RECEIVER R-390A/URR

(Mánual prepared by Philco-Ford Corp, Communications and Technical Services Division, under Contract No. N00189.67-C-0959)

Each transmittal of this document outside of the department of defense MUST HAVE APPROVAL OF THE ISSUING SERVICE.

This manual supersedes NAVSHIPS 93053 Vols I, II, III and NAVSHIPS 93053.42A. Destroy all copies of these manuals, their changes and/or revisions.

Reproduction for non-military use of the information or illustrations contained in this publication is not permitted. The policy for military use reproduction is established for the Navy and Marine Corps in OPNAVINST 5510.1B, for the Army in AR380-5 and for the Air Force in Air Force Regulation 205-1.

LIST OF EFFECTIVE PAGES

Insert latest changed pages; dispose of superseded pages in accordance with applicable regulations.
Note: On a changed page, the portion of the text affected by the latest change is indicated by a vertical line, or other change symbol, in the outer margin of the page. Changes to illustrations are indicated by miniature pointing hands. Changes to wiring diagrams are indicated by shaded areas.

Page No.	Change \# No.	Page No.	Change \# No.
Title	0	5-41.	0
ii through xiii	0	5-42 blank	0
1-0 through 1-9	0	5-43	0
1-10 blank	0	5-44 blank	- 0
2-1 through 2-12	0	5-45.	0
3-1 through 3-3	0	5-46 blank	0
3-4 blank	0	5-47 .	0
3-5 through 3-18	0	5-48 blank	0
4-1 through 4-5	0	5-49	0
4-6 blank	0	5-50 blank	0
5-1 through 5-27	0	5-51.	0
5-28 blank	0	5-52 blank	0
5-29.	0	6-1 through 6-59	0
5-30 blank	0	6-60 blank	0
5-31.	0	6-61 .	0
5-32 blank	0	6-62 blank	0
5-33.	0	6-63 .	0
5-34 blank	0	6-64 blank	0
5-35	0	6-65 through 6-69	0
5-36 blank	0	6-70 blank	- 0
5-37.	0	6-71 and 6-72.	- 0
5-38 blank	0	7-1 through 7-40	- 0
5-39.	0	8-1 through 8-8.	- 0
5-40 blank . . .	0		

FOREWORD

NAVSHIPS 0967-063-2010 describes and provides instructions and parts list for the installation, operation, and maintenance of Radio Receiver R-390A/URR.

The technical content of this manual reflects the installation of the following changes, performed in the field of the listed equipment.

Radio Receiver R-390A/URR

All
Shipboard only
Shipboard only
Shipboard only
Shipboard only
Shipboard only
Shipboard, Supplementary
Radio Spaces only
Selected ships only

Filed Change

No. 1
No. 2
No. 3
No. 4
No. 5
No. 6

No. 7
No. 8

NA VSHIPS 0967-063-2010 is comprised of eight chapters:

```
CHAPTER 1 - GENERAL INFORMATION
CHAPTER 2 - OPERATION
CHAPTER 3 - FUNCTIONAL DESCRIPTION
CHAPTER 4 - SCHEDULED MAINTENANCE
CHAPTER 5 - TROUBLESHOOTING
CHAPTER 6 - CORRECTIVE MAINTENANCE
CHAPTER 7 - PARTS LIST
CHAPTER 8 - INSTALLATION
```

This Technical Manual is in effect upon receipt and supersedes NAVSHIPS 93053 VOLS I, II, III and NAVSHIPS 93053.42A. Extracts from this publication may be made to facilitate preparation of other Department of Defense publications.

Errors found in this publication (other than obvious typographical errors), which have not been corrected by means of Temporary Corrections or Permanent Changes should be reported on a User Activity Comment Sheet, NAVSHIPS 4914 (10-62) FSN 0105-503-9850. Reports should include the complete title of the publication and the publication number (short title): identify the page and line or figure and location of the error; and be forwarded to Commander Naval Ship Engineering Center, Technical Support Branch, Technical Data and Publications Section, Department of the Navy, Washington, D. C. 20360.

CHANGE RECORD

CHANGE NO.	DATE	BRIEF DESCRIPTION OF CHANGE	SIGNATURE

Table of Contents

TABLE OF CONTENTS

Paragraph Page
CHAPTER 1. GENERAL INFORMATION
1.1 Purpose 1-1
1.2 Physical Description 1-1
1.3 Operational Description 1-1
1.4 Functional Description 1-1
1.5 Equipment Characteristics 1-2
1.5 .2 Production Changes 1-61.6Safety Requirements1-8
1.7 Logistics Data 1-8
CHAPTER 2. OPERATION
2.1 Introduction 2-1
2.2 Controls and Indicators 2-1
2.3 Operating Instructions and Control Settings 2-7
Preoperational Settings 2-7
2.3.1
Operating Procedures 2-7
Calibration 2-7
2.3.2.1
2.3.2.2 AM Reception 2-72.3.2.32.3.2.42.3.2.52.3.2.6
2.3.2.72.3.2.8
2.3.2.92.4
2.4.12.4.2
MCW or CW Reception 2-8
FSK Reception 2-9
SSB Reception 2-9
AM Operation in Jamming Environment 2-9
CW or MCW Operation in Jamming Environment 2-10
Emergency Turn-Off Procedure 2-10
Operator's Turn-Off Procedure 2-10
Operator's Maintenance 2-10
Visual Inspection 2-10
Operational Checks 2-11
CHAPTER 3. FUNCTIONAL DESCRIPTION
3.1 Over-all Functional Description 3-1
3.2 Detailed Circuit Analysis 3-1
Antenna Circuit 3-1
3.2.2
3.2.4
3.2.5
3.2.6Calibration Oscillator3-2
3-2RF Amplifier3.2.7First Mixer and First Crystal Oscillator3-23.2.8Second Mixer and Second Crystal Oscillator3-2
3-53.2 .9Third Mixer and VFO
3-5First IF Amplifier
3.2 .10
3.2.11
Second, Third, and Fourth IF Amplifier 3-8
Detector and Limiter 3-12
.2.11
3.2.12 Beat-Frequency Oscillator 3-12
3.2.13 IF Cathode Follower 3-12
3.2 .14
Automatic Gain Control (AGC) Circuit 3-13
3.2 .15

TABLE OF CONTENTS (Cont)

Paragraph Page
3.2.16 First AF Amplifier and AF Cathode Follower 3-13
3. 2.17 Local Audio Channel 3-13
3.2.18 Line Audio Channel 3-133.2. 193.3
3.3.13.3.1.1
Power Supply Circuits 3-14
Mechanical Tuning System 3-14
Functional Description 3-14
Megacycle Change Control 3-14
3.3.1.2 Kilocycle Change Control 3-143.3.23.3.2.1
Detailed Mechanical Analysis 3-14
Megacycle Change Control 3-17
3.3.2.2 Kilocycle Change Control 3-17
3.3.2.3 Zero Adjustment Control 3-18
CHAPTER 4. SCHEDULED MAINTENANCE
4.1 Introduction 4-1
4.2 Maintenance Requirements Index 4-1
4.3 Scheduled Maintenance Procedures 4-1
Procedure Q1 - Measure Receiver Sensitivity 4-2
Procedure Q2 - Measure Receiver Bandwidth 4-3
4.3.2
4.3.3 Procedure Q3 - Measure AGC Level to Carrier Level 4-44.3. 4
Procedure SA4 - Operator's Maintenance (O.M.) Clean and Inspect Receiver 4-5
4.3.5
5.15.25.35.45.4.2
5.4 .3
5.4.4
5.4 .55.5
5.5.1
5.5.2
5.5 .3
5.5.45.5 .5
5.5 .6
5.5.7
Introduction5-1
Maintenance Turn-On Procedure 5-2
Relays - Lamps - Overload Devices 5-5
Troubleshooting Information 5-5
Visual Inspection 5-5
Built-In Troubleshooting Aids 5-6
Trouble Isolation 5-6
Subchassis Removal for Troubleshooting 5-7
Trouble Isolation Procedures 5-7
Test Cable Data 5-7
Initial Control Settings 5-12
Oscillator Injection Voltage Tests 5-12
Receiver RF-IF Gain Test 5-18
Trouble Isolation Table 5-18
DC Resistances of Transformers and Coils 5-22
Resistance Measurements at Subchassis Connectors 5-25
CHAPTER 6. CORRECTIVE MAINTENANCE
6.1 Introduction 6-1
6.2
6.2.1
6.2.2
Alignment and Adjustment Procedures 6-1
General Alignment Information 6-1
Test Equipment Required 6-1

TABLE OF CONTENTS (Cont)

Paragraph Page
6.2.3 Test Conditions 6-1
6.2.4 Preparation for Alignment 6-2
6.2 .5 Mechanical and Electrical Synchronization 6-2
6.2.5.1 Ten-Turn Stops 6-2
6.2.5.2 Slug-Rack Cams and Followers 6-2
6.2.5.3 Camshafts 6-3
6.2.5.4 Six-Position RF Band Switch 6-5
6.2.5.5 Crystal-Oscillator Subchassis Band Switch 6-5
6.2.5.6 VFO Tuning Shaft 6-7
6.2 .6 Adjusting Zero Adjustment Control 6-7
6.2.7 Alignment of Fixed-Tuned IF Circuits 6-8
6.2.7.1 Alignment of T501, T502, and T503 6-8
6.2.7.2 Alignment of Z503 6-9
6.2.7.3 Alignment of T208 6-9
6.2.86.2.8.1
6.2.8.2Adjustment of Gain Adjustment Potentiometer R5196-96.2.8.3General6-9
Procedure for Adjustment 6-10
Adjustment for Diversity Operation 6-10
6.2 .9
6.2 .10
Crystal Oscillator Subchassis Trimmer Alignment 6-10
Second Variable IF Alignment 6-116.2.10.1
6.2.10. 2
.2.11
Preparation 6-11
Alignment 6-12
6.2.11.1First Variable IF Alignment6-12
Preparation 6-12
Alignment 6-126.2.11.26.2 .126.2.12.16.2.12. 26.2 .13
RF Coil Alignment 6-14
Preparation 6-14
Procedure 6-146.2 .14Beat-Frequency Oscillator Neutralization6-14Calibration Oscillator Adjustment6-16
6.2.15
6.2.16
Carr-Meter Adjustment Potentiometer R523 Adjustment 6-16 6-16
6. 217
6. 217 Crystal Filter Neutralizing 6-18
6.2.18 Antenna Trimmer Control Adjustment 6-19
6.3 Repair
6.3 .16-19
Notes on Removals and Replacements 6-196.3.2
6.3.2.16.3.2.26.3.3Removal and Replacement of Front Panel6-20
Removal 6-20
Replacement 6-216.3.3.1Removal and Replacement of RF Subchassis6-22
6.3.3.2Removal6-22
6.3.46.3.4.1
6.3.4.2Replacement6-22emoval and Replacement of RF Subchassis Parts6-24
Slug Racks and Tension Springs 6-24
6.3.4.3 Removal and Replacement of Mechanically Tuned Coils and Transformers 6-25
6.3 .5 Removal and Replacement of Crystal Oven HR 202 6-25
6.3.5.1
6.3.5.2
Removal 6-25
Replacement 6-25

TABLE OF CONTENTS (Cont)

Paragraph Page
6.3.6 Disassembly and Assembly of Crystal Oven HR 202 to Replace Crystals 6-25
6.3.6.1 Disassembly 6-256.3.6.26.3 .76.3.7.16.3.7.2
6.3 .86.3.8.16.3.8.26.3.96.3.9.16.3.9.26.3.106.3.10.16.3.10.26.3.10. 36.3.116.3.11.16.3.11.26.3.126.3 .12 .16.3.12.26.3.136.3.13.16.3.13.26.3.146.3.14.16.3.14.26.3 .15
6.3.15.16.3.15.26.3 .166. 3.176. 3.18
Reassembly 6-26
Removal and Replacement of Crystal Oscillator Subchassis 6-26
Removal 6-26
Replacement 6-27
Removal and Replacement of Crystals Under HR 401 Crystal Oven Cover 6-28
Removal 6-28
Replacement 6-29
Removal and Replacement of IF Subchassis 6-29
Removal 6-29
Replacement 6-31
Removal and Replacement of IF Subchassis Parts 6-31
IF Transformers 6-31
Crystal Filters 6-31
Mechanical Filters 6-31
Removal and Replacement of VFO Subchassis 6-32
Removal 6-32
Replacement 6-34
Removal and Replacement of VFO Subchassis Parts 6-34
External Cover 6-34
Heater Winding Cover 6-35
Power Supply Subchassis Removal and Replacement 6-36
Removal 6-36
Replacement 6-37
AF Subchassis Removal and Replacement 6-37
Removal 6-40
Replacement 6-40
Removal and Replacement of Incandescent Lamps 6-40
Removal 6-40
Replacement 6-41
Disassembly of RF Gear Train Assembly 6-42
Disassembly of Camshaft Assemblies 6-45
Reassembly of Camshaft Assemblies 6-46
Reassembly of RF Gear Train Assembly 6-48
Parts Location 6-51
CHAPTER 7. PARTS LIST
7.1 Introduction 7-1
7.2 List of Major Units 7-2
7.3 Parts List 7-2
7.4 List of Manufacturers 7-39

TABLE OF CONTENTS (Cont)

Paragraph Page
CHAPTER 8. INSTALLATION
8.1 Unpacking 8-18.1.18.1.28.28.38.48.5
8.5 .4
8.5 .58.5.5.1
8.5.5.2
8.6
8.6
Packaging Data 8-1
Removing Contents 8-1 8-1
Site Information
Site Information
Material Required for Installation $8-4$
Input Requirements $8-4$
Installation Procedures 8-4
Connection Procedure 8-5
Lubrication Procedure 8-7
Lubrication Inspection 8-7
Detailed Lubrication Instructions 8-8
Installation Checkout 8-8
LIST OF LLLUSTRATIONS
Figure
CHAPTER 1. GENERAL INFORMATION
1-1 Radio Receiver R-390A/URR 1-0
1-2 System Applications for Teletypewriter and Facsimile Equipment 1-2
CHAPTER 2. OPERATION
2-1 R-390A/URR Front Panel 2-2
2-2 R-390A/URR Rear Panel 2-3
2-3 R-390A/URR Rear Panel Modified for Shipboard Use 2-4
CHAPTER 3. FUNCTIONAL DESCRIPTION
3-1 Over-all Block Diagram 3-3
3-2 Antenna Input Connections Modified by FC 5 for Shipboard Installations 3-5
3-3 Second Crystal Oscillator V401, Crystal and Plate Circuit Switching, Simplified Schematic Diagram 3-6
3-4 Crystal Filter, Simplified Schematic Diagram 3-7
3-5 First IF Amplifier V501, Simplified Schematic Diagram 3-9
3-6 Modified Mechanical IF Filters 3-10
3-7 Typical Mechanical Filter 3-11
3-8 Typical Oscilloscope Presentation of Limiter Operation 3-12
3-9 Tuning System, Mechanical Block Diagram 3-15
3-10 Tuning System, Simplified Mechanical Diagram 3-16
CHAPTER 5. TROUBLESHOOTING
5-1 Terminal Numbers of RF and Variable IF Coils 5-8
5-2 Fabrication of Coaxial Test Cables 5-9

LIST OF ILLUSTRATIONS (Cont)

Figure Page
5-3 Fabrication of Multiconductor Test Cables 5-10
5-4 RF Subchassis, Voltage and Resistance Diagram 5-11
5-5 Crystal Oscillator Subchassis, Voltage and Resistance Diagram 5-12
IF Subchassis, Voltage and Resistance Diagram 5-13
5-6
VFO Subchassis, Voltage and Resistance Diagram 5-14
5-8 AF Subchassis, Voltage and Resistance Diagram 5-15
5-9 Power Supply Subchassis, Voltage and Resistance Diagram 5-16
5-10
IF and AF Subchassis Resistor and Capacitor Terminal Boards,Voltage and Resistance Diagram5-17
5-11 Power Distribution Diagram 5-29
5-12 Signal Flow Diagram (Sheet 1 of 2) 5-31
Signal Flow Diagram (Sheet 2 of 2) 5-33
Schematic Diagram (Sheet 1 of 4) 5-37
5-13
Schematic Diagram (Sheet 2 of 4) 5-41
5-13
Schematic Diagram (Sheet 3 of 4) 5-45
Schematic Diagram (Sheet 4 of 4) 5-47
Filament and Oven Circuits 5-49
Field Changes 5-51
CHAPTER 6. CORRECTIVE MAINTENANCE
6-1 RF Gear Train Assembly, Location of Parts 6-3
Mechanical Alignment Details 6-4
Location of RF Band Switch Shaft Clamp, Detent Spring, and Ten-Turn Stops 6-6
Oldham Coupler Details 6-7
Crystal Oscillator and IF Subchassis Alignment Points 6-11
RF and Variable IF Alignment Points 6-13
Variable Frequency Oscillator End-Point Adjustment 6-17
ANT TRIM Control Adjustment 6-19
Location of Panel Mounting Screws 6-20
RF, IF, and Crystal Oscillator Subchassis Removal and Replacement, Location of Screws 6-23
Location of Crystal Y201 and Y203 6-26
Location of Crystals Y401 through Y415 6-28
RF Gear Train Assembly Cam Positions View from Rear, Simplified Mechanical Diagram 6-29
Radio Receiver R-390A/URR, Top View 6-30
Radio Receiver R-390A/URR, Bottom View 6-33
IF Subchassis, Top View 6-35
IF Subchassiś, Bottom View, Front Section 6-36
IF Subchassis, Bottom View, Rear Section 6-37
RF Subchassis, Top View (Sheet 1 of 2) 6-38
RF Subchassis, Top View (Sheet 2 of 2) 6-39
RF Subchassis, Bottom View, Front Section 6-40
RF Subchassis, Bottom View, Rear Section 6-41
Crystal Oscillator Subchassis, Top View 6-42
Crystal Oscillator Subchassis, Bottom View 6-45
Crystal Oscillator Subchassis, Internal View of Crystal Oven 6-47
VFO Subchassis, Top View 6-49
VFO Subchassis, Bottom View 6-52

LIST OF ILLUSTRATIONS (Cont)

Figure Page
6-27 AF Subchassis, Top View 6-53
6-28 AF Subchassis, Bottom View 6-54
6-29 Power Supply Subchassis, Top View 6-55
6-30 Power Supply Subchassis, Bottom View 6-56
6-31 Antenna Relay Assembly, Internal View 6-57
6-32 Radio Receiver R-390A/URR, Front Panel and Interior of Main Frame 6-58
6-33 Terminal Board TB 101 Modified by Field Change No. 2 6-59
6-34 Tuning System Showing Relationship of Stages, Block Diagram 6-61
6-35 Radio Receiver R-390A/URR, Main Frame Wiring Diagram 6-63
6-36 RF Gear Train Assembly, Exploded View 6-69
6-37 Front Panel 6-71
6-38 Rear Panel 6-72CHAPTER 8. INSTALLATION
8-1 Packaging 8-2
8-2 Outline and Dimensions 8-3
8-3 Connections for 115 VAC or 230 VAC Operation 8-5
8-4 Interconnecting Cabling 8-6

LIST OF TABLES

NumberPageCHAPTER 1. GENERAL INFORMATION
1-1
Input Requirements 1-3
1-2
Equipment Outputs 1-4
1-4 Major Internal Signals 1-5
1-5 1-6
1-7
Reference Data 1-5
Equipment Supplied 1-5
Equipment Required But Not Supplied 1-6
Field Change Data 1-6
1-9 Production Modifications 1-7
Materials Required for Scheduled Maintenance 1-8
1-11 Test Equipment Required 1-9
CHAPTER 2. OPERATION
2-1 Operating Controls, Indicators and Connectors 2-1
2-2 Operational Checklist 2-11
2-3 List of Overload Protection Devices 2-12
CHAPTER 4. SCHEDULED MAINTENANCE
4-1 Scheduled Maintenance Index 4-1
4-2 Maintenance Procedures Control Settings 4-2
4-3 Frequency Chart 4-3
4-4 Normal Bandwidths 4-4
CHAPTER 5. TROUBLESHOOTING
5-1 Troubleshooting Index 5-1
5-2 Maintenance Turn-On Procedure 5-3
5-3 Relays, Lamps and Overload Devices 5-5
5-4 Test Cable Data 5-7
Trouble Isolation 5-18
Transformer and Coil Resistances 5-22
5-6
Connector Resistance Measurements 5-25
CHAPTER 6. CORRECTIVE MAINTENANCE
6-1 IF Alignment Chart 6-9
6-2 RF Alignment Chart 6-15
6-3 Mechanical Filters and Associated Trimmers 6-32
Table Page
7-1 List of Major Units 7-2
7-2 Parts List. 7-2
7-3 List of Manufacturers 7-39

Figure 1-1. Radio Receiver R-390A/URR

CHAPTER 1

GENERAL INFORMATION

1．1 PURPOSE．

1．1．1 Radio Receiver R－390A／URR（figure 1－1）is a general purpose receiver for use in both shore based or ship－ board installations．It covers the frequency range of 0.5 to 32 MHz ，and is especially adaptable for single－side－ band，multi－channel radio－teletypewriter reception with terminal equipment．

1． 2 PHYSICAL DESCRIPTION．

1．2．1 The R－390A／URR is an integrally constructed receiver designed for mounting in a standard 19－inch rack or in a table top cabinet．All operating controls，indicators，and a PHONES jack are located on the front panel（figure 2－1）．Two handles are provided to aid in removal of the receiver from rack or cabinet．Antenna connections， operating and spare fuses，power cord，IF OUTPUT，OVEN switch，terminal boards，and special tools are mounted on the rear panel（figure 2－2）．Cutouts are provided for access to internal controls．

NOTE

A modified rear panel for shipboard installation is shown in figure 2－3．

1．3 OPERATIONAL DESCRIPTION．

1．3．1 The R－390A／URR provides reception of continuous－wave（CW），modulated－continuous－wave（MCW），fre－ quency－shift keyed（FSK），and single－sideband（SSB）signals．A double sideband signal，either AM or phase－ modulated（PM），occupying up to a total of 12 kHz of spectrum for voice transmission may also be received．

1．3．2 The receiver furnishes audio frequency output power to a local loudspeaker and headset or a balanced line output for connection to a remote amplifier and speaker．An intermediate－frequency output is also provided so that teletype or facsimile signals may be applied to appropriate converters or terminal equipment which further pro－ cess the signals for application to teletypewriters or facsimile recorders（figure 1－2）．A single－sideband converter is used to process SSB signals but is not required for common AM reception．The teletype terminal equipment might include a frequency－shift converter or multiplex equipment．

1．4 FUNCTIONAL DESCRIPTION．

1．4．1 Radio Receiver R－390A／URR is a superheterodyne type with multiple frequency conversion covering a fre－ quency range of 0.5 to 32 MHz ．Double conversion is used when operating from 8.0 to 32 MHz ，and triple con－ version when operating from 0.5 to 8.0 MHz ．Linear tuning provides constant frequency spread throughout the entire range．Tuning is accomplished by positioning powdered－iron cores in the RF and IF coils，at a rate con－ trolled by a mechanical arrangement of gears，shafts，and cams．The operating frequency is read from a counter－ type indicator．A built－in crystal－controlled oscillator provides frequency calibration．An output is taken from between the third and fourth i－f stages to provide a 455 kHz output for cicbond Converter CU－591A／URR．The ． output of the LOCAL AUDIO provides either 500 mw power to a 600 oh load or 1 mw for a headset，while the out－ put of the LINE AUDIO provides a 10 mw output into a 600 ohm balanced line．A BREAK－IN relay is also provided to disconnect the antenna when an associated transmitter is keyed．

(A) TELETYPEWR ITER RECEIVING SYSTEM

Figure 1-2. System Applications for Teletypewriter and Facsimile Equipment

1.5 EQUIPMENT CHARACTERISTICS.

1.5.1 Information relating to equipment capabilities, input requirements, output signals, internal signals, equipment supplied and required, reference data, and field change is contained in tables 1-1 through 1-8.

TABLE 1-1. EQUIPMENT CAPABILITIES

CAPABILITY	PARAMETERS
Frequency range	0.5 to 32 MHz
Types of signals received	CW, MCW, FSK, SSB, and AM
Frequency indication	Read from digital indicator
Method of calibration	Built-in crystal-controlled oscillator
Calibration accuracy	$\pm 300 \mathrm{~Hz}$
Calibration points	Every 100 kHz
Sensitivity (signal plus noise to noise ratio)	
AM sensitivity	$5 \mu \mathrm{v}$ at 10 dB rise
CW sensitivity	$1 \mu \mathrm{v}$ at 10 dB rise
Ambient temperature range:	
Operating	-40 to $+75^{\circ} \mathrm{C}$
Storage	-62 to $+75{ }^{\circ} \mathrm{C}$
Ambient humidity	0 to 95%
VFO stability vs temperature:	+40 to $+60^{\circ} \mathrm{C}$, not to exceed 500 Hz , change must be positive +60 to $+75^{\circ} \mathrm{C}$, not to exceed 500 Hz , change must be negative +20 to $+40^{\circ} \mathrm{C}$, not to exceed $750 \mathrm{~Hz},-40$ to $-20^{\circ} \mathrm{C}$, not to exceed 400 Hz .
Overall stability	-40 to $+65^{\circ} \mathrm{C}$, not to exceed 300 Hz .

TABLE 1-2. INPUT REQUIREMENTS

INPUT	REQUIREMENTS
Power source	115 or 230 volts ac $\pm 10 \%, 48$ to 62 Hz Power input 250 watts total; 140 watts with OVENS switch turned to OFF.
Antenna inputs	
Unbalanced	Whip or single-wire antennas. 125 ohm terminating impedance: matches 50 to 200 ohm balanced, or unbalanced transmission line by use of adapters.

TABLE 1-3. EQUIPMENT OUTPUTS

OUTPUT	REQUIREMENTS
Local audio	1 mw into a headset. 500 mw into a 600 ohm load. 10 mw into a 600 ohm balanced-line for remote stations.
Line audio	455 kHz at $180-220 \mathrm{mv}, 50 \mathrm{ohm}$ impedance match. Audio output voltage for test purpose.

TABLE 1-4. MAJOR INTERNAL SIGNALS

SIGNAL	CHARACTERISTICS
Calibration signal	100 kHz markers and harmonics.
First crystal oscillator	17 Mmz
Resultant sum frequency from first mixer	17.5 io 25 MHz (tirst variable IF)
Second crystal oscillator	11 to 34 Mmz
Resultant difference frequency from second mixer.	3 to 2 MHz (second variable IF)
Variable frequency oscillator	3.455 to 2.455 kHz
Resultant frequency from third mixer.	455 kHz (fixed and final IF)
Beat frequency oscillator	452 to 458 kHz
Resultant beat frequency from audio detector	0 to 3000 Hz , adjustable

TABLE 1-5. REFERENCE DATA

NAME	NOMENCLATURE
Technical Manual	NAVSHIPS
Maintenance Standards Book	NAVSHIPS 93053.42A

TABLE 1-6. EQUIPMENT SUPPLIED

TTEM	MEIGHT $($ in。 $)$	DEPTH (in.)	WIDTH (in。)	WNITT (ib.)
Radio Receiver R390A/URR	$10-15 / 32$	$16-19 / 32$	19	75

TABLE 1-7. EQUIPMENT REQUIRED BUT NOT SUPPLIED

ITEM	NOMENCLATURE
Doublet antenna	
or	
whip or single-wire antenna	
Headset	CU-591A/URR

TABLE 1-8. FIELD CHANGE DATA

CHANGE	AUTHORIZATION	APPLICABILITY	IDE NTIFICATION
No. 1	EIB 526 EIB 551A	All	Lead connected between pins 2 and 7 of tube socket XV603.
No. 2	EIB 542	Shipboard only	Two soldered jumper leads on TB-101.
No. 3	EIB 702	Shipboard only	"AN" type connectors for terminating audio and AC power cables on the rear panel.
No. 4	EIB 655 EIB 661	Shipboard only	Diode load test jack located on front panel.
No. 5	EIB 664	Shipboard only	Shorting plug connected to J104 on rear panel.
No. 6	EIB 702	Shipboard only	Rectifier tubes V801 and V802 have been removed.
No. 7	EIMB	Shipboard installations in Supplementary Radio Spaces only.	Decals located on VFO assembly and RF amplifier chassis "Modified by FC7'.
No. 8	EIMB	Selected ships only	Elapsed time indicator mounted on front panel.

1.5.2 Production Changes. During production of the receiver, several changes were made in the equipment (table 1-9). Each of these changes is shown on the receiver by means of a modification number stamped on the affected subchassis. A MOD number higher than 1 indicates that all earlier modifications have also been performed. Some receivers may have a MOD number stamped on a part rather than a subchassis. This indicates that a modification has been made to the part and it is not a subchassis modification.

TABLE 1-9. PRODUCTION MODIFICATIONS

a. This was also done to receivers on Order No. 08719-Phila-55 with serial numbers 600 and higher.
b. Modifications to receivers bearing Order No. 14-Phila-56. All of the modifications listed in table 1-9 were made to receivers bearing Order No. 14-Phila-56; however, MOD numbers were stamped only on tuned-circuit assemblies Z201-1 and Z201-2. For identification, the order number has been stamped on each subchassis.
c. Alternate-type filters in some receivers bearing Order No. 14-Phila-56. Some receivers bearing Order No. 14-Phila-56 have 8- and $16-\mathrm{kHz}$ mechanical filters, FL504 and FL505 (fig. 6-16), that require a decreased amount of tuning capacitance across their inputs and outputs. In these receivers, capacitors C515 (82 pf) and C516 (51 pf) are not connected to the output terminals of the filters; instead, both capacitor leads are attached to ground lugs on the filter mounting screws. In addition, capacitors C507 (51 pf) and C508 (8 pf) are not connected to the input terminals of the filters; instead, both capacitor leads are attached to ground lugs on a shield underneath the intermediate frequency (IF) chassis. These capacitors are available when filters requiring the full amount of tuning capacitance are installed in the receiver. Capacitors C564, C565, C570, and C571 remain in the circuits.
d. B+ Fuses. Receivers bearing Order No. 14-Phila-56, serial numbers 2683 and above, and Order No. $14385-$ Phila- 85 have two additional fuses for B^{+}circuit protection. Fuse F102 is located in the B^{+}line between pin 5 of plug P111 and pin 5 of plug P119. Fuse F103 is located in the B+ line leading from pin 2 of plug P119.

1. 6 SAFETY REQUIREMENTS

WARNING

The voltage used in this receiver can be dangerous to human life. To prevent shock hazard to personnel touching outside metal parts of the receiver, connect GND terminal 16 on the rear panel to the same ground as that of the power source. Do not depend on the front panel screws or the antenna transmission line to ground the chassis.

1. 7 LOGISTICS DATA

1.7. 1 The estimated time required to perform scheduled maintenance is $1-1 / 2$ man hours per quarter. Material required in performing scheduled maintenance is listed in table 1-10, and test equipment required to perform all maintenance tasks is listed in table 1-11.

TABLE 1-10. MATERIALS REQUIRED FOR SCHEDULED MAINTENANCE

ITEM	PURPOSE
Soft-bristled brush	Remove dust from receiver
Lint-free cloth	Wipe receiver surfaces
Cleaning solvent, Navy type 140-F	Remove grease and smudge from receiver surfaces
Pressurized dry air	Remove lighter sediment from hard to reach areas

TABLE 1-11. TEST EQUIPMENT REQUIRED

CATEGORY	RECOMMENDED	ALTERNATE	PARAMETERS
RF Signal Generator	AN/URM-25D	AN/URM-25 () 400 kHz to $32 \mathrm{MHz}, 0.1 \mu \mathrm{v}$ to $0.1 \mathrm{v}, 400 \mathrm{~Hz}$ modulation	
RF Multimeter	ME-30B/U		455 kHz
Electronic Multimeter	AN/USM-116()	ME-6D/U	2.5 to $345 \mathrm{vac}, 0$ to 300 vdc
Multimeter	AN/PSM-4()	CSV-260	0 to inf (∞) ohms
Audio Oscillator	AN/URM-127	TS-382/U	425 to $3500 \mathrm{~Hz}, 100 \mathrm{mv}$
Oscilloscope	AN/USM-117()	AN/USM-105	0.2 to $2 \mathrm{vdc} / \mathrm{cm}$
Frequency Counter	AN/USM-207()	CAQI-524D	$\begin{aligned} & 425 \mathrm{~Hz} \text { to } 32 \mathrm{MHz} \text {, } \\ & 0.1 \mathrm{v} \mathrm{rms} \end{aligned}$
Tube Socket Adapter	AN/URM-119	MX-125B/U	

,

CHAPTER 2

OPERATION

2.1 INTRODUCTION.

2.1.1 Radio Receiver R-390A/URR is a general purpose receiver that is designed to receive continuous-wave (CW), tone modulated CW (MCW), amplitude-modulated (AM), frequency-shift keyed (FSK), and, in conjunction with a converter, single-sideband (SSB) transmissions in the 0.5 to 32 MHz range. The receiver furnishes AF output power to a local loudspeaker and headset or a balanced line in all modes.
2.1.2 A single-sideband converter may be used with the receiver for the reception of single-sideband (SSB) signals. This permits reception of SSB signals with a 3.5 kHz bandwidth. A double sideband, either AM or phase-modulated (PM), occupying up to a total bandwidth of 3.5 kHz also can be received. This mode is used primarily for the reception of multichannel radio-teletypewriter transmissions.
2.1.3 Operator maintenance consists of those checks and tests that can be done by equipment controls or by visual observation. Technician maintenance consists of alignment and troubleshooting procedures usually requiring the use of test equipment. Refer to figure 2-1 for location and identification of operating controls and indicators.

2.2 CONTROLS AND INDICA TORS.

2.2.1 All controls, indicators, and connectors required for normal use are located on the front panel (figure 2-1). Fuses and other connectors are located on the back of the receiver (figures 2-2 and 2-3).

TABLE 2-1. OPERATING CONTROLS, INDICATORS AND CONNECTORS

CONTROL/INDICATOR/ CONNECTOR	REFERENCE DESIGNATION	FUNCTION
LINE LEVEL meter LINE METER switch	$\begin{aligned} & \text { M101 } \\ & \text { S105 } \end{aligned}$	Indicates level of balanced-line audio output.

FUSES FIO2 AND FIO 3 APPEAR ONL
IN RECEIVERS BEARING ORDER NO.
14-PHILA-56, SERIAL NUMBERS 268
ANO ABOVE, AND ORDER NO $14385-$
phila-se.

TABLE 2-1. OPERATING CONTROLS, INDICA TORS AND CONNECTORS (Cont)

CONTROL/INDICATOR/ CONNECTOR	REFERENCE DESIGNA TION	FUNCTION
FUNCTION switch	S102	FUNCTION switch has five positions:
		Switch Position
		OFF No power applied
		STANDBY Receiver inoperative, filament voltage applied to tubes.
		AGC $\quad \begin{aligned} & \text { Receiver operative, with gain } \\ & \text { controlled automatically }\end{aligned}$
		Receiver operative, with gain controlled by RF GAIN or by an external control
		CAL Receiver and internal 100 kHz oscillator operative for calibration checks
BREAK IN switch	S103	Permits break-in operation with proper connections on rear terminal board
LINE GAIN control	R104	Controls level of signal applied to balancedline audio output terminals
AUDIO RESPONSE switch	S104	Switch Position \quad Effect
		Sharp 800 Hz tone is loudest; used for CW
		Wide Most voice frequencies are heard
BANDWIDTH KC switch	S501	Changes the bandpass centered on the carrier frequency to the width selected
BFO PITCH control	L508	Used to adjust pitch of audio output tone when receiving CW
BFO switch	S101	Turns on beat frequency oscillator by applying plate and screen voltages
PHONES jack	J102	Used to connect headset to audio output
DIODE LOAD jack	J904	Used to measure detector voltage

TABLE 2-1. OPERATING CONTROLS, INDICATORS AND CONNECTORS (Cont)

CONTROL/INDICATOR/ CONNECTOR	REFERENCE DESIGNATION	FUNCTION
LOCAL GAIN control	R105	Controls the audio output to phones or local speaker
DIAL LOCK control		Mechanical lock on KLOCYCLE CHANGE control.
KILOCYCLE CHANGE control	Gear train	Tunes various RF circuits to any frequency within a 1 megacycle band; changes reading of last three digits of frequency indicator
Frequency Indicator	Counter	Indicates frequency xeceiver is tuned to
ZERO ADJ Control	Mechanical. eluteh	Used to calibrate the frequency indicator to a known frequency
RF GAIN control	R103	Manual control of amplification of receiver signal
WEGACYCLE CHANGE control	Gear train	Selects any frequency band from 1 to 32 MHz in 1 MHz steps; changes first two digits of frequency indicator
CARRIER LEVEL meter	M102	Indication of 0 dB with RF GAIN control at 10 corresponds to an input signal of approximately 2 microvolts
LIMITER switch and control	R120	Controls static and noise interference
AGC switch	S107	Controls rate of change in gain when signal strength changes
ANT TRIM control	C 225	Used for peaking signal
BALANCED ANTENNA connector	$\begin{gathered} \mathrm{J} 104 \\ \text { (rear panel) } \end{gathered}$	For doublet antenna
UNBALANCED ANTENNA connector	$\begin{gathered} \text { J103 } \\ \text { (rear panel) } \end{gathered}$	For long wire or whip antenna
OVENS switch	$\begin{gathered} \mathrm{S} 106 \\ \text { (rear panel) } \end{gathered}$	Set to ON position when receiver is operated under low-temperature or variable-temperature conditions.
		Set to OFF position when receiver is operated in a temperature regulated building, or when maximum frequency stability is not required.

2.3 OPERATING INSTRUCTIONS AND CONTROL SETTINGS

2.3.1 Preoperational Settings.

a. Turn the FUNCTION switch to STANDBY and allow receiver to warm up for 20 minutes.
b. Turn DIAL LOCK fully counterclockwise.

2.3.2 Operating Procedures.

2.3.2.1 Calibration. To maintain maximum tuning accuracy, calibrate the frequency indicator at the 100 kHz point nearest the desired frequency. Recalibrate whenever the MEGACYCLE CHANGE control is turned.

1. Turn the BANDWIDTH switch to 1 position.
2. Turn the BFO switch to ON.
3. Turn the BFO PITCH control to 0 .
4. Turn the FUNC TION switch to CAL.
5. Turn the MEGACYCLE CHANGE control to the desired band.
6. Turn the KILOCYCLE CHANGE control to the 100 kHz point nearest the desired frequency.
7. Turn the ZERO ADJ knob fully clockwise.
8. Turn RF GAIN control to 10 .
9. Turn LOCAL GAIN control to desired level.
10. Adjust the KILOCYCLE CHANGE control for a peak indication on the CARRIER LEVEL meter.
11. Adjust the ANT TRIM knob for a peak indication on the CARRIER LEVEL meter.
12. Turn the ZERO ADJ fully counterclockwise. The frequency dial is now calibrated.
13. The BFO PITCH control should produce a zero beat at 0 . If not adjusted for zero beat, loosen the knob set screw, set knob to 0 without turning shaft and retighten the knob set serew.

2.3.2.2 AM Reception

1. Set controls as follows:

MEGACYCLE CHANGE control:	To desired band.
KILOCYCLE CHANGE control:	To desired frequency after calibrating at nearest
	100 kHz point.
DIAL LOCK knob:	Fully counterclockwise
AGC control:	MED
LINE NETER switch:	0

RF GAIN control: 10
LOCAL GAIN control:LINE GAIN control:
BANDWIDTH switch: 8Adjust as requiredLINE LEVEL meter indication at the VU mark.
2. Adjust the KILOCYCLE CHANGE control and ANT TRIM control for a peak indication on the CARRIER LEVEL meter.
3. If there is a rapid fade on the signal, turn the AGC control to FAST.
4. To reduce adjacent station interference turn the BANDWIDTH switch to 4 , or 2 if necessary.
5. If the receiver is to be disabled during periods of transmission, turn the BREAK-IN switch to ON. Usually, shore stations only are wired for BREAK-IN operation.
6. Adjust the LIMITER control as needed to reduce excessive noise.

2.3.2.3 MCW or CW Reception.

1. Set controls as follows:
DIAL LOCK knob: Fully counterclockwise.

MEGACYCLE CHANGE control:	To desired band.
KILOCYCLE CHANGE control:	To desired frequency after calibrating at nearest 100 kHz point.

FUNCTION switch:

MGC

AGC control:

SLOW
LIMITER control:
OFF
BANDWIDTH switch:
2
RF GAIN control: 10
LOCAL GAIN control:
Adjust as desired
AUDIO RESPONSE switch:
SHARP for CW, WIDE for MCW
BFO switch:
ON for CW, OFF for MCW
BFO PITCH control:
0
2. Tune the KILOCYCLE CHANGE control for a zero beat of the desired frequency.
3. Adjust the BFO PITCH control for the desired tone (CW only).
4. To reduce adjacent channel interference turn the BANDWIDTH switch to 1 , or . 1 if necessary.
5. If noise is heard between characters, turn FUNCTION switch to MGC and reduce the RF GAIN control setting to prevent blocking as necessary.

2.3.2.4 FSK Reception.

1. Set controls as in paragraph 2.3.2.3 for CW reception, after which make the following changes:

BANDWIDTH switch:
Turn to 2, except for filter type (teletype converter) equipment where audio frequencies of 2125 and 2975 Hz are used, turn to 4 .
2. Adjust the KILOC YCLE CHANGE control slightly until mark and space signals h : the same signal strength.
3. Adjust the BFO PITCH control for the best teletypewriter copy.
4. Set the LINE ME TER switch to 0 and turn the LINE GAIN control to 10. The $H E$ EVEL meter needle should deflect fully to the right.
5. Adjust the LIMITER control for a LINE LEVEL meter indication at the VU mass er dial.

2.3.2.5 SSB Reception.

1. Set controls as in paragraph 2.3.2.3 for CW reception, after which make the changes:

BANDWIDTH switch:

BFO PITCH control:

KILOCYCLE CHANGE control:

AUDIO RESPONSE switch:

Set at 4.

Set at -2 or +2 for USB or LSB resratw.

Tune to carrier frequency.

WIDE
2. Adjust the BFO PITCH control slightly for the most intelligible reception, aecessary to adjust the KILOCYCLE CHANGE control slightly for the best reception.
3. If the receiver is used with a single-sideband converter then the procedure give. eonverter manual should be used for setting the receiver controls.

2.3.2.6 AM Operation in Jamming Environment.

1. Turn the KILOCYCLE CHANGE control very slowly through several dial markings on either side of the desired signal. Some separation of the desired signal from the jamming signal may be achieved.
2. Turn the BANDWIDTH switch to 4 or 2 and again slowly tune the KILOCYCLE CHANGE control.
3. Adjust the ANT TRIM control to the point where the desired signal is heard with the least amount of interference.
4. Adjust the LIMITER control if the noise is severe.
5. When the jamming signal is weak, turn the FUNCTION switch to MGC and adjust the RF GAIN control as required. The interfering signal may be reduced enough to permit the desired signal to come through.
6. If these steps do not provide a readable signal, request a change of frequency and call sign.
7. Request the use of CW operation, if permissible.
8. If possible, change the direction, length, and height of the antenna. This may reduce the famming effectiveness so that some degree of satisfactory reception is obtained.
9. If the jamming prevents communication, report this fact to your immediate superior. Keep the receiver tuned to the desired signal; continue to operate.

