CHANGE NOTICE

CHANGE NO. 2
1 MAY 1971
TO
NAVSHIPS 0967-292-9030
TECHNICAL MANUAL
FOR
MD-777/FRT
MODULATOR-SYNTHESIZER

The Technical Manual for Modulator-Synthesizer MD-777/FRT is changed as follows:

NEW PAGE		OLD PAGE	
TP/ii	Ch. 1/Ch. 1	TP/ii	Orig/Orig
ii.1/Blank	Ch. 2/Blank	Added	
vii/viii	Ch. 2/Ch. 2	vii/viii	Orig/Orig
$3-9 / 3-10$	Orig/Ch.2	$3-9 / 3-10$	Orig/Orig
$4-17 / 4-18$	Orig/Ch.2	$4-17 / 4-18$	Orig/Orig
$4-21 / 4-22$	Orig/Ch.2	$4-21 / 4-22$	Orig/Orig
$4-33 / 4-34$	Ch.2/Orig	$4-33 / 4-34$	Orig/Orig
$4-39 / 4-40$	Orig/Ch.2	$4-39 / 4-40$	Orig/Orig
$4-91 / 4-92$	Orig/Ch.2	$4-91 / 4-92$	Orig/Orig
$4-115 / 4-116$	Orig/Ch.2	$4-115 / 4-116$	Orig/Orig
$4-123 / 4-124$	Orig/Ch.2	$4-123 / 4-124$	Orig/Orig
$4-125 / 4-126$	Ch.2/Ch.2	$4-125 / 4-126$	Orig/Orig
$4-127 / 4-128$	Ch. 2/Ch.2	$4-127 / 4-128$	Orig/Orig
$4-129 / 4-130$	Ch. 2/Orig	$4-129 / 4-130$	Orig/Orig
$4-137 / 4-138$	Ch. 2/Blank	$4-137 / 4-138$	Orig/Blank

NEW PAGE		OLD PAGE	
4-157/4-158	Ch. 2/Blank	4-157/4-158	Orig/Blank
5-3/5-4	Ch. 2/Orig	5-3/5-4	Orig/Orig
5-23/5-24	Ch. 2/Orig	5-23/5-24	Orig/Orig
5-53/5-54	Orig/Ch. 2	5-53/5-54	Orig/Orig
5-54.1/5-54.2	Ch. 2/Ch. 2	Added	
5-55/5-56	Ch. $2 / \mathrm{Ch} .2$	5-55/5-56	Orig/Orig
5-67/5-68	Ch. 2/Blank	5-67/5-68	Orig/Blank
5-69/5-70	Ch. 2/Blank	5-69/5-70	Orig/Blank
5-77/5-78	Ch. 2/Blank	5-77/5-78	Orig/Blank
5-85/5-86	Ch. 2/Blank	5-85/5-86	Orig/Blank
5-87/5-88	Ch. 2/Blank	5-87/5-88	Orig/Blank
5-89/5-90	Ch. 2/Blank	5-89/5-90	Orig/Blank
5-95/5-96	Ch. 2/Blank	5-95/5-96	Orig/Blank
5-105/5-106	Ch. 2/Blank	5-105/5-106	Orig/Blank
5-107/5-108	Ch. 2/Blank	5-107/5-108	Orig/Blank
5-109/5-110	Ch. 2/Blank	5-109/5-110	Orig/Blank
5-127/5-128	Ch. 2/Blank	5-127/5-128	Orig/Blank
5-129/5-130	Ch. 2/Blank	5-129/5-130	Orig/Blank
5-131/5-132	Ch. 2/Blank	5-131/5-132	Orig/Blank
5-133/5-134	Ch. 2/Blank	5-133/5-134	Orig/Blank
5-135/5-136	Ch. 2/Blank	5-135/5-136	Ch. 1/Blank
6-3/6-4	Orig/Ch. 2	6-3/6-4	Orig/Orig
6-5/6-6	Ch. 2/Orig	6-5/6-6	Orig/Orig
6-9/6-10	Ch. 2/Ch. 2	6-9/6-10	Orig/Orig
6-13/6-14	Orig/Ch. 2	6-13/6-14	Orig/Orig
6-15/6-16	Ch. 2/Orig	6-15/6-16	Orig/Orig
6-19/6-20	Ch. $2 / \mathrm{Ch} .2$	6-19/6-20	Orig/Orig
6-23/6-24	Orig/Ch. 2	6-23/6-24	Orig/Orig
6-25/6-26	Ch. 2/Orig	6-25/6-26	Orig/Orig
$6-31 / 6-32$	Ch. 2/Ch. 2	6-31/6-32	Orig/Orig
$6-33 / 6-34$	Orig/Ch. 2	6-33/6-34	Orig/Orig
6-35/6-36	Ch. $2 / \mathrm{Ch} .2$	6-35/6-36	Orig/Orig
6-37/6-38	Ch. 2/Orig	6-37/6-38	Orig/Orig
6-45/6-46	Ch. 2/orig	6-45/6-46	Orig/Orig
6-49/6-50	Ch. 2/Orig	6-49/6-50	Orig/Orig
6-51/6-52	Ch. 2/Orig	6-51/6-52	Orig/Orig
6-61/6-62	Ch. 2/Orig	6-61/6-62	Orig/Orig
6-63/6-64	Ch. 2/Orig	6-63/6-64	Orig/Orig
6-69/6-70	Ch. $2 /$ Orig	6-69/6-70	Orig/Orig

NEW PAGE		OLD PAGE	
6-83/6-84	Orig/Ch. 2	6-83/6-84	Orig/Orig
6-87/6-88	Orig/Ch. 2	6-87/6-88	Orig/Orig
6-88.1	Ch. 2/Blank	Added.	
6-89/6-90	Ch. 2/Orig	6-89/6-90	Orig/Orig
6-91/6-92	Orig/Ch. 2	6-91/6-92	Orig/Orig
6-95/6-96	Ch. 2/Orig	6-95/6-96	Orig/Orig
6-99/6-100	Orig/Ch. 2	6-99/6-100	Orig/Ch. 1
6-101/6-102	Ch. 2/Orig	6-101/6-102	Orig/Orig
6-102.1/6-102.2	Ch. 2/Ch. 2	Added	
6-103/6-104	Ch. $2 / \mathrm{Ch} .2$	6-103/6-104	Orig/Orig
6-105/6-106	Ch. $2 / \mathrm{Ch} .2$	6-105/6-106	Orig/Orig
6-107/6-108	Ch. 2/Orig	6-107/6-108	Orig/Orig
6-109/6-110	Ch. 2/Ch. 2	6-109/6-1.10	Orig/Orig
6-111/6-112	Ch. $2 / \mathrm{Ch} .2$	Added	

1. This change revises the Technical Manual to reflect the as-built Production Equipment.
2. The old pages should be removed and discarded and the new pages inserted.
3. This Change Notice should be filed just after the title page.

0

VOLUME 3
 TECHNICAL MANUAL for

MODULATOR-SYNTHESIZER MD-777/FRT

Used with:
AN/FRT-83(V) 1 KW HF ISB TRANSMITTER
AN/FRT-84(V) 10 KW HF ISB TRANSMITTER AN/FRT-85(V) 40 KW HF ISB TRANSMITTER
AN/FRT-86(V) 200 KW HF ISB TRANSMITTER

DEPARTMENT OF THE NAVY NAVAL ELECTRONIC SYSTEMS COMMAND

Publication: 15 October 1969
CHANGE 1: 1 DECEMBER 1970 CHANGE 2: 1 MAY 1971

LIST OF EFFECTIVE PAGES

PAGE NUMBERS	CHANGE IN EFFECT	$\begin{array}{r} \text { PAGE } \\ \text { NUMBERS } \end{array}$	CHANGE IN EFFECT
Title Page	Change 2	5-71 to 5-76	Original
ii	Change 2	5-77 / 5-78	Change 2
iii to vi	Original	5-79 to 5-84	Original
viij to viii	Change 2	5-85 to 5-90	Change 2
ix	Original	5-91 to 5-94	Original
x Blank	Original	5-95 / 5-96	Change 2
xi	Original	5-97 to 5-104	Original
1-0 to 1-6	Original	5-105 to 5-110	Change 2
$2-1$ to 2-11	Original	5-111 to 5-126	Original
3-1 to 3-9	Original	5-127 to 5-136	Change 2
3-10	Change 2	5-137 / 5-138	Original
3-11 to 3-13	Original	6-1 to 6-3	Original
$4-1$ to 4-17	Original	6-4 to 6-5	Change 2
4-18	Change 2	6-6 to 6-8	Original
4-19 to 4-21	Original	6-9 to 6-10	Change 2
4-22	Change 2	6-11 to 6-13	Original
4-23 to 4-32	Original	6-14 to 6-15	Change 2
4-33	Change 2	6-16 to 6-18	Original
4-34 to 4-39	Original	6-19 to 6-20	Change 2
4-40	Change 2	6-21 to 6-23	Original
4-40A	Change 1	6-24 to 6-25	Change 2
4-41 to 4-91	Original	6-26 to 6-30	Original
4-92	Change 2	6-31 to 6-32	Change 2
4-93 to 4-115	Original	6-33 to	Original
4-116	Change 2	6-34 to 6-37	Change 2
4-117 to 4-123	Original	6-38 to 6-44	Original
4-124 to 4-129	Change 2	6-45	Change 2
4-130 to 4-136	Original	6-46 to 6-48	Original
4-137 to 4-138	Change 2	6-49	Change 2
4-139 to 4-156	Original	6-50	Original
4-157 / 4-158	Change 2	6-51	Change 2
5-1 to 5-2	Original	6-52 to 6-60	Original
5-3	Change 2	6-61	Change 2
5-4 to 5-22	Original	6-62	Original
5-23	Change 2	6-63	Change 2
5-24 to 5-53	Original	6-64 to 6-68	Original
5-54 to 5-56	Change 2	6-69	Change 2
5-57 to 5-66	Original	6-70 to 6-83	Original
5-67 to 5-70	Change 2	6-84	Change 2

LIST OF EFFECTIVE PAGES

PAGE NUMBERS	CHANGE IN EFFECTI	PAGE NUMBERS	CHANGE IN EFFECT
6-85 to 6-87	Original	6-96 to 6-99	Original
6-88 to 6-89	Change 2	6-100 to 6-101	Change 2
6-90 to 6-91	Original	6-102	Original
6-92	Change 2	6-102.1 to 6-107	Change 2
6-93 to 6-94	Original	6-108	Original
6-95	Change 2	6-109 to 6-112	Change 2

CRF, INC., DALLAS, TEXAS CONTRACT N00600-67-C-0589

Ecrors found in this publication (other than obvious typographical errors) which have not been corrected by means of Temporary Corrections or Permanent Changes should be reported. Such report should include the complete title of the publication and the publication number (short title); identify the page and line or figure and location of the error; and be forwarded to the Technical Publications Branch, Headquarters, Naval Electronic Systems Command (Code 0453) Washington, D.C. 20360.

All Navy requests for NAVSHIPS electronics publications listed in the current issue of NAVSANDA Publication 2002 "NAVY STOCK LIST OF FORMS AND PUBLICATIONS" Cognizance Symbol I, or in a subsequent issue of the Electronics Information Bulletin should be directed to the appropriate Forms and Publications Supply Point.

0

LIST OF ILLUSTRATIONS (Cont)

Figure		Page
	SECTION 5 - MAINTENANCE (Cont)	
5-15.	113.75 Mc Generator A8A1, Part of $1.75 / 113.75 \mathrm{Mc}$ Frequency Generator A8, Parts Location	5-32
5-16.	1.75 Mc Generator A8A2, Part of $1.75 / 113.75 \mathrm{Mc}$ Frequency Generator A8, Parts Location . . .	5-33
5-17.	Side Carrier Generator Assembly, A9	5-33
5-18.	$1 \mathrm{Mc}-6.29 \mathrm{Kc}$ Divider A9Al, Part of Side-Carrier Generator A9, Parts Location .	5-34
5-19.	Side-Carrier Oscillator A9A2, Part of Side-Carrier Generator A9, Parts Location .	5-35
5-20.	Transmitter Control No. 1 Al0, Parts Location	5-36
5-21.	Up-Converter Assembly, All, Parts Location	5-37
5-22.	113.75 Mc Amplifier AllA1, AllA2, Part of UpConverter All, Parts Location	5-37
5-23.	Mixer, Up-Converter AllA2Al.	5-38
5-24.	Carrier Insertion Amplifier AllA3, Part of UpConverter All, Parts Location	5-38
5-25.	Synthesizer Assembly, Al2	5-39
5-26.	Card RF No. 1(A), Al, Part of Synthesizer Al2, Parts Location	5-40
5-27.	Card RF No. 1(B), A4, Part of Synthesizer Al2, Parts Location	5-41
5-28.	Card RF No. 2, A5, Part of Synthesizer Al2, Parts Location	5-42
5-29.	Card RF No. 3, A2, Part of Synthesizer A12, Parts Location	5-43
5-30.	Card Figital No. 1, A7, Part of Synthesizer Al2, Parts Location	5-44
5-31.	Digital No. 1A, Al2A7Al	5-44
5-32.	Digital No. 1B, Al2A7A2	5-44
5-33.	Card Digital No. 2, A3, Part of Synthesizer Al2, Parts Location	5-45
5-34.	Card Digital No. 3, A6, Part of Synthesizer Al2, Parts Location	5-45
5-35.	Down-Converter Al3, Parts Location	5-46
5-36.	Al3A2 Down-Converter 112 MHz IF Amplifier	5-46
5-37.	A13A3 82-110 MHz Amplifier. .	5-47
5-38.	Al3A3Al 82-110 MHz Amplifier Subassembly	5-47
5-39.	Transmitter Gain Control Al4, Parts Location	5-48
5-40.	Al4Al TGC No. 1	5-48
5-41.	Al4A2 TGC No. 2	5-49
5-42.	Band Encoder A15, Parts Location	5-49
5-43.	Al5Al -12 and +15 Volt Regulator	5-50
5-44.	A15A2 Band Encoder Board No. 1	5-50
5-45.	Output Amplifier Al6, Parts Location	5-51
5-46.	Al6Al Output Amplifier No. 1	5-52
5-47.	A16A2 Output Amplifier No. 2	5-52
5-48.	Transmitter Control No. 2, Al7, Parts Location	5-53
5-49.	Power Supply Module PS1	5-54
5-50.	+125 Volt Regulator, A2A3, Part of Power Supply PSl, Parts Location	5-54
5-51.	- 18 Volt Regulator Al, Part of Power Supply PS1, Parts Location	5-55
5-52.	+5 and +18 Volt Regulator A2 A1, Part of Power Supply PSI, Parts Location .	5-55

Figure

SECTION 5 - MAINTENANCE (Cont)

$$
5-53
$$

5-54
5-55
5-55
5-55
5-55
5-56
5-57
5-58
5-59
5-60
5-61
$5-62$
5-63
5-63
5-64
5-65
5-66
5-66
5-67
5-68
5-68
5-69
5-70
5-71
5-72
5-73
5-74
5-75
5-76
5-77
5-78
5-79
5-80
5-81
5-82
5-83
5-84
5-85

+15 and +24 Volt Regulator A2A2, Part of Power Supply PSl,
Parts Location

5-56

PSl A3 Switching Regulator 5-56
Modulator - Synthesizer Assembly, A18 (Sheet l of 4) . . . 5-57
Modulator - Synthesizer Assembly, Al 8 (Sheet 2 of 4) . . . 5-58
Modulator - Synthesizer Assembly, A18 (Sheet 3 of 4) . . . 5-59
Modulator - Synthesizer Assembly, Al 8 (Sheet 4 of 4) . . . 5-60
VU Meter Amplifier Al, Part of Panel and Chassis Assembly A18, Parts Location. 5-61
Fault Board A2, Part of Panel and Chassis Assembly A18, Parts Location
Frequency Selector Board A3, Part of Panel and Chassis Assembly Al 8, Parts Location.
Transmitter Control Board A4, Part of Panel and Chassis Assembly Al8, Parts Location.
Motor Control Board A5, Part of Panel and Chassis Assembly Al8, Parts Location.
Power Distribution Board A6, Part of Panel and Chassis Assembly Al8, Parts Location.
Modulator - Synthesizer MD-777/FRT, AC Power Distribution, Schematic Diagram
Power Supply PSl, Schematic Diagram (Sheet l of 2) ... 5-67/5-68
Power Supply PSI, Schematic Diagram (Sheet 2 of 2) . . . 5-69/5-70
Modulator A1, A2, A3, A4, Schematic Diagram. 5-71/5-72
Voice Frequency Gate A5, Schernatic Diagram 5-73/5-74
Auxiliary Frequency Generator A7, Schematic Diagram (Sheet 1 of 2)
Auxiliary Frequency Generator A ${ }^{\circ}$, Schematic Diagram (Sheet 2 of 2)

Side-Carrier Generator A9, Schematic Diagram (Sheet 1 of 2)
Side-Carrier Generator A9, Schematic Diagram (Sheet 2 of 2)
Transmitter Control No. 1 Alı, Schematic Diagram. . . . $5-85 / 5-86$
Up-Converter All, Schematic Diagram 5-87/5-88
Synthesizer Al2, Interconnection Diagram......... 5-89/5-90
Card RF No. 1 (A), p/oA12, Schematic Diagram. . . . 5-91/5-92
Card RF No. 1 (B), p/o Al2, Schematic Diagram. . . . 5-93/5-94
Card RF No. 2, p/o A12, Schematic Diagram. 5-95/5-96
Card RF No. 3, p/o Al2, Schematic Diagram. 5-97/5-98
Card Digital No. 1, p/o Al2, Schematic Diagram 5-99/5-100
Card Digital No. 2, p/o A12, Schematic Diagram 5-101/5-102
Card Digital No. 3, p/o A12, Schematic Diagram 5-103/5-104
Down-Converter A13, Schematic Diagram 5-105/5-106
Transmitter Gain Control Al4, Schematic Diagram . . . 5-107/5-108
Band Encoder Al5, Schematic Diagram 5-109/5-110
Output Amplifier A16, Schematic Diagram. 5-111/5-112
Transmitter Control No. 2, A17, Schematic Diagram . . . 5-113/5-114
VU Meter Amplifier Al, Part of Panel and Chassis Assembly Al8, Schematic Diagram 5-115/5-116
Fault Board A2, Part of Panel and Chassis Assembly

5-62
5-63
5-63
5-64
5-64
5-65/5-66

5-75/5-76
5-77/5-78

5-81/5-82
5-83/5-84 A18, Schematic Diagram 5-117/5-118
(e) READY. - The READY indicator (green lamp) lights following completion of the transmitter system tuning cycle. This action informs the operator that the system is tuned to the frequency established by the setting of the FREQUENCY KC tuning dials.
(3) INPUT LEVEL AND CIRCUIT TEST METERS. - Two front panel meters allow monitoring the signal levels at the four audio input channels and checking exciter operation at selected circuit test points. Each meter circuit has a switch for selecting the function to be monitored.
(a) INPUT LEVEL. - The INPUT LEVEL monitoring circuit contains the panel VU meter and an audio channel selection switch. When the switch is in the OFF position, the meter is disconnected from the input circuits. In the other switch positions, audio levels are monitored at sideband channels B2, B1, Al, and A2, respectively.
(b) CIRCUIT TEST. - The CIRCUIT TEST panel section contains a test meter and selector switch for checking exciter operation at major circuit points. These tests include measurement of various dc power supply voltages and rf injection frequencies, and a check on the operation of control circuits such as the automatic level control (ALC), average and peak power control (APC and PPC), and the transmitter gain control circuit (TGC). A relative measurement is made of the exciter rf power output level. In addition, the panel meter is used as a "null" indicator for calibration of the internal 1 mc frequency standard with the external standard.

To indicate acceptable meter readings for most measurements, a central section of the meter scale is colored green. Those switch positions using this colored section are identified with a green band on the panel. Unmarked switch positions represent measurements which provide acceptable readings outside of the green scale section. Table 3-4 lists the selector switch positions, identifies the particular exciter circuit to be checked, and gives the required meter reading for acceptance.
e. NONOPERATING CONTROLS. - The following controls are not located on the exciter front panel but are accessible on the auxiliary panel, following withdrawal of the exciter drawer from its enclosure. They are intended for use by technicians for adjusting and calibrating the unit and should be adjusted by a qualified technician only. Figure 3-1 shows control locations.
(1) TEST A/B. - A three-position toggle switch used during initial performance tests to override system control circuits and place the exciter in operation independent of the remaining system units.
(2) PWR CONTROL. - A potentiometer adjustment for setting the level of maximum rf power output.
(3) NORMAL/FAULT OVRD. - A toggle switch for overriding the "fault" indicator circuits to determine location of malfunction.
(4) METER ADJ. - A potentiometer adjustment for calibrating the INPUT LEVEL $V U$ meter $0-\mathrm{dbm}$ reading.
(5) FREQ STD. - A potentiometer adjustment for calibrating the 1 mc internal frequency standard. Equipped with a ten-turn dial for logging adjustments made.
(6) INPUT LEVEL -dbm. - Four controls for adjusting audio input levels at the B 2 , $\mathrm{B} 1, \mathrm{~A} 1$, and A 2 channels. Dial scales are calibrated from -30 to +10 db . When used with the INPUT LEVEL VU meter reading, the algebraic sum of the control and meter readings equals the audio channel level.
(7) ON/OFF MOD. - Toggle switch to remove modulation from the exciter rf output for test purposes.

TABLE 3-4. CIRCUIT TEST MEASUREMENTS

$\begin{aligned} & \text { SWITCH } \\ & \text { POSITION } \end{aligned}$	CIRCUIT TESTED	METER READING REQUIRED
POWER SUPPLY		
$+5 \mathrm{~V}$	+5 volt de power supply	Within red scale section
+15 V	+15 volt dc power supply	Within red scale section
$+24 \mathrm{~V}$	+24 volt de power supply	Within red scale section
-12V	-12 volt de power supply	Within red scale section
$+125 \mathrm{~V}$	+125 volt de power supply	Within red scale section
RF LEVELS		
1.74371 MC	Sidetone, channel A2	Within green scale section
1.75 MC	Sidetone, channels Al, Bl	Within green scale section
1.75629 MC	Sidetone, channel B2	Within green scale section
113.75 MC	Up-converter input	Within green scale section
82-110 MC	Down-converter injection	Within green scale section
POWER OUTPUT	Exciter rf output	Depends on set level
CONTROL		
PPC/APC	Peak/average power control	Depends on system operation
TGC	Transmitter gain control	Depends on operation
A2-ALC	Level control, channel A.	Depends on operation
A1-ALC	Level control, channel Al	Depends on operation
B1-ALC	Level control, channel Bl	Depends on operation
B2-ALC	Level control, channel B2	Depends on operation
"NULL" METER		
FREQ STD LOCK	Calibration, 1 mc standard with external standard	(One beat in 30 seconds is a frequency correlation of 0.3 cps)

waves to drive the base of amplifier $Q 6$. The 1 mc output from $Q 6$ is applied to side carrier generator module A9 and $1.75 / 113.75 \mathrm{mc}$ generator module A8.

If the 1 mc internal standard signal level drops 3 db or more, because of a circuit malfunction, Q2 becomes cut-off and in turn cuts off Q5. This action places a high at gate input Z2-12, driving output Z2-11 low. This low at gate input Z2-10 (and also at gate inputs Z2-2 and Z1-12) opens the 1 mc internal standard circuit to the base of amplifier Q6, effectively disconnecting the internal standard.

The 1 mc external standard signal at the base of buffer Q3 appears at gate input Zl-4, via bias diode CR2. The negative signal alternation the gate input produces a 1 mc square wave (high) at output Z1-6, driving input Z2-5 high. Since gate input Z2-4 is already high (when the internal standard level dropped, it placed a low at gate input $\mathrm{Z} 2-2$ to drive output Z2-3 high), the 1 mc output from gate $\mathrm{Z} 2-6$ now drives the base of amplifier Q6. In this manner, a 1 mc standard frequency is maintained at the output of $Q 6$ from either the internal or external frequency standard, to assure a continuation of exciter operation in the event of circuit failure in the internal standard.

When the 1 mc internal standard signal level returns to normal, Q2 and Q5 again become saturated, driving gate outputs $\mathrm{ZZ}-8$ and $\mathrm{Z} 2-11$ high as before. The internal standard replaces the external standard and the automatic switching cycle is completed. Although a 3 db drop in level is necessary to substitute the internal standard signal with that from the external standard, a resubstitution will not occur until the internal standard level rises to within 1.5 db of normal level. This switching cycle overlap assures reliable circuit operation and immunity from the affects of circuit noise. Resistor Rll at gate input Z $2-10$ provides the overlap. Prior to initiation of a switching cycle, Q2 and Q5 are saturated and gate output Z2-11 is high. The gate output voltage, via resistor R11, is superimposed on the base bias voltage of differential amplifier $Q 4$ to set the initial 3 db "trip" point. When switching has been accomplished and the external standard is in use, Q2 and Q5 are cut-off and gate output $\mathrm{Z} 2-11$ is low. Consequently, the trip point is determined by the adjustment of control R10 only, and the internal standard is resubstituted when its output level is 1.5 db below normal rather than at the 3 db "drop-out" level.

