INSTRUCTION BOOK
for
MEYERS
KY-58/GRT AND KY-75/SRT

NATIONAL COMPANY, INC.
MALDEN 48, MASSACHUSETTS

Contracts: NObsr-42513 Approved by BuShips: 6 OCTOBER 1951 NObsr-52052 Change 1: 19 DECEMBER 1952 NObsr-57530

LIST OF EFFECTIVE PAGES

PAGE NUMBERS	CHANGE IN EFFECT	PAGE NUMBERS	CHANGE IN EFFECT
Title Page	Change 1	3-7	Change 1
A	Change 1	3-8 to 3-10	Original
B	Change 1	4-1 to 4-4	Original
C	Original	5-1 to 5-4	Original
i to vi	Original	6-1 to 6-2	Original
1-0 to 1-6	Original	7-0 to 7-28	Original
2-1 to 2-6	Original	7-29 to 7-30	Change 1
2-7	Change 1	7-31 to 7-32	Original
2-8 to 2-19	Original	7-33 to 7-34	Change 1
3-0	Change 1	7-35 to 7-42	Original
3-1	Original	7-43	Change 1
3-2	Change 1	8-0 to 8-64	Original
$3-3$ to 3-6	Original		

RECORD OF CORRECTIONS MADE

CHANGE NO.	DATE	
		SIGNATURE OF OFFICER MAKING CORRECTION

TABLE OF CONTENTS

SECTION 1 - GENERAL DESCRIPTION
Paragraph Page

1. Scope of this Manual 1-1
2. Purpose and Basic Principles 1-1
3. Description of Units 1-1
4. Reference Data 1-2
SECTION 2 - THEORY OF OPERATION
5. General Theory and Description 2-1
6. General Circuit Description 2-3
SECTION 3 - INSTALLATION
7. Unpacking 3-1
8. Installation 3-1
9. Initial Adjustments and Performance Test 3-7
SECTION 4 - OPERATION
10. Introduction 4-1
11. General 4-1
12. Controls 4-1
13. Operating Instructions 4-2
SECTION 5 - OPERATOR'S MAINTENANCE
14. Routine Checks 5-1
15. Emergency Maintenance 5-2
SECTION 6 - PREVENTIVE MAINTENANCE
16. Routine Maintenance Checks 6-1
17. Lubrication 6-2
SECTION 7 - CORRECTIVE MAINTENANCE
18. Failure Report 7-1
19. Introduction 7-1
20. Theory of Localization 7-1
21. Trouble Shooting 7-1
22. Repairs 7-7
SECTION 8 - PARTS LIST
(See List of Tables)

LIST OF ILLUSTRATIONS

	SECTION 1-GENERAL DESCRIPTION	2-6	Phase Modulation Oscillator Stage, Schematic Diagram	2-8
Figure	Page	2-7	Pulse Shaper Stage, Simplified Schema-	
1-1	Keyer KY-58/GRT 1-0		tic Diagram	2-9
1-2	Keyer KY-75/SRT 1-2	2-8	Deviation Multipliers and Deviation	
1-3	Modulator-Power Supply MD-165/UR T.. 1-3		Controls, Simplified Schematic Dia-	
1-4	Amplifier-Oscillator AM-655/URT 1-4		gram	2-10
	SECTION 2 - THEORY OF OPERATION	2-9	200-Kilocycle Oscillator Stage, Simplified Schematic Diagram	2-11
2-1	Block Outline of Transmitting Instal- lation Employing the Keyer 2-1	2-10	Vector Diagrams showing the effects of deviation variation on carrier placement	2-12
2-2	Functional Block Diagram 2-2	2-11	Reactance Modulator Stage, Simplified	
2-3	Limiter Stages, Simplified Schematic Diagram .. 2-5	2-12	Schematic Diagram Crystal Oscillator - Amplifier Stage,	2-12
2-5	Cathode Follower Stages, Simplified Schematic Diagram 2-6	2-13	Schematic Diagram Balanced Mixer Stages, Simplified	2-13
2-5	Photo Input Stages, Simplified Schematic Diagram ... 2-7	2-14	Schematic Diagram Buffer Amplifier Stage, Simplified	2-14

LIST OF ILLUSTRATIONS (cont'd)

Figure	
	Schematic Diagram 2-15
2-15	Final Amplifier Stage, Simplified Schematic Diagram \qquad 2-16
2-16	Power Supply Circuit, Simplified
	Schematic Diagram 2-17
2-17	Crystal Oven, Simplified Schematic Diagram .. 2-18
	SECTION 3 - INSTALLATION
3-1	Keyer KY-58/GRT, Dimensional Outline and External Connection Drawing ... 3-0
3-2	Keyer KY-75/SRT, Dimensional Outline and External Connection Drawing ... 3-2
$\begin{aligned} & 3-3 \\ & 3-4 \end{aligned}$	Crystal Socket Identification 3-3
	Assembly of -49195 Connector and RG-8/U cable for Keyer Output, Freq
	Meter R.F. and Ext. Osc. Connections 3-4
3-5	Assembly of AN 3106B-14S-1S and AN
	3106B-14S-1P Connectors to type
	MCOS-2 cable for Freq Meter Audio and Keyline Connections \qquad
3-6	Assembly of A.C. Connectors to type
	MCOS-2 cable 3-6
3-7	Front-Panel Component Identification.. 3-8
	SECTION 4 - OPERATION
4-1	Operating Instructions for Frequency
	Shift Keying 4-3
4-2	Tuning Chart 4-4
SECTION 5 - OPERATOR'S MAINTENANCE	
5-1	Fuse Locations, Modulator-Power Supply MD-165/URT 5-2
5-2	Tube Locations, Amplifier-Oscillator
	AM-655/URT 5-3
5-3	Tube Locations, Modulator-Power Supply MD-165/URT
SECTION 7 - CORRECTIVE MAINTENANCE	
7-1	Failure Report 7-0
7-2	Trouble Shooting Chart 7-2
7-3	Voltage and Resistance Data Chart, Amplifier-Oscillator AM-655/URT 7-3
7-4	Voltage and Resistance Data Chart, Modulator-Power Supply MD-165/URT...... 7-4
ii	

Page
7-5 Interconnections for Frequency Devia- tion Test 7-5
7-6 Interconnections for Phase Modulation Test 7-6
7-7 Oscilloscope Pattern Representing One Radian of Phase Modulation 7-6
7-8 Alignment Adjustment Locations, Bottom View of Amplifier-Oscillator AM-655/ URT $7-8$
7-9 Alignment Adjustment Locations, Top
View of Amplifier-Oscillator AM-655/ URT ${ }^{\circ}$ 7-9
7-10 Alignment Adjustment Locations, Top View of Modulator-Power Supply MD- 165/URT 7-11
7-11 Alignment Adjustment Locations, Front View of Modulator-Power Supply MD-165/ URT with Panel Door Open 7-12
7-12 Alignment Adjustment Locations, Front
View of Amplifier Oscillator AM-655/ URT with Panel Door Open 7-13
7-13 Frequency Response of 60-cycle Keying Filter Z-101 7-25
7-14 Frequency Response of 100 -cycle Keying Filter Z-102 7-25
7-15 Frequency Response of 200 -cycle Keying Filter Z-103 7-26
7-16 Frequency Response of 240 cycle Keying Filter Z-104 7-26
7-17 Transient Response of Waveshaping Filters 7-27
7-18 Overall Dynamic Response of Photo Circuits 7-27
7-19 Frequency-Shift vs. Key Line Voltage, Static Test 7-28
7-20 Overall Photo Linearity, Static Test 7-28
7-21 Schematic Diagram, KY-58/GRT and KY-75/SRT Keyers 7-29, 7-30
7-22 Practical Wiring Diagram, Amplifier- Oscillator AM-655/URT $7-31,7-32$
7-23 Practical Wiring Diagram, Modulator- Power Supply MD-165/URT7-33, 7-34
7-24 Component Locations, Top View of Amplifier-Oscillator AM-655/URT 7-35
7-25 Capacitor Locations, BottomView of Amplifier-OscillatorAM-655/URT7-36
7-26 Resistor Locations, Bottom View of Amplifier-Oscillator AM-655/URT 7-37
7-27 Miscellaneous Component Locations,

LIST OF ILLUSTRATIONS (cont'd)

Figure

SECTION 1 - GENERAL DESCRIPTION

Table Page
1-1 Equipment Supplied 1-5
1-2 Shipping Data 1-6
1-3 Electron Tube Complement 1-6
SECTION 5 - OPERATOR'S MAINTENANCE
5-1 Routine Check Chart $5-1$
SECTION 6 - PREVENTIVE MAINTENANCE
6-1 Routine Maintenance Check Chart 6-1
SECTION 7 - CORRECTIVE MAINTENANCE
7-1 Tube Operating Voltages and Currents 7-15
7-2 Tube Characteristics 7-16
Power Supply MD-165/URT 7-41
7-31 Slide Mechanism Part Locations, Lefr Side View of Amplifier-Oscillator AM- 655/URT 7-42
7-32 Practical Wiring Diagram of Blister Assembly, KY-58/GRT and KY-75/SRT Keyers 7-43

LIST OF TABLES

7-3 Winding Data Chart 7-17, 7-18,7-19, 7-20,7-21, 7-22,

$$
7-23,7-24
$$

SECTION 8 - PARTS LIST
8-1 Weights and Dimensions of Repair Parts Boxes 8-0
8-2 Shipping Weights and Dimensions of Repair Parts Boxes 8-0
8-3 List of Major Units 8-0
8-4 Combined Parts and Repair Parts List 8-1, 8-61
8-5 Cross Reference Parts List 8-62
8-6 Applicable Color Codes amd Mis- cellaneous Data 8-63
8-7 List of Manufacturers 8-64

GUARANTEE

The equipment including all parts and spare parts, except vacuum tubes, batteries, rubber and material normally consumed in operation is guaranteed for a period of one year from the date of delivery of the equipment to and acceptance by the Government with the understanding that all such items found to be defective as to material, workmanship or manufacture will be repaired or replaced, f.o.b. any point within the continental limits of the United States designated by the Government, without delay and at no expense to the Government, provided that such guarantee will not obligate the Contractor to make repair or replacement of any such defective items unless the defect appears within the aforementioned period and the Contractor is notified thereof in writing within a reasonable time and the defect is not the result of normal expected shelf life deterioration.

To the extent the equipment, including all parts and spare parts, as defined above is of the Contractor's design or is of a design selected by the Contractor, it is also guaranteed, subject to the foregoing condition, against defects in design with the understanding that if ten percent (10%) or more of any such said item, but not less than two of any such item, of the total quantity comprising such items furnished under the contract, are found to be defective as to design
such item will be conclusively presumed to be of defective design and subject to one hundred percent (100%) correction or replacement by a suitably redesigned item.
All such defective items will be subject to ultimate return to the Contractor. In view of the fact that normal activities of the Naval Service may result in the use of equipment in such remote portion of the world or under such conditions as to preclude the return of the defective items for repair or replacement without jeopardizing the integrity of Naval communications, the exigencies of the Service, therefore, may necessitate expeditious repair of such items in order to prevent extended interruptions of communication. In such cases the return of the defective items for examination by the Contractor prior to repair or replacement will not be mandatory. The report of a responsible authority, including details of the conditions surrounding the failure, will be acceptable as a basis for affecting expeditious adjustment under the provisions of this contractual guarantee.
The above one year period will not include any portion of time the equipment fails to perform satisfactorily due to any such defects, and any items repaired of replaced by the Contractor will be guaranteed anew under this provision.

SAFETY NOTICE

The attention of officers and operating personnel is directed to Chapter 67 of the Bureau of Ships Manual or superseding instructions on the subject of radiosafety precautions to be observed.
This equipment employs voltages which are dangerous and may be fatal if contacted by operating personnel. Extreme caution should be exercised when working with the equipment.
While every practicable safety precaution has been incorporated in this equipment, the following rules must be strictly observed:

KEEP AWAY FROM LIVE CIRCUITS:

Operating personnel must at all times observe all safety regulations. Do not change tubes or make adjustment inside equipment with high voltage supply on. Under certain conditions dangerous potentials may exist in circuits with power controls in the off position due to charges retained by capacitors. To avoid casualties always remove power and discharge and ground circuits prior to touching them.

RESUSCITATION

AN APPROVED POSTER ILLUSTRATING THE
RULES FOR RESUSCITATION BY THE PRONE
PRESSURE METHOD SHALL BE PROMINENTLY
DISPLAYED IN EACH RADIO, RADAR, OR SONAR ENCLOSURE. POSTERS MAY BE OBTAINED UPON REQUEST TO THE BUREAU OF MEDICINE AND SURGERY.

INSTALLATION RECORD

Contract NObsr-42513	30 June 1948
Contract NObsr-52052	30 October 1950
Serial Number of equipment	
Date of acceptance by the Navy	
Date of delivery to contract destination	
Date of completion of installation ...	
Date placed in service...	

Blank spaces on this page shall be filled in at time of installation.

REPORT OF FAILURE

Report of failure of any part of this equipment, during its entire service life, shall be made to the Bureau of Ships in accordance with current regulations using form NAVSHIPS NBS 383 (revised). The
report shall cover all details of the failure and give the date of installation of the equipment. For procedure in reporting failures see Chapter 67 of the Bureau of Ships Manual or superseding instructions.

ORDERING PARTS

All requests or requisitions for replacement material should include the following data:

1. Federal stock number or, when ordering from a Marine Corps or Signal Corps supply depor, the Signal Corps stock number.
2. Name and short description of part.

If the appropriate stock number is not available the
following shall be specified:

1. Equipment model or type designation, circuit symbol, and item number.
2. Name of part and complete description.
3. Manufacturer's designation.
4. Contractor's drawing and part number.
5. JAN or Navy type number.

Figure 1-1. Keyer KY-58/GRT

SECTION 1
 GENERAL DESCRIPTION

1. SCOPE OF THIS MANUAL.

Frequency-Shift Keyers AN types KY-58/GRT and KY-75/SRT furnished under Contracts NObsr- 42513 and NObsr-52052 are described and discussed in this manual.

2. PURPOSE AND BASIC PRINCIPLES.

The AN types KY-58/GRT and KY-75/SRT keyers are directly calibrated frequency-shift exciters in which signaling is accomplished by shifting a constant amplitude carrier between two fixed frequencies representing the marking and spacing conditions of the telegraph code or the varying intensity of the facsimile (photo) signal.
The keyers can be connected to different types of Navy transmitters and are arranged so that closure of the contacts of a telegraph key, or a teletypewriter, produces a marking signal which causes the transmitter to emit a frequency above the mean assigned frequency of the transmitter. The opening of the contacts of a telegraph key or a teletypewriter produces a spacing signal which causes the transmitter to emit a frequency below the normal assigned frequency of the transmitter. The varying facsimile signal produces a marking and spacing condition similar to that of frequency-shift keying.
The primary purpose of the frequency-shift keyer is to replace the conventional exciter of a C.W. transmitter, with a source of R.F. excitation that can be shifted in frequency a small amount upward and downward to produce R.F. telegraph or facsimile signals corresponding to the d.c. polar, neutral or facsimile input signals connected to the keyer.
The AN types KY-58/GRT or KY-75/SRT keyers transmit a type F1 frequency shift signal or $F 4$ facsimile signal in the frequency range of 1 to 6.7 megacycles. The output of the keyer can be applied to any existing C.W. transmitter, capable of operating from a 2 to 20 -volt excitation source, for passage through class ' C ' amplifier or multiplier stages. The keyer is used principally for comparatively long distance communications in the high-frequency range.

3. DESCRIPTION OF UNITS.

The AN types KY-58/GRT and KY-75/SRT keyers are directly calibrated frequency-shift exciters designed for the transmission of frequency-shift telegraph and facsimile (photo) signals. The keyers are identical in electrical and mechanical construction except that the KY-58/GRT is mounted in the upper section of a mobile cabinet CY-1132/GRT whereas the KY-75/SRT cabinet CY-1133/SRT is designed for mounting atop an operating table or bench. The keyers are composed of two sub-units, a ModulatorPower Supply MD-165/URT and an Amplifier-Oscillator AM-655/URT. The MD-165/URT incorporates the power supply and all modulator circuits and controls up to but not including the reactance tube. The AM-655/URT incorporates the crystal oven, reactance tube, $200-\mathrm{kc}$. oscillator and all R.F. circuits and controls. Both units can be independently removed from the cabinet and serviced or replaced. All necessary operating controls are located on the front panel. Semi-operating controls are mounted on a sub-panel recessed behind the main front panel. Access to the semi-operating controls is made possible by a hinged front-panel door.
The keyers are designed for operation from an A.C. source of 115 or $23 n$ volts, $50 / 60$ cycles, single phase. Rated power output of the equipment is 6 watts into a 75 -ohm non-inductive resistive load throughout its frequency range of 1 to 6.7 megacycles. The frequency range is covered by a three position bandswitch with calibrated frequency ranges of 1 to 1.8 megacycles, 1.8 to 3.5 megacycles and 3.5 to 6.7 megacycles. A four-position switch is provided for selection of one of three crystals, a fourth position is provided so that an external oscillator can be used. The frequency-shift of the keyers is adjustable over a range of zero to 1000 cycles-persecond in order that the actual transmitter frequency may be adjusted to any value from 0 to 500 cycles-per-second higher than the assigned frequency for the MARK signal and the same number of cycles lower than the assigned frequency for the SPACE signal. The equipment is capable of being keyed up to 240 dot-cycles per second. The frequency-shift cap-

Figure 1-2. Keyer KY-75/SRT
abilities for photo transmission provide a frequency variation of any value between 0 and 2000 cps. i.e., $0 \pm 1000 \mathrm{cps}$. with respect to the assigned frequency. The main tuning tank of the 200 -kilocycle oscillator, the frequency-determining crystals of the R.F. oscillator and the grid-cathode capacitor of the reactance modulator are mounted within a thermostatically controlled oven.
A four-section tuning capacitor is used to gang all circuits in the R.F. section except for the final amplifier plate circuit which is independently tuned and loaded. A multi-purpose meter and three-position 1-2
wafer switch are utilized to obtain a visual indication of the photo input voltage, final grid and plate tuning.

4. REFERENCE DATA.

a. NOMENCLATURE.-AN type KY-58/GRT keyer, AN type KY-75/SRT keyer.
b. CONTRACT NUMBERS AND DATES.-Contract NObsr- 42513 dated 30 June 1948. Contract NObsr52052 dated 30 October 1950.
c. CONTRACTOR.-National Company, Inc., Mal-
den, Massachusetts, U.S.A.
d. COGNIZANT NAVAL INSPECTOR.-Inspector of Naval Material, Boston 10, Massachusetts.
e. NUMBER OF PACKAGES INVOLVED PER COMPLETE SHIPMENT OF EQUIPMENT.
(1) One crate containing the Keyer and two instruction books.
(2) One crate containing equipment repair parts. f. TOTAL CUBICAL CONTENTS.
(1) CRATED.
(a) Keyer KY-58/GRT - $19 \mathrm{cu} . \mathrm{ft}$.
(b) Keyer KY-75/SRT - 13.5 cu. ft.
(c) Equipment Repair Parts $\rightarrow 1.89 \mathrm{cu} . \mathrm{ft}$.
g. TOTAL WEIGHT.
(1) CRATED.
(a) Keyer KY-58/GRT - 404 lbs.
(b) Keyer KY-75/SRT - 346 lbs.
(c) Equipment Repair Parts - 65 lbs.
(2) UNCRATED.
(a) Keyer KY-58/GRT - 270 lbs.
(b) Keyer KY-75/SRT - 220 lbs .
(c) Equipment Repair Parts - 52 lbs.
b. FREQUENCY RANGE. -1 to 6.7 megacycles when used with crystals resonant between 0.8 and 6.5 Mc. or with a master oscillator covering this range and having an R.F. output from 2 to 20 volts across a 75 -ohm load impedance.
i. TUNING BANDS.-Three bands: 1.0 to 1.8 Mc ., 1.8 to 3.5 Mc . and 3.5 to 6.7 Mc .
j. NUMBER OF PRE-SET FREQUENCIES.-Three
k. TYPE OF FREQUENCY CONTROL.-Internal crystal oscillator or external high-frequency oscillator and 200 Kc . oscillator.
l. TYPE OF EMISSION.-F1, frequency-shift telegraphy or F 4 facsimile.
m. NOMINAL CARRIER OUTPUT. -6 watts into a 75 -ohm, non inductive resistive load.
n. CRYSTALS AND HOLDERS.-Three CR-27/U quartz crystals in HC-6/U holders or three crystals of similar characteristics in $\mathrm{HC}-1 / \mathrm{U}$ holders. Mechanical arrangement of holders prohibits use of more than three crystals at a time.
o. IMPEDANCE.
(1) Frequency-shift input impedance - 100,000

Figure 1-3. Modulator-Power Supply MD-165/URT

Figure 1-4. Amplifier-Oscillator AM-655/URT
ohms.
(2) Photo input impedance -600 ohms.
(3) Output impedance -75 ohms.
p. KEYING VOLTAGE.-D.C. Polar (+ for mark and - for space) ± 40 to ± 150 volts.
D.C. Neutral (+ for mark and 0 for space) +40 to +150 volts.
q. KEYING SPEED.-Zero to 240 dot-cycles per second.
r. KEYING SOURCE.-Navy Tone Keyer (type CW50124 or CRV-50059) or teletype with a 2000 -ohm termination.
.s. FREQUENCY SHIFT.-Adjustable from zero to 1,000 cycles total shift, symmetrical with respect to the assigned carrier frequency.
t. FREQUENCY SHIFT FOR PHOTO TRANSMIS-SION.-From zero to 2000 cycles total shift, symmetrical with respect to the assigned carrier frequency. Shift is linear throughout this range.
u. PHOTO INPUT VOLTAGE, $-0-20$ volts.
v. PHASE MODULATION.-Phase modulation fre-
quency of 200 cycles per second $\pm 5 \%$, amount of phase shift adjustable up to one radian.
w. MULTIPLICATION FACTOR SWITCH.-Accommodates transmitter frequency multiplication of 1,2 , $3,4,6,8,9$ and 12 times.
x. TEMPERATURE OF OSCILLATOR OVEN. $-70^{\circ} \mathrm{C}$ $\pm 1 \%$.
y. FREQUENCY STABILITY. \sim Stability of 200 kc . oscillator is ± 75 cycles. Overall stability within 0.01% at 1 Mc . and 0.003% at 6.7 Mc . and varying linearly between.
z. MOUNTING.-KY-58/GRT mounted in upper section of mobile cabinet. KY-75/SRT shock mounted for use on top of a table or bench.
aa, INSTALLATION.-KY-58/GRT - shore-based

> KY-75/SRT - shipboard use.
bb. CHARACTERISTICS OF POWER SUPPLY REQUIRED FOR OPERATION.
(1) Type - Self contained full-wave rectifier.
(2) A.C. Voltage -115 or 230 volts.
(3) Frequency - $50 / 60$ cycles.
(4) Number of phases - Single phase.
(5) Power consumption at 115 volts - oven heat on - 470 watts, 477 VA.
(6) Power consumption at 115 volts - oven heat off -165 watts, 171 VA.
(7) Standby power at 115 volts - oven heat on 370 watts, 379 VA.
(8) Standby power at 115 volts - oven heat off 65 watts, 73 VA.
(9) Maximum plate current - 220 MA at 270 volts D.C.
cc. LIMITER ACTION.-Change in deviation, SPACE to MARK with SPACE at 0 volts and MARK variable 0.4% as MARK is increased from 40 to 150 volts posi-
tive. Change in deviation SPACE to MARK with MARK at 100 volts positive and SPACE variable from 0 to 150 volts negative -2%.
dd. CHANGE IN CARRIER DUE TO.
(1) Keying pulse change from 40 to 120 volts (polar or non-polar) - 10 cycles.
(2) Multiplier switch setting - 4 cycles.
(3) Line voltage variations of plus or minus 10% ± 12 cycles.
(4) Input filter switch setting - 4 cycles.
(5) Tuning procedure (RF) - 3 cycles.
(6) Ambient temperature variation from $-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}-25$ cycles.
(7) Locked key at full power 6 hours - 10 cycles.

TABLE 1-1. EQUIPMENT SUPPLIED

$\begin{aligned} & \text { QUAN- } \\ & \text { TITY } \\ & \text { PER } \\ & \text { EQUIP- } \\ & \text { MENT } \end{aligned}$	NAME OF UNIT	AN OR NAVSHIPS DESIGNATION	OVERALL DIMENSIONS			$\begin{aligned} & \text { VOLUME } \\ & \text { CU. FT. } \end{aligned}$	$\begin{aligned} & \text { WEIGHT } \\ & \text { LBS. } \end{aligned}$
			HEIGHT	WIDTH	DEPTH		
1	Frequency-Shift Keyer	KY-58/GRT	$417 / 16^{\prime \prime}$	22 1/8'	269/16'	14.1	270
1	Set of Cables		$11 / 2 \prime$	$11 / 2^{\prime \prime}$	12'	. 188	20
2	Instruction Books	Navships 91543	11 1/2',	$83 / 4 \prime \prime$	1/2''	. 03	1.0
1	Equipment Repair Parts		12 1/4''	$181 / 4 \prime \prime$	91/8'	1.18	52
or							
1	Frequency-Shift Keyer	KY-75/SRT	24 1/2''	22 1/8'	$269 / 16^{\prime \prime}$	8.33	220
1	Service Cable		$\begin{aligned} & 6^{\prime} 3^{\prime \prime} \\ & \text { lg. } \end{aligned}$	-	- - -	-	
2	Instruction Books	Navships 91543	11 1/2''	$83 / 4^{\prime \prime}$	1/2'	. 03	1.0
1	Equipment Repair Parts		12 1/4"	$181 / 4^{\prime \prime}$	91/8'	1.18	52

SECTION 2
 THEORY OF OPERATION

1. GENERAL THEORY AND DESCRIPTION.

The AN types KY-58/GRT and KY-75/SRT keyers are used at the transmitting station of a long distance radio system to adapt existing transmitters to frequency-shift or facsimile types of transmissions. Telegraph or facsimile signals to be applied to the keyer may be originated at a station equipped with a

Figure 2-1. Block Outline of Transmitting Installation Employing the Keyer

Figure 2-2. Functional Block Diagram
at a remote point from the transmitting and receiving stations with interconnections by land lines or a communications control system. Refer to Figure 2-1 for a block outline of a transmitting installation employing the keyer.
The keyer components are mounted on two chassis. The KY-58/GRT is mounted in a mobile cabinet CY1132/GRT, whereas the KY-75/SRT cabinet CY-1133 /SRT is designed for mounting atop an operating table or bench. All necessary operating controls are mounted on the front panel. Semi-operating controls are mounted on a sub-panel recessed behind the front panel. External and interconnecting receptacles are located at the rear of the cabinet.
a. FRONT PANEL CONTROLS.-The operating control knobs, dials and meter are located and identified on Figure 3-7. Semi-operating controls are recessed behind the front panel.
b. FUSES AND RECEPTACLES.-Three circuit fuses and three spare fuses are provided at the top rear of the MD-165/URT chassis. Two blister assemblies mounted at the rear of the cabinet provide a means of interconnecting the two units and connecting the keyer to associated equipment. All connections into each chassis are made through a multiconnector in the blister assembly which mates with a multiconnector on the chassis. See Figures 3-1 and 3-2 for illustrations of cable assemblies and blisters.
c. TEMPERATURE-CONTROLLED OVEN.-Components of the $200-\mathrm{kc}$. oscillator, frequency determining crystals of the crystal oscillator and the reactance tube grid-cathode capacitor are mounted in a closed oven equipped with heater resistors thermostatically controlled to maintain the temperature of the oven at $70^{\circ} \mathrm{C}$. The close regulation of the temperature of the components in the oven provides for more uniform circuit constants to maintain proper frequency stability of the crystals and $200-\mathrm{kc}$ oscillator. The oven thermoswitch control is also located in the oven.

d. CHASSIS ARRANGEMENT.

(1) AMPLIFIER-OSCILLATOR AM-655/URT.-The following electrical circuits are mounted on the AM655/URT; crystal oscillator and amplifier, balanced mixers, low-frequency oscillator, balanced reactance modulator, buffer amplifier, final amplifier and output circuits, temperature controlled oven, voltage regulator and current regulator.
(2) MODULATOR-POWER SUPPLY MD-165/URT. -The following electrical circuits are mounted on the MD-165/URT; test-operate and calibrate circuit, photo input control, pulse limiters, phase modulation oscillator, phase modulation control, cathode follow-
er, pulse shaper, deviation dividers, deviation controls, power supply and two voltage regulators.