2.3.2.7 CW or MCW Operation in Jamming Environment.

1. Turn the KILOCYCLE CHANGE control very slowly through a few dial markings on either side of the desired signal. Some separation of the desired signal from the jamming signal may be achieved.
2. Turn the BANDWIDTH switch to 1 or .1 and turn the AUDIO RESPONSE switch to SHARP, and again slowly tune the KILOC YCLE CHANGE control.
3. Adjust the BFO PITCH control (CW only); it may be possible to separate the tone of the desired signal from the jamming signal to provide readability.
4. Perform steps 3 through 6: 8, and 9 of procedure 2.3.2.6 for $A M / M C W$ operation.
2.3.2.8 Emergency Turn-Off Procedure.
5. During an emergency such as fire, smoke, etc., main power should be secured at an external switch.

2.3.2.9 Operator's Turn-Off Procedure.

1. When the receiver is not to be used but is to be maintained in a state of readiness, turn the FUNCTION switch to STANDBY.
2. To shut the receiver off, turn the FUNCTION switch to OFF.

2.4 OPERATOR'S MAINTENANCE

2.4.1 Visual Inspection. Visual inspections are operator's preventive maintenance that require no special tools or test equipment. This inspection should be made before the equipment is operated and on a regular scheduled basis. Check all items listed below.

WARNING

Do not check any item with the power on.

1. Check that all cables, headset cords, and antenna cables are properly connected.
2. Check that no cables or cords are cut, frayed, or broken.
3. Check that the antenna cable is not grounded or open.
4. Check all fuses, replace any that are broken or burned-out (burned-out fuses are usually an indication of other troubles). (Refer to table 2-2 for fuse location.)
5. After all inspections have been made, check that the primary power cable is attached, and all external power switches are on.
2.4.2 Operational Checks. The operational checks will assist the operator to determine that the $R-390 A / U R R$ is functioning normally. Place the receiver in AM reception (paragraph 2.3.2.2). After the equipment has had time to warm up, perform the steps shown in table $2-2$ in the order given.

CAUTION

If at any step in the operational check, normal indication does not occur, turn the FUNCTION switch to OFF. Make a note at which step the malfunction appeared, and the observed indications. Notify the technical maintenance personnel of the malfunction and the indications received.

TABLE 2-2. OPERATIONAL CHECKLIST

ACTION	NORMAL INDICA TION
Set FUNCTION switch to AGC. Turn KILOC YC LE CHANGE control to WWV or other standard. Adjust ANT TRIM control for maximum indication. Turn the LOCAL GAIN control from minimum to maximum. Turn the LINE GAIN control from minimum to maximum. Turn RF GAIN control from minimum to maximum. Turn FUNCTION switch to AGC. Tune KILOCYCLE CHANGE control to several different signals with FUNCTION switch at AGC. Set up calibration procedure as in paragraph 2.3.2.1. Check for normal receiver gain at upper, center, and lower portion of each band, selected by MEGACYCLE CHANGE control. Turn LIMITER control to the right.	Dial lamps lighted. Rushing noise or signal heard in headset. Desired station is heard. Maximum deflection of the CARRIER LEVEL meter should be obtained. Volume at the loudspeaker or headset will increase. Output level to 600 ohm line and LINE LEVEL meter indication will increase. Audio output and CARRIER LEVEL meter indication will increase. With no signal being received, noise level should increase slightly and CARRIER LEVEL meter should not indicate. Output volume nearly constant. CARRIER LEVEL meter should indicate not less than 40 dB with minor adjustment of KILOCYCLE CHANGE control. Noise level is reduced in amplitude; audio signal is distorted.

TABLE 2-2. OPERATIONAL CHECKLIST (Cont)

ACTION	NORMAL INDICA TION
Turn LINE METER switch to 0 , and adjust LINE GAIN control.	LINE LEVEL reading at 0 dB (VU mark).
Set LINE METER switch to -10.	LINE LEVEL meter reads completely to the right.
Set LINE METER switch to +10.	LINE LEVEL meter reads -10.
Set LINE METER switch to OFF.	No reading on LINE LEVEL meter.
Turn BFO switch ON.	
Turn KILOCYCLE CHANGE control.	A whistle-like tone is heard as each station is tuned in.
Turn BFO PITCH control.	The pitch of the tone changes.
Turn BANDWIDTH KC switch to each position from 16 to. 1 .	Selectivity becomes sharper and noise decreases. Only low frequency audio tones are heard in the . 1 position.
Turn FUNCTION switch to STANDBY.	No noise or signal is heard, dial lamps remain lighted.
Turn FUNCTION switch to OFF.	Dial lamps go out.

TABLE 2-3. LIST OF OVERLOAD PROTECTION DEVICES

$\begin{gathered} \text { FUSE } \\ \text { SYMBOL } \end{gathered}$	LINE VOLTAGE				FUNC TION
	115 Volts		230 Volts		
	OVENS Switch ON	OVENS Switch OFF	OVENS Switch ON	OVENS Switch OFF	
F-101	3 amp	2 amp	1-1/2 amp	1 amp	Line Fuse
F-102	$1 / 4 \mathrm{amp}, 250 \mathrm{v}$		$1 / 4 \mathrm{amp}, 250 \mathrm{v}$		B+ Line
F-103	1/8 amp, 250 v		1/8 amp, 250 v		B+ Line

All Fuses are located on the rear panel of the receiver (figure 2-2).

CHAPTER 3

FUNCTIONAL DESCRIPTION

3.1 OVER-ALL FUNCTIONAL DESCRIPTION.

3.1.1 Radio frequency signals in the range of 0.5 to 32 MHz are applied by way of an appropriate antenna to the antenna relay assembly of the $\mathrm{R}-390 \mathrm{~A} / \mathrm{URR}$ receiver (figure $3-1$). The antenna relay assembly permits isolation of antenna and receiver whenever an associated transmitter is operated, or when calibration signals are applied to the rf amplifier in lieu of received signals. The calibration oscillator generates a 100 kHz signal and harmonics for convenient built-in dial calibration checking.
3.1.2 After rf amplification, the lower input frequencies, 0.5 to 8 MHz , are applied to the first mixer whereas the upper frequencies, 8 to 32 MHz , bypass this stage. The lower frequencies are heterodyned with a fixed 17 MHz frequency which is generated by the first crystal oscillator. The sum frequency is selected, so that the resultant output of the first mixer ranges from 17.5 to 25 MHz . The second mixer receives either this range of frequencies from the first mixer when tuning the lower bands, or the directly applied 8 to 32 MHz signals from the rf amplifier on the higher bands.
3.1.3 The second crystal oscillator generates fixed frequencies in 1 MHz steps from 11 to 34 MHz . These steps are selected so that the difference input to the third mixer varies between 3 and 2 MHz . The variable frequency oscillator that also feeds this mixer is tuned from 3.455 to 2.455 MHz in step with the input signal so that the output of the third mixer is always 455 kHz . This frequency is applied to a four-stage IF amplifier.
3.1.4 The first IF stage has a crystal filter in its input circuit and mechanical filters in its output circuit that provide for bandwidth selection in six steps. The output of the third IF stage is applied to a cathode follower as well as to the fourth IF stage. The output of the cathode follower is used to develop an AGC bias, and can also be used externally by sideband converter equipment. The AGC bias is processed by an amplifier stage and a rectifier, and a time constant stage provides control of the AGC response time.
3.1.5 After amplification in the fourth IF stage, the 455 kHz signal is detected to produce audio frequencies. A beat-frequency oscillator can be employed to receive keyed CW signals. A limiter stage is also provided and the amount of limiting can be adjusted or eliminated entirely. The audio amplifiers permit the introduction of an audio bandpass filter if desired, and provide separate outputs to local phones or speaker and to remote (line) speakers.

3.2 DE TAILED CIRCUIT ANALYSIS. (See figure 5-12).

3.2.1 Radio Receiver R-390A/URR consists of a main frame and six subchassis. These are the RF subchassis, variable-frequency oscillator (VFO) subchassis, crystal-oscillator subchassis, IF subchassis, AF subchassis, and the power-supply subchassis.
3.2.2 Antenna Circuit. The antenna circuit matches antennas of various characteristics to RF amplifier V201. The BALANCED ANTENNA input (using connector J104) has a characteristic impedance of 125 ohms. Two-wire antenna systems, such as doublets with either 50 -ohm twisted pair or coaxial transmission lines or with 50 to $200-$ ohm twin-lead transmissions lines, may be used without serious mismatch. Long wire antennas may also be used if one side of $J 104$ is connected to ground. The UNBALANCED ANTENNA connector, J103, is used for whip, long-wire, random-length, and single-wire antennas. Normally, a balanced antenna is connected via relay K101A contacts and switches S201 and S202 to the input coil of one of six RF transformers, T201 through T206, depending upon the frequency being tuned. Similarly, an unbalanced antenna is connected via relay K101B contacts and switch

S205 to one of six capacitors within the RF transformers. When relays K101A and B are energized, all antenna input terminals are disconnected from the r-f transformers and are grounded. Relays K101A and K101B are energized only when an associated transmitter is connected to the break-in circuit and is keyed, or when the FUNCTION switch is in the STANDBY or CAL positions. With the BREAK-IN switch in the ON position and the associated transmitter keyed, a ground is applied to pin 9 of TB103 to energize relay K601. This break-in relay provides a ground connection for CR102 which energizes K101A and B. Note that CR102 is also grounded when K601 is de-energized and the FUNCTION switch is in the STANDBY or CAL position.
3.2.3 The connections of the antenna circuit are changed for shipboard use by field change 5 (figure $3-2$). In this circuit arrangement, an unbalanced antenna connection is made to $J 103$ but because of the reversal of connectors P205 and P206, the antenna is connected to S202 and pin 1 of the selected RF transformer primary. Pin 2 of the same coil is grounded via S201 and a shorting plug on J104.
3.2.4 Calibration Oscillator. The calibration oscillator circuit is always connected to grid 1 of the RF amplifier, but the three stages, (V205A, V206 and V205B) are only activated when the FUNCTION switch is placed in the CAL position. This causes $B+$ to be applied to the three calibration oscillator stages and disconnects the antenna input as described in paragraph 3.2.2. Calibration oscillator V205A is a crystal controlled oscillator which generates a 200 kHz signal that is used to synchronize 100 kHz multivibrator V206. The multivibrator acts as a harmonic generator, and its output is coupled to the RF amplifier by way of cathode follower V205B. The 100 kHz harmonics permit calibration checking over the entire range of the receiver.
3.2.5 RF Amplifier. RF amplifier V201 amplifies input signals and prevents antenna radiation of the various signals generated by oscillators in the receiver. RF GAIN control R103 adjusts the cathode bias, and, consequently, the gain of V201 and the first and second IF amplifiers. The RF GAIN jumper on rear panel terminal board TB102 can be removed and a remote gain control can be connected if desired. RF coils Z201-1 through Z206-1 and Z201-2 through Z206-2 are switched in step with antenna transformer switching.
3.2.6 First Mixer and First Crystal Oscillator. Input frequencies from 0.5 to 8 MHz are applied to first mixer V202 whereas 8 to 32 MHz signals are routed around this stage. First crystal oscillator V207 generates a fixed 17 MHz signal for cathode injection to the first mixer. T207 includes the plate tank circuit and a coupling coil. By switching its screen voltage on or off, this oscillator is enabled while tuning from 0.5 to 8 MHz , and is disabled while tuning from 8 to 32 MHz . Note that switches S207, S208front, and $\mathbf{S 2 0 8}$ rear operate in step. Z213 in the plate circuit of the first mixer is tuned to the sum of the two input signals; that is, from 17.5 to 25 MHz as the receiver is tuned from 0.5 to 8 MHz .
3.2.7 Second Mixer and Second Crystal Oscillator. The signals applied to grid 6 of second mixer V203 range from 17.5 to 25 MHz when the receiver is tuned from 0.5 to 8 MHz , and then range from 8 to 32 MHz when the receiver is tuned from 8 to 32 MHz . The second crystal oscillator generates one of 32 fixed frequencies for application to the cathode of the second mixer. The oscillator frequency is selected by means of the MEGACYCLE CHANGE control which drives two 32-contact switches (figure 3-3). Switch S401 selects one of 15 crystals, and switch S402 selects an appropriate plate-circuit tuning capacitor. The plate circuit of V401 is tuned to the fundamental, second, or third harmonic of the selected crystal to provide the desired frequency, as indicated in figure $3-3$. The frequency advances in 1 MHz steps from 20 to 27 MHz as the receiver is tuned from 0.5 to 8 MHz , and then proceeds from 11 to 34 MHz as the receiver is tuned from 8 to 32 MHz . The plate-circuit coil is a part of T401 (figure 5-11) which also provides coupling to the second mixer. The mixer's plate tank, Z216, is tuned by the KILOCYCLE CHANGE control to the difference frequency which descends from 2.5 to 2.0 MHz as the receiver is tuned from 0.5 to 8 MHz , and then descends from 3.0 to 2.0 MHz as the receiver is tuned from 8 to 32 MHz .

NOTES:

1. REVERSE CABLES TO 1105 AND 3106 USE J103 AS ANTENNA INPUT JACK.
2. Shorting plug required on Jlo4.

Figure 3-2. Antenna Input Connections Modified by Field Change 5 For Shipboard Installations
3.2.8 Third Mixer and VFO. Third mixer V204 heterodynes the output signals from V203 with the output of variable frequency oscillator V701. The signal generated by this oscillator varies continuously from 2.955 to 2.455 MHz as the receiver is tuned from 0.5 to 8 MHz , and varies from 3.455 to 2.455 MHz as the receiver is tuned from 8 to 32 MHz . Z702 includes the plate tank circuit for the oscillator and the coupling circuit to the cathode of the third mixer. The two input signals are so coordinated that they produce a fixed difference frequency, 455 kHz , which is tuned by T208 and coupled to the first of four IF amplifiers.
3.2.9 First IF Amplifier. The first IF amplifier stage incorporates bandpass filters that permit IF bandpass selection between the limits of 0.1 and 16 kHz . Six selections are provided: the two lower values by means of a crystal filter in the input circuit, and the four upper values by means of mechanical filters in the output circuit.
3.2.9.1 The crystal filter (figure 3-4) is used to obtain selectivities of 0.1 and 1 kHz . When the BANDWIDTH switch is set to .1 or 1 , this filter is connected between the output of third mixer V204 and the input to first IF amplifier V501. The 455 kHz output signal is coupled from third mixer transformer T208 to crystal filter Z 501. The crystal passes only those signals at or very close to 455 kHz . Crystal holder and stray capacitances are neutralized by adjusting C520. Coil L503 and capacitor C524 are tuned to 455 kHz .

Figure 3-3. Second Crystal Oscillator V401, Crystal and Plate Circuit Switching, Schematic Diagram

Figure 3-4. Crystal Filter, Simplified Schematic Diagram
3.2.9.2 When the BANDWIDTH switch is turned to. 1 , the crystal circuit is loaded by C503 in series with the combination of R502 in parallel with the series combination of C501 and R503. The exact value of R503 is chosen between 560 and $2,700 \mathrm{ohms}$, to provide a bandwidth of 0.1 kHz . When the BANDWIDTH switch is turned to 1 , C 501 and R503 are removed from the circuit, and the bandpass is increased to 1 kHz . The value of resistor R502 is selected between 33 K and 68 K to provide a bandwidth of 1 kHz . When the BANDWIDTH switch is turned to 2,4 , 8 , or 16 , T208 is coupled directly to the control grid of V501 through capacitor C501, thereby removing the crystal from the circuit.
3.2.9.3 Four mechanical filters are coupled to the shunt-fed plate circuit of V501 through coupling capacitor C553 and BANDWIDTH switches S502 and S503 (figure 3-5). In some later production models of the receiver (table 1-9), variable trimmer capacitors were added across the input and output circuits of the mechanical filters to improve their tuning (figure $3-6$). When the BANDWIDTH switch is turned to .1, 1 , or $2,2 \mathrm{kHz}$ mechanical filter FL502 is switched into the circuit. The 4, 8, and 16 positions of the BANDWIDTH switch use FL503 through FL505, respectively. The bandpass of the IF amplifiers, and therefore of the entire receiver, is determined by the selection of one of the six switch positions of the BANDWIDTH switch. The very narrow bandwidth 0.1 kHz and 1 kHz positions of this switch also incorporate the crystal filter (paragraph 3.2.9.1) into the first IF amplifier circuit. Switch S502 (front) connects the plate circuit of V501 to the input of the appropriate mechanical filter, and S503 (front) connects the output of the appropriate filter to the control grid circuit of second IF amplifier V502. Switches S502 (rear) and S503 (rear) short circuit the input and output terminals of the unused mechanical filters. Capacitors C507 through C510 and C513 through C516 resonate the input and output coils to prevent stray coupling in the unused filters to achieve proper gain and bandpass.
3.2.9.4 Magnetostriction is that property of certain materials that causes them to lengthen or shorten when they are in a magnetic field. Mechanical filters of the magnetrostrictive type are capable of producing almost ideal bandpass characteristics. The flatter the top and the steeper the sides of the bandpass curve, the better the filter. Part B of figure 3-7 compares the frequency response curve of a mechanical filter with that of a conventional tuned circuit.
3.2.9.5 Part A of figure 3-7 illustrates the construction of a typical mechanical filter. A signal current is passed through the input coil, which causes the driving wire to expand and contract due to magnetrostriction. This mechanical motion is transmitted to the disk resonators through the coupling wires. Each disk resonator is sharply resonant (mechanically) to the intermediate frequency, and several such disks, synchronously driven, are used to accomplish the required bandpass. The last disk resonator is tied to the driven wire, which induces the IF output signal into the output coil. Biasing magnets are used to adjust the driving wire and the driven wire for the greatest magnetrostrictive action. The mechanical filters used in the receiver are tuned and adjusted at the factory and require no further adjustment.
3.2.10 Second, Third, and Fourth IF Amplifiers. Second, third, and fourth IF amplifiers V502, V503, and V504 respectively, amplify (in cascade) the 455 kHz signal from first IF amplifier V501. At V504, the signal from transformer T503 is fed to detector V506B. A second path for the 455 kHz signal is from the control grid of V504 to the control grid of IF cathode follower V509B.
3.2.10.1 The cathode of V502 returns to RF GAIN control R103 along with RF amplifier V201 and first IF amplifier V501. Screwdriver-adjusted GAIN ADJ control R519, in the cathode circuit of V503, is adjusted during alignment so that the IF amplifiers will yield sufficient amplification. This adjustment compensates for variations in tube gain and loss of tube gain as a result of aging. The cathode circuit of V504 contains screwdriver-adjusted CARRMETER ADJ control R523. The setting of this adjustment has little effect on the gain of V504, since it varies the cathode resistance of V504 only between 680 and 698 ohms. Tube V504 and its circuit components are used as onehalf of a bridge circuit containing CARRIER LEVEL meter M102.
3.2.10.2 Adjustment of IF transformers T501, T502, and T503 is normally not included in the IF amplifier alignment procedure. They are initially tuned during receiver assembly, and should require no subsequent adjustment. The bandwidth of these transformers is sufficiently wide to have negligible effect within the bandpass of even the 16 kHz mechanical filter. Their most important function is that of providing attenuation of IF signals more than 8 kHz

Figure 3-5. First IF Amplifier V501, Simplified Schematic Diagram

NOTES:

1. ALTERNATE TYPE FILTERS USED ONLY ON ORDER NO. 363-Phila-54, MOD. NO.I AND ABOVE, AND ALL ON ORDER NO. 14-PHILA-56.
2. WHEN ALTERNATE TYPE FILTERS FL504 AND FL5O5 ARE INSTALLED, CAPACITORS C507, C5O8, C5I5, ANO C5I6 ARE REMOVED FROM THE CIRCUIT. THE ALTERNATE TYPE FILTERS ARE IDENTIFIED BY RED DECALS ON THEIR CASES THAT READ "WHEN USING THIS FILTER DISCONNECT C5O8 AND C5IS (B2UUF)" OR "WHEN USING THIS FILTER, DISCONNECT C507 AND C5I6 (5IUUF)"
3. R-390A/URR MFG BY EAC SERIAL NO. 1 THROUGH 460 HAVE CERAMIC FILTERS. REPLACE WITH MECHANICAL FILTERS WHEN CERAMIC TYPE ARE DEFECTIVE.

Figure 3-6. Modified Mechanical IF Filters

Figure 3-7. Typical Mechanical Filters
removed from 455 kHz . Neutralizing capacitor C525 is adjusted to cancel beat-frequency oscillator signals that might feed back from detector V506B through V504. The secondary winding of T502 also feeds 455 kHz signals to IF cathode follower V509B, which supplies $50 \mathrm{ohm}, 455 \mathrm{kHz}$ signals to external sircuits. The output signal developed across T503 is connected to detector V506B. In the IF subchassis "ith MOD numbers 1 and highc: on Order No. 363-Phila-54, serial numbers 600 and higher on Order No. U8710-Phila-55, and all IF subchas.. Order No. 14-Phila-56, transformers T501, T502, and T503 are stagger-tuned to increase bandwidth. Wher. or: of these transformers is replaced in any subchassis, stagger-tuning procedures should be followed (paragraph 6.2.7.1).
3.2.11 Detector and Limiter. Detector V506B demodulates the 455 kHz signal to recover the intelligence from the modulated signals. Limiter $\sqrt{ } 507$ removes noise pulses that exceed the amplitude of the modulation. The output of the detector passes through the limiter stage before it is fed to the audio channels.
3.2.11.1 The detector is connected as a half-wave diode by connecting the control grid and plate together. The polarity at DIODE LOAD terminals 14 and 15 of TB103 is negative with respect to chassis ground.
3.2.11.2 Limiter V507 is a series-type diode limiter, which couples the audio signals from the detector to the audio channels. When LIMITER switch S108 is in the OFF position, audio signals pass through V507 without any limiting action. When switch S 108 is turned on, the amount of limiting is controlled by LIMITER control R120. The limiter uses both sections of a twin-triode tube. The B-section of the tube is the negative peak limiter, and the A-section is the positive peak limiter. Both positive and negative noise peaks are clipped. As the LIMITER control is turned more and more clockwise, the de threshold voltage approaches chassis ground potential and more severe clippping occurs. Figure 3-8 shows that the audio signal as well as the noise will be clipped if the LIMITER control is turned too far clockwise. The circuit automatically adjusts to any level of signal input and modulation percentage.
3.2.12 Beat-Frequency Oscillator. Beat-frequency oscillator V505 generates a signal that can be varied from approximately 452 to 458 kHz (3 kHz above and 3 kHz below the intermediate frequency). By beating this signal with the 455 kHz signal at detector V506B, audio signals that are variable from 0 to $3,000 \mathrm{~Hz}$ are produced. Voltage for the plate and screen grid is obtained from the switched RF-IF B+ line through BFO switch S101 when the switch is in the ON position.
3.2.13 IF Cathode Follower. IF cathode follower V509B provides a 50 -ohm, 455 kHz output signal for use with a single sideband converter. This stage has negligible loading effect on the third and fourth IF amplifiers and isolates the AGC IF amplifier from them to prevent interaction.

A. AUDIO SIGNAL AND RANDOM NOISE PULSES WITHOUT NOISE LIMITER OPERATION
B. AUDIO SIGNAL AND RANDOM NOISE PULSES WITH NOISE LIMITER OPERATION

Figure 3-8. Typical Oscilloscope Presentation of Limiter Operation
3.2.14 Automatic Gain Control (AGC) Circuit. When the receiver front-panel FUNC TION switch is set to the AGC position, AGC bias is fed to the control grid circuits of tubes V201 through V204 in the RF subchassis and to tubes V501, V502, and V503 in the IF subchassis. This AGC bias controls the gain of these amplifiers in proportion to the average level of the incoming RF signal. As a result, signals appear to have a relatively constant signal strength. The AGC circuit operates only for signals in excess of approximately 5 microvolts, to prevent reduction of receiver gain when receiving extremely weak signals. The AGC switch on the front panel of the receiver allows the operatox to select one of three AGC time-constant characteristics. These positions are SLOW, MED, and . FAST, and are approximately 5 seconds, 0.3 sec ond, and 0.015 second, respectively. This feature enables the operator to choose the AGC time constant which most effectively compensates for fading RF signals. Three tubes are used in the AGC circuit: AGC IF amplifier V508, which amplifies the voltage from IF cathode follower V509B; AGC rectifier V509A, which rectifies the output of V508; and AGC time-constant tube V506A, which lengthens the time constant of the AGC circuit when the AGC switch is set to the SLOW position. When two receivers are used in a diversity reception system, the jumper on TB102, normally connected between terminals 3 and 4 , is connected between terminals 4 and 5 . This connects crystal diode CR101 into the circuits to prevent loading of the AGC circuit of the controlling receiver by the AGC circuit of the passive receiver.
3.2.15 CARRIER LEVEL Meter Circuit. CARRIER LEVEL meter M102 indicates the relative strength of the received RF signal. Fourth IF amplifier V504, AGC time-constant tube V506A, and their circuit components form a bridge circuit which includes meter M102. With no received RF signal and with the RF GAIN control turned fully counterclockwise, the current through V504 is adjusted, with CARR-METER ADJ R523, until M102 reads zero. Under these conditions no current flows through M102. As an RF signal is applied to the receiver (RF GAIN control fully clockwise), AGC voltage is applied to V506A, and its plate current and the voltage drop across R548 decrease. This causes an unbalance in the bridge circuit. The greater the amplitude of the RF signal, the greater the unbalance and the larger the indication of M102. Thus, M102 indicates a relative value that is proportional to the received RF signal. When the FUNCTION switch is in the MGC position, the control grid of V506A is grounded and the CARRIER LEVEL meter will read zero unless the signal input to the control grid of V504 is large enough to draw grid current. This condition indicates an overload, and the RF GAIN control should be turned counterclockwise until the CARRIER LEVEL meter indicates zero again.
3.2.16 First AF Amplifier and AF Cathode Follower. The purpose of these two stages is to amplify the audio signals and to provide a circuit that will distribute the audio signals to the local and line audio channels. The gain of V601A is less than 10 dB , and the gain of V601B is less than unity. The audio output of V601A is applied to AUDIO RESPONSE switch S104, and is either fed directly to the control grid of AF cathode follower V601B (WIDE position), or through 800 Hz bandpass filter FL601 (SHARP position) to V601B.
3.2.17 Local Audio Channel. Audio signals are fed to the control grid of a-f amplifier V602A from LOCAL GAIN control R105. The audio output signals are induced in the secondary windings of T601 and are fed to LOCAL AUDIO terminal 6 of TB102. This audio output supplies at least 500 milliwatts to a 600 -ohm load. The same audio signals are supplied through an attenuator that includes R101 to terminal 8 of TB102 (PHNS terminals), and PHONES jack J102 on the receiver front panel. This power output is at least 1 milliwatt.
3.2.18 Line Audio Channel. The operation of the line audio channel is similar to that of the local audio channel. Signal level is controlled by means of LINE GAIN potentiometer R104. After amplification by V602B and V604, the audio output signals are induced in the secondary winding of T602. The maximum audio output power available at TB103 terminals 10 and 13 is at least 10 milliwatts into a 600 -ohm load. The audio signals are also applied to LINE LEVEL meter M101 via LINE ME TER switch S105 and appropriate shunts and dividers. Switch S105 has four positions: OFF, $+10,0$, and -10 . LINE LEVEL meter M101 is calibrated in volume units (VU), which are based on a zero reference level of 1 milliwatt (mw) into 600 ohms , or 0 dbm . Volume units are used for complex audio signals and are similar to decibels which are used for pure sine waves. When LINE METER switch S105 is set at the 0 position, the LINE LEVEL meter is read directly. When switch S105 is set at the -10 position, subtract -10 VU from the meter reading, and similarly, add +10 VU to the meter reading when S 105 is set at the +10 position.
3.2.19 Power Supply Civcuts. (See figure 5-11). The primary windings of power transformer T801 can be connected in paralle for 15 , c eration or in series for 230 vac operation. Shipboard receivers with field change No. 6 have silicen divd mer ifiers instead of vacuum tube rectifiers for reduced heat dissipation.
3.2.19.1 After $17 t$. 15 de is appli urectly as $B+$ to audio-frequency amplifiers. Similarly, +205 vde is applied directey to Cres ary oscillator V207, second crystal oscillator V401, and VFO V701. The +205 vdc is applied via FUXCTON, th $_$S102 as B^{+}to all RF and IF amplifiers in all positions except OFF and STANDBY. Tube V605 is usec. 5 , her : sgulator for the +150 volt line to the two crystal oscillators and the VFO, and via S102 in the CAL powe calibration oscillator tubes V205 and V206.
3.2.19.2 Twenty-f $7 a f$ m transformer T801 is applied to rectifier CR102 which in turn furnishes 25 vdc to the break-in relay badit foribed in paragraph 3.2.2). The 6.3 vac winding of T801 furnishes power to breakin relay K601. Filament arc oven circuits which also receive 25 vac and 6.3 vac from T 801 are shown in figure $5-13$. The 25 vac wirding su plies power to the filaments of V801 and V802, and by way of current regulator RT510 to the filaments of $V 505$ and V701. In addition, oven heaters HR401 and HR701 receive 25 vac by way of switch S106. The 6.8 vac Inding of T801 supplies power to oven heater HR202 and to all other vacuum tube filaments.

3.3 MECHANICAL TUNINC SYSTEM

3.3.1 Functional Desceiptiv. (See figure 3-9). The mechanical tuning system of Radio Receiver R-390A/URR controls the permeabili: ing and switching to provide continuous linear tuning over a range of 0.5 to 32 MHz in 32 steps. Each step, or band of the MEGACYCLE CHANGE control (except the first band), is tuned linearly over a range of 1 MHz . The first band is tuned linearly from 0.5 to 1 MHz . Although the counter can be set between 00000 and 00500 , no signal reception is possible within this range.
3.3.1.1 MEGACYCLE CHANGE Control. Operation of the MEGACYCLE CHANGE control (lower left) is limited to 10 turns by a progressive mechanical stop. As the control is turned, the first two number wheels on the digital dial are rotated, and the numbers coincide with the frequency of reception in MHz from 0 through 31. At the same time, the crystal selector switch is switched to one of its 32 positions. The RF band switches are also operated by this control through the intermittent gear ant overtravel coupler. This system operates the band switches at precisely the correct time as the MEGACYCLE CHANGE control is turned. The MEGACYCLE CHANGE control, through the differential, also controls the positioning of the $2-$ through $32-\mathrm{MHz}$ antenna and RF slug racks, and the first variable IF slug racks.
3.3.1.2 KILOCYCLE CHANGE Control. The KILOC YCLE CHANGE control (lower right) is connected through a 10 -turn stop to the VFO, the second variable IF the $1-$ to $2-\mathrm{MHz}$ and $0.5-$ to $1-\mathrm{MHz}$ antenna and IF slug racks. The KILOCYCLE CHANGE control knob is also connected through the same differential as the MEGACYCLE CHANGE control knob and provides the movement for the $2-$ through $32-\mathrm{MHz}$ antenna and RF slug racks and the first variable IF slug racks from the starting point established by the MEGACYCLE CHANGE control knob. A ZERO ADJ control knob on the tront panel of the receiver allows frequency dial correction over a small range to align the frequency-counter reading with the receiver frequency.
3.3.1.3 To tune continuously from 0.5 to 32 MHz at a linear rate, not only must the correct coils and transformers be selected, but the slugs in them must be moved at the proper rate to tune them simultaneously. For example, to cover the $0.5-$ to $1-\mathrm{MHz}$ band, the slugs in coils T201 and Z201 move over their entire range, a distance of approximately eight-tenths of an inch. At the same time, the slugs in the coils of Z 213 move approximately five-hundredths of an inch in covering this range. This tuning is controlled with a single knob moving numerous gears and cams.
3.3.2 Detailed Mechanical Analysis. (See fisure 3-10). The gears in the illustration are identified by letter designations. The numbers indicate the numiber of teeth in each gear. The cams that furnish motion to the slug ract: we shown as single units; actually, each slug rack has a roller at both ends and identical cams mounted on cuch end of the cam shaft.

Figure 3-9. Tuning System, Mechanical Block Diagram

3.3.2.1 MEGAC YCLE CHANGE Control.

1. As the MEGACYCLE CHANGE control is turned, it is limited to 10 turns by a 10 -turn stop. The MHz counter wheels show the frequency band or step selected by the MEGACYCLE CHANGE control. As this control is rotated, the counter wheels are driven through gears (A), (B), (C), (D), (E), (L), (M), (R), (S), and (T).
2. The MEGACYCLE CHANGE control also operates the six-position r-f band switch through gears (A), $(\mathrm{B}),(\mathrm{C}),(\mathrm{E}),(\mathrm{F}),(\mathrm{G})$, intermittent gear (H), and gears (J) and (K). The intermittent gear and overtravel coupler provides an intermittent rotary motion so that the switch is turned to each one of its six positions at exactly the right time. Gear (G) rotates continuously as the MEGACYCLE CHANGE control is turned; however, gears (J) and (K) are driven only during the part of the rotation of gear (G) when the teeth of intermittent gear (H) engage the teeth of gear (J).
3. Also operated by the MEGACYCLE CHANGE control is the 32 -position crystal oscillator switch. This is accomplished through gears (A), (B), (C), (D), (E), (L), (M), (N), and (P).
4. The $2-$ to $4-\mathrm{MHz}$, $4-$ to $8-\mathrm{MHz}, 8-$ to $16-\mathrm{MHz}$, and $16-$ to $32-\mathrm{MHz}$ RF slug racks are moved by both the MEGACYCLE CHANGE and KHOCYCLE CHANGE controls through a differential gear system consisting of gears (NN), (B), (WW), and (U).
a. The $2-$ to $4-\mathrm{MHz}$ RF slug rack is operated by the MEGACYCLE CHANGE control through gears (A), (B), (Y), (V), (W), and (X).
b. The $4-$ to $8-\mathrm{MHz}$ RF slug rack is operated by the MEGACYCLE CHANGE control through gears (A), (B), (U), (V), (W), (X), (Y), and (Z).
c. The $8-$ to $16-\mathrm{MHz}$ RF slug rack is operated by the MEGACYCLE CHANGE control through gears (A), (B), (U), (V), (W), (X), (Y), (Z), (AA), and (BB).
d. The $16-$ to $32-\mathrm{MHz}$ RF slug rack is operated by the MEGACYCLE CHANGE control through gears (A), (B), (U), (V), (W), (X), (Y), (Z), (AA), (BB), (CC), and (DD).
5. In each of the steps (bands $0.5-1$ through $16-32 \mathrm{MHz}$), it is necessary to have an exact stopping point or reference for the circuit elements controlled by the MEGACYCLE CHANGE control. This is done by the MHz change detent. A disk with three equally spaced notches around its edge touches the MHz change detent and locks the disk when the MHz change detent falls into one of the three notches. This MHz change detent is made of spring material, and constantly maintains pressure against the threenotch disk.
6. The first variable IF slug rack (17.5 to 25 MHz) is driven by the MEGACYCLE CHA NGE control in the same manner and on the same shaft as the $8-$ to $16-\mathrm{MHz}$ RF slug rack. The gearing is through gears (A), (B), (U), (V), (W), (X), (Y), (Z), (AA), and (BB).

3.3.2.2 KILOCYCLE CHANGE Control.

1. The KILOCYCLE CHANGE control is limited to 10 turns by a 10 -turn stop. The kHz counter wheels show the frequency selected by the KILOCYCLE CHANGE control. To permit overlapping of each band selected, the frequency range of this control is slightly greater than 1 MHz . As the KПOCYCLE CHANGE control is rotated, the kHz counter wheels are driven through gears (EE), (FF), (GG), (HH), (JJ), and (KK).
2. The VFO tuning unit is connected to the KILOCYCLE CHANGE control through the 10-turn stop and the Oldham coupler. The Oldham coupler is a coupling device for correcting slight misalignment of two shafts.
3. The 0.5 is $1-\mathrm{MHz}$ RF slug rack cam is operated by the KILOCYCLE CHANGE control through gears (EE), (FF), (LL), (MM), (NN), (PP), (RR), and (SS). The 1- to $2-\mathrm{MHz}$ RF slug rack cam is operated through gears (EE), (FF), (LL), (MM), (NN), (PP), (RR), (SS), (TT), and (UU).
4. The second variable IF slug rack cam (3 to 2 MHz) is operated by the KILOCYCLE CHANGE control through the same gears and same shaft as the $1-$ to $2-\mathrm{MHz}$ RF slug rack cam.
5. The $2-$ to $4-\mathrm{MHz}, 4-$ to $8-\mathrm{MHz}, 8$ - to $16-\mathrm{MHz}, 16-$ to $32-\mathrm{MHz}$ RF slug rack cams are moved by the KILOCYCLE CHANGE control through a differential gear system. These RF slug rack cams are operated through the same gears as in 4 a . through 4 d . of 3.3.2.1, except for gears (A) and (B). Gears (EE), (FF), (LL), (MM), (NN), (VV), and (WW) are used instead of gears (A) and (B).
3.3.2.3 ZERO ADJ Control. The ZERO ADJ control provides for correcting errors in calibration. A locking screw operated by the knob releases the clutch and locks the gear (GG). Tuning over a range of approximately 15 kHz without moving the setting on the three kHz counter wheels on the frequency indicator is possible with the KILOCYCLE CHANGE control. Operation of the ZERO ADJ knob in a counterclockwise direction engages the clutch and unlocks gear (GG).

CHAPTER 4

SCHEDULED MAINTENANCE

4.1 INTRODUCTION

4.1.1 The tests prescribed herein provide a systematic and efficient method for checking and performing routine preventive maintenance on Radio Receiver R-390A/URR. These procedures, when performed as directed, will detect areas of subnormal performance, and also provide for systematic preventive maintenance of the equipment. Those tests that are designated "O.M." may be performed as part of the Operational Maintenance Program by operating personnel. These tests should only be performed when the line voltage is $117 \pm 6 \mathrm{Vac}$.
4.2 MAINTENANCE REQUIREMENTS INDEX.

TABLE 4-1. SCHEDULED MAINTENANCE INDEX

PROCEDURE	SCHEDULED EQUIPMENT TESTS	$\begin{aligned} & \text { TIME } \\ & \text { REQ'D } \end{aligned}$	PERSONNEL REQUIREMENT
QUARTERLY			
1	Measure receiver sensitivity	45 min .	ETSN
2	Measure receiver bandwidth	30 min .	ETSN
3	Measure AGC level operation	15 min.	ETSN
SEMIANNUAL			
4	Clean and inspect receiver	15 min.	RMSN
5	Inspect and lubricate the mechanical tuning system	10 min.	RMSN

4.3 SCHEDULED MAINTENANCE PROCEDURES. Energize the receiver and test equipment and allow 15 minutes warmup time. Unless specifically instructed in a test procedure, the receiver controls should be set as indicated in table 4-2.

TABLE 4-2. MAINTENANCE PROCEDURES CONTROL SETTINGS

	CONTROL	
BFO switch	(S101)	OFF
FUNCTION switch	(S102)	MGC
BREAK IN ON-OFF switch	(S103)	OFF
AUDIO RESPONSE switch	(S104)	WIDE
LINE ME TER switch	(S105)	OFF
OVENS ON-OFF switch	(S106)	OFF
AGC switch	(S107)	MED
LIMITER switch	(S108)	OFF
BANDWIDTH KC switch	(S501)	8 KC
ANT TRIM control	(C225)	Peaked for each frequency
BFO PITCH control	(L508)	0
RF GAIN control	(R103)	10
LINE GAIN control	(R104)	0
LOCAL GAIN control	(R105)	Adjusted for audible signals
DIAL LOCK control	Counterclockwise	

If any of the preceding settings are changed in the course of a test procedure, the control should be returned to the position given in the table upon completion of the procedure.
4.3.1 Procedure Q1 - Measure Receiver Sensitivity.

Periodicity: Quarterly
Time Required: 45 mins .
Test Equipment: Signal Generator AN/URM-25()

1. Energize and set receiver controls as given in paragraph 4.3.
2. Connect the RF OUTPUT jack of Signal Generator AN/URM-25() to receiver ANTENNA UNBALANCED jack J103.
3. Tune the receiver and signal generator to 750 kHz .
4. Turn BFO switch S101 to ON.
5. Set the signal generator controls for CW operation $100 \mu \mathrm{~V}$ output, and tune the signal generator frequency control for a zero beat with the receiver. To zero beat, turn LINE METER switch S105 to 0, LINE GAIN cintrol R104 for an indication on LINE LEVEL meter M101 and tune the signal generator frequency for the bottom of the dip between two peaks on LINE LEVEL meter M101.
6. Turn BFO switch S101 to OFF.
7. Turn output of signal generator to minimum.
8. Adjust LINE GAIN control R104 for -10 vu reading on LINE LEVEL meter M101.
9. Adjust the output of the signal generator for 30% modulation at 1000 Hz .
10. Increase the signal generator output until the LINE LEVEL meter M101 reads -5 dB and adjust ANT TRIM control C-255 for a peak on the meter.
11. Increase the signal generator output until a 0 vu indication is read on the line level meter.
12. The signal generator output should be less than $3 \mu \mathrm{~V}$.
13. Repeat the procedure for each of the frequencies listed in table 4-3. If these sensitivity requirements are not met, perform trouble isolation procedures given in paragraph 5.5.

TABLE 4-3. FREQUENCY CHART

FREQUENCY (MHz)	FREQUE NCY (MHz)	FREQUENCY (MHz)
3.25	15.75	25.75
8.25	18.25	28.25
10.75	20.75	30.75
13.25	23.25	

4.3.2 Procedure Q2 - Measure Receiver Bandwidth

Periodicity: Quarterly
Time Required: 30 min .
Test Equipment: Signal Generator AN/URM-25()
Electronic Multimeter AN/USM-116()

1. Energize and set receiver controls as given in paragraph 4.3.
2. Connect the RF OUTPUT jack of Signal Generator AN/URM-25() to receiver ANTENNA UNBALANCED jack J103.
3. Connect Electronic Multimeter AN/USM-116() to DIODE LOAD jack on the front of the receiver.
4. Set BANDWIDTH KC switch 5501 to position 1.
5. Tune both the receiver and signal generator to 1 MHz ,
6. Adjust the KILOCYCLE CHANGE control for a peak indication on the electronic multimeter.
7. Adjust the signal generator output for a reading of 5 volts on the electronic multimeter.
8. Tune the receiver KILOCYCLE CHANGE control to one side of the center frequency until the multimeter reads 2.5 volts. Note the frequency indicated on the receiver frequency counter.
9. Tune the receiver KILOCYCLE CHANGE control to the other side of the center frequency until the meter reads 2.5 volts. Note the frequency indicated on the receiver frequency counter.
10. Subtract the lower from the higher of the two frequency readings for the receiver bandwidth.
11. Repeat this test for the other positions of BANDWIDTH KC switch S501. Refer to table 4-4 for the normal bandwidth for each position. If bandwidth is less than the given values, check IF and RF alignment (para 6.2.7, 6.2.10, 6.2.11, and 6.2.12).

TABLE 4-4. NORMAL BANDWIDTHS

*BANDWIDTH SETTINGS	NORMAL BANDWIDTHS
1	0.8 to 1.3
2	1.9 to 2.3
4	3.6 to 4.4
8	7.5 or more
16	12 or more

*No bandwidth test is required for 0.1 KC setting.
4.3.3 Procedure Q3 - Measure AGC Level to Carrier Level.