Although not intended for use in this equipment, provisions have been incorporated in the standard selector circuit for manual rather than automatic selection of the frequency standard in use. If terminal 16 at resistor $R 2$ is grounded, thus grounding gate input Z2-13, gate output Z2-11 will go high and select the internal standard. If terminal 4 at resistor Rl is grounded, thus grounding gate input Z1-12, gate output Z2-11 will also be grounded (a low) and select the external standard.
(b) FAILURE ALARM CIRCUIT. - When frequency standard switching is initiated, following a drop of 3 db in the internal standard output level, gate output Z2-11 goes low and effectively grounds gate input Z1-12. Gate output Zl-11 goes high to drive buffer amplifier Q7 and operate the failure alarm circuit at the output of Q7. This action lights the STD FAIL indicating lamp on the exciter front panel, and also other STD FAIL indicators present in the transmitting system. Upon return of the internal standard to operation, accompanied by a high at gate input Z2-11, gate input Z1-12 goes high to drive output Zl-11 low. This extinguishes the STD FAIL lamp and opens the failure alarm output circuit.
(c) PHASE DETECTOR CIRCUIT. - The phase detector circuit receives a portion of the internal standard output at gate input Z1-9 via gate Z1-3, and a portion of the external standard output at gate input Z1-10 via gate Z1-6. This section of quad gate Z1 serves as a digital phase-detector and provides a square wave output voltage at gate output Z1-8 which is a function of the phase relation between the two frequency standard signals. Resistor R12 and capacitor C5 integrate the gate output to obtain a dc voltage level which is proportional to the square wave duty cycle.

The CIRCUIT TEST selector on the front panel, when placed in the FREQ STD LOCK position, connects the associated panel meter to a null indicating circuit. The "beat" meter
indications occur at a rate which is relative to the phase coincidence between the two frequency standards, and are used to calibrate the internal standard against the external standard.
(2) $3 / 5 / 30 \mathrm{MC}$ GENERATOR CIRCUIT. - The 3,5 and 30 mc generator circuit contains a 30 mc phase-locked oscillator A7A2, frequency dividers and a phase detector circuit (A7A3) and a frequency divider located on A7A1.

The circuit consists of a voltage-controlled 30 mc oscillator, a three stage digital frequency divider $(\div 2, \div 5$, and $\div 3$), and a phase detector. These circuits are connected in a conventional phase-locked-loop configuration.

A 1 mc reference signal for the phase detector is supplied from the frequency standard via incidental filter and amplifier circuits in 115/113.75 generator A8A2. The comparison 1 mc signal for the phase detector is developed by dividing the 30 mc output of the oscillator by 2 to obtain 15 mc , by 5 to obtain 3 mc and then by 3 to obtain 1 mc . The dc output of the phase detector is used as the control signal for the voltage-controlled 30 mc oscillator, as is common with phase-locked oscillators.

An output of the divide-by-two circuit of the phase-lock loop is taken as the 15 mc output and is supplied to the divide-by-three circuit in A7A1 to obtain the 5 mc output for 1.75/113.75 generator A8. An output from the divide-by-five circuit is taken as the 3 mc output and is supplied to synthesizer module A12.

Three 30 mc outputs are provided by buffer amplifier circuit A7A2; two as sourcefrequency signals to synthesizer Al2, and one to X4 frequency multiplier Al8Z1. The resultant 120 mc output of the X 4 multiplier is supplied to the 113.75 mc frequency generating circuits (A8A1) of $1.75 / 113.75 \mathrm{mc}$ frequency generator A 8 .
b. PRELIMINARY CHECK. (See figure 5-66.) - Make a preliminary check of the auxiliary frequency generator before trouble shooting, with emphasis on the following:
(1) Seating of plug-in module in its socket.
(2) Soldered connections to socket.
c. TEST EQUIPMENT. - Use Electronic Multimeter AN/USM-116 and Frequency Counter H-P 5245L with Frequency Converter H-P 5253A. No special tools required.
d. CONTROL SETTINGS. - Preset all controls as indicated in table 3-1. (Place exciter in "operate" condition.)
e. TEST DATA. (See figure 5-66.) - Trouble shooting the auxiliary frequency generator consists of checking the +5 and +15 volt dc operating potentials and measuring the output frequencies at chassis connector A18XA7.
(1) Connect multimeter to XA7 pin K. Meter should read $+5 \mathrm{vdc} \pm 5 \%$.
(2) Connect multimeter to XA7 pin P. Meter should read $+15 \mathrm{vdc} \pm 5 \%$.
(3) Connect frequency counter to XA7 pin F. Counter should read 1.000000 ± 1
count.
(4) Connect frequency counter to XA7 pin U. Counter should read 30.000000 mc ± 1 count.
(5) Connect frequency counter to XA7 pin V. Counter should read 30.000000 mc ± 1 count.
(6) Connect frequency counter to XA7 pin X. Counter should read 30.000000 mc ± 1 count.

Rl7 establishes the level of the 1.75 mc injection frequency applied to the channel Al and B1 modulators (A2 and A3).
(2) 113.75 MC FREQUENCY GENERATOR A8A2. (See figure 4-9.) - The 113.75 mc frequency generator contains a frequency multiplier-divider circuit (Q1, Q3, Q4, Z1, and $Z 2$) which produces a 6.25 mc output frequency from a 5 mc input frequency. The multi-plier-divider is followed by phase detector Z4 and dc amplifier Q10, Q12. The phase detector output is used to contiol the frequency of $113.75 \mathrm{mc} \mathrm{VCO}, \mathrm{Qll}$. The 113.75 mc frequency generator also contains a 120 mc amplifier and mixer circuit (Q2, Q5, and Z3) and the oscillator buffer-amplifier (Q8 and Q9).
(a) 6.25 MC MULTIPLIER AND 120 MC AMPLIFIER. (See figure 4-10.) A 5 mc square-wave input signal from auxiliary frequency generator (A7) is applied to the base of X5 frequency multiplier Q1 and appears as a 25 mc frequency at transformer $T 1$. The double-tuned circuit consisting of Ll and C6, and the primary of transformer Tl and capacitor C8, selects the 25 mc component at the collector of Q3. Capacitor C7 provides coupling between the two tuned circuits. Output from $T 1$ is passed through a complementary amplifier formed by Q3 and Q4, and is reduced to 6.25 mc by divide-by-four frequency divider Z1 and Z2. The 6.25 mc square-wave output from Z 2 is amplified by Q 6 and applied to one input of phase detector Z4. Gated flip-flops Z1 and Z2 have an internal J-K connection for operation as digital frequency dividers.

A 120 mc frequency supplied by $X 4$ multiplier A18Z1 is applied to the input of cascode amplifier Q2 and Q5. The primary of transformer T2 at the collector of Q5 is tuned to 120 mc by capacitor Cll, and the 120 mc frequency at the transformer secondary is passed through a resistive attenuator to one input of mixer Z 3 .
(b) 113.75 MC VCO AND PHASE LOCK LOOP. - Voltage controlled oscillator (VCO) Q11 is arranged in a modified Colpitts circuit. Tank inductor L4 is tuned by series capacitors C34 and C35. Varactor CR3, in parallel with tuning capacitor C35, controls the oscillator frequency over a narrow tuning range in response to a dc varactor control voltage applied via resistor R 50 . Phase detector Z 4 develops the control voltage which is amplified by the direct-coupled stages Q10 and Q12. VCO output goes to up-converter All via emitter follower Q13. To limit the varactor control voltage range, and therefore the VCO frequency range, a fixed dc voltage is applied to varactor CR 3 through resistor R49 which forms a voltage divider with R48. Consequently, the minimum value of control voltage, corresponding to the lowest VCO frequency, is determined by the fixed supply voltage.

A tuned low-pass filter (consisting of C21, C25, C26 and L3) in the output circuit of phase detector $Z 4$ rejects unwanted frequency components of the dc control signal.

Ramp generator CR2, in conjunction with the $R C$ circuit $R 41, R 43$, and C32, generates a dc ramp voltage at the base of Q12 for effective VCO control. Normally the dc ramp does not repeat during circuit operation but rises when the circuit is initially energized until the VCO locks at an appropriate ramp level. Capacitor C32 is charged at a relatively slow rate from the +15 volt dc supply circuit through resistor $R 43$ via $Q 10$ collector load resistor R41. When the VCO locks, the dc operating level of Q10 stabilizes to hold the charge of C9 at that point of the de ramp. In the event of nonlocking, the charge at $C 9$ continues to rise until it equals the conduction threshold of CR2, and C9 discharges immediately to ground through CR2. In this instance only, the ramp generation cycle is repeated.

VCO locking is performed by a phase-lock loop consisting of amplifier stages Q8 and Q9, mixer Z3, amplifier Q7 with transformer T3, and phase detector Z4. A sample of the VCO output frequency is amplified by $Q 8$ and $Q 9$, and applied as the second input frequency to mixer Z3. There, the 113.75 mc VCO frequency is mixed with the standard 120 mc frequency (from the 120 mc amplifier circuit) to obtain a 6.25 mc frequency at the mixer output. Amplifier Q7 applies the mixer output frequency to phase detector $Z 4$ via transformer T3, where it is compared with the standard 6.25 mc frequency developed by the 6.25 mc multiplier

The emitter circuit of $Q 1$ contains a gain control network formed by varactor CR1, capacitor C4, and inductor L1, arranged to control the degree of emitter by-passing and, therefore, the gain of Q1. Inductor Ll and varactor CR1, in series with capacitor C4, form a 112 mc tuned circuit between emitter bypass capacitor C 5 and ground. Consequently, the bypass effectiveness of C5 is a function of the tuned circuit impedance. This impedance is maximum with the tuned circuit resonant, dropping rapidly as varactor CR1 detunes the circuit in response to the dc varactor-control (AGC) voltage. At resonance, the high tunedcircuit impedance effectively opens the C5 ground circuit causing emitter circuit degeneration and reducing amplifier gain. Off resonance, the tuned circuit impedance is low and C5 effectively bypasses the emitter circuit to increase the stage gain. Inductor L2 functions as a parasitic suppressor.
(2) MIXER Al3Z1. - Down-converter mixer is a sealed component. The 112 mc frequency from 112 mc i-f amplifier Al3AZ is mixed with the 82 to 110 mc injection frequency from 82 to 110 mc amplifier A13A3 to obtain a 2.0 to 30.0 mc (actually 29.9999 mc) mixer output frequency range. Essentially, the mixer uses a balanced demodulator circuit with balun transformers in the main input and output circuits for coupling to the unbalanced (grounded) circuits involved.
(3) 82 TO 110 MC AMPLIFIER A13A3. - The 82 to 110 mc buffer amplifier consists of input stage Q1, emitter follower Q2, and output stage Q4. It also includes level detector/amplifier $Q 3$ which is driven from the emitter of amplifier Q4. An 82 to 110 mc range of frequencies supplied by synthesizer Al2 is applied to the base of Q1 through a resistive attenuator (R1, R2, and R3) which has approximately a 6 db insertion loss. Output from the collector of Q1 passes through emitter follower $Q 2$ and drives the base of output amplifier Q4. Output at the collector of Q4 is applied to mixer Al3Z1 to serve as the injection frequency. The de level from detector $Q 3$ is applied to fault monitor board A18A2.
b. PRELIMINARY CHECK. (See figure 5-79.) - Make a preliminary check of the down-converter before trouble shooting, with emphasis on the following:
(1) Seating of plug-in module in its socket.
(2) Soldered connections at socket.
c. TEST EQUIPMENT. - Use Electronic Multimeter AN/USM-116 and Frequency Counter H-P 5245L with Frequency Converter H-P 5253A. No special tools required.
d. CONTROL SETTINGS. - Preset all controls as indicated in table 3-1. (Place the exciter in "operate" condition.) Make sure CLASS OF EMISSION switch is in A0 position.
e. TEST DATA. (See figure 5-79.) - Trouble shooting the down-converter circuits consists of checking the +18 , and +24 volt dc operating potentials and measuring the input and output frequencies. All measurements are made at chassis connector A18XA13.
(1) Connect multimeter to XAl3 pin M. Meter should read 0 to +5 vdc.
(2) Connect multimeter to XAI3 pin T. Meter should read $+24 \mathrm{vdc} \pm 10 \%$.
(3) Connect frequency counter with converter to XAl3 pin A. Counter should read $112.00000 \mathrm{mc} \pm 1$ count.

Note

Check that FREQUENCY KC tuning dials are set at 02000.0 kc before performing the measurements in steps (4) and (5).
(4) Connect frequency counter with converter to XAl3 pin X. Counter should read $110.00000 \mathrm{mc} \pm 1$ count.
(5) Connect frequency counter (only) to XA13 pin P. Counter should read 2000. $0000 \mathrm{kc} \pm \mathrm{l}$ count.

4-11. OUTPUT AMPLIFIER A16. (See figures 4-44 and 5-82.)

The rf output amplifier module contains preamplifier A16Al and three-stage push-pull rf amplifier A16A2. An output termination circuit containing muting relay Kl and meter rectifier CR1 is located on A16Al for level monitoring. Faulty operation of the circuits can adversely affect the exciter power output level or prevent exciter unit operation completely.
a. DESCRIPTION. - The rf output amplifier is a linear broadband amplifier for the frequency range from 2.0 to 30.0 mc . It raises the level of carrier signal from down-converter module Al3 to produce 250 milliwatts of rf power (PEP), into a 50 -ohm exciter output termination. A muting relay circuit is incorporated to remove exciter output power for system 'key up" conditions. A meter rectifier and filter circuit permits measurement of the output amplifier level by the CIRCUIT TEST meter on the exciter control panel.
(1) PREAMPLIFIER A16A1. - A 2.0 to $30.0 \mathrm{mc}(29.9999 \mathrm{mc}$) carrier frequency from down-converter Al3 is passed through input filter FLl to the base of preamplifier Q1. The filter is an 11-pole Chebysheff having a 35 mc cut-off frequency and an attenuation of 66 db -per-octave, to effectively remove 82 to 110 mc injection frequencies present in the down-converter output. Preamplifier Ql raises the signal level prior to application at the input of rf amplifier Al3A2.
(2) RF AMPLIFIER A16A2. - The 2.0 to 30.0 mc signal from preamplifier Al3A1Q1 is applied to phase splitter Q1 via coupling capacitor C2. The phase splitter output drives push-pull amplifiers Q 2 and Q 3 through capacitors C4 and C5. Transformer T1, in turn, drives a second push-pull stage using emitter-followers Q4 and Q5. Emitter follower output is directly connected to the bases of the last push-pull amplifier, $Q 8$ and $Q 9$, and rf output is obtained from output transformer T2. Inductors L2 and L3 serve as the base load impedance for Q2 and Q3, and inductor L7 performs a decoupling function in the -12 volt dc supply circuit to the emitters of Q6 and Q7.

Stages $Q 6$ and $Q 7$ function as dc rather than rf amplifiers and serve as a constant current source for the emitter circuits of Q4 and Q5, respectively, to maintain a constant emitter-current supply during the rf drive excursions at the bases of $Q 8$ and $Q 9$. Capacitors C12 and Cl7, and C18 and C19, bypass the rf components at the base and emitter circuits of Q6 and Q7. Rf output from transformer T2 is applied to the muting relay and meter rectifier circuit.
(3) MUTING RELAY AND METER RECTIFIER. - The muting relay and meter rectifier are located on module A16A1. Output from rf amplifier A16A2 is applied through balun transformer $T 1$ and a resistive attenuator ($R 7$ through $R 9$) to muting relay K1. Balun Tl provides an unbalanced (grounded) output termination with a 50 -ohm impedance. When de-energized, relay Kl supplies rf output power to ${ }^{\text {RF }}$ OUT connector A19Jl on the exciter rear panel, via relay contacts $\mathrm{b} 2, \mathrm{~b} 3$, and a 2 , a 3 . When. felay Kl is energized, during a system 'key-up" operating condition, rf output is disconnected from the RF OUT connector and terminated at load resistor R12. For normal operation attenuator R7 through R9 inserts a 1 db attenuation. For 'key-up" conditions, the attenuator maintains a stable 50 -ohm load in conjunction with load resistors R12 and R13. Diode CR2 at relay Kl functions as an arc suppressor.

A portion of the rf output is applied to meter rectifier CR1 via divider resistors R10 and R11. A low pass filter consisting of inductor L5 and resistor R14, with capacitors C12 through C15, removes rf components from the resultant dc voltage which is applied to the CIRC UIT TEST meter when the test switch is set at POWER OUTPUT. A divider formed by resistors R16 and R17 supplies a reduced portion of the rf output to front panel RF OUTPUT MONITOR connector A18JI.

Detail C shows the waveforms associated with NAND gate Z6-6 operation. Note that the gate inputs are a duplicate of the gate $\mathrm{Z} 6-8$ inputs, with exception of the 125 kc substitution for 125 kc at $\mathrm{Z} 6-4$ and the addition of a 5 kc and 2.5 kc input (combined) via diodes CRI and CR2 at Z6-3. Both phases of the 500 kc and 125 kc input frequencies are employed to obtain all of the combinations required for development of a 4 kc frequency.

Detail D shows the rate multiplier "wired OR" summing_process with a $\overline{4 \mathrm{kc}}$ pulse added to the previous 625 kc frequency summation to obtain a 629 kc frequency. The 5 kc output at gate $\mathrm{Z} 6-6$ is buffered by gate Z1-8 and applied to the input of NAND gate Z1-6 together with a $\overline{1 \mathrm{kc}}$ frequency from the divide-by-1000 circuit. Output at gate $\mathrm{Z} 1-6$ is a 5 kc frequency "blanked out" every fifth pulse to obtain a 4 kc rate. Blanking is accomplished by the $\bar{l} \mathrm{kc}$ frequency which inhibits gate Zl-6 after each group of four 5 kc pulses. Output from the rate multiplier circuit is applied to the divide-by-100 circuit section for frequency reduction to 6.29 kc .
(c) DIVIDE-BY-100 CIRCUIT. (See figure 4-12.) - The divide-by-100 circuit consists of two divide-by-5 binary counters using flip-flops Z10, Z12, Z14, and Z16, Z18, Z19, respectively; divide-by-2 J-K flip-flop Z20; a 12.58 kc bandpass filter and amplifier with Q1 and Q2; and divide-by-2 J-K flip-flop Z21. Total frequency division from 629 kc to 6.29 kc is accomplished in division steps of $5,5,2$, and 2 .

A 629 kc frequency from the rate multiplier circuit is reduced to 125.8 kc and then to 25.16 kc by the two divide-by-5 binary counters. J-K flip-flop Z 20 performs an additional division-by -2 to obtain a 12.58 kc frequency which is applied to a double-tuned bandpass filter consisting of tuned circuits L1, C4, and L2, C6. The filter rejects spurious frequency components contributed by the rate multiplier circuit and supplies a 12.58 kc sine wave to compound emitter-follower stage Q1 and Q2. This stage offers a high impedance input to the filter circuit and reduces tuned circuit loading. A final frequency reduction to 6.29 kc is performed by $\mathrm{J}-\mathrm{K}$ flip-flop Z 21 which also performs a waveform squaring function to obtain a 6.29 kc square wave signal. Output from Z 21 is applied to side-carrier generators A9A2.
(2) SIDE-CARRIER GENERATORS A9A2. (See figures 4-45 and 5-68.) - The side-carrier generator circuit contains two individual voltage-controlled crystal oscillators for the generation of 1.756290 and 1.743710 mc side-carrier frequencies. Each crystal oscillator is indirectly phase locked to the 1 mc standard frequency by comparing their output frequencies with the 250 kc and 6.29 kc frequencies derived from the 1 mc standard frequency. Both frequency generators employ a voltage-controlled crystal oscillator (oscillating at two times the output frequency); buffer amplifiers; a divide-by-two circuit; an output stage with a bandpass filter; and a phase locked loop consisting of a buffer amplifier, a digital mixer, a differential amplifier and a 6.29 kc chopper stage. Because the two oscillator circuits are identical except for the crystal frequency, descriptions in the following paragraphs for the 1.756290 mc circuit also apply to the 1.743710 circuit.

Basically, the frequency of crystal oscillator Yl (3.512580 mc) is corrected by a dc control voltage applied to the varactor control circuit of CRI. Control voltage is supplied by differential amplifier Q1 and Q2 via chopper $Q 5$ which samples the voltage at a 6.29 kc rate. The differential amplifier is driven by a digital mixer using NAND gates Zl-11 and Z2-11, and a sample of the output frequency is combined with the two out-of-phase 250 kc input frequencies at the mixer. Any change in oscillator frequency is corrected by a change in level of the chopper output.
(a) DIGITAL MIXER. - The digital mixer consists of dual-input NAND gates Z1-11 and Z2-11, and output integrating networks R1, C6 and R9, C9. Gate output pulses drive the base elements of differential amplifier Q1, Q2. A 250 kc (logical "l") frequency at gate input Z2-13, and a $\overline{250 \mathrm{kc}}$ (logical " 0 ") frequency at gate input $\mathrm{Z} 1-13$ are combined with a sample of the output frequency (1750 kc , nominal) applied to gate inputs $\mathrm{ZI}-12$ and Z2-12 from buffer gate Z1-3. The (nominal) 1750 kc output frequency is the seventh harmonic of the 250 kc input frequencies, and the digital mixer output contains conventional sum and difference mixer products. Consequently, for the (actual) output frequency 1.756290
$\mathrm{mc}(1756.290 \mathrm{kc})$, the gate outputs will contain a 6.29 kc component representing the beatfrequency difference between with the 250 kc seventh harmonic ($1750.000 \mathrm{kc}-1756.290 \mathrm{kc}=$ 6.29 kc). Because the two 250 kc input frequencies are 180 degrees out-of-phase, the related gate outputs will also be out of phase.

The 6.29 kc component is applied via integrating networks Rl, C6 and R9, C9 to differential amplifier Q1 and Q3. The output of the differential amplifier is a 6.29 kc frequency which is applied to chopper stage $Q 5$. C12 gives additional filtering of higher frequency components. RI balances the input to the differential amplifier $Q 1$ and $Q 3$ to obtain maximum output swing at Ql collector.
(b) CHOPPER CIRCUIT. - The chopper circuit consists of dual-emitter chopper Q5 and a pulse shaper using dual-input NAND gates Z2-10 and Z2-9. A 6.29 kc frequency from divider circuit A9A1 is directly applied to gate input Z2-10, and applied via integrating circuit R10 and C10 to gate input $\mathrm{Z} 2-2$. Output from gate $\mathrm{Z} 2-8$ is a narrow pulse which occurs only during the time overlap period of the two input pulses. The integrating circuit delays the gate input Z2-2 pulse to produce the overlapping. The 6.29 kc "sampling" pulse triggers chopper Q5 via transformer Tl.

The chopper functions as a phase detector, and the chopper output level is determined by the phase relation between the 6.29 kc component from differential amplifier $Q 1$, Q2, and the fixed 6.29 kc chopping frequency. A decrease in oscillator frequency will increase chopper output, and the higher charge at capacitor Cl4 will increase and correct the oscillator frequency. Conversely, an increase in oscillator frequency will reduce the chopper output and decrease the oscillator frequency. In this manner, crystal oscillator Yl is "locked" to the absolute 6.29 kc "sampling" frequency.
(c) VOLTAGE-CONTROLLED CRYSTAL OSCILIATOR AND DIVIDE-BYTWO CIRCUITS. - The varactor-controlled crystal oscillator consists of Q7, C16, C17, 3.512580 crystal Y1, and varactor CR1. Oscillator output is applied via buffer amplifier Q8 and Q11 to divide-by-two flip-flop Z4. The output of $\mathrm{Z} 4(1.756290 \mathrm{mc}$) is applied to buffer Z1. One output, Zl-6, is applied to buffer Zl-2; the output at Zl-3 is applied to the digital mixer. The second output, ZI-8, is applied to the output amplifier. Dc control voltage from chopper circuit capacitor C14 is applied to the varactor to "pull" the oscillator frequency, over a small frequency range, and thereby control and correct the frequency.
(d) 1.756290 MC OUTPUT AMPLIFIER. - Amplifier Q13 receives the 1.756290 mc output from buffer (NAND) gate Z1-8 and raises the signal level. Potentiometer R42 sets the side-carrier level applied to the B2 channel modulator circuit (Al). The primary of output transformer T3 is tuned to 1.756290 mc by capacitor C 22 , and the resultant sine-wave signal goes through an attenuator, formed by resistors R $46, \mathrm{R} 48$, and R50, which also provides a $50-\mathrm{hm}$ output termination impedance for the amplifier. The 1.743710 mc side-carrier generator circuit is identical to the 1.756290 generator, with the exception of the frequency of $Y 2$, which is 3.487420 mc .
b. PRELIMINARY CHECK. (See figure 5-68.) - Make a preliminary check of the side-carrier generator before trouble shooting, with emphasis on the following:
(1) Seating of plug-in module in its socket.
(2) Soldered connections at socket.
c. TEST EQUIPMENT. - Use Electronic Multimeter AN/USM-116 and Frequency Counter H-P 5245 L . No special tools required.
d. CONTROL SETTINGS. - Preset all controls as indicated in table 3-1. (Place the exciter in "operate" condition.)
e. TEST DATA. (See figure 5-68.) - Trouble shooting the side-carrier generator consists of checking the +5 and +15 volt dc operating potentials, and measuring the input and output frequencies. All measurements are made at chassis connector Al8XA9.