2. GENERAL CIRCUIT DESCRIPTION.

See Figure 2-2 for a functional block diagram and Figure 7-21 for a schematic diagram of the keyer.
The AN types KY-58/GRT and KY-75/SRT keyers are frequency-shift keyers designed for the transmission of frequency-shift telegraphy and/or facsimile (photo) signals over a frequency range of 1.0 to 6.7 megacycles.
Basically the keyers consist of three functional sub-divisions as follows:
RF circuits -- crystal oscillator and amplifier, balanced mixers, low-frequency oscillator, balanced reactance modulator, buffer amplifier, final amplifier and output circuits.
Modulator circuits -- test-operate and calibrate circuit, photo input control, pulse limiters, phase modulation oscillator, phase modulation control, cathode followers, pulse shaper, deviation dividers and deviation controls.
Power Supply -- a full-wave rectifier stage, three voltage regulator stages and an A.C. filament current regulator stages.
a. MODES OF OPERATION.
(1) FREQUENCY-SHIFT.-The input radio frequency of the keyer may be that of an external oscillator, such as the transmitter master oscillator, or that of the self-contained crystal oscillator. The keyer oscillator $V-110$ is equipped with six crystal sockets $\mathrm{XY}-101$ to $\mathrm{XY}-106$ inclusive: three for HC-6/U crystal holders and three for HC-1/U crystal holders. One of each type of socket is utilized for each crystal position. The sockets are so arranged that it is physically impossible to plug two crystals into any two parallel sockets at the same time. Any one of three crystals or an external oscillator may be selected by the four-position CRYSTAL-OSC. switch S-106. The input frequency of the keyer is in the range of 0.8 to 6.5 mcs . which is 200 kcs . less than the output frequency of the keyer. The frequency of a $200-\mathrm{kc}$. oscillator $\mathrm{V}-107$ is frequency modulated by a balanced reactance modulator V-106 which, by varying the amount of reactance across the oscillator tuned circuit, decreases or increases the frequency of the oscillator a small amount in response to mark and space signals. The radio-frequency output of the crystal oscillator $\mathrm{V}-110$ and the frequencymodulated output of the $200-\mathrm{kc}$. oscillator $\mathrm{V}-107$ are combined in a balanced mixer circuit consisting of $\mathrm{V}-108$ and V-109. The frequency of oscillator V-110 is balanced out, therefore only the sum and differ-

Figure 2-3. Limiter Stages, Simplified Schematic Diagram
section limits the positive pulse for on-off keying. The positive pulse limiting diode is biased by cathode resistor R-110 so that a 30 -volt limiting threshold is obtained. Bias voltage for the fositive pulse diode is supplied by voltage regulator V-114 through dropping resistor R-111. The limited positive pulses appearing across R-112 are applied to the second double-diode limiter where any remaining neg-
ative pulses are clipped by the first section of the diode and the positive pulses are limited by the second section of the diode. Bias voltage for the positive pulse limiter is supplied by voltage regulator $\mathrm{V}-114$ through dropping resistor $\mathrm{R}-113$ and variable resistor R-114. The 'FSK' Mark adjustment R-114 is adjusted to obtain a 2.5 volt change between space and mark as indicated on the panel meter.

Figure 2-5. Photo Input Stages, Simplified Schematic Diagram

Figure 2-7. Pulse Shaper Stage, Simplified Schematic Diagram
ohms and reducing the deviation by a factor equal to the multiplication factor of the transmitter. As the amount of deviation is lowered a converse action takes place i.e., a large resistance shunts the control and a small resistor is placed in series. By reducing the shift in this manner the mean carrier frequency will be corrected to maintain its center position between Space and Mark as the multiplication factor or deviation is altered. The calibrated dial of the Deviation control reads the actual amount of deviation realized at the output of the transmitter.
The keyer is designed for a frequency-shift which
is adjustable from 0 to 1000 cycles for FSK operation and any value between 0 and 2000 cps., i.e., 0 to $\pm 1000 \mathrm{cps}$. with respect to the assigned frequency for photo transmission. For the purpose of this description, assume that the keyer is used with a radio circuit in which there is a total frequency-shift of 850 cycles between marking and spacing signals. However, the actual frequency shift necessary at the output of the frequency shift keyer unit depends upon the frequency multiplication factor of the associated transmitter, as shown in the following table:

In normal operation the DEVIATION control is adjusted to obtain the desired deviation as read directly on the calibrated dial of the control. After the multiplication factor employed in the transmitter is determined, the MULTIPLIER switch is set at a position corresponding to this factor. In this manner the amount of deviation is determined and held constant despite any ensuing multiplication in the transmitter.
(8) 200 KC . OSCILLATOR.-The low frequency oscillator employs a type 6 SJ 7 W sharp cut-off pentode V-107 in an essentially balanced circuit. See Figure $2-9$ for a schematic diagram of this stage. The oscillator operates at 200 kcs . and is heterodyned to the operating frequency by means of a crystal oscillator V-110 and a balanced mixer V-108 and V-109. The main tuning tank of the oscillator and the gridcathode capacitor $\mathrm{C}-115$ of $\mathrm{V}-106$ are temperature controlled in the oven. Inductor L-103 is adjusted to provide a $200-\mathrm{kc}$. output when the CARRIER CALI-

BRATE control dial C-114 is set at its mid-position. L-103 is factory adjusted and ordinarily does not require readjustment in the field. The CARRIER CALIBRATE control is provided in the cathode circuit of the oscillator to permit slight readjustment of the carrier to compensate for minor differences in crystals and/or tubes. R-177 is utilized as a grid leak resistor. Screen voltage is obtained from voltage regulator $V-113$ through dropping resistor $\mathrm{R}-178$ which is bypassed by $\mathrm{C}-160$. Plate load resistor $\mathrm{R}-179$ is decoupled by C-118. Resistors R-180 and R-179 form the balanced plate load. The $200-\mathrm{kc}$. oscillator output is fed through coupling capacitor $\mathrm{C}-119$ to the permeability tuned tank circuit L-104 and C-121. Inductor L-104 is normally tuned for maximum output.

The $200-\mathrm{kc}$. oscillator is frequency-modulated by reactance modulator $\mathrm{V}-106$. The frequency-modulated $200-\mathrm{kc}$. oscillator output amplitude modulates the R.F. carrier.

Figure 2-9. 200-Kilocycle Oscillator Stage, Simplified Schematic Diagram
$\mathrm{R}-143 \mathrm{~A}$. The signal voltage is connected to the signal grid (pin No. 4) of the reactance modulator through a keying filter and the other section of the corrective network consisting of a voltage divider system in conjunction with Multiplier switch section S-104C, S-104D and one section of the dual Deviation control R-143B.
The correction circuit is necessary in order to maintain equal voltages on both grids of the reactance modulator as the deviation is increased from zero. As the deviation is increased the zero (space) signal frequency will decrease to the correct space value. When the Multiplier switch S-104 and the Deviation control R-143 are varied the voltage on the corrector grid (pin No. 1) of the reactance tube is kept equal to the average carrier value of the signal grid (pin No. 4) of the reactance tube. By controlling the circuit in this manner the deviation can be changed without readjusting the carrier, whereas in a non-corrected deviation circuit the carrier will shift between the Mark and Space frequencies with changes in deviation, necessitating retuning of the carrier.

Figure $2-10$ is a vector diagram illustrating the effect on carrier placement with changes in deviation in both corrected and non-corrected deviation circuits.
This stage employs a type $6 \mathrm{SN} 7 / \mathrm{W} G T$ dual-triode tube V-106 as a balanced variable reactance modulator. See Figure 2-11 for a schematic diagram of this stage. The use of a balanced modulator minimizes variation of the mean frequency and also allows the
shift to be varied without affecting the mean carrier frequency. The reactance modulator functions as an amplifier whose input capacity can be varied by changing the amplifier gain and consequently changes the $200-\mathrm{kc}$. oscillator frequency accordingly. Section A of V-106 (consisting of triode section 4,5 and 6) is a cathode follower type amplifier and section B of V-106 (consisting of triode section 1,2 and 3) functions to control the gain of section A in accordance with the voltage on the grid of section B. The input of the cathode follower amplifier is made to look capacitive by connecting capacitor $\mathrm{C}-115$ between the input (the grid) and the output (the cathode). In the no-signal condition the cathode would be essentially at ground RF potential and the input capacity would appear to be C-115. If the amplifier were unity gain the cathode and grid would be at the same R.F. voltage and phase. In this condition capacitor C-115 would have no potential difference between its terminals and would appear as though it had been removed from the circuit. The amplifier input capacity would in this case appear to be that due to the tube capacities alone. Since the cathode follower gain always ranges between 0 and 1 , corresponding percentages of C-115 appear to be connected across the $200-\mathrm{kc}$. oscillator circuit and consequently change its frequency accordingly. Actually the cathode follower gain is controlled by the bias on the grids of sections A and B.

ced out by adjusting the CATHODE BALANCING ADJUSTMENT R-189 to equalize the R.F. carrier components of tubes V-108 and V-109 which are 180° out of phase. Resistor R-189 is bypassed by capacitor $\mathrm{C}-138$. Cathode resistor $\mathrm{R}-187$ is bypassed by capacitor $\mathrm{C}-135$. The platecircuits of the mixer tubes are tuned by sections B and C of TUNING capacitor C-127. Inductors T-102, T-103, T-104 with trimmer capacitors $C-140, C-141$, and $C-142$ are selected respectively by the $F R E Q$. RANGE switch $\mathrm{S}-107$ to complete the mixer tuned circuits. With proper balancing of the cathode circuits, tuning of the plate circuit will produce a minimum amount of grid drive when tuned to the oscillator frequency. The sum and difference frequencies resulting from mixing the input radio frequency and the $200-\mathrm{kc}$. oscillator frequencies are present in the output of the balanced mixers. The combined output of the balanced mixers is tuned to the higher or sum frequency.
(12) BUFFER AMPLIFIER.-The output of the balanced mixer is applied to the grid of a 6AC7W sharp cut-off'pentode V-111. See Figure 2-14 for a schematic diagram of this stage.

The buffer amplifier stage permits a lighter loading of the mixer output circuit which, together with the added tuned circuit, provides greater discrimination against unwanted modulation components. The output of the balanced mixer is connected to the grid of tube V-111. Screen voltage is supplied through dropping resistor $\mathrm{R}-195$ which is bypassed by $\mathrm{C}-143$. The plate circuit of the amplifier is tuned by TUNING capacitor section C-127D. Inductors L-113, L-114 and L-115 with trimmer capacitors C-146, C-147 and C-148 are selected respectively by the FREQ. RANGE switch S-107 to complete the buffer tuned circuits.
(13) FINAL AMPLIFIER.-The power amplifier utilizes an 807 beam power amplifier tube $V-112$ connected as a class ' C ' amplifier. See Figure 2-15.
Amplified signal voltages appearing at the output of the buffer amplifier are applied through capacitor C-145 to the grid of V-112. Screen voltage is supplied through dropping resistor $\mathrm{R}-198$ which is bypassed by capacitor $\mathrm{C}-152$. Cathode resistor $\mathrm{R}-197$ is bypassed by capacitor $\mathrm{C}-149$ to provide self bias. Panel meter $\mathrm{M}-101$ is connected in the grid and plate

Figure 2-14. Buffer Amplifier Stage, Simplified Schematic Diagram

Figure 2-16. Power Supply Circuit, Simplified Schematic Diagram
the A.C. receptacle J-103 which is located on the blister assembly. The A.C. input is connected through the contacts of POWER switch S-108 and a line filter consisting of $\mathrm{C}-161 \mathrm{~A}, \mathrm{C}-161 \mathrm{~B}, \mathrm{C}-162 \mathrm{~A}$, C-162B, L-124 and L-125 to the primary of power transformer T-101 and to the controlled heaters of the crystal oven. A white jeweled pilot lamp 1-103 lights when the POWER switch is at ON.
The power supply is wired at the factory for $115-$ volt operation, but minor wiring changes will permit 230 -volt operation. It will be noted that for 115 -volt operation the two primary windings of transformer T-101 and the oven heater resistors are all connected in parallel across the A.C. input. For 230 -volt opera-
tion the two transformer windings and the four heater resistors are connected in series.

All D.C. voltages and filament voltages required by the keyer are furnished by the power supply as follows:
(a) 270 V.D.C. at 220 ma .
(b) 4.35 amperes at 6.3 V.A.C.
(c) 0.6 amperes at 12.0 V.A.C.
(d) 3 amperes at 5.0 V.A.C.

A 5U4G full-wave rectifier V-116, power transformer T-101 and a capacitor-input filter network consisting of C-157, L-122, C-158, L-123 and C-159 constitute the power supply circuit. Two eight-ampere line fuses and a $500-\mathrm{ma}$. B+ fuse are provided to prevent
of asbestos. The oven contains the crystal holders, $200-\mathrm{kc}$. oscillator tank circuit and the cathode-to-grid capacitor of the reactance modulator. The temperature of the oven is controlled by a thermoswitch S110. The heater resistors are wired at the factory for 115 -volt operation but minor wiring changes will permit 230 -volt operation. The contacts of thermoswitch S-110 are normally closed except when the temperature of the oven is at $70^{\circ} \mathrm{C}$. The contacts open and ciose intermittently to maintain the temperature at this level. $\mathrm{A}-50^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ thermometer and an amber jewel pilot lamp I-101 are utilized as oven temperature indicators. The lamp will remain lighted until the temperature of the oven has reached $70^{\circ} \mathrm{C}$ as indicated on the oven thermometer. When no heat is
being applied the lamp will remain off until the oven temperature drops slightly below $70^{\circ} \mathrm{C}$. The arrangement of oven heaters provides a constant temperature but not an extremely rapid warmup. The rate of temperature rise is approximately 3 degrees per minute. The temperature coefficient of the low-frequency oscillator tank mounted in the oven is approximately 3 cycles per degree. The total carrier drift using a onemegacycle crystal has been measured to be less than 5 cycles due to temperature after the oven is fully stabilized. However, the time required to stabilize may be an hour or more when the equipment has been left for long intervals at low ambient temperatures. The total oven heat is 305 watts.

NAVSHIPS 91543 KY-58/GRT and KY-75/SRT

INSTALLATION

Figure 3-1. Keyer KY-58/GRT, Dimensional Outline and External Connection Drawing

SECTION 3
 INSTALLATION

1. UNPACKING.

The Keyers KY-58/GRT or KY-75/SRT and equipment repair parts are carefully packed in separate wooden crates for overseas shipment. One set of cables is provided with the KY-58/GRT. No cables are supplied with the KY-75/SRT but all connectors required to make up the necessary cables are provided. Two instruction books are shipped with the equipment. The equipment is contained in moistureproof barrier cartons having an 18 months supply of Silica Gel. Do not open the cartons until the equipment is being installed, as the Silica Gel will saturate rapidly upon exposure to humid atmosphere. The recommended procedure to employ in unpacking each piece of equipment is as follows.
Step 1. Cut the metal straps around the crate and remove the side that reads 'Open This Side'. The cover is secured by nails and an ordinary nail puller or claw hammer may be employed.
Step 2. Remove sufficient filler material from the crate to permit access to the carton. Lift out the packaged items.
Step 3. Remove the outer water-proof wrapper and remove the outer carton.
Step 4. Cut the moisture-vaporproof barrier along the heat-sealed seam and remove the barrier.
Step 5. Open the inner carton and remove the dessicant.
Step 6. Lift the equipment out of the carton.
Step 7. Inspect the equipment for any damage incurred during shipment.
Step 8. The equipment spare parts set is packed in a manner similar to the keyer and its unpacking will follow the procedure outlined above in steps 1 through 7.

Step 9. The packing crates and packing material should be saved in event the equipment has to be repacked and shipped at a later date.

2. INSTALLATION.

Both units of the keyer are designed for mounting in the cabinet furnished for this purpose. Both sub-units may, however, be mounted in any standard 19-inch rack panel. When this is done it will be necessary to secure the blister assembly to the units. This is accomplished by means of the four $10-32$ '" screws
packed in the equipment repair parts box. Thread the screws through the opening in the head of the captive thumb screws at each side of the blisters until they are securely engaged into the chassis.

WARNING

Voltages employed in the associated transmitter are dangerous and may be fatal if contacted by operating personnel. Extreme caution should be exercised when working with the equipment. NEVER MEASURE POTENTIALS IN EXCESS OF 1000 VOLTS BY MEANS OF FLEXIBLE TEST LEADS OR PROBES.

a. POSITIONING OF CABINET.

(1) KY-58/GRT. - When determining the location of the cabinet make sure that a minimum access space of approximately two feet is provided at the rear of the cabinet or the location is such that the cabinet may be rolled forward to permit access to the back. See Figure 3-1 for a dimensional drawing. This is adequate space for servicing (removal of blisters). Place the cabinet CY-1132/GRT in that part of the room where the temperature will be more or less constant i.e. not near any direct source of heat or cold. The keyer should be placed as close as possible to its associated transmitter. Cables furnished for connections to the transmitter and other external equipment are 12 feet long.
(2) KY-75/SRT.-When mounting the KY-75/SRT cabinet CY-1133/SRT atop an operating table or bench allow sufficient space at the rear of the cabinet to permit access to the blister units. See Figure 3-2 for a dimensional outline drawing. Place the cabinet in that part of the room where the temperature will be more or less constant i.e., not near any direct source of heat or cold. The keyer should be placed as close as possible to its associated transmitter.
b. ARRANGEMENT OF UNITS.-The blank panel in the bottom section of Keyer KY-58/GRT may be removed in the event it is desired to mount other equipment in the cabinet. Make sure that all mounting screws are turned tightly into place.
c. INSTALLATION OF CRYSTALS.-Crystals for operation of the keyer are not supplied by the contractor. Crystals for equipment operation are furnish-

Figure 3-3. Crystal Socket Identification
ed by the Navy Department at the point of installation. Parallel wired sockets are provided to mount either crystal holders type HC-1/U (3/4 inch pin spacing) or type HC-6/U holders ($1 / 2$ inch pin spacing). Only one type of crystal may be employed at each position simultaneously. The sockets are so arranged that it is physically impossible to plug two crystals into two parallel sockets.
The frequency of the operating crystal must be 200 kilocycles lower than the carrier frequency at the output of the keyer. To determine the proper crystal to use, observe the following procedure.
Step 1. Divide the desired channel frequency in kilocycles by the multiplication factor of the transmitter.
Step 2. Subtract 200 kilocycles from the result of step 1.
Example: If the desired channel frequency were $12,000 \mathrm{kc}$. and the multiplication factor of the transmitter 3, the output of the keyer would be $12,000 \mathrm{kc}$. divided by 3 or $4,000 \mathrm{kc}$. Therefore the crystal frequency would be 200 kcs . less or 3800 kcs .
The crystal sockets are made accessible by opening the front-panel door located below the oven thermometer. Insert the crystals in their proper sockets with respect to the holders employed and the switch positions desired for selection of a particular crystal. The crystals may be inserted in any position with re-
spect to frequency. Refer to Figure 3-3 for crystal socket identification. Record the frequency on the Tuning Chart on the front panel.

d. EXTERNAL CONNECTIONS.

(1) KY-58/GRT.--Various connections have to be made to place the keyer in operation. All necessary interconnecting cables are furnished with the KY-58 /GRT. The cables are marked at both ends to identify the cable functions. All connections to and from the keyer are made on the blister assembly at the rear of the cabinet. Refer to Figure 3-1 for the location of the various connectors.
(2) KY-75/SRT.-No interconnecting cables are provided with the KY-75/SRT. Figure 3-2 is the external connection diagram. Figures 3-4, 3-5 and 3-6 specify the connectors and type of cable to be used and illustrate the method of fabricating the cables to install the keyer. All plug connectors are furnished for this purpose. The maximum length of the cables is not critical and should be determined by the particular installation.
(3) AM-655/URT TO MD-165/URT INTERCON-NECTIONS.-No interconnecting wiring is necessary between the AM-655/URT and MD-165/URT as the two are permanently connected through the blister as semblies.
(4) KEYER INPUT CONNECTIONS.-Connect the A.C. input cable W-103 between the A.C. input jack

A
SQUARE OFF END OF GABLE. SLIDE SHELL AND GOUPLING NUT OVER CABLE.
B remove i $\frac{1}{4}$ inches of the outer jacket. be careful not to nick the copper braid beneath. CUT THE COPPER BRAID AND INNER INSULATION $\frac{3}{4}$ INCH FROM THE END.

C comb out, trim, and tin copper braid.

D screw the plug body over the outer jacket UNTIL $\frac{1}{16}$ INCH OF THE INNER CONDUCTOR PROJECTS from the contact sleeve. be careful not to push back the copper brald. Solder the plug bODY TO THE COPPER BRAID THROUGH THE HOLES PROVIDED. SOLDER THE INNER CONDUCTOR TO the contact sleeve, remove any excess SOLDER AND CUT OFF THE INNER CONDUGTOR WHERE it projects from the contact sleeve.

E
slide the coupling nut forward until it is seated against the shoulder of the plug body. slide the shell forward to clamp the plug body tightly to the cable; fasten in place with set screw.

Figure 3-4. Assembly of -49195 Connector and RG-8/U Cable for Keyer Output, Freq. Meter R.F. and Ext. Osc. Connections

A remove approximately $5 / 8 \mathrm{inch}$ of the outer PROTECTIVE JACKET FRON THE END OF THE CABLE IF THE CABLE IS ARMORED, ARMOR SHOULD TEFMinate at the same point as the cable jacket. FASTEN CUT END OF ARMOR WITH FRICTION TAPE or by other suitable means.
fain out shieloing and twist to a point APPPOXIMATELY $/ / 4$ INCH FROM THE END OF THE HROTECTIVE JACKET.
BARE THE EXPOSED CONDUCTORS FOR $1 / 4 \mathrm{INCH}$. tin the enos of the conductors and shield

B insert the cable prepared as in step a THROUGH GLAMP (6), RETAINING RING (5), AND SWIVEL NUT (3) BEFORE SOLDERING CONNECTIONS. SOLDER CONNECTIONS TO CONNECTIONS IN INSERT of plug body (1), observing color code below. SLIP bonding ring (2) over cable sheld. AND SOLDER to tab end of shield.

C assemble by sliding swivel nut (3) over plug body (1) and engage the halves of the SPLIT SHELL (4) WITH THE PROJECTIONS ON the plug booy. be sure that the bonding ring fits in the space provided for it in the split shell.

D finish the assembly by screwing the retaining RING (5) ONTO THE ASSEMBLED SPLIT SHELL. SCREW THE GLAMP (6) ONTO THE SPLIT SHELL. tighten the clamping screw on the sides of the clamp to hold cable securely.

Figure 3-5. Assembly of AN 3106B-14S-1S and AN 3106B-14S-1P Connectors to Type MCOS-2 Cable for Freq. Meter Audio and Keyline Connections

A remove approximately I inch of the outer protective jacket from the end of the cable. IF THE CABLE IS ARMORED, ARMOR SHOULD TERMinate at the same point as the cable jacket. fasten cut end of armor with friction tape or by other suitable means.
fan out shielding and twist to a point. bare the exposed conductors for $\frac{1}{2}$ inch. tin the ends of the conductors and shield.
$B_{\text {insert the cable prepared as in step a }}$ THROUGH THE PLUG BODIES. SECURE SHIELD to ground terminal in Each plug and secure black and white leads to corresponding terminals in each plug.

Figure 3-6. Assembly of A.C. Connectors to Type MCOS. 2 Cable

J -103 located at the rear of the cabinet and a suitable 115 V.A.C. supply source.
(5) KEYER OUTPUT CONNECTIONS.

NOTE

The output of the keyer can be applied to any existing C.W. transmitter capable of operating from a 2 to 20 -volt excitation source at a frequency of 1000 to 6700 kc .

Disconnect the frequency determining source of the associated transmitter and connect the output of the keyer in its place. Connect the output cable W-108 between the keyer output jack J-111 and the transmitter oscillator input circuit. Since the output impedance of the keyer is 75 ohms, the output cable must be terminated at the transmitter in a 75 -ohm load.
(6) TELETYPE CONNECTIONS.-Connect one end of the tolftype input cable W - 101 to the keyer input jack J- located at the rear of the cabinet. Connect the other end of the cable to the teletype output circuit.
(7) PHOTO SCANNER CONNECTIONS.-Keyer connections to the photo scanner are made employing cable W-100 connected between the keyer input jack $\mathrm{J}-1 \mathbf{1 3}$ and the photo scanner output circuit.
(8) EXTERNAL OSCILLATOR CONNECTIONS.Connect the external oscillator cable W-106 between the EXT. OSC. input jack J-109 located at the rear of the cabinet and the output connector of the external oscillator.
e. T-101 PRIMARY CONNECTIONS.-The keyer is wired at the factory for 115 -volt operation. For 230 volt operation minor wiring changes will be necessary at the primary of power transformer T-101 and at the crystal oven.
(1) 230-VOLT PRIMARY CONNECTIONS OF T-101.
Step 1. Remove the jumper between terminals 1 and 3. Remove the jumper betwe en terminals 2 and 4 .

Step 2. Connect a jumper between terminals 2 and 3.
(2) 230-VOLT OVEN CONNECTIONS.

Step 1. Remove the jumper between terminals 6 and 9 on TB-102.
Step 2. Move the lead connected to terminal 8 of TB-102 over to terminal 9 of TB-102.
(3) 230 -VOLT OVEN LAMP CONNECTION.-Remove one jumper connecting R-199 and R-200 in parallel.

3. INITIAL ADJUSTMENTS AND PERFGRMANCE TEST.

After installation has been completed as outlined in paragraph 2 of this section a short test transmission should be made in order to ascertain that the keyer and associated equipment are functioning properly before being turned over to operaing personnel. Refer to Figure 3-7 for identification and location of all front-panel components.
The keyer is accurately aligned before leaving the factory. The semi-operating controls are permanently set and need not be readjusted during installation or operation. If the semi-operating controls are inadvertently moved refer to section 7 , Corrective Maintenance, for alignment data.

To make a short test transmission proceed as outlined in the following paragraphs. In making the following adjustments, the final setting of the controls for a particualr transmitting frequency should be recorded on the Tuning Chart to assist in re-establishing the conditions promptly at a later date. If any difficulty is experienced in making any adjustments specified in the following procedure refer to section 7, Corrective Maintenance.

a. FREQUENCY-SHIFT OPERATION.

Step 1. Set the POWER switch at ON. White-jewel Power lamp will light. Amber-jewel oven lamp will also light. The illumination given off by these lamps may be adjusted by rotation of the serrated rim of the lamp assembly. Illumination of the amber-jewel pilot lamp indicates that the crystal oven heater is on. This lamp will go on and off at intervals with changes in the crystal oven temperature in the following manner.
(a) Lamp illuminated: heat is being applied and the lamp will remain lighted until the operating temperature of the oven has reached approximately $70^{\circ} \mathrm{C}$ as indicated on the oven thermometer.
(b) Lamp off: no heat is being applied and the lamp will remain off until the temperature drops slightly below $70^{\circ} \mathrm{C}$.
Step 2. After the lamp has turned off which indicates that the oven has reached its operating temperature set the PLATE switch at ON. Red-jewel PLATE lamp will light. The illumination given off by this lamp is also adjustable.
Step 3. Set the TEST-OPERATE switch at FSK.
Step 4. Set the CRYSTAL-OSC. switch at the position corresponding to the socket position of the crystal providing the desired channel frequency.
Step 5. Set the FREQ. RANGE switch at the position encompassing the output frequency of the keyer.

Figure 3-7. Front-Panel Component Identification

The RF output of the keyer is equal to, or is some definite fraction of, the final transmitting frequency depending upon the frequency multiplication of the radio transmitter. Hereafter the term 'keyer output frequency' will be understood to mean the crystal frequency plus the 200 kilocycles from the low frequency oscillator.
Step 6. Set the INPUT FILTER switch at the position corresponding to the highest dot-cycle rate to be transmitted. Four positions are provided: 60, 100, 200 and 240.
Step 7. Set the MULTIPLIER switch at the position corresponding to the multiplication factor em-
ployed in the transmitter. For example, if the multiplication factor is 8 , the switch should be set at 'X8'.
Step 8. Set the PHASE MODULATION control at OFF (extreme counterclockwise position).
Step 9. Set the METERING switch at Grid. Loosen the lock on the TUNING control and set the control at the frequency corresponding to the keyer output frequency and carefully adjust it about this setting for a maximum meter reading. A normal reading is 1.3 ma. Lock the control in this position. It will be noticed that three current peaks corresponding to the resonant peaks for the lower sideband, the R.F. car-
rier and the upper sideband, in the order named, are observed on the panel meter. The TUNING control is normally set at the position which corresponds to the upper sideband resonant peak.

Step 10. Set the METERING switch at Plate. Release the lock on the OUTPUT TUNING control. Adjust the OUTPUT TUNING control for minimum plate current as indicated on the panel meter.
Step 11. Release the lock on the OUTPUT LEVEL control. Set the OUTPUT LEVEL control for the maximum grid drive required to drive the first amplifier or multiplier stage of the transmitter as indicated by a maximum reading on the grid meter of the associated transmitter.

NOTE

Care should be taken in this adjustment since, if the tuning range is located near the lower markings on the TUNING dial, it is possible that a dip may also be obtained near the higher markings of the dial due to the second harmonic of the keyer frequency.

Step 12. Repeat steps 10 and 11 adjusting the OUTPUT TUNING control and the OUTPUT LEVEL control simultaneously. As the output coupling is increased and the plate tuning maintained at resonance the output power should increase as indicated by a rising plate current reading and an increase in grid drive as noted on the grid meter of the associated transmitter. Rated power output is obtained when a reading of 85 ma . (actual meter reading of 0.425 ma.) is indicated on the panel meter. Lock the OUTPUT TUNING and OUTPUT LEVEL controls in position.
Step 13. Set the DEVIATION control at the desired deviation.
Step 14. To shut the keyer off set the PLATE switch at OFF and the POWER switch at OFF. If further tests are to be made the POWER switch should be left at ON to maintain the correct operating temperature of the oven.
b. PHASE MODULATION.-During periods of adverse operating conditions it may be advisable to employ phase modulation. To use phase modulation turn the PHASE MODULATION switch to ON by rotating the PHASE MODULATION control clockwise. One radian of phase modulation is obtained by rotating the control to the elongated marker on the phase modulation calibration dial. The PHASE MODULATION control is calibrated from 0° to 60°.
c. PHOTO OPERATION.-The initial adjustment of the keyer controls for photo transmission are the same as those given for frequency-shift operation in
paragraph a. of this section plus the following steps:
(1) Set the TEST-OPERATE switch at PHOTO.
(2) Set the INPUT FILTER switch at PHOTO.
(3) Set the METERING switch at PHOTO.
(4) Adjust the PHOTO INPUT control for 5 volts as indicated on the panel meter. The five volts can be obtained by locking the photo scanner in the MARK position. If the photo scanner is not available any battery source providing five volts or more can be used.
d. FREQUENCY ACCURACY.-Each of the three R.F. outputs of the keyer should be checked to insure that its frequency is accurate and stable.
Step 1. Connect cable W-107 between the keyer FREQ. meter R.F. jack J-110 and the input of a frequency meter.
Sted 2. Note the frequencies of the three crystals in the crystal oven.
Step 3. With the keyer operating under normal operating conditions set the CRYSTAL-OSC. switch at position one. Set the FREQ. RANGE switch at the position encompassing the keyer output frequency.
Step 4. Set the TUNING dial at the position corresponding to the keyer output frequency (200 kcs . above the crystal frequency).
Step 5. Set the MULTIPLIER switch at the position corresponding to the multiplication factor of the transmitter.
Step 6. Set the TEST-OPERATE switch at CARRIER.
Step 7. Adjust the frequency meter to the keyer output frequency. Note the reading on the frequency meter. The frequency as noted on the frequency meter should be equal to the crystal frequency plus the 200 kilocycles obtained from the $200-\mathrm{kc}$. oscillator.
If a slight inaccuracy is observed adjust the CARRIER CALIBRATE control to make the required correction. Make sure the control is locked securely after adjustment. This control has a range of 40 cy cles.