Periodicity: Quarterly
Time Required: 15 min .
Test Equipment: Signal Generator AN/URM-25()

1. Energize and set receiver controls as given in paragraph 4.3.
2. Connect the RF OUTPUT jack of Signal Generator AN/URM-25() to receiver ANTE NNA UNBALANCED jack J-103.
3. Turn FUNCTION switch S102 to AGC position.
4. Tune signal generator and receiver to 15 MHz .
5. Increase signal generator output until a 20 dB reading is indicated on CARRIER LEVEL meter M102.
6. Increase the signal generator output in 20 dB steps and check that the carrier level meter reading increases 20 dB per step $\pm 2 \mathrm{~dB}$. If readings do not meet the se requirements, perform trouble isolation tests in table $5-5$, steps 17, 18 and 19.

4.3.4 Procedure SA4-Operator's Maintenance (O. M.) Clean and Inspect Receiver.

Periodicity: Semiannual
Time Required: 15 min

Equipment: Dry brush
 Solvent, Navy type 140-F
 Pressurized dry air

1. Secure main power to receiver.
2. Use a clean, dry, lint-free cloth or a dry brush to remove dirt and accumulated matter from receiver parts. Use cleaning solvent, Navy type 140-F, for especially stubborn deposits. Use clean dry air from portable blower unit for lighter sediments in hard to reach areas.
3. Tighten all loose screws, bolts and nuts.
4. Inspect all cables and wiring for frayed, cut, deteriorated, or cracked insulation. Report all such conditions found.
5. All tubes should be checked for looseness by firm pressure applied downward. All tube shields and clamps must be locked in position.
6. Inspect resistors and other components for indications of overheating. If such indication is observed, further maintenance is necessary.
4.3.5 Procedure SA5 - Inspect and Lubricate the Mechanical Tuning System (O. M.).

Periodicity: Semiannual
Time Required: 10 min
Equipment: Lubricant MIL-L-7970
Lubricant MIL-G-7421

1. Secure main power to the receiver.
2. Inspect the gear trains and cam racks for lubrication.
3. Turn the MEGACYCLE CHANGE and KIL OCYCLE CHANGE controls throughout their ranges and observe that all gears, cams and shafts, bearings and guide slots operate smoothly.
4. Check the operation of BFO PITCH control L508 for free operation.
5. Lubricate in any of the above steps as necessary for proper operation. Use one drop of MIL-L-7970 for cam rollers and shaft bearings. Use MIL-G-7421 sparingly for guide slots and gears.

CHAPTER 5

TROUBLESHOOTING

5.1 INTRODUC TION

5.1.1 Troubleshooting is a logical procedure used to locate a fault in an equipment. The procedure given here is based on a knowledge of electronic fundamentals, a thorough understanding of the radio receiver, and the application of information contained in this handbook.
5.1.2 One step in troubleshooting, symptom recognition, depends upon experience with equipment operating characteristics. Daily observation of the normal operation of the receiver helps one to recognize an abnormal condition if it should occur.
5.1.3 A second step, symptom elaboration, calls for the use of front panel controls, meters, and output devices to obtain better identification of the trouble. The maintenance turn-on procedure can be used to advantage in this step.

5,1.4 Following this, a logical decision can be made to select the most likely function responsible for the faulty operation. Here the over-all functional description (para 3-1) and its associated block diagram can be used as an aid.
5.1.5 Tests must then be made to determine whether the chosen function is the faulty one. The signal flow diagram is used in this step to find appropriate test points. Key steps in the trouble isolation tables provide normal indications as an aid in these tests and measurements.
5.1.6 When trouble is found in a certain function, it must be localized to a circuit and then a detail part. This is accomplished by following step-by-step procedures in the trouble isolation tables. Again, the signal flow diagram is useful, especially when supplemented by schematic diagrams and voltage and resistance charts. Functional and circuit descriptions should also be consulted.
5.1.7 Assuming that a faulty circuit and part is found, a review of the situation is in order, to determine whether the part is the cause of the trouble or that some other malfunction has caused the part to become defective.
5.1.8 General references were made above to a number of troubleshooting aids. More specific paragraph references are given in table 5-1 as they pertain to the individual subassemblies.

TABLE 5-1. TROUBLESHOOTING INDEX

| SUBASSEMBLY |
 RESISTANCE
 (FIG. NO.) | PARTS
 LOCATION
 (FIG. NO.) | ADJUSTMENT | |
 REPLACE |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | (PARA. NO.) | (FIG. NO.) | (PARA. NO.) | | |

[^0]TABLE 5-1. TROUBLESHOOTING INDEX (Cont)

SUBASSEMBLY	VOLTAGE \& RESISTANCE (FIG. NO.)	$\begin{gathered} \text { PARTS } \\ \text { LOCATION } \\ \text { (FIG. NO.) } \end{gathered}$	ADJUS'TMENT		REMOVE \& REPLACE (PARA. NO.)
			(PARA. NO.)	(FIG. NO.)	
IF	5-6,	6-5	6.2.7	6-5	6.3.9,
	5-10	6-16,	6.2.8,		6.3.10
		6-17,	6.2.13,		
		$6-18$	6.2.15,		
			6.2 .17		
Main frame	-	6-9,	-	-	6.3.2,
		6-14,			6.3 .15
		6-15,			
Mechanical	-	$6-1$,	6.2.5,	6-2,	6.3.16
		6-3,	6.2.6,	6-13	thru
		$6-8$,	6.2 .18		6.3.19
		6-36			
Power supply	5-9		-	-	6.3 .13
		$6-30$			
RF	5-4		6.2.10	5-1,	6.3 .3
		6-19,	6.2.11,	6-6	thru
		6-20,	6.2.12,		6.3 .6
		6-21	6.2.14		
VFO	5-7	6-25,	6.2 .16	6-7	6.3.11,
		6-26			6.3.12

5.2 MAINTENANCE TURN-ON PROCEDURE

5.2.1 The maintenance turn-on procedure (table 5-2) is a step-by-step procedure to be used by maintenance personnel in bringing the equipment to an operating condition from a completely secured condition. Normal conditions are noted along with steps to be followed and reference paragraphs to be used if indications are abnormal.
5.2.2 If dial lamps fail to light, check the ac input fuse F101 and the ac input connections. Measure the ac input voltage (see table 1-2). Check the 6.3 volt circuits (figures $5-11$ and $5-14$). If no signal is heard, proceed with next step in table 5-2.
5.2.3 If at least one band is normal, make receiver RF-IF checks on faulty bands beginning with step 8 of table 5-5. If all bands are abnormal, begin at step 1 of table 5-5.
5.2.4 AGC circuits could be faulty. Perform steps 17,18 and 19 of table 5-5.
5.2.5 Check RF input circuits, figure $5-13$, sheet 1 , zone 12 B .
5.2.6 Perform steps 4 and 5 of table 5-5.

PRIOR CONTROL SETTINGS: AUDIO RESPONSE switch: WIDE BANDWIDTH switch: 8 KC RF GAIN control: 10 LIMITER control: OFF LOCAL GAIN control: 6 ANTENNA connected Loudspeaker or Headphones connected.			
STEP	ACTION OR CONDITION	NORMAL INDICA TION	PARAGRAPH REFERENCE
1	Turn FUNCTION switch to AGC.	Dial lamps light. Rushing noise or signal heard in speaker or headset.	5.2.2
2	Set MEGACYCLE CHANGE control at each band in turn.	Normal signal output on each band.	5.2.3
3	Tune KILOCYCLE CHANGE control across any band and then to one signal.	CARRIER LEVEL meter indicates strength of received signals.	5.2 .4
4	Rotate ANT TRIM control.	Obtain peak indication on CARRIER LEVEL meter for each band.	5.2 .5
5	Rotate LOCAL GAIN control in either direction.	Volume at loudspeaker or headset increases or decreases.	5.2 .6
6	Rotate LINE GAIN control in either direction.	LINE LEVEL meter indication increases or decreases.	5.2 .7
7	Rotate RF GAIN control in either direction.	Audio output and CARRIER LEVEL meter indication increase or decrease.	5.2 .8
8	With receiver tuned away from any signal turn FUNC TION switch to MGC.	Noise level should increase slightly and CARRIER LEVEL should not indicate.	5.2 .9
9	Turn FUNC TION switcin to AGC and tune KILOCYCLE CHANGE control through several different signals.	Output volume nearly constant.	5.2.10
10	Turn FUNCTION switch to CAL and tune KILOCYCLE CHANGE control.	Deflection of at least 40 dB on CARRIER LEVEL meter at each 100 kHz reading.	5.2.11
11	Turn LIMITER fully clockwise.	Noise peaks are reduced in amplitude; audio distortion increases.	5.2.12

TABLE 5-2. MAINTENANCE TURN-ON PROCEDURE (Cont)

STEP	ACTION OR CONDITION	NORMAL INDICATION	PARAGRAPH REFERENCE
12*	Turn BREAK IN relay switch to ON and short BRK IN terminal 9 on rear panel to ground momentarily.	Break-in relay functions to silence receiver.	5.2 .13
13	Turn LINE METER switch to O and adjust LINE GAIN control for a meter indication at VU mark.	Meter adjusts to VU mark (0 dB).	5.2.14
14	Turn LINE ME TER switch to +10 .	LINE LEVEL meter indicates -10.	5.2.15
15	Turn LINE ME TER switch to -10.	Meter indicates off scale to right.	5.2 .15
16	Turn LINE ME TER switch to OFF.	No indication on LINE LEVEL meter.	5.2 .15
17	Turn BFO control to ON, tune in a CW signal and vary the BFO PITCH control.	Beat note of signal is audible and varies.	5.2.16
18	Turn BANDWIDTH switch from 16 kHz to 0.1 kHz .	Selectivity becomes sharper and noise decreases. Only lowfrequency tones are heard in the counterclockwise positions.	5.2 .17
19	Operate AUDIO RESPONSE switch through both positions.	Permits amplification of full AF range in WIDE position, and 800 Hz in SHARP position.	5.2.18

*For Shore Stations only.

5.2.7 Perform step 4 of table 5-5.

5.2.8 Check cathode bias line, figure $5-12$, sheet 1 , zone 16 B .
5.2.9 Check MGC switching circuit, figure $5-12$, sheet 2 , zone 13A.
5.2.10 Perform AGC circuit tests given in steps 17,18 and 19 of table 5-5.
5.2.11 Perform calibration oscillator tests given in steps 20,21 and 22 of table 5-5.
5.2.12 Check limiter circuit, figure $5-12$, sheet 2 , zone 14 C or perform step 6 of table $5-5$.
5.2.13 Check break-in relay circuits shown in figure 5-12, sheet 1 , zone 27 B and sheet 2 , zone 9C.
5.2.14 Perform line AF amplifier tests given in step 6 of table 5-5.
5.2.15 Check line meter switching circuits shown in figure $5-13$, sheet 4 , zone 3 A .
5.2.16 Check BFO circuit shown in figure $5-12$, sheet 2 , zone 14 B through 17 B .
5.2.17 Check IF filter circuits shown in figure $5-12$, sheet 2 , zone 23 D through 25 D .
5.2.18 Check AF filter circuits shown in figure $5-12$, sheet 2 , zone 11 D .
5.3 RELAYS, LAMPS, AND OVERLOAD DEVICES (See Table 5-3.)

5.4 TROUBLESHOOTING INFORMATION

5.4.1 Troubleshooting efficiency can be improved through the knowledge and intelligent use of the many aids available to the technician. For example, the R $-390 \mathrm{~A} / \mathrm{URR}$ Receiver is equipped with a number of built-in features which can be used to advantage in troubleshooting. These features will be discussed here along with other suggestions concerning good practices for detecting and locating trouble.
5.4.2 Visual Inspection. The importance of performing a careful visual inspection before launching into functional or detailed troubleshooting is often overlooked. Some suggestions, which can be enlarged upon by an observant technician, are given in table 5-3.

TABLE 5-3. RELAYS, LAMPS AND OVERLOAD DEVICES

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	FUNCTIONAL NAME OF ITEM OR CIRCUIT	ENERGIZING VOLTAGE AND/OR RATING	FIGURE REFERENCE
RELAYS			
K101	Antenna relay Break-in-relay	24 Vdc 6.3 Vdc	$\begin{aligned} & 5-12 \\ & 5-11,5-12 \end{aligned}$
LAMPS			
$\begin{aligned} & \mathrm{I} 101 \\ & \mathrm{I} 02 \\ & \mathrm{I} 103 \end{aligned}$	Pilot lamp Pilot lamp Antenna overload	$6 \mathrm{~V}, 0.20 \mathrm{amp}$ $6 \mathrm{~V}, 0.20 \mathrm{amp}$ $65 \mathrm{~V}, 1 / 4$ watt	$\begin{aligned} & 5-14 \\ & 5-14 \\ & 5-13 \end{aligned}$
FUSES			
F101 $\begin{aligned} & \mathrm{F} 102 \\ & \mathrm{~F} 103 \end{aligned}$	AC input line Main B^{+}line RF - IF B+ line	With 115 V input 3 amp (OVENS sw ON) 2 amp (OVENS sw OFF) With 230 V input $1-1 / 2 \mathrm{amp}$ (OVENS sw ON) 1 amp (OVENS sw OFF) $1 / 4 \mathrm{amp}$ $1 / 8 \mathrm{amp}$	$5-11$ $\begin{aligned} & 5-11 \\ & 5-11 \end{aligned}$

5.4.2.1 Visual inspection can be broken down into external and internal areas of inspection. External inspection includes power and signal input connections, rear terminal board linkages, and output signal connections.

1. Check the input power connector, the fuses and fuse holders. See table $2-3$ for proper fuse ratings.
2. Inspect the antenna input connections.
3. Inspect the audio output connections and phone jack.
4. Check the jumpers on the rear panel terminal boards which provide audio and AGC linkages.
5. Check for loose or missing knobs, or damage to meters.

5.4.2.2 Internal inspection concerns tubes and connectors.

1. See that tubes are unbroken, are properly seated in their sockets and are equipped with tube shields where applicable.
2. Observe that all subassemblies are securely fastened and completely interconnected.
3. Look for any evidence of overheated components or charred or frayed insulation.
5.4.3 Built-In Troubleshooting Aids. The built-in features of the equipment which aid the maintenance man include the following: carrier level meter, line level meter, and calibration oscillator. The output transducers, phones or speaker, can also be used as sensing devices for the detection of trouble. The CARRIER LEVEL meter measures the relative signal strength of the incoming RF or test signals. Indications on this meter are proportional to those at the AGC terminals on the rear panel of the receiver. The LINE LEVEL meter readings can be translated into audio output or power ratio readings. The LINE ME TER switch extends the range of the LINE LEVEL meter over a $40-\mathrm{dB}$ range.
5.4.3.1 The calibration oscillator, while designed primarily for calibration checks can also be used in conjunction with the CARRIER LEVEL meter for rough sensitivty checks across the entire frequency range (refer to table 5-2, step 10). The phones or speaker can also be used for rough sensitivity checks by listening to the relative signal or noise levels. Then too, other faults such as excessive hum, noise, or interference, or intermittent conditions can be detected by this means.
5.4.3.2 These built-in features can be used to advantage by performing the maintenance turn-on-procedures (paragraph 5.2) and making the appropriate observations.
5.4.4 Trouble Isolation. Physically, the equipment consists of a main frame and six subchassis as listed in table 5-1. Functionally, the receiver can be divided into four subsystems, namely, the power supply, the AF, the IF, and the RF circuits. The trouble isolation table (5-5) is based on this functional approach, and tests are arranged in the order named above.
5.4.4.1 Steps 1,2 and 3 are concerned with power supply tests, since this function is common to and required by the other three functions. Steps 4 through 7 concern the audio circuits. Steps 4 and 5 check out the over-all audio function. Steps 6 and 7 are entered only if there is audio trouble; they are stage-by-stage checks that progress from output to input. Steps 8 and 9 concern the IF circuits. Step 8 checks out the overall IF function. Step 9 is a stage-by-stage check that progresses from the detector back to the RF circuits. Steps 10 through 16 are stage-bystage RF circuit checks which lead back from the third mixer to the antenna.
5.4.4.2 The RF function includes several local oscillators which, since they are internal signal generators, can be checked independently as described in paragraph 5.5.3. In addition, AGC circuits are checked in steps 17,18 and 19, and calibration oscillator circuits are checked in steps 20, 21 and 22.
5.4.5 Subchassis Removal for Troubleshooting.

CAUTION

Do not attempt removal or replacement of parts or subchassis before reading the instructions in paragraph 6.3.1 through 6.3.1.3.
5.4.5.1 When testing or troubleshooting the receiver, do not remove a subchassis unless it is absolutely necessary. Test cables are required for operating a subchassis out of the receiver (para 5.5.1). If a receiver in good operating condition is available, a subchassis may be connected from it, directly into the receiver being repaired.

NOTE

Avoid disturbing the synchronization of the RF gear train assembly with the RF, crystal oscillator, or VFO subchassis.
5.4.5.2 To avoid removing a subchassis when voltage is to be measured or when a signal is to be injected at a tube--socket pin that does not have a test point, remove the tube and use a tube adapter with test points. The RF tuning coils and transformers on the RF subchassis can be removed readily (para 6.3.4.3), if necessary, to permit measurement of voltage or resistance at the socket contacts, or measurement of the voltage or resistance at the socket contacts, or measurement of the continuity of the coils. If trouble is suspected in the RF subchassis, perform as much detailed troubleshooting as possible before removing it to be sure that the trouble is in the subchassis, since removal and replacement of this subchassis is time-consuming.
5.4.5.3 Figure $5-1$ shows the numbers of the terminals on the RF and the variable IF coils as seen from the bottom of the RF subchassis. These numbers are used to identify the terminals in the schematic diagrams in this manual.

5.5 TROUBLE ISOLATION PROCEDURES

5.5.1 Test Cable Data (See figures 5-2 and 5-3). Test cables are required when operating subchassis out of the receiver. Make all cables 24 inches long. Table 5-4 contains plug and jack reference designations for each test cable required.

TABLE 5-4. TEST CABLE DATA

FROM PLUG NO.	CABLE TYPE	TO JACK NO.
COAXIAL TEST CABLES		
P717	RG-187/U	J217
P215	RG-187/U	J415
P207	RG-187/U	J107
P206	RG-187/U	J106
P205	RG-187/U	J105
P218	RG-187/U	J518
P213	RG-187/U	J513
MULTICONDUCTOR TEST CABLES		
P108		J208
P109	All shielded and un-	J709
P110	shielded wires to be	J410
P111	no smaller than 18	J811
P112	gauge stranded wire.	J512
P119	Refer to figure 5-3.	J619
P120		J620

Figure 5-1. Texminal Numbers of RF and Variable IF Coils

3. INSERT INSULATOR QUSHING OVER CONDUCTOR
TIN END OF CONTACT HOLE AND SWEAT
CONTACT TO CONDUCTOR. OUSSDE SURFACE
OF CONTACT MUST BE FREE OF SOLDER.
2. COMB OUT BRAIO WIRES, FORM BACK OVER
GRAID CLAMP AND TRIM TO LENGTH. CUT OFF CABLE DIELECTRIC AS SHOWN.
CUT INNER CONDUCTOR TO $5 / 64$ AND TIN. CUT INNER CONOUCTOR TO 5/64 AND TIN.
INSERT CLAMP NUT OVER CABLE.
INSERT BRAID CLAMP OVER CABLE JACKET, PLACE AT OIMENSION SHOWN AND WITH
PLIERS CRIMP SLOTTED ENO INTO CABLE PLIERS CRIMP SLOTTEO ENO INTO CABLE
JACKET. DO NOT EXCESSIVELYOISTORT
SLOTTED ENO. CLAMP NUT MUST ROE FRE OVER CRIMPED PORTION. REMOVE CABLE JACKET BACK TO END OF BRAID CLAMP.

STRAIGHT PLUG

insert clamp nut over cable
INSERT BRAID CLAMP OVER CABLE JACKET, PLAGE AT DIMENSION SHOWN, AND WACKE
PLIERS CRIMP SLOTTED END INTO CABLE PLIERS CRIMP SLOTTED ENO INTO CABLE
JACKET. DO NOT EXCESSIVELY DISTORT SLOTTED ENO, CLAMP NUT MUSTS RIDE FREE OVER CRIMPED PORTION. REMOVE CABLE
JACKET BACK TO END OF GRAID CLAMP.

NSERT CLAMP NUT OVER CABLE nsert brad clamp over cable jackét PLACE AT DIMENSION SHOWN AND WITH PLIERS CRIMP SLOTTED END INTO CABLE JACKET
DO NOT EXCESIVELY OSTORT SLOTTED END. OO NOT EXCESSIVELY DISTORT SLOT TED ENO.
CLAMP NUT MUST RDE FREE OVER CRMPED
PORTONU REMOVE CABLE JACKET BACK TO END PORTION. REMOVE
 OF BRAID CLAMP
2. COME OUT BRAID WIRES, FORM BACK OVER BRAID CLAMP AND TRIM TO LENGTH. CUT INNER CONDUCTOR TO 3/32 AND TIN.
4. INSERT INSULATOR OVER CONTACT. INSER ASSEMBLY, LESS CLAMP NUT TNTO PLUG
BODY AND ROTATE SLGHTLY TO MAKE SURE BRAIO CLAMP IS SEATED. THREAD CLAMP NUT INTO BODY ANO TIGHTEN NUT BY HOLDING KNURLED PORTION
WITH SOF T-NOSED PLIERS.

3. INSERT INSULATOR BUSHING OVER CONDUCTOR. TIN ENO OF CONTACT HOLE ANO SWEAT CONT MUST BE FREE OF SOLDER.
4. INSERT ASSEMELY LESS CLAMP NUT INTO JACK bOOY AND ROTATE SLIGHTLY TO MAKE SURE BRAID CLAMP IS SEATED. THREAD CLAMP NUT INTO HEX.
COUPLING AND TIGHTEN NUT. WHEN JACK IS PANEL COUPLING AND TIGHTEN NUT. WHEN JACK IS PANEL
MOUNTED IT IS NEESSARY TO MOUNT FRONT BOD THRU PANEL NSERT SPACER (IF REQURED) 8 LOCK WASHER AND THPEAD ON HEX. COUPLING BEFORE

2. COMB OUT BRAID WIRES FORM BACK OVER BRAID CLAMP AND TRIM TO LENGTH,
CUT OFF CABLE DIELECTRICAS SHOW CUT INNER CONDUCTOR TO 7/64 AND TIN.
 SOLDER
CONDUCTOR
3. INSERT ASSEMBLY. LESS CLAMP NUT, INTO ANGLE PLUG BODY AND ROTATE SLIGHTLY
TO MAKE SURE BRAIO CLAMP IS SEATED. THREAD CLAMP NUT INTO BOOY AND TIGHTEN NUT. WITH CAP REMOVED SOLDER CONDUCTOR IN HOLE AND SPOT SOLDER OR SPOT STAKE
TO RETAIN CAP.

CABLE TERMINATION

SSEMEIY NSTRUCTIONS FOR CABLE TERMNATIONS ARE TOENTICAL WITH THOSE GIVEN IN STEPS I AND 2 FOR STRAIGHT PLUGS EXCEPT DIMENSIONS FOR CUTTING CABLE DIELECTRIC AND CENTER CONDUCTOR ARE OPTIONAL.

PIIO-J410 CABLE ASSEMBLY

PIII-J8II CABLE ASSEMBLY
P119- J619 CABLE ASSEMBLY

PIO8-J208 CABLE ASSEMBLY P109- J709 CABLE ASSEMBLY

P120-J620
CABLE ASSEMBLY

NOTES:

I. ALL UNSHIELDED WIRES TO BE NO SMALLER THAN IS GAGE STRANDED WIRE. ALL SHIELDED THAN 18 GAGE STRANDED WIRE. ALL SHI
WIRES TO BE NO SMALLER THAN IB GAGE WIRES TO BE
SHIELDED.
2. LACE OR TAPE COMPLETED CABLES.

3 MAXIMUM CABLE LENGTH SHALL BE 24 INCHES.
4. CHECK CONTINUITY AFTER COMPLETING

TION.
5. LABEL CABLES FOR IDENTIFICATION.

Figure 5-4. RF Subchassis, Voltage and Resistance Diagram
5.5.2 Initial Control Settings. Use the control settings given below before performing any test or troubleshooting procedure. Many of the tests that follow repeat some of these settings, and others refer back to this paragraph to stress the importance of using the proper control settings. Observe these control settings, and change them only when instructions in a particular procedure direct different control settings.

```
LINE METER . . . . . . . . . . . . . . . . . . . . . OFF
LINE GAIN
    . }
AGC . . . . . . . . . . . . . . . . . . . . . . . . . . MED
LIMITER . . . . . . . . . . . . . . . . . . . . . . . OFF
AUDIO RESPONSE . . . . . . . . . . . . . . . . . . WIDE
BANDWIDTH . . . . . . . . . . . . . . . . . . . . . . }
BFO PITCH . . . . . . . . . . . . . . . . . . . . . }
BREAK IN . . . . . . . . . . . . . . . . . . . . . OFF
FUNCTION . . . . . . . . . . . . . . . . . . . . . . . MGC
ANT TRIM . . . . . . . . . . . . . . . . . . . . . 0, or maximum output
BFO . . . . . . . . . . ................. OFF
DIAL LOCK . . . . . . . . . . . . . . . . . . . . . Unlocked, fully counterclockwise
ZERO ADJ . . . . . . . . . . . . . . . . . . . . . . Disengaged, fully counterclockwise
LOCAL GAIN . . . . . . . . . . . . . . . . . . . 10, or desired volume
OVENS . . . . . . . . . . . . . . . . . . . . . . . . . . OFF
MEGACYCLE CHANGE . . . . . . . . . . . . 01, or as specified
KILOCYCLE CHANGE . . . . . . . . . . . . . 510, or as specified
RF GAIN . . . . . . . . . . . . . . . . . . . . . . . }1
```

5.5.3 Oscillator Injection Voltage Tests (See figure 5-12.) To check the conversion oscillators (V207, V401, and V701) to see if they are oscillating, turn the FUNCTION switch to STANDBY to remove B + from all tubes except the conversion oscillators. The cathodes and control grids of the mixers act as rectifiers of the oscillator voltage at test points E209, E210, and E211. The voltage at test point E402 (figure 5-12) is the grid leak bias at the control grid of V401.

Figure 5-5. Crystal Oscillator Subchassis, Voltage Resistance Diagram

Figure 5-6. IF Subchassis, Voltage and Resistance Diagram
5.5.3.1 Check the de voltage at test points E209, E210, E211, and E402 with Electronic Multimeter USM-116(). The voltage should be as follows:

TEST POINT	VOLTAGE
*E209	-4.0 to -6.8
E210	-3.0 to -8.0
E211	-1.3 to -4.3
E402	$(-0.95$ to -1.6 with FC-7)
-4 to -11	

*To obtain a meter indication at test point E209, the receiver must be tuned below 8 MHz .

NOTE-I 58V AND 220K-FC7 ONLY

Figure 5-7. VFO Subchassis, Voltage and Resistance Diagram

Figure 5-8. AF Subchassis, Voltage and Resistance Diagram

Figure 5-9. Power-Supply Subchassis, Voltage and Resistance Diagram

NOTE:
LIMITERTCONTROL SET AT OFFE * values in (1) with Limiter set at 回.

af SUBChassis

Figure 5-10. IF and AF Subchassis Resistor and Capacitor Terminal Boards, Voltage and Resistance Diagram
5.5.4 Receiver RF - IF Gain Test. The receiver RF - IF gain test checks receiver operation from the antenna through detector V506B. If the result of this test is normal, the fault is in the audio portion of the receiver.

1. Connect Multimeter AN/PSM-4() to the DIODE LOAD test jack on the front panel of the receiver and set meter controls for measuring $\mathbf{- 1 0} \mathrm{Vdc}$.
2. Connect Signal Generator AN/URM-25 () to UNBALANCED ANT WHIP jack J103 on the back of receiver and set the controls for a cw output of 10 microvolts. (J104 must have short inserted.)
3. Tune Signal Generator AN/URM-25() and the receiver to the same frequency. Readjust the KILOCYCLE CHANGE control slightly for a maximum indication on the AN/PSM-4(). Peak ANT TRIM control.
4. Adjust the output of the AN/URM-25() for a meter indication of -7 volts. If the AN/URM-25() output is between 1 and 4 microvolts, the RF - IF gain of the receiver is normal.
5. If the AN/URM-25 () output is above or below the limits set in 4 above, readjust the AN/URM-25() output for 2 mic rovolts. Adjust GAIN ADJ control R519 (figure 6-16) for a meter indication of -7 volts. If this adjustment fails to restore normal operation, perform detailed checks of the IF and RF stages beginning with step 8 of table $5-5$.
5.5.5 Trouble Isolation Table. The procedures in table 5-5 can be used to rapidly localize trouble to a particular stage. Preset the receiver front-panel controls as directed in paragraph 5.5.2. Use tube adapters to make connections where test jacks are not provided. Refer to figures 5-11 and 5-12.

TABLE 5-5. TROUBLE ISOLATION

$\begin{array}{\|l\|l} \hline \text { STEP } \\ \text { NO. } \end{array}$	TEST INSTRUCTIONS	SIG GEN OUTPUT CONTROL	NORMAL INDICATION	INSTRUCTIONS
1	Connect positive lead of Multimeter AN/PSM-4 () to F102 terminal and negative lead to ground.	N/A	240 Vdc	1. If indication is correct, proceed to next step. 2. If indication is incorrect, check ac input circuit and power supply subchassis (figure 5-11).
2	Connect positive lead of Multimeter AN/PSM-4() to F103 terminal and negative lead to ground.	N/A	205 Vdc	1. If indication is correct, proceed to next step. 2. If indication is incorrect, check filter circuits in AF subchassis (figure 5-11).
3	Connect positive lead of Multimeter AN/PSM-4() to test point E607 on AF subchassis.	N/A	$+150 \mathrm{Vdc}$	1. If indication is correct, power supply circuits are normal. Proceed with next step. 2. If indication is incorrect, check voltage regulator V605 circuit (figure 5-11).

TABLE 5-5. TROUBLE ISOLATION (Cont)

$\begin{gathered} \text { STEP } \\ \text { NO. } \end{gathered}$	TEST INSTRUCTIONS	SIG GEN ouTPUT CONTROL	NORMAL INDICATION	INSTRUCTIONS
4	Connect Signal Generator AN/URM-25() to pin 7 grid of V506. Set CARRIER LEVEL to 10 in CW mode and then set controls for an output of 455 kHz with $30 \% 400 \mathrm{~Hz}$ modulation. Set LINE METER switch to -10 and LINE GAIN control to 10 .	0.1 V	$-10 \mathrm{vu}$ \min	1. If indication is correct, proceed to step 5. 2. If indication is incorrect, proceed to step 6 (figure 5-12).
5	With the signal generator set up as in step 1, connect Electronic Multimeter ME-6 D/U to PHONES jack J102 on the front panel.	0.1 V	$\begin{aligned} & -20 \mathrm{~dB} \\ & \min \end{aligned}$	1. If the multimeter reading is at least -20 dB , proceed to step 8 . 2. If reading is incorrect, proceed to step 7.
6	Connect Audio Signal Generator AN/URM-127 to the following points and adjust its output to the given setting. Set the frequency to 800 Hz . Set LINE METER switch to 0 . Set LINE GAIN control to 10 . Pin 1 Grid V604 Pin 7 Grid V602B Pin 7 Grid V601B Pin 2 Grid V601A Pin 7 Grid V507	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 0.2 \mathrm{~V} \\ & 0.6 \mathrm{~V} \\ & 0.04 \mathrm{~V} \\ & 0.15 \mathrm{~V} \end{aligned}$	$0 \mathrm{vu} \min$ 0 vu min 0 vu min 0 vu min 0 vu min	1. Continue from stage to stage until an incorrect indication is obtained. The last circuit checked is defective or if all indications are correct, the trouble lies in detector circuit V506B.
7	Connect Electronic Multimeter ME-6 D/U to PHONES jack J102 and Audio Signal Generator AN/URM-127 to the following points and adjust its output to the given setting. Set the frequency to 800 Hz . Pin 1 Grid V603 Pin 2 Grid V602A Pin 7 Grid V601B	$\begin{aligned} & 1.1 \mathrm{~V} \\ & 0.15 \mathrm{~V} \\ & 0.4 \mathrm{~V} \end{aligned}$	0 dB min 0 dB min 0 dB min	1. Continue from stage to stage until an incorrect indication is obtained. The last circuit checked is defective.
8	Set Signal Generator AN/URM25 () for an output of 455 kHz with $30 \% 400 \mathrm{~Hz}$ modulation and connect it to test point E211. Set LINE METER to 0 and LINE GAIN to 9 .	10 uV	0 vu min	1. If :ndication is correct, procee? to step 10. 2. If indication is incorrect, proceed to next step.

TABLE 5-5. TROUBLE ISOLATION (Cont)

$\begin{gathered} \text { STEP } \\ \text { NO. } \end{gathered}$	TEST INSTRUCTIONS	SIG GEN OUTPUT CONTROL	NORMAL INDICATION	INSTRUCTIONS
9	With the signal generator setup as in step 8, connect to the following points in turn. Pin 1 Grid V504 Set LINE METER (LM) to -10 and LINE GAIN (LG) to 10 Pin 1 Grid V503 Set LM to -10 , LG to 8 Pin 1 Grid V502 Set LM to -10, LG to 9 Pin 1 Grid V501 Set LM to -10, LG to 9	$\begin{aligned} & 0.01 \mathrm{~V} \\ & 0.001 \mathrm{~V} \\ & 100 \mathrm{uV} \\ & 10 \mathrm{uV} \end{aligned}$	0 vu min 0 vu min 0 vu min 0 vu min	1. Continue from stage to stage until an incorrect indication is obtained. The last circuit checked is defective. 2. If all indications are correct, proceed to next step.
10	Change the signal generator frequency to 3 MHz , check carrier level and \% Mod, and connect to test point E211. Tune the receiver KILOCYCLE CHANGE control above 900 on the counter dial to a peak indication on the LFVEL METER. Set LM to -10 , LG to 9 .	10 uV	0 vu min	1. If indication is correct, proceed to next step. 2. If indication is not correct, the trouble probably is in the circuit of V701. See paragraph 5.5.3.
11	Connect the signal generator to test point E210 with the frequency still at 3 MHz . Set LM to $\mathbf{- 1 0 , ~ L G ~ t o ~} 9$.	10 uV	0 vu min	1. If indication is correct, proceed to next step. 2. If indication is not correct the circuit of V203 is frulty.
12	With the signal generator connected to test point E210 change the signal generator frequency to 13 MHz . Tune the MEGACYCLE CHANGE control to 13 MHz and adjust the KILOCYCLE CHANGE control for a peak indication on the LEVEL METER. Rotate the MEGACYCLE CHANGE control from 14 thru 31 MHz . Set LM to +10 , LG to 10 .	0.001 V	0 vu min	1. If indication is correct, the fault is probably in the 2nd crystal oscillator circuit V401. See paragraph 5.5.3 and figure 3-3.

TABLE 5-5. TROUBLE SOLATION (CONT)

$\begin{aligned} & \text { STEP } \\ & \text { NO. } \end{aligned}$	TEST INSTRUCTIONS	SIG GEN OUTPUT CONTROL	NORMLAL INDICATION	INSTRUCTIONS
13	Connect the signal generator to E209 and tune both the receiver and signal generator to 1 MHz peaking the LEVEL METER indication with the KHOCYCLE CHANGE control. Set LM to 0, LG to 9.	0.01 V	0 vu min	1. If indication is correct, proceed to step 15. 2. If indication is incorrect, proceed to next step.
14	Change the signal generator frequency to 18 MHz and adjust for a peak on the LEVEL METER. Set LM to 0, LG to 8.	0.001 V	0 va min	1. If indication is correct the faulty circuat is probably the 1 st crystal oscillator V207. See paragraph 5.5.3. 2. If indication is incorrect, check the 1st mixer circuit V202.
15	Connect the signal generator to E208 and tune the frequency of the receiver and signal generator to $0,5 \mathrm{MHz}$ adjusting the KILOCYCLE CHANGE Control for a peak indication on the LEVEL METER. Check at 15 MHz and 31 MHz also. Set LM to $0, \mathrm{LG}$ to 8 .	$\begin{gathered} 0.5 \mathrm{MHz} \\ 10 \mathrm{uV} \\ 15 \mathrm{MHz} \\ 10 \mathrm{uV} \\ \\ 31 \mathrm{MHz} \\ 10 \mathrm{uV} \end{gathered}$	0 vu min	1. If indication is correct, proceed to next step. 2. If indication is incorrect, check the circuit of V201.
16	Connect the signal generator to J103 on back of receiver. Tune the receiver and signal generator to 15 MHz . Set LM to $-10, \mathrm{LG}$ to 10 .	1 uV	0 vu min	1. If indication is correct, proceed to next step. 2. If indication is incorrect, check antenna input circuits.
17	Set FUNC TION switch to AGC position. With the signal generator connected as in previous step, observe indication of CARRIER LEVEL meter.	$\begin{aligned} & 10 \mathrm{uV} \\ & 100 \mathrm{uV} \end{aligned}$	$\begin{aligned} & 40 \mathrm{~min} \\ & 60 \pm 2 \end{aligned}$	1. If indication is normal, proceed to step 20. 2. If indication is abnormal, proceed to next step.
18	With the signal generator set up as in previous step, connect Oscilloscope AN/USM117() to IF OUTPUT jack on rear panel. Observe 455 kHz waveform.	100 uV	180 mV min	1. If indication is normal, proceed with next step. 2. If indication is abnormal, check the circuit of V509B.
19	Disconnect oscilloscope, and connect Multimeter AN/PSM4() to TB102-3. Observe indication.	100 uV	$\begin{aligned} & -4.0 \mathrm{Vdc} \\ & \min \end{aligned}$	1. If indication is normal, trouble is in circuit of V506A.

TABLE 5-5. TROUBLE ISOLATION (Cont)

$\begin{aligned} & \text { STEP } \\ & \text { NO. } \end{aligned}$	TEST INSTRUCTIONS	SIG GEN OUTPUT CONTROL	NORMAL INDICATION	INSTRUCTIONS
$\begin{array}{\|c\|} 19 \\ \text { (Cont) } \end{array}$		10 mV	$\frac{-1.4 \mathrm{Vdc}}{\min }$	2. If indication is abnormal, trouble is in circuits of V508 or V509A.
20	Disconnect signal generator. Set FUNCTION switch to CALIBRATE position, and BFO switch to ON. Turn RF GAIN to 10 , and tune receiver to a multiple of 100 kHz . Adjust ANT TRIM for max indication on CARRIER LEVEL meter.	N/A	40 dB min	1. If indication is normal, the receiver is operating properly. 2. If indication is abnormal, proceed to next step.
21	Connect Oscilloscope AN/ USM-117() to pin 7 grid of V205B and observe 100 kHz waveform.	N/A	$\begin{aligned} & 54 \mathrm{~V} \text { p-p } \\ & \min \end{aligned}$	1. If indication is normal, check circuit of V205B. 2. If indication is abnormal, proceed to next step.
22	Remove V206 from its socket and connect oscilloscope to pin 2 grid of V206 socket. Observe 200 kHz waveform.	N/A	$\begin{aligned} & 13.5 \mathrm{~V}-\mathrm{p} \\ & \min \end{aligned}$	1. If indication is normal, check circuit of V206. 2. If indication is abnormal, check circuit of V205A.

5.5.6 DC Resistances of Transformers and Coils. The dc resistances of the windings of the transformers and coils in Radio Receiver R-390A/URR as measured with Multimeter AN/PSM-4() are listed in table 5-6.

TABLE 5-6. TRANSFORMER AND COIL RESISTANCES

TRANSFORMER OR COIL	TERMINALS	OHMS
MAIN FRAME		
FL101	A-A	Less than 0.1
	B-B	Less than 0.1
K101	1-2	200
R-F SUBCHASSIS		
HR202		
L201		5
L202		7
L203		0.6
L204		0.6
L205		0.6
L206		0.6
L207		0.6

TABLE 5-6. TRANSFORMER AND COIL RESISTANCES (Cont)

TRANSFORMER OR COIL	TERMINALS	OHMS
R-F SUBCHASSIS (Cont)		
L208		7
L210		0.15
L211		7
L236		0.3
T201	1-2	Less than 0.2
	4-6	2.7
T202	1-2	Less than 0.2
	4-6	1.2
T204	1-2	Less than 0.2
	4-6	4.
T205	1-2	Less than 0.2
	4-6	Less than 0.2
T206	1-2	Less than 0.2
	4-6	Less than 0.2
T207	1-2	Less than 0.2
	3-4	Less than 0.2
T208	1-5	2.5
	2-3	2
	3-4	2
	2-4	4
Z201-1	1-3	2.8
Z202-1	1-3	1.8
Z203-1	1-3	1.2
Z204-1	1-3	0.5
Z205-1	1-3	0.2
Z206-1	1-3	Less than 0.2
Z201-2	1-3	2.8
Z202-2	1-3	1.8
Z203-2	1-3	1.2
Z204-2	1-3	0.5
Z205-2	1-3	0.2
Z206-1	1-3	Less than 0.2
Z201-2	1-3	2.8
Z202-2	1-3	1.8
Z203-2	1-3	1.2
Z204-2	1-3	0.5
Z205-2	1-3	0.2
Z206-2	1-3	Less than 0.2
Z213-1	1-3	Less than 0.2
Z213-2	1-3	Less than 0.2
Z213-3	1-3	Less than 0.2
Z216-1	1-3	1.1
Z216-2	1-3	1.1
Z213-1	1-3	Less than 0.2
Z213-2	1-3	Less than 0.2
Z213-3	1-3	- Less than 0.2
Z216-1	1-3	1.1
Z216-2	$1-3$ $1-3$	1.1
2216-3	$1-3$	1.1

TABLE 5-6. TRANSFORMER AND COIL RESISTANCES (Cont)

TRANSFORMER OR COLL	TERMINALS	OHMS
CRYSTAL-OSCILLATOR SUBCHASSIS		
$\begin{aligned} & \text { HR401 } \\ & \text { L401 } \\ & \text { L402 } \\ & \text { T401 } \end{aligned}$	Gnd J410-E $\begin{aligned} & 1-2 \\ & 3-4 \end{aligned}$	11 7 0.6 Less than 0.1 Less than 0.1
IF SUBCHASSIS		
FL502 FL503 FL504 FL505 L501 L502 L504 L505 RT510 T501 T502 T503 Z501 Z502 Z503	$\begin{aligned} & 1-2 \\ & 3-4 \\ & 1-2 \\ & 3-4 \\ & 1-2 \\ & 3-4 \\ & 1-2 \\ & 3-4 \\ & \\ & \\ & \\ & 2-7 \\ & 1-2 \\ & 4-5 \\ & 1-2 \\ & 4-5 \\ & 1-2 \\ & 3-4 \\ & 4-5 \\ & 3-5 \\ & 1-2 \\ & 1-2 \\ & 1-3 \\ & 2-3 \\ & 1-5 \end{aligned}$	40 7 90 3 90 8 6 6 6 6 6 6.1 6.3 0.2 4.8 0.2 1.8 1.6 18
AF SUBCHASSIS		
$\begin{aligned} & \text { FL601 } \\ & \\ & \text { K601 } \\ & \text { L601 } \\ & \text { L602 } \\ & \text { L603 } \\ & \text { RT510 } \\ & \text { T601 } \end{aligned}$	$\begin{aligned} & 1-2 \\ & 2-3 \\ & 1-3 \\ & 1-7 \\ & 1-2 \\ & 1-2 \\ & 1-2 \\ & 2-7 \\ & 1-2 \\ & 3-4 \\ & 5-6 \end{aligned}$	$\begin{aligned} & 230 \\ & 250 \\ & 480 \\ & 2.8 \\ & 130 \\ & 125 \\ & 110 \\ & 8 \\ & 580 \\ & 28 \\ & 30 \end{aligned}$

TABLE 5-6. TRANSFORMER AND COIL RESISTANCES (Cont)

TRANSFORMER OR COIL	TERMINALS	COIL
AF SUBCHASSIS (Cont)		
T602	$1-2$	580
	$3-4$	28
	$5-6$	30
VFO SUBCHASSIS		0.6
		4
L706	$1-2$	0.5

5.5.7 Resistance Measurements at Subchassis Connectors. Connectors are used in this receiver to interconnect the various subchassis. Defects may be localized by measurement of the resistance to ground at the receptacle terminals of a subchassis. The charts below indicate the normal resistance between the indicated receptacle terminals and chassis ground. To prepare the receiver for these measurements, disconnect the receiver from the power source and remove the connectors from the subchassis suspected to be faulty.