TABLE 4-7. LPA TUNING CODE

$\begin{aligned} & \text { CHAN. } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { SEGMENT } \\ \text { FREQUENCY (MC) } \end{gathered}$	STEP	TUNING DIALS			$\begin{gathered} 5-\text { WIRE } \\ \text { CODE } \end{gathered}$	RELAYS ENERG.
			10 MC	1 MC	100 KC		
1	02.0-02.4	400 KC	11	1000	$\begin{aligned} & 001 \text { to } \\ & 010 \end{aligned}$	00001	K2, 4, 5
2	02.5-02.9	400 KC	11	1000	$\begin{aligned} & 110 \text { to } \\ & 100 \end{aligned}$	00011	K2, 5
3	03.0-03.4	400 KC	11	0000	$\begin{aligned} & 001 \text { to } \\ & 010 \end{aligned}$	00111	K2, 3
4	03.5-03.9	400 KC	11	0000	$\begin{aligned} & 110 \text { to } \\ & 100 \end{aligned}$	01111	K3, 5
5	04.0-04.9	900 KC	11	1001	$001 \text { to }$ 100	11110	K1, 3
6	05.0-05.9	900 KC	11	0001	$001 \text { to }$ 100	11101	K1, 3, 4, 5
7	06.0-06.9	900 KC	11	1011	$\begin{aligned} & 001 \text { to } \\ & 100 \end{aligned}$	11011	K1, 5
8	07.0-07.9	900 KC	11	0011	$\begin{aligned} & 001 \text { to } \\ & 100 \end{aligned}$	10111	K1, 2, 3, 5
9	08.0-09.9	1.9 MC	11	$\begin{aligned} & 1110 \text { to } \\ & 0110 \end{aligned}$	001 to 100	01110	K3
10	10.0-11.9	1.9 MC	01	$\begin{aligned} & 1100 \text { to } \\ & 0100 \end{aligned}$	$\begin{aligned} & 001 \text { to } \\ & 100 \end{aligned}$	11100	K1, 3, 4
11	12.0-13.9	1.9 MC	01	$\begin{aligned} & 1000 \text { to } \\ & 0000 \end{aligned}$	$\begin{aligned} & 001 \text { to } \\ & 100 \end{aligned}$	11001	K1, 4, 5
12	14.0-15.9	1.9 MC	01	$\begin{aligned} & 1001 \text { to } \\ & 0001 \end{aligned}$	$\begin{aligned} & 001 \text { to } \\ & 100 \end{aligned}$	10010	K1, 2
13	16.0-17.9	1.9 MC	01	$\begin{aligned} & 1011 \text { to } \\ & 0011 \end{aligned}$	$\begin{aligned} & 001 \text { to } \\ & 100 \end{aligned}$	00100	K2, 3, 4
14	18.0-19.9	1.9 MC	01	$\begin{aligned} & 1110 \text { to } \\ & 0110 \end{aligned}$	$\begin{aligned} & 001 \text { to } \\ & 100 \end{aligned}$	01001	K4, 5
15	20.0-21.9	1.9 MC	01	$\begin{aligned} & 1100 \text { to } \\ & 0100 \end{aligned}$	$\begin{aligned} & 001 \text { to } \\ & 100 \end{aligned}$	10011	K1, 2, 5
16	22.0-23.9	1.9 MC	10	$\begin{aligned} & 1000 \text { to } \\ & 0000 \end{aligned}$	$\begin{aligned} & 001 \text { to } \\ & 100 \end{aligned}$	00110	K2, 3
17	24.0-25.9	1.9 MC	10	$\begin{aligned} & 1001 \text { to } \\ & 0001 \end{aligned}$	$\begin{aligned} & 001 \text { to } \\ & 100 \end{aligned}$	01100	K3, 4
18	26.0-27.9	1.9 MC	10	$\begin{aligned} & 1011 \text { to } \\ & 0011 \end{aligned}$	$001 \text { to }$	11000	K1, 4
19	28.0-29.9	1.9 MC	10	$\begin{aligned} & 1110 \text { to } \\ & 0110 \end{aligned}$	$\begin{aligned} & 001 \text { to } \\ & 100 \end{aligned}$	10000	K1, 2, 4

"O" = Low, "l" = High

Q5), and the five logic relays (K1 thru K5). When de-energized, relays K1, K4, and K5 produce a logical "l" (ground) while the remaining relays provide a logical "0" (open), a negative logic sequence.

The bits from the $10 \mathrm{mc}, 1 \mathrm{mc}$, and 100 kc tuning dials are applied to the NAND gate integrating circuits directly, or following inversion gates Z1 and Z2. Bit inversion of a logical "l", for example, produces a "I'" (not "1", or "0"). In this manner, the total number of bits applied is doubled to facilitate gate operation. With reference to table 4-7, the 9 -bit code for channel 1 (11, 1000, 001 to 010) from the three tuning dials, is converted to the 5 -wire code 00001 when relays K2, K5, and K4 are energized. Consequently, the frequency segment from 02.0 to 02.4 mc (encompassing 400 kc) is integrated to form a single tuning channel for the LPA. The remaining 18 channels or segments cover the rest of the tuning range and differ only in the segment width expressed in kilocycles or megacycles. No attempt will be made to present a detailed description of the entire band encoder operations; however, the following paragraph contains a description of the Wl circuit which is similar in operation to the other 5 -wire circuits, W 2 through W5.
(a) WI ENCODER CIRCUIT. (See figure 4-30.) - The band encoder circuit for wire 1 (WI) of the five-wire output code is shown in figure 4-30. Although NAND gates Z1, Z2, Z6, and part of Z10 are actually used (see figure 4-29), in the functional diagram designations Zl through Z9 are used for simplicity and to clarify the tables in details A, B, and C.

Detail A is a truth table for the 3 -input NAND gates, using positive logic terminology. Output at gate terminal 4 is a "1" for all input states except the coincidental " 1 " inputs (all "1", simultaneously) which produces a "0" output in typical NAND gate fashion. Gates Z1 through Z4 function in this manner and their output terms follow the truth table listing. Single input gates Z 5 through Z 9 offer circuit buffering and invert the input signal applied. For example, a logical "l" at the Z5 input is inverted by the gating action and appears as a "0" at the Z5 output terminal. Note that for positive logic operation a logical "0" is a low or ground condition and a logical "l" is a high or open circuit condition.

Detail B lists the logic states at the inputs of gates Zl through Z 4 for tuning dial settings of 02.0 to 02.9 , at the 10 mc and 1 mc dials only. These dials determine the first digit of the LPA 5 -wire code at the W 1 position. The resultant 011 condition at the inputs of gate Z4 produces a logical "l" output, saturating switching stage Q1 and energizing relay K1. The LPA binary code is negative logic to the extent that the open circuit at relay Kl contacts is considered as a logical " 0 ". Consequently, when relay Kl is energized the band encoder output for the Wl line is a " 0 ".

Detail C lists the logic states of gates Zl through Z 4 for tuning dial settings of 04.0 to 04.9 , at the 10 mc and 1 mc dials only, to illustrate gate operation when the W 1 output line is a logical "l" and relay Kl is not energized. Now, the 111 condition at the gate Z4 inputs produces a logical " 0 " at the gate output. Switch stage $Q 1$ is cut-off and relay Kl deenergized. The Wl line is in a ground state ("l" state for the LPA code).
(b) ENCODER OPERATION. (See figures 4-29 and 4-30.) - The description of NAND gate operation given in the previous paragraph also applies in general to the operation of the W 2 through W5 gate circuits and energizing of relays K 2 through K5, all in response to the setting of the $10 \mathrm{mc}, 1 \mathrm{mc}$, and 100 kc tuning dials. For a selected frequency segment (channel) listed in table 4-7, there is a corresponding tuning dial binary code, the energizing of selected 5 -wire relays, and a resultant 5 -wire binary LPA code.
(2) $-12 /+15$ VOLT REGULATOR A15Al. (See figure 5-81.) - The voltage regulator section contains two similar regulating circuits. The following description of the -12 volt regulator also applies to the +15 volt regulator except for the assigned reference designations. A -18 volt potential from power supply PSI is applied to a conventional regulating circuit at terminals 1 and 2. Ql functions as a series regulator controlled by dc amplifier Q2. Zener diode CR1 is the voltage reference in the emitter circuit of Q2. The +18 volt potential for operation of the +15 volt regulator is also supplied by power supply PSI.

Figure 4-32. VU Meter Amplifier, Simplified Schematic Diagram
4-30. FAULT BOARD A18A2. (See figures 4-33 and 4-34.)
The fault board contains a number of sensitive detecting circuits arranged to monitor selected dc supply voltages, rf signal levels, and external "fault" circuits in the other system units. In the event of a "fault" occurring at one or more of the detecting circuits the over-all transmitting system will be placed in a "standby" condition and the related "fault" indicator illuminated to inform the operator of a "fault" condition. In the case of a STD FAIL fault, where an external standard is available, the transmitting system is not affected. A STD FAIL fault line is supplied for an external fault indicator (STD FAIL).
a. DESCRIPTION. - Table 4-10 lists the fault detection circuits, describes the fault, and identifies the detector components used. The fault board contains fault detection circuits which respond to four categories of circuit faults:
(1) TRANSMITTER FAULT.
(a) KEYER FAULT. - A keyer fault appears as a ground at terminal 36. This provides a dc path, via CR10 and the FAULT OVRD switch, to fault relay Kl3 on transmitter control module no. 1 (Al0). It also provides a dc path to the XMTR FAIL lamp via CR13.
(b) LPA FAULT. - An LPA fault appears as an open circuit at terminal 33. This turns on Q12 which provides a de path, via CR19, to fault relay A10K13. A de path to the XMTR FAIL lamp (via CR15) and a dc path (via CR16 and terminal 31) to the tune activate circuits in transmitter control module no. 1 (Al0) prevents fault override when the fault is in the LPA.
(c) TRANSMITTER FAIL. - The transmitter fail signal is actuated by the LCU when the exciter is in remote operation and either of the following remote system faults occur:

1. No "class of emission" command.
2. No "sideband" command when "class of emission" command is other than A0 or A2, A3E. The transmitter fail signal appears as a ground closure at terminal 34 of the fault board. The ground closure is applied to the fault circuit as shown in figure 4-33, and acts as described in paragraph (b) above.

Figure 4-33. Fault Board, Functional Block Diagram

TABLE 4-11. POWER DISTRIBUTION BOARD CIRCUITS

RELAY	"A" CONTACTS CONTROL	"B" CONTACTS CONTROL	$\begin{gathered} \text { METER } \\ \text { CAL. } \end{gathered}$	FOR DC SUPPLY
K1	Standby/amplifier off the commands to the LPA.	Electrical latch and AMPL OFF lamp.	None	None
K2	-28 volts de to TGC module Al4.	+28 volts de to TGC module Al4.	None	None
K3	-12 volts de to TGC module A14 and output amplifier Al6.	+125 volts dc to TGC module Al4, downconverter A13, and up-converter All.	R3 R2	-12 V +125 V
K4	+18 volts dc to output amplifier A16, downconverter A13, up-converter All, VFGA5, modulator A4 and SIDEBAND SELECTOR switch.	+24 volts dc to output amplifier Al6, and down-converter Al3.	R4	+24V
K5	+5 volts dc to synthesizer Al2, side-carrier generator A9, 1.75/ 113.75 mc generator A 8 , and auxiliary frequency generator A7.	+15 volts dc to synthesizer Al2, TGC A14, side-carrier generator A.9, and auxiliary frequency generator A7.	R 7 R6	+5 V +15 V

Relay Kl is energized by a "standby" command (ground) at terminal 22 from transmitter control no. 1 module Al0, and is latched in via contacts $b 2$ and $b l$. The removal of ground from contact b3 (terminal 27) extinguishes the AMPL OFF lamp. The closure of contacts a2 and al provide a "standby" command to the LPA. Relay Kl is de-energized by an "amplifier off" command from the AMPL OFF front panel control or by a loss of power. When Kl is de-energized the opening of contacts a 2 and al provide an "amplifier off" command to the LPA, and the closure of contacts b2 and b3 lights the AMPL OFF lamp on the exciter front panel.

Relays K 2 through K 5 apply dc operating potentials to the various modules when the OPERATE pushbutton is pressed, grounding terminal 16. Note that for "standby" conditions the dc supply voltages for critical circuits such as 1 mc frequency standard A6 and transmitter control modules Al0 and A17 are not removed. This is because the frequency standard operating voltage cannot be interrupted without observing a warm-up and recalibration period, and the transmitter control circuits must be in constant operation for command functions.

The five meter calibration adjustments $R 2, R 3, R 4, R 6$, and $R 7$, are used to calibrate the CIRCUIT TEST panel meter M2 for the $+125,-12,+24,+15$, and +5 volt dc positions of the meter switch, respectively. In this manner, the meter will indicate in the colored scale segment for each correct supply voltage monitored. Because these dc supply voltages are from regulated power supplies, calibration adjustments are required as the supply voltage accuracy exceeds that of the meter; especially the meter scale linearity at a midscale point.

Resistor R 5 reduces the 28 volt relay operating voltage to limit the relay coil heat dissipation for long energized periods. Jumpers at terminals El through El2 permit
disconnection of any power supply voltage in the event of a short circuit in the load. (This is for use by repair technicians only.)
b. PRELIMINARY CHECK. (See figure 5-89.) - Make a preliminary check of the power distribution board to verify that all terminal connections are secure.
c. TEST EQUIPMENT. - Use Electronic Multimeter AN/USM-116. No special tools are required.
d. CONTROL SETTINGS. - Preset controls as indicated in table 3-1. (Place exciter in "standby" condition.)
e. TEST DATA. (See figure 5-89.) - Trouble shooting the power distribution board consists of checking relay operation by measuring the dc supply voltage at a load terminal and then placing the exciter in "standby" condition to remove the voltage by opening the voltage supply relays.
(1) Connect multimeter to terminal 19. Meter should read 0 volts. Press OPERATE button. Meter should read -28 volts dc. Press STANDBY button.
(2) Repeat step (1) at terminals $8,3,10,20,14,32$, and 26 for dc supply voltages of $+28,-12,+125,+18,+24,+5$, and +15 volts, respectively.
4-35. POWER SUPPLY PSI. (See figures 4-37, 4-38, 4-52, and 5-63.)
The power supply module contains an ac power supply and rectifier circuits providing outputs of -28 volts and +40 volts dc, and a 70 volt (rms) output. This supply is followed by voltage regulating circuits which supply $-18,+18$ and $+5,+24$ and $+15,+125$, and +28 volts dc. The complete power supply operates from a primary power source of $115 / 230$ volts ac, 50-60 cycles, single phase. Primary operating voltage is selected by switch PSISI. In the event of abnormal current drain from any of the regulating circuits, circuit breaker A18CBl on the exciter front panel will 'trip" to remove primary power from the supply.
a. DESCRIPTION. - Table 4-12 lists the power supply regulating circuits and gives the input and output voltages for each circuit.
(1) POWER SUPPLY TRANSFORMER/RECTIFIER. - The power supply trans former/rectifier section consists of transformer Tl with primary voltage switch Sl, fullwave rectifier CR1 and CR2, and bridge rectifier CR3 through CR6. Switch Sl connects the two primary transformer windings in parallel for 115 volt operation or in series for 230 volt operation.

Bridge rectifier CR3-CR6 supplies -28 vdc to -18 V regulator PS1Al and also as a power supply output voltage. Input capacitor Cl functions as a filter capacitor, and Zener diode CR8 and resistor R2 provide a fixed voltage drop prior to series regulator stage Q7. Full-wave rectifier CRI and CR2 delivers +40 volts dc to the input of +28 volt regulator PSIA3. The 70 volts (rms) from transformer winding terminals 10 and 11 goes to the input of +125 volt regulator PSI A2 A3.
(2) - 18 VOLT REGULATOR PSiAl. - The -18 volt de regulator consists of series regulator stage PS1Q7, complementary pair Q2 and Q3, and emitter follower Q1; diodes CR2, CR3, and CR4, and Zener diode CR5. Circuit operation is conventional, but it should be noted that this is a 'negative" voltage regulator and consequently some functions are inverted. A sample of regulated output voltage from the junction of resistors R6 and R7 is applied to the base of Q3 and compared with a reference voltage from Zener diode CR5 at the emitter of Q3. Any voltage difference is amplified by Q2 and applied to the base of regulator $Q 7$ as a dc control voltage, via amplifier stage Q1. Diodes CR2, CR3, and CR4 protect the regulation circuit if the output becomes shorted. In this event, the large IR drop across resistor R4 causes diode conduction and cuts off the base of Q1 (via PS1Q7) reducing the regulator output voltage to zero.
CHANGE 2

REF DES PREFIX PSIA2

$\stackrel{\pi}{\square}$
Figure 4-38. Power Transformer and -18 Volt Regulator, Simplified Schematic Diagram

TABLE 4-12. POWER SUPPLY REGULATORS

$\begin{gathered} \text { REF } \\ \text { DES. } \triangle \end{gathered}$	CIRCUIT NAME	INPUT VOLTAGE	OUTPUT VOLTAGE	$\begin{aligned} & \text { LOAD } \\ & \text { "I" } \end{aligned}$
$\begin{aligned} & \text { PS1 } \\ & (\mathrm{p} / \mathrm{o}) \end{aligned}$	Power supply (transformer and rectifiers)	115/230 vac	$\begin{aligned} & -28 \mathrm{vdc} \\ & +40 \mathrm{vdc} \\ & 70 \mathrm{~V} \mathrm{rms} \end{aligned}$	$\begin{aligned} & \text { 6A. } \\ & 3 \mathrm{~A} . \end{aligned}$
Al	-18 volt regulator	-28V	-18V	0.6A.
A2Al	+18 volt and +5 volt regulator	+28V	$\begin{array}{r} +18 \mathrm{~V} \\ +5 \mathrm{~V} \end{array}$	$\begin{aligned} & 1.5 \mathrm{~A} . \\ & 1.2 \mathrm{~A} . \end{aligned}$
A2A2	+24 volt and +15 volt regulator	+28V	$\begin{aligned} & +24 \mathrm{~V} \\ & +15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { 2A. } \\ & .6 \mathrm{~A} . \end{aligned}$
A2A3	+125 volt regulator	$\begin{gathered} 70 \mathrm{~V} \\ (\mathrm{rms}) \end{gathered}$	$+125 \mathrm{~V}$.01A.
A3	+28 volt regulator	+40V	$+28 \mathrm{~V}$	3 A.

\triangle Prefix by PSl

* Intermittent duty
(3) +18 AND +5 VOLT REGULATORS A2A1. - The +18 and +5 volt regulators are contained on a common circuit board. The +18 volt circuit consists of series regulator stage PS1Q4; dc amplifiers Q1, Q2, and Q3; and IC differential comparator Z1. The +5 volt circuit is similar and consists of series regulator stage PS1Q5; dc amplifiers Q4, Q5, and Q6; and IC differential comparator Z2. Both regulating circuits are of the switching type employing a series inductor (L1 and Li) and a commutating diode (CR4 and CR6). Regulator switching is triggered by the externally supplied 12.5 kc "sync" pulse. Although the following description is of the +18 volt regulator circuit it also applied to the +5 volt regulator circuit.

A +28 volt de supply voltage from the output of +28 volt regulator A3 is applied to the emitter of switching regulator PSIQ4 and also as the operating voltage for switch driver stages Q1 and Q2. Q2 is switched on and off by current amplifier Q1, in response to drive pulses from differential comparator Z1. The comparator output is approximately 6 volts above ground. To assure a "turn-off" by switch Q2, Zener diode CR3 inserts a "bucking" potential in series with the emitter of Ql, restoring the pulse to a ground reference level. Differential comparator Zl compares a sample of the +18 volt regulator output, via amplifier Q3, with a fixed reference voltage from Zener diode CR2. When the regulated output level exceeds the reference voltage, the pulse width from Zl is decreased to lower the switch stage (PSIQ4) "on" time and, thereby lower the regulator output voltage. When regulator output is less than the reference voltage, the switch stage "on" time is increased by an increase in the switching pulse width from Zl, thereby raising the regulator output voltage. In this manner the switch regulator is controlled in a step sequence to regulate the output voltage and hold it constant.

To stabilize the switching regulator and improve operation, a 12.5 kc "sync" pulse is applied to the base of Q3 via capacitor C7, and is then applied to differential comparator Z1 through a low pass filter consisting of resistors R12 and R13, and capacitors C4 and C5. The "sync" pulse times the comparator operation and governs the switching rate of PS1Q4.

Regulation is also a function of inductor Li and commutating diode CR4. Dc pulses at the output of switch stage PSIQ4 are applied through a low pass filter consisting of inductor Ll and capacitors C3, C8, and C9. During PSlQ4 "off" intervals, the collapsing field at inductor L1 charges capacitors C8 and C9, with commutating diode CR4 providing a return
path. (Back-emf of Ll has a reversed polarity causing CR4 to conduct.) In this manner a charge at capacitor C8 (and C9) is maintained during "off" switch periods to assure output current to the load.

It is apparent that Zener reference diode CR2 supplies a reference voltage to both the +18 and +5 volt regulating circuits at Z1 and Z2, and that Zener diode CR1 supplies a regulated operating voltage to both comparators at terminal 8 . With the exception of the reference designations employed, the operation of the +18 and +5 regulators is identical.
(4) +24 AND +15 VOLT REGULATORS (A2A2). - The +24 and +15 volt regulators are contained on a common circuit board. The +24 volt regulator consists of a Darlington series regulator formed by PSIQ1 and PSIQ2, differential amplifier Q3 and Q5, and dc amplifier Q1. The +15 volt regulator is similar, and uses series regulator stage PSIQ3, differential amplifier Q4 and Q6, and dc amplifier Q2. Both circuits employ conventional voltage regulating techniques. Although the following circuit description applies specifically to the +24 volt regulator it also describes the +15 volt regulator circuit except for a different set of reference designations.

Series regulator stage Q1 and Q2 receives a +28 volt dc potential from +28 volt regulator PS1A3. This stage is conducting at all times, the amount of conduction being controlled by dc amplifier Q1. A sample of the +24 volt output voltage is obtained from the junction of resistors R15 and R16, and compared with a fixed dc reference voltage from Zener diode CR7 at difference amplifier Q3 and Q5. The voltage difference is amplified by Q1 and applied to the base of series regulator PSIQ1. When the sampled voltage exceeds the reference voltage, the differential amplifier drives $Q 1$ to increase the voltage drop across the series regulator. When the sampled voltage is less than the reference voltage, the series regulator voltage drop is decreased. In this manner, the series regulator conduction is controlled to correct the regulator output voltage and maintain a constant level. Zener diode CRl biases amplifier Ql to raise the dc signal level at its base to corresponding level with the collector of Q3 (dc restoration).

Capacitors C7 and C9 at board terminals 1 and 8 are externally connected to A2 Al-3, and provide output filtering for the +5 volt regulated supply voltage.
(5) +125 VOLT REGULATOR A2A3. - The +125 volt regulator circuit consists of a voltage-doubler rectifier CRI and CR2; three cascaded series regulator stages Q1, Q2, and Q6; and a dc control amplifier consisting of difference amplifier Q4 and Q5, and dc amplifier Q3.

Voltage-doubler rectifiers CR1 and CR2 receive a 70 volt rms potential from power transformer PSIT1. The rectified (and doubled) potential is filtered by an RC low-pass filter consisting of resistor R1 and capacitors C3 and C4. Resistors R2 and R3 assure an even distribution of dc voltage across capacitors C3 and C4. Filter output is applied to cascaded series regulators $Q 1, Q 2$, and $Q 6$. A sample of the +125 volt output potential is obtained from the junction of resistors R16 and R17, and compared with a fixed dc reference voltage from Zener diode CR10 at difference amplifier Q4 and Q5. Any voltage difference is amplified by Q3 and applied to the base of series regulators Q1 and Q2 via dc level stabilizing Zener diode CR6. When the sampled voltage exceeds the reference voltage, the difference amplifier drives Q3 to increase the voltage drop across regulators Q1 and Q2. When the sampled voltage is less than the reference voltage, the series regulator drops are decreased. In this manner, series regulator conduction is controlled to correct and maintain the +125 volt dc output level. Zener diode CR 7 biases amplifier Q3 to raise the dc signal level at its base to a level corresponding with the collector of Q4. Operating potentials for stages Q3, Q4, and Q5 are obtained from the +24 volt output of regulator A2 A2. Zener CR3 regulates this potential with resistor R4.

Diodes CR4 and CR5 in shunt to the emitter-base circuit of Q1 protect this stage in the event of abnormal supply current drain. The IR drop across resistor R8 increases causing diodes CR4 and CR5 to conduct, limiting the conduction of series regulator Q1. Diodes CR8 and CR9 function in a similar manner for series regulator Q2.

Series stage Q6 functions as an active ripple filter. The base of Q6 is driven from the +125 volt regulator output via resistor divider R18 and R19. Any ripple frequency across capacitor C9 is applied between the emitter and base via capacitor C8, and removed by the Q6 self-regulating action. Capacitors $C 5$ and $C 6$ serve to bypass ripple components from the base of series regulators Q1 and Q2.
(6) +28 VOLT REGULATOR PSIA3. - The +28 volt regulator circuit consists of series switching regulator PS1Q6; dc amplifiers Q2, Q3, and Q4; IC differential comparator Zl ; and overload protection stage Q1. This is a switching-type regulator and is similar in operation to the +5 and +18 volt regulators (A2A1) previously described.