Step 8. Repeat steps 3 through 7 inclusive on the other two FREQ. RANGE switch settings to check the other two frequencies. A compromise setting of the CARRIER CALIBRATE control might be needed if two or more settings of the FREQ. RANGE switch require readjustment of the CARRIER CALIBRATE control.
An overall frequency check of the keyer and transmitter can be performed in the following manner if an accurately calibrated receiver covering the frequency range of the transmitter is available.
Step 1. If the transmitter has an OPERATE-TUNE switch or other means of reducing power, set the transmitter at reduced power.

Paragraph 3 d
Step 2. Place the receiver a suitable distance away from the transmitter. Adjust the R.F. GAIN and AUDIO GAIN controls of the receiver to prevent the receiver from overloading. Set the C.W.O. control at ON.
Step 3. Tune the receiver to the transmitter's frequency. The frequency as read on the receiver's dial should be the crystal frequency of the keyer plus 200 kcs. multiplied by the multiplication factor of the transmitter. Required correction is made by the CARRIER CALIBRATE control.
An extremely accurate frequency check may be made if the installation facilities are such that a frequency standard is available with an accuracy capable of detecting frequency inaccuracies within the frequency tolerance of the crystal. Here again the CARRIER CALIBRATE control is used to make any frequency correction. If frequency accuracy of a high order is demanded the foregoing check should be made each time a crystal change is made.

e. DEVIATION.

Step 1. Set the transmitter at reduced power.
Step 2. Determine the multiplication factor of the transmitter. Set the MULTIPLIER switch at a position cortesponding to the multiplication factor of the transmitter.
Step 3. Connect a high frequency receiver as close as possible to the transmitter. Adjust the receiver for C.W. operation.
Step 4. Tune the receiver to the transmitted frequency. Reduce the R.F. GAIN and AUDIO GAIN controls to prevent the receiver from overloading.
Step 5. Set the keyer TEST-OPERATE switch at

MARK. Vary the DEVIATION control from minimum to maximum. The audio pitch of the received signal should vary as the DEVIATION control is turned toward maximum.
Step 6. Set the keyer TEST-OPERATE switch at CARRIER. Vary the DEVIATION control from minimum to maximum. The audio pitch of the received signal should not vary as the DEVIATION control is varied from minimum to maximum.
Step 7. Set the keyer TEST-OPERATE switch at SPACE. Vary the DEVIATION control from minimum to maximum. The audio pitch of the received signal should vary in the opposite direction from Mark as in step 5 as the DEVIATION control is turned toward maximum.
f. KEYING SIGNAL INPUT.-Using a monitoring receiver, or equivalent means, check that the input telegraph keying signals are not reversed. Make the check in accordance with the following procedures:
(1) Set the TEST-OPERATE switch at FSK. Set the Teletypewriter at Mark. Observe that the transmitting frequency is shifting upward.
(2) Set the Teletypewriter at SPACE. Observe that the transmitting frequency is shifting downward.
(3) If necessary, check that the keyer input signal nominal voltages and polarities are as follows:

Mark +40 to +120 volts
Space 0 to -100 volts
The procedure outlined in paragraph 3 completes all initial adjustments and tests. After these tests have been completed the keyer may be turned over to operating personnel.

SECTION 4 OPERATION

1. INTRODUCTION.

The keyer is an electronic device designed to replace the frequency determining oscillator of a conventional C.W. transmitter. The addition of the keyer modifies the transmitter to permit frequencyshift keying or facsimile (photo) transmissions. The keyer transmits telegraphic characters or varies the intensity of the photo signals by shifting the frequency of the transmitter's carrier back and forth while the carrier remains on continuously. During frequency-shift keying operation, the frequency of the transmitter's carrier appears at a certain frequency during KEY-OPEN or SPACE intervals and shifts a few hundred cycles higher during KEYCLOSED or MARK condition.
The keyer provides a circuit for phase modulating the transmitter's output at 200 cycles-per-second. Phase modulation spreads the energy of the signal over a wider frequency band thereby providing a simple means for achieving a certain amount of frequency diversity. By employing phase modulation during periods of selective fading complete loss of the signal becomes less probable.
Operation of the keyer is completely automatic after it has been aligned to the operating frequency. After alignment is completed no further adjustments are necessary unless the operating frequency or deviating frequency is changed.
The scope of this section is to provide the operator with sufficient information for efficient operation of the keyer.

2. GENERAL.

Before attempting to use the keyer with its associated transmitter, be sure that operational procedures for the transmitter are thoroughly understood. Refer to the operation section of the instruction manual pertaining to the associated transmitter.
The procedure for setting up the keyer and transmitter for frequency-shift keying and facsimile transmission is that of adjusting the crystal oscillator and tuned circuits of the keyer to the desired crystal frequency. A signal from the teletype or scanner is then applied to the keyer where it is frequen-
cy modulated and then coupled to the associated transmitter where it is multiplied to the channel frequency.
The frequency deviation of the keyer for frequencyshift operation is adjustable over a range of zero to 1000 cycles-per-second in order that the actual transmitted frequency may be adjusted to any value from 0 to 500 cycles-per-second higher for the MARK signal and the same number of cycles lower for the SPACE signals. The frequency deviation capabilities for photo transmission provide a frequency variation of any value between 0 and 2000 cycles-persecond i.e. 0 to ± 1000 cycles-per-second with respect to the carrier frequency.

3. CONTROLS.

Normal operation of the keyer is accomplished entirely by means of front-panel mounted controls. This subsection is presented to familiarize the operator with the function of each operational control and device. All front panel components of the keyer are located and identified on Figure 3-7.
a. POWER SWITCH.-This is a toggle switch which turns the keyer A.C. input power ON and OFF.
b. PLATE SWITCH.-This is a toggle switch which turns the keyer plate voltage ON and OFF .
c. PHOTO INPUT CONTROL.-The photo signal is applied directly to the PHOTO INPUT control. This control is adjusted so that a five-volt signal is applied directly to the frequency shifting circuits. A front-panel meter gives a visual indication of the magnitude of the photo input signal.
d. TEST-OPERATE SWITCH.-The TEST-OPERATE switch is a five-position switch utilized to select the circuit arrangement required for frequency shift operation and/or photo operation and the arrangement required to perform the alignment adjustments for carrier, mark and space conditions.
(1) CARRIER.-In the CARRIER position the carrier condition is simulated locally in the keyer for alignment and calibration purposes.
(2) SPACE.-In the SPACE position the space condition is simulated in the keyer for alignment and calibration purposes.
(3) MARK.-In the MARK position the MARK con-
dition is simulated in the keyer for alignment and calibration purposes.
(4) FREQUENCY-SHIFT.-With the switch in the FSK position the equipment is placed in the 'ready for operation' condition for frequency-shift keying.
(5) PHOTO. - With the switch in the PHOTO position the equipment is placed in the 'ready for operation' condition for photo transmission.
e. MULTIPLIER CONTROL.-The MULTIPLIER control provides a means of dividing by $1,2,3,4,5$, $6,8,9$ or 12 times the frequency deviation thereby keeping the deviation frequency at its preset frequency regardless of the multiplication employed in the multiplier stages of the transmitter.
f. CRYSTAL-OSC. SWITCH.-This switch provides a means of selecting one of the three frequency-determining crystals. The Ext. position is provided when it is desired to use an external oscillator as the excitation source.
g. FREQ. RANGE SWITCH.-This switch provides a means of selecting the tuned circuits corresponding to the output frequency of the keyer.
b. INPUT FILTER SWITCH.-This is a five-position switch which provides a means of selecting one of the four low-pass filters in the keyer corresponding to the dot-cycle rate to be transmitted. The fifth position is used for photo operation where the lowpass filters are not used.
i. METERING SWITCH.-A three-position switch and panel meter are utilized to select the meter circuit and to obtain a visual indication of photo-input voltage, final grid current and plate current, respectively.
j. TUNING.-This control is utilized to rotate a gang-tuned capacitor through the frequency range of the transmitter. The capacitor is tuned for maximum grid drive as indicated on the panel meter. The control is calibrated in megacycles.
k. OUTPUT LEVEL CONTROL.-This control functions to vary an inductance to properly load the keyer output.
l. OUTPUT TUNING CONTROL.-This control is utilized to tune the final amplifier plate circuit to resonance as indicated on the panel meter.
m. PHASE MODULATIGN CONTROL.-This control is a potentiometer utilized to vary the amount of phase shift from 0° to 600 . A phase modualtion ONOFF switch is located at the extreme counterclockwise end of the control.
n. DEVIATION CONTROL.-This control functions to vary the amount of frequency deviation. The control dial has a multiplication factor of 100 for 'FSK' operation and 200 for 'photo' operation.
o. CARRIER CALIBRATE CONTROL.-The opera-
tor should never release the lock on this control and attempt its adjustment. Its purpose is to correct slight frequency inaccuracies as determined by test.

4. OPERATING INSTRUCTIONS.

Detailed operating instructions are given herein in a step-by-step arrangement. Careful adherence to the indicated order and procedure will enable the operator to adjust the keyer to obtain maximum efficiency. The following operating procedures assume that the keyer has been properly installed, the initial adjustments have been made and the associated transmitter has been turned on. Figure $4-1$ illustrates the following instructions. A Tuning Chart (see Figure 4-2) is provided on the front panel to record control settings after initial tuning. Thereafter the controls can be quickly set by reference to the Tuning Chart.
a. FREQUENCY-SHIFT KEYING OPERATION.

Step 1. Set the POW'ER switch at ON. White-jewel POX'ER lamp will light. Amber-jewel OVEN lamp will also light. Illumination of the amber-jewel lamp indicates that the crystal oven heater is on. This lamp will go on and off with changes in the crystal oven temperature in the following manner.
(1) Lamp illuminated: heat is being applied and the lamp will remain lighted until the operating temperature of the oven has reached approximately $70^{\circ} \mathrm{C}$ as indicated on the oven thermometer.
(2) Lamp off: no heat is being applied and the lamp will remain off until the temperature drops slightly below $70^{\circ} \mathrm{C}$.
Step 2. After the lamp has turned off which indicates that the oven has reached its operating temperature set the PLATE switch at ON. Red-jewel plate lamp will light. The illumination given off by the foregoing three lamps may be adjusted by rotation of the serrated rim of the lamp assembly.

NOTE

When the kever is not in use, keep the A.C. power connected and the POWER switch turned ON to maintain the correct operating temperature of the oven. The PLATE switch should be set at OFF.

Step 3. Set the TEST-OPERATE switch at FSK.
Step 4. Set the CRYSTAL-OSC. switch at the position corresponding to the socket position of the crystal providing the desired channel frequency.

Step 5. Set the FREQ. RANGE switch at the position encompassing the output frequency of the keyer. The 'keyer output frequency' is defined as the crystal

Figure 4-1. Operating Instructions for Frequency Shift Keying
frequency plus the 200 kilocycles from the low-frequency oscillator.
Step 6. Set the INPUT FILTER switch at the highest dot-cycle rate to be transmitted.
Step 7. Set the MULTIPLIER switch at the position corresponding to the multiplication factor employed in the transmitter. For example, if the multiplication factor is 8 , the switch should be set at ' X 8 '.
Step 8. Set the PHASE MODULATION control at

ORIGINAL

Off (extreme counterclockwise position).
Step 9. Set the METERING switch at GRID.
Step 10. Unlock the TUNING control. Set the TUNING control at a setting corresponding to keyer output frequency and carefully adjust it about this setting for a maximum meter reading. A normal reading is approximately 1.5 ma . (actual meter reading of 0.5). Lock the TUNING control.
Step 11. Set the METERING switch at PLATE.
Step 12. Release the lock on the OUTPUT TUN-4-3

NAVSHIPS 91543
OPERATION
KY-58/GRT and KY-75/SRT

FREQ-GHANNEL				
PUTPUT TUNING				
OUTPUT LEVEL				
FRET, RARGE				
TUGING				
SRYGTAL-OSC.				
CARRIER GALIBRATE				
FHASE MODULATION				
OEVIATION				
TEST-OPERATE				
FILTER				
PHOTO INPUT				
MULTIPLIER				

Figure 4-2. Tuning Chart

ING control. Adjust the OUTPUT TUNING control for minimum plate current as indicated on the panel meter.
Step 13. Release th. lock on the OUTPUT LEVEL control. Set the OUTPUT LEVEL control for the maximum grid drive required to drive the first amplifier or multiplier stage of the transmitter as indicated by a maximum reading on the grid meter of the associated transmitter.

NOTE

Care should be taken in this adjustment since, if the tuning range is located near the lower markings on the TUNING dial, it is possible that a dip may also be obtained near the higher markings of the dial due to the second harmonic of the keyer frequency.

Step 14. Repeat steps 12 and 13 adjusting the OUTPUT TUNING control and the OUTPUT LEVEL control simultaneously. As the output coupling is increased and the plate tuning maintained at resonance the output power should increase as indicated by a rising plate current reading and an increase in grid drive as noted on the grid meter of the associated transmitter. Rated power output is obtained
when a reading of 85 ma. (actual meter reading of 0.425 ma.) is indicated on the panel meter. Lock the OUTPUT TUNING and OUTPUT LEVEL controls in position.
Step 15. Set the DEVIATION control at the desired deviation.
Step 16. To shut the keyer off set the PLATE switch at OFF and the POWER switch at OFF.
b. PHASE MODULATION.-During periods of adverse operating conditions it may be advisable to employ phase modulation. To use phase modulation turn the PHASE MODULATION switch ON by rotating the control clockwise. In operation the control is normally set at one radian. This setting is indicated by an elongated scale marking at 57.3° on the dial.
c. PHOTO OPERATION.-The initial adjustments of the keyer controls for photo transmission are the same as those given for frequency shift operation in para 3 a. of this section plus the following steps.
(1) Set the TEST-OPERATE switch at PHOTO.
(2) Set the INPUT FILTER switch at PHOTO.
(3) Set the METERING switch at PHOTO.
(4) With the photo scanner set at Mark, adjust the PHOTO INPUT control for 5 volts as indicated on the panel meter.

SECTION 5 OPERATOR'S MAINTENANGE

1. ROUTINE CHECKS.

The following routine checks of normal operation of the keyer are to be made by the operating personnel at the beginning of each watch. The tests are to be made with the keyer operating under normal condi-
tions. Careful routine check of the equipment very often prevents failure under conditions when maintenance personnel are not available. The following chart assumes that the POWER switch and PLATE switch are at the ON position.

TABLE 5-1. ROUTINE CHECK CHART

WHAT TO CHECK	HOW TO CHECK	PRECAUTIONS
White-jewel power lamp.	Observe lamp.	No light or intermittent light indicates poor lamp, loose connections, faulty heater voltage supply, blown fuse F-102, or defective A.C. cable W-103.
Amber-jewel oven lamp.	Observe lamp.	No light indicates poor lamp, loose connections, faulty oven components, blown fuse F-101.
Oven temperature.	Observe oven thermometer.	Lamp should remain lighted until temperature reaches $70^{\circ} \mathrm{C}$.
Red-jewel plate lamp.	Observe lamp.	No light indicates poor lamp, loose connection or defective switch S-109.
Keyer operation.	Observe panel meter.	Check grid and plate current of keyer output tube V-111. Normal grid reading is. 1.2 ma., plate is 85 ma .
Semi-Operating controls.	Observe panel meter.	With the Metering switch set at Input set the TEST-OPERATE switch alternately at Space, Mark and Carrier. Panel meter should read 2.5 volts difference between Mark and Space, Carrier should be one-half way between these two points.

Figure 5-1. Fuse Locations, Modulator-Power Supply MD-165/URT

2. EMERGENCY MAINTENANCE.

Notice to Operators

Operators shall not perform any of the following emergency maintenance procedures without proper authorization.

The maintenance procedure listed in the following paragraphs are for the guidance of operating personnel during an emergency when maintenance personnel are not available.
a. FUSES.-See Figure 5-1 for location of fuses.

CAUTION

Never replace a fuse with one of a higher rating unless continued operation of the equipment is more important than probable damage. If a fuse burns out immediately after replacement, do not replace it a second time until the cause has been corrected.

If the keyer is inoperative and no pilot lamps are lighted check the A.C. power fuse F-102 which is accessible at the rear of the MD-165/URT. Probable cause of A.C. power fuse failure is a short circuit in the primary of the power transformer or the filament

Figure 5-2. Tube Locations, Amplifier-Oscillator AM-655/URT
circuit. If all pilot lamps are lighted but the amber jewel oven lamp, check fuse F-101 which is located at the rear of the MD-165/URT. Probable cause of fuse failure is an open A.C. circuit or shorted A.C. supply to the crystal oven. If the keyer is inoperative and all pilot lamps are lighted check the $B+$ fuse F-103 located at the rear of the modulator chassis. Eight-ampere fuses are required in the primary circuit of the power transformer and oven circuits. A $500-\mathrm{ma}$. fuse is required in the $B+$ circuit. Spare fuses are mounted at the rear of the MD-165/URT.
b. ELECTRON TUBES.-All electron tubes employed in the keyer are located and identified on Figures $5-2$ and 5-3. If a particular tube is burned out, as observed by the absence of heater or filament glow,
the tube can be replaced by a tube of proven quality. To gain access to the tubes it is necessary to slide the chassis out of the cabinet. To do so, proceed as follows:
(1) Loosen the captive type thumb screws at the outer edges of the front panel.
(2) Grasp the handles located on the front panel and pull the chassis forward as far as the release mechanism will permit. At this point the slide release mechanism on both sides of the chassis will drop into slotted grooves, thus locking the chassis in place and preventing forward or backward movement of the chassis.
Before attempting to remove a tube be sure to loosen the clamp about the base of the tube. To

Paregraph $2 b$

KY-58/GRT and KY-75/SRT

loosen the clamp, insert a screw-driver in the slotted opening at the top of the ring and turn in a counterclockwise direction.
If it becomes necessary to replace the reactance modulator tube V-106, it will be necessary to recheck
the modulator alignment as outlined in section 7 para. 5 a. (2). Depress the slide release mechanism and push the chassis back into the cabinet until the positioning pin falls into place. Tighten the captive screws.

Figure 5-3. Tube Locations, Modulator-Power Supply MD-165/URT

SECTION 6 PREVENTIVE MAINTENANCE

1. ROUTINE MAINTENANCE CHECKS.

Preventive maintenance is a systematic series of operations performed at regular intervals on equipment to eliminate major breakdowns and unwanted interruptions in service and to keep equipment operating at top efficiency. The usefulness of a frequency-shift system depends on each piece of equipment operating at.peak efficiency at all times.
The routine maintenance test schedule should be
modified if the equipment is used under adverse operating conditions but, in general, the test schedule as arranged in table $6-1$ should prove adequate.

NOTE

The attention of maintenance personnel is invited to the requirements of chapter 67 of the Bureap of Ships Manual of the latest issue.

TABLE 6-1. ROUTINE MAINTENANCE CHECK CHART

WHAT TO CHECK	How to CHECK	PRECAUTIONS
EACH WATCH		
Refer to Table 5-1. Operator's Routine Check Chart.		
MONTHLY		
1. External connections and cables. General visual inspection.	Inspect firmness of all connections to the keyer. Check that the cables have not been damaged. Withdraw the AM-655/URT and MD165/URT units from the cabinet. Note condition of resistors. Check all internal connections for evidence of looseness. Inspect relay contacts. Inspect all connectors on blister assemblies for evidence of loose or defective connections. Measure insulation resistance of cables to shield and to ground.	Loose connections or damaged cables may result in faulty operation. A scorched or discolored exterior indicates replacement is necessary. Tighten as necessary. Clean or replace as necessary. Tighten or replace as necessary. It should be at least 2000 megohms.
anNuALLy		
Electrical performance check.	Complete performance tests as outlined in section 7 para. 4. (c).	

Paragraph 2
2. LUBRICATION.

The keyer bas been lubricated at the lactory and requires no added lubrication.

FAILURE REPORTS

AFAILURE REPORT must be filled out for the failure of any part of the equipment whether caused by defective or worn parts, improper operation, or external influences. It stould be made on Failure Report, form NES383, whish has been designed to simplify this requirement. The card must be filled out and forwarded to BUSHIPS in the franked envelope which is provided. Full instructions are to be found on each card.

Use great care in filling the card out to make certain it carries adequate informa ion. For example, under "Circuit Symbol" use the proper circuit identification taken from the schematic drawings, such as T-803, in the case of a transformer, or R-207, for a resistor. Do not substitute brevity for clarity. Use the back of the card to completely describe the cause
of faily-re and attach an extra piece of paper if necessary.

The purpose of this report is to inform BUSHIPS of the cause and rate of failures. The information is used by the Bureau in the design of future equipment and in the maintenance of adequate supplies to keep the present equipment going. The cards you send in, together with those from hundreds of other ships, furnish a store of information permitting the Bureau to keep in touch with the performance of the equipinent of your ship and all other ships of the Navy.
this report is not a requisition. You must request the replacement of parts through your Officer-in-Charge in the usual manner.
Make certain you have a supply of Failure Report cards and envelopes on board. They may be obtained from any Publications and Distribution Office.

Figure 7-1. Failure Report

SECTION 7 CORRECTIVE MAINTENANCE

1. FAILURE REPORT.

A failure report must be filled out for the failure of any part of the equipment. It is to be sent through the proper channels according to the instructions thereon. See Figure 7-1.

WARNING

THIS EQUIPMENT IS CONNECTED ELECTRICALLY TO A TRANSMITTER EMPLOYING VOLTAGES WHICH ARE DANGEROUS AND MAY BE FATAL IF CONTACTED BY OPERATING PERSONNEL. EXTREME CAUTION SHOULD BE EXERCISED WHEN WORKING WITH THE EQUIPMENT.

2. INTRODUCTION.

This section contains all information necessary for the repair and adjustment of the keyer. Maintenance personnel must be prepared to repair and adjust keyers that have failed in operation. The source of the trouble must be located, the defect remedied and the equipment restored to an operating condition.
Contained in this section is a trouble-shooting paragraph to serve as a guide to maintenance personnel in locating the source of trouble and its possible cause. Following this, is a paragraph giving detailed instructions for all electrical alignment procedures and adjustments. Finally, a paragraph is included for guidance when making mechanical repairs or adjustments.

3. THEORY OF LOCALIZATION.

The manner in which the keyer operates, or fails to operate, often gives unmistakeable indications of the source of trouble. For example, abnormal action of a control will in most cases indicate the specific stage or stages at fault. The production of satisfactory keying or facsimile signals depends not only upon the successful operation of the keyer itself, but also upon the character of the signals connected to it. Furthermore, if an external oscillator is used to generate an R.F. carrier, the stability and accuracy of
the oscillator output influences the reliability of the keyer output.
8. Figure $7-2$ is a trouble shooting chart which lists in logical sequence a series of checks to be made to locate quickly the specific circuit causing faulty keyer operation. The trouble shooting chart does not list all possible troubles. However, it does list those that are most likely to occur. In most cases, the use of the chart will localize a source of trouble sufficiqntly well to enable its precise location by voltage and resistance checks in the suspected area.

4. TROUBLE SHOOTING.

a. GENERAL.-The location of troubles in the keyer can be accomplished by making the series of checks outlined on the trouble shooting chart, Figure 7-2. To read this chart start at the left hand side and follow the heavy black line to the right. An 'ok' following a specific circuit signifies that this circuit is operating properly and the maintenance man may proceed to the next stage. If a particular circuit is inoperative a series of checks pertaining to that circuit is shown in lighter lines adjacent to its position on the chart. A six-foot three-inch service cable W-109 is supplied with the KY-75/SRT to enable the maintenance man to remove the individual chassis from the cabinet and service the unit on a test bench. To use this cable connect it between the connector on the inside of the cabinet and the connector on the chassis being serviced. Refer to para. 5. (1) for the method of removing the chassis from the KY-58/GRT. Tubes should be checked in suitable tube testing equipment or by replacement with tubes of proven quality. Specific stages and their components can be checked by performing voltage and resistance measurements as outlined in Figures $7-3$ and $7-4$. Constant reference to the schematic diagram Figure 7-21 and the practical wiring diagram, Figures 7-22, 7-23 and $7-32$ is required for efficient trouble shooting. A thorough inspection of the keyer and its external connections should be made before attempting any adjustments or repairs.

The presence or conditions of keying voltages may be checked with suitable voltage measurements of the keying input lines. If an oscilloscope such as

Figure 7-3. Voltage and Resistance Data Chart, Amplifier-Oscillator AM-655/URT

Navy Model OBL series, OBT series or equivalent is available, the keying impluses may be checked visually while running Morse dots or running an RY tape in the teletype transmitter by connecting the vertical input to the keyer line terminal and using a slow-speed sweep.
b. CIRCUIT CONSTANTS.- The value of all circuit components are indicated on the Parts List, Table $8-4$ and on the schematic diagram, Figure 7-21. Their actual connections and approximate locations are shown on the practical wiring diagram Figures 7-22, 7-23 and 7-32. Their actual locations are shown on Figures 7-24 through 7-31.
c. PERFORMANCE TESTS.-The following tests are used to check operation of the keyer section by section. These tests should be made following any
readjustments or repairs to assure proper functioning of the keyer prior to its return to operational duty. The tests must be made in the order shown since the test of any specific section of the keyer is predicated on the fact that sections prior to the section under test have been checked and found to be functioning properly.

Units of test equipment required to perform these tests are as follows:

An R.F. frequency meter such as Navy Model LM series or equivalent.

A 5 to 20 -volt battery source.

A,high frequency receiver, National Co. Model $\mathrm{NC}-240 \mathrm{D}$ or equivalent.

A 10 kc . Multivibrator, General Radio Co. Model 692 B or equivalent.

Paragraph 4c

Figure 7-4. Voltage and Resistance Data Chart, Modulator-Power Supply MD-165/URT

A variable audio oscillator, Navy Model LO series or equivalent.

An oscilloscope, such as Navy Model OBL series or equivalent.
(1) TEMPERATURE REGULATION.

Step 1. When the amber pilot lamp lights, observe that the oven thermometer reads slightly less than $70^{\circ} \mathrm{C}$.
Step 2. Verify that the temperature heating cycle, averaged over five successive cycles, is on for approximately two minutes and off for approximately ten minutes under normal ambient room temperature of approximately $30^{\circ} \mathrm{C}$.
(2) 200 KC . OSCILLATOR.

Step 1. Connect cable W - 107 between the keyer

FREQUENCY METER R.F. OUTPUT jack J-110 and the input of a frequency meter such as Navy Model LM or equivalent.
Step 2. After the oven has reached its operating temperature of $70^{\circ} \mathrm{C}$ set the CRYSTAL-OSC. switch ai the desired crystal position. Set the TESTOPERATE switch at carrier.
Step 3. Set thé METERING switch at GRID. Set the FREQ. RANGE switch at the position encompassing the keyer output frequency. Set the TUNING control at a position 200 kc . above the crystal frequency and carefully adjust it about this setting for the maximum meter reading.
Step 4. Adjust the frequency meter until the keyer output frequency is found. Note the output frequen-

Figure 7-5. Inferconnections for Frequency Deviation Test
cy. It should be 200 kc . above the crystal frequency.
Step 5. Remove the frequency meter.