TABLE 5-7. CONNECTOR RESISTANCE MEASUREMENTS

RF SUBCHASSIS		
Terminal of Receptacle J208	Resistance to Ground (ohms)	
A	92 k	
B	0.88	
C	Inf	
D	Inf	
E	Inf	
F	100	
H	0	
J	Inf	
K	Inf	
CRYSTAL-OSCILLATOR SUBCHASSIS		
Terminal of Receptacle J410	Resistance to Ground (ohms)	
A	Inf	
B	10	
C	Inf	
D	0	
E	11	
F	11	
H	0	

TABLE 5-7. CONNECTOR RESISTANCE MEASUREMENTS (Cont)

IF SUBCHASSIS	
Terminal of Receptacle 5512	Resistance to Ground (ohms)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Inf 50k 54k 500 k Inf Inf Inf Inf Inf 440k Inf 27 Inf 0 to 20 132k 100 k 0 0 Inf 0.5
AF SUBCHASSIS	
Terminal of Receptacle J619	Resistance of Ground (ohms)
$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \end{array}$	3.6 90 k 90 k 90 k 90 k Inf Inf Inf 58 Less than 0.1 0
Terminal of Receptacle J620	Resistance to Ground (ohms)
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	Inf 940k Inf 470k 200 Inf 200 Inf

TABLE 5-7. CONNECTOR RESISTANCE MEASUREMENTS (Cont)

AF SUBCHASSIS (Cont)	
Terminal of Receptacle J620	Resistance to Ground (ohms)
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \end{array}$	$\begin{aligned} & \operatorname{Inf} \\ & \operatorname{Inf} \\ & \operatorname{Inf} \\ & \operatorname{Inf} \\ & 0 \\ & 1.35 \mathrm{M} \\ & \operatorname{Inf} \end{aligned}$
VFO SUBCHASSIS	
Terminal of Receptacle J709	Resistance to Ground (ohms)
$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { D } \\ & \text { E } \\ & \text { F } \\ & \text { H } \\ & \mathrm{J} \\ & \text { K } \end{aligned}$	Inf Inf Inf Inf Inf 0 3.5 Inf Inf
POWER SUPPLY SUBCHASSIS	
Terminal of Receptacle J811	Resistance to Ground (ohms)
$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \end{array}$	Less than 0.1 0 Inf Inf Inf Inf Inf Inf Inf Less than 0.1 0

ZONING FOR SIGNAL FLow diagram figure 5 -12 (SHeEt 1 of 2)

ZONING FOR SCHEMATIC DIAGRAM FIGURE 5-13 (SHEET 1 of 4)

REF		REF		REF		REF	
DESIG	LOC	DESIG	LOC	DESIG	LOC	DESIG	LOC
C201A	14E	C237-1	7D	C313	10 C	L219	13C
C201B	13 E	C237-2	6 D	C314	9 C	L220	13C
C202	14 E	C238-1	7D	C315	10 C	L221	13C
C203	13 E	C238-2	6 D	C316	9 B	L222	13B
C204	13 E	C239-1	8 C	C317	9 C	L223	13B
C205A	14D	C239-2	6 C	C318	3 E	L224-1	8 E
C205B	13D	C240-1	7 C	C320	9 C	L224-2	7 E
C206	14D	C240-2	6C	C321	6 C	L225-1	8D
C207	13D	C241-1	7 C	C322	6 C	L225-2	7D
C208	13D	C242-1	8 C	C323	6B	L226-1	8D
C209A	14D	C242-2	6 C	C324	5D	L226-2	7 D
C209B	13D	C243-1	7 C	C325	5D	L227-1	8 C
C210	14D	C243-2	6 C	C326	4D	L227-2	7 C
C211	13D	C244-1	7 C	C327	4D	L228-1	8C
C212	13D	C244-2	6 C	C328	4D	L228-2	7 C
C213A	14 C	C245-1	8B	C329	3 D	L229-1	8B
C213B	13 C	C245-2	6 B	C330-1	7 E	L229-2	7B
C214	14 C	C246-1	7 B	C330-2	6 E	L230	4D
C215	13 C	C246-2	6 B	C331-1	7 D	L231	4D
C216	13 C	C247-1	7 B	C331-2	6 D	L232-1	2 E
C217A	14 C	C247-2	6 B	C334	3D	L232-2	2D
C217B	13 C	C248	7B	E208	9E	L232-3	2 D
C218	14 C	C249	7B	E209	4 E	L236	10 C
C219	13 C	C250	7 C	E212	9 E	P108	2A, 3A
C220	13 C	C251	7C	E213	11D		4A, 8A
C221A	14B	C252	7 D	HR202	11C		9A
C221B	13B	C253	7D	1103	15B	P205	15B
C222	14B	C254	7 E	J103	15B	P206	15C
C223	13B	C255	9 E	J104	15C	P207	15D
C224	13B	C256	11C	J105	15B	P221	4D
C225A	12 B	C257	9 D	J106	15 C	R121	1.5B
C225B	12B	C273	3 D	J107	15C	R201	12B
C226	12B	C274	5D	J208	2A, 3A	R202	9 D
C227	9 D	C275	2 D		4A, 8A	R203	9D
C228	9D	C276	6 E		9A	R204	9D
C229	9D	C277	4 E	J221	4D	R205	7B
C230-1	8 E	C278	6 D	K101A	15 C	R207	5D
C230-2	6 E	C279	6 D	K101B	15C	R208	4 E
C231-1	7 E	C280	3 E	L201	4D	R209	4 E
C231-2	6 E	C281	3 E	L208	2 C	R210	4D
C232-1	7 E	C282	3 D	L209	3B	R211	4D
C232-2	6 E	C283-1	2 E	L210	9B	R212	3D
C233-1	8D	C283-2	2D	L211	9 C	R220	11B
C233-2	6D	C283-3	2 D	L212	13 E	R221	10 C
C234-1	7D	C284	3 D	L213	13 E	R222	10B
C234-2	6D	C308	3 C	L214	13D	R223	9B
C235-1	7D	C309	10C	L215	13D	R224	10 C
C235-2	6D	C310	11B	L216	13D	R225	9 B
C236-1	8D	C311	10C	L217	13D	R226	10C
C236-2	6 D	C312	10C	L218	13C	R227	9 C

ZONING FOR SCHEMATIC DIAGRAM FIGURE 5-13 (SHEET 1 of 4) (Cont)

REF	REF			REF		REF	
DESIG	LOC	DESIG	LOC	DESIG	LOC	DESIG	LOC
R228	9 C	S205	12C	V201	9E	Z203-1	7 D
R229	9B	S206	8D	V202	4 E	Z203-2	6 D
R231	3 E	S207	5D	V205A	10B	Z204-1	7 C
R232	3C	S208 (front)	2D	V205B	9B	Z204-2	6 C
R233	9D	S208 (rear)	2 E	V206	10B	Z205-1	7 C
R234	12B	T201	13 E	V207	4D	Z205-2	6 C
R235	11C	T202	13D	Y201	5D	Z206-1	7 B
S201	14D	T203	13D	Y203	11C	Z206-2	6 B
S202	14C	T204	13C	Z201-1	7 E	Z213-1	2 E
S203 (front)	12B	T205	13C	Z201-2	6 E	Z213-2	2D
S203 (rear)	12 C	T206	13B	Z202-1	7D	Z213-3	2D
S204	12D	T207	4D	Z202-2	6 D		

GENERAL NOTES:
A. UNLESS OTHERWISE INDICATED, ELECTRICAL VALUES ARE EXPRESSED IN PICOFARADS, MICROHENRIES, AND OHMS.
B. \square INDICATES EQUIPMENT MARKING.

SPECIFIC NOTES:

1. ANTENNA, RF, AND VARIABLE IF COILS ARE TUNED AS FOLLOWS:

CONTINUOUSLY WITH KILOCYCLE CHANGE , ALL COILS.
INTERMITTENTLY WITH MEGACYCLE CHANGE . T203 THRU T206, Z203-1 THRU Z206-1, Z203-2 THRUZ206-2, AND Z213-1 THRU Z213-3.
2. REFER TO TABLE 1-9, PRODUCTION MODIFICATIONS.
3. REFER TO TABLE 1-8, FIELD CHANGE DATA, AND FIGURE 5-15.
4. REFER TO FIGURE 5-4, VOLTAGE AND RESISTANCE DIAGRAM.
5. SCHEMATIC SHOWN WITH MEGACYCLE CHANGE SET FOR THE . 5 TO 1 MC BAND.

Figure
5-13, Sheet 2

ZONING FOR SCHEMATIC DIAGRAM FIGURE 5-13 (SHEET 2 of 4)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	LOC	$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	LOC	REF DESIG	LOC	$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	LOC
C102	4D	C710	13B	L204	8D	R619	6 C
C104	11 C	C711	14B	L205	8D	R701	13 C
C105	10C	C712	5D	L206	9D	R702	12B
C106	11 C	C713	6 D	L207	9D	R703	12B
C107	10 C	C714	12B	L233-1	13 E	R704	12C
C285	9D	CR102	5D	L233-2	13D	RT510	7 E
C286	15D	CR801	9 B	L233-3	13D	S102	10B
C287	14D	CR802	9B	L234	12D	S103	8B
C288	14D	E210	14D	L235	12D	S106	5D
C289	14 E	E211	13D	L402	6 D	S401	3 C
C290	14D	E607	5 C	L505	13B	S403	2 C
C291-1	13 E	F101	10B		14B	S701	13B
C291-2	13D	F102	8B	L601	7 C	T208	12 D
C291-3	13D	F103	5B	L602	6 C	T701	12C
C292-1	13 E	FL101	10B	L603	6 C	T801	9B, 9C, 9D
C292-2	13D		10C, 11B	L701	14C	TB103	8B
C292-3	13D		11 C	L702	14B	TB801	9 C
C297	14D	HR401	1 C		14C		9 D
C298	13D		1D, 2 C	L706	5D	V201	8 D
C299	12D		2D	P108-B	8D	V202	8D
C300	8D	HR701	13B, 13C		14A	V203	9 D
C301	8D		14B, 14C	P109	5D		14D
C302	9D	1101	7 C		12A, 13A	V204	9D, 12D
C303	9D	I102	7 C		14 A	V205	9 E
C304	9 D	J110-B	6 D	P110	$4 \mathrm{~B}, 4 \mathrm{C}$	V206	9D
C305	9 D	J208	8D		6 D	V207	9D
C307	12 C		14A	P111	8B, 8C	V401	6 D
C319	15D	J217	12 C		10C, 10D	V501	7 D
C 402	2 C	J410	4 C	P112	6E, 7D	V502	7D
C 403	2 D		4B		7 E	V503	7 D
C404	1D	J416	2 C	P119	$5 \mathrm{~B}, 5 \mathrm{C}$	V504	7D
C406	1C	J417	2B		5D, 7B	V505	7 E
C407	4B	J512	6 E		7 C	V506	7 D
C414	6 D		7D, 7E	P416	2 C	V507	7D
C415	6 D	J119-1	7B	P417	2B	V508	7 D
C538	7 D	J619	5B	P717	12C	V509	7 D
C603-C	6 C		$5 \mathrm{C}, 5 \mathrm{D}$	R124	8 C	V601	7C
C606-A	6 B		7B, 7C	R206	14D	V602	7 C
C606-B	6 B	J709	5 D	R213	15D	V603	7 C
C611	5 C		12A, 13A	R214	14D	V604	7 C
C701	14 C		14A	R215	14D	V605	5 C
C702	13 C	J811	8B, 8C	R216	14D	V701	6 D
C703	13C		10C, 10D	R217	14 C		13 C
C704	13 C	K601	6 C	R218	12D	V801	9 B
C705	13 B		7 C	R219	12 C	V802	9 C
C706	12 C	L101	10 C	R230	13D	Y401	2 C
C707	12B	L102	10 C	R536	7 D	Y402	1C
C708	12 C	L202	8D	R617	6 C	Y403	1D
C709	12 C	L203	8D	R618	6 C	Y404	1C

ZONING FOR SCHEMATIC DIAGRAM FIGURE 5-13 (SHEET 2 of 4) (Cont)

REF	REF	REF		REF			
DESIG	LOC	DESIG	LOC	DESIG	LOC	DESIG	LOC
							Z216-2

GENERAL NOTES:
A. UNLESS OTHERWISE INDICATED, ELECTRICAL VALUES ARE EXPRESSED IN PICOFARADS, MICROHENRIES, AND OHMS.
B. \square INDICATES EQUIPMENT MARKING.

SPECIFIC NOTES:

1. ANTENNA, RF, AND VARIABLE IF COILS ARE TUNED AS FOLLOWS: CONTINUOUSLY WITH KILOCYCLE CHANGE , ALL COILS.

INTERMITTENTLY WITH MEGACYCLE CHANGE , T203 THRU T206, Z203-1 THRU Z206-1, Z203-2 THRU Z206-2, AND Z213-1 THRU Z213-3.
2. REFER TO TABLE 2-3 FOR FUSE VALUES.
3. REFER TO TABLE 1-8, FIELD CHANGE DATA.
4. REFER TO FIGURES 5-4, 5-5, 5-7, 5-8, AND 5-9 VOLTAGE AND RESISTANCE DIAGRAMS.
5. SCHEMATIC SHOWN WITH MEGACYCLE CHANGE SET FOR THE . 5 TO 1 MC BAND.

ZONING FOR SCHEMATIC DIAGRAM FIGURE 5-13 (SHEET 3 of 4)

REF		REF		REF		REF	
DESIG	LOC	DESIG	LOC	DESIG	LOC	DESIG	LOC
C101	3B	C506	11 C	3410	18B	R519	7 C
C401	19 C	C507	10D		19 B	R520	7C
C408	20 C	C508	10D	J415	18B	R521	8 C
C409	19C	C509	10 D	J512	$2 \mathrm{C}, 3 \mathrm{~B}$	R522	5 D
C410	19 C	C510	10 C		$3 \mathrm{C}, 4 \mathrm{~B}$	R523	5 C
C411	18C	C511	11C	J513	13D	R524	5 C
C412	18 C	C512	9 C	J518	13 E	R525	4 C
C413	18 C	C513	10 C	L401	19 C	R526	3 D
C417	17C	C 514	10D	L403	$17 \mathrm{C}, 17 \mathrm{D}$	R527	3 C
C 418	17C	C515	10D	L404	$17 \mathrm{C}, 17 \mathrm{D}$	R528	$4 \mathrm{~B}, 5 \mathrm{C}$
C419	17C	C 516	10 D	L501	11 C	R529	4 B
C420	17 C	C517	9 C	L502	4 C	R530	3B
C421	17B	C518	9 C	L503	12D	R531	4 B
C422	17B	C519	7 C	L505	11D	R532	2 D
C423	17 B	C520	12 D	L506	8 D	R533	2D
C424	14 C	C521	7 D	L507	8D	R534	2 C
C425	14 C	C522	7 C	L508	6B	R.535	3 C
C426	14 C	C523	6 C	L509	6 B	R537	5 C
C427	14 C	C524	12D	L510	6 D	R550	7 C
C428	14 C	C525	5D	L511	6 D	R551	6 C
C429-A	16 C	C526	5B	L512	4D	R553	6 D
C429-B	16 C	C527	5B	L513	4D	R554	6 D
C 429 - C	15 C	C528	5 C	P110	18B, 19B	R559	6 D
C429-D	16B	C529	4 C	P112	$2 \mathrm{~B}, 3 \mathrm{~B}$	R560	6 D
C429-E	15 C	C530	4 C		$3 \mathrm{C}, 4 \mathrm{~B}$	S108	2 B
C429-F	14 C	C531	3 D	P213	13D	S402	16 C
C429-G	15 C	C532	3D	P215	18B	S501	12 E
$\mathrm{C} 429-\mathrm{H}$	14 C	C533	4 B	P218	13 E	S502 (front)	11 E
C430-A	16B	C534	4 B	R119	2B	5502 (rear)	10 E
C430-B	16 C	C535	3D	R120	2B	5503 (front)	10 E
C430-C	15 C	C536	3D	R404	20 C	S503 (rear)	9 E
C430-D	15 C	C537	2D	R405	19C	T401	17C, 17D
C430-E	15 C	C549	2D	R406	18 C	T501	8 D
$\mathrm{C} 430-\mathrm{F}$	14 C	C552	8 C	R407	18 C	T502	6 D
C430-G	1.5D	C553	6D, 11D	R501	12 C	T503	4D, 5D
$\mathrm{C} 430-\mathrm{H}$	14C	C554	5B, 6D	R502	12 C	V401	19 C
C431-A	16B	C555	5B	R503	12D	V501	11D
C431-B	16 B	C556	5 B	R504	11D	V502	9D
C431-D	15C	C557	8D	R505	11D	V503	7 D
C43e-D	15C	C558	8D	R506	11 C	V504	5 D
C431-E	15C	C559	6 D	R507	10 C	V505	4B
C431-F	14C	C560	6 D	R508	11C	V506B	3 D
C431-G	15D	C561	4D	R511	8D	V507	2D, 3D
C431-H	14D	C562	4D	R512	7 D	Y501	12D
C501	12D	E402	20 C	R513	9 C	Z501	12C, 12D
C502	12 C	FL502	10 C	R514	9 D	Z702	$5 \mathrm{~B}, 6 \mathrm{~B}$
C503	12C	FL503	10D	R515	9 C		
C504	11C	FL504	10D	R516	8 C		
C505	11D	FL505	10 D	R518	7 D		

Original

general notes

A. UNLESS OTHERwise indicated, electrical values are expressed in picofarads,
B. \square indicates equipment marking.

SPECIFIC NOTES:

1. RESISTORS R502 AND R503 SELECTED FOR OPTIMUM BANDPASS.

R502 SELECTED WITHiN RANGE OF 33K TO 68K.
R503 SELECTED WITHIN RANGE OF 560 TO 2700
2. REFER TO table 1-9, production modifications, and figure 3-6.
3. Refer to figures $5-5$ and $5-6$, voltage and resistance diagrams.
4. SChematic shown with MEGACYCLE ChANGE SEt for the . 5 TO 1 MC band.

Figure 5-14. Filament and Oven Circuits

FIELD CHANGE NO. 7
CONERSION OF RTO2 AND R2IO

FIELD CHANGE NO. 8
PROVIDES ELAPSEO TIME INOICATOR

CHAPTER 6

CORRECTIVE MAINTENANCE

6.1 INTRODUCTION

6.1.1 This Chapter provides alignment and repair procedures to enable maintenance personnel to correct deficiencies found as a result of scheduled maintenance and troubleshooting procedures in Chapter 4 and 5 respectively. Before any alignment is attempted all faulty components should be located and replaced. A definite need for alignment should be established by accomplishing sensitivity and bandwidth tests (paragraphs 4.3.1 and 4.3.2) after eliminating faulty components.
6.1.2 The alignment section describes the recommended method by which the equipment is set up, test equipment is connected and used, and necessary adjustments are made to ensure proper equipment performance.
6.1.3 The repair section outlines the methods necessary for disassembly, cleaning, repairing, and reassembly required to replace a faulty component within the receiver.

6.2 ALIGNMENT AND ADJUSTMENT PROCEDURES

6.2.1 General Alignment Information. Use a fluted no. 8 Bristo wrench for adjusting the antenna, the RF, and the variable IF cores. Use the same tool for adjusting the tuning shafts during mechanical synchronization. Use a nonmetallic screwdriver for adjusting the various trimmer capacitors. Use a hexagonal, nonmetallic tool for adjusting the cores in T501, T502, T503, and Z503 on the IF subchassis. Be sure that this tool is inserted through the top core into the bottom core, and that the bottom core turns without disturbing the setting of the top core. Make this type of adjustment only after the particular coil or transformer has been replaced.

6.2.2 Test Equipment and Special Tools

1. RF Signal Generator AN/URM-25 ()
2. Impedance Adapter MX-1487/U
3. Electronic Multimeter AN/USM-116 ()
4. Multimeter AN/PSM-4 ()

6.2.3 Test Conditions

1. Temperature: Normal room or shelter. Humidity: Normal room or shelter.
2. Line Voltage and Frequency: 115 or 230 volts ac ± 1 percent at 60 Hz .
3. Warmup Period: At least 15 minutes.
4. Standard Modulation: 30 percent AM at 400 Hz .
6.2.4 Preparation for Alignment. Before applying power to the receiver, the following conditions must exist:
5. All the controls must operate freely and the knobs must be securely attached to their shafts.
6. The tubes and tube shields must be securely in place.
7. All connectors must be seated firmly.
8. The KILOCYCLE CHANGE dial overtravel must not be less than 25 kHz at each end.
9. The receiver must be grounded, and ac power must be applied; the front-panel controls must be set according to table $4-2$.
10. The B+ voltage between chassis ground and the +150 V test point E 607 (figure $6-28$) should be between +148 volts and +153 volts.
11. All tube filaments must be lighted.
12. The antenna relay must be actuated when the FUNCTION switch is placed in the STANDBY and CAL positions.
13. CARR-METER ADJ control R523 (figure 6-16) on the IF subchassis must be adjusted for a CARRIER LEVEL meter indication of 0 .
6.2.5 Mechanical and Electrical Synchronization. The receiver tuning elements, which consist of the frequency indicator, KILOCYCLE CHANGE, and MEGACYCLE CHANGE 10-turn stops, the 6 -position RF band switch, the second crystal band switch, and the VFO, must be in synchronization with the RF gear train before electrical alignment is attempted. If the receiver is being realigned because of low sensitivity or replacement of parts such as the variable IF, the fixed IF, or the RF transformers, it should not be necessary to check the mechanical and electrical synchronization. Nonsynchronization of the tuning shafts and the RF gear train is likely to occur as a result of the removal and replacement of the RF subchassis, crystal-oscillator subchassis, VFO subchassis, or the disassembly of part or all of the RF gear train assembly. Check and adjust the following items as may be necessary.
6.2.5.1 Ten-Turn Stops. Check the 10 -turn stops (figure 6-3) by rotating the MEGACYCLE CHANGE and KILOCYCLE CHANGE shafts fully counterclockwise. The first two digits on the frequency indicator should indicate halfway between 99 and 00 MHz (off the detent position). The next three digits should indicate between -963 and -972 kHz .
6.2.5.2 Slug-Rack Cams and Followers. (See figure 6-2.) Check the slug-rack cam followers at the high and low ends of each coil range. Normally, ail cam followers should be near (but not at) the peak of the cams at the high end of the coil ranges.

NOTE

If the cam followers do not function as described below, follow repair procedure in paragraphs 6.3.16 through 6.3.19.

1. All cam followers, except the cams for the $0.5-$ to $1-\mathrm{MHz}$ range, should not quite reach the peak of the cams at the high end of the range.
2. The cam followers for the $0.5-$ to $1-\mathrm{MHz}$ range may pass over the peak of the cams for a KILOCYCLE CHANGE control reading of +025 or higher.
3. All cam followers except the $0.5-$ to $1-\mathrm{MHz}$ cam followers should not quite reach the valley of the cams as the KILOCYCLE CHANGE control is turned to the low end of the coil range.
4. The $0.5-$ to $1-\mathrm{MHz}$ cam followers may pass through the valley and start up the other side of the cams as the KILOCYCLE CHANGE control is adjusted to a reading of about 475.
5. The cam follower on first variable IF transformer Z213 (17.5 to 25 MHz) is near the valley of the cam when the KILOCYCLE CHANGE control reading is 500 , and rises to near the peak at $07+000$.
6. The cam follower on second variable IF transformer Z216 (3 to 2 MHz) is near the valley of the cam when the KILOCYCLE CHANGE control is rotated fully clockwise, and near the peak when the KILOCYCLE CHANGE control is fully counterclockwise.

6.2.5.3 Camshafts.

NOTE

If any cams have been synchronized with the RF subchassis removed from the main frame, the VFO subchassis must be synchronized (para 6.2.5.6) after the RF subchassis is replaced.

1. Set the MEGACYCLE CHANGE and KILOCYCLE CHANGE controls for a frequency-indicator reading of $07+000$. The camshafts are synchronized if the cam positioning marks on the pressed cam plates

Figure 6-1. RF Gear Train Assembly, Location of Parts
line up with the points of the cams and the intermittent switch drive gears. Figure 6-2 shows the front and figure 6-13 shows the rear of the cam plate.
2. If all the cams line up at some other frequency indications, perform the following:
a. Position the MEGACYCLE CHANGE and KILOCYCLE CHANGE controls until the cam points are lined up with the cam positioning marks.
b. Loosen the two bevel gear clamps on the mechanical counter (figure 6-1).
c. Manually adjust the counter dial to $07+000$.
d. Tighten the gear clamps.

GEARS SHOWN IN LOADED POSITION

INTERMITTENT SWITCH DRIVE VIEWED FROM FRONT IN 7+OOOMC POSITION

NOTE:
CAM POSITIONS VIEWED FROM FRONT WITH GEARS REMOVED

Figure 6-2. Mechanical Alignment Details
3. If one cam does not line up with the cam position mark, perform the following:
a. Loosen the clamp on the front end of the individual camshaft.
b. Line up the cam point with the cam positioning mark.
c. Tighten the clamp.

NOTE
To avoid losing the nut, do not loosen the clamp more than necessary. Be careful not to strip the screw thread when tightening.

6.2.5.4 Six-Position RF Band Switch. (See figure 6-20.)

1. Position the MEGACYCLE CHANGE and KILOCYCLE CHANGE controls for a frequency-indicator reading of $07+000$.
2. Remove V207.
3. Disconnect P108 (figure 6-14) from J208.
4. Connect Multimeter AN/PSM-4 () between pin 6 of XV205 and pin D of J208. The indication should be approximately 200 k ohms.
5. Turn the MEGACYCLE CHANGE control to 08 . The AN/PSM-4 () should indicate an infinite reading.
6. If the indications are not as in 4 and 5 above, continue with procedures 7,8 , and 9 .
7. Disconnect the PSM-4 () and reinsert V207.
8. Remove the front panel (paragraph 6.3.2) and the RF subchassis (paragraph 6.3.3).
9. Loosen the RF band switch clamp (figure 6-3). Turn the band switch shaft until the rotors are centered on the contacts which provide the indications required in procedures 4 and 5 above. Tighten the RF band switch clamp.
6.2.5.5 Crystal-Oscillator Subchassis Band Switch.
10. The crystal-oscillator band switch is synchronized when the indicator-wheel number (figure 6-14) that appears in the hole on the crystal-oscillator subchassis agrees with the first two digits of the frequency indicator.

NOTE

Only even numbers appear on the indicator wheel; odd numbers appear as straight lines between numbers; 00 on the frequency indicator appears as 0.
2. If the indication is incorrect, set the receiver controls as directed in paragraph 5.5.2 and turn the FUNCTION switch to STANDBY .
3. Comnect Electronic Multimeter AN/USM-116 () between test point E210 (figure 6-19) and chassis ground.
4. Loosen the shaft coupler. Insert a long screwdriver through the SYNC XTAL OSC hole in the rear panel of the receiver and turn the crystal-oscillator band switch shaft to the correct number.
5. Tighten the shaft coupler.
6. Turn the MEGACYCLE CHANGE control to each side of the detent point. The AN/USM-116 () indication should be -3.5 to -8 volts at the detent point and should drop to zero each side of the detent point. If not, readjust the crystal-oscillator band switch shaft (4 and 5 above) to meet this condition.
7. Disconnect the AN/USM-116 ().

Figure 6-3. Location of RF Band Switch Shaft Clamp, Detent Spring and Ten-Turn Stops

6.2.5.6 VFO Tuning Shaft

1. Preset the receiver (paragraph 5.5.2). Turn the FUNCTION switch to MGC. Allow 15 minutes for warmup.
2. Tune the receiver to station WWV or a local station of known frequency. Be sure to set the frequency indicator exactly to the station's assigned frequency.
3. Turn the BANDWIDTH switch to 1.
4. Remove the antibacklash spring on the Oldham coupler (figure 6-4) and loosen the VFO (figure 6-15) shaft clamp nearest the front panel.

CAUTION

The VFO will be permanently damaged if the shaft is turned too far in either direction. The end of shaft travel can be felt while turning the shaft with the fingers. Do not force the shaft.
5. Turn the shaft until the station is taned for maximum loudness.
6. Tighten the shaft coupler and replace the antibacklash spring.
7. With the first two digits of the frequency indicator set at any position except 00 , check the receiver calibration at the low, middle, and high frequency end of the band.
6.2.6 Adjusting ZERO ADJ Control. Check the adjustment of the ZERO ADJ control as follows:

1. Turn the ZERO ADJ knob fully counterclockwise. Slowly turn the knob clockwise and observe the free play in the knob. The free play should be approximately $1 / 8$ turn.
2. If there is no free play, or if the free play is excessive, remove the knob.
3. With the thumb and forefinger, adjust the shaft for approximately $1 / 8$-turn free play.

Figure 6-4. Oldham Coupler Details
4. Replace the knob so that the stop on the rear of the knob is directly to the right of, and touching the finger on, the ZERO ADJ control locking washer on the front panel. Tighten the knob.
5. Turn the ZERO ADJ control fully clockwise to the stop, and check to see that the locked clutch gear assembly (figure 6-1) is disengaged. Do this by rocking the KILOCYCLE CHANGE control back and forth and observing the reading of the frequency indicator to see that it does not change.
6. Turn the ZERO ADJ control fully counterclockwise to the stop and recheck for approximately 1/8-turn free play.
7. Repeat the procedures in 2 through 6 above if the free play and clutch disengagement are not as specified.
6.2.7 Alignment of Fixed-Tuned IF Circuits. IF transformers T501, T502, and T503 are stagger-tuned in some models and all are tuned to 455 kHz in other models. IF transformer T208 (figure 6-19) and tuned circuit Z503 are tuned to 455 kHz on all models. Normally, none of these components require alignment. However, when T501, T502, or T503 is replaced in any model, all three transformers should be aligned as directed in the procedures given in paragraph 6.2.7.1 below. Transformer T208 can be adjusted from the top of the transformer cover, but T501, T502, T503, and Z503 cannot be adjusted unless their covers are removed and modified covers installed temporarily.

6.2.7.1 Alignment of T501, T502, and T503. (See figure 6-16.)

1. Set the controls as indicated in paragraph 5.5.2. Turn the BANDWIDTH switch to 16 , and the FUNCTION switch to MGC.
2. Disconnect P114 from J514, P213 from J513, and P218 from J518. Connect P114 to J513.
3. Connect the output of the AN/URM-25 () to the IF OUTPUT jack on the receiver rear panel.
4. Remove the cover from T501, T502, or T503, whichever is to be replaced, by removing the top nuts and lockwashers. Punch or drill a hole in the top of the removed cover. The hole must be large enough to pass the alignment tool and must be centered over the transformer core when installed.
5. Install the replacement transformer T501, T502, or T503 complete with the modified cover.
6. Locate resistor R504 (figure 6-18). If the resistor has a value of $1,000 \mathrm{ohms}$, replace it with a 560 -ohm resistor of the same wattage.
7. Connect the AN/USM-116 () to the front panel DIODE LOAD jack.
8. Remove the cover from transformer T501 and replace it with the modified cover (4 above). Tune the AN/URM-25 () to 467 kHz and adjust its output for a diode load voltage between -3 and -7 volts.
9. Adjust the secondary (top) slug of T 501 for maximum diode load voltage. Reduce the signal generator output, as necessary, to keep the diode load voltage between -3 and -7 volts.
10. Remove the modified cover from T501 and replace it with the permanent cover.
11. Follow the procedures given in 8, 9, and 10 above and adjust the primaries and secondaries of T502 and T503, and the primary of T501, in the order listed in table 6-1.

TABLE 6-1. IF ALIGNMENT CHART

STEP	MODIFIED COVER ON	AN/URM-25 () FREQUENCY	ADJUST
1	T501 and T502	467	T501 secondary (top slug) T502 primary (bottom slug)
2	T501 and T502	443	T501 primary (bottom slug) T502 secondary (top slug)
3	T503	455	T503 primary (bottom slug) T503 secondary (top slug)

12. When the alignment is complete and the permanent covers are on all three transformers, disconnect the test equipment and reconnect P114 to J514, P113 to J513, and P218 to J518.
6.2.7.2 Alignment of Z503.
13. Perform the procedures given in 1 through 3 above.
14. Turn the FUNCTION switch to AGC.
15. Replace Z 503 if it is defective. Remove the cover from the old Z 503 , and punch or drill a hole in the top of it. Replace the cover on the new coil.
16. Connect the AN/USM-116 () to AGC terminal 4 and chassis ground on the rear panel of the receiver.
17. Tune the AN/URM-25 () to 455 kHz , and adjust the attenuator on the AN/URM-25 () for an AGC voltage indication of -1 to -2 volts on the AN/USM-116 ().
18. Adjust the single core in $Z 503$ for maximum AGC voltage; then remove the cover (3 above) and replace it with the new cover.
6.2.7.3 Alignment of T208. (See figure 6-19.)
19. Set the receiver controls as instructed in paragraph 6.2.7.1, step 1. Turn the BANDWIDTH switch to 2.
20. Connect the output of the AN/URM-25 () to test point E211 (figure 6-19). Connect the AN/USM-116 () to the front panel DIODE LOAD jack.
21. Tune the AN/URM-25 () to 455 kHz and adjust the AN/URM-25 () attenuator to a AN/USM-116 () reading of between -3 and -7 volts.
22. Adjust T208 for maximum indication on the AN/USM-116 (). The adjustment of T208 will be broad.
23. Disconnect the test equipment.
6.2.8 Adjustment of GAIN ADJ Potentiometer R519. (See figure 6-16.)
6.2.8.1 General. The correct adjustment of this control is very important. If it is set too low, the receiver sensitivity will be below that required; if it is set too high, the receiver noise will be excessive. This adjustment should be checked monthly and whenever any tubes are replaced in the RF or IF subchassis. When two receivers
are operated in diversity operation, the IF outputs should be balanced with GAIN ADJ R519. This is done by setting the gain of one receiver, and then matching the gain of the other receiver to it.
6.2.8.2 Procedure for Adjustment.
24. Disconnect P114 from J514, P213 from J513, and P218 from J518. Connect P114 to J513.
25. Connect the AN/URM-25 () through Adapter, Test MX-1487/URM-25D or Impedance Matching Network CU-206/URM-25F to the IF OUTPUT jack on the rear panel of the receiver.
26. Tune the AN/URM-25 () to 455 kHz and adjust the AN/URM-25 () attenuator for an output level of 150 microvolts. Be sure that the mdoulation is turned off.
27. Connect the AN/USM-116 () to the front panel DIODE LOAD jack.
28. Set the receiver controls as instructed in paragraph 5.5.2. Turn the FUNCTION switch to MGC.
29. Loosen the hexagonal nut on the GAIN ADJ control and adjust the control for a diode load voltage reading of -7 volts. Tighten the hexagonal nut.
30. Disconnect the test equipment. Reconnect P213 to J513, P218 to J518, and P114 to J514.
6.2.8.3 Adjustment for Diversity Operation. When the signals at the IF OUTPUT jacks of the two receivers are used for diversity operation, proceed as follows:
31. Check forward and reverse resistance of CR101. The ratio must be at least 50 to 1 .
32. Adjust one receiver according to the instructions given in paragraph 6.2.8.2 above.
33. Perform the procedures in paragraph 6.2.8.2 above for the second receiver. Do not change the settings of the AN/URM-25 () in any way.
6.2.9 Crystal-Oscillator Subchassis Trimmer Alignment. (See figure 6-5.)
34. Check the synchronization of the crystal-oscillator subchassis band switch (paragraph 6.2.5.5).
35. Preset the receiver controls (paragraph 5.5.2). Turn the FUNCTION switch to CAL.
36. Turn the MEGACYCLE CHANGE control to 08 and adjust the corresponding trimmer for a maximum CARRIER LEVEL meter indication.

NOTE

Trimmers no. 8 and 9 correspond to frequencyindicators no. 08 and 09. There are no adjustments for bands 00 through 07 . Check only for output on these bands.
4. Turn the MEGACYCLE CHANGE control to each band from 08 through 31 and adjust the corresponding trimmer for a maximum CARRIER LEVEL meter indication.
6.2.10 Second Variable IF Alignment.

6.2.10.1 Preparation.

1. Preset the receiver controls (paragraph 5.5.2). Turn the frequency indicator to 01900 .
2. Calibrate the receiver paragraph 2.3.2.1).
3. Turn the FUNCTION switch to MGC.

Figure 6-5. Crystal-Oscillator and IF Subchassis Alignment Points
4. Connect the AN/USM-116 () to the DIODE LOAD jack on the front panel and connect the AN/URM-25 () to test point E210 using Test Lead CX-1363/U (part of AN/URM-25 ()).
6.2.10.2 Alignment. (See figure 6-6.)

NOTE

In steps 2 and 5 below, set the AN/URM-25 () to the specified frequency. Check the accuracy of the setting by means of Frequency Counter AN/USM-207 (). During alignment readjust the AN/URM-25 () output level as necessary to keep the AN/USM-116 () indication between -3 and -5 volts.

1. Set the receiver frequency-indicator at 01900.
2. Tune the AN/URM-25 () to 2.1 MHz .
3. Adjust the slugs in Z216-1, Z216-2, and Z216-3, (L233-1 through L233-3) for a maximum AN/USM-116 () indication.
4. Set the receiver frequency-indicator at 01100.
5. Tune the AN/URM-25 () to 2.9 MHz .
6. Adjust the trimmer capacitors in Z216-1, Z216-2, and Z216-3 (C291-1 through C291-3) for a maximum AN/USM-116 () indication.
7. Repeat the procedures given in 1 through 6 above until no further increase in AN/USM-116 () indication is obtainable.
6.2.11 First Variable IF Alignment.

6.2.11.1 Preparation.

1. Preset the receiver controls (paragraph 5.5.2).
2. Set the frequency indicator at 01200 .
3. Calibrate the receiver (paragraph 2.3.2.1).
4. Turn the FUNCTION switch to MGC.
5. Connect the AN/USM-116 () to the DIODE LOAD jack on the front panel. Connect the AN/URM-25 () to test point E209 using Test Lead CX-1363/U (part of AN/URM-25 ()).
6.2.11.2 Alignment. (See figure 6-6.)

NOTE
In steps 2 and 7 below, set the AN/URM-25 () to the specified frequency. Check the accuracy of the setting by means of Frequency Counter AN/USM-207. During alignment readjust the AN/URM-25() output level as necessary to keep the AN/USM116 () indication between -3 and -5 volts.

Figure 6-6. RF and Variable IF Alignment Points

1. Set the receiver frequency indicator to 01250 .
2. Tune the AN/URM-25 () to 18.25 MHz 。
3. Adjust the slugs in Z213-1, Z213-2, and Z213-3 (L232-1 through L232-3) for a maximum AN/USM-116 () indication.
4. Set the receiver frequency indicator to 07200 .
5. Recalibrate the receiver.
6. Set the receiver frequency indicator to 07250 .
7. Tune the AN/URM-25 () to 24.25 MHz .
8. Adjust the trimmer capacitors in Z213-1, Z213-2, and Z213-3 (C283-1 through C283-3) for a maximum AN/USM-116 () indication.
9. Repeat the procedures given in 1 through 8 above until no further increase in AN/USM-116 () indication is obtainable.

6.2.12 RF Coil Alignment.

6.2.12.1 Preparation.

1. Preset the receiver controls (paragraph 5.5.2).
2. Turn the ANT TRIM control to 0 and the FUNCTION switch to MGC.
3. Connect the AN/USM-116 () to the DIODE LOAD test jack on the front panel. Using Impedance Adapter MX-1487/U, connect the RF OUTPUT of AN/URM-25 () to ANTENNA UNBALANCED jack J103 on back of receiver.
6.2.12.2 Procedure. (See figure 6-6.) Perform each step in the RF alignment chart (table 6-2) by repeating the two steps given below.
4. Set the receiver and the AN/URM-25 () to the frequency listed. Check the accuracy of the signal generator setting by means of Frequency Counter AN/USM-207.
5. Adjust the slugs or trimmer capacitors for maximum AN/URM-116 () indication.

NOTE

Adjust the AN/URM-25 () RF output level, as necessary, to keep the AN/URM-116 () indication between -3 and -7 volts.
6.2.13 Beat-Frequency Oscillator Neutralization.

1. Preset the receiver controls (paragraph 5.5.2). Set the BANDWIDTH switch to .1 and the FUNCTION switch to CAL.
2. Tune the receiver for a maximum CARRIER LEVEL meter indication at any $100-\mathrm{kHz}$ calibration point.

TABLE 6-2. RF ALIGNMENT CHART.