A +40 volt dc potential from full-wave rectifier PSICR1 and PS1CR 2 is applied to series regulator PSIQ6 (via overload sensing resistor PSIR1) and also as the operating voltage for switch driver stages Q2 and Q3. Q2 is switched on and off by current amplifier Q3 in response to drive pulses from differential comparator Zl. Zl compares a sample of the +28 volt regulator output voltage, via amplifier $Q 4$ and isolation diode CR6, with a fixed reference voltage from Zener diode CR2. When the regulated output level exceeds the reference voltage, the pulse width from Zl is decreased to reduce the switch stage Q2 "on" time and thereby lower the regulator output voltage. When regulator output is less than the reference voltage, the switch stage "on" time is increased by an increase in the switching pulse width from Zl, thereby raising the regulator output voltage. In this manner the switch regulator is controlled in step sequence to regulate the output voltage and hold it constant.

To stabilize the switching regulator and improve operation, a 12.5 kc "sync" pulse is applied to the base of $Q 4$ via capacitor $C 9$, and is then applied to differential comparator Zl through a low pass filter consisting of resistors R11, R12, and R13; and capacitors C6 and C8. The "sync" pulse times the comparator operation and governs the switching rate of PS1Q6.

Regulation is also a function of inductor Ll and commutating diode CR7. Dc pulses at the output of switch stage PSIQ6 are applied through a low pass filter consisting of inductor LI and capacitors C5 and C7. During the switch stage "off" intervals, the collapsing field at inductor Ll charges capacitors C5 and C7, with commutating diode CR 7 providing a return path. (Back-emf of Ll has a reversed polarity causing CR7 to conduct.) In this manner a charge at capacitor C5 (and C7) is maintained during "off" switch periods to assure output current to the load.

Stage Q1 is biased by the IR drop across resistor PSIR1. In the event of an abnormally high current drain from the regulator, the IR drop across Rl drives Ql to saturation, driving differential comparator Zl to reduce the regulator output via isolation diode CR4. Zener diode CR5 establishes a fixed level of comparator input (error) voltage for the output of both amplifier Q4 and stage Q1. Zener diode CR3 regulates the operating potential applied to differential comparator Zl at terminal 8 (the Vcc terminal). Capacitor C2 introduces a time lag in the overload (Q1, R1) circuit.

W ARNING

Deadly voltages are present at the power supply terminals. Use extreme caution when trouble shooting.
b. PRELIMINARY CHECK. (See figure 5-63.) - Make a preliminary check of the power supply before trouble shooting, with emphasis on the following:
(1) Seating of connector PSIP1 in its socket.
(2) Seating of connectors PSIJ1 and PSlP2.
(3) Soldered connections to socket XPSI.
c. TEST EQUIPMENT. - Use Electronic Multimeter AN/USM-116 and Frequency Counter H-P 5245L. No special tools required.
d. CONTROL SETTINGS. - Preset all controls as indicated in table 3-1.
e. TEST DATA. (See figure 5-63.) - Checking the power supply consists of checking the input sync signal and measuring the power supply output voltages at the appropriate terminals.
(1) Connect frequency counter to XA12P2 pin CC. Counter should read 12.500 kc ± 1 count.
(2) Connect multimeter to Al8A4 terminal 18. Meter should read $-18 \mathrm{vdc} \pm 5 \%$.
(3) Connect multimeter to Al8A6 terminal 15. Meter should read $+125 \mathrm{vdc} \pm 5 \%$.
(4) Connect multimeter to Al8A6 terminal 5. Meter should read +18 vdc $\pm 5 \%$.
(5) Connect multimeter to A18A6 terminal 11. Meter should read $+24 \mathrm{vdc} \pm 5 \%$.
(6) Connect multimeter to Al8A6 terminal 18 . Meter should read $+15 \mathrm{vdc} \pm 5 \%$.
(7) Connect multimeter to Al8A6 terminal 6. Meter should read +5 vdc $\pm 10 \%$.
(8) Connect multimeter to Al8A6 terminal 7. Meter should read $+28 \mathrm{vdc} \pm 10 \%$.

4-36. REAR FILTER-PANEL Al9. (See figures 4-39 and 5-91.)

The rear filter-panel contains cable connectors and rf interference filters for external exciter connections to the primary ac power source and to the LPA and LCU system units (the external rf power amplifier and the Decoder-Encoder KY-656/FRT). Table 4-13 lists the retractable cable connection between the exciter chassis and the rear filter-panel attached to the exciter enclosure, identifies the cable connectors, and gives the type and number of conductors employed. The 51 -conductor flat ribbon is color coded in groups of ten leads and employs the RMA resistor color code for lead identification. The RG-196 coaxial cables and the twisted shielded pair cables are white in color. In addition, connectors $J 2$ and J3 have IC low-pass filters in series with the rf cable connections. These connectors are in dc control voltage circuits, and the low-pass filters reject any spurious rf signals present.

Retractable cables are arranged within the enclosure so that the exciter drawer can be opened and closed; the flat cables accommodating this motion.

4-37. SERVICING BLOCK DIAGRAMS.

Figures 4-40 through 4-52 are servicing block diagrams for the applicable exciter modules. These illustrations provide maintenance technicians with a pictorial guide for use in trouble shooting. Main signal flow or data paths are represented by heavy lines and light lines are used for secondary paths. Arrow heads, placed on the flow lines, indicate the direction of signal flow. Waveforms, where applicable, are placed at appropriate test points on the service block diagrams.

5-3. TUNING AND ADJUSTMENT PROCEDURES.

The following paragraphs provide alignment and adjustment information for each applicable module and circuit board. Control settings, when they differ from the settings of table 3-1, are given in the applicable paragraph.

CAUTION

Place exciter at "standby" before removing or replacing a plug-in module. Voltage surges when live contacts are broken can damage the circuit components.
a. POWER SUPPLY PSI. (See figures 5-49 through 5-54.)
(1) TEST EQUIPMENT AND SPECIAL TOOLS.
(a) Volt-ohmmeter AN/PSM-6.
(b) Alignment tool, J. F.D. S284.
(c) Test jig (see figure 2-2).
(2) CONTROL SETTINGS. - Preset exciter controls in accordance with table 3-1.
(3) TEST SETUP. - Exciter connected to test jig as instructed in paragraph 2-5b (through step (4)).
(4) CONNECTIONS. - See procedures below.
(5) PROCEDURES. - See figure 5-63, sheet 1.
(a) Turn off exciter and remove power supply cover.
(b) Connect voltmeter (+) lead to PSIA3 terminal 4, and (-) lead to ground.
(c) Energize exciter as instructed in paragraph 2-5b.
(d) Adjust PSlA.3R18 for +28 vdc.
(e) Turn off exciter and replace power supply cover.
b. FREQUENCY STANDARD A6. (See figure 5-9.)
(1) TEST EQUIPMENT AND SPECIAL TOOLS.
(a) Standard-frequency oscillator, General Radio type 1115-C.
(b) Test jig (see figure 2-2).
(2) CONTROL SETTINGS. - Preset exciter controls in accordance with table 3-1.
(3) TEST SETUP. - Exciter connected to test jig as instructed in parag raph 2-5b (through step (4)).
(4) CONNECTIONS. - See procedures below.
(5) PROCEDURES. - To check calibration of the internal 1 mc frequency standard, a secondary 1 mc standard having a stability of one part in 10^{9} is used. The CIRCUIT TEST panel meter serves as a "null" indicator during calibration.
(a) Energize exciter as instructed in paragraph 2-5b; energize secondary 1 mc standard as instructed in applicable technical documentation.

Note

For maximum accuracy, allow a 1 hour warm-up period prior to calibration of the internal 1 mc frequency standard.
(b) Connect the external 1 mc frequency standard (standard-frequency oscillator) to the 1 MC STD IN connector (Al9J4) on the rear panel. The amplitude should be from 0.3 to 3 vac rms.
(c) Set the CIRCUIT TEST switch to the FREQ STD LOCK position.
(d) Observe the period of oscillation (from left to right to left to right or vice versa) for the pointer of the front-panel CIRCUIT TEST meter. This period should be greater than or equal to 100 seconds. If the period is less than 100 seconds, calibrate the internal frequency standard by adjusting the $F R E Q$ STD control on the auxiliary panel.

Note

If the range of the FREQ STD control is exceeded, adjust the mechanical $F R E Q$ ADJ control on the internal frequency standard to return the FREQ STD control within range, and readjust the $F R E Q$ STD control as necessary.
c. 1.75/113.75 MC GENERATOR A8. (See figures 5-14 through 5-16.)
(1) TEST EQUIPMENT AND SPECIAL TOOLS.
(a) RF Voltmeter, Boonton Model 91CA.
(b) Oscilloscope, Tektronix 585A.
(c) Insulated alignment tool.
(d) Test jig (see figure 2-2).
(e) $1.75 / 113.75 \mathrm{mc}$ generator module extender cable.
(2) CONTROL SETTINGS. - Preset exciter controls in accordance with table 3-1.
(3) TEST SETUP. - Exciter connected to test jig as instructed in paragraph 2-5b (through step (4)).
(4) CONNECTIONS. - See procedures below.
(5) PROCEDURES. - See figure 5-67.
(a) Turn off exciter and remove $1.75 / 113.75 \mathrm{mc}$ generator module A8.
(b) Connect the $1.75 / 113.75 \mathrm{mc}$ generator to its chassis socket using the module extender cable. Remove module cover.
(c) Energize exciter as instructed in paragraph 2-5b. Place exciter in USB / A0 mode.
(d) Connect oscilloscope leads to A8A2 terminals 1 and 2. Observe a 1 mc square wave signal of approximately 4 volts ± 0.5 volt.
(e) Connect oscilloscope to A8A2 terminals 5 and 6. Observe a 1 mc signal of approximately 1 volt.
(f) Connect the oscilloscope to the collector of A8A2Q6. Adjust A8A2L2 and A8A2L1 for maximum amplitude.

FD1-5-38
Figure 5-1. Modulator-Synthesizer MD-777/FRT, Top View Case Removed

FD1-5.24
Figure 5-2. Modulator-Synthesizer MD-777/FRT, Bottom View Case Removed

Figure 5-48. Transmitter Control No. 2, Al7, Parts Location

Figure 5-49. Power Supply Module PS1

Figure 5-50. +125 Volt Regulator, A2A3, Part of Power Supply PSl, Parts Location

Figure 5-50A. Power Supply Regulator Assembly A2, Part of Power Supply PS1

Figure 5-50B. Bracket Subassembly A2MP1, Part of Power Supply PS1

Figure 5-51. - 18 Volt Regulator A1, Part of Power Supply PS1, Parts Location

Figure 5-52. +5 and +18 Volt Regulator A2A1, Part of Power Supply PSl, Parts Location

Figure 5-53. +15 and +24 Volt Regulator A2A2, Part of Power Supply PSl, Parts Location

Figure 5-54. A3 Switching Regulator, Part of Power Supply PSl

TABLE 6-1. LIST OF UNITS

REF DESIG	NAME	PAGE
	Modulator-Synthesizer MD-777/FRT	6-5
Al	Modulator Assembly No. 1	6-6
AlAl	Printed Circuit Board, Modulator Subassembly No. 1	6-7
Al A2	Printed Circuit Board, Modulator Subassembly No. 2	6-9
A2	Modulator Assembly No. 2 Same as Al	6-11
A2A1	Printed Circuit Board, Modulator Subassembly No. 1 Same as AlAl	6-12
A2A2	Printed Circuit Board, Modulator Subassembly No. 2 Same as AlA2	6-14
A 3	Modulator Assembly No. 3 Same as Al	6-16
A3Al	Printed Circuit Board, Modulator Subassembly No. 1 Same as AlAl	6-17
A3A2	Printed Circuit Board, Modulator Subassembly No. 2 Same as AlA2	6-19
A4	Modulator Assembly No. 4 Same as Al	6-21
A4Al	Printed Circuit Board, Modulator Subassembly No. 1 Same as AlAl	6-22
A4A2	Printed Circuit Board, Modulator Subassembly No. 2 Same as AlA2	6-24
A5	Printed Circuit Board Subassembly, Voice Frequency Gate and Keyline Switch	6-26
A6	Frequency Standard	6-28
A7	Auxiliary Frequency Generator Assembly	6-29
A7Al	Printed Circuit Board Subassembly, Standard Selector	6-30
A7A2	Printed Circuit Board Subassembly, 30 MHz Oscillator/Buffer	6-31
A7A3	Printed Circuit Board Subassembly, 30 MHz Phase Locked Loop	6-32
A8	$1.75 \mathrm{MHz}-113.75 \mathrm{MHz}$ Generator Assembly	6-33
A8A1	Printed Circuit Board Subassembly, 113.75 MHz Generator	6-34
A8A2	Printed Circuit Board Subassembly, 1.75 MHz Generator	6-37
A9	Side Carrier Generator Assembly	6-38
A9Al	Printed Circuit Board Subassembly, $1 \mathrm{MHz}-6.29 \mathrm{kHz}$ Divider	6-39
A9A2	Printed Circuit Board Subassembly, Side Carrier Oscillator	6-40
Al0	Printed Circuit Board Subassembly, Transmitter Control No. 1	6-43
Al1	Up Converter Assembly	6-44
AllAl	Printed Circuit Board Subassembly, Up-Converter 1.75 MHz IF	6-45
AllA2	Mixer, Up-Converter Subassembly	6-47
AllA2Al	Printed Circuit Board Subassembly, Up-Converter 113.75 MHz Buffer	6-48
All ${ }^{\text {a }} 3$	Printed Circuit Board Subassembly, Up-Converter Carrier Insertion	6-49
A12	Synthesizer Assembly	6-51
Al2Al	Printed Circuit Board Subassembly, RFlA	6-53
Al2A2	Printed Circuit Board Subassembly, RF3	6-56

TABLE 6-1. LIST OF UNITS (Cont)

REF DESIGN	NAME	PAGE
Al2A3	Printed Circuit Board Subassembly, Digital No. 2	6-59
A12 A4	Printed Circuit Board Subassembly, RFl B	6-61
Al2 A5	Printed Circuit Board Subassembly, RF2	6-63
A12A6	Printed Circuit Board Subassembly, Digital No. 3	6-66
Al2A7	Digital 1 A and 1B Assembly	6-68
Al2A7Al	Printed Circuit Board Subassembly, Digital No. 1A	6-69
A12 A7A2	Printed Circuit Board Subassembly, Digital No. 1 B	6-70
Al 3	Down Converter Assembly	6-71
Al3A1	Not Used	6-72
A13A2	Printed Circuit Board Subassembly, Down-Converter 112 MHz IF Amplifier	6-73
Al3A3	82-110 MHz Amplifier Subassembly	6-74
Al3A3Al	Printed Circuit Board Subassembly, $82-110 \mathrm{MHz}$ Amplifier	6-75
Al 4	Transmitter Gain Control Assembly	6-76
Al4Al	Printed Circuit Board Assembly, TGC No. 1	6-77
Al 4 A2	Printed Circuit Board Assembly, TGC No. 2	6-78
Al5	Band Encoder Assembly	6-79
A15A1	Printed Circuit Board Subassembly, -12 and +15 Volt Regulator	6-80
Al5A2	Printed Circuit Board Subassembly, Band Encoder Board No. 1	6-81
Al 6	Output Amplifier Assembly	6-82
Al6A1	Printed Circuit Board Subassembly, Output Amplifier No. 1	6-83
A16A2	Printed Circuit Board Subassembly, Output Amplifier No. 2	6-84
A17	Printed Circuit Board Subassembly, Transmitter Control No. 2	6-86
Al 8	Modulator-Synthesizer Assembly	6-88
A18AI	Printed Circuit Board Subassembly, Volume Units Meter Amplifier	6-93
A18A2	Printed Circuit Board Subassembly, Fault Board	6-94
A18A3	Frequency Select Board Subassembly	6-96
Al8A4	Printed Circuit Board Subassembly, Transmitter Control	6-97
A18A5	Printed Circuit Board Subassembly, Motor Control	6-98
A18A6	Power Distribution Board Subassembly	6-99
Al9	Filter Panel Assembly, Modulator-Synthesizer	6-100
PSI	Power Supply Assembly	6-101
PsiAl	Printed Circuit Board, Subassembly, -18V Regulator	6-102
PSlA2	Power Supply Regulator Assembly	6-102A
PSlA2MPl	Bracket Subassembly	6-102B
PSiA2Al	+5 and +18 Volt Regulator Subassembly	6-103
PSlA2A2	+15 and +24 Volt Regulator Subassembly	6-105
PS1 A2A3	+125 Volt Regulator Subassembly	6-106
PSl A3	Switching Regulator Subassembly	6-107

TABLE 6-2. MAINTENANCE PARTS LIST

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
FL1 FL2 FL3 FL4 FL5		MODULATOR-SYNTHESIZER MD-777/FRT: Capable of processing up to 4 independent audio inputs simultaneously; each input is handled by 1 of 4 identical audio frequency modules; provides the terminations for the audio input lines and furnishes Linear Amplifier-Power Supply Group a modulated RF excitation signal adjustable between 0 and 250 milliwatts over the frequency range of 2 to $30 \mathrm{MHz} ; 42498 \mathrm{dwg}$ E43966Gl. FILTER, BANDPASS: $1,751,500 \mathrm{MHz} ; 50$ ohms impedance porm 5 pct in parallel with 0 to 25 pf ; 250 MV RMS input level; 42498 dwg A46534-1; 82567 type Fl2266-1. FILTER, BANDPASS: $1,754,500 \mathrm{MHz} ; 50$ ohms impedance porm 5 pct in parallel with 0 to 25 pf ; 250 MV RMS input level; 42498 dwg A46534-2; 82567 type F12266-2. FILTER, BANDPASS: $1,748,500 \mathrm{MHz} ; 50$ ohms impedance porm 5 pct in parallel with 0 to 25 pf ; 250 MV RMS input level; 42498 dwg A46534-3; 82567 type Fl2266-3. FILTER, BANDPASS: $1,745,500 \mathrm{MHz}$; 50 ohms impedance porm 5 pct in parallel with 0 to 25 pf ; 250 MV RMS input level; 42498 dwg A46534-4; 82567 type Fl2266-4. FILTER ASSEMBLY: $112 \mathrm{MHz} ; 1.836$ in. w by 2.875 in. h by $12.508 \mathrm{in} . \lg$ o/a; 42498 dwg A46487-1.	$5-1$ $5-2$ $5-2$ $5-2$ $5-2$ $5-2$

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF } \\
\text { DESIG }
\end{gathered}
\] \& NOTES \& NAME AND DESCRIPTION \& \begin{tabular}{l}
FIG. \\
NO.
\end{tabular} \\
\hline Al

Pl \& \& | MODULATOR ASSEMBLY: Contains two printed circuit boards with all components; audio amplifier board Al and modulator/agc amplifier board A2; 42498 dwg D44117G1. |
| :--- |
| CONNECTOR: MIL type MS18176-1. | \& 5-2

\hline
\end{tabular}

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
AlA2		MODULATOR SUBASSEMBLY NO. 2: Printed circuit board with all components assembled for operation; 42498 dwg D43847Cl.	5-5
Cl		CAPACITOR: MUL type CSl 3BFl05K.	5-7
C 2		CAPACITOR: MIL type CK06BX104K.	$5-7$
C3		CAPACITOR: MIL type CK0tCW222K.	5-7
C. 4		Same as C2.	5-7
C5		CAPACITOR: MLL type Csl 3 BDI 57K.	5-7
C 6		Same as Cz.	5-7
C7		Same as C2.	5-7
C8		CAPACITOR: M1L type CSI 3BE336K.	5-7
C9		CAPACITOR: MIL type CK05CWlo3k.	5-7
C10		Same as C2.	5-7
Cll		Same as C2.	5-7
C12		CAPACITOR: MIL type CSl 3BF476K.	5-7
Cl 3		CAPACITOR: MLL type CSl 3 BF685K.	5-7
C14		Same as C5.	5-7
C15		Same as C2.	5-7
C16		Same as C2.	5-7
Cl7		CAPACITOR: MIL type CK05BX102K.	5-7
CRI		SEMICONDUCTOR: MIL type 1N483B.	5-7
CR2		Same as CRI.	5-7
CR3		SEMICONDUCTOR: MLL type 1 N 3064.	5-7
CR4 thru CR10		Same as CR3.	5-7
CR11		Same as CRI.	5-7
CR12		Same as CR3.	5-7
CR13		Same as CR3.	5-7
CRl 4		Same as CR3.	5-7
CR15		Same as CR3.	5-7
J 1		JACK, TIP: Plastic body; beryllium copper spring contact, gold plated finish; brass terminal; color green; 42498 dwg A42494-1-5; 17117 type 4879-125-5.	5-7
L1		COIL, RF: MIL type MS90537-33.	
L2		COIL, RF: MIL type MS90537-41.	5-7
L3		COIL, RF: MLL type MS75008-28.	5-7
L4		COIL, RF: MIL type MS90537-37.	5-7
L. 5		Same as L2.	5-7
Q1		TRANSISTOR: MIL type 2 N2219.	5-7
Q2		TRANSISTOR: MLL type 2N930.	$5-7$ $5-7$
Q3 Q4		Same as Ql. ${ }_{\text {TRANSISTOR: }}$ MIL type 2 N2905.	5-7
Q5		Same as Q2.	5-7
Q6		TRANSISTOR: MLL type 2N2907.	5-7
Q7		Same as Q2.	5-7
Q8		Same as Q2.	5-7
Q9		Same as Q2.	5-7
R1		RESISTOR: MIL type RC07GF102K.	5-7
R2		RESISTOR: MIL type RC07GF562K.	5-7
R3		Same as Rl.	5-7
R4		RESISTOR: MIL type RC07GF273K.	5-7
R5		RESISTOR: MIL type RC07GF103K.	5-7
R6		RESISTOR: MIL type RC07GFl01J.	5-7
R7		RESLSTOR: MIL type RC07GF272K.	5-7
R8		RESISTOR: MLI type RJ11BP501.	5-7

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

\begin{tabular}{|c|c|c|c|}
\hline $$
\begin{gathered}
\text { REF } \\
\text { 1)ESIG }
\end{gathered}
$$ \& NOTES \& NAME AND DESCRILTION \& $$
\begin{aligned}
& \text { FIG. } \\
& \text { NO. }
\end{aligned}
$$

\hline A1A2 (cont) \& \& \&

\hline R9 \& \& RESISTOR: MIL type RC07GF221K. \& 5-7

\hline R10 \& \& RESISTOR: MIL type RC07GF182K. \& 5-7

\hline R11 \& \& Same as R5. \& 5-7

\hline R12 \& \& Same as R5. \& 5-7

\hline R13 \& \& RESISTOR: MIL type RC07GF180K. \& 5-7

\hline R14 \& \& Same as R13. \& 5-7

\hline R15 \& \& RESISTOR: MIL type RC07GF152K. \& 5-7

\hline R16 \& \& RESISTOR: MIL type RC07GF681K. \& 5-7

\hline 1217 \& \& RESISTOR: MIL type RC07GF270K. \& 5-7

\hline R18 \& \& Same as R7. \& 5-7

\hline R19 \& \& RESISTOR: MIL type RC07GF153K. \& 5-7

\hline R20 \& \& RESISTOR: MIL type RC07GF222K. \& 5-7

\hline R21 \& \& Same as R1. \& 5-7

\hline R22 \& \& RESISTOR: MIL type RC07GF334J. \& 5-7

\hline R23 \& \& RESISTOR: MIL type RC07GF394J. \& 5-7

\hline R24 \& \& RESISTOR: MIL type RC07GF273J. \& 5-7

\hline R25 \& \& RESISTOR: MIL type RC07GFI00K. \& 5-7

\hline R26 \& \& RESISTOR: MIL type RC07GF471J. \& 5-7

\hline R27 \& \& RESISTOR: MIL type RC07GF822J. \& 5-7

\hline R28 \& \& RESISTOR: MIL type RC07GF270K. \& 5-7

\hline R29 \& \& Same as R28. \& 5-7

\hline R30 \& \& Same as R28. \& 5-7

\hline R31 \& \& RESISTOR: MIL type RC07GF472K. \& 5-7

\hline R32 \& \& RESISTOR: MIL type RJ24CX101. \& 5-7

\hline Tl \& \& TRANSFORMER, AF: 2 windings; 50 MW primary input; primary and secondary windings 10,000 ohms porm 10 pct impedance and center tapped; 42498 dwg A43450-1. \& 5-7

\hline T2 \& \& TRANSFORMER, RF: 2 windings, primary winding 20 uh porm 20 pct at 25 deg C , 50 ohms impedance, $0 \mathrm{ma}, 0.3 \mathrm{ohm}$ dc resistance; secondary winding 200 ohms impedance, $0 \mathrm{ma}, 0.2$ ohm dc resistance; 42498 dwg A45391-1. \& $5-7$

$5-7$

\hline T3 \& \& Same as T2. \& 5-7

\hline
\end{tabular}

(ABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
A2Al (cont)			
R15		RESISTOR: MIL type RC07GF680J.	5-6
R16		RESISTOR: MIL type RC05GF563K.	5-6
R17		Same as Rl.	5-6
R18		RESISTOR: MIL type RC05GF392K.	5-6
R19		RESISTOR: MIL type RC05GF101J.	5-6
R20		RESISTOR: MIL type RC05GF682K.	5-6
R21		RESISTOR: MIL type RC05GF181J.	5-6
R22		RESISTOR: MIL type RC05GFl83K.	5-6
R23		RESISTOR: MIL type RC05GF123K.	5-6
R24		RESISTOR: MIL type RC05GFl22K.	5-6
R25		RESISTOR: MIL type RC05GF151K.	5-6
R26		RESISTOR: MIL type RC05GF152K.	5-6
R27		RESISTOR: MIL type RC05GF103J.	5-6
R28		Same as R27.	5-6
R29		RESISTOR: MIL type RC05GF100K.	5-6
R30		Same as R29.	5-6
R31		Same as R7.	5-6