NOTE

As an alternate an accurately calibrated receiver covering the frequency range of the keyer can be used. This receiver can be utilized to make the above check by loosely coupling the output of the keyer to the input of the receiver and tuning the receiver to the keyer's frequency. The frequency as read on the receivers dial should be 200 kcs . higher than the frequency of the crystal in the keyer.
(3) FREQUENCY DEVIATION FOR FREQUEN-CY-SHIFT TRANSMISSION.-See Figure 7-5 for the method of connecting the equipment required for this test.
Step 1. Adjust the receiver controls for MCW Operation.
Step 2. Tune the receiver until the audio tone is heard in the audio output of the receiver. Adjust the Audio Gain and R.F. Gain controls of the receiver for a suitable output.
Step 3. Set the DEVIATION control at 10 (maximum deviation).
Step 4. Set the MULTIPLIER switch at X1.
Step 5. Set the TEST-OPERATE switch at CARRIER.
Step 6. Adjust the variable audio oscillator until a 1:1 frequency pattern (a circular trace) appears on
the oscilloscope screen. Note the frequency of the audio oscillator. Check this frequency against the crystal frequency. It should be the crystal frequency plus 200 kcs .
Step 7. If the frequency does not measure exacaly 200 kc . above the crystal frequency adjust the CARRIER CALIBRATE control until this result is obtained.
Step 8. Set the TEST-OPERATE switch at MARK.
Step 9. Adjust the variable audio oscillator until a 1:1 frequency ratio pattern appears on the oscilloscope screen. Note the frequency on the audio oscillator. It should be 500 cycles higher than the frequency obtained in the carrier condition (Step 6).
(4) FREQUENCY DEVIATION FOR PHOTO TRANSMISSION.-The equipment remains connected as outlined in paragraph (3).
Step 1. Set the DEVIATION control at 10 (maximum deviation).
Step 2. Set the MULTIPLIER switch at X1.
Step 3. Set the TEST-OPERATE switch at PHOTO.
Step 4. Set the INPUT FILTER switch at PHOTO.
Step 5. Remove the keyer input cable W-101.
Step 6. Connect a battery source of 5 to 20 volts to the pyoto inew jack J-103nemss pirs C and B.
Step 7. Set the METERING switch at INPUT.
Step 8. Adjust the PHOTO INPUT control until a reading of 2.5 volts is obtained on the front-panel meter. This 2.5 volts is utilized to simulate the photo carrier.
Step 9. Adjust the variable audio oscillator until a 1:1 frequency pattern appears on the oscilloscope screen. Note this frequency. It represents the car-


```
SWEEP ADJUSTED TO DISPLAY 2 OR 3 cYCLES. do not use the sweep sync. feature.
```

Figure 7-6. Interronnections for Phase Modulation Test

Figure 7-7. Oscilloscope Pattern Representing One Radian of Phase Modulation
rier frequency.
Step 10. Remove the battery source in order to simulate a space condition.
Step 11. Adjust the variable audio oscillator until a $1: 1$ frequency pattern appears on the oscilloscope screen. Note the frequency. This frequency represents the space condition and should be 1000 cycles lower than the frequency noted in Step 9.

Step 123 Return the battery connections toninput jack J-6.
Step 13. Adjust the PHOTO INPUT control until a 5 -volt reading is obtained on the front-panel meter. This 5 volts is utilized to produce the photo Mark condition.
Step 14. Adjust the variable audio oscillator until a $1: 1$ frequency pattern appears on the oscilloscope
screen. Note the frequency. This frequency represents the mark condition and should be 1000 cycles higher than the frequency noted in Step 9.
Step 15. Remove all test equipment.
(5) R.F. OUTPUT.

Step 1. Set the CRYSTAL-OSC. switch at the desired position. Set the FREQ. RANGE switch at the position encompassing the keyer output frequency.

Step 2. Set the METERING switch at GRID. Set the TUNING control at a frequency 200 kc . above the crystal frequency and carefully adjust it about this setting for a maximum front-panel meter reading. A normal reading is approximately 1.2 ma. (actual meter reading of 0.4 ma).
Step 3. Set the METERING switch at PLATE. Panel meter should read approximately 85 ma . (actual reading of 0.425 ma) with the plate tuned to resonance and an R.F. Ammeter reading of 285 ma . or the rated power output of 6 watts.
(6) PHASE MODULATION.

Step 1: Make the connections outlined on Figure 7-6.

Step 2. Set the PHASE MODULATION control at one radian (57.3°) and the INPUT FILTER switch at 60. Set the TEST-OPERATE switch at Mark.

Step 3. The pattern observed on the oscilloscope should check with that shown on Figure 7-7.
Step 4. Remove all test equipment.
(7) CARRIER BALANCE.

Step 1. Set the CRYSTAL-OSC. switch at the desired position. Set the FREQ. RANGE switch at a position encompassing the keyer output frequency.
Step 2. Set the METERING switch at PLATE. Turn the TUNING control from minimum to maximum and observe the readings obtained on the panel meter. Three readings should be observed. The balanced carrier should produce a minimum current reading whereas the sidebands on both sides of the carrier should produce maximum current readings with the upper sideband showing a slightly higher reading than the lower sideband. The three readings should be the crystal frequency, the crystal frequency +200 kcs . and the crystal frequency -200 kcs . If the Cathode Balance Adjustment has been accurately set the crystal frequency may not be found.

5. REPAIRS.

a. ALIGNMENT DATA.-This section contains all information necessary to permit maintenance personnel to align the keyer. It is important that the function of each circuit element is understood so that the correct alignment may be obtained quickly and accurately. See Figures 7-8 through $7-12$ for location of all alignment adjustments.
The complete alignment of the keyer may be divided
into two steps. R.E. aligument and modulator alignment.
The alignmen of aay adjustment indiscriminately is to be avoided and no circuit should be realigned unless operation definitely indicates that realignment is necessary.
Units of test equipment required to perform these repairs are as follows:
An electronic voltmeter such as Navy Model OBQ or multimeter ME-25/U.
A signal generator, such as Navy Model LAH, R.F. Signal Generator or equivalent, with a frequency coverage that encompasses the 900 to 7000 kc . range. A Ballantine voltmeter model 300 or equivalent. A 5 to 20 -volt battery source.
An R.F. frequency meter such as Navy Model LM series or equivalent.
A $500-\mathrm{ma}$. R.F. meter.
An oscilloscope Navy Model OBL series or equivalent.
A 10-kc. multivibrator, General Radio Co. type 692B or equivalent.
A high frequency recelver, National Co. Model NC240 D or equivalent.
A variable audio oscillator, Navy Model LC series or equivalent.

To effect complete alignment of the keyer it is necessary to remove the AM-655/URT and MD-165/ URT units from the cabinet. Proceed as follows:
(1) KY-58/GRT.

Step 1. Remove the A.C. input cable W-103 from the A.C. supply source.
Step 2. Loosen the captive type thumb screws on the outer edges of the front panel. Both the AM-655/ URT and MD-165/URT are removed in the same manner therefore the following description is applicable to both units.
Step 3. Grasp the handles located on the front panel and pull the chassis forward as far as the release mechanism will permit. At this point the slide release mechanism on both sides of the chassis will drop into slotted grooves, thus locking the chassis in place and preventing forward or backward movement of the chassis.
Step 4. To remove the chassis from the cabinet depress the slide release mechanism on each side of the chassis and pull the chassis forward. Place the chassis on the repair bench or on top of the keyer cabinet.
Step 5. Release the four captivated nuts securing the two blister units in place. Remove the blisters.
Step 6. Connect the blisters to the chassis. There is sufficient slack in the cables to permit moving the blister units at will.
Step 7. Connect the A.C. input cable W-103 be-

Figure 7-8. Alignment Adiustment Locations, Bottom View of Amplifier-Oscillator AM-655/GAT
tween the A.C. input jack J-103 and the A.C. supply source.
Step 8. Connect a 73 -ohm non-inductive resistive load to the keyer output jack J-111. Place a 500 milliampere R.F. meter in series with the load.
Step 9. Remove all crystals from the ir sockets.
(2) KY-75/SRT.-The procedure for removing the KY-75/SRT keyer from its cabinet and preparing it for alignment is similar to that described in para 5 (1) except that a six-foot test cord is supplied to connect the chassis that has been removed from the cabinet. However, in this case it is only possible to remove one chassis at a time. Connect the test cord between the multi-connector on the chassis and the multi-connector on the inside of the cabinet.

The above steps complete the preliminary procedure for setting up the keyer for service and alignment. To effect alignment proceed as follows:
(3) R.F. ALIGNMENT.
(a) CRYSTAL OSCILLATOR ALIGNMENT.

Step 1. Connect the signal generator between pin 4 of the crystal oscillator tube V-110 and chassis.

Step 2. Connect the electronic voltmeter (Model OBQ or ME-25/U) between pin 5 of the mixer stage (parallel grids of balanced mixer tubes V-108 and and V-109) and chassis. Set the voltmeter on the $50-$ volt scale.

Step 3. Set the A.C. POWER switch at ON.
Step 4. Set the PLATE switch at ON.
Step 5. Set the FREQ. RANGE switch at 3.56.7.

Step 6. Release the lock on the TUNING control and set it at 6.7. Adjust the signal generator for an unmodulated signal output of 2 volts at 6500 kcs . Adjust trimmer capacitor C-129 for maximum reading
on the electronic voltmeter.
Step 7. Set the TUNING control at 3.5 Change the frequency setting of the generator to 3300 kcs . Adjust the tuning core of inductor L-106 for maximum reading on the electronic voltmeter.
The above procedure completes the oscillator alignment for the 3.5 to 6.7 range.

Step 8. To align the oscillator on the 1.8 to 3.5 mc . range set the FREQ. RANGE switch at $1.8-3.5$ set the TUNING control at 3.5 and set the signal generator at 3300 kcs . Adjust trimmer capacitor C-130 for maximum reading on the electronic voltmeter.

Set the TUNING control at 1.8 and the signal generator at 1600 kcs . Adjust the tuning core of L-107 for maximum reading on the electronic voltmeter.

Step 9. To align the oscillator on the 1 to 1.8
mc. range, set the FREQ. RANGE switch at 1 - 1.8 , set the TUNING control at 1.8 and set the signal generator at 1600 kcs . Adjust $\mathrm{C}-131$ for maximum reading on the electronic voltmeter.
Set the TUNING control at 1.0 mc . and the signal generator at 800 kcs . Adjust the tuning core of L-108 for maximum reading on the electronic voltmeter.
(b) BUFFER ALIGNMENT.

Step 1. Set the PLATE switch at OFF.
Step 2. Move the voltmeter connection from pin 5 of the mixer tube to pin 3 of the R.F. power amplifier tube V-112. Move the signal generator from pin 4 of V-110 to pin 4 of V-111, the buffer amplifier.

Step 3. Set the PLATE switch at ON. Set the FREQ. RANGE switch at 3.5-6.7.

Step 4. Set the TUNING control and signal generator at 6.7 mcs. . Adjust the trimmer capacitor C-146 for maximum reading on the electronic voltmeter.

Figure 7-9. Alignment Adjustment Locations, Top View of Amplifier-Oscillator AM-655/URT

Paragraph 5: (3)
Step 5. Set the TUNING coateol and signal generator at 3.5 mes. Adjust the tuning core adjustment of inductor L-113 for maximum reading on the electronic voltmeter.
The above procedure completes the buffer alignment for the 3.5 to 6.7 nac. range.

Step 6. To align the buffer amplifier on the 1.8 to 3.5 mc . range, set the FREQ. RANGE switch at 1.8-3.5, set the TUNING control and signal generator at 3.5 mcs . Adjust $\mathrm{C}-147$ for a maximum reading on the electronic voltmeter.
Set the TUNING control and signal generator at 1.8 mes. Adjust the tuning core of inductor L-114 for maximum reading on the electronic voltmeter.

Step 7. To align the buffer amplifier on the 1 to 1.8 mc . range set the FREQ . RANGE switch at 1 1.8 , set the TUNING control and signal generator at 1.8 mcs . Adjust $\mathrm{C}-148$ for a maximum reading on the electronic voltmeter.
Set the TUNING control and signal generator at 1.0 mes. Adjust the tuning core of inductor L-115 for maximum reading on the electronic voltmeter.
(c) MIXER ALIGNMENT.

Step 1. Set the PLATE switch at OFF.
Step 2. Move the signal generator lead from pin 4 .f $\because-111$ to pin 8 of one of the two balanced mixer tubes V-108 or V-109.

Step 3. Set the PLATE switch ON.
Step 4. Set the FREQ. RANGE switch at 3.5 6.7.

Step 5. Set the TUNING control and signal generator at 6.7 mcs . Adjust trimmer capacitor $\mathrm{C}-140$ for maximum reading on the electronic voltmeter.

Step 6. Set the TUNING control and signal generator at 3.5 mcs . Adjust the tuning core of inductor T-102 for maximum reading on the electronic voltmeter.
The above procedure completes the mixer alignment for the 3.5 to 6.7 mc . range.

Step 7. To align the mixer on the 1.8 to 3.5 mc . range, set the FREQ. RANGE switch at $1.8-3.5$, set the TUNING control and signal generator at 3.5 mcs. Adjust $\mathrm{C}-141$ for maximum reading on the electronic voltmeter.
Set the TUNING control and signal generator at 1.8 mcs. Adjust the tuning core of inductor T-103 for maximum reading on the electronic voltmeter.

Step 8. To align the mixer on the 1.0 to 1.8 mcs . range, set the FREQ. RANGE switch at $1-1.8$, set the TUNING control and signal generator at 1.8 mcs . Adjust $\mathrm{C}-142$ for maximum reading on the electronic voltmeter.
Set the TUNING control and the signal generator at 1.0 mcs . Adjust the tuning core of inductor T-104 for maximum reading on the electronic voltmeter.
(d) R.F. POWER AMPLIFIER ALIGNMENT.

Step 1. Set the PLATE switch at OFF.
Step 2. Remove the electronic voltmeter, set the PLATE switch at ON and the METERING switch at PLATE.

Step 3. Set the FREQ. RANGE switch at 3.56.7.

Step 4. Set the TUNING control and the signal generator at 6.7 mcs .

Step 5. Unlock the OUTPUT TUNING and OUTPUT LEVEL controls. Adjust the OUTPUT LEVEL control for minimum coupling as indicated by a minimum reading on the calibrated dial.

Step 6. Set the TUNING control and the signal generator at 3.5 mcs . Adjust the OUTPUT LEVEL control for minimum coupling. Adjust the OUTPUT TUNING control for minimum plate current (approximately $30 \mathrm{ma}$.) as indicated on the panel meter. If a resonant dip is not obtained adjust the tuning core of inductor L-118 for minimum plate current as indicated on the panel meter.

Step 7. Set the FREQ. RANGE switch at 1.8 3.5. Set the TUNING control and the signal generator at 1.8 mcs . Adjust the OUTPUT LEVEL control for minimum coupling. Adjust the OUTPUT TUNING control for minimum plate current (approximately 30 ma. -- actual meter reading of 1.5 ma.) as indicated on the panel meter. If a resonant dip is not obtained adjust the tuning core of inductor $\mathrm{L}-119$ for minimum plate current as indicated on the panel meter.

Step 8. Set the FREQ. RANGE switch at $1-1.8$, Set the TUNING control and the signal generator at 1.0 mcs . Adjust the OUTPUT LEVEL control for minimum coupling. Adjust the OUTPUT TUNING control for minimum plate current (approximately 30 ma.) as indicated on the panel meter. If a resonant dip is not obtained adjust the tuning core of inductor L-121 for minimum plate current as indicated on the panel meter.

Step 9. Set the FREQ. RANGE switch at 3.56.7. Set the TUNING control and the signal generator at 6.7 mcs .

Step 10. Load the OUTPUT LEVEL control until a useable reading is obtained on the R.F. ammeter and simultaneously resonate the OUTPUT TUNING control as indicated by minimum plate current reading on the panel meter. Increase the loading and tuning until the R.F. ammeter reads 285 ma . and the panel meter reads 85 ma .

Step 11. Set the FREQ. RANGE switch at 1.8 3.5. Set the TUNING control and the signal generator at 3.5 mcs .

Step 12. Repeat step 10.
Step 13. Set the FREQ. RANGE switch at 1 1.8. Set the TUNING control and the signal genera-

Figure 7-10. Alignment Adjustment Locations, Top View of Modulator-Power Supply MD-165/URT
tor at 1.8 mcs .
Step 14. Repeat step 10.
Step 15. Lock the OUTPUT TUNING, OUTPUT LEVEL and TUNING controls.

Step 16. Remove the R.F. ammeter.
(4) MODULATOR ALIGNMENT.-The locations of the variable potentiometers referred to herein are shown on Figures 7-10 and 7-11.
(a) MARK AND SPACE ADJUSTMENTS.

Step 1. Set the Multiplier switch at X1 and the METERING switch at Input. Set the INPUT FILTER switch at Photo. Set the PHASE MODULATION control at OFF.

Step 2. Set the TEST-OPERATE switch at SPACE. Read and record the reading on the panel meter. A normal reading is approximately 1.9 volts.

Step 3. Set the TEST-OPERATE switch at MARK. Adjust the FSK MARK variable potentiometer $\mathrm{R}-114$ for a reading exactly 2.5 volts higher than the reading obtained at SPACE in Step 2.

Step 4. Set the TEST-OPERATE switch at CARRIER. Adjust the FSK CAR. potentiometer R-117 for a reading approximately 1.25 volts higher than the reading obtained at SPACE in Step 2.
The above center frequency adjustment is not critical. However, the change of 2.5 volts SPACE to MARK as performed in Steps 2 and 3 should be made with the greatest accuracy.
(b) DEVIATION CALIBRATION.-After the above adjustments have been completed adjust the DEV. CALIB. potentiometer R-106 to calibrate the range of the front panel DEVIATION control. This adjustment is accomplished utilizing an external battery source of five volts or more. The battery must be capable of maintaining five volts on 600 ohms. Photo

Step, Connect the battery to the keyer input jack J-493. Connect the positive lead to pin and the negative lead to pin B.

Step 2. Set the TEST-OPERATE switch at

Figure 7-11. Alignment Adjustment Locations, Front View of Modulator-Power Supply MO-165/URT with Panel Door Open

PHOTO and the METERING switch at INPUT. Set the DEVIATION control at maximum deviation. Adjust the PHOTO INPUT control for a reading of 5 volts on the front panel meter.

Step 3. Connect cable $\mathbb{W}-107$ between the keyer Frequency Meter R.F. output jack J-110 and the input of a frequency meter such as NAVY MODEL LM or equivalent. Note the reading on the frequency meter.

Step 4. Remove the battery and note the reading on the Frequency Meter. The difference between this reading and the one obtained in Step 3 should be exactly 2000 cycles. If this is not true, adjust the DEV. CALIB. potentiometer for the correct difference frequency. Check by reconnecting the battery.
If a battery source is not available, the above adjustment of the DEV. CALIB. control can be made on frequency shift. There is some reaction between controls and repetition of steps will be required to obtain the necessary accuracy. Proceed as follows:

Adjust the DEV. CALIB. potentiometer so that changing the TEST-OPERATE switch from SPACE to MARK causes a 2.5 volt change on the panel meter and exactly 1000 -cycle change in the R.F. output. It should be noted that movement of the DEV. CALIB. control causes a change in the frequency of both

SPACE and MARK. Repeated adjustments will be required to obtain accurate measurements.
(c) LINEARITY ADJUSTMENT.-After the deviation adjustments are completed, the remaining adjustments can be made as follows:

Step 1. Set the DEVIATION control at zero and note the R.F. output frequency as read on the frequency meter. This is the true carrier frequency and is the assigned frequency of the keyer. This frequency can only be varied by changing the frequency determining crystal or external oscillator. The panel CARRIER CALIBRATE control provides a means of adjusting the frequency over a narrow range.

Step 2. With the TEST-OPERATE switch at CARRIER, set the DEVIATION control at maximum. Adjust the LINEARITY potentiometer R-122 for the same R.F. output frequency as obtained with the DEVIATION control at zero in Step 1. After this adjustment is completed, movement of the DEVIATION control will not change the carrier when the TESTOPERATE switch is set at CARRIER.

Step 3. Set the DEVIATION control at maximum. Set the TEST-OPERATE switch at SPACE. Adjust the FSK CAR. potentiometer until SPACE is 500 cycles lower than the carrier as measured in Step 2.

Step 4. Set the DEVIATION control at maximum
and the TEST-OPERATE switch at Photo. Adjust the PHOTO CAR. potentiometer until the frequency is 1000 cycles lower than the carrier. If a battery is available the accuracy of the adjustment can be ascertained by applying 5 volts to the photo input circuit. The frequency should then be 1000 cycles higher than the assigned carrier frequency.
(d) PHASE MODULATOR FREQUENCY CONTROL.

Step 1. Connect the vertical plates of an oscilloscope between pin 1 of V-106 and chassis.

Step 2. Connect the horizontal plates of the oscilloscope to a variable audio oscillator. Adjust the oscillator to 200 cycles.

Step 3. Adjust the phase modulator frequency control R-168 until the phase modulation oscillator circuit is tuned to exactly 200 cycles. The 200 cycle voltage will appear as a circular $1: 1$ frequency ratio pattern on the oscilloscope screen. The range of $R-168$ is approximately 40 cycles.

Step 4. Remove the oscilloscope and variable audio oscillator.

(e) PHASE MODULATION ADJUSTMENT.

Step 1. Connect a low-reading high impedance voltmeter such as a Ballantine model 300 between pin 1 of V-106 and chassis.

Step 2. Set the PHASE MODULATION control at one radian.

Step 3. Adjust the PHASE MOD. CALIB. potentiometer $\mathrm{R}-162$ for a reading of 0.0875 volts RMS on the voltmeter. The PHASE MODULATION control is now calibrated for the correct voltage to produce one radian at 57.3 degrees on the dial scale.

Step 4. Remove the voltmeter.
(f) CARRIER BALANCE ADJUSTMENT.-.This adjustment is more accurately made at frequencies above 4 megacycles.

Step 1: Set the METERING switch at PLATE.
Step 2. Remove the $200-\mathrm{Kc}$. oscillator tube V 107 so that only one point of drive can be found.

Step 3. Set the TUNING control at the point of maximum drive. Adjust the CATHODE BALANCE potentiometer R-189 for the least amount of grid drive as indicated on the panel meter.

Step 4. Replace the $200-\mathrm{Kc}$. oscillator tube. (g) CARRIER CALIBRATE ADJUSTMENT.
Step 1. After the crystal oven has reached its operating temperature of 70° set the plate switch at ON. Set the CARRIER CALIBRATE control at 50. Set the TEST-OPERATE switch at CARRIER. Set the CRYSTAL-OSC. switch and the FREQ. RANGE switch at corresponding positions. Set the TUNING control at the keyer output frequency.

Step 2. Open the oven door and adjust the cuniag core of L-103 until the frequency as observed on the frequency meter is 200 kcs . above the crystal fre-

Figure 7-12. Alignment Adjustment Locations, Front View of Amplifier Oscillator AM-655/URT with Panel Door Open
quency. Close the oven door.
Step 3. Set the METERING switch at GRID. Adjust the tuning core of $\mathrm{L}-104$ for maximum reading on the panel meter. Readjust the final tuning as explained in Step 10 of paragraph 5 a. (1) (d). of this section.

Step 4. Remove all test equipment.
(b) OVEN THERMOSTAT ADJUSTMENT.

Step 1. Open the oven door. Turn the screwdriver adjustment on the thermostat $\mathrm{S}-110$ in a counterclackwise direction to increase the temperature at which the thermoswitch opens, See Figure 7-12.

Step 2. To lower the thermoswitch threshold turn the screwdriver adjustment in a clockwise direction. Close the oven door.
b. MECHANICAL ADJUSTMENTS.-Tools required for the mechanical adjustments described herein consist of:

1. No. 8 Allen Wrench (mounted at the rear of the crystal oven).
2. Medium size Phillips screwdriver, Federal Stai-dard Stock Catalogue No. 3-41-S-1640 or No. 4-41-S1642.
3. Medium size screwdriver, Federal Stradard Stock Catalogu No. 41-S-1104.
4. I on y-nose pliers.
5. Sondering iron and accessories.
(1) CONTROL KNOBS AND COUPLINGS.-All control knobs are fastened to their respective shafts by 8-32 Allen set-screws. To remove the knobs, insert a No. 8 Allen wrench into the ends of the screws, rotate a few turns counterclockwise until the knob turns freely on the shaft. It can then be lifted off the shaft. All shaft couplings are secured by means of 8-32 Allen set-screws.
(2) DISASSEMBLY.-Refer to paragraph 5 a (1) and 5 a (2) for disassembly instructions.
(3) REMOVAL OF AM-655/URT BOTTOM.-Loosen the 23 captivated type screws around the outer edges of the bottom and lift the bottom off.
(4) REMOVAL OF MD-165/URT BOTTOM.-Loosen the 16 captivated screws around the outer edges of the hottom and lift the bottom off.
(5) REMOVAL OF CRYSTAL OVEN.

Step 1. Loosen the three 4-40 screws that secure the thermometer to the front panel. Remove the thermometer.
Step 2. Unsolder the nine bus leads between terminal boards TB-101 and TB-102.
Step 3. Loosen and remove the two $6-32$ screws securing the oven to the bottom of the chassis.
Step 4. Loosen and remove the four 8-32 screws on each side of the crystal oven.
Step 5. Lift the oven up and away from the chassis.

TABLE 7-2. RATED TUBE CHARACTERISTICS

$\begin{aligned} & \text { TUBE } \\ & \text { TYPE } \end{aligned}$	FILAMENT VOLTAGE (V)	¥ILAMENT CURRENT (A)	plate VOLT- AGE (V)	GRID BIAS (V)	SCREEN VOLT. AGE (V)	Plate CURRENT (MA)	$\begin{gathered} \text { SCREEN } \\ \text { CUR- } \\ \text { RENT } \\ \text { (MA) } \\ \hline \end{gathered}$	A.C. PLATE RESIS- TANCE (OHMS)	$\begin{array}{\|c\|} \hline \text { VOLTAGE } \\ \text { AMPLI- } \\ \text { FICATION } \\ \text { FACTOR } \\ (M U) \\ \hline \end{array}$	TRANSCONDUCTANCE (MICROMHOS)		EMISSION	
										NORMAL	MINIMUM	$\begin{gathered} \text { IS } \\ (\mathrm{MA}) \end{gathered}$	TEST
6H6	6.3	0.3	150 A.C.*	\cdots	-	8*	-	-	---	--	-	15**	20
6SN7W	6.3	0.6	250	-8	-	9		7700	20	3000	2400	40*	30
615	6.3	0.3	250	-8	--	9	-	7700	20	2600	2075	40	30
6AC7W	6.3	0.45	300	160*	150	10	2.5	1,000,000	6750	9000	7000	40	10
6SJ7W	6.3	0.3	250	-3	100	3	0.8	1,500,000	2500	1650	1325	60	30
6SA7	6.3	0.3	250	0 ***	100	8	3.4	800,000	\cdots	$\begin{gathered} 4700^{* *} \\ 13 * * \end{gathered}$	$\begin{gathered} 3500^{* * *} \\ 0.5 * * \end{gathered}$	70	30
807	6.3	0.9	400	-45	250	100	7.5	4,000	-	--	--	300	50
544	5	3	450*	-		225	-	-	-	-	-	225*	75
$\begin{aligned} & \text { OD3/ } \\ & \text { VR150 } \end{aligned}$	-	-	150	-	-	5-40		-	-	-	-		-
$\begin{aligned} & \text { OA3/ } \\ & \text { VR75 } \end{aligned}$	-	-	75	-	-	5-40	-	-	-	\square	-	-	-

[^0]TABLE 7-3. WINDING DATA CHART

$\begin{aligned} & \text { SYMBOL } \\ & \text { DESIG. } \end{aligned}$	$\begin{gathered} \text { NAT. } \\ \text { PT. NO. } \end{gathered}$	DIAGRAM	WINDING	WIRE SIZE	TURNS	$\begin{aligned} & \text { D.C. RES. } \\ & \text { IN OHMS } \end{aligned}$	$\begin{aligned} & \text { IMPED- } \\ & \text { ANCE } \\ & \text { RATIO } \end{aligned}$	$\begin{gathered} \text { HIPOT } \\ \text { AC VOLTS } \end{gathered}$	REMARKS
$\begin{aligned} & \mathrm{L}-101 \\ & \mathrm{~L}-102 \end{aligned}$	SA:4884	$\left\|<\frac{9}{9 \prime \prime}{ }^{\circ 104}\right\|$	5 pie universal wnd	*38 ESN	370 per pie, total 1850	1.5			10 mh , brush on bakelite resin varnish
L-103	SA:8886		universal wnd	*10/41 ESN	20 to tap, total 99	$\begin{aligned} & 0.52 \text { to } \\ & \text { tap, } \\ & \text { total } \\ & 2.84 \end{aligned}$			10 microhenries to tap, total 205 microhenries, tapped at 20 turns, apply Q-max lacquer
L-104	SA:8885		2 pie universal wnd	$* 10 / 41$ ESN	90 C.T.	1.12 to tap, total 2.36			42 microhenties to tap, total 117 microhenries, center tapped, apply Q-max lacquer

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{|c|}
\text { SYMBOL } \\
\text { DESIG. }
\end{array}
\] \& \begin{tabular}{l}
NAT. \\
PT. NO.
\end{tabular} \& DIAGRAM \& WINDINGW \& IRE SIZE \& TURNS \& \begin{tabular}{l}
D.C. RES. \\
IN OHMS
\end{tabular} \& \begin{tabular}{l}
IMPEU- \\
ANCE \\
RATIO
\end{tabular} \& \[
\begin{gathered}
\text { HIPOT } \\
\text { AC VOLTS }
\end{gathered}
\] \& REMARKS \\
\hline \multirow[t]{2}{*}{L-124
L-125} \& SA:8892

P632-1 \& \multirow[t]{8}{*}{} \& 2 pie universal wad \& *20 E \& 75 per pie, total 150 \& 0.5 \& \& \& $0.6 \mathrm{mh} \mathrm{w} / \mathrm{slug}$, apply bakelite resin varnish

\hline \& \multirow[t]{7}{*}{P632-1} \& \& layer wnd \& \& \& \& \& | $2000 \mathrm{v}$ |
| :--- |
| RMS | \&

\hline \multirow{6}{*}{T-101} \& \& \& | primary |
| :--- |
| *1 and *2 | \& | *21 PE |
| :--- |
| (AWG) | \& 200 \& 2.05 \& \& \& 115 VAC

\hline \& \& \& *3 and *4 \& | *21 PE |
| :--- |
| (AWG) | \& 200 \& 2.25 \& \& \& 115 VAC

\hline \& \& \& secondary *5, 6 and 7 \& $$
\begin{aligned}
& \text { *28 PE } \\
& \text { (AWG) }
\end{aligned}
$$ \& 1300 \& 106.7 \& \& \& \[

$$
\begin{gathered}
720 \mathrm{VAC} \text { at } 250 \\
\text { ma., center tap } \\
\text { at terminal } \# 6
\end{gathered}
$$
\]

\hline \& \& \& secondary

*8 \& \& \& \& \& \& | electrostatic |
| :--- |
| shield |

\hline \& \& \& | secondary |
| :--- |
| *9 and |
| *10 | \& | *15 PE |
| :--- |
| (AWG) | \& 24 \& 0.174 \& \& \& \[

i2.6 VAC at 3
\] amp.