$\begin{gathered} \text { RECEIVER } \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} \text { RECEIVER } \\ \mathrm{kHz} \end{gathered}$	$\begin{gathered} \text { AN/URM-25 () } \\ \text { FREQ } \mathrm{kHz} \end{gathered}$	ADJUST SLUGS FOR PEAK	ADJUST TRIMMER CAPACITORS FOR PEAK
00	550	550	L213 L224-1 L224-2	
00	950	950		
01	100	1,100	L215 L225-1 L225-2	
01	900	1,900		
02	200	2,200	L217 L226-1 L226-2	
03	800	3,800		C209-B C236-1 C236-2
04	400	4,400	L219 L227-1 L227-2	
07	600	7,600		C213-B C239-1 C239-2
08	800	8,800	$\begin{aligned} & \text { L221 } \\ & \text { L228-1 } \\ & \mathbf{L} 228-2 \end{aligned}$	
15	200	15,200		C217-B C242-1 C242-2
17	600	17,600	$\begin{aligned} & \text { L223 } \\ & \text { L229-1 } \\ & \text { L229-2 } \end{aligned}$	
30	400	30,400		C221-B C241-1 C245-2

3. Turn the BFO switch to ON and turn the BFO PITCH control to 1.
4. Set the FUNCTION switch to AGC and the BANDWIDTH switch to 2 .
5. Connect RF Voltmeter ME-30B/U to IF OUTPUT jack J116 on the receiver rear panel.
6. Disconnect P213 (figure 6-14) from J513, and short J513 to chassis ground.
7. Insert an insulated screwdriver through the receiver left end plate access hole and adjust BFO neutralization capacitor C525 (figure 6-17) for a minimum ME-30B/U indication.
6.2.14 Calibration Oscillator Adjustment C310. This adjustment requires the use of an extremely accurate frequency standard for determining the reference frequency. Harmonics of the 5 Megahertz output from either the AN/URQ-9 or AN/URQ-10 (frequency standard) are to be used in making this adjustment.
8. Tune the receiver to 25 MHz (5th harmonic of the frequency standards 5 MHz output).
9. Turn the BANDWIDTH switch to .1.
10. Tune the receiver to the exact resonance by adjusting the KILOCYCLE CHANGE and ANT TRIM controls for a maximum CARRIER LEVEL meter indication.
11. Turn the LINE GAIN control to approximately 5, turn the LINE METER switch to - 10 and adjust the LINE GAIN control for a half-scale LINE LEVEL meter indication.
12. Turn the BFO switch to ON and adjust the BFO PITCH control to the exact zero beat with the signal from the frequency standard. This will be when the LINE LEVEL meter indication drops to zero and fluctuates at a rate slow enough to be counted.
13. Turn the FUNCTION switch to CAL.
14. Use a screwdriver to adjust the CAL ADJ capacitor C310 (figure 6-21) through the rear-panel access hole for exact zero beat (a minimum LINE LEVEL meter indication).
15. Turn the FUNCTION switch to AGC, and tune to other harmonics of the 5 MHz frequency (5, 10,15 and 20 MHz) to check the accuracy of the calibration oscillator adjustment.
6.2.15 CARR-METER ADJ Potentiometer R-523 Adjustment. (See figure 6-16.)
16. Set the FUNCTION switch to AGC and turn the RF GAIN control fully counterclockwise.
17. Adjust the CARR-METER ADJ potentiometer on the IF subchassis for a zero reading of the CARRIER LEVEL meter on the receiver front panel.
6.2.16 Variable-Frequency Oscillator End-Point Adjustment. (See figure 6-7.) After the receiver has been in service for about a year, a frequency check of the variable-frequency oscillator may reveal that its range may not be exactly 3.455 to 2.455 MHz . In most cases, this condition is caused by aging of the frequency-determining components in the sealed VFO subchassis, and can be compensated for by the adjustment of end-point adjustment L701. Access to this adjustment is made by the removal of the screw on the front of the sealed VFO unit.

NOTE

Make this adjustment if the inaccuracy of the VFO exceeds 500 Hz when checked from 000 to +000 on the last three digits of the frequency indicator. Make the end-point adjustment as follows:

1. Remove the VFO subchassis (paragraph 6.3.11.1).
2. Remove the end-point-adjustment cover nut.
3. Replace the VFO subchassis (paragraph 6.3.11.2).
4. Preset the receiver controls (paragraph 5.5.2) and allow the receiver to warm up for at least 1 hour.

NOTE

Set the OVENS switch on the receiver rear panel to the ON position.
5. Calibrate the receiver (paragraph 2.3.2.1) at exactly $07+000$.
6. Remove the front panel (paragraph 6.3.2.1).
7. Turn the riveted locking plate (figure 6-1) by hand for a frequency-indicator setting of $07+000$.
8. Use a screwdriver ($1 / 8$-inch wide blade) through the VFO end-point-adjustment access hole (figure 6-7) to adjust L701 for zero beat.

Figure 6-7. Variable-Frequency Oscillator End-Point Adjustment
9. Turn the riveted locking plate by hand for a setting of exactly $07+000$.
10. Turn the shaft of the BFO PITCH control for zero beat.
11. Repeat the procedures given in 7 through 10 above until no further improvement can be made.
12. When the job has been completed, remove the VFO, replace the end-point-adjustment nut, replace the VFO , replace the front panel (paragraph 6.3.2.2).
6.2.17 Crystal Filter Neutralizing. (See figure 6-5.) Capacitor C520 in tuned circuit Z501 usually needs adjustment only when part or all of Z501 is replaced or when C520 is turned accidentally. Proceed as follows:

1. Preset the receiver controls (paragraph 5.5.2). Set the BANDWIDTH switch to .1 and the FUNCTION switch to MGC.
2. Connect the AN/USM-116 () to the DIODE LOAD test jack on the front panel. Connect the AN/URM-25 () to test point E211 (figure 6-19) using Test Lead CX-1363/U (part of AN/URM-25 ()).
3. Tune the AN/URM-25 () to 455 kHz and adjust its RF output level for a AN/USM-116 () indication of -5 volts.
4. Rock the AN/URM-25 () tuning dial for a maximum AN/USM-116 () indication: then readjust the RF output level for a -7 volt AN/USM-116 () indication.
5. Record the AN/URM-25 () RF output level, and then increase it by 60 dB .
6. Increase the AN/URM-25 () frequency until the AN/USM-116 () again indicates -7 volts.
7. Adjust C520 for a dip in the AN/USM-116 () indication, and mark the C520 setting on the Z501 shield can.
8. Decrease the AN/URM-25 () frequency below 455 kHz until the AN/USM-116 () indication is again -7 volts.
9. Readjust C520 for a dip in the AN/USM-116 () indication and mark this second C520 setting on the Z501 shield can.
10. Set C520 halfway between the marks made in procedures 7 and 9 above.
11. Retune the AN/URM-25 () for a maximum AN/USM-116 () indication at 455 kHz , then readjust the RF output level for a-7-volt AN/USM-116 () indication. Record the AN/URM-25 () frequency setting.
12. Turn the BANDWIDTH switch to 1 .
13. Retune the AN/URM-25 () for a maximum AN/USM-116 () indication. Compare the peak frequency with the one recorded in procedure 11 above.
14. If the peak frequency is different, adjust L503 in Z501 until the peak frequency is the same for both the .1 and $1-\mathrm{kHz}$ positions of the BANDWIDTH switch.

NOTE
This may require several readjustments of L503.

6.2.18 Antenna Trimmer Control Adjustment.

6.2.18. 1 The ANT TRIM control is properly adjusted if the gear with the red dot is positioned as shown in figure $6-8$ when the ANT TRIM control is set at 0 .
6.2.18.2 If adjustment is necessary, proceed as follows:

1. Loosen the drive gear setscrews.
2. Turn the gear with the red dot to the position shown in figure 6-8.
3. Turn the ANT TRIM knob to 0 while holding the drive gear to prevent the gear with the red dot from turning.
4. Tighten the drive gear setscrews.

6.3 REPAIR

6.3.1 Notes on Removals and Replacements. This section contains instructions for the removal and replacement of the subchassis, the subassemblies, and certain parts in Radio Receiver R-390A/URR. All the subchassis, except the RF subchassis, can be removed from the main frame of the receiver without removal of the front panel or other subassemblies in the receiver. Avoid changing the setting of the KILOCYCLE CHANGE control or any of the switches or shafts operated by the MEGACYCLE CHANGE control when the RF, the IF, and the VFO subchassis are operated out of the receiver main frame. If these controls must be operated, reset them to their previous settings.
6.3.1.1 All the threaded fasteners that secure the subassemblies to the main frame of the receiver are color coded with green screwheads. Loosen and remove only these screws unless otherwise instructed. The only exceptions to the use of the green-headed screws are the front-panel screws that secure the front panel of the receiver (figure 6-9). Some of the securing screws are the conventional threaded type, and the remainder are captive screws. Captive screws remain attached to the subassembly that they secure when the subassembly is removed from the main frame. All captive and mounting screws are loosened and removed with the Phillips screwdriver supplied with the receiver. All knobs, shaft couplers, gears, and cams are loosened and removed with a no. 8 Bristo (fluted) wrench.
6.3.1.2 All $R F$ and power connectors used in the receiver are readily removed by hand. The rectangular power connectors are removed by being pulled outward with a slight rocking motion. The polygon-shaped power

Figure 6-8. ANT TRIM Control Adjustment
connectors have locking shells that must be rotated counterclockwise before being removed from their mating connectors. The coaxial RF connectors also must be rotated counterclockwise before being removed from their mating connectors.
6.3.1.3 The use of two wooden blocks, about 2 inches thick and 12 inches long, is necessary for supporting the main frame of the receiver when it is placed on a bench or table. Place the wooden blocks under the bottom side edges of the receiver. This allows the front panel to be removed and rested on its handles.
6.3.2 Removal and Replacement of Front Panel. (See figure 6-9.) The front panel must be removed whenever the removal of the RF subchassis and its RF gear train assembly is required. Follow the procedures in the order listed in paragraph 6.3.2.1 to prevent damage or mechanical misalignment of the tuning system.

6.3.2.1 Removal.

1. Remove the top and bottom dust covers if they were not removed during installation.
2. Turn the DIAL LOCK fully counterclockwise.
3. Turn the KILOCYCLE CHANGE control knob fully counterclockwise (approximately -963 on the kilocycle counter).

Figure 6-9. Location of Panel Mounting Screws
4. Turn the MEGACYCLE CHANGE control knob fully counterclockwise (approximately 00 on the megacycle counter).
5. Set the BFO PITCH and the ANT TRIM knobs to 0 , and the BANDWIDTH switch to 16 .
6. Use a no. 8 Bristo wrench to remove the MEGACYCLE CHANGE, KILOCYCLE CHANGE, ANT TRIM, and DIAL LOCK control knobs.
7. Use a $1 / 2$-inch socket wrench to loosen the hexagonal nut on the DIAL LOCK shaft, turn the DIAL LOCK mechanism (figure 6-32) behind the front panel (to disengage it) so that it is in a vertical position, and handtighten the hexagonal nut.
8. Use the no. 8 Bristo wrench to loosen, but do not remove the BFO PITCH shaft coupler. Grasp the BFO PITCH control knob and pull it outward from the front panel to separate the knob shaft and coupler from the BFO PITCH shaft.
9. Use the no. 8 Bristo wrench to loosen the BANDWIDTH shaft coupler, and pull the knob and shaft outward.
10. Remove the four $5 / 8$-inch by $8-32$ flat Phillips-head screws on the left side of the front panel. These screws are vertical and in line with the left front-panel handle. Remove the four similar screws on the right side of the front panel. Remove the five $7 / 16$-inch by $6-32$ flat Phillips screws and the external tooth lockwashers on the front panel.

CAUTION

Be sure that the DIAL LOCK mechanism does not bind on the riveted locking plate mounted on the KILOCYCLE CHANGE shaft while attempting to remove front panel.
11. Grasp the front-panel handles and pull forward with a slight vertical rocking motion. The front panel will separate from the main frame, while riding on the shafts of the KILOCYCLE CHANGE, the MEGACYCLE CHANGE, and the ANT TRTM controls.
12. Carefully lower the front panel to the bench top; rest it on its handles.

6.3.2.2 Replacement.

1. Check to see that the DIAL LOCK mechanism is in a vertical position and that the ZERO ADJ knob is fully counterclockwise.
2. Grasp the front panel by the two handles and slide it forward on the KILOCYCLE CHANGE, the MEGACYCLE CHANGE, and the ANT TRIM shafts with a slight vertical rocking motion, while pushing forward.
3. Grasp the DIAL LOCK shaft and rotate the mechanism so that its jaws loosely clutch the riveted locking plate on the KILOCYCLE CHANGE shaft. Set the mechanism in the position that allows the raised surface on the mechanism to fall into the aligning dimple on the rear side of the front panel.
4. Replace and secure the front panel with the eight $5 / 8$-inch by 8 - 32 screws and the five $7 / 16$-inch by 6-32 screws and the five lockwashers.
5. Tighten the DIAL LOCK hexagonal nut with a $1 / 2$-inch socket wrench. Replace the knob, allowing a $1 / 8$-inch clearance between the knob and the front panel.
6. Replace the remaining knobs on their respective shafts. Allow a $1 / 8$-inch clearance between the front panel and the MEGACYCLE CHANGE and the KILOCYCLE CHANGE control knobs.
7. Engage and tighten the shaft couplings on the BANDWIDTH and BFO PITCH controls. Be sure that the BANDWIDTH control knob is tightened on the 16 position and that the BFO PITCH control and the ANT TRIM knobs are tightened to 0 .
8. Turn all the knobs previously removed through their entire range, checking for smoothness of operation and freedom from binding.
6.3.3 Removal and Replacement of RF Subchassis. (See figure 6-10.) Remove the RF subchassis and the crystal-oscillator subchassis as one unit.
6.3.3.1 Removal. To remove the RF and crystal-oscillator subchassis, proceed as follows:
9. Place the receiver on its left side and remove the antibacklash spring from the Oldham coupler (figures $6-4$ and 6-25) on the VFO assembly.
10. Remove the front panel (paragraph 6.3.2.11).
11. Remove the RF subchassis cover plate.
12. Disconnect plugs P110, P205, P206, P207, P717, P213, P218, and P108 (figure 6-14).
13. Remove the two $5 / 16$-inch by 6-32 green-headed Phillips screws and lockwashers (figure 6-1). One of the screws is removable through an access hole in the front gear plate.
14. Remove the two $1 / 2$-inch by 6-32 green-headed Phillips screws and lockwashers (1, figure 6-10) through the access hole provided in the left side of the main frame. These two screws are in a vertical row.
15. Remove the three $1 / 2$-inch by 6-32 green-headed Phillips screws and lockwashers (2) that are located at the right side of the main frame. These three screws are in a vertical row.
16. Loosen the two green-headed captive screws (3) and the two green headed captive screws (4).
17. Grasp the RF subassembly by the two $5-5 / 8$-inch spacers and lift it carefully upward out of the main frame. Place the RF subchassis on the bench. Remove the crystal-oscillator subassembly only when necessary (paragraph 6.3.7.1).
6.3.3.2 Replacement. These instructions are for replacement of the RF subchassis with the crystal-oscillator subchassis attached. If the crystal-oscillator subchassis has been removed from the RF subchassis, secure it to the RF subchassis (paragraph 6.3.7.2).

CAUTION

Before reinstalling the subchassis, be sure that the KILOCYCLE CHANGE shaft is fully counterclockwise.

1. If the center disk of the Oldham coupler has been removed, apply a little grease on it and place it on the end disk attached to the VFO subchassis shaft.
2. Grasp the RF subchassis by the two $5-5 / 8$-inch spacers and place it into the main frame. Secure the RF subchassis in place by replacing, but not tightening, one or two of the green-headed Phillips machine screws and their lockwashers. Leaving these screws loose allows shifting of the subchassis when replacing the other screws.
3. Set the receiver on its left side with two wooden blocks under it and check the fitting of the Oldham coupler on the VFO subchassis. The center disk of the Oldham coupler should join the two end disks with about $1 / 32$-inch play in the coupler.
4. Engage the two green-headed captive screws (3) at the rear of the crystal-oscillator subassembly; do not lock them. Engage, but do not lock, the two green-headed captive screws (4) at the rear of the RF subassembly.
5. Engage the three green-headed Phillips screws and lockwashers (2) and the two green-headed Phillips screws (1). Engage the two green-headed Phillips screws and lockwashers at the front under the clutch gear and tuning mechanism.

Figure 6-10. RF, IF, and Crystal-Oscillator Subchassis Removal and Replacement Location of Screws
6. Tighten all the green-headed screws (figure 6-10) in the following order:

Three marked (2).
Four captive screws marked (3) and (4).
Two marked (1).
Two below the clutch gear (figure 6-1).
7. Reconnect plugs P110, P717, P205, P206, P207, P213, P218, and P108.
8. Replace the front panel (paragraph 6.3.2.2).
6.3.4 Removal and Replacement of RF Subchassis Parts.
6.3.4.1 Slug Racks and Tension Springs.

1. Removal.
a. Use a spring puller to disengage the tension springs (figure 6-14). Temporarily secure the tension springs to the gear and cam plates.

CAUTION
Handle the slug racks carefully to prevent damage to the iron cores.
b. Lift each slug rack straight up out of the coils and tag it for identification.
2. Replacement.
a. Reinsert each slug into the same coils from which it was removed to prevent severe misalignment of the receiver.
b. Reengage the tension springs to the holes at the ends of each slug rack.
c. Remove the identification tags.

6.3.4.2 Band Switch Shaft

1. Removal.
a. Loosen but do not remove the RF band switch shaft coupler (figure 6-32) at the front end of the band switch shaft (figure 6-20).
b. Slide the band switch shaft straight back through the hole in the rear of the RF subchassis. Be careful not to disturb the rotor settings of switch wafers S201 through S208 (figures $6-20$ and 6-21).
2. Replacement.

CAUTION

Be careful not to damage the switch wafer rotors or disturb their settings.
a. Slide the band switch shaft into the band switch as far as it will go.
b. Tighten the band switch shaft coupler clamp.
6.3.4.3 Removal and Replacement of Mechanically Tuned Coils and Transformers. (See figure 6-19.)

1. Removal.
a. Remove the slug rack and the tension springs (paragraph 6.3.4.1).
b. Remove the Phillips-head screw in the bottom of the slug hole.
c. Pull the coil or transformer straight up from the RF subchassis.
d. Remove the coil or transformer cover (if necessary) by pressing inward on the tabs on the sides of the cover and lifting the cover off.
2. Replacement.
a. Slide the cover down over the coil or transformer until the tabs snap into place.
b. Plug the coil or transformer into the jacks on the RF subchassis.
c. Replace the screw in the bottom of the slug hole.
d. Replace the slug rack and the tension springs (paragraph 6.3.4.2).
6.3.5 Removal and Replacement of Crystal Oven HR202. (See figure 6-11.) Replacement of crystal oven HR202 does not require removal of the RF subchassis from the main frame.

6.3.5.1 Removal.

1. Remove the retaining springs and the clamp that hold the oven in its octal socket.
2. Pull the oven straight up out of its socket.

6.3.5.2 Replacement.

1. Insert the oven in its socket. Make sure that the key on its base lines up with the keyway in the octal socket.
2. Replace the retaining springs and the clamp.
6.3.6 Disassembly and Assembly of Crystal Oven HR202 to Replace Crystals. (See figure 6-11.)
6.3.6.1 Disassembly.
3. Loosen but do not remove the screws that secure the oven cover to the oven.
4. Turn the cover to the left (counterclockwise) until it stops, and lift the cover straight up from the body of the oven.
5. Lift the crystal shield out of the oven body.
6. Unplug crystals Y201 and Y203 and remove them.

6.3.6.2 Reassembly.

1. When inserting crystals Y 201 and Y 203 , be sure to plug them in at the proper locations with respect to the key on the base (figure 6-11).
2. Gently push the crystal shield back into place.
3. Line up the slots at the base of the cover with the screws on the base of the crystal oven.
4. Push the cover down and turn it to the right (clockwise) until it stops.
5. Tighten the securing screws on the base.
6.3.7 Removal and Replacement of Crystal-Oscillator Subchassis. (See figure 6-10.) Two methods can be used for the removal of the crystal-oscillator subchassis. This procedure, however, is for the removal of the crystaloscillator subchassis when the RF subchassis is to be retained in the main frame of the receiver. When the RF and crystal-oscillator subchassis have been previously removed from the main frame, omit the procedures given in 1,7 , and 9 below.

6.3.7.1 Removal

1. Remove the front panel (paragraph 6.3.2.1).

Figure 6-11. Location of Crystals Y201 and Y202
2. Disconnect plugs P110 and P215 (figure 6-14).
3. Temporarily replace the MEGACYCLE CHANGE knob and turn it until the gears are positioned with their holes lined up with the access hole in the front plate. This makes the $5 / 16$-inch by $6 / 32$ green-headed Phillips screw (5, figure 6-10) accessible.
4. Remove the screw (5) and its lockwasher and the two green-headed screws and their lockwashers (6). The latter two screws are in a vertical row.
5. Loosen, but do not remove, the shaft coupler setscrew on the crystal-oscillator drive shaft (figure 6-14).
6. Loosen the two green-headed captive screws (3, figure 6-10) at the rear of the crystal-oscillator subchassis.
7. Temporarily disconnect plugs P205, P206, and P207 (figure 6-14) to provide enough clearance for subchassis removal.

CAUTION

Be careful not to damage the metal grounding strip that contacts the bottom edges of the RF and the crystal-oscillator subchassis.
8. Raise the rear end of the subchassis approximately one-fourth inch, slide the subchassis backward, and lift it out of the main frame.
9. Reconnect plugs P205, P206, and P207.

6.3.7.2 Replacement.

NOTE

Only even numbers appear on the indicator wheel; odd numbers appear as straight lines; 00 on the frequency indicator appears as 0 .

1. Set the crystal-oscillator subchassis dial indicator to 0 and the first two digits of the frequency indicator to 00 . Turn the subchassis over and adjust (if necessary) for proper mating of the rotor and the fixed contacts of S401 and S402 (figure 6-23).

NOTE
Adjust the crystal-oscillator shaft at the rear of the crystal-oscillator subchassis when the subchassis is mounted in the main frame. This is done with a long-shafted screwdriver through the SYNC XTAL OSC hole at the rear of the receiver main frame.
2. Temporarily disconnect plugs P205, P206, and P207 (figure 6-14).

CAUTION

Be careful not to damage the metal grounding strip that contacts the bottom edges of the RF and crystaloscillator subchassis.
3. Place the subchassis in position on the deck of the main frame, and carefully slide it forward and engage the drive shaft.
4. Engage, but do not lock, the two green-headed captive screws at the rear of the subchassis.
5. Tighten the setscrew in the shaft coupler on the crystal-oscillator drive shaft, and be sure that the coupler and gear are pushed against the oilite bearing on the subchassis.
6. Replace the three green-headed Phillips screws and their lockwashers (5 and 6 , figure 6-10) at the front of the crystal-oscillator subchassis. Long-nosed pliers may be used to hold the screws while starting them.
7. Lock the two green-headed captive screws at the rear of the subchassis.
8. Reconnect plugs P205, P206, P207, P110, and P215.
9. Replace the front panel (paragraph 6.3.2.2).
6.3.8 Removal and Replacement of Crystals Under HR401 Crystal Oven Cover. (See figure 6-12.)
6.3.8.1 Removal.

1. Remove the Phillips screw and the lockwasher from the top of the subchassis and the two similar screws and lockwashers at the rear end of the subchassis.

Figure 6-12. Location of Crystals Y401 through Y415

Do not loosen the four Phillips screws on top of the oven cover.
2. Lift the cover straight up from the oven.
3. The 15 plug-in crystals, Y401 through Y415, are now accessible for replacement.
4. Pull the defective crystal straight up out of the crystal socket.

6.3.8.2 Replacement.

1. Replace the defective crystal.
2. Replace the oven cover. Be sure that the two plugs at the bottom rear of the oven cover line up with their jacks on the subchassis.
3. Replace the three Phillips screws and the lockwashers.
4. 3.9 Removal and Replacement of IF Subchassis. Removal of this subchassis does not require the removal of other subchassis or parts except for those connectors that connect to the subchassis.

6.3.9.1 Removal.

1. Set the BANDWIDTH switch to 16 and the BFO PITCH control to 0 .
2. Disconnect plugs P112, P116, P213, and P218 (figure 6-14).
3. Loosen the shaft couplers on the BANDWIDTH and BFO PITCH controls (figure 6-32). Slide the knobs and shafts outward.
4. Loosen the three green-headed captive screws (7, figure 6-10) that secure the IF subchassis to the main frame.

CAM POSITIONS VIEWED FROM REAR WITH 2 REAR PLATES
REMOVED AND FREQUENCY INDICATOR SET AT OT+0OO

Figure 6-13. RF Gear Train Assembly Cam Positions Viewed from Rear, Simplified Mechanical Diagram
5. Lift the IF subchassis out of the main frame.

CAUTION

Do not change the settings on the BANDWIDTH and BFO PITCH shafts unless absolutely necessary. If they are moved, reset them when replacing the IF subchassis in the main frame.

Figure 6-14. Radio Receiver R-390A/URR, Top View

6.3.9.2 Replacement. Replace the IF subchassis into the main frame of the receiver as follows:

1. Set the IF subchassis into the main frame of the receiver.
2. Engage, but do not lock, the three green-headed captive screws.
3. Slide the shafts and couplers of the BANDWIDTH and BFO PITCH controls forward so that they engage the shafts on the IF subchassis.
4. Before tightening the couplers, set the BANDWIDTH control knob to 16 and the BFO PITCH control knob to 0 , and then tighten the couplers.
5. Reconnect plugs P112, P116, P213, and P218.
6. Tighten the three green-headed captive screws.

6.3.10 Removal and Replacement of IF Subchassis Parts.

6.3.10.1 IF Transformers. (See figure 6-16.) IF transformers T501, T502, and T503 are stagger tuned in some models. In other models, T501, T502, and T503 are tuned to 455 kHz . Whenever any one of these transformers is replaced, perform the alignment procedures described in paragraph 6.2.7.
6.3.10.2 Crystal Filters. Serial no, 1 through 413 receivers manufactured by the Electronics Assistance Corp. under contract No. $22137-\mathrm{PC}-60$ used crystal (ceramic) filters in lieu of mechanical filters. Faulty ceramic filters should be replaced with mechanical types.
6.3.10.3 Mechanical Filters. To install a new mechanical filter, follow the procedures given in steps 1 through 10 below.

NOTE

When replacing mechanical filters in the IF subchassis with MOD numbers 1 and above on Order No. 363-Phila-54 and in all receivers on Order No. $14-$ Phila-56, refer to the procedure in step 10 below. Some receivers bearing Order No. 14-Phila-56 have alternate type filters (paragraph 1.5.2b.).

1. After removing the defective filter, remove the small mica capacitors from the filter connection wires. One of these capacitors (C507, C508, C509, or C510) is located beneath the chassis (figure 6-18), the other (C513, C514, C515, or C516) above the chassis (figure 6-16).
2. Install the new filter and resolder the connecting wires to the proper terminals. Do not reinstall the original mica capacitors across the filter terminals.
3. Connect Electronic Multimeter AN/USM-116 () to the DIODE LOAD jack on the front panel and Signal General AN/URM-25 () to ANTENNA UNBALANCED jack J103 on the rear of the receiver.
4. Turn the BANDWIDTH control on the front panel to the position corresponding to the filter being replaced.
5. Tune the AN/URM-25 () and the receiver to the same frequency.
6. The proper replacement value for C507, C508, C509, or C510, and C513, C514, C515, or C516, will be between 56 pF and 130 pF . Lightly solder a random value capacitor within this range across the filter input terminals and another across the output terminals. Do not make a permanent connection.
7. Apply power to the receiver and adjust the AN/URM-25 () output level to produce 5 volts on the AN/USM-116 (). Record the AN/URM-25 () RF output level (microvolts).
8. Try various capacitor values across the input and output terminals. Select the trial values (in pF) from the following list: $56,62,75,82,91,100,110,120$, and 130 . Adjust and record the AN/URM-25 () output level for each trial value.
9. The capacitor values that require the lowest AN/URM-25 () output level (highest gain) for a 5-volt reading of the AN/USM-116 () are the proper values for the replacement filter. Determine these values and solder the capacitors permanently in place. The proper value for the input capacitor is not necessarily identical with the value for the output capacitor. Both values must be determined independently. Replacement capacitors must be the silvered mica type.
10. In IF subchassis with MOD numbers 1 and above on Order No. 363-Phila-54 and in all receivers on Order No. 14-Phila-56, variable trimmer capacitors are provided for tuning the mechanical filters FL502 through FL505. Do not disconnect these capacitors. Connect the AN/URM-25 () and the AN/USM-116 () as in step 3 and adjust the trimmers for maximum gain. The trimmer associated with each filter is listed below in table 6-3.

TABLE 6-3. MECHANICAL FILTERS AND ASSOCIATED TRIMMERS

BANDWIDTH (kHz)	MECHANICAL FILTER	INPUT TRIMMER	OUTPUT TRIMMER
2	FL502	C567	C5688
4	FL503	C566	C569
8	FL504	C565	C570
16	FL505	C564	C571

6.3.11 Removal and Replacement of VFO Subchassis. require the previous removal of any other subchassis. misalignment.

NOTE

To prevent misaligning the VFO, avoid turning the VFO subchassis shaft or the KILOC YCLE CHANGE shaft on the RF gear train assembly. If the KILOCYCLE CHANGE shaft must be turned, record the setting and be sure to return it to the same setting before replacing the VFO. Do not disturb the Oldham coupler shaft clamps.

6.3.11.1 Removal.

1. Remove the Oldham coupler antibacklash spring on the VFO subchassis drive shaft and place it in a tray for safekeeping.
2. Turn the KILOCYCLE CHANGE control so that one slot in the Oldham coupler is vertical and the other is horizontal.
3. Loosen the three green-headed captive screws (figure 6-15) that secure the subchassis.
4. Loosen, but do not remove, the two Phillips screws that secure the triangular bracket at the rear of the VFO subchassis. This is done to provide extra clearance for the removal of the subchassis.
5. Disconnect plugs P109 (figure 6-15) and P717 (figure 6-14).

Figure 6-15. Radio Receiver R-390A/URR, Bottom View
6. Carefully remove the VFO subchassis from the main frame. The coupler guide of the Oldham coupler (figure 6-4) will fall free. Place it in a tray with the antibacklash spring for safekeeping until the VFO subchassis is to be replaced.
6.3.11.2 Replacement. Replace the VFO subchassis as follows:

1. Smear a little grease on the coupler guide of the Oldham coupler and press it in place against the first coupling of the VFO drive shaft of the RF gear train tuning assembly.
2. Lower the VFO subchassis into position in the main frame and engage the Oldham coupler; at the same time, engage, but do not lock, the three green-headed captive screws. Replace the Oldham coupler antibacklash spring.

NOTE

Remating the Oldham coupler will accurately reposition the VFO shaft.
3. Tighten the two Phillips-head screws that secure the triangular-shaped bracket at the rear of the VFO subchassis.
4. Tighten the three green-headed captive screws.
5. Reconnect plugs P109 and P717.
6. Check the frequency of the VFO (paragraph 6.2.5.6) if the shaft on the VFO has been turned from its original settings.
6.3.12 Removal and Replacement of VFO Subchassis Parts. (See figure 6-25.)
6.3.12.1 External Cover.

1. Removal.
a. Remove the VFO subchassis (paragraph 6.3.11.1).
b. Remove the two Phillips-head screws that secure the J709 mounting bracket.
c. Remove the three Phillips-head screws and lockwashers spaced 120° around the front edge of the external cover.
d. Remove the J709 cable clamp.
e. Slide the external cover back slowly until it is disengaged from the heater winding cover.
2. Replacement.
a. Slide the external cover into place, and line up the three holes spaced 120°. Be sure that the two J709 mounting bracket holes are in a horizontal plane.
b. Replace and secure the three Phillips-head screws and lockwashers.
c. Replace and secure the J709 mounting bracket.
d. Replace and secure the J709 cable clamp.
e. Replace the VFO subchassis (paragraph 6.3.11.2).
6.3.12.2 Heater Winding Cover.
3. Removal.
a. Remove the external cover (paragraph 6.3.12.1(1)) above.
b. Carefully remove the insulating sleeve from the heater winding cover.
c. Remove the three Phillips-head screws spaced 120° around the front edge of the heater winding cover.
d. Unsolder the two heater winding leads from the VFO subchassis terminals. Tag them for identification.
e. Slide the heater winding cover back slowly until it is disengaged from the sealed inner cover. Do not remove the sealed inner cover.

Figure 6-16. IF Subchassis, Top View
f. Note the position of the compartment slot and the thermostat alignment pin before sliding the thermostat out of the heater winding cover.
2. Replacement.
a. Slide the thermostat into the new winding cover. Position the thermostat as in 1.f. above.
b. Slide the heater winding cover into place; line up the three holes spaced 120°; replace the three Phillips-head screws.
6.3.13 Power-Supply Subchassis Removal and Replacement. Removal and replacement of the power-supply subchassis does not require the removal or replacement of other subchassis or parts in the receiver, except for plug P111.
6.3.13.1 Removal.

1. Disconnect plug P111.

Figure 6-17. IF Subchassis, Front Section
2. Loosen the six green-headed captive screws that fasten the subchassis to the main frame of the receiver.
3. Withdraw the subchassis from the receiver.

6.3.13.2 Replacement.

1. Carefully lower the power-supply subchassis into the receiver.
2. Engage the six green-headed screws that fasten the subchassis to the main frame of the receiver. Tighten each of the screws.
3. Reconnect plug P111.
6.3.14 AF Subchassis Removal and Replacement. The AF subchassis can be removed from the main frame without the removal of other subchassis or parts, with the exception of the cable connectors that connect directly to the AF subchassis.

Figure 6-18. IF Subchassis, Rear Section

Figure 6-19. RF Subchassis, Top View (Sheet 1 of 2)

Figure 6-19. RF Subchassis, Top View (Sheet 2 of 2)
6.3.14.1 Removal.

1. Disconnect plugs P119 and P120.
2. Loosen the four green-headed captive screws that fasten the AF subchassis to the main frame.
3. Lift the AF subchassis from the main frame.
6.3.14.2 Replacement.
4. Place the AF subchassis on the main frame.
5. Engage and tighten the four green-headed captive screws.
6. Reconnect plugs P119 and P120.
6.3.15 Removal and Replacement of Incandescent Lamps.
6.3.15.1 Removal.
7. Remove the four Phillips screws from the corners of the frequency-indicator window.

Figure 6-20. RF Subchassis, Front Section
2. Move the frequency-indicator window a few inches away from the front panel. Its connecting wires will hold it in position.
3. Remove the defective incandescent lamps.
6.3.15.2 Replacement.

1. Insert the new incandescent lamps.
2. Place the frequency-indicator window in position; line up the four screw holes.
3. Replace and tighten the four Phillips screws.

Figure 6-21. RF Subchassis, Bottom View, Rear Section
6.3.16 Disassembly of RF Gear Train Assembly. (See figure 6-36.) Under certain circumstances, such as gear damage, it may be necessary to disassemble and reassemble all or part of the gear train assembly. Do not disassemble parts that can be removed as an assembly unless the defect is in one of the assembly parts. For example, parts no. 1 through 6 of the riveted locking plate assembly need not be disassembled if the defect is in some other portion of the RF gear train assembly. The instructions given should be used as a guide when the method of removal and replacement of parts is not obvious. The numbers used in the instructions refer to those that identify the parts in figure 6-36. When disassembling the RF gear train assembly, lay out the parts in the order of disassembly. This will simplify reassembly. Proceed as follows:

1. Remove the front panel (paragraph 6.3.2.1).
2. Remove the eight slug racks and sixteen tension springs (paragraph 6.3.4.1).
3. Remove the RF subchassis (paragraph 6.3.3.1) and the crystal-oscillator subchassis (paragraph 6.3.7.1).
4. Set the frequency indicator to $07+000$.
5. Loosen the socket-head screw (20) and square nut (5) on the gear clamp (6).

Figure 6-22. Crystal-Oscillator Subchassis, Top View
6. Remove the riveted locking plate (1) and spur gear (2). If necessary, separate the riveted locking plate (1) and the spur gear (2) and remove the two rack gear springs (3) (only one shown) and the retaining ring (4).

NOTE

When a specific item is to be replaced, follow the disassembly procedures only to the step that results in removal of the item to be replaced. For replacement, start with the step that results in replacement of the item.
7. Remove the four machine screws (19) (only one shown) to remove the mechanical counter.

NOTE
It is not necessary to perform procedures 8 and 9 below unless bevel gears (9) and (24) require replacement.
8. Loosen the socket-head screw (7) in the gear clamp (8) to remove the bevel gear (9).
9. If necessary, loosen the socket-head screw (22) in the gear clamp (23) to remove the bevel gear (24).
10. If necessary, loosen the socket-head screw (100) and square nut (98) of the gear clamp (99) to release the spur gear (93) and washer (92). Pull out the locked clutch gear assembly (21), washer (16), and pressed bevel gear (25).
11. Loosen the socket-head screw (11) to remove the bevel gear (10), gear clamp (15), and gear bushing (14).
12. If necessary, remove the front pressed coupling of the Oldham coupler (figure 6-4).
13. Loosen the six binder-head screws (13) and (30) (only two shown), six split lockwashers (12) and (31) (only two shown), one special screw (28), and split lockwasher (29). Pull the front gear plate (32) forward to remove it.
14. If necessary, remove the retaining ring (121) and shim washers (122) and (123). Pull out the pinned stop assembly (94).
15. If necessary, remove the E-type retaining ring (85) and the pressed gear (86).
16. If necessary, remove the two machine screws (26) (only one shown) and the staked gear post (27).
17. Remove the pinned gear assembly (74), gear bushing (77), and shim washers (76) from the riveted front gear plate (109).
18. Remove the pinned gear assembly (95) and washers (96).
19. Remove the two binder-head screws (67), split lockwashers (68), and flat washers (69)(only one each shown), to remove the detent spring (70).
20. Lift off the final differential gear assembly (39) from the differential shaft (73).
21. Pull out the pinned gear (110).
22. Remove the retaining ring (41) and the riveted gear (42).
23. Pull out the pinned spur gear (66) with the spur gear (79), gear clamp (77), socket-head screw (27), square nut (80), and gear bushing (78).
24. Loosen the socket-head screw (133) and square nut (131) of the gear clamp (132). Remove the loaded rack gear assembly (129).
25. Loosen the socket-head screw (137) and square nut (135) of the gear clamp (136). Pull out the gear assembly (134).
26. Loosen the socket-head screw (45) and square nut (43) of gear clamp (46). Pull out the soldered rack gear (44). Remove the retaining ring (47). Pull out the gear assembly, which consists of the soldered gear (48), spur gear (49), and two gear rack springs (50).
27. Loosen the socket-head screw (51) and square nut (54) of gear clamp (52). Remove the soldered rack gear (53). Remove the retaining ring (58) and pull out the gear assembly (59).
28. Remove the three machine screws (55) (only one shown). Lift off the $8-$ to $15-\mathrm{MHz}$ gear (63) with its leading gear (64) and two gear rack springs (65).
29. Loosen the socket-head screw (140) and square nut (138) of gear clamp (139). Pull out the loaded rack gear assembly (141).
30. Loosen the socket-head screw (116) and square nut (114) of gear clamp (115). If necessary, pull out the oscillator spur gear (117), flat washer (113), and oscillator dial hub (124).

CAUTION

Observe the positioning of the parts (figure 6-2) of the switch gear assembly (87) before attempting to remove it. Be careful not to lose the bearing ball.
31. If necessary, remove the retaining ring (88). Lift off the switch gear assembly (87) as one unit.
32. If necessary, remove the E-type retaining ring (102) and the locking gear (103).
33. Loosen the two setscrews (177) and (178) and remove the retaining ring (176). Slide the antenna trimmer shaft (170) forward to remove the special washer (175), helical gear bushing (174), helical gear clamp (173), helical-driven gear (172), and shaft insulator (171).
34. Loosen the socket-head screw (35) and the square nut (33) of the gear clamp (34). Pull out the idler gear (36) and gear bushing (37). Remove the retaining ring (125) and shaft sleeve (38) if necessary.
35. Loosen the socket-head screw (82) and the square nut (84) of the gear clamp (83). Slide the megacycle gear (90) and the soldered megacycle gear (91) off the RF stop assembly (101). To separate items (90) and (91), remove the retaining ring (81) and the multiturn gear springs (89).
36. Remove the retaining ring (106) and washers (105 and 104). Pull out the RF stop assembly (101).

6.3.17 Disassembly of Camshaft Assemblies. (See figure 6-36.)

CAUTION

Mark each cam and camshaft for identification before removing it. If it is necessary to disassemble the camshaft assemblies, perform the procedures given in paragraph 6.3.16 and proceed as follows:

1. Slide the band switch shaft (figure $6-20$) to the rear to clear the riveted front gear plate (109).
2. Mark the pressed rear plate (180) at the points of the two soldered RF cams (185) and (187).
3. Remove the two taper pins (186) and (188) and pull the soldered RF cams (187) and (185) off the camshafts (184) and (183).
4. Remove the three hexagonal-head screws (figure 6-20).
5. Remove the three Phillips-head screws (not shown) that secure the pressed rear plate (180) to the RF amplifier subassembly.
6. Remove the flathead machine screw (127) and the machine screw (182) and split lockwasher (181) that secure the long post (156).
7. Slide the pressed rear plate (180) to the rear to remove it.
8. Remove the two Phillips-head screws, two lockwashers, and two nuts (not shown) from the two cam plate brackets (118) (only one shown). The Phillips-head screws secure the RF gear grain assembly to the RF amplifier subassembly.

Figure 6-23. Crystal Oscillator Subchassis, Bottom View
9. Separate the RF amplifier subassembly from the RF gear train assembly.
10. Remove the six flathead machine screws (126) (only one shown) from the three short posts (152) (only one shown). Remove the pressed auxiliary cam plate (179).

NOTE

The camshafts can now be removed in any order. Go directly to the step that results in the removal of the camshaft or the cams to be replaced. Mark the pressed cam plate (149) at the points of the cams before removal.
11. Remove the taper pin (158) from the soldered RF cam (157). Slide the $0.5-$ to $1-\mathrm{MHz}$ camshaft (164) straight forward to remove it. Remove taper pin (57) to release soldered RF cam (56).
12. Remove taper pin (154) from the soldered RF cam (153). Slide the 1 - to $2-\mathrm{MHz}$ camshaft (184) straight forward to remove it. Remove taper pin (147) to release soldered RF cam (146).
13. Remove taper pin (159) from soldered RF cam (162). Slide the 2- to $4-\mathrm{MHz}$ camshaft (163) straight forward to remove it. Remove taper pin (61) to release soldered RF cam (60).
14. The 4- to $8-\mathrm{MHz}$ camshaft assembly and the $16-$ to $32-\mathrm{MHz}$ camshaft assembly are identical; each consists of camshafts (168) and (169), soldered RF cams (142) and (144) secured by taper pins (143) and (145), and soldered RF cams (155) and (165) secured by taper pins (166) and (167). Disassemble by removing the taper pin from each cam.
15. Remove the taper pin (161) from the soldered RF cam (160). Slide the $8-$ to $16-\mathrm{MHz}$ camshaft (183) straight forward to remove it. Remove taper pin (75) to release the pressed gear assembly (62).
16. To remove the four long posts (148), remove the four Phillips-head screws (151) and four lockwashers (150), four Phillips-head screws (130) and four lockwashers (128). (Only one of each of the numbered items above is shown).

NOTE
The four long posts (148) fasten the pressed cam plate (149) to the riveted front gear plate (109).
6.3.18 Reassembly of Camshaft Assemblies. (See figures 6-2 and 6-36.) When a specific item is to be replaced, go directly to the procedure that results in replacement of the item and follow the reassembly procedures from that step onward.

1. To fasten the pressed cam plate (149) to the riveted front gear plate (109), replace the four long posts (148), four machine screws (151), four lockwashers (150), four Phillips-head screws (130), and four lockwashers (128). (Only one of each of the numbered items above is shown.)

NOTE

Figure 6-13 shows the normal positions of the cams viewed from the rear, with the two rear plates removed and the frequency indicator set at $07+000$.
2. Slide the 8 - to $16-\mathrm{MHz}$ camshaft (183) through the holes marked A. Replace the pressed gear assembly (62) and the taper pin (75). Set the point of the cam to the cam positioning mark on the riveted front gear plate. Set the point of the soldered RF cam (160) to the mark previously made on the pressed cam plate (149) and replace the taper pin (161).
3. Slide the $4-$ to $8-\mathrm{MHz}$ and the $8-$ to $16-\mathrm{MHz}$ camshafts (168) and (169) through the holes marked B and C. Replace the soldered RF cams (142) and (144) and secure them with the taper pins (143) and (145). Set the points of the cams to the cam positioning marks on the riveted front gear plate. Replace the soldered RF cams (155) and (165). Set the points of the cams to the marks previously made on the pressed cam plate (149). Replace the taper pins (166) and (167).
4. Slide the $2-$ to $4-\mathrm{MHz}$ camshaft (163) through the holes marked D. Replace the soldered RF cam (60) and taper pin (61). Set the point of the cam to the cam positioning mark. Replace the soldered RF cam (162) and taper pin (159) with the point of the cam set at the mark previously made on the pressed cam plate (149).
5. Slide the 1- to $2-\mathrm{MHz}$ camshaft (184) through the holes marked E. Replace the soldered RF cam (146) and taper pin (147). Set the point of the cam to the cam positioning mark. Replace the soldered RF cam (153) and taper pin (154) with the point of the cam set at the mark previously made on the pressed cam plate (149).