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
A2A2		MODULATOR SUBASSEMBLY NO. 2: Same as Al A2.	5-5
Cl		CAPACITOR: MIL type CSl 3BFl05K.	5-7
C2		CAPACITOR: MIL type CK06BX104K.	5-7
C 3		CAPACITOR: MIL type CK06CW222K.	5-7
C4		Same as C2.	5-7
C 5		CAPACITOR: MIL type CSl 3BDI57K.	5-7
C6		Same as C2.	5-7
C7		Same as C2.	5-7
C8		CAPACITOR: MIL type CS13BE336K.	5-7
C9		CAPACITOR: MIL type CK05CWl03K.	5-7
Cl10		Same as C2.	5-7
CII		Same as C2.	5-7
C12		CAPACITOR: MIL type CSl 3 BF476K.	5-7
Cl 3		CAPACITOR: MIL type CSl 3BF685K.	5-7
Cl 4		Same as C5.	5-7
C15		Same as C2.	5-7
C16		Same as C2.	5-7
C17		CAPACITOR: MIL type CK05BXI02K.	5-7
CR1		SEMICONDUCTOR: MIL type IN483B.	5-7
CR2		Same as CRI.	5-7
CR3		SEMICONDUCTOR: MIL type 1N3064.	5-7
CR4 thru CRIO		Same as CR3.	5-7
CR11		Same as CRl.	5-7
CR12		Same as CR3.	5-7
CR13		Same as CR3.	5-7
CR14		Same as CR3.	5-7
CR15		Same as CR3.	5-7
$J 1$		JACK, TIP: Plastic body; beryllium copper spring contact, gold plated finish; brass terminal; color green; 42498 dwg A42494-1-5; 17117 type 4879-125-5.	5-7
L1		COIL, RF: MIL type MS90537-33.	5-7
L2		COIL, RF: MIL type MS90537-41.	5-7
L. 3		COIL, RF: MIL type MS75008-28.	5-7
L. 4		COIL, RF: MIL type MS90537-37.	5-7
L. 5		Same as L2.	5-7
Q1		TRANSISTOR: MIL type 2N2219.	5-7
Q2		TRANSISTOR: MIL type 2 N930.	5-7
Q3		Same as Q1.	5-7
Q4		TRANSISTOR: MIL type 2 N2905.	5-7
Q5		Same as Q2	5-7
Q6		TRANSISTOR: MIL type 2N2907.	5-7
Q7		Same as Q2.	5-7
Q8		Same as Q2.	5-7
Q9		Same as Q2.	5-7
R1		RESISTOR: MIL type RC07GF102K.	5-7
R2		RESISTOR: MIL type RC07GF562K.	5-7
R 3		Same as Rl.	5-7
R4		RESISTOR: MIL type RC07GF273K.	5-7
R5		RESISTOR: MIL type RC07GFl03K.	5-7
R6		RESISTOR: MIL type RC07GFl01J.	5-7
R7		RESISTOR: MIL type RC07GF272K.	$5-7$ $5-7$
R8		RESISTOR: MIL type RJIlBP501.	5-7

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

\begin{tabular}{|c|c|c|c|}
\hline $$
\begin{gathered}
\text { REF } \\
\text { DESIG }
\end{gathered}
$$ \& NOTES \& NAME AND DESCRIPTION \& $$
\begin{aligned}
& \text { FIG. } \\
& \text { NO. }
\end{aligned}
$$

\hline A $2 \mathrm{~A} 2($ cont $)$ \& \& \&

\hline R9 \& \& RESISTOR: MIL type RC07GF221K. \& 5-7

\hline R10 \& \& RESISTOR: MLL type RC07GFl82K. \& 5-7

\hline Rll \& \& Same as R 5. \& 5-7

\hline R12 \& \& Same as R 5. \& 5-7

\hline R13 \& \& RESISTOR: MLL type RC07GFI80K. \& 5-7

\hline R14 \& \& Same as Rl3. \& 5-7

\hline R15 \& \& RESISTOR: MLL type RC07GF152K. \& 5-7

\hline R16 \& \& RESISTOR: MLL type RC07GF681K. \& 5-7

\hline R17 \& \& RESISTOR: MLL type RC07GF270K. \& 5-7

\hline R18 \& \& Same as R7. \& 5-7

\hline R19 \& \& RESISTOR: MIL type RC07GEI53K. \& 5-7

\hline R20 \& \& RESISTOR: MIL type RC07GF222K. \& 5-7

\hline R21 \& \& Same as Rl. \& 5-7

\hline R22 \& \& RESISTOR: MIL type RC07GF334J. \& 5-7

\hline R23 \& \& RESISTOR: MUL type RC07GF394J. \& 5-7

\hline R24 \& \& RESISTOR: MIL type RC07GF273J. \& 5-7

\hline R25 \& \& RESISTOR: MLL type RC07GF100K. \& 5-7

\hline R26 \& \& RESISTOR: MIL type RC07GF4713. \& 5-7

\hline R27 \& \& RESISTOR: MIL type RC07GF822.J. \& 5-7

\hline R28 \& \& RESISTOF: MIL type RC07GF270K. \& 5-7

\hline R29 \& \& Same as P28. \& 5-7

\hline R30 \& \& Same as R28. \& 5-7

\hline R31 \& \& RESISTOR: MIL type RCO7GF472K. \& 5-7

\hline R32 \& \& RESISTOR: MIL type RJ24CXI01. \& 5-7

\hline TI \& \& TRANSFORMER, AF: 2 windings; 50 MW primary input; primary and secondary windings 10,000 ohms porm 10 pct impedance and center tapped; 42498 dwg A43450-1. \& 5-7

\hline T2

T3 \& \& | TRANSFORMER, RF: 2 windings, primary winding 20 uh porm 20 pet at 25 deg C, 50 ohms impedance, 0 ma, 0.3 ohm dc resistance; secondary winding 200 ohms impedance, 0 ma, 0.2 ohm dc resistance; 42498 dwg A45391-1. |
| :--- |
| Same as T2. | \& $5-7$

$5-7$

\hline
\end{tabular}

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

| REF |
| :---: | :---: | :---: | :---: | :---: |
| DESIG | NOTES | NAME AND DESCRIPTION |
| :---: |
| A3 |
| Pl |

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
A3A2		MODULATOR SUBASSEMBLY NO. 2: Same as A1A2.	5-5
Cl		CAPACITOR: MIL type CSl3BF105K.	5-7
C 2		CAPACITOR: MLL type CK06BXI04K.	5-7
C3		CAPACITOR: MIL type CK06CW222K.	5-7
C4		Same as C2.	5-7
C5		CAPACITOR: MIL type CSI 3BD157K.	5-7
C6		Same as C2.	5-7
C7		Same as C2.	5-7
C8		CAPACITOR: MIL type CSI 3BE336K.	5-7
C9		CAPACITOR: MIL type CK05CWl03K.	5-7
C10		Same as C2.	5-7
Cl1		Same as C2.	5-7
Cl 2		CAPACITOR: MIL type CSI 3BF476K.	5-7
C13		CAPACITOR: MIL type CSI 3BF685K.	5-7
C14		Same as C5.	5-7
C15		Same as C2.	5-7
C16		Same as C2.	5-7
C17		CAPACITOR: MIL type CK05BX102K.	5-7
CR1		SEMICONDUCTOR: MIL type 1 N483B.	5-7
CR2		Same as CR1.	5-7
CR3		SEMICONDUCTOR: MIL type lN3064.	5-7
CR4 thru CR10		Same as CR3.	5-7
CR11		Same as CRI.	5-7
CR12		Same as CR3.	5-7
CR13		Same as CR3.	5-7
CR14		Same as CR3.	5-7
CR15		Same as CR3.	5-7
J1		JACK, TIP: Plastic body; beryllium copper spring contact, gold plated finish; brass terminal; color green; 42498 dwg A42494-1-5; 17117 type 4879-125-5	5-7
L1		COIL, RF: MLL type MS90537-33.	5-7
L2		COII, RF: MIL type MS90537-41.	5-7
L3		COIL, RF: MIL type MS75008-28.	$5-7$ $5-7$
L4		COIL, RF: MIL type MS90537-37.	5-7
L5		Same as L2.	5-7
Q1		TRANSISTOR: MIL type 2 N 2219.	5-7
Q2		TRANSISTOR: MIL type 2N930.	5-7
Q3		Same as Q1.	$5-7$ $5-7$
Q4		TRANSISTOR: MIL type 2N2905. Same as Q2.	$5-7$ $5-7$
Q6		TRANSISTOR: MIL type 2N2907.	5-7
Q7		Same as Q2.	5-7
Q8		Same as Q2.	5-7
Q9		Same as Q2.	5-7
Ri		RESISTOR: MIL type RC07GF102K.	5-7
R2		RESISTOR: MIL type RC07GF562K.	5-7
R3		Same as Rl.	5-7
R4		RESISTOR: MIL type RC07GF273K.	5-7
R5		RESISTOR: MIL type RC07GFI03K.	5-7
R6		RESISTOR: MIL type RC07GF101J.	5-7
R7 R8		RESISTOR: MIL type RC07GF272K. RESISTOR: MIL type RJ11BP501.	$5-7$ $5-7$

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
A4A2		MODULATOR SUBASSEMBLY NO. 2: Same as AlA2.	5-5
Cl		CAPACITOR: MIL type CSl 3 BFI05K.	5-7
C2		CAPACITOR: MIL type CK06BXI 04 K .	5-7
C 3		CAPACITOR: MIL type CK06CW222K.	5-7
C4		Same as C2.	5-7
C 5		CAPACITOR: MLL type CSi 3BDl57K.	5-7
C6		Same as C2.	5-7
C7		Same as C2.	5-7
C8		CAPACITOR: MIL type CS13BE336K.	5-7
C9		CAPACITOR: MIL type CK05CW103K.	5-7
Clo		Same as C2.	5-7
C11		Same as C2.	5-7
C 12		CAPACITOR: MIL type CSl 3 BF 476 K .	5-7
C13		CAPACITOR: MIL type CSl 3 BF 685 K .	5-7
Cl 4		Same as C5.	5-7
C 15		Same as C2.	5-7
C 16		Same as C2.	5-7
C17		CAPACITOR: MIL type CK05BX102K.	5-7
CR1		SEMICONDUCTOR: MLL type 1N483B.	5-7
CR2		Same as CRI.	5-7
CR3		SEMICONDUCTOR: MIL type 1 N3064.	5-7
CR4 thru CR10		Same as CR3.	5-7
CR11		Same as CR1.	5-7
CR12		Same as CR3.	5-7
CR13		Same as CR3.	5-7
CR14		Same as CR3.	5-7
CR15		Same as CR3.	5-7
J 1		JACK, TIP: Plastic body; beryllium copper spring contact, gold plated finish; brass terminal; color green; 42498 dwg A42494-1-5; 17117 type 4879-125-5	5-7
L1		COIL, RF: MIL type MS90537-33.	5-7
L, 2		COIL, RF: MIL type MS90537-41.	5-7
L. 3		COIL, RF: MIL type MS75008-28.	5-7
L4		COIL, RF: MIL type MS90537-37.	5-7
L 5		Same as L2.	5-7
Q1		TRANSISTOR: MIL type 2N2219.	5-7
Q2		TRANSISTOR: MIL type 2N930.	5-7
Q3		Same as Q1.	5-7
Q4		TRANSISTOR: MIL type 2 N 2905.	5-7
Q 5		Same as Q2.	5-7
Q6		TRANSISTOR: MLL type 2N2907.	5-7
Q7		Same as Q2.	5-7
Q8		Same as Q2.	5-7
Q9		Same as Q2.	5-7
R1		RESISTOR: MIL type RC07GF102K.	5-7
R2		RESISTOR: MIL type RC07GF562K.	5-7
R3		Same as Rl.	5-7
R4		RESISTOR: MIL type RC07GF273K.	5-7
R 5		RESISTOR: MIL type RC07GFl03K.	5-7
R6		RESISTOR: MIL type RC07GF101J.	5-7
R 7		RESISTOR: MIL type RC07GF272K.	5-7
R.8		RESISTOR: MIL type RJ11BP501.	5-7

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
A4AZ (cont)			
R9		RESISTOR: MIL type RC07GF221K.	5-7
R10		RESISTOR: MIL type RC07GFl82K.	5-7
R11		Same as R5.	5-7
R12		Same as R5.	5-7
R13		RESISTOR: MIL type RC07GF180K.	5-7
R14		Same as R13.	5-7
R15		RESISTOR: MIL type RC07GF152K.	5-7
R16		RESISTOR: MIL type RC07GF681K.	5-7
R17		RESISTOR: MIL type RC07GF270K.	5-7
R18		Same as R7.	5-7
R19		RESISTOR: MIL type RC07GF153K.	5-7
R20		RESISTOR: MJL type RC07GF222K.	5-7
R21		Same as R1.	5-7
R22		RESISTOR: MIL type RC07GF334J.	5-7
R23		RESISTOR: MIL type RC07GF394J.	5-7
R24		RESISTOR: MIL type RC07GF273J.	5-7
R25		RESISTOR: MIL type RC07GFl00K.	5-7
R26		RESISTOR: MIL type RC07GF471J.	5-7
R27		RESISTOR: MIL type RC07GF822J.	5-7
R28		RESISTOR: MIL type RC07GF270K.	5-7
R29		Same as R28.	5-7
R30		Same as R28.	5-7
R31		RESISTOR: MIL type RC07GF472K.	5-7
R32		RESISIOR: MIL type RJ24CX101.	5-7
T1		TRANSFORMER, AF: 2 windings; 50 MW primary input; primary and secondary windings 10,000 ohms porm 10 pct impedance and center tapped; 42498 dwg A43450-1.	5-7
T2		TRANSFORMER, RF: 2 windings, primary winding 20 uh porm 20 pct at 25 deg C, 50 ohms impedance, $0 \mathrm{ma}, 0.3$ ohm dc resistance; secondary winding 200 ohms impedance, $0 \mathrm{ma}, 0.2$ ohm dc resistance; 42498 dwg A45391-1.	5-7
T3			5-7

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
A5		VOICE FREQUENCY GATE AND KEYLINE	5-2
		SWITCH SUBASSEMBLY: Contained on one printed	
		transmission (VOX) by disabling the carrier and	
		modulator circuits; muting the RF (external) power amplifier, and opening and closing the keyline cir-	
		cuit in response to the presence or absence of voice	
		modulation; an adjustable delay (100 microseconds to 3 seconds) prevents the carrier from being turned	
		off during speech pauses; 42498 dwg D 44745 Gl .	
C 1		CAPACITOR: MIL type CK06CW103K.	5-8
C 2		CAPACITOR: MIL type CK06BX104K.	5-8
C3		CAPACITOR: MLL type CSl 3 BF685K.	5-8
C4		Same as C3.	5-8
C 5		CAPACITOR: MIL type CSl 3 BFl06K.	5-8
C6		CAPACITOR: MIL type CK06CW472K.	5-8
C 7		Same as C3.	5-8
C8		Same as C3.	5-8
C 9		Same as C3.	5-8
Cl0		CAPACITOR: MIL type CSl 3BF476K.	5-8
Cll		Same as Cl.	5-8
C12		CAPACITOR: MIL type CL65BH151MP3.	5-8
CRi.		SEMICONDUCTOR: MIL type 1N914.	5-8
CR2 thru CR9		Same as CRl.	5-8
K1		RELAY, RESONANT REED: 3.0 kHz resonant frequency; DP normally open; $0.5 \mathrm{amp}, 250 \mathrm{vdc} ; 42498$ dwg A44195-1; 12965 type MG-2A.	5-8
L1		COIL, RF: MLL type MS90537-45.	5-8
Q1		TRANSISTOR: MLL type 2N2222A.	5-8
Q2		TRANSISTOR: MIL type 2N2323A.	5-8
Q3		Same as Q1.	5-8
Q4		TRANSISTOR: MLL type 2N491A.	5-8
Q5 thru Q9		Same as Q1.	5-8
Q10		TRANSISTOR: MIL type 2 N2219.	5-8
Q11		TRANSISTOR: MIL type 2 N2905.	5-8
Q12		TRANSISTOR: MIL type 2N2907.	5-8
R1		RESISTOR: MIL type RC07GFl55K.	5-8
R2		RESISTOR: MIL type RC07GF684K.	5-8
R3		RESISTOR: MIL type RC07GF271K.	5-8
R4		RESISTOR: MIL type RC07GFl03K.	5-8
R 5		RESISTOR: MIL type RC07GF471K.	5-8
R6		RESISTOR: MIL type RC07GF472K.	5-8
R7		RESISTOR: MIL type RC07GF101K.	5-8
R8		RESISTOR: MIL type RC07GF222K.	5-8
R9		RESISTOR: MIL type RT12C2P502.	5-8
R10		RESISTOR: MIL type RC07GF181K.	5-8
R11		RESISTOR: MIL type RC07GF122K.	5-8
R12		RESISTOR: MIL type RC07GF221K.	5-8
R13		Same as R8.	5-8
R14		Same as R8.	5-8
R15		RESISTOR: MIL type RC07GF473K.	5-8
R16		RESISTOR: MIL type RC07GF182K.	5-8
R17		Same as R4.	5-8

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
A7^t		IRINTED CLRCUIT BOARD SUBASSEMBLY, $30 \mathrm{MH} \%$ OSC/BUNFER: 42498 dwe D46 $236(\mathrm{C} 1$.	5.10
Cl		CAPACLHOR: ML, type CKOFCWIO2K.	5.1%
C 2		Same as Cl.	5-1\%
C3		Same as Cl.	5-12
C 4		CAPACITOR: MLL type CM05CD050D03.	5-12
C 5		CAPACITOR: MIL type CM05ED240J03.	5-12
C6		CAPACITOR: MIL type CM05FDI81J03.	5-12
C7 thru C9		Same as Cl.	5-12
C 10		CAPACITOR: MLL type CK05CW470K.	5-12
C11		Same as Clo.	5-12
C12		Same as Clo.	5-12
C13		CAPACITOR: MIL type CM05ED270J03.	5-12
C14		Same as C1.	5-12
Cl5 thru Cl8		Same as Cl.	5-12
CR1		SEMICONDUCTOR: Siiicon; JEDEC case style DO-14; 42498 dwg A43737-3; 01281 type PCl251.	5-12
Ll		COIL, RF: MIL type MS90537-29.	5-12
L2		Same as Lu.	5-12
Q1		TRANSISTOR: MLL type 2N918.	5-12
Q2		Same as Q1.	5-12
Q3		TRANSISTOR: P-N-P polarity; TEDEC case style TO-18; 42498 dwg A43085-1; 14433 type TS1 847.	5-12
Q4		TRANSISTOR: MIL type 2 N2222.	5-12
Q5		Same as Q4.	5-12
Q6		Same as 24.	5-12
R1		RESISTDR: PhL type RCO7GF103K.	5-12
R2		RESIST0R: Mll type Rco76F272K.	5-12
R3		RESISTOR: MIL type RCO7GF822K.	5-12
R4		RESISTOA: MIL type RCO7GF562K.	5-12
R5		Same as R2.	5-12
R6		RESISTOR: MIL type RCO7GF561k.	5-12
R7		RESISTDR: MIL type RCO7GF301K.	5-12
R8		Stme as P1.	5-12
R9		RESISTOR: MIL type RCO7GF182K.	5-12
R10		RESISTOR: MIL type RCO7GF471K.	5-12
R11		Same 解 R3.	5-12
R12		RESISTOR: MIL type RCOTGF122K.	$5-12$ $5-12$
R13 R14		Same as R3. Same as R12.	5-12
R15		Same as R3.	5-12
R16		Same as R12.	5-12
R17		RESISTOR: MIL type RC67GF102K.	5-12
R18		RESISTOR: MIL type RCO7GF221K.	5-12
R19		Same as R17.	5-12
R20		Same as R18.	5-12
R21		Same as R17	5-12
R22		Same as Rl8	5-12
Y 1		CRYSTAL UNIT, QUARTZ: 30.000000 MHz , porm .005 pct frequency stability, 20 pf load capacitance, 30 ohms max resistance, fundamental, parallel mode of oscillation; 42498 dwg A46436-1.	5-12

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
\& \text { REF } \\
\& \text { DESIG }
\end{aligned}
\] \& NOTES \& NAME AND DESCRIPTION \& \begin{tabular}{l}
FIG. \\
NO.
\end{tabular} \\
\hline A8

P1 \& \& $1.75 \mathrm{MHz}-113.75 \mathrm{MHz}$ GENERATOR ASSEMBLY: Contains two separate but functionally related circuits; develops the 1.75 MHz frequency for use by the channel Al and Bl modulators, and the 113.75 MHz generator circuitry; the 113.75 generator develops the 113.75 MHz frequency used by the upconverter from the 1.75 MHz signal delivered by the 1.75 MHz generator; 42498 dwg D 44126 Gl . CONNECTOR: MIL type MS18176-1. \& $$
5-1
$$

$$
5-14
$$

\hline
\end{tabular}

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
A8Al		PRINTED CIRCUIT BOARD SUBASSEMBLY,	5-14
		$113.75 \mathrm{MHz} \mathrm{GENERATOR:} 42498 \mathrm{dwg}$ D44000Gl.	
Cl		CAPACITOR: MIL type CK05CWl02K.	5-15
C2		Same as Cl.	5-15
C 3		Same as Cl.	5-15
C4		CAPACITOR: MIL type CK06BX104K.	5-15
C 5		Same as Cl.	5-15
C6		CAPACITOR: MIL type CM05FCl21J03.	5-15
C. 7		CAPACITOR: MIL type CM05FC050J03.	5-15
C8		Same as C6.	5-15
C9		Same as Cl.	5-15
C10		Same as Cl.	5-15
Cll		CAPACITOR, VARIABLE, CERAMIC: 3.0-15.0 pf, $200 \mathrm{vdc} \cdot 42498$ dwg A42545-9; 72982 type	5-15
		200 vdc;42498 dwg A42545-9; 72982 type 538-016-E2P0-110R.	
C 12		CAPACITOR: MIL type CSl 3 BC 396 K .	5-15
C13		CAPACITOR: MIL type CK06CWl03K.	5-15
C14		Same as Cl3.	5-15
C15		Same as Cl3.	5-15
C16		CAPACITOR: MIL type CSl3BF156K.	5-15
C17		CAPACITOR: MIL type CM05C100K03.	5-15
C18		CAPACITOR: MIL type CM05F680J03.	5-15
C19		CAPACITOR: MIL type CK05CW681K.	5-15
C20 thru C23		Same as Cl.	5-15
C24		CAPACITOR: MIL type CM05E360J03.	5-15
C25		CAPACITOR: MLL type CM05ED680J03	5-15
C26		Same as Cl.	5-15
C 27		CAPACITOR: MIL type CS13BH224K.	5-15
C 28		CAPACITOR: MIL type CM05E221J03.	5-15
C29		CAPACITOR: MIL type CM05El01J03.	5-15
C30		Same as Cl3.	5-15
C 31		Same as C29.	5-15
C32		CAPACITOR: MIL type CSI3BFl05K.	5-15
C33		CAPACITOR: MIL type CM05El51J03.	5-15
C34		CAPACITOR: MIL type CM05E330J03.	5-15
C35		CAPACITOR: MIL type CC20UJ560G.	5-15
C36		CAPACITOR: MIL type CBllRD221K.	5-15
C37		Same as Cl.	5-15
C38		Same as Cl.	5-15
C39		CAPACITOR: MIL type CK05CW271K.	5-15
C40		Same as C39.	5-15
C41		Same as C4.	5-15
CR1		SEMICONDUCTOR: MIL type 1 N914.	5-15
CR2		SEMICONDUCTOR: P-N-P-N 4 layer polarity; 42498 dwg A43736-1; 04713 type M4L3053.	5-15
CR3		SEMICONDUCTOR: Silicon; JEDEC case style DO-14; 42498 dwg A43737-3; 01281 type PC1251.	5-15
J		JACK, TIP: 1,000V RMS; nylon body; gold plated contacts; color red; 42498 dwg A47778-2; 00779 type 3-582340-2.	5-15
L. 1		COIL, RF: $0.31 \mathrm{uh}, \mathrm{Q} 50$ at $8.1 \mathrm{MHz}, 150 \mathrm{ma}$, 185 MHz min self resonant frequency, 0.46 ohm dc resistance; 42498 dwg A43469-17.	5-15