\hline \& \& \& | secondary |
| :--- |
| *11 and |
| *12 | \& | *18 PE |
| :--- |
| (AWG) | \& 10 \& 0.074 \& \& \& \[

5.25 \mathrm{VAC} at 3
\] amp.

\hline
\end{tabular}

Figure 7-13. Frequency Respanse of $60-\mathrm{cycle}$ Keying ,-ilfer Z-101

Figure 7-14. Frequency Response of 100 -cycle Keying Filter Z-102

Figure 7-15. Frequency Response of 200 -cycle Keying Filter Z-103

Figure 7-16. Frequency Response of 240 -cycle Keying Filter Z-104

Figure 7-17. Transient Response of Waveshaping Filters

Figure 7-18. Overall Dynamic Response of Photo Circuits

Figure 7-19. Frequency-Shift vs. Key Line Voltage, Static Test

Figure 7-20. Overall Photo Linearity, Static Test

Figure 7-22. Practical Wiring Diagram, Amplifier-Oscillator AM-655/URT

Figure 7-24. Component Locations, Top View of Amplifier-Oscillator AM-655/URT

Figure 7-25. Capacitor Locations, Bottom View of Amplifier-Oscillator AM-655/URT

Figure 7-26. Resistor Locations, Bottom View of Amplifier-Oscillator AM-655/URT

Figure 7-27. Miscellaneous Component Locations, Bottom View of Amplifier-Oscillator AM-655/URT

Figure 7-28. Component Locations, Top View of Modulator-Power Supply MD-165/URT

Figure 7-29. Resistor Locations, Bottom View of Modulator-Power Supply MD-165/URT

Figure 7-30. Capacitor and Miscellaneous Component Locations, Bottom View of Modulator-Power Supply MD-165/URT

Figure 7-37. Slide Mechanism Part Locations, Left Side View of Amplifier-Oscillator AM-655/URT

Figure 7-32. Practical Wiring Diagram of Blister Assembly, KY-58/GRT and KY-75/SRT Keyers

TABLE 8-2. SHIPPING WEIGHTS AND DIMENSIONS OF REPAIR PARTS BOXES

TABLE 8-3. LIST OF MAJOR UNITS

SYMBOL GROUP	QUANTITY	LIST OF MAJOR UNIT	StANDARD NAVY STOCK NUMBER	designation
$\begin{aligned} & 101 \text { to } 299 \\ & 101 \text { to } 299 \end{aligned}$	$\begin{gathered} 1 \\ \text { or } \\ 1 \end{gathered}$	Keyer Keyer	F16-K-47681-1001 F16-K-47672-9201	KY-58/GRT KY-75/SRT

TABLE 8-4. COMBINED PARTS AND REPAIR PARTS LIST FOR KEYERS KY-58/GRT AND KY-75/SRT

Capacitor, fixed: miea dielectric;
case style no $22, ~ M B C A$ group 1 . 10000 , MBCA ref dwg vdew $1 ; 10,000 \mathrm{mmf} \pm 20 \% ; 300$ vdew; no specified temp coef; molded bakelite case; $53 / 6^{\prime \prime} \lg X$ $11 / 32^{\prime \prime} \mathrm{d} \times 53{ }^{\prime} 6_{4}^{\prime \prime}$ wd max; 2 axial motd; JAN-C-5 at each end; term mtd; JAN-C-5 spec

C-106

C-107

Capacitor, fixed: mica diclectric; case style no 22 , MBCA ref dwg group 1; $1300 \mathrm{mmf} \pm 5 \% ; 500$ vdew; temp coet -20 to +100 parts/million/degree C ; molded ${ }_{5364}{ }^{\prime \prime}$ wd max; 2 axial wire lead term at each end; term mtd; JAN-C-5 spec

C-108

C-109

C-110
Capacitor, fixed: mica dielectric; case style no 22 , MBCA ref dwe group $1 ; 1000 \mathrm{mmf} \pm 10 \% ; 500$ vdew; no specified temp coef; molded bakclite case; $53 / 64 \lg X$ $11 / 32^{\prime \prime} \mathrm{d} \times 5{ }^{53} 6^{\prime \prime} \mathrm{wd}$; 2 axial wire lead term at each end; term mtd; JAN-C-5 spec
apacitor, fixed: mica dielectric, case style no 22, MBCA ref dwg group 1; $4700 \mathrm{mmf} \pm 10 \% ; 500$ vdcw; no specified temp coef; molded bakelite case; ${ }^{33} 64^{\prime \prime} \lg X$ ${ }^{1} 32 \mathrm{~d} \times{ }^{5364}$ wd max; 2 ave lead term at each end; term mtd; JAN-C-5 spec

Same as C-111
Same as C-105

Capacitor, variable, air dielectric;
Same as C-107

Same as C-107 1 section, plate meshing type; 17 to 325 mmf ; SLC tuning characteristic; 750 V.A.C. peak voltage; $223 / 32^{\prime \prime} \lg \times 15 / 8^{\prime \prime}$ wd $\times 17 / 8^{\prime \prime} \mathrm{h}$; $7 / 16^{\prime \prime}-27$ thrd bushing, $13 / 32^{\prime \prime} \lg$;
V-105 plate to
V-104 grid cou-
pling
pass
Part of V-105 phase shifting net-
work

Supplied on KY-75/SRT only
\ddagger Not furnished as a maintenance part. If failure occurs, do not request replacement unless the item cannot be repaired or fabricated.

$\stackrel{9}{\square}$		$\frac{9}{6}$	$\frac{9}{89}$	
$\xrightarrow[9]{9}$	Q		$\frac{Q}{\infty}$	
N	er	-	ω	er

Capacitor, fixed: mica dielectric; case style no 22, MBCA ref dwg group 1; $4700 \mathrm{mmf} \pm 5 \%$; 500 vdew; no specified temp coef; molded bakelite case; ${ }^{53} 6^{\prime \prime} \lg \times$ ${ }^{11} /{ }^{32}{ }^{11} \mathrm{dp} \times{ }^{53} 3^{3 \prime}{ }^{11}$ wd max; 2 anial $\mathrm{C}-5$ spec; part of $Z-105$
Same as C-117
Capacitor, fixed: ceramic dielectric; case style no 2, MBCA ref dwg group $1 ; 22 \mathrm{mmf} \pm 10 \%$; temp coef $-330 \mathrm{mmf} / \mathrm{mf} /{ }^{\circ} \mathrm{C}$; temp coef tolerance -718 to +500 mmf $\mathrm{mf} /{ }^{\circ} \mathrm{C}$; insulated; phenolic jacket;
$0.562^{\prime \prime} \lg \times 0.250^{\prime \prime}$ diam max; 2 $0.562^{\prime \prime} \lg \times 0.250$ diam max, JAN-C-20 spec

C-124	Same as C-117
C-125	Same as C-123

Same as C-105
Capacitor, variable, air dielectric plate meshing type; 4 sections; 375 plate meshing type; 4 sections; 3 , mmf max, 12.5 mmf min; straight istic $; 700 \mathrm{v} 60$ cveles AC peak voltistic; 700 v 60 cycles AC peak volt-
are $: 8^{1 / 2^{\prime \prime}} \lg \times 1277^{\prime \prime} \mathrm{h} \times 336^{\prime \prime} \mathrm{wd}$
 excl shaft; shaft $1^{\prime \prime} \lg \times 0.250^{\prime \prime}$
diam; extension shaft adjustment; diam; extension shaft adjustment;
$180^{\circ} \mathrm{CCW}$ rotation; ceramic insu$180^{\circ} \mathrm{CCW}$ rotation; ceramic insu-
lated base; 8 solder lug term; four $0.130^{\prime \prime}$ diam mtg holes, 2 at each end of front plate $7 / 8$ c to c; 25 aluminum plates per section $\mathrm{w} / \mathrm{pol}-$ ished finish
Part of C-127
Part of C-127
Part of C-127
C-127D
Part of C-127
Same as C-105

V-107 to Z-105 coupling L-104 tuning	CM35B472.J	N16-C-32641	173	H377-19	C-121	1
Ext Osc input coupling						
V-110 grid to cathode feedback	CC21SL220K	$\begin{aligned} & \text { N16-C-16157 } \\ & -6400 \end{aligned}$	83	H872-8	C-123, C-125	2
V-110 cathode bypass						
V-110 fixed plate tuning						
$\begin{aligned} & \text { V-110 screen by* } \\ & \text { pass } \end{aligned}$						
Main tuning control		$\begin{aligned} & \mathrm{N} 16-\mathrm{C}-63576 \\ & -1001 \end{aligned}$	284	P633-1	C-127	
V-110 plate tuning						
V-108 plate tuning						
V-109 plate tuning						
V-111 plate tuning V-110 output coupling						

$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{2} \\ & \frac{2}{2} \end{aligned}$	$\underset{\text { (cont) }}{\mathrm{E}-101^{*}}$	partments electrically connected by 2 cables and containing various receptacle connectors peculiar to National Company, Inc. part/dwg SA:7284; each compartment 1014 $\lg \times 43 / 8^{\prime \prime}$ wd $\times 43 / 32^{\prime \prime} \mathrm{d}: \mathrm{mts}$ by 4 captive thumb nuts, 2 on each compartment spaced diagonally on $8^{3} 4^{\prime \prime} \times 11 /^{\prime \prime} \mathrm{mtg} / \mathrm{c}$; marked: Keyer Output, Freq Meter, 12 F Ext Oscillator, FM Audio, Keyline, AC Power; includes J-101, J-102, J-103, J-105, O-186, O-187, O-188, O-189, O-190, O-143, O-161, J-109, J-110, J-111, J-106	
	E-102	Insulator, standoff: grade XXP natural bakelite; wax impregnated; flat plate, rectangular w/rounded end shape, MBCA ref dwg group 9, item code no $225, \mathrm{MBCA}$ ref dwg group, $9 ; 1^{\prime \prime} \lg \times 3 / 4^{\prime \prime}$ wd; two $0.125^{\prime \prime}$ diam mtg holes on $0.438^{\prime \prime}$ $\mathrm{mtg} / \mathrm{c}$; $1 / 4^{\prime \prime}$ from flat end; JAN"-P-13 spee	Variable trimmer capacitor insulated spacers
	E-103	Insulator, bushing: grade I-5 white ceramic; round, flat $w /$ flange, MBCA ref dwg group 9; item code no $210, \mathrm{MBCA}$ ref dwg group 9 ; E-0.094"; $0.093^{\prime \prime}$ diam ctr hole	Feedthru insulators
	E-104	Insulator, standoff: grade $\mathrm{I}-4$ white ceramic; side surfaces glazed; standoff, cylindrical pillar MBCA ref dwg group 9 ; item code no 19 MBCA ref dwg group 9; $\mathrm{L}-1 / 2^{\prime \prime}$, C- $3 / 66^{\prime \prime}, ~ D-3 / 8^{\prime \prime}, ~ T-6-32^{\prime \prime}$	$\begin{aligned} & \mathrm{C}-128, \mathrm{R}-184 \\ & \mathrm{R}-196, \mathrm{R}-198 \mathrm{mtg} \end{aligned}$
	E-105	Knob: round black bakelite; designed to accommodate round shaft $1 / 4^{\prime \prime}$ diam w/9/6" deep shaft hole, fastened $w /$ two $\# 8-32$ set screws; cadmium plated brass insert; $15 / 8^{\prime \prime} \lg \times 1 \frac{1}{2^{\prime \prime}}$ diam $\times 7 / 8^{\prime \prime}$ thk; arrow marking $1_{2 \prime \prime}^{\prime \prime}$ wd $\times 1 / 16^{\prime \prime}$ d groove filled $w /$ white lacquer	Freq Range sw knob
	E-106	Same as E-105	Crystal Osc sw knob
	E-107	Same as E-105	Test Op sw knob
	E-108	Same as E-105	Phase Mod Cont knob
	E-109	Same as E-105	Filter sw knob
	E-110	Same as E-105	Photo Input cont knob
		pplied on KY-58/GRT only	

TABLE 8-4. COMBINED PARTS AND REPAIR PARTS LIST FOR KEYERS KY-58/GRT AND KY-75/SRT

PARTS									EQUIP. REPAIR PARTS			
	NAME OF PART AND DESCRIPTION	FUNCTION	JAN AND (NAVY TYPE) NO.	STANDARD NAVY AND (SIGNAL CORPS) STOCK NO.	MFGR. AND MFGR'S. DESIGNATION	CON-TRACTOR DRAWING \& PART NO.	$\begin{gathered} \text { ALL } \\ \text { SYMBOL } \\ \text { DESIG. } \\ \text { INYOLVE } \end{gathered}$	$\begin{array}{\|l\|} \hline \text { TOT. } \\ \text { NO, } \\ \text { PER } \\ \text { EQ. } \end{array}$	KY-58/GRT		KY-75/SRT	
SYMBOL DESIG.									¢	z	-	2 3 0 0

miscellaneous electrical parts (continued)

E-111	Same as E-105	Multiplier sw knob
E-112	Same as E-105	Metering sw knob
E-113	Knob: round black bakelite; designed to accommodate round shaft $1 / 4^{\prime \prime}$ diam w/ $1^{\prime \prime}$ deep shaft hole, fastened w/two \#8-32 set screws; w/o markings; cadmium plated brass insert; 11/6" diam X $5 / 8^{\prime \prime}$ thk	Access door knobs
E-114	Knob: round black bakelite; designed to accommodate round shaft $0.250^{\prime \prime}$ diam w/9/16" deep shaft hole, fastened w/set screws; cadmium plated brass insert; scored line on clear vinylite dial pointer; $223 / 32^{\prime \prime} \lg \times 2^{\prime \prime}$ diam \times $78^{\prime \prime}$ thk; two \#8-32 tapped mtg holes; one located at 6 o'clock and one at 9 o'clock	Tuning control knob and pointer
E-115	Finob: round black bakelite; designed to accommodate round shaft $0.375^{\prime \prime}$ diam w/9/1" deep shaft hole, fastened w/set screws; cadmium plated brass insert; w/o markings; $2^{\prime \prime}$ diam $\times{ }^{27} / 32^{\prime \prime}$ thk; two \#8-32 tapped intg holes, one located at 6 o'clock and one at 9 o'clock	Deviation control knob
E-116	Knob: round black bakelite; designed to accommodate round shaft $0.250^{\prime \prime}$ diam w/9/6" deep shaft hole, fastened w/set screws; cadmium plated brass insert; w/o markings; $2^{\prime \prime}$ diam $\times 27 / 32^{\prime \prime}$ thk; two \#8-32 tapped mtg holes, one located at 60^{\prime} clock and one at 9 o'clock	Carrier Calib control knob
E-117	Same as E-116	Output tuning knob
E-118	Same as E-113	Control knob

| E-119 | Oven, crystal: for 6 crystal units in | Crystal oven |
| :--- | :--- | :--- | :--- | 3 crystal holders type $\mathrm{HC}-1 / \mathrm{U}$ or in 3 crystal holders type $\mathrm{HO}-6 / \mathrm{U}$ $70^{\circ} \mathrm{C}$ oven temp $\pm 1^{\circ} \mathrm{C}$ tolerance operates on $115 / 230 \mathrm{v}, 50 / 60$ cycles, single phase, 305 watts; built-in thermometer $\mathrm{w} / 0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ range; 9 double ended stud type term on back of oven; aluminum case, $10^{13} / 1^{\prime \prime} \lg \times 778^{\prime \prime}$ wd \times $6^{25} 6^{\prime \prime} \mathrm{h}$; eight $0.218^{\prime \prime}$ diam mtg $6^{25}{ }^{\prime \prime} \mathrm{h}$; eight $0.218^{\prime \prime}$ diam mtg holds 3 of 1 type crystal at one time only: includes Z-106, XY-101 thru XY-106 O-140 O-141, O-142, $0-137, \mathrm{O}-138, \mathrm{O}-139, \mathrm{~S} 110, \mathrm{HR}$ 101 thru HR 104 O 181, O-182 O-183, O-185, TB-101

Insulator, standoff: grade $\mathrm{L}-4$ white ceramic; glazed surface dwg sroup 9 . item code no 20 C-3 ${ }^{\prime \prime}$ - $1 / \prime \prime$ T-46-32 L-115/16'; single '\#6-32 tapped mtg hole in base of pillar
Cap, tube: grid-plate style 9 MBCA ref dwg group 37; beryllium copper grip w/ceramic cap; grip tinned, cap glazed finished; 11/8 $\lg \times 0 / 8$ wd $\times 1 / 32^{\prime \prime} \mathrm{h}$; ceramic insulation; single cap type term; $0.369^{\prime \prime}$ max jaw opening; used as electron tube contact clip
Blister assembly: multiconnector; grip consists of 2 rectangular compart ments electrically connected by 2 cables and containing various receptacle connectors peculiar to National Company, Ine. part/ SA:7285; each compartment 101/4 $\lg \times 43 / 8$ wd $\times 4322^{\prime \prime} \mathrm{d}$; mtd by 4 captive thumb nuts, 2 on each compartment spaced diagonally on $834^{\prime \prime} \times 11 / 8^{\prime \prime} \mathrm{mtg} / \mathrm{c}$; marked: keyer output, freq meter, RF ext oscillator, FM audio, Keyline, AC power; includes $J-101, \mathrm{~J}-102$, J-103, J-105, J-106, J-109, J-110, $\mathrm{J}-111, \mathrm{O}-186$ thru $0-190, \mathrm{O}-143$ O-161

FUSES

F-101	Fuse, cartridge: 8 amp, 250 volt; continuous 110%, blows within 60 minutes at $135 \% ;$ ferrule type,

AC line fuse

$\mathrm{N} 17-\mathrm{F}-16302$ -160	76	F135-17	$\mathrm{F}-101, \mathrm{~F}-102$ $\mathrm{~F}-104, \mathrm{~F}-105$

TABLE 8-4. COMBINED PARTS AND REPAIR PARTS LIST FOR KEYERS KY-58/GRT AND KY-75/SRT

TVNITIZO
TABLE 8-4. COMBINED PARTS AND REPAIR PARTS LIST FOR KEYERS KY-58/GRT AND KY-75/SRT

\ddagger Not furnished as a maintenance part. If failure occurs, do not request replacement unless the item cannot be repaired or fabricated.

TABLE 8-4. COMBINED PARTS AND REPAIR PARTS LIST FOR KEYERS KY-58/GRT AND KY-75/SRT

PARTS									EQUPP. REPAIR PARTS			
						CON-			KY-5	REPAIR PARTS Y-58/GRT KY-75/SRT		/SRT
SYMBOL DESIG.	name of part and DESCRIPTION	FUNCTION	JAN AND (NAVY TYPE) NO.	NAVY AND (SIGNAL CORPS) STOCK NO.	MFGR MFGR'S. DESIGNATION	TRACTOR DRAWING \& PART NO.	$\begin{gathered} \text { ALI } \\ \text { SYMBOL } \\ \text { DESIG. } \\ \text { INYOLVD } \end{gathered}$	$\begin{gathered} \text { TOT. } \\ \text { NO. } \\ \text { PER } \\ \text { EQ. } \end{gathered}$	$\begin{aligned} & \times \\ & \stackrel{\times}{\circ} \end{aligned}$	2 $<$ 0 0	¢	2 4 0 0

INDUCTORS (continued)
L-106

Coil, RF: 5.45 microhenries at 1000 cyelès, 0.148 ohms DC resistance; 17 turns of \#26AWG enamel coated copper conductor; single winding, single layer wound; untapped, unshielded;ceramic form $\mathrm{w} /$ powdered iron core; coil $19 / 3{ }^{11}$ $\lg \times 255_{2}^{\prime \prime}$ dia, excl term; coil form $19 / 6^{\prime \prime} \lg \times 3^{\prime \prime}{ }^{\prime \prime}$ dia; adjustable iron core tuning w/screw-driver adjustment located on bottom of coil form; 2 solder lug term located one on each end; one $1 / 4^{\prime \prime}-32$ thrd mtg of coil form	$\begin{aligned} & \text { Crystal osc tank, } \\ & 3.5-6.7 \mathrm{mcs} \end{aligned}$
Coil, RF: 23.7 microhenries at	Crystal ose tank,

and

(1)

TABLE 8-4. COMBINED PARTS AND REPAIR PARTS LIST FOR KEYERS KY-58/GRT AND KY-75/SRT

TABLE 8-4. COMBINED PARTS AND REPAIR PARTS LIST FOR KEYERS KY-58/GRT AND KY-75/SRT													$\left[\begin{array}{ll} \Gamma & \infty \\ \stackrel{1}{2} & \infty \\ \alpha & 0 \\ 1 & n \\ \frac{1}{3} & 0 \\ \vdots & 3 \\ 0 & \end{array}\right.$
PARTS									EQUIP. REPAIR PARTS				
						CON-			KY -	GRT	KY-7	/SRT	
SYMBOL DESIG.	NAME OF PART AND DESCRIPTION	FUNCTION	JAN AND (NAVY TYPE) NO.	AND (SIGNAL CORPS) STOCK NO.	AND MFGR'S. DESIGNATION	TRACTOR DRAW ING \& PART NO.	All SYMBOL DESIG. INVOLVED	TOT. NO. PER EQ.	-	2 4 4 0	¢	2 3 0 0	
INDUCTORS (continued)													
L-116 (cont)	ramic form and core; coil $252^{\prime \prime}$ dia $\times 3 / 4^{\prime \prime} \lg \mathrm{o} / \mathrm{a}$; coil form $155 / 6^{\prime \prime}$ $\lg \times 3 / 8^{\prime \prime} \mathrm{OD} ; 2$ cotter pin type terminations, located one at each end; single \#6-32 tapped mtg hole, $3 / 8^{\prime \prime} \mathrm{dp}$, located in base of coil form; RF choke coil												
L-117	Choke, RF: plate lead RF choke; for use w /requencies of 1-7 mes; cylindrical shape; $3 / 4^{\prime \prime} \lg \times 3 / 16^{\prime \prime}$ dia, excl term; 2 wire pigtail type term located on each end of coil form	V-112 plate lead			$\begin{aligned} & \text { SA:6073 } \end{aligned}$	SA:6073	L-117	1	1	1	1	1	
L-118	Coil, RF: 78 microhenries at 1000 cycles 0.052 ohms DC resistance; 17 turns \#20 AWG enamel coated copper conductor; single winding, single layer wound; untapped, unshielded; ceramic form w/powdered iron core; coil $19 /{ }^{\prime \prime}{ }^{\prime \prime} \lg \times 11_{16}{ }^{\prime \prime}$ dia; coil form $13,16^{\prime \prime} \lg \times 1^{\prime \prime}$ dia; adjustable iron core tuning $w /$ screwdriver adjustment located on bottom of coil form; 2 solder lug term, located one on each end: one $1^{\prime \prime} \mathbf{"}^{\prime}-32$ thrd mtg bushing, $11 / 16^{\prime \prime}$ lg , through bottom of coil form	Output tank, 3.5-6.7 mcs			$\stackrel{1 ;}{\text { SA: }} 8873$	SA:8873	L-118	1	1	1	1	1	
L-119	Coil, RF: 32 microhenries at 1000 cycles, 0.414 ohms DC resistance; 34 turns \#26 AWG enamel coated copper conductor; single winding, single layer wound; center tapped; unshielded; ceramic form w/powdered iron core ; coil 19/32" $\lg \times 11 / 32^{\prime \prime}$ dia; coil form $1^{13 / 16}{ }^{\prime \prime} \lg \times 1^{\prime \prime}$ dia;adjustable iron core tuning $w /$ screwdriver adjustment located on top of coil form; 3 solder lug term, located one on bottom and 2 on top end of coil form; one $1 / 4^{\prime \prime}-32$ thrd mtg bushing, $11 / 16^{\prime \prime} \lg$, through bottom of coil form	Output tank, $1.8-3.5 \mathrm{mcs}$			SA:8874	SA:8874	L-119	1	1	1	1	1	-
L-120	Coil, RF: 108 microhenries at 1000 cycles, 0.738 ohms DC resistance;	Output tank, $1.0-1.8 \mathrm{mcs}$			$\begin{aligned} & 1 ; \\ & \text { SA:8875 } \end{aligned}$	SA:8875	L-120	1	1	1	1	1	$\xrightarrow{\sim}$