Figure 6-24. Crystal-Oscillator Subchassis, Internal View of Crystal Oven
6. Slide the $0.5-$ to $1-\mathrm{MHz}$ camshaft (164) through the holes marked F. Replace the soldered RF cam (56) and taper pin (57). Set the point of the cam to the cam positioning mark. Replace the soldered RF cam (157) and taper pin (158) with the point of the cam set at the mark previously made on the pressed cam plate (149).
7. Secure the pressed auxiliary cam plate (179) with the three short posts (152) and six flathead machine screws (126) (only one of each shown).
8. Place the RF amplifier subassembly (figure 6-20) in position to fasten it to the RF gear train assembly. Engage but do not tighten the two Phillips-head screws (not shown), two lockwashers (not shown), and two nuts (not shown) that fasten the two cam plate brackets (188) to the RF amplifier subassembly.
9. Slide the pressed rear plate (180) forward or the two camshafts (183) and (184) until it is against the rear of the RF amplifier subassembly. Engage but do not tighten the three Phillips-head screws (not shown) that fasten the pressed rear plate (180) to the RF amplifier subassembly.
10. Replace the long post (156) but do not tighten the flathead machine screw (127) and the Phillips-head screw (182) and split lockwasher (181).
11. Replace the three hexagonal-head screws (figure 6-20).
12. Slide the band switch shaft (figure 6-20) forward until its retaining rings rest against the riveted front gear plate (109).
13. Tighten all the screws in the procedures given in $8,9,10$, and 11 above.
14. Replace the two soldered RF cams (187) and (185) on the two camshafts (184) and (183). Set the points of the cams at the marks previously made on the pressed rear plate (180). Replace the two taper pins (186) and (188).

6.3.19 Reassembly of RF Gear Train Assembly. (See figure 6-36.)

1. Slide the RF stop assembly (101) into the hole marked G. Replace the two washers (104) and (105) and rotating ring (106). Slide the combination of the soldered megahertz gear (91), megahertz gear (90), two multiturn gear springs (89), gear clamp (83), socket-head screw (82), and square nut (84) on the RF stop assembly. Do not tighten the socket-head screw (82).
2. Push the shaft sleeve (38) into the hole marked H and replace the retaining ring (125), if both have been removed. Slide the gear bushing (37), idler gear (36), and gear clamp (34) on the shaft sleeve (38). Tighten the socket-head screw (35) and square nut (33).
3. Slide the antenna trimmer shaft (170) into the hole marked I. Replace the shaft insulator (171), helicaldriven gear (172), helical gear clamp (173), and helical gear bushing (174). Push the antenna trimmer shaft (170) as far as it will go toward the rear. Replace the special washer (175) and retaining ring (176). Mesh the helical-driven gear (172) and its mating gear. Tighten the two setscrews (177) and (178).
4. If necessary replace the locking gear (103) and E-type retaining ring (102) on the shaft marked K.
5. If necessary, slide the switch gear assembly (87) on the shaft marked J and replace the retaining ring (88). Position the assembly (figure 6-2).
6. If necessary, slide the oscillator dial hub (124) into the hole marked L; then slide the oscillator spur gear (117), flat washer (113), and gear clamp (115) on the hub (124). Replace but do not tighten the socket-head screw (116) and square nut (114).
7. Slide the loaded rack gear assembly (141) on the $16-$ to $32-\mathrm{MHz}$ shaft (168). Load the assembly (141) two teeth before meshing it with the pressed gear assembly (62). Tighten the socket-head screw (14) and square nut (138) of the gear clamp (139).
8. Place the 8 - to $16-\mathrm{MHz}$ gear (63) with its loading gear (64) on the pressed gear assembly (62). Replace the two gear rack springs (65) and the three machine screws (55) (only one shown).
9. Slide the gear assembly (59) on the $2-$ to $4-\mathrm{MHz}$ camshaft (163) and replace the retaining ring (58). Replace the gear clamp (52), socket-head screw (51), square nut (54), and soldered rack gear (53). Tighten the socket-head screw (51).
10. Slide the gear assembly consisting of soldered gear (48), spur gear (49), and two gear rack springs (50) on the $0.5-$ to $1-\mathrm{MHz}$ camshaft (164). Replace the retaining ring (47), gear clamp (46), sockethead screw (45), square nut (43), and soldered rack gear (44). Tighten the socket-head screw (45).
11. Slide the gear assembly (134) with gear clamp (136), socket-head screw (137), and square nut (135) on the $4-$ to $8-\mathrm{MHz}$ camshaft (one of two) (167). Load the gear assembly (134) two teeth before meshing it with the soldered rack gear (53).
12. Slide the loaded rack gear assembly (129) on the $1-$ to $2-\mathrm{MHz}$ camshaft (184). Load the loaded rack gear (129) two teeth before meshing it with the soldered rack gear (44). Tighten the socket-head screw (133) and square nut (131) of the gear clamp (132).

Figure 6-25. VFO Subchassis, Top View
13. Slide the shaft of the assembly consisting of the pinned spur gear (66), gear clamp (71), socket-head screw (72), square nut (80), spur gear (79), and gear bushing (78) into the hole marked M.
14. Replace the riveted gear (42) and retaining ring (41) on the $8-$ to $16-\mathrm{MHz}$ camshaft (183).
15. Slide the shaft of the pinned gear (110) into the hole marked N.
16. Slide the differential gear assembly (39) on the differential shaft (73). Load the loaded rack gear assembly (59) two teeth before meshing the final differential gear assembly (39) with it. Load the combination of the megahertz gear (90) and soldered megahertz gear (91), which was assembled in paragraph 6.3.19 step 1. Slide the assembly forward to mesh it with the final differential gear assembly (39). Tighten the socket-head screw (82).
17. Secure the detent spring (70) with the two binder-head screws (67), two flat washers (69), and two split lockwashers (68) (only one of each shown).
18. Slide the shaft of the pinned gear assembly (95) with two washers (96) into the hole marked O.
19. Slide the shaft of the pinned gear assembly (74) with gear bushing (77) and shim washers (76) into the hole marked P.
20. If necessary, slide the staked gear post (27) into the hole marked U, and replace the two machine screws (26) (only one shown).
21. If necessary, replace the pressed gear (86) and E-type retaining ring (85).
22. Slide (if necessary) the shaft of the pinned stop assembly (94) into the hole marked Q. Replace the shim washers (123) and (122) and retaining ring (121).
23. Slide the front gear plate (32) into place. Replace the six binder-head screws (13) and (30) (only two shown) and six split lockwashers (12) and (31) (only two shown). Secure the special screw (28) and split lockwasher (29) in the hole marked V.
24. Replace the front pressed coupling of the Oldham coupler (figure 6-4).
25. Slide the gear bushing (14), gear clamp (15), and bevel gear (10) onto the shaft of the pinned gear (110). Tighten the socket-head screw (11).
26. Slide the shaft of the locked clutch gear assembly (21), with the washer (16) in place, through the hole marked R. Replace the washer (92), spur gear (93), and gear clamp (99) with socket-head screw (100) and square nut (98). Load the loaded rack gear (part of (21)) two teeth, mesh it with the pressed bevel gear (25), and slide the combination into place. Slide the pressed gear assembly consisting of (92), (93), (99), (98), and (100) forward on the shaft of the locked clutch gear assembly (21) until the spur gear (93) is against the front gear plate (32) and is meshed with the pressed gear (86).
27. If necessary, replace the gear clamp (23) with socket-head screw (22) and bevel gear (24) on the mechanical counter (17) shaft marked T. Tighten the socket-head screw (22).
28. Replace (if necessary) the gear clamp (8) with socket-head screw (7) and bevel gear (9) on the remaining mechanical counter (17) shaft.
29. Set the mechanical counter (17) to $07+000$. Place the mechanical counter (17) in position and secure the four machine screws (19) (only one shown).
30. Replace (if necessary) the two rack gear springs (3) (only one shown) and retaining ring (4). Slide the gear clamp (6) with sockdt-head screw (20) and square nut (5) on the hub of the spur gear (2). Load the spur gear (2) two teeth and slide it on the pinned stop assembly (94) until the spur gear (2) meshes with the front gear of the locked clutch gear assembly (21).
31. Replace the crystal-oscillator subchassis (paragraph 6.3.7.2) and the RF subchassis (paragraph 6.3.3.2).
32. Check the mechanical and electrical synchronization (paragraph 6.2.5).
33. Replace the eight slug racks and sixteen tension springs (paragraph 6.3.4.1),
34. Replace the front panel (paragraph 6.3.2.2).
6.4 Parts Location. The physical location of major components and detail parts is illustrated in figures 6-14 through 6-33. In addition, zoning indexes are provided with each sheet of the schematic diagram as an aid in locating detail parts. The zoning index precedes the applicable figure. Zoning indexes are also provided for the power distribution diagram, figure 5-11, the signal flow diagram, figure 5-12, and the RF gear train diagram, figure 6-36.

Figure 6-26. VFO Subchassis, Bottom View

Figure 6-27. AF Subchassis, Top View

Figure 6-28. AF Subchassis, Bottom View

Figure 6-29. Power-Supply Subchassis, Top View

Figure 6-30. Power-Supply Subchassis, Bottom View

Figure 6-31. Antenna Relay Assembly, Internal View

[^1]

Figure 6-33. R390 TB101 with Field Change 2

GENERAL NOTE:

A. PARTS AND SECTIONS WITH 200 SERIES REFERENCE SYMBOLS ARE LOCATED IN THE RF SUBCHASSIS.

SPECIFIC NOTES:

1. THE 2-SECTION ANTENNA TRIMMER CAPACITOR C225 IS SWITCHED BY S203 AS FOLLOWS:

BANDS 1 AND 2 - SECTIONS A AND B
BANDS 3 AND 4 - SECTION B
BANDS 5 AND 6 - SECTION A
2. 1ST VARIABLE IF (V202 AND V207) USED ONLY FROM 0.5 TO 8MHZ (BAND 1 THROUGH 4). OUTPUT OF V201 AND 8 TO 32 MHZ RF COILS FED DIRECTLY INTO V203 WHEN OPERATING FROM 8 TO 32 MHZ.
3. DOES NOT APPLY TO 0.5 TO 1 MHZ BAND. ON 0.5 TO 1 MHZ BAND FREQUENCY RANGE IS 2.5 TO 2 MHZ .
4. FC 5 MODIFIES ANTENNA CONNECTION FOR SHIPBOARD INSTALLATIONS. SEE FIGURE 5-14.
notes:
the dotted lines and parentheses refer only to recervers bearing order no. 14-Phli

ZONING FOR RF GEAR TRAIN ASSEMBLY, EXPLODED VIEW FIGURE 6-36

INDEX NO.	LOCATION	PART NAME	REFERENCE SYMBOL
1	1A, 1B	Riveted locking plate	A216
2	1A, 1B	Spur gear	0323
3	1 B	Rack gear springs (2 used)	0322
4	18	7/16-inch retaining ring	H213
5	2B	4-40 square nut	H219
6	1B, 2B	Gear clamp	0207
7	2B	$3-56$ by 1/4-inch sockethead screw	H217
8	2B	Gear clamp	H231
9	2B	Bevel gear	0202
10	2B	Bevel gear	0213
11	2B	4-40 by 9/16-inch sockethead screw	H218
12	2 A	No. 8 split lockwashers (6 used)	H201
13	2 A	$8-32$ by $3 / 8$-inch binderhead screws (6 used)	H230
14	2B	Gear bushing	0221
15	2B	Gear clamp	H231
16	2B	Washers	H251
17	2B	Mechanical counter	M201
18	1B, 2B	No. 4 split lockwashers (4 used)	H202
19	$1 \mathrm{~B}, 2 \mathrm{~B}$	$4-40$ by $5 / 16$-inch machine screws (4 used)	H227
20	2B	4-40 by 9/16-inch sookethead screw	H218
21	1B	Locked clutch gear assembly	0295
22	1B	$3 / 56$ by $1 / 4$-inch sockethead screw	H217
23	1B	Gear clamp	H231
24	1C	Bevel gear	0212
25	2 C	Pressed bevel gear	0296
26	2B	$6-32$ by $3 / 16$-inch machine screws (2 used)	H228
27	2B	Staked gear post	0252
28	2 C	Special screw	H240
29	2 C	No. 5 split lockwasher	H212
30	2 C	$8-32$ by 3/8-inch binderhead screws (6 used)	H230
31	2 C	No. 8 split lockwashers (6 used)	H201
32	2B, 2C	Front gear plate	A201
33	2 C	4-40 square nut	H219
34	2 C	0.312 -inch hole gear clamp	H233
35	2 C	4-40 by 1/2-inch sockethead screw	H215
36	$2 \mathrm{C}, 3 \mathrm{C}$	Idler gear	0204
37	3 C	Gear bushing	0242
38	3 C	Shaft sleeve	0215
39	3C, 3D	Final differential gear assembly	0219
40	2 C	Gear panel spacing posts (3 used)	H236
41	2D	1/4-inch retaining ring	H224
42	$\begin{aligned} & 2 \mathrm{C}, 2 \mathrm{D} \\ & 3 \mathrm{C}, 3 \mathrm{D} \end{aligned}$	No. 8 riveted gear	0205
43	2D	4-40 square nut	H219
44	2D	Soldered rack gear	0201
45	2D	$4-40$ by $9 / 16$-inch sockethead screw	H218
46	2D	Gear clamp	0208
47	2D	Retaining ring	H234
48	2D, 3D	Soldered gear	0392

ZONING FOR RF GEAR TRAIN ASSEMBLY, EXPLODED VIEW FIGURE 6-36 (Cont)

INDEX NO.	LOCA TION	PART NAME	REFERENCE SYMBOL
49	2D, 3D	Spur gear	0254
50	2D, 3D	Gear rack springs (2 used)	0325
51	3 D	$4-40$ by $9 / 16$-inch sockethead screw	H218
52	3D	Gear clamp	0209
53	3D	Soldered rack gear	0363
54	3 D	4-40 square nut	H219
55	3D	4-40 by $1 / 4$-inch machine screws (3 used)	H241
56	3D	0.5 to $1.0 \mathrm{MHz} \mathrm{RF} \mathrm{cam}$,	0311-1
57	3D	No. 6/0 taper pin	0311-2
58	3D	Retaining ring	H234
59	3D	No. 2 gear assembly consisting of Retaining ring	H234
		Spur gear	0259
		Springs (2 used)	0270
		Soldered gear	0271
60	3D	2.0 to $4.0 \mathrm{MHz} \mathrm{RF} \mathrm{cam}$,	0313-1
61	3D	No. 6/0 taper pin	0313-2
62	4D	8.0 to 16.0 MHz RF cam and gear, front	0315-1
63	3D	8.0 to 16.0 MHz spur gear	0328
64	3D	8.0 to 16.0 MHz loading gear	0324
65	3D	8.0 to 16.0 MHz gear rack springs (2 used)	0273
66	3 C	Pinned spur gear	0390
67	3C	$6-32$ by 1/4-inch binderhead screws (2 used)	H216
68	3 C	No. 6 split lockwashers (2 used)	H203
69	3 C	No. 6 flat washers (2 used)	H291
70	3 C	Detent spring	0244
71	4 C	0.312 -inch hole gear clamp	H233
72	4 C	$4-40$ by 1/2-inch sockethead screw	H215
73	3C, 3D	Differential shaft	0206
74	4D	Pinned gear assembly	0261
75	4D	No. 6/0 taper pin	0315-2
76	4D	Washers (2 used)	H254
77	4D	Gear bushing	0222
78	4 C	Gear bushing	0223
79	4 C	Spur gear	0243
80	4 C	4-40 square nut	H219
81	3 C	7/16-inch retaining ring	H213
82	3 C	$4-40$ by $9 / 16$-inch sockethead screw	H218
83	3 C	Gear clamp	0211
84	3B	4-40 square nut	H219
85	3C	1/4-inch E-type retaining ring	H222
86	3B, 3C	Pressed gear	0253
87	3B	Switch gear assembly	0307
88	3B	Retaining ring	H237
89	3B, 3C	Multiturn gear springs (2 used)	0319
90	3B, 3C	Megahertz gear	0218
91	3B, 3C	Soldered megahertz gear	0321
92	4 C	Washer	H251
93	4 C	Spur gear	0245

ZONING FOR RF GEAR TRAIN ASSEMBLY, EXPLODED VIEW FIGURE 6-36 (Cont)

INDEX NO.	LOCATION	PART NAME	REFERENCE SYMBOL
94	4B	Pinned stop assembly	0316
95	4B	Pinned gear assembly	0246
96	4B, 5B	Washers (2 used)	H254
97	4B	Panel spacing posts (3 used)	H235
98	4 C	4-40 square nut	H219
99	4 C	0.312 -inch hole gear clamp	H233
100	4 C	$4-40$ by $1 / 2$-inch sockethead screw	H215
101	4 C	RF stop assembly	0317
102	4 C	1/8-inch E-type retaining ring	H221
103	4 C	Locking gear	0203
104	4C, 4D	Washer	H251
105	4C, 4D	Washer	H253
106	4C, 4D	Retaining ring	H234
107	4D	8-32 by 5/16-inch flathead machine screw	H226
108	4D	$8-32$ by 5/16-inch flathead machine screws (3 used)	H226
109	5C	Riveted front gear plate	A 202
110	5 C	Pinned gear	0283
111	5 C	No. 8 split lockwashers (3 used)	H201
112	5 C	$8-32$ by 3/8-inch machine screws (3 used)	H230
113	5 C	5/16-inch flat washer	H214
114	5B	4-40 square nut	H219
115	5B, 5C	Gear clamp	0210
116	5 C	$4-40$ by $9 / 16$-inch sockethead screw	H218
117	5C, 6C	Oscillator spur gear	0241
118	6 D	Cam plate brackets (2 used)	A206
119	6 D	$6-32$ by 7/16-inch machine screws (2 used)	H255
120	5X, 6D	No. 6 split lockwashers (2 used)	H203
121	5D	1/4-inch retaining ring	H224
122	5C, 5D	Shim washer	H251
123	5C, 5D	Shim washer	H253
124	5D	Oscillator dial hub	0240
125	5D	1/4-inch retaining ring	H224
126	5D	$6-32$ by 3/8-inch flathead machine screws (6 used)	H225
127	5D	$6-32$ by 3/8-inch flathead machine screw	H225
128	4D	No. 6 split lockwashers (4 used)	H203
129	$\begin{aligned} & 3 \mathrm{D}, 3 \mathrm{E} \\ & 4 \mathrm{D}, 4 \mathrm{E} \end{aligned}$	Loaded rack gear assembly consisting of	
		Retaining ring	$\mathrm{H} 234$
		Spur gear	0254
		Soldered gear	0262
130	4D	$6-32$ by 3/8-inch Phillips-head screws (4 used)	H229
131	4 E	4-40 square nut	H219
132	4 E	0.312-inch hole gear clamp	H233
133	4 E	$4-40$ by $1 / 2$-inch sockethead screw	H215
134	4 E	No. 4 gear assembly consisting of	
		Spur gear	0253
		Springs (2 used)	0273
		Spur gear	0274
		Soldered gear	0324

ZONING FOR RF GEAR TRAIN ASSEMBLY, EXPLODED VIEW FIGURE 6-36 (Cont)

INDEX NO.	LOCATION	PART NAME	REFERENCE SYMBOL
135	4 E	4-40 square nut	H219
136	4 E	0.312 -inch hole gear clamp	H233
137	4 E	$4-40$ by 1/2-inch sockethead screw	H215
138	4 F	4-40 square nut	H219
139	4 F	0.312 -inch hole gear clamp	H233
140	4 F	$4-40$ by $1 / 2$-inch sockethead screw	H215
141	4E, 4F	Loaded rack gear assembly consisting of Retaining ring	H234
		Springs (2 used)	0247
		Spur gear	0254
		Soldered gear	0262
142	4 F	16.0 to 32.0 MHz RF cam, front	0310-1
143	4 F	No. 6/0 taper pin	0310-2
144	4 E	4.0 to $8.0 \mathrm{MHz} \mathrm{RF} \mathrm{cam}$,	0314-1
145	4 E	No. 6/0 taper pin	0314-2
146	4 E	1.0 to $2.0 \mathrm{MHz} \mathrm{RF} \mathrm{cam}$,	0312-1
147	4 E	No. 6/0 taper pin	0312-2
148	4D, 5D	Rack panel spacing posts (4 used)	H244
149	5D	Pressed cam plate	A 209
150	5E	No. 6 split lockwashers (4 used)	H203
151	5 E	$6-32$ by $3 / 8$-inch machine screws (4 used)	H229
152	5 E	Rack panel short posts (3 used)	H242
153	6D, 6E	1.0 to 2.0 MHz RF cam, inner	0312-3
154	6D, 6E	No. 6/0 taper pin	0312-4
155	6 D	4.0 to $8.0 \mathrm{MHz} \mathrm{RF} \mathrm{cam}$,	0314-3
156	5E, 6E	Rack panel long post	H243
157	6 E	0.5 to 1.0 MHz RF cam, rear	0311-3
158	6 E	No. 6/0 taper pin	0311-4
159	6 E	No. 6/0 taper pin	0313-3
160	6 E	8.0 to 16.0 MHz RF cam, inner	0315-3
161	6 D	No. 6/0 taper pin	0315-4
162	6 E	2.0 to 4.0 MHz RF cam, rear	0313-4
163	6D, 6E	2.0 to 4.0 MHz RF camshaft	0313-5
164	6D, 6E	0.5 to 1.0 MHz RF camshaft	0311-5
165	6 D	16.0 to $32.0 \mathrm{MHz} \mathrm{RF} \mathrm{cam}$,	0310-3
166	6D	No. 6/0 taper pin	0310-4
167	6D	No. 6/0 taper pin	0314-4
168	6D	16.0 to 32.0 MHz RF camshaft	0310-5
169	5D, 6D	4.0 to 8.0 MHz RF camshaft	0314-5
170	6D, 7D	Trimmer shaft	0236
171	7D	VFO shaft insulator	E227
172	7D	Helical driven gear	0318
173	7D	Helical gear clamp	H245
174	7D	Helical gear bushing	0256
175	7D	Special washer	H232
176	7D	3/16-inch retaining ring	H223
177	7D	8-32 by $1 / 8$-inch setscrew	H220
178	7 D	$8-32$ by $1 / 8$-inch setscrew	H220
179	6E, 7E	Pressed auxiliary cam plate	0306

Figure 6-38. Rear Panel

CHAPTER 7

PARTS LIST

7.1 INTRODUCTION

7.1.1 This chapter provides reference data on the parts comprising Radio Receiver R-390A/URR. The data is in tabular form and is intended to supplement the troubleshooting, maintenance, and repair information in other chapters.
7.1.2 Reference designations have been assigned to identify all maintenance parts of the equipment. They are used for marking the equipment (adjacent to the part they identify) and are included on drawings, diagrams, and the parts list. The letters of a reference designation indicate the kind of part (generic group), such as resistor, capacitor, electron tube, etc. The number differentiates between parts of the same generic group. Sockets associated with a particular plug-in device, such as an electron tube or a fuse, are identified by a reference designation which includes the reference designation of the plug-in device. For example, the socket for fuse F101 is designated XF101.
7.1.3 Table 7-1 lists the major units of Radio Receiver R-390A/URR, that is, the main frame and six removable subassemblies. Each unit has been assigned a group of numbers to be used in the reference designation for the detail parts of that unit.
7. 1.4 Table $7-2$ lists the parts required to maintain the receiver. The maintenance parts are listed numerically by groups and alphanumerically within groups. The following information is provided by table 7-2: (1) reference designation of the part; (2) reference to explanatory notes (see paragraph 7.1.7); (3) description of the part with part number and manufacturer's code; and (4) identification of the illustration which pictorially locates the part. In addition, the attaching hardware for each part is listed following the listing of the associated part.
7.1.5 Table 7-3 lists the manufacturers of parts used in the equipment. The table includes the manufacturer's code used in table 7-2. The code is contained in Federal Supply Code for Manufacturers, H4-1.
7.1.6 The Allowance Parts List (APL) issued by the Electronics Supply Office (ESO) includes Federal Stock Numbers and Source Maintenance Recoverability Codes. Therefore, reference should be made to the APL prepared for the equipment for stock numbering information.
7.1.7 The following notes are referenced in the NOTES column of table 7-2.

Note 1: See equipment modification chart (paragraph 1.5.2).
Note 2: Tuning cores E213 through E226-3 do not come with their respective transformers, and coils. These items must be ordered separately.

Note 3: Elapsed time indicator applies to certain ships only, and is supplied with field change (FC) No. 8 (table 1-8).

Note 4: Resistors R502 and R503 are selected for optimum bandpass. R502 is selected within the range of 33 to 68 k, R 503 in the range of 560 to 2700 ohms .

Note 5: "AN" type connectors supplied with FC No. 3 for shipboard only.
Note 6: Diode Test Jack supplied with FC No. 4 for shipboard only.

Note 7: Rectifier tubes V801 and V802 replaced with diodes by FC No. 6 for shipboard only.
Note 8: FC No. 7 changes R210 and R702 to 220 k for shipboard installations in Supplementary Radio Spaces only.

Note 9: For 230 Vac supply, F101 value is changed to $1-1 / 2 \mathrm{amp}$.

7.2 LIST OF MAJOR UNITS

TABLE 7-1. LIST OF MAJOR UNITS

QTY	NAME OF UNIT	REF DESIG GROUP
$\mathbf{1}$	Panel and Frame Group	$100-199$
$\mathbf{1}$	RF Amplifier Subchassis	$200-399$
$\mathbf{1}$	Crystal Oscillator Subchassis	$400-499$
$\mathbf{1}$	IF Amplifier Subchassis	$500-599$
$\mathbf{1}$	AF Amplifier Subchassis	$600-699$
$\mathbf{1}$	VFO Subchassis	$700-799$
$\mathbf{1}$	Power Supply Subchassis	$800-899$
$\mathbf{1}$	Shipboard Power Box	$900-999$

7.3 PARTS LIST

.TABLE 7-2. PARTS LIST

$\begin{gathered} \text { REF } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
		PANEL AND FRAME GROUP	
A108		SHIELD, ELECTRICAL CONNECTOR, American Phenolic Corp part no. 26-834, per (80063) SM B-283197	6-32
A109		Same as A108.	6-15
A110		Same as A108.	6-32
C101		CAPACITOR, FIXED, PAPER DIELECTRIC: $220,000 \mathrm{pF}, \pm 20 \%, 100 \mathrm{Vdcw}$, (56289) part no. 96P22401S13.	6-32
C102		CAPACITOR, FIXED, CERAMIC DIELECTRIC: $5000 \mathrm{pF}, \pm 15 \%, 1000 \mathrm{Vdcw}$, (13499) dwg no. 913-2349-00.	6-15
C103		CAPACITOR, FIXED, ELECTROLYTIC: $50 \mu \mathrm{~F}, 50 \mathrm{Vdcw}$, MIL type CE64C500G. (Attaching Parts)	6-15
		SCREW, MACHINE: Pan hd, recessed dr, steel, 6-32 thd x 3/8 in. lg 2 required. NUT, HEX: Steel, 6-32 thd - 2 required. WASHER, LOCK: No. 6-2 required.	
C104		Part of FL101, listed for reference only.	6-32
C105		Part of FL101, listed for reference only.	6-32
C106		Part of FL101, listed for reference only.	6-32
C107		Part of FL101, listed for reference only.	6-32

TABLE 7-2. PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
CR101	911	SEMI-CONDUCTOR DEVICE, DIODE: Germanium crystal, MIL type 1N198.	6-32
CR102		RECTIFIER, METALLIC: $33 \mathrm{~V} \mathrm{rms} 26.0 \mathrm{Vac},, 2.60 \mathrm{~mA}$, full wave rectification, (13499) dwg no. 353016700. (Attaching Parts)	6-32
		SCREW, MACHINE: Pan hd, recessed dr, steel, 6-32 thd x $3 / 8 \mathrm{in} . \lg -$ 2 required. NUT, HEX: Steel, 6-32 thd - 2 required. WASHER, LOCK: No. 6-2 required. WASHER, FLAT: No. 6-2 required.	
E101		KNOB: (80063) dwg no. SM B-249242-1	6-37
E102		Same as E101.	6-37
E103		Same as E101.	6-37
E104		Same as E101.	6-37
E105		Same as E101.	6-37
E106		Same as E101.	6-37
E107		Same as E101.	6-37
E108		Same as E101.	6-37
E109		KNOB: (80063) dwg no. SM-B-249242-2	6-37
E110		Same as E109.	6-37
E111		Same as E109.	6-37
E112		Same as E109.	6-37
E113		Same as E109.	6-37
E114		KNOB: (80063) dwg no. SM-B-249242-3	6-37
E115		Same as E114.	6-37
E116		Same as E114.	6-37
E117		KNOB, TUNING: (80063) dwg no. SMB-249243.	6-37
E122		DIAL LOCK, MECHANISM: (89462) part no. 5103-25.	6-32
E124		SHAFT ASSEMBLY: Zero adjustment screw.	6-32
F101		FUSE, CARTRIDGE: 3 AG slow blowing, $3 \mathrm{~A}, 250 \mathrm{Vdcw}$, MIL type F02D3R00B.	6-15
F102		FUSE, CARTRIDGE: 3 AG slow blowing, $1 / 8 \mathrm{~A}, 250 \mathrm{Vdcw}$, MIL type F02GR125A.	6-15
F103		FUSE, CARTRIDGE: 3 AG slow blowing, $1 / 4 \mathrm{~A}, 250 \mathrm{Vdcw}$, MIL type F02GR250B.	6-15
FL101		FLTTER, RADIO INTERFERENCE: Including C104, C105, C106, C107, L101, and L102, 110V/220 Vac, 4.0A/2.0A (56289) part no. Y15228, type 5960. (Attaching Parts) SCREW, MACHINE: Pan hd, recessed dr, steel, 6-32 thd $\times 3 / 8 \mathrm{in}$. 12 required. NUT, HEX: Steel, 6-32 thd - 2 required. WASHER, LOCK: No. 6-2 required.	6-32
H101		WRENCH, SOCKET HEAD: Bristo splined type, 6 flutes, $7-3 / 4 \mathrm{in}$. 1 (13499) dwg no. 540-7922-002.	2-2
H102		SCREWDRIVER: Phillips type, (81348) GGGS121 type 2.	2-2
$\mathrm{H} 103$		Not used.	
H146			
H147		RING, RETAINING: 3/16 in., (80063) SM-B-207780	

TABLE 7-2. PARTS LIST (Cont)

TABLE 7-2. PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
P112		PLUG, CONNECTOR, ELECTRICAL: 20 female contacts; (02660) part no. 26-810.	6-32
P113		Not used.	
P114		CONNEC TOR, PLUG, ELECTRICAL: 1 female contact; (30684) part no. 45425.	6-14
P115		CONNECTOR:	
P116		CONNECTOR, PLUG, ELECTRICAL: 1 female contact, 90° angle; (30684) part no. 45400 .	6-14
P117		Not used.	
and			
P118			
P119		Same as P111.	6-32
P120		INSERT, CONNECTOR, ELECTRICAL: 15 female contacts; (02660) part no. 26-150.	6-15
		RESISTOR, FIXED, COMPOSITION: $6800 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF682K.	6-15
R102		RESISTOR, FIXED, COMPOSITION: $820 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF821K.	6-15
R103		RESISTOR, VARIABLE: $5000 \mathrm{ohm}, \pm 20 \%, 2 \mathrm{~W}$, (71450) type SW1376.	6-32
R104		RESISTOR, VARIABLE: $2500 \mathrm{ohm}, \pm 20 \%, 2 \mathrm{~W}$, JAN type RV4ATSA252D.	6-32
R105		Same as R104.	
R106		RESISTOR, FIXED, FILM: 778 ohm , $\pm 1 \%, 1 / 2 \mathrm{~W}$.	6-33
R107		RESISTOR, FIXED, FILM: $3190 \mathrm{ohm}, \pm 1 \%, 1 / 2 \mathrm{~W}$.	6-33
R108		Same as R107.	6-33
R109		RESISTOR, FIXED, FILM: $3920 \mathrm{ohm}, \pm 1 \%, 1 / 2 \mathrm{~W}, \mathrm{MIL}$ type RN20X3921F.	6-33
R110		RESISTOR, FIXED, FILM: $3570 \mathrm{ohm}, \pm 1 \%, 1 / 2 \mathrm{~W}, \mathrm{MIL}$ type RN20X3571F.	6-33
R111		RESISTOR, FIXED, FILM: $200 \mathrm{ohm}, \pm 1 \%, 1 / 2 \mathrm{~W}, \mathrm{MIL}$ type RN20X2000F.	6-33
R112		Same as R111.	
R113		RESISTOR, FIXED, FILM: $250 \mathrm{ohm}, \pm 1 \%, 1 / 2 \mathrm{~W}$.	6-33
R114		Same as R111.	6-33
R115		Same as R111.	6-33
R116		RESISTOR, FIXED, FILM: $2030 \mathrm{ohm}, \pm 1 \%, 1 / 2 \mathrm{~W}$.	6-33
R117		Same as R116.	6-33
R118		RESISTOR, FIXED, FILM: 2740 ohm, $\pm 1 \%, 1 / 2 \mathrm{~W}$, MIL type RN20X2741F	6-33
R119		RESISTOR, FIXED, COMPOSITION: $56,000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF563K.	6-32
R120		RESISTOR, VARIABLE: $500,000 \mathrm{ohm}, \pm 20 \%, 2 \mathrm{~W}$.	6-32
R121		RESISTOR, FIXED, COMPOSITION: $220,000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF224K.	6-31
$\mathrm{R} 122$ and		Not used.	
R123			
R124		RESISTOR, FIXED, COMPOSITION: $2.7 \mathrm{ohm}, \pm 10 \%, 1 \mathrm{~W}$.	6-33
S101		SWITCH, ROTARY: SPDT (76854) type no. 23.	6-32
S102		SWITCH, ASSEMBLY: Rotary (13499) dwg no. 259-0703-00.	6-32
S103		Same as S101.	6-32
S104		SWITCH, SECTION, ROTARY: 3 moving contacts, 9 fixed contact, 3 pole (82104) part no. 8540-4ULR-1.	6-32

TABLE 7-2. PARTS LIST (Cont)

TABLE 7-2. PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
C204		CAPACITOR, FIXED, MICA DIELECTRIC: $120 \mathrm{pF}, \pm 2 \%, 500 \mathrm{Vdcw}$, MIL type CM15D121G. Part of T201.	6-19
C205		CAPACITOR ASSEMBLY: Variable, ceramic dielectric, consisting of C205-A, and C205-B (13499) part/dwg no. 917-1117-00.	6-19
C205-A		CAPACITOR, VARIABLE: $3-12 \mathrm{pF}$, part of T202, listed for reference only.	6-19
C205-B		CAPACITOR, VARIABLE: $8-50 \mathrm{pF}$, part of T202, listed for reference only.	6-19
C206		Same as C202. Part of T202	6-19
C207		Same as C204. Part of T202.	6-19
C208		CAPACITOR, FIXED, MICA DIELECTRIC: $75 \mathrm{pF}, \pm 2 \%, 500 \mathrm{Vdcw}$, MIL type CM15D750G. Part of T202.	6-19
C209		CAPACITOR ASSEMBLY: Variable, ceramic dielectric, consisting of C209-A, and C209-B (13499) part/dwg no. 917-1117-00.	6-19
C209-A		CAPACITOR, VARIABLE: $3-12 \mathrm{pF}$, part of T203, listed for reference only.	6-19
C209-B		CAPACITOR, VARIABLE: $8-50 \mathrm{pF}$, part of T203, listed for reference only.	6-19
C210		Same as C202. Part of T203.	6-19
C211		CAPACITOR, FIXED, MICA DIELECTRIC: $36 \mathrm{pF}, \pm 2 \%, 500 \mathrm{Vdcw}$ (72136) type no. 605. Part of T203.	6-19
C212		CAPACITOR, FIXED, MICA DIELECTRIC: $39 \mathrm{pF}, \pm 2 \%, 500 \mathrm{Vdcw}$ MIL type CM15D390J. Part of T203.	6-19
C213		CAPACITOR ASSEMBLY: Variable, ceramic dielectric, consisting of C213-A, and C213-B (13499) dwg no. 917-1116-00.	6-19
C213A		CAPACITOR, VARIABLE: $3-12 \mathrm{pF}$, part of T204, listed for reference only.	6-19
C213B		CAPACITOR, VARIABLE: $8-50 \mathrm{pF}$, part of T204, listed for reference only.	6-19
C214		Same as C202. Part of T204.	6-19
C215		CAPACITOR, FIXED, MICA DIELECTRIC: $100 \mathrm{pF}, \pm 2 \%, 500 \mathrm{Vdew}$, MIL type CM15D1016. Part of T204.	6-19
C216		CAPACITOR, FIXED, MICA DIELECTRIC: $24 \mathrm{pF}, \pm 5 \%, 500 \mathrm{Vdew}$, MIL type no. CM15D240J. Part of T204.	6-19
C217		CAPACITOR ASSEMBLY: Variable, ceramic dielectric, consisting of C217-A, and C217-B (13499) dwg no. 917-1115-00.	6-19
C217A		CAPACITOR, VARIABLE: $3-12 \mathrm{pF}$, part of T205, listed for reference only.	6-19
C217B		CAPACITOR, VARIABLE: $8-50 \mathrm{pF}$, part of T205, listed for reference only.	6-19
C218		Same as C202. Part of T205.	6-19
C219		CAPACITOR, FIXED, MICA DIELECTRIC: $5 \mathrm{pF}, \pm 0.5 \mathrm{pF}, 300 \mathrm{Vdcw}$, MIL type CM15D050K. Part of T205.	6-19
C220		CAPACITOR, FIXED, MICA DIELECTRIC: $12 \mathrm{pF}, \pm 5 \%, 500 \mathrm{Vdcw}$, MIL type CM15D120J. Part of T205.	6-19
C221		CAPACITOR ASSEMBLY: Variable, ceramic dielectric, consisting of C221-A, and C221-B (13499) dwg no. 917-1118-00.	6-19
C221A		CAPACITOR, VARIABLE: $3-12 \mathrm{pF}$, part of T206, listed for reference only.	6-19
C221B		CAPACITOR, VARIABLE: $8-50 \mathrm{pF}$, part of T206, listed for reference only.	6-19
C222		Same as C202. Part of T206.	6-19
C223		CAPACITOR, FIXED, MICA DIELECTRIC: $18 \mathrm{pF}, \pm 5 \%, 500 \mathrm{Vdcw}$, MIL type CM15D180J. Part of T206.	6-19
C224		Same as C219. Part of T206.	6-19
C225		CAPACITOR ASSEMBLY: Variable, air dielectric, consisting of C225-A, and C225-B (13499) dwg no. 922-0208.	6-19
C225A		CAPACITOR, VARIABLE: front section 7 to $80 \mathrm{pF} \pm 4 \mathrm{pF}, 800 \mathrm{Vac}$, part of C225.	6-19

TABLE 7-2. PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
C225B		CAPACITOR, VARIABLE: rear section $6-26 \mathrm{pF} \pm 2 \mathrm{pF}, 800 \mathrm{Vac}$, part of C225.	6-19
C226		CAPACITOR, FIXED, CERAMIC DIELECTRIC: $5000 \mathrm{pF}, \pm 15 \%, 1000 \mathrm{Vdcw}$, (13499) dwg no. 913-2349-00.	6-20
C227	1	CAPACITOR, FIXED, PAPER DIELECTRIC: $47,000 \mathrm{pF}, \pm 20 \%, 100 \mathrm{Vdcw}$ (56289) part no. 186P4730155.	6-20
C228		CAPACITOR, FIXED, CERAMIC DIELECTRIC: $1 \mathrm{pF}, \pm 0.25 \%, 500 \mathrm{Vdcw}$ MIL type CX20CK010C.	6-20
C229		Same as C226.	6-20
C230-1	1	CAPACITOR, VARIABLE, CERAMIC DIELECTRIC: $8-75 \mathrm{pF}, 350 \mathrm{Vdow}$ (13499) dwg no. 917-1122-00. Part of Z201-1.	6-19
C230-2	1	Same as C230-1. Part of Z201-2.	6-19
C231-1	1	CAPACITOR, FDXED, MICA DIELECTRIC: $160 \mathrm{pF}, \pm 2 \%, 500 \mathrm{Vdcw}$ (72136) type no. 605. Part of Z201-1.	6-19
C231-2	1	Same as C231-1. Part of Z201-2.	6-19
C232-1	1	CAPACITOR, FIXED, MICA DIELECTRIC: $2400 \mathrm{pF}, \pm 2 \%$, 300 Vdcw, MIL type VCM20E242G. Part of Z201-1.	6-19
C232-2	1	Same as C232-1. Part of Z201-2.	6-19
C233-1		Same as C230-1. Part of Z202-1.	6-19
C233-2		Same as C230-1. Part of Z202-2.	6-19
C234-1		CAPACITOR, FIXED, MICA DIELECTRIC: $1800 \mathrm{pF}, \pm 2 \%, 500 \mathrm{Vdcw}$, MIL type CM15D181G. Part of Z202-1.	6-19
C234-2		Same as C234-1. Part of Z202-2.	6-19
C235-1		CAPACITOR, FIXED, MICA DIELECTRIC: $2400 \mathrm{pF}, \pm 2 \%$, 300 Vdcw, MIL type CVM20E242G. Part of Z202-1.	6-19
C235-2		Same as C235-1. Part of Z202-2.	6-19
C236-1		Same as C230-1. Part of Z203-1.	6-19
C236-2		Same as C230-1. Part of Z203-2.	6-19
C237-1		Same as C204. Part of Z203-1.	6-19
C237-2		Same as C204. Part of Z203-2.	6-19
C238-1		CAPACITOR, FIXED, MICA DIELECTRIC: $1500 \mathrm{pF}, \pm 10 \%, 300 \mathrm{Vdcw}$ (13499) dwg no. 935-5078-00. Part of Z203-1.	6-19
C238-2		Same as C238-1. Part of Z203-2.	6-19
C239-1		CAPACITOR, VARIABLE, CERAMIC DIELECTRIC: 5 to 37.5 pF , 350 Vdcw (13499) dwg no. 917-1121-00. Part of Z204-1.	6-19
C239-2		Same as C239-1. Part of Z204-2.	6-19
C240-1		CAPACITOR, FIXED, MICA DIELECTRIC: $68 \mathrm{pF}, \pm 2 \%, 500 \mathrm{Vdcw}$, MIL type CM15D680G. Part of Z204-1.	6-19
C240-2		Same as C240-1. Part of Z204-2.	6-19
C241-1		CAPACITOR, FIXED, MICA DIELECTRIC: $470 \mathrm{pF}, \pm 2 \%, 300 \mathrm{Vdcw}$, MIL type CM15D471G. Part of Z204-1.	6-19
C241-2		Same as C241-1. Part of Z204-2.	6-19
C242-1		CAPACITOR, VARIABLE, CERAMIC DIELECTRIC: $3-18 \mathrm{pF}, 350 \mathrm{Vdcw}$ (13499) dwg no. 917-1120-00. Part of Z205-1.	6-19
C242-2		Same as C242-1. Part of Z205-2.	6-19
C243-1		Same as C240-1. Part of Z205-1.	6-19
C243-2		Same as C240-1. Part of Z205-2.	6-19
C244-1		Same as C234-1. Part of Z205-1.	6-19
C244-2		Same as C234-1. Part of Z205-2.	6-19