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
A8A1 (cont)			
L2		COIL, RF: MIL type MS90537-45.	5-15
L3		COIL, RF: MLL type MS90537-33.	5-15
L. 4		COLL, RF: $117 \mathrm{MHz}, 1,000 \mathrm{ma}, 0.01$ ohm dc resistance 400 MHz min self resonant frequency; 42498 dwg A42818-3.	5-15
Q1		TRANSISTOR: F-N-P polarity; JEDEC case style TO-18; 42498 dwg A43085-1; 14433 type TS1 847.	5-15
Q2		TRANSISTOR: Mİ type 2N2857.	5-15
Q3		TRANSISTOR: MIL type 2N2907.	5-15
Q4		TRANSISTOR: MIL type 2 N 2222.	5-15
Q5		Same as Ql.	5-15
Q6		Same as Q1.	5-15
Q7		Same as Q2.	5-15
Q8		Same as Q1.	5-15
Q9		Same as Q2.	5-15
Q10		Same as Q4.	5-15
Q11		Same as Q1.	5-15
Q12		TRANSISTOR: MIL type 2N708.	5-15
Q13		Same as Ql.	5-15
R1		RESISTOR: MIL type RCO7GF222d.	5-15
R2		NOT USED	5-15
R3		RESISTOR: MIL RCO7GF151J.	5-15
R4		Same as Rl.	5-15
R5		RESISTOR: M1L type RCO7GF470J.	5-15
R6		Same as R2.	5-15
R7		RESISTOP: MIL type RC07GF103J.	5-15
R8		Same as R7.	5-15
R9		RESISTOR: MIL type RC07GF122J.	5-15
R10		Same as R7.	5-15
Rll		Same as R7.	5-15
R12		Same as R9.	5-15
R13		RESISTOR: MII type RC07GF561J.	5-15
R14		Same as R13,	5-15
R15		RESISTOR: MIL type RC07GF821 J.	5-15
R16		RESISTOR: MIL type RC07GF560J.	5-15
R17		RESISTOR: MIL type RCO7GF101d.	5-15
R18		Same as R13.	5-15
R19		RESISTOR: MIL type RCO7GF102J.	5-15
R20		Same as R19.	5-15
R21		RESISTOR: MIL type RCO7GF471J.	5-15
R22		RESISTOR: MIL type RC07GF221J.	5-15
R23		RESISTOR: MIL type RCO7GF183⿺.	5-15
R24		Same as R7.	5-15
R25		RESISTOR: MIL type RCO7GF472J.	5-15
R26		Same as R22.	5-15
R27		Sarne as R15.	5-15
R28		Same as R3.	5-15
R29		RESISTOR: MIL type RC07GF391J.	5-15
R30		Same as R3.	5-15
R31		RESISTOR: MIL type RCO7GF332J.	5-15
R32		Same as R7.	5-15
R33		RESISTOR: MIL type RCO7GF681J.	5-15

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
$\wedge 8 \wedge 1$ (cont)			
R34		RESISTOR: MIL type RC07GF271J.	5-15
R35		Same as R34.	5-15
R36		Same as R5.	5-15
R37		RESISTOR: MIL type RC07GF682J.	5-15
R38		Same as R17.	5-15
R39		Same as R7.	5-15
R40		RESISTOR: MLL type RC07GF392J.	5-15
R41		Same as R7.	5-15
R42		Same as R29.	5-15
R43		Same as R3.	5-15
R.4.4		RESISTOR: MIL type RC07GF272J.	5-15
R45		Same as R29.	5-15
R46		RESISTOR: MIL type RC07GF331J.	5-15
R47		Same as Rl6.	5-15
R48		Same as R7.	5-15
R49		RESIS TOR: MIL type RC07GF393J.	5-15
R 50		Same as Rl9.	5-15
R51		Same as R16.	5-15
R52		RESISTOR: MIL type RC07GF121J.	5-15
R53		Same as R7.	5-15
R54		Same as R7.	5-15
R55		Same as Rl3.	5-15
Tl		TRANSFORMER, RF: 2 windings; primary winding 0.31 uh , Q 95 at 25 MHz , 160 MHz min self resonant frequency, $150 \mathrm{ma}, 0.16 \mathrm{ohm}$ dc resistance; secondary winding 0.46 ohm dc resistance; 42498 dwg A45384-2.	5-15
T2		TRANSFORMER, RF: 2 windings; primary winding $0.12 \mathrm{uh}, 250 \mathrm{MHz}$ min self resonant frequency, 22 ma, 0.1 ohm dc resistance; secondary winding 0.03 ohm dc resistance; 42498 dwg A42748-1.	5-15
T3		TRANSFORMER, RF: 2 windings; primary winding $9 \mathrm{uh}, 28 \mathrm{MHz}$ min self-resonant frequency, 100 ma , 0.4 ohm dc resistance; secondary winding 0.2 ohm dc resistance; 42498 dwg A42819-5.	5-15
7.1		INTEGRATED CIRCUIT, FLIP FLOP: 2.7v output high voltage, 0.4 v output low voltage, 1.7 v input high voltage, 0.9 v input low voltage; 42498 dwg A45732-1; 14433 type TTUL9001.	5-15
\% 22		Same as Zl.	$5-15$
2.3		MIXER, RF: Fl input $112 \mathrm{MHz}, \mathrm{F} 2$ input 117 MHz , F 3 output $5 \mathrm{MHz}, 50$ ohms dc resistance; 42498 dwg A42962-5.	5-15
7.4		MIXER, RF: F1 input $15 \mathrm{MHz}, \mathrm{F} 2$ input $10 \mathrm{MHz}, \mathrm{F} 3$ output $5 \mathrm{MHz}, 50$ ohms de resistance; 42498 dwg A42962-2.	5-15

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO .
A8A2		PRINTED CIRCUIT BOARD SUBASSEMBLY, 1.75 MHz GENERATOR: 42498 dwg D 43919 Gl.	5-14
Cl		CAPACITOR: MIL type CS13BE156K.	5-16
C2 thru C4		Same as Cl.	5-16
C5		CAPACITOR: MIL type CSl3BC396K.	5-16
C6		CAPACITOR: MIL type CM05FCl01J03.	5-16
C7		CAPACITOR: MIL type CM05FC331J03.	5-16
C8		CAPACITOR: MIL type CM05FC050J03.	5-16
C9		Same as C7.	5-16
Cl0		CAPACITOR: MLL type CK06BX104K.	5-16
C11		CAPACITOR: MIL type CK06CWl03K.	5-16
C12		Same as C5.	5-16
Cl 13		CAPACITOR: MIL type CM06FC272J03.	5-16
Cl4		Same as Clo.	5-16
Cl 5		Same as Cl0.	5-16
L1		COIL, RF: $6.3 \mathrm{uh}, Q 50$ at $7.9 \mathrm{MHz}, 18 \mathrm{MHz} \min$ self resonant frequency, $40 \mathrm{ma}, 0.5 \mathrm{ohm}$ dc resistance; 42498 dwg A45381-5.	5-16
L2		COIL, RF: $6.3 \mathrm{uh}, \mathrm{Q} 50$ at $7.9 \mathrm{MHz}, 18 \mathrm{MHz}$ min self resonant frequency, $40 \mathrm{ma}, 0.5 \mathrm{ohm} \mathrm{dc}$ resistance; tapped; 42498 dwg A45381-6.	5-16
Q1		TRANSISTOR: MIL type 2 N2222.	5-16
Q2 thru Q6		Same as Ql.	5-16
Q7		TRANSISTOR: MIL type 2 N 2219.	5-16
R1		RESISTOR: MIL type RC07GFl02K.	5-16
R2		RESISIOR: MIL type RC07GF682K.	5-16
R3		RESISTOR: MIL type RC07GF561K.	5-16
R4		Same as R3.	5-16
R5		RESISTOR: MIL type RC07GF471K.	5-16
R6		Same as R1.	5-16
R7		RESISTOR: MIL type RC07GF221K.	5-16
R8		RESISTOR: MIL type RC07GF331K.	5-16
R9		Same as R8.	5-16
R10		RESISTOR: MIL type RC07GF271K.	5-16
R11		RESISTOR: MIL type RC07GF222K.	5-16
R12		Same as R1.	5-16
R13		RESISTOR: MIL type RC07GFl23K.	5-16
R14		RESISTOR: MIL type RC07GF562K.	5-16
R15		Same as Rl.	5-16
R16		RESISTOR: MIL type RC07GF121K.	5-16
R17		RESISTOR: MIL type RC07GF151K.	5-16
R18		RESISTOR: MIL type RT22C2P101.	5-16
T1		Not used.	5-16
T2		TRANSFORMER, RF: 2 windings; primary winding $3.0 \mathrm{uh}, \mathrm{Q} 70$ at $7.9 \mathrm{MHz}, 50 \mathrm{MHz}$ min self resonant frequency, $40 \mathrm{ma}, 0.7 \mathrm{ohm}$ dc resistance; secondary winding 0.3 ohm dc resistance; 42498 dwg A45384-1.	5-16
Y 1		CRYSTAL: MIL type CR85U1000000 MHz HC6U.	5-16
Z. 1		INTEGRATED CIRCUIT, FLIP FLOP: R-S or J-K flip flop; 3.0-4.0v operating voltage; 50 nsec propagation delay; 0.6 v noise margin; 9 fanout; $42 \mathrm{MW} / \mathrm{gate}$ power dissipation; 42498 dwg A44457-8; 14433 type MIC945-3D.	5-16
Z.2		Same as Z1.	5.16

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { REF } \\
\text { DESIG }
\end{gathered}
\] \& NOTES \& NAME AND DESCRIPTION \& \begin{tabular}{l}
FIG. \\
NO.
\end{tabular} \\
\hline A9

Pl \& \& | SIDE CARRIER GENERATOR ASSEMBLY: |
| :--- |
| Develops injection frequencies for the A2 and B2 channel modulators through the combined operation of a divider circuit and an oscillator circuit from a 1 MHz standard frequency; 42498 dwg D44124G1. CONNECTOR: MIL type MS18176-1. | \& 5-1 ${ }^{\text {5-1 }}$ 5-17

\hline
\end{tabular}

TABLE 6-2. MATNTENANCE PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	FIG. NO .
A11A1		PRINTED CIRCUIT ROARD SUBASSEMBLY, UP	5-21
		CONVERTER 1.75 MFz IF: 42498 dwg D 44087 Gl.	
Cl		CAPACITOR: MrL type CK06CW332K.	5-22
C 2		CAPACITOR: MLI type CK06BXI04K.	5-22
C3		Same as Cz.	5-22
C4		CAPACITOR: MIL type CSl 3 BF685K.	5-22
C5		Same as C2.	5-22
C6		CAPACITOR: MLL type CSI 3BF476K.	5-22
C7		Same as C2.	5-22
C8		Same as C4.	5-22
C^{4}		CAPACITOR: MIL type CM05F241J03.	5-22
ClO		CAPACITOR: MIL type CK05CWlozk.	5-22
CR1		SEMICONDUCTOR: MIL type IN483B.	5-22
CR2		Same as CR1.	5-22
CR3		SEMICONDUCTOR: 250 pf porm 20 pct at minus 8 vdc bias and $1 \mathrm{MHz}, 0160$ at $25 \mathrm{MHz} ; 42498 \mathrm{dw}$ g	5-22
		8 vdc bias and 1 MHz , Q 160 at $25 \mathrm{MHz} ; 42498 \mathrm{dwg}$ A.45712. ?; 82716 type V4092.	
Lil		COIL, RF: 100 uh, $Q 80$ at $790 \mathrm{kHz}, 5.0 \mathrm{MHz}$ min self resonant frequency 20 ma , 4.0 ohms dc resistance; 42498 dwg A45381-1.	5-22
L2		COIL, RF: MIL type MS90537-37.	5-22
L 3		COIL, RF: MIL type MS90537-45.	5-22
L4		COIL, RE: 30 uh, $Q 75$ at $2.5 \mathrm{MHz}, 8.0 \mathrm{MHz}$ min self resonant frequency, $40 \mathrm{ma}, 2.0$ ohms dc resistance: 42498 dwg A45381-2.	5-22
Q1		TRANSISTOR: MIL type 2N2222.	5-22
Q2 thru Q4		Same as Ql.	5-22
Q 5		TRANSLSTOR: MIL type 2N3500.	5-22
Q6		TRANSISTOR: MLL type 2 N2219.	5-22
Q7		Same as 06.	5-22
R1		RESISTOR: MIL type RC07GF822K.	$5-22$
R2		RESISTOR: MIL type RC07GF392K.	5-22
R3		RESISTOR: MIL type RC07GFl02K.	$5-22$
R4		RESISTOR: MIL type RC07GF562K.	5-22
R5		RESISTOR: MIL type RC07GF123K.	5-22
R6		RESISTOR, VARIABLE: 5,000 ohms, porm 5 pct, 0.5w; 42498 dwg A46445-7; 80294 type 3300P-l-502.	5-22
R7		RESISTOR: MIL type RC07GF332K.	5-22
R. 8		RESISTOR: MLL type RC07GF682K.	5-22
R9		Same as R1.	5-22
R10		Same as R6.	5-22
R11		Same as R 8.	5-22
R12		RESISTOR: MLL type RC07GF472K.	5-22
R13		RESISTOR: MIL type RC32GF753J.	5-22
R14		RESISTOR: MLL type RC07GF821K.	5-22
R15		RESISTOR: MIL type RC07GF104K.	5-22
R16		RESISTOR: MIL type RC07GF394K.	5-22
R17		RESISTOR, VARIABLE: 50 ohms, porm 5 pct, $0.5 \mathrm{w} ; 42498 \mathrm{dwg}$ A46445-1; 80294 type 3300P-1-500.	5-22
R18		RESISTOR: MIL type RC07GF180K.	5-22
R19		RESISTOR: MLL type RC07GF271K.	5-22
R20		Same as R19.	5-22
R21		Same as R12.	5-22

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
All A3		PRINTED CIRCUIT BOARD SUBASSEMBLY, UP	5-21
		CONVERTER CARRIER INSERTION: 42498 dwg	
Cl		CAPACITOR: MIL type CK06CW104K.	5-24
C 2		Same as Cl .	5-24
C3		CAPACITOR: MIL type CK06CW103K.	5-24
C4		CAPACITOR: MIL, type CK05CWlo2K.	5-24
C5		CAPACITOR: MIL type CMO6F471J03.	5-24
C6 thru C9		Same as Cl.	5-24
CR1		SEMICONDUCTOR: MIL type 1 N3064.	5-24
CR2 thru CR7		Same as CRl.	5-24
K1		RELAY: MLL type M5757-9-003.	5-24
K2 thru K5		Same as Kl.	5-24
L1		COIL, RF: $20 \mathrm{uh}, \mathrm{Q} 20$ at $2.5 \mathrm{MHz}, 10 \mathrm{MHz} \mathrm{min}$ self resonant frequency, $60 \mathrm{ma}, 0.8 \mathrm{ohm}$ dc resistance; 42498dwg A45381-4.	5-24
L2		COIL, RF: MIL type MS90537-57.	5-24
L3 thru L7		Same as L2.	5-24
Q1		TRANSISTOR: MIL type 2N2222.	5-24
R1		Not used.	
R2		RESISTOR: MIL type RC07GF822K.	5-24
R3		RESISTOR, VARIABLE: 500 ohms, porm 5 pct, 0.5w; 42498 dwg A46445-4; 80294 type 3300P-1-501.	5-24
R4		RESISTOR: MIL type RN60Cl000F.	5-24
R5		Same as R4.	5-24
R6		Same as R2.	5-24
R7		RESISTOR: MIL type RC07GF152K.	5-24
R8		RESISTOR: MIL type RC07GF391K.	5-24
R9		RESISTOR, VARIABLE: 100 ohms, porm 5 pct, $0.5 \mathrm{w} ; 42498 \mathrm{dwg}$ A46445-2; 80294 type 3300P-1-101.	5-24
R10		RESISTOR: MLL type RN60C49R9F.	5-24
R11		RESISTOR: MIL type RC07GF182K.	5-24
R12		RESISTOR: MIL type RC07GFl01K.	5-24
R13		RESISTOR: MIL type RC07GF820K.	5-24
Rl 4		RESISTOR: MIL type RN60C86R6F.	5-24
R15		Same as R2.	5-24
R16		Same as R13.	5-24
R17		Same as R11.	5-24
R18		RESISTOR: MIL type RN60Cl740F.	5-24
R19		Same as R11.	5-24
R20		RESISTOR: MIL type RN60C6040F.	5-24
R21		Same as Rll.	5-24
R22		Same as R9.	5-24
R23		RESISTOR: MIL type RC07GF151K.	5-24
R24		RESISTOR, VARIABLE: 50 ohms, porm $5 \mathrm{pct}, 0.5 \mathrm{w}$: 42498 dwg A46445-1; 80294 type 3300P-1-500.	5-24
R25		RESISTOR: MIL type RC07GF301J.	5-24
R26		Same as R23.	5-24
R27		Same as R25.	5-24
R28		Same as R2.	5-24
R29		Same as R3.	5-24
R30		RESISTOR: MIL type RC07GF270K.	5-24
R31		Same as R30.	5-24

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
A12		SYNTHESIZER ASSEMBLY: Solid state module contains seven plug-in printed circuit cards, a total of 280,000 accurate injection frequencies, over a frequency range of 82 MHz to 110 MHz are generated by digital techniques; each frequency is derived from the 1 MHz frequency standard and exhibits the same degree of accuracy and stability as that of the standard; the module also supplies a 12.5 kHz synchronizing pulse to the power supply: 42498 dwg D43208G2.	5.1
C1		CAPACITOR: MIL type CK06BX104K.	5-25
C2		Same as C1.	5-25
C3		CAPACITOR: MIL type CK06CW103K.	5.25
C4		Same as C3.	5.25
C5		Same as C3.	5.25
C6		Same as C1.	5.25
C7		Same as C1.	5-25
C8		CAPACITOR: MIL type CK05CW102K.	5-25
c9		Not used.	
${ }^{\text {c10 }}$		Same as C1.	5-25
C11		Same as C8.	5.25
${ }_{\text {C12 }}$ C15 thru C14		Not used.	5.25
C25 thru 229		Same as C1.	5.25
C30 thru C44		Same as C8.	5.25
C45		Same as C1.	5.25
CR1		SEMICONDUCTOR: MIL type 1N3828A.	5-25
L1		COIL, RF: MIL type MS90537-37.	5.25
L2 thru L4		Same as L1.	5-25
L5		COIL, RF: MIL type MS90537-17.	5-25
L6		Not used.	
17		Same as L1.	5.25 $5-25$
19 thru L13		Coil, RF: MIL type MS9053-25	5.25
L14		Coil, RF: MIL type MS90537-5	Not Shown
P1		CONNECTOR, PLUG, ELECTRICAL: 26 male contacts, 13 amps, phospher bronze, gold plated finish; rectangular, plastic; 42498 dwg A42559-3; 81312 type MRAC26PG7.	5.25
P2		Same as P1.	5.25
R1		RESISTOR: MIL type RCO5GF560J.	5-25
R2			
R3		RESISTOR: MIL type RC05GF470K.	5-25
R4		Same as R3.	5-25
R5		RESISTOR: MIL type RC32GF271K.	$\begin{aligned} & 5.25 \\ & 5.75 \end{aligned}$
XA1		CONNECTOR, RECEPTACLE, ELECTRICAL: 22 female contacts, 5 amps , phospher bronze, gold plated finish; rectangular, plastic; 42498 dwg A42548-8; 81312 type HB22SOC NO KEY	5.25
XA2 thru XA6		Same as XA1.	5-25
XA7		CONNECTOR, RECEPTACLE, ELECTRICAL: 6 male contacts, 7.5 amps , phospher bronze, gold plated finish; rectangular, nlastic; 42498 dwg A42548-1; 81312 type HB6SOC-POLA-B-C.	5-25
21		FILTER, MIXER: Nonrepairable assembly, 42498 dwg A44861-1.	5-25

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
Al 2 A 4		PRINTED CIRCUIT BOARD SUBASSEMBLY, RFIB: 42498 dwg D43071G2.	5-25
Cl		CAPACITOR: MIL type CSl 3 BFl05K.	5-27
C2		CAPACITOR: MIL type CSl 3BFl56K.	5-27
C3		CAPACITOR, FIXED, GLASS: 1,000 pf, porm 5 pct, $300 \mathrm{vdc} ; 42498 \mathrm{dwg}$ A42875-2; 14674 type TY07102J.	5-27
C4		Same as C3.	5-27
C5		CAPACITOR: MIL type CK05CWI 02 K .	5-27
C6		Same as C2.	5-27
C7		CAPACITOR: MIL type CK06BX103K.	5-27
C8		CAPACITOR: MIL type CM05El81J03.	5-27
CR1		SEMICONDUCTOR: MIL type 1N483B.	5-27
CR2		SEMICONDUCTOR: MIL type 1N914.	5-27
J 1		JACK, TIP: Plastic body; beryllium copper spring contact, gold plated finish; brass terminal; color red; 42498 dwg A42494-1-2; 17117 type 4879-125-2.	5-27
J2		Same as Jl.	5-27
Q1		TRANSISTOR: MIL type 2N2222.	5-27
Q2		TRANSISTOR: MIL type 2N2907A.	5-27
Q3		Same as Q1.	5-27
Q4		TRANSISTOR: MIL type 2N930.	5-27
Q5		Same as Q2.	5-27
Q6		TRANSISTOR: Silicon; P-N-P polarity; JEDEC case style VVV (TO-72); 42498 dwg A43044-1; 01295 type 3Nlll.	5-27
Q7		TRANSISTOR: Silicon; N-P-N polarity; JEDEC case style TO-18; 42498 dwg A43097-1; 07263 type 2N3117.	5-27
Q8		Same as Q2.	5-27
Q9		Same as Q1.	5-27
Q10		Same as Q2.	5-27
Q11		Same as Q7.	5-27
Q12		Same as Q2.	5-27
R1		RESISTOR: MIL type RC05GF102J.	5-27
R2		Same as Rl.	5-27
R3		RESISTOR: MIL type RC05GFl03J.	5-27
R4		Same as R3.	5-27
R5		RESISTOR: MIL type RC05GF472J.	5-27
R6		RESISTOR: MIL type RC05GF272J.	5-27
R7		Same as R3.	5-27
R8		Same as R5.	5-27
R9		RESISTOR: MIL type RC05GF182J.	5-27
R10		RESISTOR: MIL type RC05GF332J.	5-27
RII		RESISTOR: MIL type RC05GF181J.	5-27
R12		RESISTOR: MIL type RC05GFl21J.	5-27
Rl 3		RESISTOR: MIL type RC05GF222J.	5-27
R14		RESISTOR: MIL type RC05GF223J.	5-27
R15		RESISTOR: MIL type RC05GF470J.	5-27
R16		RESISTOR: MIL type RC05GF101J.	5-27
R17		Same as Rl6.	5-27
R18		Same as Rll	5-27
R19		RESISTOR: MIL type RC056F680J.	5-27
R20		Not used.	
R21		RESISTOR: MIL type RC05GF105J.	5-27

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

\begin{tabular}{|c|c|c|c|}
\hline $$
\begin{gathered}
\text { REF } \\
\text { DESIG }
\end{gathered}
$$ \& NOTES \& NAME AND DESCRIPTION \& FIG. NO.