Coil, RF: 24 turns \#14 AWG silver plated copper conductor; single winding, single layer wound, untapped, unshielded; ceramic form w/air core; coil $2^{6 / 64} \lg \times 15 / 32$ $\mathrm{OD} ; 614^{\prime \prime} \lg \min \times 3334^{\prime \prime}$ wd $\times 35 / 16^{\prime \prime} \mathrm{h}$ excl extension shaft; sliding roller contact tuning w/extension shaft adjustment, shaft mtd in center of coil form, contact mtd along upper rim of coil. 8 mtd tupe upe located 4 at stud type term, located 4 at each end, on ceramic mtg plate; 2 ceramic mtg plates, supported by
four $61 / 4^{\prime \prime} \lg , 1 / 8^{\prime \prime}-32$ thrd stud four $6 \frac{1}{4}{ }^{\prime \prime} \lg , 1^{\prime \prime} 8^{\prime \prime}-32$ thrd stud
bolts on $3.187^{\prime \prime} \times 2.695^{\prime \prime} \mathrm{mtg} / \mathrm{c}$, bolts on $3.187^{\prime} \times 2.695^{\prime 2 t g} / \mathrm{c}$,
attached to 2 mtg brackets at attached to 2 mtg brackets at
base of plates by the 2 lower supporting stud bolts
Reactor: filter choke; 1 section DC resistance: 250 ma DC current rating; 2500 VDC test voltage; hermetically sealed metal case $5.062^{\prime \prime} \mathrm{lg} \times 3.500^{\prime \prime}$ wd $\times 5.125^{\prime \prime}$ $5.062^{\prime \prime} \lg \times 3.500^{\prime \prime}$ wd $\times 0.120$ h , excl term; mts by four $0.218^{\prime \prime}$ dia mtg holes on $4.562^{\prime \prime} \times 2.250^{\prime \prime}$
$\mathrm{mtg} / \mathrm{c} ; 2$ stud type term located on bottom of case
(-302510)
Reactor: RF filter choke; 1 section; 0.6 mh , no DC rating; 0.5 ohms control

```

\section*{Filter choke} DC voltare. 131, lg excl tuning sug \(\times 176^{\prime \prime}\) diam; two \#4-40 tapped mtg holes on \(0.427^{\prime \prime}\) diam circle of brass nickel plated plug held to coil form thru three \#40-40 tapped mtg holes \(5 / 32^{\prime \prime}\) dp set \(120^{\circ}\) apart; each end of coil form; sprayed w/moisture and fungus resistant Jacquer




TABLE 8-4. COMBINED PARTS AND REPAIR PARTS LIST FOR KEYERS KY-58/GRT AND KY-75/SRT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PARTS} & \multicolumn{4}{|c|}{EQUIP. REPAIR PARTS} \\
\hline & & & \multirow[b]{2}{*}{JAN AND (NAVY TYPE) NO.} & \multirow[t]{2}{*}{STANDARD NAVY AND (SIGNAL CORPS) STOCK NO.} & \multirow[b]{2}{*}{\begin{tabular}{l}
MFGR. \\
AND MFGR'S. DESIGNATION
\end{tabular}} & \multirow[t]{2}{*}{CONtRACTOR DRAWING \& PART NO.} & \multirow[b]{2}{*}{ALL
SYMBOL DESIG. INVOLVED} & \multirow[b]{2}{*}{тот. NO. PER EQ.} & \multicolumn{2}{|l|}{KY-58/GRT} & \multicolumn{2}{|l|}{KY-75/SRT} \\
\hline SYMBOL DESIG. & NAME OF PART AND DESCRIPTION & FUNCTION & & & & & & & \[
\begin{aligned}
& \times \\
& \hline
\end{aligned}
\] & 2 & ¢ & \(\frac{2}{2}\) \\
\hline \multicolumn{13}{|c|}{MECHANICAL PARTS (continued)} \\
\hline 0-135 & Clamp, electrical: aluminum w/caustic etch and water dip lacquer finish; two \#6-32 spadebolt fasteners; \(19 / 16^{\prime \prime} \lg \times 49{ }^{4 \prime}{ }^{\prime \prime}\) wd \(\times 1516^{\prime \prime} \mathrm{h}\); mtd by two \(\# 6-32\) spadebolts w/thrd \(1 / 2^{\prime \prime} \min \lg\) on \(19 / 6^{\prime \prime}\) \(\mathrm{mtg} / \mathrm{c} ;\) JAN-C-25 spec & C-118 mtg & CPO6SA2 & \[
\begin{aligned}
& \text { N16-M-60958 } \\
& -3571
\end{aligned}
\] & 14 & L896-5 & O-135 & 1 & & & & \\
\hline O-136 & Plate, bearing: outer bearing; cadmium plated brass; rectangular shape; w/top end rounded; \(11 / 2^{\prime \prime}\) \(\mathrm{h} \times 5 / 8^{\prime \prime}\) wd \(\times 1564^{\prime \prime}\) thk; two \(5 / 3_{2}^{\prime \prime}\) \(\times 7 / 32^{\prime \prime} \mathrm{mtg}\) slots on \(1 / 2^{\prime \prime} \mathrm{mtg} / \mathrm{c}\); supports a \(1 / 2^{\prime \prime}\) dia brass bearing w/0.251" dia shaft hole & Output Level control shaft bearing & & \(\ddagger\) & \[
\stackrel{1 ;}{\mathrm{SA}: 8755}
\] & SA:8755 & O-136 & 1 & & & & \\
\hline 0-137 & Retainer, crystal holder: brass; dull nickel finish; designed to retain crystal socket and clamp; \(1.155^{\prime \prime} \lg \times 1 / 2^{\prime \prime}\) wd \(\times 5 / 16^{\prime \prime} \mathrm{h}\); mtd by one \(0.125^{\prime \prime}\) dia hole; used as crystal socket base plate; part of E-119 & XY-101 retainer & & \[
\begin{aligned}
& \text { N16-R-501081 } \\
& -117 \ddagger
\end{aligned}
\] & 1316 & K689-1 & \[
\begin{aligned}
& \mathrm{O}-137, \mathrm{o}-138, \\
& \mathrm{O}-139
\end{aligned}
\] & 3 & & & & \\
\hline 0-138 & Same as O-137; part of E-119 & XY-102 retainer & & & & & & & & & & \\
\hline O-139 & Same as O-137; part of E-119 & XY-103 retainer & & & & & & & & & & \\
\hline 0-140 & Clamp, electrical: brass dull nickel finish; pressure type fastener ; \(1 \frac{1}{4}{ }^{\prime \prime}\) \(\lg \times 0.937^{\prime \prime} \mathrm{h} \times 0.050^{\prime \prime}\) thk; mts in \(0.052^{\prime \prime}\) dia hole \(1.093^{\prime \prime}\) apart; designed to hold crystal \(0.937^{\prime \prime}\) h max; part of E-119 & Y-101 clamp & & \[
\begin{aligned}
& \text { N17-C-805751 } \\
& -551 \ddagger
\end{aligned}
\] & \[
\begin{aligned}
& 1 ; \\
& \mathrm{K} 690-1
\end{aligned}
\] & K690-1 & \[
\begin{aligned}
& \mathrm{O}-140, \mathrm{O}-141, \\
& \mathrm{O}-142
\end{aligned}
\] & 3 & & & & \\
\hline O-141 & Same as O-140; part of E-119 & Y-102 clamp & & & & & & & & & & \\
\hline 0-142 & Same as O-140; part of E-119 & Y-103 clamp & & & & & & & & & & \\
\hline O-143 & \begin{tabular}{l}
Nut, plain knurled: brass w/dull nickel finish; knurled thumb drive w/30 TPI straight knurl; \#10-32 \\
NFT class 2 fit; \(1^{\prime \prime} \mathrm{OD} \times 0.781^{\prime \prime}\) \\
h; part of E-101 or E-122
\end{tabular} & Blister mtg nuts & & \(\ddagger\) & 665 & P648-1 & O-143 & 4 & & & & \\
\hline O-144 & Screw, captive: knurled thumb drive \(\mathrm{w} /\) screwdriver slot on head; & Front panel mtg screws & & & 665 & L610-1 & O-144 & 12 & 1 & 2 & 1 & 2 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|}
\hline \[
\] & \[
\left\lvert\, \begin{gathered}
\mathrm{O}-167 \\
\text { (cont) }
\end{gathered}\right.
\] & \[
\left\lvert\, \begin{aligned}
& \text { mium plated; center hole } 5^{5 / 16^{\prime \prime}} \text { dia } \\
& \times 1 / 2^{\prime \prime} \text { OD } \times 0.005^{\prime \prime} \quad \mathrm{wd}^{\prime \prime} \times 3 / 32^{\prime \prime} \\
& 0 / \mathrm{h}
\end{aligned}\right.
\] & \\
\hline z & O-168 & Latch: door latch; cadmium plated brass; circular; \(34^{\prime \prime}\) OD \(\times 1 /\) / \(^{\prime \prime}\) wd; single mtg hole \(1 / 4^{\prime \prime}\) dia \(\times 3^{3 / 61}\) wd across flats & Control access door latch \\
\hline & O-169 & Nut, round: round cap nut; stainless steel; \#10-32 inside thread; \(0.281^{\prime \prime} \lg \times 9 / 6^{\prime \prime}\) OD & Chassis release latch pivot \\
\hline & O-170 & Not used & \\
\hline & O-171 & Not used & \\
\hline & O-172 & Not used & \\
\hline & O-173 & Hinge: butt type; cadmium plated wrought steel; \(21 / 2^{\prime \prime} \lg \times 1^{11 / 66^{\prime \prime}}\) wd; non-removable type pin; four \(5 / 32^{\prime \prime}\) dia mtg holes on \(13 / 4^{\prime \prime} \times 13 / 6^{\prime \prime}\) \(\mathrm{mtg} / \mathrm{c}\) & Control access door hinge \\
\hline & O-174 & Spring: flat type; for door hinge; \(0.032^{\prime \prime}\) cadmium plated phosphor bronze; \(23 / 8^{\prime \prime} \lg \times 1 \frac{1 / 8 \prime}{\prime \prime}\) wd \(\times 0.32^{\prime \prime}\) thk; two \(5 / 22^{\prime \prime}\) dia mtg holes on \(134^{\prime \prime} \mathrm{mtg} / \mathrm{c}\); T-shaped & Control access door spring \\
\hline & 0-175 & Board: for writing surface; fixed type; black masonite; plain; 187/16" \(\lg \times 153 / 16^{\prime \prime}\) wd \(\times 1 / 8^{\prime \prime}\) thk; rectangular shape & Cabinct top \\
\hline & 0-176* & Mount, vibration: cadmium plated steel; holds cabinet by center hole \(1^{\prime \prime} \lg \times 0.391^{\prime \prime}\) dia; four \(0.257^{\prime \prime}\) dia mtg holes on \(2 \frac{1}{2^{\prime \prime}} \times 2 \frac{1}{2^{\prime \prime}}\) \(\mathrm{mtg} / \mathrm{c} ; 45 \mathrm{lb}\). load, \(3^{\prime \prime} \mathrm{sq} \times 11^{\prime \prime} 2^{\prime \prime}\) \(h\); for mtg Frequency Shift Keyer cabinet; part of A-104 & Cabinet shock mts \\
\hline & 0-177* & Caster: olive drab painted steel; \(41 / 8^{\prime \prime} \lg \times 31 / 8^{\prime \prime}\) wd \(\times 315 / 6^{\prime \prime} h\); four \(5 / 16^{\prime \prime}\) dia mtg holes on \(33 / 8^{\prime \prime} \times 23 / 8^{\prime \prime}\) \(\mathrm{mtg} / \mathrm{c}\); part of A-104 & Cabinet casters \\
\hline & O-178 & Mounting: cadmium plated steel; holds item by means of \#8-32 screw; single \(0.170^{\prime \prime}\) dia mtg hole; shock mts over rubber grommet; \(9 / 16^{\prime \prime}\) dia \(\times 1 / 8^{\prime \prime} \max h\); for mtg bracket & L-121 shock mts \\
\hline \(\infty\) & 0-179 & Spring: flat type; for grounding contact; \(0.020^{\prime \prime}\) phosphor bronze; \(123 / 32^{\prime \prime} \quad \lg \times 1 / 8^{\prime \prime} \quad\) wd \(\times 5 / 16^{\prime \prime} \quad \mathrm{h}\); straight flat ends & Freq Range control shaft grounding spring \\
\hline
\end{tabular}

* Supplied on KY-58/GRT only.
\(\ddagger\) Not furnished as a maintenance part. If failure occurs, do not request replacement unless the item cannot be repaired or fabricated.
TABLE 8-4. COMBINED PARTS AND REPAIR PARTS LIST FOR KEYERS KY-58/GRT AND KY-75/SRT
TVNIפIYO
mechanical parts (continued)

\begin{tabular}{|c|c|c|}
\hline O-188 &  & Interconnecting cable feedthru \\
\hline O-189 &  & Interconnecting cable feedthru \\
\hline O-190 &  & \begin{tabular}{l}
\[
\mathrm{J}-105, \mathrm{~J}-106 \mathrm{mtg}
\] \\
hole bushings
\end{tabular} \\
\hline O-191 & Not used & \\
\hline O-192 & Latch, fastener: door latch; cad mium plated brass; circular beveled washer attached to round shaft w/flatted end; \({ }^{57} / 6_{4}{ }^{\prime \prime} \mathrm{lg}\) \(\times 15 / 6^{\prime \prime} \mathrm{OD}\) & Oven door latch \\
\hline 0-193i & \begin{tabular}{l}
Mounting: metal parts-steel, rul) ber parts-natural rubber; cad
mium plated finish; holds cabinet by means of bolt thru a center \\
 center line spaced \(6^{\prime \prime}\) e to c; 4 shock mts attached to base of cabinet; for mtg Frequency Shift
Keyer calinet; part of A-105
\end{tabular} & Cabinet shock mis \\
\hline O-194 & Ring, retainer: cadmium plated steel; for \(1 / 4^{\prime \prime}\) dia shaft; \(0.260^{\prime \prime}\) ID open, \(0.187^{\prime \prime}\) ID closed, \(0.031^{\prime \prime}\) & Oven door latch retaining ring \\
\hline O-195 & Hinge: butt type; cadmium plated steel; \(314^{\prime \prime} \lg \times 1 \frac{5}{52} 2^{\prime \prime}\) wd \(\times 9_{32}{ }^{\prime \prime}\) d; nonremovable type pin; two \(0.156^{\prime \prime}\) dia mtg holes and two \#6-32 tapped mtg holes on \(2.250^{\prime \prime} \mathrm{mtg} / \mathrm{c}\) & Oven door hinge \\
\hline O-196 & \begin{tabular}{l}
Nut, plain knurled: dull nickel plated; brass finish; \(5 / /^{\prime \prime}\), round \\

\end{tabular} & Power sw and Plate sw panel mtg nuts \\
\hline O-197 \(\dagger\) & Washer, flat: rd; cadmium plated steel; \({ }^{21 / 32^{\prime \prime}}\) diam center hole; outside \(21 /^{\prime \prime}\) diam \(\times 21^{\prime \prime} 4^{\prime \prime} \lg \times 14^{\prime \prime}\) thk; for \(58^{\prime \prime}-11\) bolt size; part of A-105 & 0-193 shock pads \\
\hline
\end{tabular}

a N
8
\(\infty\)
\(\square\)

\footnotetext{
\(\dagger\) Supplied on KY-75/SRT only
}
\(\ddagger\) Not furnished as a maintenance part. If failure occurs, do not request replacement unless the item cannot be repaired or fabricated.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{PLUGS} \\
\hline P-101 & Connector, plug: 20 round male contacts; straight type; \(33 / 8^{\prime \prime} \lg\) \(\times 15 / 8^{\prime \prime}\) wd \(\times 1116^{\prime \prime} \mathrm{h} ; 8 \mathrm{amp}\), 250 v ; aluminum alloy rectangular shaped body w/tin plate and clear lacquer finish; melamine " G " insert; four \(0.144^{\prime \prime}\) diam mtg holes, \(5 / 32^{\prime \prime} \lg\) on \(1^{\prime \prime} \times 2.875^{\prime \prime} \mathrm{mtg} / \mathrm{c}\); connectors and associated hardware silver plated; \(1 /\) rif \(^{\prime \prime}\) raised characters; same as P-102 less coaxial connectors & multiconnector plug for MD-165/URT & & (For replacement use P-102 by removing coaxial connectors) & 339 & P644-2 & P-101 & 1 & & & & \\
\hline P-102 & Connector, plug: 20 round straight type male contacts and 3 rt angle type coaxial female contacts; \(33 / 8^{\prime \prime}\) \(\lg \times 15 / 8^{\prime \prime}\) wd \(\times 1^{11 / 16^{\prime \prime} \mathrm{h} ; 8 \mathrm{amps},}\) 250 v ; aluminum alloy rectangular shaped body w/tin plate and clear lacquer finish; melamine " G " insert; four \(0.144^{\prime \prime}\) diam mtg holes, \(5 / 32^{\prime \prime} \lg\), on \(1^{\prime \prime} \times 2.875^{\prime \prime} \mathrm{mtg} / \mathrm{c}\); coax and solid connectors, and associated hardware silver plated; \(1 / 16^{\prime \prime}\) raised characters; adapter bushing furnished to accommodate RG-59/U cable in each coaxial fitting & multiconnector plug for AM-165/URT & & & 339 & P644-3 & P-102 & 1 & 1 & 1 & 1 & 1 \\
\hline \[
\begin{aligned}
& \text { P-103 } \dagger \\
& \text { thru } \\
& \text { P-108 }
\end{aligned}
\] & Connector, plug: 1 rd male contact; straight type; \(13 / 6^{\prime \prime}\) dia \(\times 19 / 6^{\prime \prime} \lg\) approx; cylindrical brass body silver plated; mica-filled bakelite insert; cable opening for \(0.410^{\prime \prime}\) dia cable; multiple piece construction, tapered removable back shell which provides extra cable grip in single mtg hole; mts by \(3 / 8^{\prime \prime}-24\) threaded body; P-103 \& P-104 part of W-108, P-105 \& P-106 part of W-107, P-107 \& P-108 part of W-106 & \[
\begin{aligned}
& \mathrm{J}-109, \mathrm{~J}-110, \\
& \mathrm{~J}-111 \text { connectors }
\end{aligned}
\] & \[
\begin{aligned}
& \text { PL-259A } \\
& (-49195)
\end{aligned}
\] & \[
\begin{array}{|l}
\text { N17-C-71413 } \\
-4752
\end{array}
\] & 262 & F505-1 & \[
\begin{aligned}
& \text { P-103 thru } \\
& \text { P-108 }
\end{aligned}
\] & 6 & & & & \\
\hline P-109 \(\dagger\) & Connector, plug: 3 rd female contacts; polarized; straight type; 11/16" \(\lg \times 11 / 6^{\prime \prime}\) dia; aluminum cylindrical body, sand blasted w/clear lacquer finish; locking type w/split shell; molded phenolic insert; \(1 / 2^{\prime \prime}\) dia max cable opening; multiple piece construction w/single mtg hole, \(1 / 2^{\prime \prime}\) dia, for cable; body mtd by \(34^{\prime \prime}-20\) conduit thd, \(3 / 8^{\prime \prime} \lg ; 11 / 6^{\prime \prime}\) OD coupling nut w/7/8"-20 thd; part of W-102 & Audio Freq meter connector & AN 3106B-14S-1S & \[
\begin{array}{|l|l|}
\hline \text { N17-C-70328 } \\
-1332
\end{array}
\] & 339 & Q676-1 & \[
\begin{aligned}
& \mathrm{P}_{-1} 109, \mathrm{P}-111 \\
& P_{-/ / 5}
\end{aligned}
\] & 31 & & & & \\
\hline P-110 \(\dagger\) & Connector, plug: 3 rd male contacts; polarized; straight type; upplied on KY-75/SRT only & Audio Freq meter connector & AN 3106B-14S-1P & \[
\begin{aligned}
& \text { N17-C-70588 } \\
& -1327
\end{aligned}
\] & 339 & Q677-1 & \[
\begin{gathered}
P-110, P-112 \\
P-116
\end{gathered}
\] & 3 ? & & & & \\
\hline
\end{tabular}
TVNIפIZO
TABLE 8-4. COMBINED PARTS AND REPAIR PARTS LIST FOR KEYERS KY-58/GRT AND KY-75/SRT


TABLE 8-4. COMBINED PARTS AND REPAIR PARTS LIST FOR KEYERS KY-58/GRT AND KY-75/SRT


\footnotetext{
\(\begin{array}{lc}8 \text { Section } & \text { NAVSHIPS 91543 } \\ \text { R-107-R-114 } & \text { KY-58/GRT and KY-75/SRT }\end{array}\)

PARTS LIST
}

TABLE 8-4. COMBINED PARTS AND REPAIR PARTS LIST FOR KEYERS KY-58/GRT AND KY-75/SRT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PARTS} & \multicolumn{4}{|c|}{EQUIP, REPAIR PARTS} \\
\hline & & \multirow[b]{2}{*}{FUNCTION} & \multirow[b]{2}{*}{JAN AND (NAVY TYPE) NO.} & \multirow[t]{2}{*}{STANDARD NAVY AND (SIGNAL CORPS) STOCK NO.} & \multirow[b]{2}{*}{\begin{tabular}{l}
MFGR. \\
AND MFGR'S. DESIGNATION
\end{tabular}} & \multirow[t]{2}{*}{CON TRACTOR DRAWING \& PART NO.} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { ALL } \\
\text { SYMBOL } \\
\text { DESIG. } \\
\text { INVOLVED }
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { TOT. } \\
& \text { NO. } \\
& \text { PER } \\
& \text { EQ. }
\end{aligned}
\]} & \multicolumn{2}{|l|}{KY-58/GRT} & \multicolumn{2}{|l|}{KY-75/SRT} \\
\hline SYMBOL DESIG. & NAME OF PART AND DESCRIPTION & & & & & & & & \[
\begin{aligned}
& \times \\
& \stackrel{\circ}{\infty}
\end{aligned}
\] & \[
\begin{aligned}
& \dot{2} \\
& \stackrel{\rightharpoonup}{0}
\end{aligned}
\] & \[
\begin{aligned}
& \times \times \\
& \stackrel{\circ}{\circ}
\end{aligned}
\] & 2
4
0
0 \\
\hline \multicolumn{13}{|c|}{RESISTORS (conlinued)} \\
\hline R-121 & Resistor, fixed: composition; body style no 14, MBCA ref dwg group 2; total resistance 1500 ohms \(\pm 10 \% ; 1\) watt power dissipation; F characteristic; \(0.750^{\prime \prime} \lg X\)
\(0.280^{\prime \prime}\) diam max;insulated resist\(0.280^{\prime \prime}\) diaminax; insulated; resist-
ant to humidity; 2 axial wire lead term; JAN-R-11 spec & V-103 cathode & \[
\underset{(-63288-152)}{\mathrm{RCC} 3 \mathrm{BF} 152 \mathrm{~K}}
\] & \[
\begin{aligned}
& \text { N16-R-49968 } \\
& -0231
\end{aligned}
\] & 63 & 11370-21 & R-121, R-123 & 2 & & & & \\
\hline R-122 & Resistor, variable: wire wnd; 1 section; 10,000 ohms \(\pm 10 \% ; 2\) watt nominal power rating; std A taper MBCA ref dwg group 3; 3 solder lug term; enclosed, metal case; \(1.28^{\prime \prime}\) diam \(\max \times 0.62^{\prime \prime}\) d max; slotted metal shaft w/0.047 \({ }^{\prime \prime}\) wd \(X\) \(0.063^{\prime \prime} \mathrm{d}\) slot in end; \(14^{\prime \prime}\) diam \(X\) \(1 / 2^{\prime \prime} \lg\); high torque; insulated contact arm; no "off" position; \(3 / 8\) "-32 thrd mtg bushing, \(3 / 8^{\prime \prime}\) " lg ; non-turn device located on \({ }^{17 / 32}\) ' radius at 9
o'clock; JAN-R-19 spec & Linearity adjustment & RA20A2SA103AK & \[
\begin{aligned}
& \text { N16-RX-91291 } \\
& -4930
\end{aligned}
\] & 11 & L882-4 & R-122 & 1 & & & & \\
\hline R-123 & Same as R-121 & Part of V-103 eathode bias network & & & & & & & & & & \\
\hline R-124 & Resistor, fixed: composition; body style no 14, MBCA ref dwg group 2; total resistance 22,000 ohms \(\pm 10 \% ; 1\) watt power dissipation;
\(\mathrm{F}^{-}\)characteristic; \(0.750^{\prime \prime}\)
\(\lg \times\) \(0.280^{\prime \prime}\) diam max; insulated resistant to humidity; 2 axial wire lead term; JAN-R-11 spec & V-106 grid filter & \[
\underset{(-63288-223)}{\mathrm{RC} 30 \mathrm{BF} 223 \mathrm{~K}}
\] & \[
\begin{aligned}
& \text { N 16-R-50373 } \\
& -0231
\end{aligned}
\] & 63 & H370-7 & \[
\begin{aligned}
& \text { R-124, R-166, } \\
& \mathrm{R}-179, \mathrm{R}-180
\end{aligned}
\] & 4. & & & & \\
\hline 1-125 & Same as R-118 & V-103 cathode & & & & & & & & & & \\
\hline R-126 & Resistor, fixed: wire wnd; body style no 7, MBCA ref dwg group 2; inductive wnd; total resistance 4415 ohms \(\pm 1 \%\); \(1 / 4\) watt power dissipation, \(105^{\circ} \mathrm{C}\) max continuous oper temp; \(15 / 32^{\prime \prime} \lg \times 3 / 4^{\prime \prime}\) OD max, excl term; lacquer coating; resistant to high humidity; 2 radial tab term, \(\frac{3}{s^{\prime \prime}} \lg \times 0.016^{\prime \prime}\) min thk; chassis mtg ; requires hole for \#6 & Part of \(\times 4\) voltage divider network & RB10B44150F & & 1368 & P753-18 & R-126, l2-144 & 2 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
screw; temp co
JAN-R-93 sp
Resistor, fixed: wire wnd; body
    Resistor, fixed: wire wnd; body
        style no 7, MBCA ref dwg group 2;
        4220 inductive wnd; total resistance
        4220 ohms \(\pm 1 \% ; 1 / 4\) watt power
        dissipation; \(105^{\circ} \mathrm{C}\) max continuous
        oper temp; \({ }^{15} 32^{\prime \prime} \lg \times 3_{4}^{\prime \prime}\) OD max,
        excl term; lacquer coating; resist-
        ant to high humidity; 2 radial tab
        term, \(3 / 8^{\prime \prime} \lg \times 0.016^{\prime \prime} \mathrm{min}\) thk;
        chassis mtg , requires holes for \(\# 6\)
        screw; temp coef \(\pm 0.002 \% /{ }^{\circ} \mathrm{C}\);
        JAN-R-93 spec
Resistor, fixed: wire wnd; body style no 7, MBCA ref dwg group 2; inductive wnd; \(3830 \mathrm{ohms} \pm 1 \%\); /4 watt power dissipation; 105 , \(\times 3 / 4^{\prime \prime}\) OD max. lacquer \({ }^{1532 \mathrm{lg}}\). resistant to high humidity, 2 radial tab term 3 " \(1 \mathrm{lg} \times 0.016^{\prime \prime} \mathrm{min}\) thk. chasis mg lg \(\times 0.01\) hol for chassis mtg, requires hole for \#0
screw; temp coef \(\pm 0.002 \% /{ }^{\circ} \mathrm{C}\); screw; temp ce
JAN-R-93 spec
Resistor, fixed: wire wnd; body Resistor, fixed: wire wnd; body
style no 7, MBCA ref dwg group 2; inductive wnd; 2660 ohms \(\pm 1 \%\); inductive wnd, \(1 / 4\) watt power dissipation; \(105^{\circ} \mathrm{C}\), max continuous oper temp; \({ }^{15} 32^{\prime \prime} \lg\) \(\times 3 /{ }^{\prime \prime}\) OD max; lacquer coating; resistant to high humidity; 2 radial tab term, \(3 / 8^{\prime \prime} \lg \times 0.016^{\prime \prime}\) min thk; chassis mtg , requires hole for \(\# 6\) screw; temp coef \(\pm 0.002 \% /{ }^{\circ} \mathrm{C}\); JAN-R-93 spec
Resistor, fixed: wire wnd; body style no 7, MBCA ref dwg group 2; inductive wnd; \(4610 \mathrm{ohms} \pm 1 \%\); \(1 / 4\) watt power dissipation; \(105^{\circ} \mathrm{C}\) max continuous oper temp; \(155^{\prime \prime}{ }^{\prime \prime} \mathrm{lg}\) \(\times 3 / 4^{\prime \prime}\) OD max; lacquer coating; resistant to high humidity ; 2 radial tab term, \(3 / 8^{\prime \prime} \lg \times 0.016^{\prime \prime}\) min thk; chassis mtg, requires hole for \#6 chassis mtg, requires hole for \({ }^{* \prime}\).
serew; temp coef \(\pm 0.002 \% /{ }^{\circ} \mathrm{C}\); JAN-R-93 spec
Resistor, fixed: wire wnd; body style no 7, MBCA ref dwg group 2; inductive wad; 4708 ohms \(\pm 1 \%\); \(1 / 4\) watt power dissipation; \(105^{\circ} \mathrm{C}\) max continuous oper temp; \(15 \times 32^{\prime \prime} \lg\) \(X 3 / 4^{\prime \prime}\) OD max; lacquer coating; resistant to high humidity; 2 radial tab term, \(3 / 8^{\prime \prime} \lg \times 0.016^{\prime \prime} \mathrm{min}\) thk; chassis mtg, requires hole for thk; chassis mtg, requires hole for
\(\# 6\) serew; temp coef \(\pm 0.002 \% /{ }^{\circ} \mathrm{C}\); JAN-R-93 spec
art of \(\times 3\) volt age
work

RB10B42200F

RB10B38300F
Part of \(\times 2\) voltage divider net work
art of \(\times 8\) volt- RB10B47080F age divider net-
-

\section*{work}

Part of \(\times 1\) volt age divider network

RB10B26600F

RB10B46100F
RB10B42200F
TABLE 8-4. COMBINED PARTS AND REPAIR PARTS LIST FOR KEYERS KY-58/GRT AND KY-75/SRT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PARTS} & \multicolumn{4}{|c|}{EQUIP. REPAIR PARTS} \\
\hline & \multirow[b]{2}{*}{NAME OF PART AND DESCRIPTION} & \multirow[b]{2}{*}{FUNCTION} & \multirow[b]{2}{*}{JAN AND (NAVY TYPE) NO.} & \multirow[t]{2}{*}{STANDARD NAVY AND (SIGNAL CORPS) STOCK NO.} & \multirow[b]{2}{*}{\begin{tabular}{l}
MFGR. \\
AND MFGR'S. DESIG NATION
\end{tabular}} & \multirow[t]{2}{*}{CON-
TRACTOR DRAW. ING \& PART NO.} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { IOt. } \\
& \text { No. } \\
& \text { PER } \\
& \text { EQ. }
\end{aligned}
\]} & \multicolumn{2}{|l|}{KY-58/GRT} & \multicolumn{2}{|l|}{KY-75/SRT} \\
\hline \[
\begin{gathered}
\text { SYMBOL } \\
\text { DESIG. }
\end{gathered}
\] & & & & & & & & & \[
\stackrel{\times}{\circ}
\] & z
\(\substack{\text { a } \\ 0 \\ 0 \\ 0}\) & × & 2
4
0
0 \\
\hline
\end{tabular}
\(R-132\)

Resistor, fixed: wire wnd; body style no 7, MBCA ref dwg group 2; inductive wad; 4805 ohms \(\pm 1 \%\); \(1 / 4\) watt power dissipation; \(105^{\circ} \mathrm{C}\) max continuous oper temp; \(15 / 32^{\prime \prime} \lg\) \(X 3 / 4^{\prime \prime}\) OD max; lacquer coating; resistant to high humidity; 2 radial tab term, \(3 / 8^{\prime \prime} \lg \times 0.016^{\prime \prime}\) min thk; chassis mtg, requires hole for \(\# 6\) screw; temp coef \(\pm 0.002 \% /{ }^{\circ} \mathrm{C}\); JAN-R-93 spec