TABLE 7-2. PARTS LIST (Cont)

$\begin{gathered} \mathrm{REF} \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
C245-1		Same as C242-1. Part of Z206-1.	6-19
C245-2		Same as C242-1. Part of Z206-2.	6-19
C246-1		CAPACITOR, FIXED, MICA DIELECTRIC: $47 \mathrm{pF}, \pm 2 \%, 500 \mathrm{Vdcw}$, MIL type CM15D470G. Part of Z206-1.	6-19
C246-2		Same as C246-1. Part of Z206-2.	6-19
C247-1		CAPACITOR, FIXED, MICA DIELECTRIC: $33 \mathrm{pF}, \pm 2 \%, 500 \mathrm{Vdcw}$, MIL type CM15D330C. Part of Z206-1.	6-19
C247-2		Same as C247-1. Part of Z206-2.	6-19
C248		Same as C226.	6-20
C249		CAPACITOR, FIXED, CERAMIC DIELECTRIC: $0.5 \mathrm{pf}, \pm 0.25 \mathrm{pF}, 500 \mathrm{Vdcw}$, MIL type CC206K0R5C.	6-20
C250		CAPACITOR, FIXED, CERAMIC DIELECTRIC: $0.75 \mathrm{pF}, \pm 0.25 \mathrm{pF}$, 500 Vdcw , MIL type CC20CKR75C.	6-20
C251		Same as C228.	6-20
C252		CAPACITOR, FIXED, CERAMIC DIELECTRIC: $2 \mathrm{pF}, \pm 0.25 \%, 500 \mathrm{Vdcw}$, MIL type CC20CK020C.	6-20
C 253		CAPACITOR, FIXED, CERAMIC DIELECTRIC: $4 \mathrm{pF}, \pm 0.25 \mathrm{pF}, 500 \mathrm{Vdcw}$, MIL type CC20CH040C.	6-20
C254		CAPACITOR, FIXED, CERAMIC DIELECTRIC: $8 \mathrm{pF}, \pm 0.25 \mathrm{pF}, 500 \mathrm{Vdcw}$, MIL type CC20CH080C.	6-20
C255		Same as C247-1	6-20
C256	1	CAPACITOR, FIXED, PAPER DIELECTRIC: $0.1 \mu \mathrm{~F}, \pm 10 \%, 200 \mathrm{Vdcw}$.	6-21
C257	1	CAPACITOR, FIXED, CERAMIC DIELECTRIC: $47 \mathrm{pF}, \pm 5 \%, 500 \mathrm{Vdcw}$, MIL type CC20UJ470J.	3-5
C273		Same as C226	6-20
C274		Same as C226.	6-20
C275	1	CAPACITOR, FIXED, PAPER DIELECTRIC: $0.033 \mu \mathrm{~F}, \pm 20 \%, 300 \mathrm{Vdcw}$, (56289) part no. 96P33303S4.	6-21
C276		CAPACITOR, FIXED, MICA DIELECTRIC: $15 \mathrm{pF}, \pm 5 \%, 500 \mathrm{Vdcw}$, MIL type CM15D150J.	$6-20$
C277		Same as C226.	6-20
C278		Same as C276.	6-20
C279		Same as C276.	6-20
C280		Same as C226.	6-21
C281		CAPACITOR, FIXED, CERAMIC DIELECTRIC: $1.5 \mathrm{pF}, \pm 0.25 \%, 500 \mathrm{Vdew}$, MIL type CC20CK1R5C.	6-21
C282		Same as C281.	6-21
C283-1		Same as C239-1. Part of Z213-1.	6-19
C283-2		Same as C239-1. Part of Z213-2.	6-19
C283-3		Same as C239-1. Part of Z213-3.	6-19
C284		Same as C226.	6-21
C285		Same as C226.	6-21
C286		Same as C215.	6-21
C287		Same as C226.	6-21
C288		Same as C226.	6-21
C289		Same as C252.	6-21
C 290		Same as C252.	6-21
C291-1		Same as C239-1. Part of Z216-1.	6-19
C291-2		Same as C239-1. Part of Z216-2.	6-19

TABLE 7-2. PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
C291-3		Same as C239-1. Part of Z216-3.	6-19
C292-1		Same as C215. Part of Z216-1.	6-19
C292-2		Same as C215. Part of Z216-2.	6-19
C292-3		Same as C215. Part of Z216-3.	6-19
C293		Not used	
through			
C296			
C297		Same as C226.	6-21
C298		Same as C226.	6-21
C299		CAPACITOR, FIXED, MICA DIELECTRIC: $270 \mathrm{pF}, \pm 2 \%, 300 \mathrm{Vdcw}$, MIL type CM15D271G, part of T-208, listed for reference only.	6-19
C300		Same as C226.	6-20
C301		Same as C226.	6-20
C302		Same as C226.	6-21
C303		Same as C226.	6-21
C304		Same as C226.	6-21
C305		Same as C226.	6-21
C307		Same as C226.	6-21
C308		Same as C226.	6-21
C309		Same as C256.	6-21
C310		CAPACITOR, VARIABLE, AIR DIELECTRIC: 3.2 pF to $60.7 \mathrm{pF}, 850 \mathrm{Vac}$, (74970) type no. 160-110-4.	6-21
C311		CAPACITOR, FIXED, MICA DIELECTRIC: $1000 \mathrm{pF}, \pm 2 \%, 500 \mathrm{Vdew}$, MIL type CM30D102G.	6-21
C312		CAPACITOR, FIXED, MICA DIELECTRIC: $150 \mathrm{pF}, \pm 2 \%, 500 \mathrm{Vdew}$, MIL type CM15D151G.	6-21
C313		CAPACITOR, FIXED, MICA DIELECTRIC: $220 \mathrm{pF}, \pm 2 \%$, 500 Vdcw, MIL type CM15D221G.	6-21
C314		Same as C313.	6-21
C315		Same as C313.	6-21
C316		Same as C276.	6-21
C317		Same as C102.	6-21
C318		CAPACITOR, FIXED, MICA DIELECTRIC: $51 \mathrm{pF}, \pm 2 \%, 500$ Vdcw, MIL type CM15D510G.	6-21
C319		Same as C226.	6-21
C320		Same as C311.	6-21
C321		Same as C220.	6-20
C322		Same as C220.	6-20
C323		Same as C219	6-20
C324		CAPACITOR, FIXED, MICA DIELECTRIC: $20 \mathrm{pF}, \pm 5 \%, 300 \mathrm{Vdcw}$, MIL type CM15D200J.	6-21
C325		CAPACITOR, FIXED, MICA DIELECTRIC: $200 \mathrm{pF}, \pm 1 \%, 500 \mathrm{Vdcw}$.	6-21
C326		Same as C226.	6-21
C327		Same as C215.	6-21
C328		Same as C226.	6-21
C329		Same as C240-1.	6-21
C330-1		CAPACITOR, FIXED, MICA DIELECTRIC: $300 \mathrm{pF}, \pm 2 \%, 500 \mathrm{Vdcw}$, MIL type CM15D301G. Part of Z201-1.	6-19
C330-2		Same as C330-1. Part of Z201-2.	6-19

TABLE 7-2. PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
C331-1		Same as C240-1. Part of Z202-1.	6-19
C331-2		Same as C240-1. Part of Z202-2.	6-19
C334		Same as C318.	6-21
E201		SHIELD, ELECTRON TUBE: Medium 7 pin: (98738) part no. CWS6P202262, type 99X.	6-19
E202		Same as E201.	6-19
E203		Same as E201.	6-19
E204		Same as E201.	6-19
E205		SHIELD, ELECTRON TUBE: Medium 9 pin: (98738) part no. 26N205116.	6-19
E206		Same as E205.	6-19
E207		SHIELD, ELECTRON TUBE: Short 7 pin: (98738) part no. 26N205117.	6-19
E208		JACK, TIP: 1 female contact (98291) type No. SKT-1.	6-19
E209		Same as E208.	6-19
E210		Same as E208.	6-19
E211		Same as E208.	6-19
E212		SUPPRESSOR, PARASITIC: 270 ohms, $1 / 2 \mathrm{~W}$, (13499) dwg no. 540-7869-002.	6-20
E213	2	CORE, ADJUSTABLE, TUNING: Part of L212 and L213.	6-19
E214	2	Same as E213: Part of L214 and L215.	6-19
E215	2	Same as E213: Part of L216 and L217.	6-19
E216	2	Same as E213: Part of L218 and L219.	6-19
E217	2	Same as E213: Part of L220 and L221.	6-19
E218	2	Same as E213: Part of L222 and L223.	6-19
E219-1	2	Same as E213: Part of L224-1.	6-19
E219-2	2	Same as E213: Part of L224-2.	6-19
E220-1	2	Same as E213: Part of L225-1.	6-19
E220-2	2	Same as E213: Part of L225-2.	6-19
E221-1	2	Same as E213: Part of L226-1.	6-19
E221-2	2	Same as E213: Part of L226-2.	6-19
E222-1	2	Same as E213: Part of L227-1.	6-19
E222-2	2	Same as E213: Part of L227-2.	6-19
E223-1	2	Same as E213: Part of L228-1.	6-19
E223-2	2	Same as E213: Part of L228-2.	6-19
E224-1	2	Same as E213: Part of L229-1.	6-19
E224-2	2	Same as E213: Part of L229-2.	6-19
E225-1	2	CORE, ADJUSTABLE, TU NING: Part of L232-1.	6-19
E225-2	2	Same as E225-1: Part of L232-2.	6-19
E225-3	2	Same as E225-1: Part of L232-3.	6-19
E226-1	2	Same as E225-1: Part of L233-1.	6-19
E226-2	2	Same as E225-1: Part of L233-2.	6-19
E226-3	2	Same as E225-1: Part of L233-3.	6-19
E227		INSULA TOR VFO SHAFT: (80063) dwg no. SM-B-178491 (index no. 171).	6-36
E228 through		Not used.	
E230			
E231		TERMINAL:	
E232		Same as E231.	
E233		Same as E231.	
E234		Same as E231.	
E235		Same as E231.	

TABLE 7-2. PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
H201		WASHER, LOCK: No. 8 split (index no. 12).	6-36
H202		WASHER, LOCK: No. 4 split (index no. 18).	6-36
H203		WASHER, LOCK: No. 6 split, MIL type MS35338-79 (index no. 68).	6-36
H204		Not used.	
through			
H211			
H212		WASHER, LOCK: No. 5 split (index no. 29).	6-36
H213		RING, RETAINING: $7 / 16$ in. , (80063) dwg no. SM-B-283171-3 (index no. 4).	6-36
H214		WASHER, FLAT: 5/16 in. (index no. 113).	6-36
H215		SCREW, MACHINE: Socket hd, 4-40 thd $\times 1 / 2$ in. 1 (index no. 35).	6-36
H216		SCREW, MACHINE: Binder hd, recessed dr, 6-32 thd $\mathrm{x} 1 / 4 \mathrm{in}$. 1 , MIL type MS35216-23 (index no. 67).	6-36
H217		SCREW, MACHINE: Socket hd, 3-56 thd x $1 / 4$ in. 1 (index no. 7).	6-36
H218		SCREW, MACHINE: Socket hd, 4-40 thd x $9 / 16$ in. 1, (80063) dwg no. SM-D-343600-6 (index no. 11).	$6-36$
H219		NUT, SQUARE: Steel, 4-40 thd, (80063) dwg no. SM-D-343600-7 (index no. 5).	6-36
H220		SET SCREW: Steel, $8-32$ thd $\mathrm{x} 1 / 8 \mathrm{in}$, I (index no. 177).	6-36
H221		RING, RETAINING: $1 / 8 \mathrm{in}$. E-type: (80063) dwg no. SM-B-283174-1 (index no. 102).	6-36
H222		RING, RETAINING: 1/4 in. E-type: (80063) dwg no. SM-B-283174-3 (index no. 85).	6-36
H 223		RING, RETAINING: $3 / 16$ in. (index no. 176).	6-36
H224		RING, RETAINING: $1 / 4 \mathrm{in}$. (index no. 41).	6-36
H225		SCREW, MACHINE: Flat hd, 6-32 thd $\mathrm{x} 3 / 8 \mathrm{in}$. 1 (index no. 126).	6-36
H226		SCREW, MACHINE: Flat hd, recessed dr, 8-32 thd x $5 / 16$ in. 1 (index no. 107).	6-36
H227		SCREW, MACHINE: Pan hd, recessed dr, steel, 4-40 thd $\times 5 / 16$ in. 1 (index no. 19).	6-36
H228		SCREW, MACHINE: Pan hd, recessed dr, steel, 6-32 thd x $3 / 16 \mathrm{in} .1$ (index no. 26).	6-36
H229		SCREW, MACHINE: Pan hd, recessed dr, steel, 6-32 thd x $3 / 8$ in. 1 (index no. 130).	6-36
H230		SCREW, MACHINE: Binder hd, recessed dr, steel, $8-32$ thd x $3 / 8$ in. 1 (index no. 13).	6-36
H231		CLAMP, GEAR: (80063) dwg no. SM-B-343586 (index no. 8).	6-36
H232		WASHER, SPECIAL: (index no. 175).	
H233		CLAMP, GEAR: For cam shaft, 0.312 in. hole. (80063) dwg no. SM-B-178414 (index no. 34).	6-36
H234		RING, RETAINING: (89462) part no. 5100-31-C (index no. 47).	6-36
H235		POST, PANEL SPACING: A1, anodized, rd, $1 / 4 \mathrm{in} . \times 1-3 / 8 \mathrm{in}$. 1 (index no. 97).	6-36
H236		Same as H235 (index no. 40).	6-36
H237		RING, RETAINING: (89462) part no. 5133-18-C (index no. 88).	6-36
H240		SCREW, SPECIAL: (index no. 28).	6-36
H241	-	SCREW, MACHINE: Pan hd, recessed dr, steel $4-40$ thd $\times 1 / 4 \mathrm{in}$. l (index no. 55).	6-36
H 242		POST, PANEL SPACING: Al, anodized, $9 / 16 \mathrm{in}$.1 (index no. 152).	6-36
H243		POST, PANEL, SPACING: Al, anodized, 4-13/16 in. 1 (index no. 156).	6-36

TABLE 7-2. PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
H244	22222222222	POST, PANEL SPACING: Steel, 5-5/8 in. 1 (index no. 148).	6-36
H245		CLAMP, HELICAL GEAR: (80063) dwg no. SM-B-248934 (index no. 173).	6-36
H246		Not used.	6-36
through			
H250			
H251		WASHER, SHIM: (index no. 16).	6-36
H252		Same as H213.	
H253		WASHER, SHIM: (index no. 105).	6-36
H254		WASHER: (index no. 76).	6-36
H255		SCREW, MACHINE: Steel, 6-32 thd x 7/16 in. 1 (index no. 119).	6-36
H291		WASHER, FLAT: No. 6, (98738) part no. 572037-3 (index no. 69).	6-36
HR202		OVEN, CRYSTAL: (75378) type no. JK09.	6-19
J201		Not used.	
through			
J207			
J208		CONNECTOR, RECEPTACLE, ELECTRICAL: 9 male contacts; (02660) type no. 26-012.	6-19
J209		Not used.	
through			
J216			
J217		CONNECTOR, RECEPTACLE, ELECTRICAL: 1 female contact, (30684) type 46475.	6-19
J218		Not used.	
through			
J220			
J221		Same as J217	6-19
L201		COIL, RADIO FREQUENCY: $500 \mu \mathrm{H}$; (95265) part no. C0047109.	6-21
L202		COIL, RADIO FREQUENCY: $10 \mu \mathrm{H}$ (82142) part no. 10102-32.	6-20
L203		Same as L202.	6-20
L204		Same as L202.	6-21
L205		Same as L202.	6-21
L206		Same as L202.	6-21
L207		Same as L202.	6-21
L208		Same as L201.	6-21
L209		Same as L201.	6-21
L210		COIL, RADIO FREQUENCY: $0.68 \mu \mathrm{H}$ (82142) part no. 10100-28.	6-21
L211		Same as L201.	6-21
L212		COIL, RADIO FREQUENCY: Part of T201, listed for reference only.	6-19
L213		Same as L212.	6-19
L214		COIL, RADIO FREQUENCY: Part of T202, listed for reference only.	6-19
L215		Same as L214.	6-19
L216		COIL, RADIO FREQUENCY: Part of T203, listed for reference only.	6-19
L217		Same as L216.	6-19
L218		COIL, RADIO FREQUENCY: Part of T204, listed for reference only,	6-19
L219		Same as L218.	6-19
L220		COIL, RADIO FREQUENCY: Part of T205, listed for reference only.	6-19
L221		Same as L220.	6-19
L222		COIL, RADIO FREQUENCY: Part of T206, listed for reference only.	6-19
L223		Same as L222.	6-19

TABLE 7-2. PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
L224-1	2	COIL, TUNED CIRCUIT: Part of Z201-1, listed for reference only.	6-19
L224-2	2	COIL, TUNED CIRCUIT: Part of Z201-2, listed for reference only.	6-19
L225-1	2	COIL, TUNED CIRCUIT: Part of $\mathrm{Z} 202-1$, listed for reference only.	6-19
L225-2	2	COIL, TUNED CIRCUIT: Part of $\mathrm{z} 202-2$, listed for reference only.	6-19
L226-1	2	COIL, TUNED CIRCUIT: Part of Z203-1, listed for reference only.	6-19
L226-2	2	COIL, TUNED CIRCUIT: Part of Z203-2, listed for reference only.	6-19
L227-1	2	COIL, TUNED CIRCUIT: Part of Z204-1, listed for reference only.	6-19
L227-2	2	COIL, TUNED CIRCUIT: Part of Z204-2, listed for reference only.	6-19
L228-1	2	COIL, TUNED CIRCUIT: Part of $\mathrm{Z} 205-1$, listed for reference only.	6-19
L228-2	2	COIL, TUNED CIRCUIT: Part of Z205-2, listed for reference only.	6-19
L229-1	2	COL, TUNED CIRCUIT: Part of Z206-1, listed for reference only.	6-19
L229-2	2	COIL, TUNED CIRCUIT: Part of Z206-2, listed for reference only.	6-19
L230	2	COIL, TUNED CIRCUIT: Part of T207, listed for reference only.	6-19
L231	2	Same as L230.	6-13
L232-1	2	COIL, TUNED CIRCUIT: Part of Z213-1, listed for reference only.	6-19
L232-2	2	COIL, TUNED CIRCUIT: Part of Z213-2, listed for reference only.	6-19
L232-3	2	COIL, TUNED CIRCUIT: Part of $\mathrm{Z} 213-3$, listed for reference only.	6-19
L233-1	2	COIL, TUNED CIRCUIT: Part of Z216-1, listed for reference only.	6-19
L233-2	2	COIL, TUNED CIRCUIT: Part of Z216-2, listed for reference only.	6-19
L233-3	2	COLL, TUNED CIRCUIT: Part of Z216-3, listed for reference only.	6-19
L234		COIL, TUNED CIRCUIT: Part of T208, listed for reference only.	6-19
L235		Same as L234.	6-19
L236		COIL, RADIO FREQUENCY: $10 \mu \mathrm{H}$.	6-21
M201		COUNTER, ROTATING, FIXED MOUNTING: (80063) dwg no. SM-C-249195 (index no. 17). (Attaching Parts) SCREW, MACHINE: Pan hd, recessed dr, steel, 4-40 thd x $1 / 4 \mathrm{in}$. 1- 4 required. WASHER, FLAT: Steel, no. 4-4 required.	6-36
0201		GEAR SPUR: (80063) dwg no. SM-B-178912 (index no. 44).	6-36
0202		GEAR, BEVEL: (80063) dwg no. SM-C-178700 (index no. 9).	6-36
0203		GEAR, SPUR: (80063) dwg no. SM-B-178701 (index no. 103).	6-36
0204		GEAR, SPUR: (80063) dwg no. SM-C-178702 (index no. 36).	6-36
0205		GEAR ASSEMBLY, SPUR: (80063) dwg no. SM-B-178935 (index no. 42).	6-36
0206		SHAFT, DIFFERENTIAL: (index no. 73).	6-36
0207		CLAMP, GEAR: (80063) dwg no. SM-B-178486 (index no. 6).	6-36
0208		Same as 0207 (index no. 46).	6-36
0209		Same as 0207 (index no. 52).	6-36
0210		Same as 0207 (index no. 115).	6-36
0211		Same as 0207 (index no. 83).	6-36
0212		GEAR, BEVEL: (80063) dwg no. SM-B-178707 (index no. 24)	6-36
0213		Same as 0212 (index no. 10).	6-36
0214		Not used.	
0215		BUSHING, SHAFT: (index no. 38).	6-36
0216		Not used.	
and			
0217			
0218		GEAR, SPUR: (80063) dwg no. SM-C-179063 (index no. 90).	6-36

T ABLE 7-2. PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
0219		GEAR ASSEMBLY, FINAL DIFF ERENTIAL: Consisting of cluster gears, 0219-A, 0219-B, 0219-C, and 0219-D (index no. 39).	6-36
0219-A		GEAR, CLUSTER: Part of 0219, listed for reference only.	6-36
0219-B		GEAR, CLUSTER: Part of 0219, listed for reference only.	6-36
0219-C		GEAR, CLUSTER: Part of 0219, listed for reference only.	6-36
0219-D		GEAR, CLUSTER: Part of 0219, listed for reference only.	6-36
0220		Not used.	
0221		BUSHING, GEAR: (index no. 14).	6-36
0222		BUSHING, GEAR: (index no. 77).	6-36
0223		BUSHING, GEAR: (index no. 78).	6-36
0224		Not used.	
through			
0235			
0236		SHAFT, ANTENNA TRIMMER: (index no. 170).	6-36
0237		Not used.	
through			
0239			
0240		HUB, OSCILLATOR DIAL: (index no. 124).	6-36
0241		GEAR, SPUR: (index no. 117).	6-36
0242		BUSHING, GEAR: (index no. 37).	6-36
0243		GEAR, SPUR: (80063) dwg no. SM-B-248907 (index no. 79).	6-36
0244		SPRING, DETENT: (index no. 70).	6-36
0245		GEAR, SPUR: (index no. 93).	6-36
0246		GEAR ASSEMBLY, SPUR: (80063) dwg no. SM-B-248938 (index no. 95).	6-36
0247		SPRING, HELICAL, EXTENSION: (80063) dwg no. SM-B-178785 (index no. 129).	6-36
0248		Not used.	
through			
0251			
0252		POST, STAKED GEAR: Gear drive for mechanical rotating counter M201; (index no. 27).	6-36
0253		GEAR, SPUR: (index no. 86).	6-36
0254		GEAR, SPUR: (80063) dwg no. SM-B-248902 (index no. 49)	6-36
0255		Not used.	
0256		BUSHING, HELICAL GEAR: (index no. 174).	6-36
0257		Not used.	
through			
0260			
0261		GEAR ASSEMBLY, SPUR: (80063) dwg no. SM-B-248943 (index no. 74).	6-36
0262		GEAR, SOLDERED: (index no. 129).	6-36
0263		Not used.	
through			
0272			
0273		Same as 0247 (index no. 65).	6-36
0274		GEAR, SPUR: (index no. 134). Not used.	6-36
0275			
through			
0282			
0283		GEAR, SPUR: (04713) part no. 244B4510 (index no. 110).	6-36

TABLE 7-2. PARTS LIST (Cont)

REF DESIG	NOTES	NAME AND	FIG. NO.
0284 through 0294		Not used. GEAR ASSEMBLY, LOCKED CLUTCH: Consisting of spur gears, 0295-A, 0295-B, and 0295-C: (80063) dwg no. SM-C-248967 (index no. 21). GEAR, SPUR: Part of 0295, listed for reference only. GEAR, SPUR: Part of 0295, listed for reference only. GEAR, SPUR: Part of 0295, listed for reference only. GEAR, BEVEL: (80063) dwg no. SM-B-178752 (index no. 25). GEAR TRAIN ASSEMBLY, RADIO FREQUENCY: (less counter) consisting of 0310 through 0315-7, (13499) dwg no. 540-7528-003. Not used. PLATE ASSEMBLY, CAM: (80063) SM-B-343594 (index no. 179). GEAR ASSEMBLY, SWITCH: Consisting of spur gears, 0307-A, and 0307-B: (80063) dwg no. SM-C-248970 (index no. 87). GEAR, SPUR: Part of 0307, listed for reference only. GEAR, SPUR: Part of 0307, listed for reference only. Not used. CAM ASSEMBLY, RF TUNING: 16.0 to 32.0 MHz tuning, consisting of 0310-1, 0310-2, 0310-3, 0310-4, and 0310-5. CAM LOBE, FRONT: Part of 0310, listed for reference only (index no. 142). PIN, NO. 6 TAPER: Part of 0310, listed for reference only (index no. 143). CAM LOBE, REAR: Part of 0310, listed for reference only (index no. 165). PIN, NO. 6 TAPER: Part of 0310 , listed for reference only (index no. 166). SHAFT, CAM TRANSVERSE: Part of 0310 , listed for reference only (index no. 168). CAM ASSEMBLY, RF TUNING: 0.5 to 1.0 MHz tuning, consisting of 0311-1, 0311-2, 0311-3, 0311-4, and 0311-5. CAM LOBE, FRONT: Part of 0311, listed for reference only (index no. 56). PIN, NO. 6 TAPER: Part of 0311, listed for reference only (index no. 57). CAM LOBE, REAR: Part of 0311, listed for reference only (index no. 157). PIN, NO. 6 TAPER: Part of 0311, listed for reference only (index no. 158). SHAFT, CAM TRANSVERSE: Part of 0311, listed for reference only (index no. 164). CAM ASSEMBLY, RF TUNING: 1.0 to 2.0 MHz , and 3.0 to 2.0 MHz intermediate frequency tuning, consisting of 0312-1, 0312-2, 0312-3, 0312-4, 0312-5, 0312-6, and 0312-7. CAM LOBE, FRONT: Part of 0312, listed for reference only (index no. 146). PIN, NO. 6 TAPER: Part of 0312 , listed for reference only (index no. 147). CAM LOBES, INNER: Part of 0312, listed for reference only (index no. 153). PIN, NO. 6 TAPER: Part of 0312, listed for reference only (index no. 154). SHAFT, CAM TRANSVERSE: Part of 0312, listed for reference only (index no. 184). CAM LOBE, REAR: Part of 0312, listed for reference only (index no. 185).	
0295			6-36
0295-A			6-36
0295-B			6-36
0295-C			6-36
0296			6-36
0297			6-36
0298			
through			
0305			
0306			6-36
0307			6-36
0307-A			6-36
0307-B			6-36
. 0308			
and			
0309			
0310			6-36
0310-1			6-36
0310-2			6-36
0310-3			6-36
0310-4			6-36
0310-5			6-36
0311			6-36
0311-1			6-36
0311-2			6-36
0311-3			6-36
0311-4			6-36
0311-5			6-36
0312			6-36
0312-1			6-36
0312-2			6-36
0312-3			6-36
0312-4			6-36
0312-5			6-36
0312-6			6-36

TABLE 7-2. PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
0312-7		PIN, NO. 6 TAPER: Part of 0312, listed for reference only (index no. 186).	6-36
0313		CAM ASSEMBLY, RF TUNING: 2.0 to 4.0 MHz tuning, consisting of 0313-1, 0313-2, 0313-3, 0313-4, and 0313-5.	6-36
0313-1		CAM LOBE, FRONT: Part of 0313, listed for reference only (index no. 60).	6-36
0313-2		PIN, NO. 6 TAPER: Part of 0313, listed for reference only (index no. 61).	6-36
0313-3		Same as 0313-2 (index no. 159).	6-36
0313-4		CAM LOBE, REAR: Part of 0313, listed for reference only (index no. 162).	6-36
0313-5		SHAFT, CAM TRANSVERSE: Part of 0313, listed for reference only (index no. 163).	6-36
0314		CAM ASSEMBLY, RF TUNING: 4.0 to 8.0 MHz tuning, consisting of 0314-1, 0314-2, 0314-3, 0314-4, and 0314-5.	6-36
0314-1		CAM LOBE, FRONT: Part of 0314, listed for reference only (index no. 144).	6-36
0314-2		PIN, NO. 6 TAPER: Part of 0314, listed for reference only (index no. 145).	6-36
0314-3		CAM LOBE, REAR: Part of 0314, listed for reference only (index no. 155).	6-36
0314-4		Same as 0314-2 (index no. 167).	6-36
0314-5		SHAFT, CAM TRANSVERSE: Part of 0314, listed for reference only (index no. 169).	6-36
0315		CAM ASSEMBLY, RF TUNING: 8.0 to 16.0 MHz , and 17.5 to 25.0 MHz tuning, consisting of 0315-1, 0315-2, 0315-3, 0315-4, 0315-5, 0315-6, and 0315-7: (80063) dwg no. SM-C-248959.	6-36
0315-1		GEAR AND CAM LOBE ASSEMBLY, FRONT: Part of 0315, listed for reference only (index no. 62).	6-36
0315-2		PIN, NO. 6 TAPER: Part of 0315, listed for reference only (index no. 75).	6-36
0315-3		CAM LOBES, INNER: Part of 0315 , listed for reference only (index no. 160).	6-36
0315-4		Same as 0315-2 (index no. 161).	6-36
0315-5		SHAFT, CAM TRANSVERSE: Part of 0315, listed for reference only (index no. 183).	6-36
0315-6		CAM LOBE, REAR: Part of 0315, listed for reference only (index no. 187)	6-36
0315-7		Same as 0315-2 (index no. 188).	6-36
0316		STOP ASSEMBLY: (80063) dwg no. SM-C-343597 (index no. 94).	6-36
0317		STOP ASSEMBLY: (80063) dwg no. SM-C-343598 (index no. 101).	6-36
0318		GEAR, HELICAL DRIVER: (index no. 172).	6-36
0319		SPRING, MULTITURN GEAR: (index no. 89).	6-36
0320		Not used.	
0321		GEAR, SPUR: (80063) dwg no. SM-B-248952 (index no. 91).	6-36
0322		Same as 0247 (index no. 3).	6-36
0323		GEAR, SPUR: (80063) dwg no. SM-B-248932 (index no. 2).	6-36
0324		GEAR, SPUR: (80063) dwg no. SM-C-178930 (index no. 64).	6-36
0325		Same as 0247 (index no. 50).	6-36
0326		Not used.	
and			
0327			
0328		GEAR, SPUR: (80063) dwg no. SM-C-178931 (index no. 63).	6-36
0329		Not used.	
through 0331			
0332		SPRING, HELICAL, EXTENSION: (04713) part no. 341B286.	

TABLE 7-2. PARTS LIST (Cont)

TABLE 7-2. PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
R204		RESISTOR, FIXED, COMPOSITION: $10,000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF103K.	6-20
R205		RESISTOR, FIXED, COMPOSITION: $2200 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC 20 GF 222 K .	6-20
R206		RESISTOR, FIXED, COMPOSITION: $22,000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF223K.	6-21
R207		RESISTOR, FIXED, COMPOSITION: $120,000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF124K.	6-21
R208		RESISTOR, FIXED, COMPOSITION: $27 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF270K.	6-20
R209		Same as R205.	6-20
R210	8	RESISTOR, FIXED, COMPOSITION: $56,000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF563K.	6-21
R211		RESISTOR, FIXED, COMPOSITION: $8200 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF 822 K .	6-21
R212		Same as R205.	6-21
R213		RESISTOR, FIXED, COMPOSITION: $1 \mathrm{meg}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF105K.	6-21
R214		Same as R208.	6-21
R215		Same as R205.	6-21
R216		Same as R205.	6-21
R217		RESISTOR, FIXED, COMPOSITION: $470,000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF474K.	6-21
R218		Same as R205.	6-21
R219		Same as R205.	6-21
R220		RESISTOR, FIXED, COMPOSITION: $330,000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF334K.	6-21
R221		RESISTOR, FIXED, COMPOSITION: $39,000 \mathrm{ohm}, \pm 10 \%, 1 \mathrm{~W}$, MIL type RC32GF393K.	6-21
R222		Same as R206.	6-21
R223		RESISTOR, FIXED, COMPOSITION: $100,000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF104K.	6-21
R224		Same as R204.	6-21
R225		Same as R206.	6-21
R226		Same as R204.	6-21
R227		Same as R213.	6-21
R228		RESISTOR, FIXED, COMPOSITION: $5600 \mathrm{ohm}, \pm 10 \%, 1 \mathrm{~W}$, MIL type RC32GF562K.	6-21
R229		RESISTOR, FIXED, COMPOSITION: $33 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF330K.	6-21
R230		Same as R208.	6-21
R231		Same as R213.	6-20
R232		Same as R206.	6-20
R233		Same as R217.	6-20
R234		RESISTOR, FIXED, COMPOSITION: $1.5 \mathrm{meg}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF155K.	6-20
R235		RESISTOR, FIXED, COMPOSITION: $47 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF470J.	6-21

TABLE 7-2. PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
S201		SWITCH SECTION, ROTARY: 1 moving contact, 7 fixed contacts, 1 pole; (13499) dwg no. 269-1727-00.	6-20
S202		Same as S201.	6-20
S203		SWITCH SECTION, ROTARY: 2 moving contacts, 8 fixed, 2 poles; (13499) dwg no. 269-1723-00.	6-20
S204		SWITCH SECTION, ROTARY: 2 moving contacts, 13 fixed, 1 pole; (13499) dwg no. 269-1729-00.	6-20
S205		Same as S201.	6-20
S206		Same as S201.	6-20
S207		Same as S201.	6-20
S208		SWITCH SECTION, ROTARY: 3 moving contacts, 8 fixed, 3 poles; (13499) dwg no. 269-1730-00.	6-21
T201		TRANSFORMER, RADIO FREQUENCY: 0.5 to 1.0 MHz frequency range, consisting of C201A, C201B, C202, C203, C204, E213, L212, and L213 (13499) dwg no. 540-7893-004. (Attaching Parts) NUT, HEX: Steel, 4-40 thd - 2 required. WASHER, LOCK: No. 4-2 required.	6-19
T202		TRANSFORMER, RADIO FREQUENCY: 1.0 to 2.0 MHz frequency range, consisting of C205A, C205B, C206, C207, C208, E214, L214, and L215 (13499) dwg no. 540-7894-004. (Attaching Parts) NUT, HEX: Steel, 4-40 thd - 2 required. WASHER, LOCK: No. 4-2 required.	6-19
T203		TRANSFORMER, RADIO FREQUENCY: 2.0 to 4.0 MHz frequency range, consisting of C209A, C209B, C210, C211, C212, E215, L216, and L217 (13499) dwg no. 540-7895-004. (Attaching Parts) NUT, HEX: Steel, 4-40 thd - 2 required. WASHER, LOCK: No. 4-2 required.	6-19
T204		TRANSFORMER, RADIO FREQUENCY: 4.0 to 8.0 MHz frequency range, consisting of C213A, C213B, C214, C215, C216, E216, L218, and L219 (13499) dwg no. 540-7896-004. (Attaching Parts) NUT, HEX: Steel, 4-40 thd - 2 required. WASHER, LOCK: No. 4-2 required.	6-19
T205		TRANSFORMER, RADIO FREQUENCY: 8.0 to 16.0 MHz frequency range, consisting of C217A, C217B, C218, C219, C220, E217, L220, and L221 (13499) dwg no. 540-7897-004. (Attaching Parts) NUT, HEX: Steel, 4-40 thd - 2 required. WASHER, LOCK: No. 4-2 required.	6-19
T206		TRANSFORMER, RADIO FREQUENCY: 16.0 to 32.0 MHz frequency range, consisting of C221A, C221B, C222, C223, C224, E218, L222, and L223 (13499) dwg no. 540-7893-004. (Attaching Parts) NUT, HEX: Steel, 4-40 thd - 2 required. WASHER, LOCK: No. 4-2 required.	6-19

TABLE 7-2. PARTS LIST (Cont)

TABLE 7-2. PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
Z201-2		Same as Z201-1, including C230-2, C231-2, C232-2, C330-2, E219-2 and L224-2.	6-19
Z202-1		RF TUNER ASSEMBLY: 1.0 to 2.0 MHz frequency range, including C233-1, C234-1, C235-1, C331-1, E220-1 and L225-1 (13499) dwg no. 540-7900-004. (Attaching Parts) NUT, HEX: Steel, 4-40 thd - 2 required. WASHER, LOCK: No. 4-2 required.	6-19
Z202-2		Same as Z202-1, including C233-2, C234-2, C235-2, C331-2, E220-2, and L225-2.	6-19
Z203-1		RF TUNER ASSEMBLY: 2.0 to 4.0 MHz frequency range, including C236-1, C237-1, C238-1, E221-1 and L226-1 (13499) dwg no. 540-7901-004. (Attaching Parts) NUT, HEX: Steel, 4-40 thd -2 required. WASHER, LOCK: No. 4-2 required.	6-19
Z203-2		Same as Z203-1, including C236-2, C237-2, C238-2, E221-2 and L226-2.	6-19
Z204-1		RF TUNER ASSEMBLY: 4.0 to 8.0 MHz frequency range; including C239-1, C240-1, C241-1, E222-1 and L227-1 (13499) dwg no. 540-7902-004. (Attaching Parts) NUT, HEX: Steel, 4-40 thd - 2 required. WASHER, LOCK: No. 4-2 required.	6-19
Z204-2		Same as Z204-1, including C239-2, C240-2, C241-2, E222-2 and L227-2.	6-19
Z205-1		RF TUNER ASSEMBLY: 8.0 to 16.0 MHz frequency range; including C242-1, C243-1, C244-1, E223-1 and L228-1, (13499) dwg no. 540-7903-004. (Attaching Parts) NUT, HEX: Steel, $4-40$ thd -2 required. WASHER, LOCK: No. 4-2 required.	6-19
Z205-2		Same as Z205-1, including C242-2, C243-2, C244-2, E223-2 and L228-2.	6-19
Z206-1		RF TUNER ASSEMBLY: 16.0 to 32.0 MHz frequency range, including C245-1, C246-1, C247-1, E224-1 and L229-1 (13499) dwg no. 540-7904-004. (Attaching Parts) NUT, HEX: Steel, 4-40 thd - 2 required. WASHER, LOCK: No. 4- 2 required.	6-19
Z206-2		Same as Z206-1, including C245-2, C246-2, C247-2, E224-2 and L229-2.	6-19
Z207 through Z212		Not used.	
Z213-1		RF TUNER ASSEMBLY: 17.5 to 25.0 MHz frequency range; including C283-1, E225-1 and L232-1 (13499) dwg no. 540-7906-004. (Attaching Parts) NUT, HEX: Steel, 4-40 thd -2 required. WASHER, LOCK: No. 4-2 required.	6-19
Z213-2		Same as Z213-1, including C283-2, E225-2 and L232-2.	6-19
Z213-3		Same as Z213-1, including C283-3, E225-3 and L232-3.	6-19

TABLE 7-2. PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIP'TION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
Z216-1		RF TUNER ASSEMBLY: 3.0 to 2.0 MHz frequency range, including C291-1, C292-1, E226-1 and L233-1 (13499) dwg no. 540-7905-004. (Attaching Parts) NUT, HEX: Steel, 4-40 thd - 2 required. WASHER, LOCK: No. 4-2 required.	6-19
Z216-2		Same as Z216-1, including C291-2, C292-2, E226-2 and L233-2.	6-19
Z216-3		Same as Z216-1, including C291-3, C292-3, E226-3 and L233-3.	6-19
		CRYSTAL OSCILLATOR SUBCHASSIS	
C401		CAPACITOR, FIXED, CERAMIC DIELECTRIC: $5000 \mathrm{pF}, \pm 15 \%$, 1000 Vdew, (13499) dwg no. 913-2349-00.	6-23
C402		Same as C219.	6-23
C403		Same as C253.	6-23
C404		Same as C253.	6-23
C406		Same as C401.	6-24
C407		Same as C401.	6-23
C408		CAPACITOR, FIXED, CERAMIC DIELECTRIC: $12 \mathrm{pF}, \pm 5 \%, 500 \mathrm{Vdcw}$, MIL type CC20UJ120J.	6-23
C409		Same as C312.	6-23
C410		Same as C401.	6-23
C411		Same as C401.	6-23
C412		Same as C401.	6-23
C 413		Same as C401.	6-23
C414		Same as C401.	6-23
C415		Same as C401.	6-23
C417		Same as C312.	6-23
C418		Same as C204.	6-23
C419		Same as C215.	6-23
C420		CAPACITOR, FIXED, MICA DIELECTRIC: $82 \mathrm{pF}, \pm 2 \%, 500 \mathrm{Vdcw}$, MIL type CM15D820G.	6-23
C421		Same as C240-1.	6-23
C422		CAPACITOR, FIXED, MICA DIELECTRIC: $56 \mathrm{pF}, \pm 2 \%, 500 \mathrm{Vdcw}$, MIL type CM15D560G.	6-23
C423		Same as C246-1.	6-23
C424		Same as C212.	6-23
C425		Same as C247-1.	6-23
C426		Same as C223.	6-23
C427		Same as C220.	6-23
C428		Same as C219.	6-23
C429		CAPACITOR, ASSEMBLY: Variable, ceramic dielectric, 8 sections, 6 sections, 5 to 25 pF , and 2 sections, 8 to 50 pF (13499) dwg no. 917-1126-00.	6-22
C430		CAPACITOR ASSEMBLY: Variable, ceramic dielectric, 8 sections, 1 section, 3 to $12 \mathrm{pF}, 5$ sections, 5 to 25 pF , and 2 sections, 8 to 50 pF (13499) dwg no. 917-1127-00.	6-22
C431		CAPACITOR ASSEMBLY: Variable, ceramic dielectric, 8 sections, 2 sections, 3 to 12 pF , and 6 sections, 5 to 25 pF (13499) dwg no. 917-1128-00.	6-22