\hline Al2A4 (cont) T1 \& \& TRANSFORMER, RF: 2 windings; primary winding 7 uh porm 20 pct at 25 deg C at l MHz , 50 ohms impedance, $78 \mathrm{ma}, 0.06 \mathrm{ohm}$ dc resistance; secondary winding 200 ohms impedance, $39 \mathrm{ma}, 0.12 \mathrm{ohm} \mathrm{dc}$ resistance; 42498 dwg A42745-4. \& 5-27

\hline T2 \& \& Same as T1. \& 5-27

\hline T3 \& \& TRANSFORMER, RF: 2 windings; primary winding 20 uh at 25 deg C at 1 MHz , 50 ohms impedance; $44 \mathrm{ma}, 0.1 \mathrm{ohm}$ dc resistance; secondary winding 200 ohms impedance, $22 \mathrm{ma}, 0.2$ ohm dc resistance; 42498 dwg A42745-1. \& 5-27

\hline T4 \& \& Same as T3. \& 5-27

\hline Z1 \& \& INTEGRATED CIRCUIT, LOGIC GATE: Dual 4-input buffer; $3.0-4.0 \mathrm{v}$ operating voltage; 35 nsec propagation delay; 1.0 v noise margin; 25/gate fanout; $25 \mathrm{MW} /$ gate power dissipation; 42498 dwg A44457-5; 14433 type MIC932-3D. \& $5-27$
$5-27$

\hline Z2

Z 3 \& \& | INTEGRATED CIRCUIT, LOGIC GATE: Quadruple 2 -input gate; 3.0-4.0v operating voltage; 50 nsec propagation delay; 0.6 v noise margin; $8 /$ gate fanout; $5 \mathrm{MW} / \mathrm{gate}$ power dissipation; 42498 dwg A44457-2; 14433 type MIC 946-3D. |
| :--- |
| Same as Z2. | \& $5-27$

$5-27$

\hline
\end{tabular}

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

REF DESIG	NOTES	NAME AND DESCRIPTION	FIG. NO.
Al2A5		PRINTED CIRCUIT BOARD SUBASSEMBLY, RF2: 42498 dwg D43080G2.	5-25
Cl		CAPACITOR: MIL type CSl 3 BC 396 K .	5-28
C2		CAPACITOR: MIL type CS13BE107K.	5-28
C3		CAPACITOR: MIL type CK06BX 104 K .	5-28
C4		CAPACITOR: MIL type CS1 3BE156K.	5-28
C5		CAPACITOR, FIXED, GLASS: $10,000 \mathrm{pf}$, porm 10 pct, 50 vdc; 42498 dwg A42960-1; 14674 type CYK01BTl03K	5-28
C6		Same as C4.	5-28
C 7		Same as C4.	5-28
C8		CAPACITOR: MIL type CK05CW102K.	5-28
C9		CAPACITOR: MIL type CK06CW682K.	5-28
Cl0		CAPACITOR: MLL type CBllRDI02K.	5-28
Cll		CAPACITOR: MIL type CM05F331J03.	5-28
Cl2		CAPACITOR: MLL type CM05ED390103.	5-28
Cl 3		Same as Clo.	5-28
C14		CAPACITOR: MIL type CL65CJ050JP3.	5-28
C15		CAPACITOR, VARIABLE, CERAMIC: $3.0-15.0 \mathrm{pf}$, $200 \mathrm{vdc} ; 42498 \mathrm{dwg}$ A42545-9; 72982 type 538-016-E2PO-110R.	5-28
C16		Not used.	
C17 thru C20		Same as C8.	5-28
C21		CAPACITOR, VARIABLE, CERAMIC: 9.0-35.0 pf, 200 vdc; 42498 dwg A42545-1; 72982 type 538-016-E2P0-94R.	5-28
C22		CAPACITOR, FIXED, GLASS: 5,100 pf, porm 2 pct, 50 vdc; 42498 dwg A.42975-4; 95275 type VY20CA512GE-.	5-28
C23		Same as C22.	5-28
C24		CAPACITOR, FIXED, GLASS: 5,100 pf, porm 2 pct, 50 vdc; 42498 dwg A42975-3; 95275 type VY20CA512GE+.	5-28
C25		Same as C24.	5-28
C26		CAPACITOR: MIL type CK06BX104K.	5-28
CR1		SEMICONDUCTOR: MIL type 1 N914.	5-28
CR2		SEMICONDUCTOR: Silicon; JEDEC case style DO-14; 42498 dwg A43737-3; 01281 type PC1251.	$5-28$ $5-28$
Q1		TRANSISTOR: MIL type 2N2222.	5-28
Q2		Same as Ql.	5-28
Q3		TRANSISTOR: Silicon; N-P-N polarity; JEDEC case style TO-18; 42498 dwg A43097-1; 07263 type 2N3117.	5-28
Q4		TRANSISTOR: MIL type 2N2907A.	5-28
Q5		Same as Q1.	5-28
Q6		TRANSISTOR: Silicon; P-N-P polarity; JEDEC case style VVV (TO-72); 42498 dwg A.43044-1; 01295 type 3N111.	5-28
Q7		Same as Q3.	5-28
Q8		Same as Q4.	5-28
Q9		Same as Q1.	5-28
Q10		TRANSISTOR: MIL type 2N930.	5-28
Q11		Same as Q4.	5-28

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
A12A5 (cont)			
Q12		TRANSISTOR: Silicon; P-N-P polarity; JEDEC case style TO-18; 42498 dwg A43085-1; 14433 type TSl 847.	5-28
Q13		TRANSISTOR: MIL type 2N918.	5-28
Q14		Same as Q12.	5-28
R1		RESISTOR: MIL type RC05GF470J.	5-28
R2		RESISTOR: MIL type RC05GF332J.	5-28
R 3		RESISTOR: MIL type RC05GF563J.	5-28
R4		RESISTOR: MIL type RC05GFl03J.	5-28
R 5		Same as R4.	5-28
R6		RESISTOR: MIL, type RC05GF334J.	5-28
R7		RESSSTOR: MIL type RC05GF123J.	5-28
R8		RESISTOR: MIL type RC05GFl02J.	5-28
R9		RESISTOR: MIL type RC05GF331J.	5-28
R10		Same as Rl.	5-28
R11		RESISTOR: MIL type RC05GFlolJ.	5-28
R12		Same as R11.	5-28
R13		RESISTOR: MIL type RC05GF224J.	5-28
R14		RESISTOR; MIL type RC05GFl04J.	5-28
R15		Same as R4.	5-28
R16		RESISTOR: MIL type RC05GF682J.	5-28
R17		RESISTOR: MIL type RC05GF273J.	5-28
R18		Same as R3.	5-28
R19		Same as Rl6.	5-28
R20		RESISTOR: MIL type RC05GF272J.	5-28
R21		Same as R11.	5-28
R22		Same as R3.	5-28
R23		RESISTOR: MIL type RC05GF391J.	5-28
R24		Same as R4.	5-28
R25		Same as R7.	5-28
R26		RESISTOR: MIL type RC05GF820J.	5-28
R27		Same as R1.	5-28
R28		Same as Rl.	5-28
R29		Same as R4.	5-28
R30		RESISTOR: MIL type RC05GF392J.	5-28
R31		RESISTOR: MIL type RC05GF271J.	5-28
R32		Same as Rll.	5-28
R33		Same as R7.	5-28
R34		Same as R4.	5-28
R35		Same as R9.	5-28
R36		Not used.	
R37		RESISTOR: MIL type RN55E2612F	5-28
R38 thru R40		Same as R 37.	5-28
Tl		TRANSFORMER, RF: 2 windings; primary winding 7 uh porm 20 pet at 25 deg C at 1 MHz , 50 ohms impedance, $78 \mathrm{ma}, 0.06 \mathrm{ohm}$ dc resistance; secondary winding 200 ohms impedance, 39 ma , 0.12 ohm dc resistance; 42498 dwg A42745-4.	5-28
T2		Same as Tl.	5-28
T3		TRANSEORMER, RF: 2 windings; primary winding $0.09 \mathrm{uh}, 100 \mathrm{MHz}$, min self resonant frequency, 20 ma, 0.2 ohm dc resistance; secondary winding 0.7 ohm dc resistance; 42498 dwg A42748-3.	5-28

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
A12A7A2 Cl CR1 CR2 thru CR5 Z1 Z. 2 thru Z11		PRINTED CIRCUIT BOARD SUBASSEMBLY, DIGITAL NO. $1 \mathrm{~B}: 42498$ dwg D45887G1. CAPACITOR: MIL type CSl 3 BC 396 K . SEMICONDUCTOR: MIL type 1 N914. Same as CRI. INTEGRATED CIRCUIT, FLIP FLOP: High speed flip flop; plus 8.0 v continuous supply voltage, plus 12 v pulsed supply voltage, minus 10 ma forward input current, 5.0 ma reverse input current, minus 1.0 v or plus 8.0 v input voltage; 42498 dwg A47728-1; 14433 type MIC950-3D. Same as Z1.	$\begin{aligned} & 5-30 \\ & 5-32 \\ & 5-32 \\ & 5-32 \\ & 5-32 \end{aligned}$ $5-32$

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
Al6A1		PRINTED CIRCUIT BOARD SUBASSEMBLY,	5-45
Cl		OUTPUT AMPLIFIER NO. 1: 42498 dwg D44411Gl. CAPACITOR: MIL type CK06CW103K.	5-46
C2		Same as Cl.	5-46
C 3		Same as Cl.	5-46
C4		CAPACITOR: MIL type CL65BH151MP3.	5-46
C5 thru C8		Same as Cl.	5-46
C9		Same as C4	5-46
Cl0		CAPACITOR: MIL type CM05FCl00J03.	5-46
Cll		Same as C1.	5-46
Cl2		CAPACITOR: MIL type CM05FCl01J03.	5-46
C13		CAPACITOR: MIL type CM05FC470J03.	5-46
C14		Same as C1.	5-46
CR1		SEMICONDUCTOR: MLL type 1N914.	5-46
CR2		Same as CRl.	5-46
FLI		FLLTER ASSEMBLY: Non-repairable assembly; $35 \mathrm{MHz} ; 42498 \mathrm{dwg}$ A46516-1.	5-46
K1		RELAY: MIL type M5757/9-003.	5-46
L1		COIL, RF: MIL type MS90537-1.	5-46
L 2		COLL, RF: MIL type MS90537-41.	5-46
L3		COIL, RF: MIL type MS90537-50.	5-46
L4		COIL, RF: MIL type MS90537-5.	5-46
L5		COIL, RF: MIL type MS90537-43.	5-46
P1		CONNECTOR: MIL type UGI460U.	5-46
Q1		TRANSISTOR: MIL type 2N918.	5-46
R1		RESISTOR: MIL type RC07GF510K.	5-46
R2		RESISTOR: MIL type RC07GFl23K.	5-46
R3		RESISTOR: MIL type RC07GF822K.	5-46
R4		RESISTOR: MIL type RC07GFI81K.	$5-46$
R 5		RESISTOR: MII type RC07GF150K.	5-46
R6		RESISTOR: MIL type RC07GF471K.	5-46
R7		RESISTOR: MIL type RC07GF2R7K.	5-46
R8		Same as R6.	5-46
R9		Same as R7.	5-46
R10		Same as R6.	5-46
R11		Same as R6.	5-46
R12		Same as R1.	5-46
R13		Same as Rl.	5-46
R14		RESISTOR: MLL type RC07GF103K.	5-46
R15		RESISTOR: MIL type RC07GF102K.	5-46
R16		RESISTOR: MIL type RC07GF561K.	5-46
R17		Same as R1.	5-46
Tl		TRANSFORMER, RF: 2 windings; primary winding 9.2 uh porm 20 pct at 25 deg $C, 50$ ohms impedance, $0 \mathrm{ma}, 0.08$ ohm dc x esistance; secondary winding 50 ohms impedance, $0 \mathrm{ma}, 0.08$ ohm dc resistance; 42498 dwg A45387-2.	5-46

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
A17 (cont)			
R31		Same as Rl0.	5-48
R32		Same as R19.	5-48
R33		Same as R19.	5-48
R 34		RESISTOR: MIL type RW69V820.	5-48
R35		Same as R19.	5-48
R36		Same as R34.	5-48
R37		Same as R19.	5-48

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
A18		MODULATOR-SYNTHESIZER ASSEMBLY: The main chassis consists of two decks hinged at the rear where all modules, filters, and transformers are mounted for the operation of the exciter; all interconnecting cables are mounted between the decks and two multipin connectors are mounted on the rear panel for interface with the filter assembly; the majority of the operating controls, indicators, meters, and frequency setting switches are mounted on the front panel assembly; a sub-panel mounted behind the front panel contains auxiliary controls used for test and maintenance purposes; the front panel is connected to the chassis with a cable sufficiently long to permit the front panel to be removed for maintenance purposes; 42498 dwg E44203G1.	5-2
AT1		ATTENUATOR, VARIABLE: 50 ohms, porm 10 pct, $5 w ; 42498$ dwg A44194-1; 01121 type JJ500HMSPORM10PCT	5-55
AT2 thru AT4 C1		Same as AT1. CAPACITOR: MIL type CK05CW102K.	$\begin{aligned} & 5.55 \\ & 5.55 \end{aligned}$
C 2		CAPACITOR: MIL type CK05CW221K.	5-55
C3		Same as C1.	5-55
C4		CAPACITOR: MIL type CK05BX102K. (Not shown)	
C5		Not used.	
C6		CAPACITOR: MIL type CK05BX102K. CAPACITOR: MIL type CM05ED390J03	
			Shown
C8		CAPACITOR: MIL type CK05BK103K	Not Shown
CB1		CIRCUIT BREAKER: SPDT; $1.0 \mathrm{amp}, 240$ vac, 60 $\mathrm{kHz} ; 42498$ dwg A44733-1; 81541 type AP13-SR199-1.	5.55
CR1		ABSORBER, OVERVOLTAGE: 33 vdc operating voltage, 1 vdc max reverse voltage; 42498 dwg A46062-1; 81840 type 126911-001.	$5-55$ 5.55
$\begin{aligned} & \text { CR2 } \\ & \text { CR3 } \end{aligned}$		SEMICONDUCTOR: MIL type IN483B. Same as CR1.	5.55 $\mathbf{5 . 5 5}$
CR4 \& CR5		Same as CR2.	5-55
CR6		Not used.	
CR7		Not used.	
CR8 CR9		SEMICONDUCTOR: MIL type 1N1614R. Same as CR8.	$\begin{gathered} 5.55 \\ 5.55 \end{gathered}$
CR10		Not used.	
DS1		LAMP, INCANDESCENT: $18 \mathrm{vdc}, 0.04 \mathrm{amp} ; \mathrm{T}-1-3 / 4$ bulb; 42498 dwg A46155-2; 92966 type 370.	5-55
DS2		Same as DS1.	5-55
DS4		Same as DS1.	5.55 5.55
DS5		Same as DS1.	5.55

TABLE 6-2. MANTMMANCE PARTS LIST (Cont)

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG NO.
P9		CONNECTOR, PLUG, ELECTRICAL: 1 male contact; plastic insulation; straight shape; 42498 dwg A46060-1;94375 type 801-B-1800W.	5-55
P10		Same as Pg.	5.55
P11		Same as Pg.	5.55
P12		CONNECTOR: MIL type UG1460U.	5-55
P13		Same as P12.	5-55
01		TRANSISTOR: Silicon; P-N.P polarity; JEDEC case style T0-3; 42498 dwg A43788-1; 04713 type 2N3789.	5-55
02		Same as 01.	
R1		RESISTOR: MIL type RN60D2151F.	5-55
R2		Same as R1.	5-55
R3		RESISTOR, VARIABLE: 500 ohms, porm 10 pct, lw; 42498 dwg A45111-1; 01121 type JAIN056S501DA.	5-55
R4		Same as R1.	5-55

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
A18 (cont)			
R5		Same as R1.	5-55
R6		Same as R3.	5-55
R7		Same as Rl.	5-55
R 8		Same as RI.	5-55
R9		Same as R3.	5-55
R10		Same as R1.	5-55
R11		Same as R1.	5-55
R12		Same as R3.	5-55
R13		RESISTOR: MIL type RV6LAYSA503A.	5-55
R14		RESISTOR: MIL type RN70D49R9B.	5-55
R15 thru R21		Same as Rl4.	5-55
R22		RESISTOR; MIL type RC07GF205J.	5-55
R23		RESISTOR: MIL type RN60D4223F.	5-55
R24		RESISTOR: MIL type RN60D2433F.	5-55
R25		RESISTOR: MIL type RN60D8252F.	5-55
R26		RESISTOR: MIL type RN60D2552F.	5-55
R27		RESISTOR: MIL type RN60D2153F.	5-55
R28		RESISTOR: MIL type RN60D6342F.	5-55
R29		RESISTOR: MIL type RN60D2211F.	5-55
R30		RESISTOR: MIL type RN60D8060F.	5-55
R31		RESISTOR: NIL type RN60D4991F.	5-55
R32		RESISTOR: MIL type RN60D1001F.	5-55
R33		RESISTOR: MIL type RV6NAYSD504C.	5-55
R34		RESISTOR: MIL type RV4LA YSA353A.	5-55
R35		RESISTOR, VARIABLE: 20 ohms porm 0.2 pct linearity; 0 to 30 turns; 42498 dwg A46058-1; 80294 type 3500S-2-203.	5-55
R36		RESISTOR: MIL type RN60D1820F.	5-55
R37 thru R43		Same as R36.	5-55
R44		Not used.	
R45		RESISTOR: MIL type RC07GF154J.	5-55
R46		Not used.	
R47		RESISTOR: MIL type RC07GF4R7J.	5-55
R48 thru R50		Same as R47.	5-55
R 51		Not used.	
R52		RESISTOR: MIL type RC07GFl00K.	5-55
R53		Same as R52.	5-55
R54		Same as R52.	5-55
R 55		RESISTOR: MIL type RC07GFl53K. (Not shown)	
Sl		SWITCH, ROTARY: 1 section, 2 poles and 5 positions; nonshorting contacts; 36 deg positioning increment; 42498 dwg A44379-1; 76854 type 267625-BA1.	5-55
S2		SWITCH, ROTARY: Solenoid actuated; 28 vdc, 8.02 ohms coil resistance, 15 to 25 steps per second solenoid CW speed; contact rating 2 amps at 28 vdc resistive and 1 amp at 110 vac resistive; 3 sections, 6 positions each section; 42498 dwg A45452-1; 81840 type 172495-001.	5-55
S3		SWITCH, ROTARY: Solenoid actuated; $28 \mathrm{vdc}, 8.02$ ohms coil resistance, 15 to 25 steps per second solenoid CW speed; contact rating 2 amps at 28 vdc resistive and 1 amp at 110 vac resistive; 4 sections with 7 positions for each section; 30 deg positioning increment; 42498 dwg A45453-1; 81840 type 172494-001.	5-55

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
$\begin{aligned} & \text { Al } 8 \text { (cont) } \\ & \text { S4 } \end{aligned}$		SWITCH, ROTARY: 3 sections; 1 pole on section one, 24 dummy lugs on section two, l pole on section three with 24 positions for each section; non-shorting contacts; 15 deg positioning increment; 42498 dwg A44377-1; 76854 type 267623-MF3E.	5-55
S5		SWITCH, ROTARY: One section; 4 poles with 3 positions, non-shorting contacts, 36 deg positioning increment; 42498 dwg A44615-1; 76854 type 267629BAl.	5-55
S6		SWITCH, ROTARY: 3 sections; 2 poles on sections one and two, 1 pole on section three with 10 positions for each section; non-shorting contacts; 36 deg positioning increment; 42498 dwg A44610-1; 76854 type 267628-BA3.	5-55
S7		SWITCH, ROTARY: 2 sections; 2 poles on section one, 1 pole on section two with 10 positions for each section; non-shorting contacts; 36 deg positioning increment; 42498 dwg A44592-l; 76854 type 267626BA2.	5-55
S8		SWITCH, ROTARY: 3 sections; 2 poles on sections one and two, l pole on section three with 10 positions for each section; non-shorting contacts; 36 deg positioning increment; 42498 dwg A44601-1; 76854 type 267627-BA3.	5-55
S9		Same as S7.	5-55
Sl 0		Same as 57.	5-55
S11		SWITCH, ROTARY: 5 sections; 8 poles and 2 positions for each section; non-shorting contacts; 36 deg positioning increment; 42498 dwg A44378-1; 76854 type 267624-MF6E.	5-55
Sl 2		Not used.	
Sl 3		SWITCH: MIL type MS75029-23.	
Sl4		Same as Sl3.	$\begin{aligned} & 5-55 \\ & 5-55 \end{aligned}$
S15		SWITCH, PUSH: 2PDT; 3 amps at 28 vdc resistive and 1.5 amps at 28 vdc inductive; 42498 dwg A44044 28; 96182 type 90E10AlC2J1(W)HlLION1R12 TUNE.	5-55
Sl 5DSI		LAMP, INCANDESCENT: $18 \mathrm{vdc}, 0.04 \mathrm{amp}$; T-1 $3 / 4$ bulb; 42498 dwg A46155-2; 92966 type 370.	5-55
Sl 5DS2		Same as Sl5DSl.	5-55
S16		SWITCH, PUSH: 2PDT; 3 amps at 28 vdc resistive and 1.5 amps at 28 vdc inductive; 42498 dwg A4404427; 96182 type $90 \mathrm{El} 10 \mathrm{AlC2Jl}(\mathrm{~W}) \mathrm{HlL} 10 \mathrm{NlR12}$ STANDBY.	5-55
Sl 6DS1		Same as Sl 5DSI.	5-55
S16DS2		Same as Sl 5DSl.	5-55
Sl7		SWITCH, PUSH: 2PDT; 3 amps at 28 vdc resistive and 1.5 amps at 28 vdc inductive; 42498 dwg A4404426; 96182 type 90E10AlC2J1(G)H1L10N1R12 OPERATE.	5-55
S17DSl		Same as SlisDSl.	5-55
Sl7DS2		Same as Sl 5DSl.	5-55

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
A18 (cont)			
S18		SWITCH, PUSH: 2PDT; 3 amps at 28 vdc resistive and 1.5 amps at 28 vdc inductive; 42498 dwg A4404429; 96182 type 90E10A1C2J1(W)H1 LIONIR13 AMPLIFIER, OFF。	5-55
Sl 8DS 1		Same as Sl5DSl.	5-55
S18DS2		Same as Sl 5DSl.	5-55
S19		SWITCF: MIL type MS75029-27.	5-55
T1		TRANSFORMER, AF: Minus 250 to 6000 cps operating frequency range, minus 600 ohms primary impedance; no dc current in windings; 42498 dwg A43633-1.	5-55
T2 thru T4		Same as Tl.	5-55
XA1		CONNECTOR: MIL type MS18177-1.	5-55
XA2 thru XA4		Same as XAI.	5-55
XA5		CONNECTOR: MIL type M21097/1-145.	5-55
XA6		Not used.	
XA7 thru XA9		Same as XAl.	5-55
XA10		Not used.	
XA11		CONNECTOR, RECEPTACLE, ELECTRICAL: 26 female contacts, 13 amps, phospher bronze, gold plated finish; rectangular shape, plastic; 42498 dwg A42560-1; 81312 type MRAC26SG7.	5-55
XA12P1		Same as XAll.	5-55
XA12P2		Same as XAll.	5-55
XA13 thru XAl 6		Same as XAl.	5-55
XDS1		LIGHT: MIL type LH73/1LC12CN2.	5-55
XDS2		Same as XDSl.	5-55
XDS3		Same as XDSl.	5-55
XDS4		LIGHT, INDICATOR: 1 amp ; accommodates two incandescent T-1 3/4 midget flange base lamps; marked "Ready"; filter color green; 42498 dwg A44045-21; 96182 type 80E10A1F1(G)H1J1L1N12 READY.	5-55
XDS5		Not used.	
XDS6		LIGHT, INDICATOR: 1 amp; accommodates two incandescent $T-13 / 4$ midget flange base lamps; marked "STD OVEN/STD FALL"; filter color amber; 42498 dwg A44045-20; 96182 type 80 E 10 AlF 2 (YR) H2J2L1N16 STD OVEN/STD FAIL.	5-55
XDS7		Not used.	
XDS8		LIGHT, INDICATOR: l amp; accommodates two incandescent T-1 3/4 midget flange base lamps; marked "EXC FAIL/XMTR FAIL"; filter color red/ red; 42498 dwg A44045-23; 96182 type 80E10AlF2(RR) H2J2L1N16 EXC FAIL/XMTR FAIL.	5-55
XPS1		CONNECTOR: MIL type MSI8177-1.	$5-55$
Z1		X4 MULTIPLIER: Provides a 120 MHz output for the $1.75 /-113.75 \mathrm{MHz}$ frequency generator from a 30 MHz input signal generated by the auxiliary frequency generator; 42498 dwg A45000-1.	5-55

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
Al8A2 (cont)			
R6		Same as R 5.	5-57
R7		Same as R 5.	5-57
R8		RESISTOR: MIL type RC07GF272K.	5-57
R9		RESISTOR: MIL type RC07GF221J.	5-57
R10		RESISTOR: MIL type RC07GF271J.	5-57
R11		Same as R9.	5-57
R12		Same as R10.	5-57
R13		Same as R9.	5-57
R14		Same as R10.	5-57
R15		RESISTOR: MIL type RC07GF333J.	5-57
R16		Same as R15.	5-57
R17		Same as R15.	5-57
Rl 8		RESISTOR: MIL type RC32GF221K.	5-57
R19		RESISTOR: MIL type RC07GF334K.	5-57
R20		RESISTOR: MIL type RC07GF104K.	5-57
R21		RESISTOR: MIL type RC07GF391K.	5-57
R22		RESISTOR: MIL type RC07GF103K.	5-57
R23		RESISTOR: MIL type RC07GF393J.	5-57
R24		RESISTOR: MIL type RC07GF101K.	5-57
R25		RESISTOR: MIL type RC07GF103J.	5-57
R26		RESISTOR: MIL type RC07GF681J.	5-57
R27		RESISTOR: MIL type RC07GF182J.	5-57
R28		RESISTOR: MIL type RC07GF471J.	5-57
R29		Same as R20.	5-57
R30		Same as R22.	5-57
R31		RESISTOR: MIL type RC07GF102K.	5-57
R32		Not used.	
R33		Not used.	
R 34		RESISTOR: MIL type RC07GF302K.	5-57
R35 thru R37		Not used.	
R38		RESISTOR: MLL type RC07GF622K.	5-57
R39		Same as R 38.	5-57
R40		RESISTOR: MIL type RC07GF471K.	5-57
R4l thru R43		Same as R40.	5-57
R44		RESISTOR: MIL type RC42GF183K.	5-57
R45		RESISTOR: MLL type RC07GF123K.	5-57
R46		RESISTOR: MIL type RC07GF182K.	5-57
R47		RESISTOR: MIL type RC07GF271K.	5-57
Z1		INTEGRATED CIRCUIT, LOGIC GATE: High speed differential comparator; plus 14 v positive supply voltage, minus 7 v negative supply voltage, 10 ma , 300 MV internal power dissipation; 42498 dwg A42423-10; 14433 type U5B7710-31X Same as Zl.	$5-57$ $5-57$

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

REF DESIG	NOTES	NAME AND DESCRIPTION	FIG. NO.
A18A3		FREQUENCY SELECT BOARD SUBASSEMBLY:	5-55
		Located in close proximity to the Synthesizer	
		Assembly, is a diode-biasing network for the frequency selection circuitry and a diode-gate circuit	
		for control of the up-converter assembly during frequency selection; 42498 dwg C44958Gl.	
CR1		SEMICONDUCTOR: MIL type IN914.	5-58
CR2		Same as CRl.	5-58
R1		RESISTOR: MIL type RC07GF332J.	5-58
R2 thru R22		Same as Rl.	5-58

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\therefore \quad \begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
A18A6		POWER DISTRIBUTION BOARD SUBASSEMBLY: 42498 dwg D4659lGl.	5-55
C1		CAPACITOR: MIL type CS13BF476M. (Not shown)	
C2		CAPACITOR: MIL type CK05BX102K. (Not shown)	
K1		RELAY: MIL type M5757/9-003.	5-61
K2 thru K5		Same as Kl.	5-61
R1		Not used.	
R2		RESISTOR: MIL type RJ24CW105.	5-61
R3		RESISTOR: MIL type RJ24CW503.	5-61
R4		RESISTOR: MIL type RJ24CW104.	5-61
R5		RESISTOR: MIL type RC42GF101K.	5-61
R6		Same as R4.	5-61
R7		RESISTOR: MIL type RJ24CW 253.	5-61