Resistor, fixed: wire wnd; body style no 7, MBCA ref dwg group 2; inductive wnd; 764 ohms \(\pm 1 \%\); \(1 / 4\) watt power dissipation; \(105^{\circ} \mathrm{C}\) max continuous oper temp; \(15 / 32\) \(\lg \times 3 / 4\) OD max; lacquer coating; resistant to high humidity \(; 2\) radial tab term, \(38^{\prime \prime} \lg \times 0.016^{\prime \prime} \mathrm{min}\) thk; chassis mtg , requires hole for \(\# 6\) screw; temp coef \(\pm 0.002 \% /{ }^{\circ} \mathrm{C}\); JAN-R-93 spee
Resistor, fixed: wire wnd; body style no 7 , MBCA ref dwg group 2; inductive wnd; 1134 ohms \(\pm 1 \%\); \(1 / 4\) watt power dissipation; \(105^{\circ} \mathrm{C}\) max continuous oper temp; \(15 / 32^{\prime \prime} \lg\) \(\times 3 / 4^{\prime \prime} O D\) max; lacquer coating; resistant to high humidity; 2 radial tab term, 88 lg \(\times 0.016\) min thk; chassis mitg, requires hole for \#6 screw; temp coé
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Part of X9 voltage divider net- & RB10B47400F & \[
\begin{aligned}
& \text { N16-R-79193 } \\
& -6399
\end{aligned}
\] & 1368 & P753-8 & R-132, R-150 & 2 & 1 & 1 & 1 & 1 \\
\hline Part of X12 volt- & RB10B48050F & & 1368 & P753-10 & R-133, R-151 & 2 & 1 & 1 & 1. & 1 \\
\hline Part of X4 volt- & RB10B07640F & & 1368 & P753-19 & R-134, R-152 & 2 & 1 & 1 & 1 & 1 \\
\hline Part of X3 volt- & RB10B11340F & & 1368 & P753-17 & R-135, R-153 & 2 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

Resistor, fixed: wire wnd; body style no 7, MBCA ref dwg group 2; inductive wnd; \(2200 \mathrm{ohms} \pm 1 \%\); \(1 / 4\) watt power dissipation; \(105^{\circ} \mathrm{C}\) max continuous oper temp; \(15 / 32^{\prime \prime} \lg\) \(\times 3 / 4^{\prime \prime} \mathrm{OD} \max\); lacquer coating; resistant to high humidity; 2 radial tab term, \(3 / 8^{\prime \prime} \mathrm{lg} \times 0.016^{\prime \prime}\) min thk; chassis mtg , requires hole for \(\# 6\) screw: temp coef \(\pm 0.002 \% /{ }^{\circ} \mathrm{C}\). JAN-R-93 spec

Resistor, fixed: wire wad; body style no 7, MBCA ref dwg group 2; inductive wnd; \(36,560 \mathrm{ohms} \pm 1 \%\); \(1 / 4\) watt power dissipation; \(105^{\circ} \mathrm{C}\) max continuous oper temp; \(15 / 32^{\prime \prime} \mathrm{lg}\) \(\times 3 / 4^{\prime \prime}\) OD max; lacquer coating; resistant to high humidity; 2 radial tab term, \(38^{\prime \prime} \lg \times 0.016^{\prime \prime} \mathrm{min}\) thk; chassis mtg requires hole for \(\# 6\) screw; temp coef \(\pm 0.002 \% /{ }^{\circ} \mathrm{C}\); JAN-R-93 spec

Resistor, fixed: wire wnd; body style no 7, MBCA ref dwg group 2; inductive wnd; 462 ohms \(\pm 1 \%\); \(1 / 4\) watt power dissipation; \(105^{\circ} \mathrm{C}\) max continuous oper temp; 15/32 \({ }^{1 \prime} \lg\) \(\times 3 / 11\) OD max: lacquer 32 lg . resistont to high humidity:2 radia resistant \(3 / \prime \lg \times 0.016^{\prime \prime}\) minal tab term, 8 lg \(\times 0.016\) min thk; chassis \(m\) tg requires hole for \#6 screw; temp coef \(\pm 0.002 \% /{ }^{\circ} \mathrm{C}\); JAN-R-93 spec
R-139 Resistor, fixed: wire wnd; body style no 7, MBCA ref dwg group 2; inductive wnd; 331 ohms \(\pm 1 \% ; 1 / 4\) watt power dissipation; \(105^{\circ} \mathrm{C}\) max continuous oper temp; \(15 / 32^{\prime \prime} \lg X\) \(34^{\prime \prime}\) OD max; lacquer coating; resistant to high humidity; 2 radial tab ter"n, \(3 / 8^{\prime \prime} \lg \times 0.016^{\prime \prime}\) min thk; chassis mtg requires hole for \#6 screw; temp coef \(\pm 0.002 \% /{ }^{\circ} \mathrm{C}\); JAN-R-93 spec

R-140 Resistor, fixed: wire wnd; body style no 7, MBCA ref dwg group 2; inductive wnd; 290 ohms \(\pm 10 ; 1 / 4\) watt power dissipation; \(105^{\circ} \mathrm{C}\) max continuous oper temp; \(15 /{ }^{\prime \prime} \lg X\) 3/" OD max: lacquer coating; resistant to high humidity; 2 radial tab term, \(3 / 8^{\prime \prime} \mathrm{lg} \times 0.016^{\prime \prime} \mathrm{min}\) thk; chassis mtg requires hole for \(\# 6\) chassis mtg requires hole for \(\# 6\)
serew; temp coef \(\pm 0.002 \% /{ }^{\circ} \mathrm{C}\); JAN-R-93 spec
Resistor, fixed: wire wnd; body
\begin{tabular}{l|l} 
Part of X 2 \\
volt- & Rtiob22000F
\end{tabular} work


ivider net-

age work
work

RB10B36561F style no 7, MBCA ref dwg group 2; inductive wnd; \(211 \mathrm{ohms}+1 \% ; 1\);

TABLE 8-4. COMBINED PARTS AND REPAIR PARTS LIST FOR KEYERS KY-58/GRT AND KY-75/SRT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PARTS} & \multicolumn{4}{|c|}{EQUIP. REPAIR PARTS} \\
\hline & \multirow[b]{2}{*}{NAME OF PART AND DESCRIPTION} & \multirow[b]{2}{*}{FUNCTION} & \multirow[b]{2}{*}{JAN AND (NAVY TYPE) NO.} & \multirow[t]{2}{*}{STANDARD NAVY AND (SIGNAL CORPS) STOCK NO.} & \multirow[b]{2}{*}{MFGR. AND MFGR'S. DESIGNATION} & \multirow[t]{2}{*}{\begin{tabular}{l}
tractor \\
DRAW- \\
ING \& \\
PART \\
NO.
\end{tabular}} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\begin{array}{|l|}
\hline \text { TOT. } \\
\text { NO. } \\
\text { PER } \\
\text { EQ. }
\end{array}
\]} & \multicolumn{2}{|l|}{KY-58/GRT} & \multicolumn{2}{|l|}{KY-75/SRT} \\
\hline sYmbol DESIG. & & & & & & & & & \[
\begin{aligned}
& \times \\
& \underset{\infty}{\infty}
\end{aligned}
\] & 2
3
0
0 & ¢ & 2
3
0
0 \\
\hline \multicolumn{13}{|c|}{RESISTORS (continued)} \\
\hline R-141 (cont) & watt power dissipation; \(105^{\circ} \mathrm{C}\) max continuous oper temp; \({ }^{15} 52^{\prime \prime} \lg X\) \(34^{\prime \prime}\). OD max; lacquer coating; resistant to high humidity; \({ }^{2}\) radial tab term, \(3 / 8^{\prime \prime} \lg \times 0.016^{\prime \prime}\) min thk; chassis mtg requires hole for \#6 screw; temp coef \(\pm 0.002 \% /{ }^{\circ} \mathrm{C}\); JAN-R- 93 spec & & & & & & & & & & & \\
\hline R-142 & Same as R-101 & V-106 grid filter & & & & & & & & & & \\
\hline R-143 & Resistor, variable: wire wnd element; 2 sections, 2500 ohms \(\pm 1 \%\); 6 watt nominal power dissipation; std A taper MBCA ref dwg group 3; 3 solder lug term each section; enclosed bakelite body, \(23 / 8^{\prime \prime} \lg \times\) \(3^{\prime \prime}\) diam; round bakelite shaft \(3 / 8^{\prime \prime}\) diam \(\times 3 / 4^{\prime \prime} \lg\), w/normal torque; insulated contact \(w /\) no "off" position; three \#6-32 tapped mtg holes, spaced \(120^{\circ}\) apart on \(1.750^{\prime \prime}\) diam bolt circle; linearity of taper is \(\pm 1 \%\) of total resistance & Deviation control & & \[
\begin{aligned}
& \text { N16-R-924.95 } \\
& -9360
\end{aligned}
\] & 1369 & P624-1 & R-143 & 1 & & & & \\
\hline R-143A & Part of R-143 & Part of deviation control network & & & & & & & & & & \\
\hline R-143B & Part of R-143 & Part of deviation control network & & & & & & & & & & \\
\hline R-144 & Same as R-126 & Part of X4 voltage divider network & & & & & & & & & & \\
\hline R-145 & Same as R-127 & Part of X3 voltage divider network & & & & & & & & & & \\
\hline R-146 & Same as R-128 & Part of X2 voltage divider network & & & & & & & & & & \\
\hline R-147 & Same as R-129 & Part of Xl voltage divider network & & & & & & & & & & \\
\hline
\end{tabular}
Same as R-130
Same as R-131
Same as R-132
Same as R-133
Same as R-134
Same as R-135
Same as R-136
Same as R-140
Same as R-138
Same as R-139

Not used
R-161

Resistor, variable: wire wnd ele
Resistor, variable. wire wnd ele
3 watts nominal power rating; std
A taper MBCA ref dwg group \(3 ; 3\) solder lug term; enclosed body as per JAN-R-19; \(1.28^{\prime \prime} \lg \times 1.64^{\prime \prime}\) dia max incl sw term; \(114^{\prime \prime} \lg X\) \(0.250^{\prime \prime}\) dia metal shaft, flatted to \(0.216^{\prime \prime}\); high torque; insulated \(3 /{ }^{\prime \prime}-32\) thar bushing posit \(3 / 8^{\prime \prime}-32\) thrd bushing, \(0.375^{\prime \prime} \mathrm{lg}\),
w/non-turn device located on \(17 / 32^{\prime \prime}\)

Part of X6 voltage divider network
Part of X8 voltage divider network

Part of X9 volt-
age divider work

Part of X12 voltage divider network

Part of X4 voltage divider network

Part of X3 voltage divider network

Part of X2 voltage divider network

Part of X1 voltage divider network

Part of X6 voltage divider network
\(\begin{array}{ll}\text { Part of } \mathrm{X} 8 & \text { volt- } \\ \text { age divider } & \text { net- }\end{array}\) work

Part of X9 voltage divider network

Part of X12 voltage
work

Phase Modulation RA25B2FG
1024K
-102AK

TABLE 8-4. COMBINED PARTS AND REPAIR PARTS LIST FOR KEYERS KY-58/GRT AND KY-75/SRT

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \frac{0}{0} \\
& \frac{0}{2} \\
& \frac{2}{2}
\end{aligned}
\] & \[
\begin{array}{|l}
\text { R-165 } \\
\text { (cont) }
\end{array}
\] & \begin{tabular}{l}
lant to humidity and salt water immersion cycling; 2 axial wire lead term; JAN-R-11 spec \\
Same as R-124 \\
Resistor, fixed: composition; body style no 14, MBCA ref dwg group 2 ; total resistance \(330,000 \pm 10 \%\); 1 watt power dissipation; F characteristic; \(0.750^{\prime \prime} \lg \times 0.280^{\prime \prime}\) diam max; insulated; resistant to humidity and salt water immersion cycling; 2 axial wire lead term; JAN-R-11 spee
\end{tabular} & \begin{tabular}{l}
V-105 plate load \\
Part of V-105 phase shifting network
\end{tabular} & \[
\begin{aligned}
& \text { (-63288-334) }
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& \text { N16-R-50760 } \\
& -0231
\end{aligned}\right.
\] & 63 & H370-44 & R-167, R-169 & 2 & & & & \\
\hline & R-168 & Same as R-162 & Part of V-105 phase shifting network & & & & & & & & & & \\
\hline & R-169 & Same as R-167 & Part of V-105 phase shifting network & & & & & & & & & & \\
\hline & R-170 & Same as R-108 & Part of V-105 phase shifting network & & & & & & & & & & \\
\hline & R-171 & Not used & & & & & & & & & & & \\
\hline & R-172 & Resistor, fixed: wire wnd; body style no 7, MBCA ref dwg group 2; inductive wnd; 2500 ohms \(\pm 1 \%\); 1/4 watt power dissipation; \(105^{\circ} \mathrm{C}\) max continuous oper temp; \(15 / 32^{1 \prime} \lg\) \(\times 3 / 4^{\prime \prime}\) OD max; lacquer coating; resistant to high humidity; 2 solder lug term, \(3 / 8^{\prime \prime} \lg \times 0.016^{\prime \prime}\) min thk; chassis mtg , requires hole for \#6 screw; temp coef \(\pm 0.002 \% /{ }^{\circ} \mathrm{C}\); JAN-R-93 spec & V-106 cathode & RB10B25000F & \[
\begin{aligned}
& \text { N16-R-79298 } \\
& -6139
\end{aligned}
\] & 1368 & P753-7 & R-172 & 1 & 1 & 1 & 1 & 1 \\
\hline & R-173 & Not used & & & & & & & & & & & \\
\hline & R-174 & Not used & & & & & & & & & & & \\
\hline & R-175 & Not used & & & & & & & & & & & \\
\hline & R-176 & Resistor, fixed: composition; body style no 14, MBCA ref dwg group 2; total resistance 33,000 ohms \(\pm 10 \%\); 1 watt power dissipation; F characteristic; \(0.750^{\prime \prime} \lg \times\) \(0.280^{\prime \prime}\) diam max; insulated; resistant to humidity and salt water immersion cycling; 2 axial wire lead term; JAN-R-11 spec & V-108 and V-109 screen dropping & \[
\begin{aligned}
& \text { RC30BF333K } \\
& (-6328-333)
\end{aligned}
\] & \[
{ }_{-0231}^{\text {N16-R-50418 }}
\] & 63 & H370-41 & \[
\begin{aligned}
& \mathrm{R}-176, \mathrm{R}-186, \\
& \mathrm{R}-190
\end{aligned}
\] & 3 & & & & \\
\hline & R-177 & Same as R-165 & V-107 grid bias & & & & & & & & & & \\
\hline  & R-178 & Same as R-101 & V-107 screen dropping & & & & & & & & & & \\
\hline
\end{tabular}


7vNIDİO
| R-203 \(\mid\) bulb, MBCA ref dwg group 7, (cont) \(39 / 16^{\prime \prime} \lg\) o/a; octal base for socket mtg; moisture resistant; ballast tube type 6-4
S-101
Switch, rotary: 3 sections; 5 posi tions, max no of switching positions possible; non-"'pile-up" type; 6 poles, 5 throws; spring brass contacts; silver plated contact finishacts; sliver plated contact finish; grade \(L-4\) ceramic wafer body; \(2^{\prime \prime}\) \(\mathrm{g} \max \times 15 / 8\) wd \(\times 178^{\prime \prime} \mathrm{h}\); mts and \(1 / 8^{\prime \prime}\) wd key, 17 g \(^{\prime \prime}\) from vertical center line at 9 oclock double enter line a 9 clock, double \(\times 7 / 8^{\prime \prime} \lg\); solder lug term

S-101A
Switch section, rotary: 1 section, 5 positions mas, rotary : 1 section, 5 positions possible; non-"pile-up" type contact arrangement, 2 poles, 5 throws; spring brass contacts, 5 throws; spring brass contacts, silver plated contact finish; grade L-4 ceramic wafer body; \(15 / 8^{\prime \prime}\) wd \(\times 17 / 8^{\prime \prime} \mathrm{h}\); mts by two \(0.128^{\prime \prime}\) diam holes on vertical center line \(19 / 16^{\prime \prime}\) c to \(c\); solder lug terminals; part of S-101

Same as S-101A

Same as S-101A

Detent, switch: provisions for 5 switch positions; non-adjustable stop \(278^{\prime \prime} 1 \mathrm{~g} \times 1336^{\prime \prime}\) wd \(\times 178^{\prime \prime}\) -p, 2 /8 \(\lg ^{\prime \prime}-32\) thrd bus "'I le and \(1 /{ }^{\prime \prime}\) d key, \(17{ }^{\text {in }}\) \(8 / 8 \mathrm{lg}\), and a \(1 / 8\) wd key, \(1 / 32\) rom vertical center line at 9 \(\sigma^{\prime}\) clock; two \(0.128^{\prime \prime}\) diam \(m t g\) holes on vertical center line spaced 196 c to \(c\); part of S-101

Switch, rotary: 1 section; 3 positions, max no of switching positions possible; non-"pile-up" type; 3 poles, 3 throws; spring brass contacts; silver-plated contact finish; grade L-4 ceramic wafer finish; grade \(L-4\) ceramic water
body; \(11 / 8^{\prime \prime} \lg \times 15 / 8^{\prime \prime}\) wd \(\times 17 / 8^{\prime \prime}\) body; \(11 / 8^{\prime \prime} \lg \times 15 / 8\) wd \(\times 1 / 8^{\prime \prime}\)
h; mts by a \(3 / 8^{\prime \prime}-32\) thrd bushing \(3 / 8^{\prime \prime} \lg\), and a \(1 / 8^{\prime \prime}\) wd key \(17 / 32^{\prime \prime}\) from vertical center line at 9 o'clock; double flatted type shaft; \(3 / 8^{\prime \prime} \lg\) \(\times 0.218^{\prime \prime}\) across flats \(w / 0.250^{\prime \prime}\) o/a diam; solder lug term

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& 0 \\
& \frac{0}{2} \\
& \frac{2}{z}
\end{aligned}
\] & S-104E & Detent, switch: provisions for 8 switch positions; non-adjustable stop; \(35 / 16^{\prime \prime} \lg \times 133 / 64^{\prime \prime}\) wd \(\times 17 / 8^{\prime \prime}\) h ; mts by a \(3 / 8^{\prime \prime}-32\) thrd bushing, \(3 / 8^{\prime \prime} \lg\), and a \(1 / 8^{\prime \prime}\) wd key \(17 / 32^{\prime \prime}\) from vertical center line at 9 o'clock; two \(0.128^{\prime \prime}\) diam mtg holes on vertical center line spaced \(19 / 16^{\prime \prime}\) c to c ; part of S-104 & S-104 switch detent \\
\hline & S-105 & Switch, rotary: single pole, single throw & Phase Mod sw \\
\hline & S-106 & Switch, rotary: 1 section; 4 positions, max no of switching positions possible; non-"pile-up" type; 2 pole, 4 throws; spring brass contacts; silver plated contact finish; grade L-4 ceramic wafer body; \(118^{\prime \prime} \lg \times 15 / 8^{\prime \prime}\) wd \(\times 17 / 8^{\prime \prime} \mathrm{h} ;\) mts by a \(3 / 8^{\prime \prime}-32\) thrd bushing \(3 / 8^{\prime \prime}\) \(\lg\), and a \(1 / 8^{\prime \prime}\) wd key \(17 / 32^{\prime \prime}\) from vertical center line at 9 o'clock; double flatted type shaft, \(7 / 8^{11} \mathrm{lg}\), \(0.218^{\prime \prime}\) across flats w/0.250" o/a diam; solder lug term & Crystal Osc sw \\
\hline & S-107 & Switch, rotary: 7 sections & Freq Range sw \\
\hline & S-107A & Switch section, rotary: 1 section; 3 positions, max no of switching positions possible; non-"pile-up" type; 2 poles, 8 contacts; spring brass contacts; silver plated contact finish; grade L-4 ceramic wafer body; \(3 / 6^{\prime \prime} \mathrm{h} \times 1 \frac{5}{8 \prime \prime}\) wd \(\times 178^{\prime \prime} \mathrm{lg} ; \mathrm{mtg}\) hole at center of wafer for flatted shaft \(0.187^{\prime \prime}\) across flats and \(0.250^{\prime \prime}\) accoss diam; solder lug term & V-110 crystal ose plate \\
\hline & S-107B & Same as S-107A & V-108 balanced mixer plate \\
\hline & S-107C & Same as S-107A & V-109 balanced mixer plate \\
\hline & S-107D & Same as S-107A & V-111 buffer amp grid \\
\hline & S-107E & Same as S-107A & V-111 buffer amp plate \\
\hline & S-107F & Same as S-107A & V-112 RF power amp plate \\
\hline & S-107G & Same as S-107A & Output tuning \\
\hline  & S-108 & Switch, toggle: double pole, single throw; \(6 \operatorname{amp}, 125 \mathrm{v}\); bakelite body; \({ }^{23 / 32}{ }^{\prime \prime} \lg \times 23 / 32^{\prime \prime}\) wd \(\times 192^{\prime \prime} \mathrm{h}\) max, excl term, barriers, bushing & Power sw \\
\hline
\end{tabular}

TABLE 8-4. COMBINED PARTS AND REPAIR PARTS LIST FOR KEYERS KY-58/GRT AND KY-75/SRT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PARTS} & \multicolumn{4}{|c|}{EQUIP. REPAIR PARTS} \\
\hline & \multirow[b]{2}{*}{NAME OF PART AND DESCRIPTION} & \multirow[b]{2}{*}{FUNCTION} & \multirow[b]{2}{*}{JAN AND (NAVY TYPE) NO.} & \multirow[t]{2}{*}{STANDARD NAVY AND (SIGNAL CORPS) STOCK NO.} & \multirow[b]{2}{*}{\begin{tabular}{l}
MFGR. \\
AND MFGR'S. DEsIGNATION
\end{tabular}} & \multirow[t]{2}{*}{CON-
TRACTOR DRAWING \& PART NO.} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { ALL } \\
\text { SYMBOL } \\
\text { DESIG. } \\
\text { INVOLVED }
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\left\lvert\, \begin{gathered}
\text { TOT. } \\
\text { NO. } \\
\text { PER } \\
\text { EQ. }
\end{gathered}\right.
\]} & \multicolumn{2}{|l|}{KY-58/GRT} & \multicolumn{2}{|l|}{KY-75/5RT} \\
\hline SYMBOL DESIG. & & & & & & & & & \[
\stackrel{\times}{\circ}
\] & 2
3
0 & ¢ & 安 \\
\hline
\end{tabular}
sWITCHES (continued)

1000 cycles: primary 9.6 microhenries, secondary 3.2 microhenries; 20 turns on primary, 9 turns on secondary, \(\# 26 \mathrm{AWG}\) enamed simary 0.25 ohms secon dary 0.116 ohms 3.4 to 7 mc fre quency range. primary center quency. range \({ }^{\text {a }}\), 11 " \(^{\prime \prime} \lg \times 1^{\prime \prime}\) diaped, unc oil form w \(\times 1\) dered ironcore; coil form \(13 /\), \(1 \mathrm{lg} \times\) \(1^{\prime \prime}\) dia. adjustable iron core tuning 1 dia, adjustable iron core tuning w/screwdriver adjustment located thrd mtg bushing, \(11 /{ }^{\prime \prime}{ }^{\prime \prime} \mathrm{lg}\) through bottom of coil form; 5 solder lug term, two located on bottom end and 3 located on top end
Transformer, RF: 2 windings, 2 pie universal wound; inductance at 1000 cycles: primary 35.8 micro31 turns on primary, 15 turns on 31 turns on primary, 15 turns on
secondary \(\# 10 / 41\) litz wire; DC secondary \#10/41 litz wire; DC
resistance: primary 0.99 ohms, secondary 0.62 ohms; 1.75 to 3.6 me frequency range; untapped, unshielded; \(23.32 \lg \times 3 / 4\) dia; ceramic coil form w/powdered iron core; coil form \(19 / 16 \lg \times 3 / 4{ }^{\prime \prime}\) dia adjustableironcoretuningw/screwdriver adjustment located on botmtg bushing, \(11 / 16^{\prime \prime} \mathrm{lg}\), through bottom of coil form; 4 solder lug term located 2 on each end
Transformer, RF: 2 windings, 2 pie
Mixer tank, universal wound; inductance at 1000 cycles: primary 121 microhenries, secondary 8.3 microhenries; 59 turns on primary, 15
turns on secondary \(\# 10-41\) litz turns on secondary \#10-41 litz
wire; DC resistance: primary 1.94 ohms, secondary 0.63 ohms; 0.95 to 1.85 me frequency range; untapped, unshielded; \(23 / 32^{\prime \prime} \lg \times 3 / 4\) dia; ceramic coil form w/pow\(\times 34^{\prime \prime}\) dia; adjustable iron core tuning w/screwdriver adjustment located on bottom of coil form one \(1 / 4^{\prime \prime}-32\) thrd bushing, \(11 / 6^{\prime \prime} \lg\), through bottom of coil form; 4 through bottom of coil form; 4
solder lug term, located 2 on each sold


\section*{V-101}
Electron tube: twin diode; metal

    V-112 \(\mid\) pin type terminations located on
    (cont) bottom w/1 cap type termination
        located on top; transmitting tube
    Electron tube: diode; glass enve-
    Electron tube: diode; glass enve-
lope; RMA envelope ST-12; 6 pin
        lope; RMA envelope ST-12; 6 pin
type terminations located on bot-
        type terminations located on bot-
        spec
\begin{tabular}{|c|c|}
\hline N16-T-53060 & \begin{tabular}{l}
OD3/ \\
VR150
\end{tabular} \\
\hline N16-T-53030 & \[
\begin{aligned}
& \text { OA3/ } \\
& \text { VR75 }
\end{aligned}
\] \\
\hline N16-T-55464 & 5U4G \\
\hline
\end{tabular}

\begin{tabular}{|l|} 
W-107* \\
(cont) \\
W-108*
\end{tabular}
rd shape, \(0.405^{\prime \prime} \mathrm{OD}\); black vinyl jacket; \(12^{\prime} \mathrm{lg}\) overall; 1 Navy type plug - 49195 located at each end; marked: Freq Meter RF; includes P-105, P-106
Cable assembly, RF: AN type RF coaxial cable No RG-8/U; 52 ohms characteristic impedance, 4000 v rms max operating voltage; single conductor, 7 strands of No. 21 AWG copper wire, plain finish; synthetic resin insulation, \(0.285^{\prime \prime}\) dia; single tinned copper shield; d shape, \(0.405^{\prime \prime}\) OD; black vinyl acket; \(12^{\prime}\) lg overall; 1 Navy type plug - 49195 located at each end; marked: Keyer Output; includes P-103, P-10
Cable assembly, special purpose: 3 type RG-59 (u conductors of No 22 AWG stranded wire w polyethylene insulation; 10 type SR1R \(-1 / 2(7)-18\) conductors of no 18 AWG stranded wire \(w /\) synthetic resin insulation; 10 type SR1R-1 (7)-20 conductors of No 20 AWG stranded wire \(w\) /synthetic resin insulation: vinylite tape w/lacquered covered vinylite tape w/acquered covered braid shield around each of the 3 type \(R \mathrm{G}-59 / \mathrm{U}\) conductors; \(6^{\prime}\) \(3^{\prime \prime} \lg\) o/a; 1 Cannon plug connector type DPD-33P w/special insert on first end; 1 Cannon plug connector type DPD-33S w/special insert on
 segnd end ad \((\sqrt{2}-101\)
\(W-110\)
S:
SA:8759
W-108
\begin{tabular}{|c|c|c|}
\hline SA:8759 & W-108 & 1 \\
\hline SA:8903 & W-109 & 1 \\
\hline
\end{tabular}
SA:8903
W-109
\begin{tabular}{|c|c|c|}
\hline  & \(\ddagger\)

\(\ddagger\) & \begin{tabular}{l}
1 ; \\
SA:8759 \\
1; \\
SA:8903
\end{tabular} \\
\hline
\end{tabular}

FILTERS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Z-101 & \begin{tabular}{l}
Filter, low pass: 300 cycle cutoff, 0 to 300 cycle bandwidth; 5000 ohms input, 5000 ohms output; \(3^{\prime \prime}\) \(\lg \times 3^{\prime \prime}\) wd \(\times 3^{13} / 16^{\prime \prime} \mathrm{h}\); round, metal case; fóur \(0.1695^{\prime \prime}\) diam mtg holes on \(23 / 8^{\prime \prime} \times 23 / 8^{\prime \prime} \mathrm{mtg} / \mathrm{c} ; 3\) \\
upplied on KY-58/GRT only upplied on KY-75/SRT only ot furnished as a maintenance part overnment furnished
\end{tabular} & \begin{tabular}{l}
60 dot-cycle filter \\
If failure occurs, do
\end{tabular} & \begin{tabular}{l}
N16-F-44012 -8347 \\
unless the
\end{tabular} & \begin{tabular}{l}
123 \\
cann
\end{tabular} & P623-1 & \begin{tabular}{l}
Z-101 \\
cated.
\end{tabular} & 1 \\
\hline
\end{tabular}

\begin{tabular}{l|l} 
Z-105 \\
(cont)
\end{tabular} \left\lvert\, \(\begin{aligned} & \times 0.312^{\prime \prime} \mathrm{mtg} \mathrm{c} ; 4 \text { stud type term } \\
& \text { located on bottom of can; includes } \\
& \mathrm{L}-104 \mathrm{C}-121\end{aligned}\right.\) L-104, C-121
Transformer, RF: 1 winding, universal wound; 10 microhenries to tap, 205 microhenries total at 1000 cycles; 20 turns to tap, 99 turns total of \#10/41 ESN wire; 0.52 ohms to tap, 2.89 ohms total; 200 \(\mathrm{kc} \pm 1 \mathrm{kc}\) peak freq; tapped at 20 turns; aluminum rectangular shield can \(w\) caustic etch finish; \(3^{11 / 32}{ }^{\prime \prime}\) \(\lg \times 2^{\prime \prime}\) wd \(\times 19 / 16^{\prime \prime} \mathrm{d}\); glass melamine coil form \(w\) powdered iron core; coil form \(2^{13 / 16^{\prime \prime}} \lg \times 1 / 2^{\prime \prime}\) diam; adjustable iron core tuning \(w /\) screwdriver adjustment thru bottom of can; two \#6-32 mtg holes on \(1.406^{\prime \prime} \times 0.312^{\prime \prime} \mathrm{mtg} / \mathrm{c} ; 4\) stud type term located on bottom; shield stamped L-103; part of

\begin{tabular}{|c|c|c|c|c|c|c|} 
\\
SA:8884 & SA:8884 & Z-106 & & \\
\hline
\end{tabular}
Same as HR-101; part of E-119

HEATERS
TERMINAL BOARDS
\begin{tabular}{|c|c|c|}
\hline TB-101 & \begin{tabular}{l}
Terminal board: glass melamine; 9 double ended stud type term; w/o barrier; 41/2' \(\lg \times 1^{\prime \prime}\) wd \\
 holes spaced \(4^{\prime \prime}\) c to ( \(; 9\) term marked 1, 2, 3, 4, 5, 6, 7, 8, 9; wax impregnated panel; part of E-119
\end{tabular} & Terminal board \\