TABLE 7-2. PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
E401		SHIELD, ELECTRON TUBE: Short 7 pin (98738) part no. 26 N 205117.	6-22
E402		JACK, TIP: 1 female contact (98291) part no. SKT-1.	6-22
H401		WASHER, LOCK: No. 8 split (80063) SM-B-283201.	6-22
H402		Not used.	
through			
H408			
H409		RING, RETAINING: $1 / 4 \mathrm{in}$.	6-22
HR401-A		ELEMENT, HEATING:	6-24
HR401-B		OVEN, CRYSTAL: (80063) dwg no. SM-C-249045.	6-24
J401		Not used.	
through			
J409			
J410		CONNECTOR, RECEPTACLE, ELECTRICAL: 7 male contacts; (02660) part no. 26-191.	6-22
J411		Not used.	
through			
J413			
J415		CONNECTOR, RECEPTACLE, ELECTRICAL: 1 male contact; (30684) part no. 46025.	6-22
J416		JACK, TIP: 1 female contact; (98291) type no. SKT-1.	6-22
J417		Same as J416.	6-23
L401		COH, RADIO FREQUENCY: $500 \mu \mathrm{H}$; (95265) part no. C0047109.	6-23
L402		COIL, RADIO FREQUENCY: $10 \mu \mathrm{H}$ at 7.9 MHz ; (82142) part no. 10102-32.	6-23
L403		COIL, TUNED CIRCUIT: Part of T401, listed for reference only.	6-22
L404		Same as L403.	6-22
P416		PLUG, TIP: 1 male contact; (98291) type no. FT-M-9.	6-24
P 417		Same as P416.	6-24
R404		RESISTOR, FIXED, COMPOSITION: $27 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF270K.	6-23
R405		RESISTOR, FIXED, COMPOSITION: $33,000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF33K.	6-23
R406		RESISTOR, FIXED, COMPOSITION: $3900 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF392K.	6-23
R407		Same as R406.	6-23
S401		SWITCH SECTION, ROTARY: 1 moving contact, 32 fixed, 1 pole; (13499) dwg no. 269-1489-00.	6-23
S402		Same as S401.	6-23
S403		SWITCH, THERMOSTATIC: SPST; 115 Vac, $2.5 \mathrm{~A} ; 28 \mathrm{Vdc}, 2 \mathrm{~A} ;$ (73168) type no. 32000-1.	6-24
T401		TRANSFORMER, RADIO FREQUENCY: 11.0 to 34.0 MHz frequency range of L403 and L404; (13499) dwg no. 278-0234-00. (Attaching Parts) NUT, HEX: Steel, 4-40 thd -2 required. WASHER, LOCK: No. 4-2 required.	6-22
V401		ELECTRON TUBE: MIL type 5654/6AK5W.	6-22
XHR401-A		HOLDER, CRYSTAL UNIT:	$6-22$
XV401		SOCKET, ELECTRON TUBE: JAN type TS102P01.	6-23

TABLE 7-2. PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
	11111	(Attaching Parts) SCREW, MACHINE: Pan hd, recessed dr, steel, 4-40 thd $\times 7 / 32$ in. 1 2 required. NUT, HEX: Steel, 4-40 thd - 2 required. WASHER, LOCK: No. 4-2 required.	
Y401		CRYSTAL UNIT, QUARTZ: $10,000 \mathrm{kHz}$; MLL type CR-36/U.	6-22
Y402		CRYSTAL UNIT, QUARTZ: $10,500 \mathrm{kHz} ;$ MIL type CR-36/U.	6-22
Y403		CRYSTAL UNIT, QUARTZ: $11,000 \mathrm{kHz}$; MIL type CR-36/U.	6-22
Y404		CRYSTAL UNIT, QUARTZ: $11,500 \mathrm{kHz} ; \mathrm{ML}$ type CR-36/U.	6-22
Y405		CRYSTAL UNIT, QUARTZ: $12,000 \mathrm{kHz}$; MIL type CR-36/v.	6-22
Y406		CRYSTAL UNIT, QUARTZ: $12,500 \mathrm{kHz} ; \mathrm{MLL}$ type CR-36/U.	6-22
Y407		CRYSTAL UNIT, QUARTZ: $13,000 \mathrm{kHz}$; MIL type CR-36/U.	6-22
Y408		CRYSTAL UNIT, QUARTZ: 8000 kHz ; MIL type CR-36/U.	6-22
Y409		CRYSTAL UNIT, QUARTZ: $14,000 \mathrm{kHz}$; MII type CR-36/U.	6-22
Y410		CRYSTAL UNIT, QUARTZ: $15,000 \mathrm{kHz}$; MIL type CR-36/U.	6-22
Y411		CRYSTAL UNIT, QUARTZ: $16,000 \mathrm{kHz} ; \mathrm{MIL}$ type CR-36/U.	6-22
Y412		CRYSTAL UNIT, QUARTZ: $17,000 \mathrm{kHz}$; MIL type CR-36/U.	6-22
Y413		CRYSTAL UNIT, QUARTZ: 9500 kHz ; MU type CR-36/U.	6-22
Y414		CRYSTAL UNIT, QUARTZ: 14,500 kHz; MIL type CR-36/U.	6-22
Y415		CRYSTAL UNIT, QUARTZ: $15,500 \mathrm{kHz}$; MIL type CR-36/U.	6-22
		IF AMPLIFIER SUBCHASSIS	
C501.		Same as C226.	6-18
C502		Same as C226.	6-18
C503		Same as C215.	6-18
C504		Same as C256.	6-18
C505		Same as C256.	6-18
C506		Same as C226.	6-18
C507		CAPACITOR, FEXED, MICA DIELECTRIC: $110 \mathrm{pF}, \pm 2 \%, 500 \mathrm{Vdcw}$; MIL type CM15D111G.	6-18
C508		Same as C507.	6-18
C509		Same as C507.	6-18
C510		Same as C507.	6-18
C511		Same as C226.	6-18
C512		Same as C226.	6-16
C513		Same as C507.	6-16
C514		Same as C507.	6-16
C 515		Same as C507.	6-16
C516		Same as C507.	6-16
C517		Same as C256.	6-17
C518		Same as C226.	6-17
C519		Same as C226.	6-17
C 520		CAPACITOR, VARIABLE: 3 to 12 pF , part of Z501, listed for reference only.	6-16
C521		Same as C256.	6-17
C522		Same as C226.	6-17
C523		Same as C226.	6-17
C524		CAPACITOR, FIXED: 75 pF , part of Z501, listed for reference only.	6-16

TABLE 7-2. PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
C525		CAPACITOR, VARIABLE, CERAMIC DIELECTRIC: 1.5 pF min , 7 to 10.5 pF max, 350 Vdew; (72982) part no. 557.	6-17
C526		Same as C215.	6-17
C527		Same as C219.	6-17
C528		Same as C256.	6-17
C529		Same as C275.	6-17
C530		Same as C312.	6-17
C531		Same as C256.	6-18
C 532		Same as C215.	6-18
C533		Same as C275.	6-18
C534		Same as C275.	6-17
C535		Same as C220.	6-17
C536		CAPACITOR, FIXED, PAPER DIELECTRIC: $0.1 \mu \mathrm{~F}, \pm 20 \%, 100 \mathrm{Vdcw}$; (56289) part no. 96P10401S4.	6-18
C537		Same as C234-1.	6-18
C538		Same as C256.	6-17
C539		Same as C311.	6-18
C540		Same as C226.	6-18
C541		Same as C275.	6-18
C542		Same as C246-1.	6-18
C543		Same as C256.	6-18
C544		Same as C226.	6-18
C545		Same as C275.	6-18
C546		Same as C313.	6-18
C547		Same as C256.	6-18
C548		Same as C256.	6-18
C549		CAPACITOR, FIXED, PAPER DIELECTRIC: $10,000 \mathrm{pF}, \pm 20 \%$, 300 Vdew (56289) part no. 96P1030354.	6-18
C551		CAPACITOR, FIXED, PAPER DIELECTRIC: $2 \mu \mathrm{~F}, \pm 10 \%$, 500 Vdew (53021) type no. 62A.	6-18
C552		Same as C226.	6-17
C553		Same as C549.	
C554		CAPACITOR, FIXED, MICA DIELECTRIC: $1600 \mathrm{pF}, \pm 1 \%, 100 \mathrm{Vdcw}$; part of Z502, listed for reference only.	6-17
C555		CAPACITOR, FIXED: 50 pF , part of Z502, listed for reference only.	6-17
C556		CAPACITOR, FIXED: 50 pF , part of Z502, listed for reference only.	6-17
C557		CAPACITOR, FIXED: Part of T501, listed for reference only.	6-16
C558		CAPACITOR, FIXED: Part of T501, listed for reference only.	6-16
C559		CAPACITOR, FIXED: Part of T502, listed for reference only.	6-16
C560		CAPACITOR, FIXED: Part of T502, listed for reference only.	6-16
C561		CAPACITOR, FIXED: Part of T503, listed for reference only.	6-16
C562		CAPACITOR, FIXED: Part of T503, listed for reference only.	6-16
C563		CAPACITOR, FIXED: Part of Z503, listed for reference only.	6-16
C564	1	CAPACITOR, VARIABLE, CERAMIC DIELECTRIC: 8 to $50 \mathrm{pF}, 350 \mathrm{Vdcw}$.	6-18
C565	1	Same as C564.	6-18
C566	1	Same as C564.	6-18
C567	1	Same as C564.	6-18
C568	1	CAPACITOR, VARIABLE, CERAMIC DIELECTRIC: 8 to $50 \mathrm{pF}, 350 \mathrm{Vdew}$.	6-16
C569	1	Same as C568.	6-16

TABLE 7-2. PARTS LIST (Cont)

TABLE 7-2. PARTS LIST (Cont)

TABLE 7-2. PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
R502-C	4	RESISTOR, FIXED, COMPOSITION: $56,000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF563K. Alternate for R502. See note 1, Fig 6-18.	6-18
R502-D	4	RESISTOR, FIXED, COMPOSITION: $68,000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF683K. Alternate for R502. See note 1, Fig 6-18.	6-18
R503	4	RESISTOR, FIXED, COMPOSITION: $560 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF561K.	6-18
R503-A	4	RESISTOR, FIXED, COMPOSITION: $1200 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF122K. Alternate for R503. See note 1, Fig 6-18.	6-18
R503-B	4	RESISTOR, FIXED, COMPOSITION: $1800 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF182K. Alternate for R503. See note 1, Fig 6-18.	6-18
R503-C	4	RESISTOR, FIXED, COMPOSITION: $2200 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF222K. Alternate for R503. See note 1, Fig 6-18.	6-18
R503-D	4	RESISTOR, FIXED, COMPOSITION: $2700 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF272K. Alternate for R503. See note 1, Fig 6-18.	6-18
R504		RESISTOR, FIXED, COMPOSITION: $1000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF102K.	6-18
R 505		RESISTOR, FLXED, COMPOSITION: $27,000 \mathrm{ohm}, \pm 10 \%, 1 \mathrm{~W}$, MIL type RC32GF273K.	6-18
R506		RESISTOR, FIXED, COMPOSITION: $22,000 \mathrm{ohm}, \pm 10 \%, 2 \mathrm{~W}$, MIL type RC42GF223K.	6-18
R507		Same as R501.	6-17
R508		RESISTOR, FIXED, COMPOSITION: 2200 ohm, $\pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF222K.	6-18
R509 and		Not used.	
R510			
R511		Part of T501, listed for reference only.	6-16
R512		Same as R511.	6-16
R513		RESISTOR, FIXED, COMPOSITION: $100 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF101K.	6-17
R514		RESISTOR, FIXED, COMPOSITION: $82,000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF 823 K .	6-17
R 515		RESISTOR, FIXED, COMPOSITION: 27,000 ohm, $\pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF273K.	6-17
R516		Same as R501.	6-17
R517		Not used.	
R518		Same as R513.	6-17
R519		RESISTOR, VARIABLE: $10,000 \mathrm{ohm}, \pm 20 \%, 1 \mathrm{~W}, \mathrm{MIL}$ type RV2LAXSA103B.	6-16
R520		Same as R515.	6-17
R521		Same as R508.	6-17
R522		Part of T503, listed for reference only.	6-16
R523		RESISTOR, VARIABLE: $100 \mathrm{ohm}, \pm 20 \%, 1 \mathrm{~W}, \mathrm{MIL}$ type RV2LAXSA101B.	6-16
R524		RESISTOR, FIXED, COMPOSITION: $680 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF681K.	6-17
R525		RESISTOR, FIXED,' COMPOSITION: $2200 \mathrm{ohm}, \pm 10 \%, 1 \mathrm{~W}$, MIL type RC32GF222K.	6-17
R526		Same as R515.	6-18

TABLE 7-2. PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
R527		Same as R515.	6-18
R528		RESISTOR, FIXED, COMPOSITION: $150,000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF154K.	6-17
R529		RESISTOR, FIXED, COMPOSITION: $33,000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF333K.	6-17
R530		RESISTOR, FIXED, COMPOSITION: $22,000 \mathrm{ohm}, \pm 10 \%, 1 \mathrm{~W}$, MIL type RC32GF223K.	6-17
R531		Same as R521.	6-17
R532		RESISTOR, FIXED, COMPOSITION: $470,000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF474K.	6-18
R533		RESISTOR, FIXED, COMPOSITION: $820,000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF824K.	6-18
R534		RESISTOR, FIXED, COMPOSITION: $390,000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF394K.	6-18
R535		Same as R532.	6-18
R536		RESISTOR, FIXED, WIRE WOUND: $4 \mathrm{ohm}, \pm 5 \%, 8 \mathrm{~W}$, MIL type RW30G4R0.	6-18
R537		RESISTOR, FIXED, COMPOSITION: $22 \mathrm{ohm}, \pm 10 \%, 1 \mathrm{~W}$, MIL type RC32GF220K.	6-16
R538		RESISTOR, FIXED, COMPOSITION: 390 ohm, $\pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF391K.	6-18
R539		Same as R504.	6-18
R540		RESISTOR, FIXED, COMPOSITION: $1 \mathrm{meg}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF105K.	6-18
R541		RESISTOR, FIXED, COMPOSITION: $270 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF271K.	6-18
R542		Same as R521.	6-18
R543		Same as R502-B.	6-18
R544		RESISTOR, FIXED, COMPOSITION: $2.7 \mathrm{meg}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF275K.	6-17
R545		RESISTOR, FIXED, COMPOSITION: $100,000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF104K.	6-18
R546		RESISTOR, FIXED, COMPOSITION: $180,000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF184K.	6-18
R547		RESISTOR, FIXED, COMPOSITION: $220,000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF224K.	6-17
R548		RESISTOR, FIXED, COMPOSITION: $27 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF270K.	6-17
R549		RESISTOR, FIXED, COMPOSITION: $82,000 \mathrm{ohm}, \pm 10 \%, 1 \mathrm{~W}$, MIL type RC32GF283K.	6-17
R550		Same as R514.	6-17
R551		Same as R521.	6-17
R552		Same as R548.	6-18
R553		Part of T502, listed for reference only.	6-16
R554		Same as R553.	6-16
RT510		RESISTOR, CURRENT REGULATOR: $0.310 \mathrm{~A}, 8.6 \mathrm{Vac}$, (70563) ballast 3 TF 7.	6-16
S501		SWITCH SECTION, ROTARY: 1 moving contact, 7 fixed, 1 pole; (13499) dwg no. 269-1769-00.	6-18

TABLE 7-2. PARTS LIST (Cont)

TABLE 7-2. PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
XV507 XV508 XV509 Y501 Z501 Z502 Z503 C601 C602 C603 C604 C605 C606		NUT, HEX: Steel, 4-40 thd - 2 required. WASHER, LOCK: No. 4-2 required. Same as XV506. Same as XV501. Same as XV506. CRYSTAL UNIT, QUARTZ: 4.55 kHz , MIL type CR-45/U. Part of $\mathbf{Z 5 0 1 .}$ FILTER, BANDPASS: 455 kHz peak frequency, including L503, C520, C524, and Y501. (Attaching Parts) NUT, HEX: Steel, 4-40 thd - 2 required. WASHER, LOCK: No. 4-2 required. OSCILLATOR, RADIO FREQUENCY: 452 kHz to 458 kHz frequency range; including L508, L509, C554, C555, and C556. (13499) dwg no. 522-0196-004. (Attaching Parts) NUT, HEX: Steel, 4-40 thd - 2 required. WASHER, LOCK: No. 4-2 required. TUNED CIRCUIT, INTERMEDIA TE FREQUENCY: 455 kHz center frequency; including L514 and C563, (13499) dwg no. 278-0235-00. (Attaching Parts) NUT, HEX: Steel, 4-40 thd - 2 required. WASHER, LOCK: No. 4-2 required. AF AMPLIFIER SUBCHASSIS Same as C549. Same as C275. CAPACITOR, FIXED, ELECTROLYTIC: 3 section, $30 \mu \mathrm{~F}, 300 \mathrm{Vdcw}$, MIL type CE53C300N. (Attaching Parts) SPACER: Anodized al, hex rod, $1 / 4 \mathrm{in} . \times 1-3 / 4 \mathrm{in} .1$, drilled and tapped $3 / 8 \mathrm{in}$, for $6-32$ screw - 1 required. CLAMP, LOOP: $1 / 2$ in. steel strap, w/holddown tab-1 required. NUT, HEX: Self locking, steel, 6-32 thd -1 required. SCREW, MACHINE: Fil hd, recessed dr, 6-32 thd x $3 / 8 \mathrm{in}$. $1-2$ required. SCREW, MACHINE: Pan hd, recessed dr, 6-32 thd x 13/36 in. 1 - 1 required. WASHER, LOCK: No. 6-2 required. WASHER, FLAT: No. 6-2 required. Same as C549. Same as C549. CAPACITOR, FIXED, ELECTROLYTIC: 2 sections, $45 \mu \mathrm{~F}, 300 \mathrm{Vdcw}$, MIL type CE52C450N. (Attaching Parts) SPACER: Anodized al, hex rod, $1 / 4 \mathrm{in} . \times 1-3 / 4 \mathrm{in} .1$, drilled and tapped $3 / 8 \mathrm{in}$. for $6-32$ screw - 1 required. CLAMP, LOOP: $1 / 2$ in. steel strap, w/holddown tab-1 required. SCREW, MACHINE: Pan hd, recessed dr, steel, 6-32 thd x 13/36 in. 11 required.	$\begin{aligned} & 6-18 \\ & 6-18 \\ & 6-18 \\ & 6-16 \\ & 6-16 \\ & \\ & \hline 6-17 \\ & \\ & \hline 6-16 \\ & \\ & \hline 6-28 \\ & 6-28 \\ & 6-27 \\ & 6-28 \\ & 6-28 \\ & 6-27 \end{aligned}$

TABLE 7-2. PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
$\begin{aligned} & \mathrm{C} 607 \\ & \mathrm{C} 608 \\ & \mathrm{C} 609 \end{aligned}$		NUT, HEX: Self locking, steel, 6-32 thd -1 required. SCREW, MACHINE: Fil hd, steel, 6-32 thd $\times 3 / 8 \mathrm{in}$. $1-2$ required WASHER, LOCK: No. 6-2 required. WASHER, FLAT: No. 6-2 required. Same as C549. Same as C549. CAPACITOR, FIXED, ELECTROLYTIC: $8 \mu \mathrm{~F}, 30 \mathrm{Vdcw}$, (21520) type no. PP8B30A2.	$\begin{aligned} & 6-28 \\ & 6-28 \\ & 6-28 \end{aligned}$
C611		Same as C226.	6-28
C612		Same as C240-1.	6-28
E601		SHIELD, ELECTRON TUBE: Medium 9 pin.	6-27
E602		Same as E601.	6-27
E603		SHIELD, ELECTRON TUBE: Medium 7 pin.	6-27
E604		Same as E603.	6-27
E605		SHIELD, ELECTRON TUBE: Long 7 pin.	6-27
E607		JACK, TIP: 1 female contact.	6-27
FL601		FILTER, BANDPASS: 800 Hz center frequency, $\pm 100 \mathrm{~Hz}$ bandwidth (13499) dwg no. 673-0348-00. (Attaching Parts) NUT, HEX: Steel, 6-32 thd - 4 required. WASHER, LOCK: No. 6-4 required. WASHER, FLAT: No. 6-4 required.	6-27
$\begin{aligned} & \text { H611 } \\ & \text { J601 } \\ & \text { through } \\ & \text { J618 } \end{aligned}$		SLEEVE, SPRING: For No. 8 captive screw (80063) dwg no. SM-B-283175. Not used.	6-28
J619		INSERT, CONNECTOR, ELECTRICAL: 11 male contacts; (02660) part no. 26-804. (Attaching Parts) SCREW, MACHINE: Pan hd, recessed dr, steel, 4-40 thd x 5/8 in. 12 required. NUT, HEX: Steel, 4-40 thd - 2 required.	6-27
J620		CONNECTOR, PLUG, ELECTRICAL: 15 male contacts; (02660) part no. 26-151. (Attaching Parts) SCREW, MACHINE: Pan hd, recessed dr, steel, 4-40 thd x $5 / 8 \mathrm{in}$. 12 required. NUT, HEX: Steel, 4-40 thd - 2 required.	6-27
K601		RELAY, BREAK-IN: $25 \mathrm{Vac}, 1.0 \mathrm{~A}$; Robbins and Meyers type no. HL-SA-RF; per SM-C-283244. (Attaching Parts) NUT, HEX: Steel, 6-32 thd - 3 required. WASHER, LOCK: No. 6-3 required.	6-27
L601		COIL, REACTOR: 2.5 H at $50 \mathrm{~V} \mathrm{rms}, 60 \mathrm{~Hz}, 200 \mathrm{~mA}, 137 \mathrm{ohm}$ at $25^{\circ} \mathrm{C}$; (73386) type no. 25701. (Attaching Parts) NUT, HEX: Steel, 6-32 thd - 4 required. WASHER, LOCK: No. 6-4 required. WASHER, FLAT: Steel, no. 6-4 required.	6-27

TABLE 7-2. PARTS LIST (Cont)

TABLE 7-2. PARTS LIST (Cont)

TABLE 7-2. PARTS LIST (Cont)

TABLE 7-2. PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
		VFO SUBCHASSIS	
C701		CAPACITOR, FIXED: $370 \mathrm{pF}, \pm 1 \%, 500 \mathrm{Vdcw}$ (71590) type no. 951-001; part of HR701, listed for reference only.	6-25
C702		CAPACITOR, FIXED: 10 pF , part of HR701, listed for reference only.	6-25
C703		Same as C702.	6-25
C704		CAPACITOR, FIXED: $15 \mathrm{pF}, \pm 2 \%, 500 \mathrm{Vdcw}, \mathrm{MLL}$ type CC30CH150G, part of HR701, listed for reference only.	6-25
C705		CAPACITOR ASSEMBLY: Fixed, ceramic dielectric, 6 sections, consisting of C705, C707, C708, C712, C713, and C714, $5000 \mathrm{pF}, \pm 10 \%$, 1000 Vdew (04713) part no. 301B13995-1.	6-26
C706		CAPACITOR, VARIABLE, GLASS DIELECTRIC: 1.5 to 8 pF , Corning part no. 692063; (13499) dwg no. 922-0150-00. Part of Z702.	6-25
C707		Part of C705.	6-26
C708		Part of C705.	6-26
C709		CAPACITOR, FIXED, MICA DIELECTRIC: $510 \mathrm{pF}, \pm 2 \%, 300 \mathrm{Vdcw}$, MIL type CM15D511G. Part of Z702.	6-25
C710		Same as C226.	6-25
C711		Same as C226.	6-25
C 712		Part of C705.	6-26
C 713		Part of C705.	6-26
C714		Part of C705.	6-26
E701		SHIELD, ELECTRON TUBE: Medium 7 pin, (98738) part no. CWS26P202262, Type 99X.	6-25
H701		WASHER, LOCK: No. 8 split (80063) dwg no. SM-B-283201.	
HR 701		OVEN, TUNED CIRCUIT: Including C701, C702, C704, L701, L702, and L705.	6-25
J701		Not used.	
through J708			
J709		CONNECTOR, RECEPTACLE, ELECTRICAL: MIL type MS24056-1.	6-25
L701		COIL, TUNED CIRCUIT: Part of HR701, listed for reference only.	6-25
L702		Same as L701.	6-25
L703		Not used.	
and			
L704			
L705		REACTOR, RADIO FREQUENCY: $7.5 \mu \mathrm{H}$ (13499) dwg no. 240-0098-00.	6-25
L706		COIL, RADIO FREQUENCY: $10 \mu \mathrm{H}$ (82142) part no. 10102-32.	6-26
0701		Not used.	
through			
0705			
0706		COUPLING:	6-4
0707		COUPLER, OLDHAM: Used on VFO shaft.	6-15
0708		SPRING:	6-4
0709		CLIP, TUBE SHIELD RETAINER: (13499) dwg no. 506-4207-002	6-15
			6-25
P717		CONNECTOR, PLUG, ELECTRICAL: 1 female contact, 90° angle; (30484) part no. 45400.	$\begin{aligned} & 6-25 \\ & 6-14 \end{aligned}$

TABLE 7-2. PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
R701	8	RESISTOR, FIXED, COMPOSITION: $150,000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF154K.	6-26
R702		RESISTOR, FIXED, COMPOSITION: $56,000 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF563K.	6-26
R703		RESISTOR, FIXED, COMPOSITION: $2200 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF222K.	6-26
R704		RESISTOR, FIXED, COMPOSTTION: $150 \mathrm{ohm}, \pm 10 \%, 1 / 2 \mathrm{~W}$, MIL type RC20GF151K. Part of Z702.	6-25
S701		SWITCH, THERMOSTATIC: $115 \mathrm{Vac}, 10 \mathrm{~A} ; 230 \mathrm{Vac}, 5 \mathrm{~A}$; (73168) part no. 17010; part of HR701, listed for reference only.	6-25
T701		TRANSFORMER, RADIO FREQUENCY: Pri: $173 \mu \mathrm{H}$, sec: $5.75 \mu \mathrm{H}$ (90526) type no. P-191-A. Part of Z702.	6-25
V701		ELECTRON TUBE: MIL type 5749/6BA6W.	6-25
W701A		CABLE, RADIO FREQUENCY: RG-187/U.	6-26
XV701		SOCKET, ELECTRON TUBE: JAN type TS102P01. (Attaching Parts) SCREW, MACHINE: Pan hd, recessed dr, steel, 4-40 thd x 7/32 in. 12 required. NUT, HEX: Steel, 4-40 thd -2 required. WASHER, LOCK: No. 4-2 required.	6-26
Z702		RF TUNED CIRCUIT: 2.4 to 3.5 MHz frequency range; consists of T701, C706, C709, and R704. POWER SUPPLY SUBCHASSIS	6-25
CR801	77	SEMI-CONDUCTOR DEVICE, DIODE: MIL type 1 N561.	
CR802		Same as CR801.	
E801		SHIELD, ELECTRON TUBE: Medium 9 pin; (98738) part no. 26N205116.	6-29
E802		Same as E801.	6-29
J801		Not used.	
through			
J811		INSERT, CONNECTOR ELECTRICAL: 11 male contacts; (02660) part no. 26-804.	6-29
T801		TRANSFORMER, POWER, STEP-UP AND STEP-DOWN: $115 / 230$ volt, 48 to $62 \mathrm{~Hz}, 1$ phase; Chicago Trans. type no. CSTC 20164.	6-29
TB801		TERMINAL BOARD: Power input. (Attaching Parts) SCREW, MACHINE: Pan hd, recessed dr, steel, 4-40 thd x 5/8 in. l 4 required. NUT, HEX: Steel, 4-40 thd - 4 required.	6-30
V801	7	ELECTRON TUBE: MIL type $26 \mathrm{Z5W}$.	6-29
V802	7	Same as V801.	6-29
XV801		SOCKET, ELECTRON TUBE: JAN type TS103P01. (Attaching Parts) SCREW, MACHINE: Pan hd, recessed dr, steel, 4-40 thd x 7/32 in. 12 required. NUT, HEX: Steel, 4-40 thd - 2 required. WASHER, LOCK: No. 4-2 required.	6-30
XV802		Same as XV801.	6-30

TABLE 7-2. PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{gathered} \text { FIG. } \\ \text { NO. } \end{gathered}$
		CHANGE ADDITIONS	
J901	5	CONNECTOR, ELECTRICAL: (06840) dwg no. AN3102A10SL4S. (Attaching Parts) SCREW, MACHINE: Pan hd, slottedhead, steel, 4-40 thd $\times 1 / 4 \mathrm{in}$. I4 required. NUT, HEX: Steel, 4-40 thd - 4 required. WASHER, LOCK: No. 4-4 required.	6-38
J902	5	Same as J901.	6-38
J903	5	```CONNECTOR, ELECTRICAL: (02660) dwg no. AN3102A16S5P. (Attaching Parts) SCREW, MACHINE: Pan hd, slottedhead, steel, 4-40 thd x 1/4 in. 1 - 4 required. NUT, HEX: Steel, 4-40 thd - 4 required. WASHER, LOCK: No, 4-4 required.```	6-38
$\begin{aligned} & \mathrm{J} 904 \\ & \mathrm{~J} 1001 \end{aligned}$	6	JACK, TIP, DIODE TEST: (08288) dwg no. MS5935-06. CONNECTOR:	6-32
P901	5	CONNECTOR: MIL type MS3108B-10SL-4S.	
P901-B	5	ADAPTER: (88044) dwg no. AN-3057-4B.	
P902	5	Same as P901.	
P902-B	5	Same as P901-B.	
P903	5	CONNECTOR: MLL type MS3108B-16S-5S.	
P903-B	5	CLAMP: (88044) dwg no. AN-3057-8	
P1001		CONNECTOR: (74868) dwg no. I1C83200.	
P1002		CONNECTOR, ELECTRICAL: (91146) dwg no. B2246-1.	
P1003		CONNECTOR: (81349) MIL type A 27434-23.	
P1004		CONNEC TOR: (96906) MIL type; MS35322-567A.	
P1005		ADAPTER: (96906) MIL type MS35315 REV B.	

7.4 LIST OF MANUFACTURERS

TABLE 7-3. LIST OF MANUFACTURERS

MFR CODE	NAME	ADDRESS
02660	Amphenol - Borg Electronics Corp.	Chicago, Ill.
04009	Arrow Hart \& Hegeman Electric Co.	Hartford, Conn.
04713	Motorola, Inc.	Phoenix, Ariz.
06840	Bendix Corp.	Detroit, Michigan
08288	Military Supply Standard	
08806	General Electric	Cleveland, Ohio
13499	Collins Radio Company	Cedar Rapids, Iowa
21520	Fansteel	Chicago, Ill.
30684	Industrial Product Co.	Philadelphia, Pa.
53021	Sangamo	Springfield, Ill.
55026	Simpson Electric	Chicago, MI.

TABLE 7-3. LIST OF MANUFACTURERS (Cont)

$\begin{gathered} \text { MFR } \\ \text { CODE } \end{gathered}$	NAME	ADDRESS
56289	Sprague Electric Company	North Adams, Mass.
70563	Amperite Co.	Union City, N.J.
71450	C.T.S. Corp.	Elkhart, Ind.
71590	Centralab Div. of Globe-Union	Milwaukee, Wis.
71785	Cinch Mfg. Co. and Howard B. Jones Div,	Chicago, Ill.
72136	Electro Motive Mfg. Co.	Willimantic, Conn.
72982	Erie Technological Products	Erie, Pa.
73168	Fenwal	Ashland, Mass.
73386	Freed Transformer Co.	Brooklyn, N. Y.
74868	Amphenol Corp., Amphenol R.F. Div.	Danbury, Conn.
74970	E. F. Johnson	Waseca, Minn.
75378	CTS Knights Inc.	Sandwich, Ill.
75915	Littelfuse, Inc.	Des Planes, Ill.
76854	Oak Mfg. Co.	Crystal Lake, Ill .
80063	Signal Corps Eng.	Fort Monmouth, N.J.
81348	Federal Specification Promulgated by General Service Administration	
81349	Military Specifications Promulgated by Standardization Div. Directorate of Logistics Services DSA	
82104	Grigsby Allison Co., Inc.	Arlington Heights, Ill .
82142	Jeffers Electronics	DuBois, Pa.
82424	Knudsen	Chicago, 11.
88044	Aeronautical Standard Group Dept of Navy and Air Force	
88063	Communication Accessories	Summit, Mo.
89462	Waldes Kohinoor Inc.	Cambridge, Mass.
90526	Clippard Inst. Lab Company	Cincinnati, Ohio
91146	ITT Cannon Electric Inc., Salem Div.	Salem, Mass.
92054	Radio Cores Inc.	Lawn, Ill.
95265	National Coil	Sheridan, Wyo.
96906	Military Standards Promulgated by Standardization Div. Directorate of Logistics Services DSA	
98291	Sealectro Corp.	Mamaroneck, N.Y.
98738	Stewart-Warner Electronics	Chicago, Ill.

CHAPTER 8

INSTALLATION

8.1 UNPACKING

8.1.1 Packaging Data. When packed for shipment, the components of the receiver are placed in a water-vaporproof container and packed in a wooden box. An exploded view of the wooden box and its contents is shown in figure 8-1. The dimensions of the box are approximately $24-1 / 4$ inches high, $20-1 / 2$ inches wide, and $14-3 / 4$ inches deep. The packed box weighs approximately 100 pounds, with a volume of 3.9 cubic feet.
8.1.2 Removing Contents. Select a location where the equipment may be unpacked without exposure to the weather, and which is convenient to the place of installation.

CAUTION
Be careful when uncrating, unpacking, and handling the equipment, because it is easily damaged.

1. Place the packing case conveniently near the installation location.
2. Cut and fold back the metal straps.
3. Remove the nails with a nailpuller.
4. Remove the top and one side of the wooden box.
5. Remove the desiccant bags, the cardboard tray, and the plywood board.
6. Take out the outer cardboard carton that contains the receiver.
7. Open the carton and withdraw the inner carton that is enclosed in the moisture-vaporproof barrier.
8. Slit open the seams of the moisture-vaporproof barrier and open the inner cardboard carton.
9. Remove any spacers or padding from the inner cardboard carton.
10. Withdraw the receiver from the inner carton and place it on a workbench near its final location.
11. Remove the technical manuals and the running spares.

8.2 SITE INFORMATION

8.2.1 The receiver is designed for mounting in a standard 19 -inch rack or cabinet. Refer to figure 8-2 for outline and mounting dimensions. The site location should be sufficiently weathertight to protect the equipment. Allow enough room for free air circulation and so that the receiver can be removed from the front of the cabinet.

Figure 8-1. Packaging

Original

ITEM NUMBER	quantity GF \quad CF	NOMENCLATURE	PART TYPE OR MODEL NUMBER	MANUFACTURE OR FED SUPPLY COOE	REMARKS
1	1	RADIO RECEIVER	R-390A/URR	F5820-538-7555	
2	14	$\begin{aligned} & \text { 8OLT,MACH 5/16 } \\ & -18 \times 1-1 / 2^{11} \text { HEX HD } \end{aligned}$		65308-227-0670	(SEE NOTE 2)
3	4	$\begin{aligned} & \text { NUT }{ }_{\prime}^{\prime} \text { HEX, } \\ & 5 / 16^{\prime \prime}-18 \end{aligned}$		65310-271-4612	${ }^{\prime \prime}$
4	8	$\begin{aligned} & \text { WASHER, FLAT } \\ & 5 / 16^{11} \end{aligned}$	-	65310-276-2716	"
5	4	$\begin{aligned} & \text { WASHER, SPLIT } \\ & 5 / 16^{\prime \prime} \end{aligned}$		65310-261-7415	"
6	14	$\begin{aligned} & \text { STRAP, } \\ & \text { COPPER } 1 / 16^{\prime \prime} \times 1^{\prime \prime} \end{aligned}$			"
7	8	$\begin{aligned} & \text { SCREW \# } 10- \\ & 32 \times 5 / 16^{\prime \prime} \text { BHMS } \end{aligned}$			FOR RACK MTG.
8	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	COAXIAL PLUGS AND CONNECTORS			(SEE NOTE I)

NOTES:
I. ALL COAXIAL PLUGS AND CABLES FURNISHED BY INSTALLATION ACTIVITY. REFER TO FIGURE 8-3 FOR PLUG AND CABLE TYPES.
2. ITEMS 2 THROUGH 8 TO BE FURNISHED BY INSTALLATION ACTIVITY.

Figure 8-2. Outline and Dimensions

8.3 MATERIAL REQUIRED FOR INSTALLATION

1. Hand Tools - as required
2. Antenna patch cable
3. $600-\mathrm{ohm}$ speaker and connecting cable
4. Balanced 600 -ohm audio line to auxiliary equipment - as desired.
5. Coaxial Cable, RG-58C/U - if receiver is to be connected to converter.
6. \#10-32 $\times 5 / 8$ inch screws (8 each) - if receiver is rack mounted or installed in $C Y-4516 \mathrm{~A} / \mathrm{S}$ cabinet.

8.4 INPUT REQUIREMENTS

CAUTION

The power transformer can be damaged if 230 volts is applied to it when it is connected to operate on 115 volts.
8.4.1 The receiver will operate from either 115 or 230 volts ac, $50 / 60 \mathrm{~Hz}$. To check to see that the TB801 is connected for the correct ac voltage, connect the receiver to a 115 -volt ac line, turn the receiver on, and proceed as follows:

1. If the pilot lamps light at full brilliance, the receiver is connected for 115 -volt operation.
2. If the pilot lamps light at half brilliance, the receiver is connected for 230 -volt operation.
3. If the pilot lamps light at full brilliance and the receiver is to be used on 230 volts, disconnect the receiver and remove the power supply subchassis from it (paragraph 6.3.13.1). Connect T801 for 230 -volt ope ration (figure $8-3$).

WARNING

The voltages used in this receiver are high enough to endanger human life. To prevent shock hazard to personnel touching outside metal parts of the receiver, connect GND terminal 16 on the rear panel to the same ground as that of the power source. Do not depend on the front panel screws or the antenna transmission line to ground the chassis.

8.5 INSTALLATION PROCEDURES

8.5.1 The receiver is shipped as a complete unit. No assembly of units is required.
8.5.2 The receiver may be installed by one man, requiring approximately two hours to complete the installation. Slide the receiver into the rack or cabinet previously designated. Insert the eight $\# 10-32 \times 5 / 8$ inch screws into cabinet or rack holes matching the cutouts on receiver face plate.

Figure 8-3. Connections for 115 -Volt or 230 -Volt Operation
8.5.3 Fabricate coaxial fitting to ends of cables using Electronics Information and Maintenance Book, Installation Standards, NAVSHIPS 0967-000-0110, Section 3 as reference. After completion of cable connection fabrication, measure from shield to center conductor with a multimeter set on $\mathrm{R} \times 1000$ scale. Reading obtained should be infinity. Any reading less than 500 K ohms should be investigated for improper fabrication of coaxial fitting.
8.5.4 Connecting Procedure. Each receiver is shipped with jumpers on Terminal Boards 102 and 103 connected between terminals 1 and 2,3 and 4,11 and 12 , and 14 and 15. These four jumpers are required for normal operation.
8.5.4.1 For connecting 50 to 200 -ohm balanced antennas, such as a balanced doublet to the BALANCED ANTENNA connector, use Radio Frequency Cable RG-22 with Connector Plug UG-421/U, or use Radio Frequency Cable RG-86/U with Connector Plug 969/U.
8.5.4.2 For adapting unbalanced coaxial leadin to the BALANCED ANTENNA connector, use Adapter Connector UG-971/U with leadin terminated in Connector Plug $573 / \mathrm{U}$ whenever possible; if these are not available, use Adapter Connector UG-970/U with leadin terminated in Connector Plug PL-259.
8.5.4.3 For connecting a whip antenna or a random length single-wire antenna to the UNBALANCED ANTENNA connector, use Connector Plug UG-943B/U. Make the antenna leadin (figure 8-4) as short as possible.
8.5.4.4 Perform step 1,2 , or 3 below, depending on the type of listening device used.

1. Plug the headset into the PHONES jack.
2. Connect the headset terminals to PHNS terminal 8 and terminal 7 (ground) on TB 102.
3. Connect the loudspeaker terminals to LOCAL AUDIO terminals 6 and 7 on TB 102.
8.5.4.5 For balanced line operation, connect the balanced line to LINE AUDIO terminals 10 and 13 on TB 103 . If a balancing bridge is to be used for long-distance applications, perform steps 1 and 2 below.

Figure 8-4. Interconnecting Cabling

1. Remove the jumper from terminals 11 and 12 on TB 103.
2. Connect the balancing bridge between terminals 11 and 12 on TB 103.
8.5.4.6 If a transmitter is being used with the receiver for break-in operation, connect the control lines from the transmitter to BRK IN terminal 9 and GND terminal 16 on TB 103.
8.5.4.7 For external gain control, remove the jumper from RF GAIN terminals 1 and 2 on TB 102 and connect an external 5,000-ohm potentiometer to RF GAIN terminal 1 and terminal 7 (ground).
8.5.4.8 To use an external diode load, remove the jumper from DIODE LOAD terminals 12 and 15 on TB 103 and connect the lines from the external diode load to terminals 14 and 15.
8.5.4.9 For external automatic gain control (AGC), remove the jumper from AGG NOR terminals 3 and 4 on TB 102 and connect the negative terminal of the external AGC source to terminal 4, and the positive terpainal of the AGC source to terminal 7 (ground).
8.5.4.10 For frequency-shift converters that require an intermediate frequency (IF) output in ateletypewriter system, connect the coaxial transmission cable terminated in Radio Frequency Plug UG-88 to IF OUTPUT jack.
8.5.5 Lubrication Procedure. The only parts of the receiver that require lubrication are the mechanical tuning system, which includes the radio-frequency(RF) gear train assembly and cam racks, and the BFO PITCH control shaft bearing. The receiver is lubricated at the factory and should be lubricated every 6 months thereafter. If inspection indicates the need for more frequent lubrication, shorten the interval accordingly. Overlubrication may cause trouble and should be avoided.
8.5.5.1 Lubrication Inspection. Check the condition of the mechanical tuning system every time the receiver is withdrawn from its cabinet or case. Proceed as follows:
3. Turn the MEGACYCLE CHANGE and the KILOCYCLE CHANGE controls throughout their ranges; observe the operation of all gears, cams, shafts, bearings, and guide slots.
4. Look for grit, sand, and dust in the moving parts.
5. Check the operation of the BFO PITCH control. If it does not operate freely, check the lubrication of the control shaft bearing.

CAUTION

Do not attempt to lubricate the sealed tuning unit of the variable frequency oscillator (VFO) subchassis; unstable operation may result.
4. Use a suitable brush dipped in cleaning compound to remove any dirt, grit, sand, grease, and oil from the gears, cams, guide slots, shafts, and bearings.
5. Rotate the MEGACYCLE CHANGE and the KILOCYCLE CHANGE controls so that all parts of the mechanical tuning system can be reached.
6. Thoroughly dry all parts with a clean lint-free cloth before lubs ing.

CAUTION

Remove excess cleaning compound from the brush so that none is dropped on wires and cables.
8.5.5.2 Detailed Lubrication Instructions. Lubricate the gears, cams, bearings, slug racks, and guide slots.

CAUTION

Do not attempt to lubricate the sealed tuning unit of the variable frequency oscillator (VFO) subchassis; unstable operation may result.

1. Dip a short length of bare wire into lubricating oil, MIL-L-7870 and touch the end of the wire to the bearing. One or two drops of oil per bearing is sufficient.
2. Put a small amount of grease, MIL-G-7421 on the gear teeth, the cam edges, and the guide slots.
3. Turn the MEGACYCLE CHANGE and KILOCYCLE CHANGE controls during lubrication to spread the lubricant to all gear teeth and wearing surfaces.
8.6 INSTALLATION CHECKOUT
8.6.1 When it has been determined that the receiver is connected to the correct power source (paragraph 8.4.1) and that all external connections have been made correctly (figure 8-3), refer to paragraph 2.4 for initial turn-on and installation verification.
8.6.2 Conduct Scheduled Maintenance Procedures given in paragraph 4.3 through 4.3.3 in order to insure the receiver is operating at peak performance.

[^0]: Original

[^1]: Figure 6-32. Radio Receiver R-390A/URR, Front Panel and Interior of Main Frame