TABLE 6.2. MAINTENANCE PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
A19		FILTER PANEL ABSEMBLY, MODULATOR SYRTHESILER: Comprised of RFI filters and intercomecting cables used for signal and input power connectiona; interfacing with the external RF amplifies and auxiliary egupment; they are mounted on the rear panel which in turn is fastened to the outer case with machine screws through the RFI gasket; 42498 dwg E44634Gl.	5-1
Cl		CAPACITOR: MIL type CK06CW 103 K .	5-4
C 2		Same as Cl.	5-4
E1		TERMINAL: MIL type SEI99D01.	5-4
E2		Same as El.	5-4
FLl		FMCTER, RADIO TVTEREERENCE: 250 vac or minas 600 vde; 2×1.5 amps, 47 to 63 cps at rated voltage; 42598 dwg A4s196-1:13819 type RF 2890.3	5.4
FL2		EILTER, RADIO INTEREERENCE: 24 sections; 100 vic for all sections, 0.10 amp at $25 \mathrm{deg} C$ for all sections; 42498 dow A44834-1; 13619 type RF 3059	5-4
FL3		FILTER, RADIO INTERFERENCE: 19 sections; 100 vdefor all sections, 0.1 amp at $25 \mathrm{deg} C$ for 11 sections; 42498 dwg A44842-1.	5-3
J1		CONNECTOR, RECEPTACLE, ELECTRICAL: 1 female contect, 50 obms impedance, straight shape; 42498 dwg A43520-1; 94375 type 011-N3805-85.	5-3
J2		CONNECTOR: MII type MS35182-911A.	5-3
J3		Same as It.	5-3
J 4		CONNECTOR, RECEPTACIE, ELECTRICAL: 1 fensie contact, 50 ohme impedance, $1 \mathrm{amp}, 500 \mathrm{vdc}$, phospher bronze; straight shape, brass, silver plated finish; 42498 dwg A44259-1; 74868 type 17825.	5-3
J5		Same as J4.	5-3
J6		CONNECTOR: MIL, type MS3114E12-10P.	5-3
J 7		CONNECTOR: MIL type MS3114E20-39P.	5-3
J8		CONNECTOR: MIL type MS3114E20-39PW.	5-3
L1		.INDUCTOR: MIL type MS90537-25.	5-4
L2		Same as Ll.	5-4
P1		CONNECTOR: MIL type MS18185-1.	5-4
P 2		CONNECTOR: MIL type MS18184-1.	5-4
A20		SIDE CARRIER GENERATOA SIMULATOR: Satisfies all logic requirements for the fault system of the exciter that are normally produced by the Side Carrier Generatar (A9). FSN IN5820-168-8332	4-12A
$\begin{aligned} & R 1 \\ & \mathbf{P}_{1} \end{aligned}$		RESISTOR: MIL type RF42GF361T CONNECTOR: MIL type MS1B176.1	$\begin{aligned} & 4-12 A \\ & 4-12 A \end{aligned}$

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NO TES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
PS1		POWER SUPPLY ASSEMBLY: The power supply used by the exciter contains four individual voltage regulating circuits fed from a common power transformer and full-wave rectifier circuit; the regulator circuits consist of a minus 18 volt regulator; plus 5 and plus 18 volt regulator; plus 15 and plus 24 volt regulator; plus 125 watt regulator and a switching regulator; the 12.5 MHz pulse supplied by the synthesizer synchronizes the plus 5 and plus 18 volt solid-state switching circuits; 42498 dwg E44109Gl.	5-1
C1		CAPACITOR: MIL type CE71C182H.	5-49
CR1		SEMICONDUCTOR: MIL type 1N1124A.	5-49
CR2 thru CR6		Same as CRI.	5-49
CR7		SEMICONDUCTOR: MIL type 1N4942.	5-49
J1		CONNEC TOR: MIL type MS18177-1.	5-49
L1		REACTOR: 6 mh porm 15 pct at 0.1 v RMS; 1 kHz and 0 amp dc , incremental inductance 3.2 $\mathrm{mh} \min$ at 1 kHz and $4 \mathrm{amps} \mathrm{dc}, Q 150 \mathrm{~min}$ at 1 kHz and 0.1 v RMS, 0.25 ohm dc resistance, 55v peak operating voltage; 42498 dwg A45393-1.	5-49
Pl Q1 thru Q5		CONNECTOR: MIL type MS18176-1. Not used	5-49
Q6		TRANSISTOR: MIL type 2N3789.	5-49
R1		RESISTOR: MIL type RE60GR250.	5-49
S1		SWITCH: MIL type MS35059-23.	5-49
T1		TRANSFORMER, POWER, STEP-UP: Primary winding 115 and 230 v RMS, 47 to 63 cps , single phase; secondary winding no. one 72 v RMS center tapped, 2.5 amps de continuous duty; secondary winding no. two 34 v RMS, 4.0 amps dc porm 10 pct duty cycle; secondary winding no. three 70 v RMS, 0.04 amp de continuous duty; 42498 dwg A44703-1.	5-49

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
PSIAl		PRINTED CIRCUIT BOARD SUBASSEMBLY, -12V REGULATOR: 42498 dwg D43999G1.	5-49
Cl		CAPACITOR: MIL type CL65BH151MP3.	5-51
C2		Same as Cl.	5-51
C3		CAPACITOR: MIL type CSl 3BFl05K.	5-51
CRI		Not used.	
CR2		SEMICONDUCTOR: MIL type 1N914.	5-51
CR3		Same as CR2.	5-51
CR4		Same as CR2.	5-51
CR5		SEMICONDUCTOR: MIL type 1 N821.	5-51
Q1		TRANSISTOR: MIL type 2N2907.	5-51
Q2		Same as Q1.	5-51
Q3		TRANSISTOR: MIL type 2 N2222.	5-51
R1		Not used.	
R2		Not used.	
R3		RESISTOR: MIL type RC07GF272K.	5-51
R4		RESISTOR: MIL type RW69VR82.	5-51
R5		RESISTOR: MIL type RC07GF151K.	5-51
R6		RESISTOR: MIL type RC07GF332J.	5-51
R7		RESISTOR: MIL type RC07GF562J.	5-51

NAVSHIPS 0967-292.9032

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

REF DESIG	NOTES	FIG. NO.	
PS1A2		POWAME AND DESCRIPTION	$5-49$
Pl		42498 dwg A48372Gl. CONNECTOR: MIL type MS18176-1.	$5-50 \mathrm{~A}$

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
PSlA2Al		PRINTED CIRCUIT BOARD SUBASSEMBLY, +5 AND +18 VOLT REGULATOR: 42498 dwg D42577G2.	$5-50 \mathrm{~A}$
C1		CAPACITOR: MIL type CSl 3 BF 476 K .	5-52
C2		CAPACITOR: MIL type CS13BEI55K.	5-52
C3		CAPACITOR: MIL type CK05CWl02K.	5-52
C4		CAPACITOR: MIL type CK06BX223K.	5-52
C5		CAPACITOR: MIL type CK06CWl03K.	5-52
C6		Same as C2.	5-52
C7		Same as C5.	5-52
C8		CAPACITOR: MIL type CL65BHl 51 MP 3.	5-52
C9		Same as C8.	5-52
Cl0		Notused.	
Cl1		Same as C5.	5-52
C12		Same as C5.	5-52
Cl 3		Same as C3.	5-52
C14		Same as C5.	5-52
Cl 5		Same as C8.	5-52
C16		Same as C8.	5-52
CR1		SEMLCONDUCTOR: MLL type 1N967B.	5-52
CR2		SEMICONDUCTOR: MLL type 1N821.	5-52
CR3		SEMICONDUCTOR: MIL type 1N754A.	5-52
CR4		SEMICONDUCTOR: MIL type 1N4942.	5-52
CR5		Same as CR3.	5-52
CR6		Same as CR4.	5-52
L1		REACTOR: 7 mh at porm 10 pct at lv RMS; 1.0 amp $\mathrm{dc}, \mathrm{Q} 80 \mathrm{~min}$ at l kHz and $\mathrm{lv} \mathrm{RMS}, 0.38 \mathrm{ohm} \mathrm{dc}$ resistance; 42498 dwg A43531-1.	5-52
L2		Same as Ll.	5-52
Q1		TRANSISTOR: MIL type 2N2222.	5-52
Q2		Same as Q1.	5-52
Q3		TRANSISTOR: MIL type 2N2907A.	5-52
Q4		Same as Q1.	5-52
Q5		Same as Q1.	5-52
Q6		Same as Q3.	5-52
R1		RESISTOR: MIL type RW70U2210F.	5-52
R2		RESISTOR: MIL type RC07GF272K.	5-52
R3		RESISTOR: MIL type RC07GF123K.	5-52
R4		RESISTOR: MIL type RC07GF102K.	5-52
R5		RESISTOR: MIL type RC07GF222K.	5-52
R6		RESISTOR: MIL type RN55C1211F.	5-52
R7		RESISTOR: MIL type RN55C5621F.	5-52
R8		RESISTOR: MIL type RC42GF471K.	5-52
R9		Same as R4.	5-52
R10		RESISTOR: MIL type RC07GF101K.	5-52
R11		Same as R4.	5-52
R12		RESISTOR: MIL type RC07GF330K.	5-52
R13		RESISTOR: MIL type RC07GFl00K.	5-52
R14		RESISTOR: MIL type RC07GF392K.	5-52
R15		RESISTOR: MIL type RC07GF331K.	5-52
R16		RESISTOR: MIL type RC07GF223K.	5-52
R17		Same as R7.	5-52
R18		RESISTOR: MIL type RN55C2211F.	5-52
R19		Same as R2.	5-52

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
PSlA2Al (cont)			
R20		Same as Rl3.	5-52
R21		Same as R3.	5-52
R22		Same as R4.	5-52
R23		Same as R8.	5-52
R24		Same as R4.	5-52
R25		Same as R10.	5-52
R26		Same as Rl2.	5-52
R27		Same as R14.	5-52
R28		Same as R4.	5-52
R29		Same as Rl6.	5-52
Z1		INTEGRATED CIRCUIT, LOGIC GATE: High speed differential comparator; plus 14 v positive supply voltage, minus 7 v negative supply voltage, 10 ma , 300 MW internal power dissipation; 42498 dwg A42423-10; 14433 type UA710.	5-52
Z2		Same as Z1.	5-52

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
PSl A2A2		PRINTED CIRCUIT BOARD SUBASSEMBLY, 15 AND 25 VOLT DC REGULATOR: 42498 dwg D43962G1.	5-50A
Cl		CAPACITOR: MIL type CL65BHI51MP3.	5-53
C 2		Same as Cl.	5-53
C3		CAPACITOR: MIL type CK05CWl21K.	5-53
C4		Same as C3.	5-53
C5		CAPACITOR: MIL type CSl 3BEl55K.	5-53
C6		Same as C5.	5-53
C7		Same as C1.	5-53
C8		CAPACITOR: MIL type CSl 3 BF476K.	5-53
C9		Same as Cl.	5-53
Cl 0		Same as C8.	5-53
CRI		SEMICONDUCTOR: MIL type 1N758A.	5-53
CR2		Notused.	
CR3		Same as CRI.	5-53
CR4 thru CR6		Not used.	
CR7		SEMICONDUCTOR: MIL type 1 N821.	5-53
CR8		Not used.	
CR9		Same as CR7.	5-53
Q1		TRANSISTOR: MIL type 2N2222.	5-53
Q2 thru Q6		Same as Q1.	5-53
R1		RESISTOR: MIL type RC07GF391K.	5-53
R2		RESISTOR: MIL type RC07GFl83K.	5-53
R3		RESISTOR: MIL type RC07GF221K.	5-53
R4		Same as R2.	5-53
R5		Not used.	
R6		RESISTOR: MIL type RC07GF222K.	5-53
R7		Not used.	
R8		RESISTOR: MIL type RC07GF273K.	5-53
R9		RESISTOR: MIL type RC07GFl22K.	5-53
RI0		RESISTOR: MIL type RC07GF682K.	5-53
R11		Same as R8.	5-53
R12		RESISTOR: MIL type RC07GF562K.	5-53
R13		Same as R10.	5-53
R14		Same as Rl2.	5-53
R15		RESISTOR: MIL type RN60D1372F.	5-53
R16		RESISTOR: MIL type RN60D4641F.	5-53
R17		RESISTOR: MIL type RN60D6811F.	5-53
R18		RESISTOR: MIL type RN60D4751F.	5-53

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{aligned} & \text { REF } \\ & \text { DESIG } \end{aligned}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
PS1A2A3		PRINTED CIRCUIT BOARD SUBASSEMBLY, +125 V RECTIFIER, REGULATOR AND FILTER: 42498 dwg D44001Gl.	5-50A
C1		CAPACITOR: MIL type CL65BP140MP3.	5-50
C2		Same as Cl.	5-50
C 3		CAPACITOR: MIL type CL65BP250MP3.	5-50
C4		Same as C3.	5-50
C 5		CAPACITOR: MIL type CK06CWl03K.	5-50
C6		Same as C5.	5-50
C7		CAPACITOR: MIL type M18312/01-0436.	5-50
C8		Same as C7.	5-50
C9		Same as C5.	5-50
CR1		SEMICONDUCTOR: MIL type 1 N645.	5-50
CR2		Same as CR1.	5-50
CR3		SEMICONDUCTOR: MIL type 1N967B.	5-50
CR4		SEMICONDUCTOR: MIL type 1 N914.	5-50
CR5		Same as CR4.	5-50
CR6		SEMICONDUCTOR: MIL type 1N985B.	5-50
CR7		SEMICONDUCTOR: MIL type 1N758A.	5-50
CR8		Same as CR4.	5-50
CR9		Same as CR4.	5-50
CRI0		SEMICONDUCTOR: MIL type 1 N821.	5-50
Q1		TRANSISTOR: MIL type 2N1893.	5-50
Q2		Same as Ql.	5-50
Q3		TRANSISTOR: MIL type 2N2222.	5-50
Q4 thru Q6		Same as Q3.	5-50
R1		Not used.	
R2		RESISTOR: MIL type RC07GFi04K.	5-50
R3		Same as R2.	5-50
R4		RESISTOR: MIL type RC07GF471K.	5-50
R 5		Not used.	
R6		RESISTOR: MII, type RC07GF183K.	5-50
R7		RESISTOR: MIL type R C07GFl23K.	5-50
R8		RESISTOR: MIL type RC07GF270K.	5-50
R9		Same as R7.	
R10		Same as R8.	5-50
R. 11		RESISTOR: MIL type RC07GF680K.	5-50
R12		RESISTOR: MIL type RC07GF122K.	5-50
R13		RESISTOR: MIL type RC07GF153J.	5-50
R14		RESISTOR: MIL type RC07GF682K.	5-50
R15		Same as R13.	5-50
R16		RESISTOR: MIL type RN65C1003F.	5-50
R17		RESISTOR: MIL type RN60C4871F.	5-50
R18		RESISTOR: MIL type RC07GF472J.	5-50
R19		RESISTOR: MIL type RC07GF124J.	5-50
R20		RESISTOR: MIL type RC32GFl01K.	5-50

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$
PSla3		PRINTED CIRCUIT BOARD SUBASSEMBLY,	5-49
C1		SWITCHING REGULATORS: 42498 dwg D46524Gl. CAPACITOR: MIL type CK06CW103k.	5-54
C2		CAPACITOR: MIL type CSl 3BEl56K.	5-54
C3		Same as Cl.	5-54
C4		CAPACITOR: MIL type CK06BX104K.	5-54
C5		CAPACITOR: MIL type CL65BH151MP3.	5-54
C6		Same as C1.	5-54
C7		Same as C5.	5-54
C8		Same as Cl.	5-54
C9		Same as C4.	5-54
CR1		SEMICONDUCTOR: MIL type 1N3064.	5-54
CR2		SEMICONDUCTOR: MIL type 1 N821.	5-54
CR3		SEMICONDUCTOR: MIL type l 1 967B.	5-54
CR4		SEMICONDUCTOR: MIL type 1 N914.	5-54
CR5		SEMICONDUCTOR: MIL type 1N756A.	5-54
CR6		Same as CR4.	5-54
Q1		TRANSISTOR: MIL type 2N2907A.	5-54
Q2		TRANSISTOR: MIL type 2N2905A.	5-54
Q3		TRANSISTOR: MIL type 2 N 2222.	5-54
Q4		Same as Q1.	5-54
R1		RESISTOR: MIL type RC07GF222K.	5-54
R2		RESISTOR: MIL type RC07GF471K.	5-54
R3		RESISTOR: MIL type RC07GF102J.	5-54
R4		RESISTOR: MIL type RC07GFl53J.	5-54
R5		RESISTOR: MIL type RC07GF473K.	5-54
R6		RESISTOR: MIL type RC32GF102K.	5-54
R7		RESISTOR: MIL type RC07GF472K.	5-54
R8		RESISTOR: MIL type RC07GF331K.	5-54
R9		RESISTOR: MIL type RC07GF104K.	5-54
R10		RESISTOR: MIL type RW69V680.	5-54
R11		RESISTOR: MIL type RC07GF100K.	5-54
R12		RESISTOR: MIL type RC07GF101K.	5-54
R13		RESISTOR: MIL type RC07GF330K.	5-54
R14		RESISTOR: MIL type RC07GF102J.	5-54
R15		RESISTOR: MIL type RC07GF182K.	5-54
R16		RESISTOR: MIL type RC07GF223K.	5-54
R17		RESISTOR: MIL type RC07GF682K.	5-54
R18		RESISTOR: MIL type RT12C2P102.	5-54
R19		RESISTOR: MIL type RC07GF152J.	5-54
R20		Same as R2. INTEGRATED CIRCUIT, LOGIC GATE: High speed	$5-54$ $5-54$
Z1		INTEGRATED CIRCUIT, LOGIC GATE: High speed differential comparator; plus 14 v positive supply voltage, minus 7 v negative supply voltage, 10 ma , 300 MW internal power dissipation; 42498 dwg A42423-10; 14433 type U5 B7710-31X.	5-54

TABLE 6-2. MAINTENANCE PARTS LIST (Cont)

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	FIG. NO.
		SUPPLIED WITH BUT NOT PART OF EQUIPMENT SPECIAL TOOLS AND EQUIPMENT CABLE ASSEMBLY, RF: C/o one connector plug MIL type MS18176-1 on one end and one connector plug MIL type MS18177-1 on the other end; one strand of cable MIL type RG196U, 10 in $1 \mathrm{~g} ; 42498 \mathrm{dwg}$ C45138G1. CABLE ASSEMBLY, RF: C/o one connector plug 42498 dwg A42559-3; 81312 type MRAC26PG7 on one end and one connector plug 42498 dwg A42560-3, 81312 type MRAC26SG7 on the other end; 10 strands of cable MIL type RG196U, 10 in lg; 42498 dwg C45148Gl. CABLE ASSEMBLY, RF: C/o one connector plug MIL type MS18176-1 on one end and one connector plug MIL type MS18177-1 on the other end; 7 strands of cable MIL type RG196U, 10 in $1 \mathrm{~g} ; 42498 \mathrm{dwg}$ C45149G1. CABLE ASSEMBLY, RF: C/o one connector plug MIL type MS18176-1 on one end and one connector plug MIL type MSI 8177-1 on the other end; 12 strands of cable MIL type RG196U, 10 in 1 g ; 42498 dwg C45149G2. CARD, EXTENDER: For use with printed circuit board A5; 42498 dwg D45184G1. CARD, EXTENDER: For use with printed circuit boards Al0 and Al7; 42498 dwg E45170Gl. CARD, EXTENDER: For use with printed circuit board Al2A7Al, 42498 dwg D46442G1. CARD, EXTENDER: For use with printed circuit boards Al2Al to A6; 42498 dwg D46442G2. CONNECTOR: MIL type MS3108R14S-7S. CONNECTOR: MIL type MS3116F20-39SX. CONNECTOR: MIL type MS3116F14-19S. EXTRACTOR, PRINTED CIRCUIT BOARD: 42498 dwg B434l2Gl. EXTRACTOR, PRINTED CIRCUIT BOARD: 42498 dwg B45837Gl.	

TABLE 6-3. LIST OF MANUFACTURERS

MFR CODE	NAME	ADDRESS
01121	Allen-Bradley Co.	1201 South 2nd Street Milwaukee, Wis. 53204
01281	TRW Semiconductors, Inc.	14520 Avaiation Blvd Lawndale, Calif. 90260
01295	Texas Instruments, Inc. Semi-conductor-Components Division	13500 North Central Express Way, Dallas, Texas 75231
02114	Ferroxcube Corp. of America	Mt. Marion Rd. Saugerties, N. Y. 12477
04713	Motorola Semiconductor Products, Inc.	5005 East Mc Dowell Rd. Phoenix, Ariz. 85008
07263	Fairchild Camera and Instrument Corp. Semiconductor Division	313 Frontage Rd. Mountain View, Calif. 94040
08815	New England Instrument Co.	H. F. Brown Way Natick, Mass. 01760
12965	Computer Components, Inc.	88-06 Van Wyck Express Way Jamaica, N. Y. 11418
13327	Solitron Devices, Inc.	256 Oak Tree Rd. Tappan, N. Y. 10983
13619	RF Interonics, Inc.	100 Pine Aire Drive Bayshore, L. I., New York 11706
13715	Fairchild Camera and Instrument Corp. Semiconductor Division Diode Plant	4300 Redwood Highway San Rafael, Calif. 94902
13923	Communications Products Department of the Norden Division of United Aircraft Corp.	Trevose, Pa. 19047
14433	ITT Semiconductors A Division of International Telephone and Telegraph Corp.	3301 Electronics Way West Palm Beach, Fla 33401
14674	Corning Glass Works	Houghton Park Corning, N. Y. 14830
14936	General Instrument Corp. Semiconductor Products Group	P.O. Box 600 6000 W. John Street Hicksville, N. Y. 11802
17117	Electronic Molding Corp.	40 Church Street Pawtucket, R, I. 02860
25140	Globe Industries, Division of TRW Inc.	2275 Stanley Ave. Dayton, Ohio 45404

TABLE 6-3. LIST OF MANUFACTURERS (Cont)

MFR CODE	NAME	ADDRESS
42498	National Radio Company, Inc.	89 Washington Street Melrose, Mass. 02176
46859	Philco-Ford Corp.	C and Tioga Streets Philadelphia, Pa. 19134
72982	Erie Technological Products, Inc.	644 W. 12th Street Erie, Pa. 16512
74868	Amphenol Corp., Amphenol RF Div.	33 E. Franklin Street Danbury, Conn. 06810
76493	Miller, J. W. Co.	5915 S. Main Street Los Angeles, Calif. 90003
76854	Oak Mfg Co., Division of Oak Electro/Netics Corp.	South Main Street Crystal Lake, I11. 60014
77342	American Machine and Foundry Co. Potter and Brumfield Division	1200 E. Broadway P.O. Box 522 Princeton, Ind. 47570
80207	Unimax Switch, Division of Maxson Electronics Corp.	Ives Road Wallingford, Conn. 06493
80294	Bourns, Inc.	1200 Columbia Ave. Riverside, Calif. 92507
81312	Winchester Electronics Division Litton Industries, Inc.	Main Street and Hillside Ave. Oakville, Conn. 06779
81541	Airpax Electronics, Inc.	Woods Road Cambridge, Md. 21613
81840	Ledex, Inc.	123 Webster Street Dayton, Ohio 45402
82567	Reeves-Hoffman	Cherry and North Streets Carlisle, Penn. 17013
82716	Richardson-Merrell, Inc.	122 East 42nd Street New York, N. Y. 10017
92966	Hudson Lamp Co.	$\begin{aligned} & 526 \text { Elm Street } \\ & \text { Kearny, N. J. } 07032 \end{aligned}$
94375	Automatic Metal Products Corp.	315-323 Berry Street Brooklyn, N. Y. 11211
95238	Continental Connector Corp.	$\begin{aligned} & 34-63 \text { 56th Street } \\ & \text { Woodside, N. Y. } 11377 \end{aligned}$
95275	Vitramon, Inc.	Box 544 Bridgeport, Conn. 06601

TABLE 6-3. LIST OF MANUFACTURERS (Cont)

MFR CODE	NAME	ADDRESS
96095	Aerovox Corp.	Seneca Avenue Olean, N. Y. 14760
96182	Master Specialties Co.	1640 Monrovia 98291
	Sealectro Corp.	Costa Mesa, Calif. 92627
		225 Hoyt
		Mamaroneck, N. Y. 10544

)

NOTES: 1. REF DES DREFIX PS/.
2. FOR EXTERNALCON-90.

NOTES:
2. FOR EXTERNAL CONNECTIONS
2. FOR EXTERNAC
SEE FIG. $5-90$.

notes: uncess otherwise specified

2. ALL CGBACITORS ARE GIVEN IN PICOFARAOS.
3. FOR EXTERNAL CONNECTIONS SEE F/IG. $5-90$.
3. FOR EXTERNAL CONNE
4. REF DES PREFIX AT.

NAVSHIPS 0967-292-903

Figure 5-90. Modulator-Synthesizer
MD-777/FRT, Front Panel and Chassis Assembly, Interconnection Diagram (Sheet 4 of 5)

Figure 5-90. Modulator-Synthesizer MD-777/FRT, Front Panel and Diagram (Sheet 5 of 5)
Distion