\hline TB-102 & Terminal board: glass melamine; 9 stud type term; w/o barrier; \(41 / 2^{\prime \prime} \lg \times 1^{\prime \prime}\) wd \(\times^{39}{ }^{39} 6^{\prime \prime} \mathrm{h}\); two \(0.196^{\prime \prime}\) diam mtg holes spaced \(4^{\prime \prime}\) & Terminal board \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|l}
\(\ddagger\) & \(1 ;\) & SA:8897 & TB-101 \\
\(\ddagger\) & & & \\
SA:8897 & & \\
SA:8858 & SA:8858 & TB-102
\end{tabular}
\(\ddagger\) Not furnished as a maintenance part. If failure occurs, do not request replacement unless the item cannot be repaired or fabricated.
TABLE 8-4. COMBINED PARTS AND REPAIR PARTS LIST FOR KEYERS KY-58/GRT AND KY-75/SRT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PARTS} & \multicolumn{4}{|c|}{EQUIP. REPAIR PARTS} \\
\hline & & \multirow[b]{2}{*}{FUNCTION} & \multirow[b]{2}{*}{JAN AND (NAVY TYPE) NO.} & \multirow[t]{2}{*}{STANDARD NAVY AND (SIGNAL CORPS) STOCK NO.} & \multirow[b]{2}{*}{MFGR. AND MFGR'S. DESIG NATION} & \multirow[t]{2}{*}{CON. tractor DRAWING \& PART NO.} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{TOT. No. PER EQ.} & \multicolumn{2}{|l|}{KY-58/GRT} & \multicolumn{2}{|l|}{KY-75/SRT} \\
\hline SYMBOL DESIG. & NAME OF PART AND DESCRIPTION & & & & & & & & \[
\begin{aligned}
& \times \\
& \stackrel{\times}{\infty}
\end{aligned}
\] &  & ¢ & 2
3
0
0 \\
\hline
\end{tabular}

TABLE 8-4. COMBINED PARTS AND REPAIR PARTS LIST FOR KEYERS KY-58/GRT AND KY-75/SRT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PARTS} & \multicolumn{4}{|c|}{\begin{tabular}{l}
EQUIP. \\
REPAIR PARTS
\end{tabular}} & \multirow[t]{3}{*}{} \\
\hline & & & \multirow[b]{2}{*}{JAN AND (NAVY TYPE) NO.} & \multirow[t]{2}{*}{STANDARD NAVY AND (SIGNAL CORPS) STOCK NO.} & \multirow[b]{2}{*}{\begin{tabular}{l}
MFGR. \\
AND MFGR'S. DESIGNATION
\end{tabular}} & \multirow[t]{2}{*}{CON-
TRACTOR DRAWING \& PART NO.} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\begin{tabular}{l}
тот. \\
No. \\
PER \\
EQ.
\end{tabular}} & \multicolumn{2}{|l|}{KY-58/GRT} & \multicolumn{2}{|l|}{KY-75/SRT} & \\
\hline \[
\begin{aligned}
& \text { SYMBOL } \\
& \text { DESIG. }
\end{aligned}
\] & NAME Of PART AND DESCRIPTION & FUNCTION & & & & & & & \[
\begin{aligned}
& \times \\
& \underset{\sim}{\infty}
\end{aligned}
\] & \[
\begin{aligned}
& z i \\
& \substack{3 \\
0}
\end{aligned}
\] & \[
\begin{aligned}
& \times \\
& 0 \\
& \hline
\end{aligned}
\] & 2
4
0
0 & \\
\hline \multicolumn{13}{|c|}{SOCKETS (continued)} & \\
\hline \[
\begin{aligned}
& \text { XI-102A } \\
& \text { (cont) }
\end{aligned}
\] & \(9 / 16^{\prime \prime}-27\) male threaded bushing, 3/16" \({ }^{\prime \prime}\) g ; part of XI-102 & & & & & & & & & & & & \\
\hline XI-103 & Light, indicator: supplied w/white lens, smooth faced w/frosted back, \(1 / 2^{\prime \prime}\) diam; friction mtd lens holder; accommodates T-3 \(1 / 4\) lamp \(; \mathrm{MBCA}\) ref dwg group 7 ; miniature bayonet base; 6 to \(8 \mathrm{v}, 0.15 \mathrm{amp}\); enclosed brass shell w/black nickel finish; \(23 / 8^{\prime \prime} \lg \times 3 / 4^{\prime \prime}\) diam; one \(11 / 16^{\prime \prime}\) diam mtg hole required; accommodates up to \(3 / 16^{\prime \prime}\) thick panel; horizontally mtd, lamp replaceable from front of panel; 2 solder lug term located on opposite side of base, both insulated from shell; JAN-I-6 spec & I-103 lamp holder & & & 317 & P616-3 & XI-103 & 1 & & & & &  \\
\hline XI-103A & Diffusor, light: concentric type; brass w/black nickel finish; 15/16" \(\lg \times{ }^{13 / 16{ }^{\prime \prime}}\) diam over-all; mts by \(9 / 6{ }^{\prime \prime}-27\) male threaded bushing, \(3 / 16^{\prime \prime} \lg\); part of XI-103 & XI-103 dimmer & & & 317 & P616-6 & XI-103A & 1 & & & & &  \\
\hline XR-101 & Socket, electron tube: 8 silver plated phosphor bronze contacts; medium size; round shape; 17/8" \(\lg \times 11 / 2^{\prime \prime}\) wd \(\times 5 / 16^{\prime \prime}\) d o/a; grade L-4 ceramic body; under chassis mtg ; two \(0.152^{\prime \prime}\) diam mtg holes spaced \(111^{\prime \prime}\) c to e; \(13 / 16^{\prime \prime}\) diam chassis hole required & R-203 socket & (-49398) & \[
\begin{aligned}
& \text { N16-S-63517 } \\
& -6481
\end{aligned}
\] & \[
\stackrel{1}{\mathrm{SA}}: 2640
\] & SA:2640 & \[
\begin{aligned}
& \text { XR-101, } \\
& \text { XV-101 thru } \\
& \text { XV-111, } \\
& \text { XV-113, thru } \\
& \text { XV-116 }
\end{aligned}
\] & 16 & & & & & \\
\hline \[
\begin{aligned}
& \text { XV-101 } \\
& \text { thru } \\
& \text { XV-111 }
\end{aligned}
\] & Same as XR-101 & \[
\begin{aligned}
& \text { V-101 thru V-111 } \\
& \text { tube socket }
\end{aligned}
\] & & & & & & & & & & & \\
\hline XV-112 & Socket, electron tube: 5 silver plated phosphor bronze contacts; medium size; round; \(13 / 8^{\prime \prime}\) o/a diam \(\times 0.385^{\prime \prime}\) d, excl term; grade L-5 ceramic body; requires retainer ring mtg; 13/16" chassis hole required; JAN-I-10 spec & XV-112 tube socket & & \[
\begin{aligned}
& \text { N16-S-61704 } \\
& -1060
\end{aligned}
\] & \[
\stackrel{1 ;}{\text { SA: }}: 2627
\] & SA:2627 & XV-112 & 1 & & & & & - \\
\hline \[
\begin{aligned}
& \text { XV-113 } \\
& \text { thru } \\
& \text { XV-116 }
\end{aligned}
\] & Same as XR-101 & \[
\begin{aligned}
& \text { V-113 thru V-116 } \\
& \text { tube socket }
\end{aligned}
\] & & & & & & & & & & & \(\cdots\) \\
\hline
\end{tabular}


\begin{tabular}{|c|}
\hline CAPACITOR COLOR CODE \\
\hline signficant figures \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{RESISTORS} & \multirow[b]{4}{*}{COLOR} & \multicolumn{8}{|c|}{CAPACITORS} \\
\hline \multirow[t]{3}{*}{DE CIMAL MULTIPLIER OR NO. OF ZEROS} & \multirow[b]{3}{*}{TOLERANCE} & \multirow[b]{3}{*}{SIGNIFICANT FIGURE} & & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { SIGNIFICANT } \\
& \text { FI GURE }
\end{aligned}
\]} & \multicolumn{3}{|l|}{M/CA - D/ELECTR/C} & \multicolumn{4}{|l|}{CERAM/C-DIELECTR/C} \\
\hline & & & & & \multirow[b]{2}{*}{MULTIPLIER} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { CAPACITIVE } \\
& \text { TOL.IN } \%
\end{aligned}
\]} & \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{MULTIPLIER} & \multirow[b]{2}{*}{TEMP. COEFIN PARTS/MEG/ \({ }^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{TOLERANCE} \\
\hline & & & & & & & & & & ) IOUUFIN \% & SIOULAF IN UUF \\
\hline 0 & & 0 & BLACK & 0 & 1 & 20 & A & 1 & 0 & 20 & 2 \\
\hline 1 & & 1 & BROWN & 1 & 10 & & B & 10 & -30 & 1 & \\
\hline 2 & & 2 & RED & 2 & 100 & 2 & C & 100 & -80 & 2 & \\
\hline 3 & & 3 & ORANGE & 3 & 1000 & & D & 1000 & -150 & & \\
\hline 4 & & 4 & YELLOW & 4 & & & E & & -220 & & \\
\hline 5 & & 5 & GREEN & 5 & & & \(F\) & & -330 & 5 & . 5 \\
\hline 6 & & 6 & BLUE & 6 & & & G & & -470 & & \\
\hline 7 & & 7 & VIOLET & 7 & & & & & -750 & & \\
\hline 8 & & 8 & GRAY & 8 & & & & . 01 & \(+30\) & & . 25 \\
\hline 9 & & 9 & WHITE & & & & & . 1 & \(-330 \pm 500\) & 10 & 1.0 \\
\hline . 1 & \(\pm 5\) & & GOLD & & . 1 & 5 & & & & & \\
\hline . 01 & \(\pm 10\) & & SILVER & & .01 & 10 & & & & & \\
\hline & \(\pm 20\) & & NO COLOR & & & & & & & & \\
\hline
\end{tabular}
 CERAMIC-DIELECTRIC
\begin{tabular}{|c|c|c|}
\hline CODE NO. & MFR'S PREFIX & NAME \\
\hline 1 & CNA & National Company, Inc. \\
\hline 3 & CHH & Arrow-Hart \& Hegeman Elect. Co. \\
\hline 5 & CMA & Mallory, P. R. Co.,' Ine. \\
\hline 8 & CMG & Cinch Mfg. Co. \\
\hline 11 & CMC & Clarostat Mfg. Co. \\
\hline 13 & CSF & Sprague Electric Co. \\
\hline 14 & CAW & Aerovox Corp. \\
\hline 18 & CG & General Electric Co. (Lamp Dept.) \\
\hline 24 & & Humason Mfg. Co. \\
\hline 30 & & Mass. Machine Shop \\
\hline 46 & CAS & American Lava Corp. \\
\hline 63 & CIR & Iuternational Resistance Co. \\
\hline 68 & & Laminated Sheet Products Corp. \\
\hline 76 & CLF & Littlefuse, Inc. \\
\hline 83 & CER & Erie Resistor Corp. \\
\hline 86 & CDP & General Ceramics \& Steatite Corp. \\
\hline 93 & CHU & Hubbell Harvey Co. \\
\hline 97 & & National Lockwasher Co. \\
\hline 111 & COC & Oak Mfg. Co. \\
\hline 123 & CUT & United Transformer Corp. \\
\hline 125 & CAXP & Lord Mfg. Co. \\
\hline 128 & CPH & American Phenolic Corp. \\
\hline 158 & & Mason Lumber Co. \\
\hline 173 & CAN & Sangamo Electric Co. \\
\hline 187 & CAXH & Canfield Rubber Co. \\
\hline 188 & CV & Weston Electric Instrument Corp. \\
\hline 190 & CAO & Ward Leonard Co. \\
\hline 238 & & Peterson \& Neville, Inc. \\
\hline 242 & CMF & Electro Motive Mfg. Co. \\
\hline 254 & CCJ & Crowley, Henry L. Co. \\
\hline 262 & \(\mathrm{CB1C}^{\text {Cb }}\) & Selectar Industries, Inc. \\
\hline 273
284 & CBZ & \begin{tabular}{l}
Allen-Bradley Co. \\
Radio Condenser Co.
\end{tabular} \\
\hline 289 & & Waldes Koh-I-Noor, Inc. \\
\hline 296 & CA1S & Birteher Corp. . \\
\hline 298 & CAMQ & Cambridge Thermionic Corp. \\
\hline 317 & CAYZ & Dial Light Corp. of America \\
\hline 324 & CFA & Bussman Mfg. Co. \\
\hline 332 & CADF & Standard Transformer Corp. \\
\hline 339
344 & CED & Cannon Electric Development Co. \\
\hline 344
506 & & Nutile Machine Co. Smith \& Welch, Printers \\
\hline 512 & & Tempeo Mfg. Co. \\
\hline 665
738 & & Automatic Products Corp. \\
\hline 738
858 & CAHC & Barker \& Williamson \\
\hline 1238 & CARO & Fenwal, Inc. \\
\hline 1302 & CPB & Price Electric Corp. \\
\hline 1316 & & H. P. L. Mftg. Co. \\
\hline 1366 & & Progressive Steel Rule Die Co. \\
\hline 1367 & & Faultless Caster Corp. \\
\hline 1368 & & Resistance Products Co. \\
\hline 1369 & CBNB & Technology Instrument Corp. \\
\hline 1370 & CAYU & Barry Corp. \\
\hline 1372 & & Triangle Screw Machine Products Co. \\
\hline 1373 & & D. M. Watkins Co. \\
\hline
\end{tabular}

61 Sherman St., Malden, Mass.
102 Hawthorne St. Hartford Conn
1941 Thomas St., Indianapolis, Ind.
2339 W. Van Buren St., Chicago, Ill.
\(285-287\) N. 6 th St., Brooklyn, N. Y.
N. Adams, Mass.

742 Belleville Ave., New Bedford, Mass.
Nela Park, Cleveland, Ohio
Forestville, Conn
817 Albany St., Roxbury, Mass.
Cherokee Blvd. \& Mfgr's Rd., Chattanooga, Tenn.
401 No. Broad St., Philadelphia, Pa.
259 "A" St., So. Boston, Mass.
4757 Ravenswood Ave., Chicago, Ill.
644 W 12th St., Erie, Pa.
Crows Mill Rd., Keasbey, New Jersey
447 Concord Ave., Bridgeport, Conn.
Newark, New Jersey
1200 N. Clybourne Ave., Chicago, Ill.
148 Varick St., New York, N. Y.
1631 W. 12th St., Erie, Pa.
1830 S. 54 th Ave., Chicago, Ill.
9 Dana St., Malden, Mass.
1935 Funk St., Springfield, Ill
Warren \& Garden St., Bridgeport, Conn.
623 Frelinghuysen Ave., Newark, New Jersey
6 South St., Mount Vernon, N. Y.
365 Dorchester Ave., So. Boston, Mass
Willimantic, Conn.
1 Central Ave., West Orange, N. J.
118 W. Greenfield Ave., Milwaukee, Wis Camden, New Jersey
47-54 27 th St., Long Island City, N. Y. 4087 Huntington Drive, Los Angeles, Calif.
445 Concord Ave., Cambridge, Mass.
900 Broadway, New York, N. Y.
2538 W. University St., St. Louis, Mo Elston Kedzie \& Addison, Chicago, Ill 3291 Humboldt St., Los Ángeles, Calif 95 Hemingway St., Winchester, Mass.
470 Atlantic Ave., Boston, Mass.
3031 Hiawatha Ave., Minneapolis, Minn. 124 West Boylston Drive, Worcester, Mass.
237 Fairfield Ave., Upper Darby, Pa.
400 Main St., Ashland, Mass.
Brookfield St., Danbury, Conn
332 E. Church St. \& 2nd St., Frederick, Md.
2003 E. 65th St., Cleveland, Ohio
10 Allerton St., Lynn, Mass.
30 Oliver St., Boston, Mass.
714 Race St., Harrisburg, Pa.
531 Main St., Acton, Mass.
700 Pleasant St., Watertown, Mass.
Cross St., Winchester, Mass.
274 Pine St., Providence, R. I

\section*{INDEX}

\section*{SUBJECT}

FIGURE OR TABLE
PAGE

\section*{A}

\section*{Alignment}

Buffer
Carrier Balance
\(\qquad\) 7-9, 7-10

Carrier Calibrate ..............................................

Crystal Oscillator
.....
\(\qquad\)
7-13

Crystal Oscillator ....
Deviation Calibration
7-13, 7-14

Deviation Calibration
Initial Adjustments and
.............................................
\(\qquad\) 7-8, 7-9
7-11, 7-12
3-7, 3-8, 3-9,
3-10
Linearity
7-12, 7-13
Mark and Space
7-11
Mechanical
(..........................................

7-14
Mixer ..............................................

7-10, 7-11
Oven Thermostat
.............................................
7-14
Phase Modulation
7-13
Phase Modulation Frequency Control
.................................................. 7-13
R.F. Power Amplifier

Amplifier Oscillator .
Brief Description
1-4
Amplifier Oscillator ..
Brief Description
7-10, 7-11

Arrangement of Units
......................................................
1-1

B

\section*{Balanced Mixer Stage}

Circuit Theory ......................................................... ............................................. 2-14
Schematic
2-13
Block Outline of Transmitting Station Employing the
Keyer
2-1
2-1
Buffer Amplifier Stage
Circuit Theory.
2-15
Schematic
2-14

\section*{C}

\section*{Cathode Followers}
Circuit Theory ..... 2-6
Schematic

2-4

\section*{Chassis Arrangement}

2-3
Circuit Analysis
2-4
Balanced Mixer Stage ............................................. 2-13
2-14, 2-15
Buffer Amplifier ...................................................... 2-14
2-15
Cathode Followers ................................................. 2-4
2-6
Crystal Oscillator - Amplifier ................................ 2-12
2-14
Crystal Oven ........................................................... 2-17
2-18, 2-19

\section*{SUBJECT}

Deviation Stages ..................................................... 2-8
Frequency Modulated Oscillator ............................ 2-9
Functional Block Diagram ...................................... 2-2
Limiter Stages ......................................................... 2-3
Phase Modulation Oscillator .................................... 2-6
Photo Input .............................................................. 2-5
Power Amplifier ......................................................... 2-15
Power Supply ............................................................. 2-16
Pulse Shaper .............................................................. 2-7
Reactance Modulator .................................................. 2-11
Test-Operate and Calibrate Switch
Circuit Constants
Component Locations
Alignment Adjustment Locations, Bottom View of Amplifier-Oscillator AM-655/URT
Alignment Adjustment Locations, Front View of Amplifier-Oscillator AM-655/URT with Panel Door Open
Alignment Adjustment Locations, Front View of Modulator-Power Supply MD-165/URT with Panel
Door Open ...........................................................................
Amplifier-Oscillator AM-655/URT
Top View of
Alignment Adjustment Locations, Top View of
Modulator-Power Supply MD-165/URT ..................
Oscillator AM-655/URT
Capacitor and Miscellaneous Component Locations, Bottom View of Modulator-Power Supply MD-165/URT
Component Locations, Top View of Amplifier-
Oscillator AM-655/URT
Component Locations, Top View of ModulatorPower Supply MD-165/URT.

Resistor Locations, Bottom View of Amplifier;
Oscillator AM-655/URT
Resistor Locations, Bottom View of ModulatorPower Supply MD-165/URT
Slide Mechanism Part Locations, Left Side View of Amplifier-Oscillator AM-655/URT
Connectors, Assembly of
Controls
Correction Page
Couplings, Removal of \(\qquad\)
Crystals, Installation of \(\qquad\)
Crystal Oscillator-Amplifier
Circuit Theory
Schematic

\section*{Crystal Oven}

Circuit Theory
\(7-10\)

7-25
7-36
7-11

7-9
7-9
\(7-30\)
7-41

7-24
7-35

7-28
3-7
7-26 7-37

7-29
\(7-40\)

7-31
3-4, 3-5, 3-6
PAGE

2-8, 2-9, 2-10, 2-11
2-11
2-2
2-4, 2-5
2-6, 2-8
2-6
2-15, 2-16
\(2-16,2-17,2-18\)
\(2-8,2-9\)
2-12, 2-13
2-4
7-3

7-8
7-8

7-13

7-12

7-11

7-39
3-8

7-42
3-4, 3-5, 3-6
4-1, 4-2
C
7-14
3-1, 3-3
2-14, 2-15

\section*{2-12}
\(2-18,2-19\)
SURJECT FIGURE OR TABLE PAGE
Schematic ..... 2-17
Curves
Frequency Response of 60 -cycle Keying FilterZ-101 ........................................................................ 7-137-25
Frequency Response of 100 -cycle Keying Filter Z-102 ..... 7-14 ..... 7-25
Frequency Response of 200 -cycle Keying Filter Z-103 ..... 7-15 ..... 7-26
Frequency Response of 240 -cycle Keying Filter Z-104 ..... 7-16 ..... 7-26
Frequency Shift vs. Key Line Voltage, Static Test ..... 7-19 ..... 7-28
Overall Dynamic Response of Photo Circuits ..... 7-18 ..... 7-27
Overall Photo Linearity-Static Test 7-20 ..... 7-28
Transient Response of Waveshaping Filters 7-17 ..... 7-27

D
Description of Units ..... 1-1
Deviation Multipliers and Deviation Controls
Circuit Theory ..... \(2-8,2-9,2-10\)
Schematic ..... 2-8
Disassembly ..... 7-14

E
\begin{tabular}{|c|c|c|}
\hline Effective Pages & & A \\
\hline Electron Tube Complement & 1-3* & 1-6 \\
\hline Emergency Maintenance & & 5-2, 5-3, 5-4 \\
\hline Equipment Supplied & 1-1* & 1-5 \\
\hline External Connections & .............................. & 3-3, 3-7 \\
\hline
\end{tabular}

\section*{\(F\)}
Failure Report ..... 7-1 ..... 7-0
Final Amplifier Stage
Circuit Theory
Schematic
2-15
Frequency Response of 60 -cycle Keying Filter Z-101 7-13 ..... 7-25
Frequency Response of 100 -cycle Keying Filter Z-102 ..... 7-14 ..... \(7-25\)
Frequency Response of 200 -cycle Keying Filter Z-103 \(7-15\) ..... 7-26
Frequency Response of 240 -cycle Keying Filter Z-104 ..... 7-16 ..... 7-26
Frequency Shift Keyer KY-58/GRT ..... 1-1 ..... 1-0
Frequency Shift Keyer KY-75/SRT ..... 1-2
Frequency Shift vs. Key Line Voltage, Static Test... ..... 7-19 ..... 7-28
Front Panel Component Identification ..... 3-7 ..... 3-8
*Tables

\section*{SUBJECT}

\section*{Functional Block Diagram \\ G \\ Fuses and Receptacles}

FIGURE OR TABLE
PAGE
2-2
2-2
2-3

General Circuit Description
General Theory and Description
…...................................... 2-3
Guarantee
1


\section*{K}

Keyer KY-58/GRT, Dimensional Outline and Ex-
ternal Connection Drawing ......................................
Keyer KY-75/SRT, Dimensional Outline and External Connection Drawing 3-1

3-0

Knobs, Removal of
3-2
3-2
\begin{tabular}{|c|c|}
\hline & \[
3-7,3-8,3-9,3-10
\] \\
\hline ......................................... & 3-1, 3-3, 3-7 \\
\hline & 3-1, 3-3 \\
\hline & vi \\
\hline 7-5 & 7-5 \\
\hline 7-6 & 7-6 \\
\hline
\end{tabular}
\(\qquad\)
L
Limiter Stages
Circuit Theory
2-4
Schematic Diagram
2-3
Localization, Theory of
7-1
Low Frequency Oscillator
Circuit Theory

2-9

\section*{Lubrication}

M
\begin{tabular}{|c|c|c|}
\hline Miscellaneous Component Locations, Bottom View of Amplifier-Oscillator AM-655/URT & 7-27 & 7-38 \\
\hline Modes of Operation & & 2-3, 2-4 \\
\hline Modulator-Power Supply MD-165/URT ............. & 1-3 & \\
\hline Brief Description & & 1-1 \\
\hline Modulator-Power Supply MD-165/URT with Panel & & \\
\hline Door Open .................................................... & 7-11 & 7-12 \\
\hline
\end{tabular}

\section*{0}
\begin{tabular}{|c|c|c|}
\hline Operating Instructions & & 4-2, 4-3, 4-4 \\
\hline General & & 4-1 \\
\hline Introduction & ....................................... & 4-1 \\
\hline Operating Instructions for Frequency Shift Keying .. & & 4-2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SUBJECT & FIGURE OR TABLE & PAGE \\
\hline Ordering Parts & & vi \\
\hline \multicolumn{3}{|l|}{Oscilloscope Pattern Representing One Radian of} \\
\hline Phase Modulation & 7-7 & 7-6 \\
\hline Overall Dynamic Response of Photo Circuits ......... & 7-18 & 7-27 \\
\hline Overall Photo Linearity - Static Test ..................... & 7-20 & 7-28 \\
\hline \multicolumn{3}{|l|}{P} \\
\hline \multicolumn{3}{|l|}{Parts List} \\
\hline \multicolumn{3}{|l|}{Applicable Color Codes and Miscellaneous} \\
\hline Data .................................................................. & 8-6* & 8-63 \\
\hline Combined Parts and Repair Parts List ................. & 8-4* & 8-1, 8-61 \\
\hline Cross Reference Parts List ................................ & 8-5* & 8-62 \\
\hline List of Major Units ............................................ & 8-3* & 8-0 \\
\hline List of Manufacturers .......................................... & 8-7* & 8-64 \\
\hline Performance Tests & ........................................ & 7-3, 7-4, 7-5, 7-6, 7-7 \\
\hline \multicolumn{3}{|l|}{Phase Modulation Oscillator .................................} \\
\hline Circuit Theory ................................................. & & 2-6, 2-8 \\
\hline Schematic ......................................................... & 2-6 & \\
\hline \multicolumn{3}{|l|}{Photo Input Stage} \\
\hline Circuit Theory ................................................. & ........................................ & 2-6 \\
\hline Schematic ......................................................... & 2-5 & \\
\hline Positioning of Cabinet ......................................... & .......................................... & 3-1 \\
\hline \multicolumn{3}{|l|}{Power Supply} \\
\hline Circuit Theory .................................................. & \(\ldots . . . . . . . . .\). & 2-16, 2-17, 2-18 \\
\hline Schematic ......................................................... & 2-16 & \\
\hline Power Supply MD-165/URT .................................. & 1-3 & \\
\hline Brief Description .... & & 1-1 \\
\hline \multicolumn{3}{|l|}{Practical W'iring Diagram, Amplifier-Oscillator} \\
\hline AM-655/URT ......................................................... & 7-22 & 7-31, 7-32 \\
\hline \multicolumn{3}{|l|}{Practical Wiring Diagram of Blister Assembly,} \\
\hline KY-58/GRT and KY-75/SRT Keyers ...................... & 7-32 & 7-43 \\
\hline \multicolumn{3}{|l|}{Practical Wiring Diagram, Modulator-Power Supply} \\
\hline MD-165/URT .......................................................... & 7-23 & 7-33, 7-34 \\
\hline Primary Connections ............................................. & & 3-5, 3-6 \\
\hline Promulgating Letter .............................................. & ... ................ & B \\
\hline \multicolumn{3}{|l|}{Pulse Shaper Stage ................................................} \\
\hline Circuit Theory .................................................. & ......................................... & 2-8 \\
\hline Schematic .......................................................... & 2-7 & \\
\hline Purpose and Basic Principles ................................ & ............ & 1-1 \\
\hline \multicolumn{3}{|l|}{R} \\
\hline \multicolumn{3}{|l|}{Reactance Modulator} \\
\hline Circuit Theory .......................... ..................... & & \(2-12,2-13\) \\
\hline Schematic ...................................................... & 2-11 & \\
\hline Reference Data ................................................... & ................ & \(1-2,1-3,1-4,1-5\) \\
\hline Repairs & & \\
\hline Electrical ....................................................... & ....................................... & \[
\begin{aligned}
& 7-7,7-8.7-9,7-10 \\
& 7-11,7-12,7-13,7-14
\end{aligned}
\] \\
\hline
\end{tabular}
* Tables
\(i-4\)
ORIGINAL
SUBJECT
FIGURE OR TABLE
PAGE
Mechanical
7-14
Report of Failure ..... vi
Resistor Locations, Bottom View of Modulator-
Power Supply MD-165/URT ..... 7-29 ..... 7-40
Routine Checks
Maintenance ..... 6-1*
Operators 5-1*
6-1, 6-25-1
S
Safety Noticev
Scope of This Manual ..... 1-1
Schematic Diagram ..... 7-21\(7-29,7-30\)
Shipping Data 1-2*1-6
Slide Mechanism Part Locations, Left Side View of Amplifier-Oscillator AM-655/URT\(7-31\)7-42
Spare Parts Boxes
Shipping Weights and Dimensions 8-2*8-0
Weights and Dimensions 8-1* ..... 8-0
T
Teletype Connections ..... 3-5
Temperature Controlled Oven ..... 2-3
Test Operate and Calibrate Switch ..... 2-4
Transient Response of Waveshaping Filters ..... 7-17 ..... 7-27
Trouble Shooting ..... 7-2
Tubes
Characteristics of 7-2* ..... 7-16
\(7-2,7-3,7-4,7-5,7-6\),7-7
Complement 1-3*
Locations of ..... 5-2, 5-3Operating Voltages and Currents7-1*
Replacement of
1-6
5-3, 5-44-2
7-15
5-3, 5-4
Tuning Chart4-4
\(\mathbf{U}\)
Unpacking Instructions ..... 3-1
V
Vector Diagram Showing the effects of deviation Variation on Carrier Placement ..... 2-10 ..... 2-12
Voltage and Resistance Data, Amplifier-Oscillator AM-655/URT ..... 7-3 ..... 7-3
Voltage and Resistance Data, Modulator-Power Supply MD-165/URT ..... 7-4 ..... 7-4
Voltage Regulation ..... 2-16
*Tables

\section*{SUBJECT}
w

FIGURE OR TABLE PAGE
\[
\begin{aligned}
& 8-0 \\
& 7-17,7-18,7-19,7-20 \\
& 7-21,7-22,7-23,7-24
\end{aligned}
\]

\section*{ERRATA SHEET TO CHANGE 1 TO NAVSHIPS 91543}

The following revisions are to be made or noted on the appropriate page.
```


[^0]: *Per plate
 **Per diode
 *Cathode resistor - ohms
 \#\#\#Grid bias - 2 volts if separate oscillator excitation is used
 ***Oscillator transconductance
 **Conversion transconductance

